Prime role for an insulin epitope in the development of

Nature 435, 220-223 DOI: 10.1038/nature03523

Citation Report

#	Article	IF	Citations
1	The Fourth Annual Rachmiel Levine Symposium. American Journal of Therapeutics, 2005, 12, 477-480.	0.9	0
2	Genetic susceptibility to type 1 diabetes. Current Opinion in Immunology, 2005, 17, 601-608.	5.5	108
3	Immune intervention with anti-CD3 in diabetes. Nature Medicine, 2005, 11, 716-718.	30.7	12
4	Genome instability in progeria: when repair gets old. Nature Medicine, 2005, 11, 718-719.	30.7	45
6	Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature, 2005, 435, 224-228.	27.8	387
7	Insulin auto-antigenicity in type 1 diabetes. Nature, 2005, 438, E5-E5.	27.8	13
8	Insulin auto-antigenicity in type 1 diabetes (Reply). Nature, 2005, 438, E5-E6.	27.8	3
9	Insulin trigger for diabetes. Nature, 2005, 435, 151-152.	27.8	22
10	An emptier emptiness?. Nature, 2005, 435, 152-153.	27.8	6
11	Is celiac disease an autoimmune disorder?. Current Opinion in Immunology, 2005, 17, 595-600.	5.5	90
12	Innovative Immune-Based Therapeutic Approaches for the Treatment of Type 1 Diabetes Mellitus. International Reviews of Immunology, 2005, 24, 327-339.	3.3	11
13	Achieving Antigen-Specific Tolerance in Diabetes: Regulating Specifically. International Reviews of Immunology, 2005, 24, 287-305.	3.3	16
14	Autoreactive CD8 T cells associated with cell destruction in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18425-18430.	7.1	252
15	On the Edge of Autoimmunity: T-Cell Stimulation by Steady-State Dendritic Cells Prevents Autoimmune Diabetes. Diabetes, 2005, 54, 3395-3401.	0.6	99
16	Insulin as a Primary Autoantigen for Type 1A Diabetes. Clinical and Developmental Immunology, 2005, 12, 181-186.	3.3	42
17	The insulin A-chain epitope recognized by human T cells is posttranslationally modified. Journal of Experimental Medicine, 2005, 202, 1191-1197.	8.5	201
18	Insulin – a primary autoantigen in type 1 diabetes?. Trends in Molecular Medicine, 2005, 11, 445-448.	6.7	11
19	Insulin alleles and autoimmune regulator (AIRE) gene expression both influence insulin expression in the thymus. Journal of Autoimmunity, 2005, 25, 312-318.	6.5	50

ATION REDO

#	Article	IF	CITATIONS
20	Genetic prediction of autoimmunity: Initial oligogenic prediction of anti-islet autoimmunity amongst DR3/DR4–DQ8 relatives of patients with type 1A diabetes. Journal of Autoimmunity, 2005, 25, 40-45.	6.5	26
21	The genetics of type 1 diabetes: Lessons learned and future challenges. Journal of Autoimmunity, 2005, 25, 34-39.	6.5	19
22	Type 1 diabetes genes and pathways shared by humans and NOD mice. Journal of Autoimmunity, 2005, 25, 29-33.	6.5	145
23	Thymic expression of mutated B16:A preproinsulin messenger RNA does not reverse acceleration of NOD diabetes associated with insulin 2 (thymic expressed insulin) knockout. Journal of Autoimmunity, 2005, 25, 193-198.	6.5	19
24	GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects. Journal of Autoimmunity, 2005, 25, 235-243.	6.5	82
25	Of mice and men: use of animal models to identify possible interventions for the prevention of autoimmune type 1 diabetes in humans. Trends in Immunology, 2005, 26, 603-607.	6.8	26
26	Endothelin inhibition delays onset of hyperglycemia and associated vascular injury in type I diabetes: Evidence for endothelin release by pancreatic islet β-cells. Biochemical and Biophysical Research Communications, 2005, 334, 689-695.	2.1	24
27	The autoimmune contrivance: Genetics in the mouse model. Clinical Immunology, 2005, 117, 195-206.	3.2	13
28	Insulin-secreting cells derived from stem cells: Clinical perspectives, hypes and hopes. Transplant Immunology, 2005, 15, 113-129.	1.2	36
29	Isolation and Characterization of Proinsulin-Producing Medullary Thymic Epithelial Cell Clones. Diabetes, 2006, 55, 2595-2601.	0.6	27
30	Progress in the Development of Immune-Based Therapies for Type 1 Diabetes Mellitus. BioDrugs, 2006, 20, 341-350.	4.6	7
31	Insulin: a critical autoantigen and potential therapeutic agent in Type 1 diabetes. Expert Review of Clinical Immunology, 2006, 2, 419-431.	3.0	5
32	A CENTRAL ROLE FOR CENTRAL TOLERANCE. Annual Review of Immunology, 2006, 24, 571-606.	21.8	631
33	Type 1 diabetes: pathogenesis and prevention. Cmaj, 2006, 175, 165-170.	2.0	204
34	Mechanisms and applications of stem cell gene therapy in autoimmunity. Drug Discovery Today Disease Mechanisms, 2006, 3, 219-223.	0.8	4
35	Effect of interferon alpha on MHC class II gene expression in ex vivo human islet tissue. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 627-635.	3.8	10
36	Transcriptional regulation of vascular bone morphogenetic protein by endothelin receptors in early autoimmune diabetes mellitus. Life Sciences, 2006, 78, 2213-2218.	4.3	24
37	Tissue inhibitor of metalloproteinase-2 inhibits T-cell infiltration and preserves pancreatic Î ² -cell function in an in vitro type 1 diabetes mellitus model. Journal of Autoimmunity, 2006, 27, 28-37.	6.5	14

#	Article	IF	Citations
38	Pro-apoptotic DNA vaccination ameliorates new onset of autoimmune diabetes in NOD mice and induces foxp3+ regulatory T cells in vitro. Vaccine, 2006, 24, 5036-5046.	3.8	17
39	Extrapancreatic Proinsulin/Insulin-expressing Cells in Diabetes Mellitus: Is History Repeating Itself?. Endocrine Journal, 2006, 53, 715-722.	1.6	23
40	Lessons on autoimmune diabetes from animal models. Clinical Science, 2006, 110, 627-639.	4.3	80
41	Induction of antigen-specific tolerance by intrathymic injection of lentiviral vectors. Blood, 2006, 108, 2972-2978.	1.4	40
42	Secondary measures of immunologic efficacy in clinical trials. Current Opinion in Endocrinology, Diabetes and Obesity, 2006, 13, 325-331.	0.6	4
44	Prevention of myocardial infarction. Current Opinion in Cardiology, 2006, 21, 503-509.	1.8	2
46	Genetics of Type 1 Diabetes: Similarities and Differences between Asian and Caucasian Populations. Annals of the New York Academy of Sciences, 2006, 1079, 51-59.	3.8	45
47	Long-Term Prevention of Diabetes and Marked Suppression of Insulin Autoantibodies and Insulitis in Mice Lacking Native Insulin B9-23 Sequence. Annals of the New York Academy of Sciences, 2006, 1079, 122-129.	3.8	10
48	HLA Class I Epitope Discovery in Type 1 Diabetes. Annals of the New York Academy of Sciences, 2006, 1079, 190-197.	3.8	15
49	Genetic Determinants of Type 1 Diabetes Across Populations. Annals of the New York Academy of Sciences, 2006, 1079, 289-299.	3.8	40
50	Is It Dietary Insulin?. Annals of the New York Academy of Sciences, 2006, 1079, 350-359.	3.8	24
51	Bacterial and Plant Enterotoxin B Subunit–Autoantigen Fusion Proteins Suppress Diabetes Insulitis. Molecular Biotechnology, 2006, 32, 001-016.	2.4	19
52	Suppression of Hyperglycemia in NOD Mice After Inoculation With Recombinant Vaccinia Viruses. Molecular Biotechnology, 2006, 34, 317-328.	2.4	20
53	Transgenic overproduction of murine 60ÂkDa heat shock protein in the liver does not prevent type I diabetes in NOD mice. Diabetologia, 2006, 49, 1123-1124.	6.3	0
54	A new model of insulin-deficient diabetes: male NOD mice with a single copy of Ins1 and no Ins2. Diabetologia, 2006, 49, 1222-1228.	6.3	29
55	Transplantation of bone marrow genetically engineered to express proinsulin II protects against autoimmune insulitis in NOD mice. Journal of Gene Medicine, 2006, 8, 1281-1290.	2.8	33
56	Drug Insight: new immunomodulatory therapies in type 1 diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 89-98.	2.8	9
57	Regenerative Medicine of Digestive, Respiratory, and Urinary Tissues. , 2006, , 197-219.		0

#	Article	IF	CITATIONS
58	The Class I HLA Repertoire of Pancreatic Islets Comprises the Nonclassical Class Ib Antigen HLA-G. Diabetes, 2006, 55, 1214-1222.	0.6	149
59	Gene Therapy Strategies Towards Immune Tolerance to Treat the Autoimmune Diseases. Current Gene Therapy, 2006, 6, 45-58.	2.0	27
60	Proinsulin is encoded by an RNA splice variant in human blood myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16430-16435.	7.1	14
61	Dendritic Cell Differentiation and Immune Tolerance to Insulin-Related Peptides in Igf2-Deficient Mice. Journal of Immunology, 2006, 176, 4651-4657.	0.8	31
62	Transgenic Insulin (B:9-23) T-Cell Receptor Mice Develop Autoimmune Diabetes Dependent Upon RAG Genotype, H-2g7 Homozygosity, and Insulin 2 Gene Knockout. Diabetes, 2006, 55, 1978-1984.	0.6	60
63	Nonobese diabetic mice express aspects of both type 1 and type 2 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12475-12480.	7.1	61
64	Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. Journal of Experimental Medicine, 2006, 203, 2727-2735.	8.5	240
65	HLA-A*0201-Restricted T Cells from Humanized NOD Mice Recognize Autoantigens of Potential Clinical Relevance to Type 1 Diabetes. Journal of Immunology, 2006, 176, 3257-3265.	0.8	114
66	Dietary Proteins as Environmental Modifiers of Type 1 Diabetes Mellitus. Annual Review of Nutrition, 2006, 26, 175-202.	10.1	65
67	Recognition of HLA Class I-Restricted Â-Cell Epitopes in Type 1 Diabetes. Diabetes, 2006, 55, 3068-3074.	0.6	95
68	Islet-Specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein-Reactive CD4+ T Cells in Human Subjects. Journal of Immunology, 2006, 176, 2781-2789.	0.8	100
69	Tolerance to Proinsulin-2 Is Due to Radioresistant Thymic Cells. Journal of Immunology, 2006, 177, 53-60.	0.8	35
70	Protective Regulatory T Cell Generation in Autoimmune Diabetes by DNA Covaccination with Islet Antigens and a Selective CTLA-4 Ligand. Molecular Therapy, 2006, 14, 578-587.	8.2	27
71	Immunesurveillance by dendritic cells: potential implication for immunotherapy of endocrine cancers. Endocrine-Related Cancer, 2006, 13, 779-795.	3.1	30
72	Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. Journal of Experimental Medicine, 2006, 203, 2737-2747.	8.5	280
73	Bone Marrow Is a Preferential Homing Site for Autoreactive T-Cells in Type 1 Diabetes. Diabetes, 2007, 56, 2251-2259.	0.6	30
74	The Insulin-Specific T Cells of Nonobese Diabetic Mice Recognize a Weak MHC-Binding Segment in More Than One Form. Journal of Immunology, 2007, 178, 6051-6057.	0.8	91
75	Immunological Responses to Exogenous Insulin. Endocrine Reviews, 2007, 28, 625-652.	20.1	164

#	Article	IF	CITATIONS
76	Insulin Gene/IDDM2Locus in Japanese Type 1 Diabetes: Contribution of Class I Alleles and Influence of Class I Subdivision in Susceptibility to Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1791-1795.	3.6	31
77	Autoimmune regulator functions in autoimmunity control. Expert Review of Clinical Immunology, 2007, 3, 891-900.	3.0	1
78	Recent insights into CD4 ⁺ T-cell specificity and function in Type 1 diabetes. Expert Review of Clinical Immunology, 2007, 3, 557-564.	3.0	8
79	Strategies to treat autoimmune diabetes. Expert Review of Endocrinology and Metabolism, 2007, 2, 185-194.	2.4	0
80	Minimal Impact of a De Novo-Expressed Â-Cell Autoantigen on Spontaneous Diabetes Development in NOD Mice. Diabetes, 2007, 56, 1059-1068.	0.6	18
81	In Vivo Cytotoxicity of Insulin-Specific CD8+ T-Cells in HLA-A*0201 Transgenic NOD Mice. Diabetes, 2007, 56, 2551-2560.	0.6	49
82	Altered B:9–23 Insulin, When Administered Intranasally with Cholera Toxin Adjuvant, Suppresses the Expression of Insulin Autoantibodies and Prevents Diabetes. Journal of Immunology, 2007, 179, 2082-2088.	0.8	33
83	Medical Immunology. , 2007, , .		11
84	"Type 1 on Type 2" Diabetes Mellitus: Autoimmune Type 1 Diabetes Superimposed on Established Type 2 Diabetes. Internal Medicine, 2007, 46, 1957-1962.	0.7	10
85	Infections and Immunity. , 2007, , 197-214.		3
86	Insulin-expressing engineered cell lines and primary cells: surrogate β cells from liver, gut, and other sources. Current Opinion in Organ Transplantation, 2007, 12, 67-72.	1.6	0
88	Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of a cholera toxin B subunit–insulin B chain fusion protein vaccine produced in silkworm. Vaccine, 2007, 25, 1444-1451.	3.8	30
89	Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Research and Clinical Practice, 2007, 77, S116-S121.	2.8	51
90	Insulin as a T cell antigen in type 1 diabetes supported by the evidence from the insulin knockout NOD mice. Diabetes Research and Clinical Practice, 2007, 77, S155-S160.	2.8	4
91	CD8+ T lymphocytes specific for glutamic acid decarboxylase 90–98 epitope mediate diabetes in NODSCID mouse. Molecular Immunology, 2007, 44, 2950-2960.	2.2	11
92	â€~Sensing' autoimmunity in type 1 diabetes. Trends in Molecular Medicine, 2007, 13, 405-413.	6.7	57
95	Update in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2403-2407.	3.6	119
97	Generalized multi-organ autoimmunity in CCR7-deficient mice. European Journal of Immunology, 2007, 37, 613-622.	2.9	105

<u></u>			D	
(. IT	ГАТ	ION	RED	NRT
<u> </u>			1.001	

#	Article	IF	CITATIONS
98	The diabetogenic, insulinâ€specific CD8 T cell response primed in the experimental autoimmune diabetes model in RIPâ€B7.1 mice. European Journal of Immunology, 2007, 37, 2097-2103.	2.9	13
99	Type 1A diabetes: a predictable but not yet preventable autoimmune syndrome. Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide, 2007, 24, 63-65.	0.2	0
100	Type 1 diabetes as a relapsing–remitting disease?. Nature Reviews Immunology, 2007, 7, 988-994.	22.7	220
101	Plasmid-based gene therapy of diabetes mellitus. Gene Therapy, 2007, 14, 553-564.	4.5	66
102	Tracing the action of ILâ€2 in tolerance to isletâ€specific antigen. Immunology and Cell Biology, 2007, 85, 338-342.	2.3	29
103	The vicious cycle of apoptotic <i>β</i> â€cell death in type 1 diabetes. Immunology and Cell Biology, 2007, 85, 582-589.	2.3	38
104	Translational Mini-Review Series on Type 1 Diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clinical and Experimental Immunology, 2007, 148, 1-16.	2.6	233
105	Translational Mini-Review Series on Type 1 Diabetes: Immune-based therapeutic approaches for type 1 diabetes. Clinical and Experimental Immunology, 2007, 148, 17-31.	2.6	129
106	Immunogenicity of protein therapeutics and the interplay between tolerance and antibody responses. Drug Discovery Today, 2007, 12, 674-681.	6.4	46
107	Deletion of the gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen results in a mild metabolic phenotype. Diabetologia, 2007, 50, 774-778.	6.3	58
108	Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-α in patients with recent-onset type 1 diabetes. Diabetologia, 2007, 50, 596-601.	6.3	111
109	Transcriptional regulation in thymic epithelial cells for the establishment of self tolerance. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 27-34.	2.3	12
110	Cellular and molecular pathogenesis of type 1A diabetes. Cellular and Molecular Life Sciences, 2007, 64, 865-872.	5.4	68
111	Mucosal exposure to antigen: Cause or cure of type 1 diabetes?. Current Diabetes Reports, 2007, 7, 91-98.	4.2	13
112	Deleting islet autoimmunity. Cell Biochemistry and Biophysics, 2007, 48, 177-182.	1.8	4
113	Insulin as an autoantigen in NOD/human diabetes. Current Opinion in Immunology, 2008, 20, 111-118.	5.5	164
114	Immunotherapy of type 1 diabetes. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 227-236.	2.3	19
115	Modulating the natural history of type 1 diabetes in children at high genetic risk by mucosal insulin immunization. Current Diabetes Reports, 2008, 8, 87-93.	4.2	71

		CITATION RE	PORT	
#	Article		IF	CITATIONS
116	T cells in the pathogenesis of type 1 diabetes. Current Diabetes Reports, 2008, 8, 101-2	106.	4.2	32
117	Parameters influencing antigen-specific immunotherapy for type 1 diabetes. Immunolo 2008, 41, 175-187.	gic Research,	2.9	6
118	Parameters influencing antigen-specific immunotherapy for Type 1 diabetes. Immunolo 2008, 42, 246-258.	gic Research,	2.9	13
119	Functional inhibition related to structure of a highly potent insulinâ€specific CD8 T cell altered peptide ligands. European Journal of Immunology, 2008, 38, 240-249.	clone using	2.9	7
120	Immunology and genetics of type 1 diabetes. Mount Sinai Journal of Medicine, 2008, 7	5, 314-327.	1.9	42
121	Islet Glia, Neurons, and \hat{I}^2 Cells. Annals of the New York Academy of Sciences, 2008, 11	50, 32-42.	3.8	26
122	Developing a Novel Model System to Target Insulinâ€Reactive CD8 T Cells. Annals of th Academy of Sciences, 2008, 1150, 54-58.	ne New York	3.8	5
123	Toward a cure for type 1 diabetes mellitus: diabetes-suppressive dendritic cells and bey Diabetes, 2008, 9, 4-13.	ond. Pediatric	2.9	38
124	Advances in Type I Diabetes Associated Tolerance Mechanisms. Scandinavian Journal of 2008, 68, 1-11.	Immunology,	2.7	17
125	Evidence for De Novo Expression of Thymic Insulin by Peripheral Bone Marrow-derived (Scandinavian Journal of Immunology, 2008, 68, 67-74.	Cells.	2.7	4
126	β-Cell Mass and Type 1 Diabetes. Diabetes, 2008, 57, 2883-2888.		0.6	125
127	Chapter 5 Dysregulation of T Cell Peripheral Tolerance in Type 1 Diabetes. Advances in 2008, 100, 125-149.	Immunology,	2.2	28
128	Chapter 4 CD8+ T Cells in Type 1 Diabetes. Advances in Immunology, 2008, 100, 79-12	24.	2.2	105
129	Chapter 5 The Pathogenesis of Type 1 Diabetes. Handbook of Systemic Autoimmune D 45-59.	iseases, 2008, 9,	0.1	1
130	The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Tren Medicine, 2008, 14, 268-275.	ds in Molecular	6.7	94
131	CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of a naturally processed proinsulin epitope. Journal of Autoimmunity, 2008, 31, 30-41.	ctivation to a	6.5	52
132	A new role for an old player: Do B cells unleash the self-reactive CD8+ T cell storm nece development of type 1 diabetes?. Journal of Autoimmunity, 2008, 31, 301-305.	ssary for the	6.5	24
133	T-cell reactivity to insulin peptide A1–12 in children with recently diagnosed type 1 d β-cell autoantibodies. Journal of Autoimmunity, 2008, 31, 142-148.	iabetes or multiple	6.5	18

#	Article	IF	CITATIONS
134	Central Role of Defective Interleukin-2 Production in the Triggering of Islet Autoimmune Destruction. Immunity, 2008, 28, 687-697.	14.3	646
135	Combined insulin B:9-23 self-peptide and polyinosinic–polycytidylic acid accelerate insulitis but inhibit development of diabetes by increasing the proportion of CD4+Foxp3+ regulatory T cells in the islets in non-obese diabetic mice. Biochemical and Biophysical Research Communications, 2008, 367, 719-724.	2.1	21
136	One amino acid difference is critical for suppression of the development of experimental autoimmune diabetes (EAD) with intravenous injection of insulinB:9-23 peptide. Biochemical and Biophysical Research Communications, 2008, 374, 581-586.	2.1	0
137	Insulin administration may trigger pancreatic \hat{l}^2 -cell destruction in patients with type 2 diabetes. Diabetes Research and Clinical Practice, 2008, 79, 220-229.	2.8	12
138	Extreme genetic risk for type 1A diabetes in the post-genome era. Journal of Autoimmunity, 2008, 31, 1-6.	6.5	40
139	Autoimmunity to Both Proinsulin and IGRP Is Required for Diabetes in Nonobese Diabetic 8.3 TCR Transgenic Mice. Journal of Immunology, 2008, 180, 4458-4464.	0.8	51
140	Review: Cluten and glucose management in type 1 diabetes. British Journal of Diabetes and Vascular Disease, 2008, 8, 67-71.	0.6	3
141	On the Pathogenicity of Autoantigen-Specific T-Cell Receptors. Diabetes, 2008, 57, 1321-1330.	0.6	89
142	β-cell regeneration to treat Type 1 diabetes mellitus. Expert Review of Endocrinology and Metabolism, 2008, 3, 51-60.	2.4	5
143	ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14527-14532.	7.1	151
144	Evidence for an Association between Thyroid-Stimulating Hormone and Insulin-Like Growth Factor 1 Receptors: A Tale of Two Antigens Implicated in Graves' Disease. Journal of Immunology, 2008, 181, 4397-4405.	0.8	272
145	Improved Efficacy of a Tolerizing DNA Vaccine for Reversal of Hyperglycemia through Enhancement of Gene Expression and Localization to Intracellular Sites. Journal of Immunology, 2008, 181, 8298-8307.	0.8	58
146	Dendritic Cell Vaccination with Xenogenic Polypeptide Hormone Induces Tumor Rejection in Neuroendocrine Cancer. Clinical Cancer Research, 2008, 14, 4298-4305.	7.0	25
147	Low-Affinity Major Histocompatibility Complex–Binding Peptides in Type 1 Diabetes. Diabetes, 2008, 57, 1788-1789.	0.6	11
148	Weak Proinsulin Peptide–Major Histocompatibility Complexes Are Targeted in Autoimmune Diabetes in Mice. Diabetes, 2008, 57, 1852-1860.	0.6	47
149	Disruption of the homeostatic balance between autoaggressive (CD4+ CD40+) and regulatory (CD4+) Tj ETQq1	1 0.78431 3.3	4 rgBT /Ove
150	Mucosal Insulin Vaccination for Type 1 Diabetes Prevention. Experimental and Clinical Endocrinology and Diabetes, 2008, 116, S26-S29.	1.2	9
151	T-Cell Promiscuity in Autoimmune Diabetes. Diabetes, 2008, 57, 2099-2106.	0.6	27

#	Article	IF	CITATIONS
152	The Frequency and Immunodominance of Islet-Specific CD8+ T-cell Responses Change after Type 1 Diabetes Diagnosis and Treatment. Diabetes, 2008, 57, 1312-1320.	0.6	83
153	Adaptive Evolution of the Insulin Two-Gene System in Mouse. Genetics, 2008, 178, 1683-1691.	2.9	45
154	Conserved T cell receptor \hat{I}_{\pm} -chain induces insulin autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10090-10094.	7.1	29
155	Role of Regulatory T Cells for the Treatment of Type 1 Diabetes Mellitus. Hormone and Metabolic Research, 2008, 40, 126-136.	1.5	34
156	Amino Acid-Modified Calcitonin Immunization Induces Tumor Epitope-Specific Immunity in a Transgenic Mouse Model for Medullary Thyroid Carcinoma. Endocrinology, 2008, 149, 5627-5634.	2.8	11
157	Primer: Immunity and Autoimmunity. Diabetes, 2008, 57, 2872-2882.	0.6	40
158	Innocuous IFNÎ ³ induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. Journal of Experimental Medicine, 2008, 205, 207-218.	8.5	172
159	Genetic and Therapeutic Control of Diabetogenic CD8+ T Cells. Novartis Foundation Symposium, 2008, 292, 130-140.	1.1	2
161	Translating Mucosal Antigen based Prevention of Autoimmune Diabetes to Human. Novartis Foundation Symposium, 2008, 292, 187-201.	1.1	5
162	Diabetes and related autoimmune diseases. , 2008, , 1035-1052.		2
163	Reâ€Establishing Immune Tolerance in Type 1 Diabetes via Regulatory T Cells. Novartis Foundation Symposium, 2008, 292, 174-186.	1.1	8
165	Insulin auto-immunity: implications for the prevention of Type 1 diabetes mellitus. Expert Review of Clinical Immunology, 2009, 5, 55-62.	3.0	4
166	Transgenically Induced GAD Tolerance Curtails the Development of Early β-Cell Autoreactivities but Causes the Subsequent Development of Supernormal Autoreactivities to Other β-Cell Antigens. Diabetes, 2009, 58, 2843-2850.	0.6	7
167	Activation of Insulin-Reactive CD8 T-Cells for Development of Autoimmune Diabetes. Diabetes, 2009, 58, 1156-1164.	0.6	67
168	Insulin Receptor Substrate-2 in β-Cells Decreases Diabetes in Nonobese Diabetic Mice. Endocrinology, 2009, 150, 4531-4540.	2.8	19
169	Single-Chain Insulins as Receptor Agonists. Molecular Endocrinology, 2009, 23, 679-688.	3.7	19
170	Murine High Specificity/Sensitivity Competitive Europium Insulin Autoantibody Assay. Diabetes Technology and Therapeutics, 2009, 11, 227-233.	4.4	17
171	Antigen-Based Therapy for the Treatment of Type 1 Diabetes. Diabetes, 2009, 58, 1939-1946.	0.6	38

#	Article	IF	CITATIONS
172	β Cell-Specific CD4+ T Cell Clonotypes in Peripheral Blood and the Pancreatic Islets Are Distinct. Journal of Immunology, 2009, 183, 7585-7591.	0.8	29
173	An update on preventive and regenerative therapies in diabetes mellitus. , 2009, 121, 317-331.		47
174	Epidemiology of type 1 diabetes and what animal models teach us about the role of viruses in disease mechanisms. Clinical Immunology, 2009, 131, 11-23.	3.2	74
175	Comparison of insulin autoantibody: polyethylene glycol and microâ€IAA 1â€day and 7â€day assays. Diabetes/Metabolism Research and Reviews, 2009, 25, 665-670.	4.0	20
176	Autoreactive Tâ€cell receptor (V <i>β</i> /D/J <i>β</i>) sequences in diabetes are homologous to insulin, glucagon, the insulin receptor, and the glucagon receptor. Journal of Molecular Recognition, 2009, 22, 177-187.	2.1	13
177	Structural alterations in peptide–MHC recognition by self-reactive T cell receptors. Current Opinion in Immunology, 2009, 21, 590-595.	5.5	77
178	Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009, 52, 1391-1399.	6.3	241
179	<i>Insulin2</i> Gene (<i>Ins2</i>) Transcription by NOD Bone Marrowâ€derived Cells Does Not Influence Autoimmune Diabetes Development in NODâ€ <i>Ins2</i> Knockout Mice. Scandinavian Journal of Immunology, 2009, 70, 439-446.	2.7	13
180	The A-chain of insulin is a hot-spot for CD4+ T cell epitopes in human type 1 diabetes. Clinical and Experimental Immunology, 2009, 156, 226-231.	2.6	40
181	Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO Journal, 2009, 28, 2812-2824.	7.8	163
182	Molecular mechanisms of T ell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunological Reviews, 2009, 229, 337-355.	6.0	115
183	Strategies to prevent type 1 diabetes. Diabetes, Obesity and Metabolism, 2009, 11, 931-938.	4.4	8
184	Identifying tumor antigens in endocrine malignancies. Trends in Endocrinology and Metabolism, 2009, 20, 122-129.	7.1	6
185	IL-2 and its high-affinity receptor: Genetic control of immunoregulation and autoimmunity. Seminars in Immunology, 2009, 21, 363-371.	5.6	52
186	In vitro model for the activation of CD4 and CD8 T cell receptors. Human Immunology, 2009, 70, 670-677.	2.4	2
187	Induction of anti-whole GAD65 reactivity in vivo results in disease suppression in type 1 diabetes. Journal of Autoimmunity, 2009, 32, 104-109.	6.5	14
188	Analysis of T cell receptor beta chains that combine with dominant conserved TRAV5D-4*04 anti-insulin B:9-23 alpha chains. Journal of Autoimmunity, 2009, 33, 42-49.	6.5	27
189	The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nature Reviews Endocrinology, 2009, 5, 219-226.	9.6	847

#	Article	IF	CITATIONS
191	Advances in Type 1 Diabetes Therapeutics: Immunomodulation and Î ² -Cell Salvage. Endocrinology and Metabolism Clinics of North America, 2009, 38, 303-317.	3.2	17
192	Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined tumor epitope processed by a proteasome-independent pathway. Yearbook of Endocrinology, 2009, 2009, 122-125.	0.0	0
193	Experimental confirmation of the 'protein traffic hypothesis' by routine diagnostic tests. International Journal of Immunological Studies, 2010, 1, 163.	0.2	1
194	The anti-insulin trimolecular complex in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 329-334.	2.3	18
195	Subcutaneous insulin B:9-23/IFA immunisation induces Tregs that control late-stage prediabetes in NOD mice through IL-10 and IFNÎ ³ . Diabetologia, 2010, 53, 1958-1970.	6.3	42
196	Etiology of Type 1 Diabetes. Immunity, 2010, 32, 457-467.	14.3	463
197	The Long and Winding Road to Understanding and Conquering Type 1 Diabetes. Immunity, 2010, 32, 437-445.	14.3	67
198	Administration of a determinant of preproinsulin can induce regulatory T cells and suppress anti-islet autoimmunity in NOD mice. Clinical Immunology, 2010, 136, 74-82.	3.2	7
199	Processing and presentation of (pro)â€insulin in the MHC class II pathway: the generation of antigenâ€based immunomodulators in the context of type 1 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2010, 26, 227-238.	4.0	8
200	Immunotherapy of Type 1 Diabetes: Where Are We and Where Should We Be Going?. Immunity, 2010, 32, 488-499.	14.3	150
201	Molecular Targeting of Islet Autoantigens. Immunity, 2010, 32, 446-456.	14.3	54
202	High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK. BMC Biochemistry, 2010, 11, 44.	4.4	6
203	Tâ€cell autoantigens in the nonâ€obese diabetic mouse model of autoimmune diabetes. Immunology, 2010, 131, 459-465.	4.4	40
204	Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clinical and Experimental Immunology, 2010, 159, 338-343.	2.6	161
205	Antigen-dependent immunotherapy of non-obese diabetic mice with immature dendritic cells. Clinical and Experimental Immunology, 2010, 160, 331-339.	2.6	25
206	The immunotherapeutic potential of dendritic cells in type 1 diabetes. Clinical and Experimental Immunology, 2010, 161, 197-207.	2.6	28
207	The Type 1 Diabetes PhysioLab® Platform: a validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse. Clinical and Experimental Immunology, 2010, 161, 250-267.	2.6	48
208	Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin. Genes and Immunity, 2010, 11, 188-193.	4.1	77

#	Article	IF	CITATIONS
209	Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nature Immunology, 2010, 11, 350-354.	14.5	156
210	Modularity in receptor evolution: insulin- and glucagon-like peptide modules as binding sites for insulin and glucose in the insulin receptor. Journal of Receptor, Ligand and Channel Research, 0, , 87.	0.7	7
211	Diabetes mellitus: A review of its associations with different environmental factors. Kathmandu University Medical Journal, 2010, 8, 109-115.	0.2	13
212	The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach. International Immunology, 2010, 22, 571-582.	4.0	10
213	Dendritic Cell-Directed CTLA-4 Engagement during Pancreatic β Cell Antigen Presentation Delays Type 1 Diabetes. Journal of Immunology, 2010, 184, 6695-6708.	0.8	22
214	Diabetes in Women. , 2010, , .		2
215	Autoimmune polyglandular syndromes. Nature Reviews Endocrinology, 2010, 6, 270-277.	9.6	182
216	Immune therapy for type 1 diabetes mellitus—what is unique about anti-CD3 antibodies?. Nature Reviews Endocrinology, 2010, 6, 149-157.	9.6	87
217	An update on the use of NOD mice to study autoimmune (Type 1) diabetes. Expert Review of Clinical Immunology, 2010, 6, 939-955.	3.0	55
218	Insulin Transactivator MafA Regulates Intrathymic Expression of Insulin and Affects Susceptibility to Type 1 Diabetes. Diabetes, 2010, 59, 2579-2587.	0.6	26
219	A Role for Lymphotoxin in Primary Sjögren's Disease. Journal of Immunology, 2010, 185, 6355-6363.	0.8	49
220	Killer artificial antigen-presenting cells: the synthetic embodiment of a â€~guided missile'. Immunotherapy, 2010, 2, 539-550.	2.0	24
221	Toxin-Coupled MHC Class I Tetramers Can Specifically Ablate Autoreactive CD8+ T Cells and Delay Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2010, 184, 4196-4204.	0.8	55
222	Virtual Optimization of Nasal Insulin Therapy Predicts Immunization Frequency to Be Crucial for Diabetes Protection. Diabetes, 2010, 59, 3148-3158.	0.6	22
223	Genetic-induced Variations in the GAD65 T-cell Repertoire Governs Efficacy of Anti-CD3/GAD65 Combination Therapy in New-onset Type 1 Diabetes. Molecular Therapy, 2010, 18, 307-316.	8.2	36
224	Use of Nonobese Diabetic Mice to Understand Human Type 1 Diabetes. Endocrinology and Metabolism Clinics of North America, 2010, 39, 541-561.	3.2	66
225	Autoimmunity and the pathogenesis of type 1 diabetes. Critical Reviews in Clinical Laboratory Sciences, 2010, 47, 51-71.	6.1	40
226	Banting Lecture 2009: An Unfinished Journey: Molecular Pathogenesis to Prevention of Type 1A Diabetes. Diabetes, 2010, 59, 759-774.	0.6	89

C	- A	DEDODT
\sim		

#	Article	IF	CITATIONS
227	Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. Journal of Autoimmunity, 2010, 34, 408-415.	6.5	108
228	Gamma delta T cell receptors confer autonomous responsiveness to the insulin-peptide B:9-23. Journal of Autoimmunity, 2010, 34, 478-484.	6.5	42
229	Implication of the CD47 pathway in autoimmune diabetes. Journal of Autoimmunity, 2010, 35, 23-32.	6.5	34
230	Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. Journal of Autoimmunity, 2010, 35, 70-76.	6.5	29
231	Immunotargeting of insulin reactive CD8 T cells to prevent Diabetes. Journal of Autoimmunity, 2010, 35, 390-397.	6.5	20
232	Thymic self-antigens for the design of a negative/tolerogenic self-vaccination against type 1 diabetes. Current Opinion in Pharmacology, 2010, 10, 461-472.	3.5	23
234	Stem cell approaches for diabetes: towards beta cell replacement. Genome Medicine, 2011, 3, 61.	8.2	45
235	Beyond the Hormone: Insulin as an Autoimmune Target in Type 1 Diabetes. Endocrine Reviews, 2011, 32, 623-669.	20.1	60
236	How Does Type 1 Diabetes Develop?. Diabetes, 2011, 60, 1370-1379.	0.6	199
237	Extrathymic Generation of Regulatory T Cells—Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213.	2.2	18
237 238	 Extrathymic Generation of Regulatory T Cellsâ€"Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213. Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with β-cell-specific mTORC1 activation. Biochemical and Biophysical Research Communications, 2011, 408, 306-311. 	2.2 2.1	18 3
237 238 239	Extrathymic Generation of Regulatory T Cellsâ€"Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213. Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with β-cell-specific mTORC1 activation. Biochemical and Biophysical Research Communications, 2011, 408, 306-311. Genetics of Type 1 Diabetes., 2011,, 251-265.	2.2 2.1	18 3 1
237 238 239 240	Extrathymic Generation of Regulatory T Cellsâ€"Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213. Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with β-cell-specific mTORC1 activation. Biochemical and Biophysical Research Communications, 2011, 408, 306-311. Genetics of Type 1 Diabetes., 2011,, 251-265. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Seminars in Immunology, 2011, 23, 84-91.	2.2 2.1 5.6	18 3 1 67
237 238 239 240 241	Extrathymic Generation of Regulatory T Cellsâ€"Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213. Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with β-cell-specific mTORC1 activation. Biochemical and Biophysical Research Communications, 2011, 408, 306-311. Genetics of Type 1 Diabetes. , 2011, , 251-265. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Seminars in Immunology, 2011, 23, 84-91. Extra-thymically induced regulatory T cells: Do they have potential in disease prevention?. Seminars in Immunology, 2011, 23, 410-417.	2.2 2.1 5.6 5.6	18 3 1 67 11
2337 2338 2339 2440 241 242	Extrathymic Generation of Regulatory T Cellsâ€" Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213. Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with β-cell-specific mTORC1 activation. Biochemical and Biophysical Research Communications, 2011, 408, 306-311. Genetics of Type 1 Diabetes., 2011,, 251-265. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Seminars in Immunology, 2011, 23, 84-91. Extra-thymically induced regulatory T cells: Do they have potential in disease prevention?. Seminars in Immunology, 2011, 23, 410-417. Immune intervention in type 1 diabetes. Seminars in Immunology, 2011, 23, 214-219.	2.2 2.1 5.6 5.6	18 3 1 67 11 43
2337 2338 2339 2440 241 242 242	Extrathymic Generation of Regulatory T CellsâC"Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213.Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with β-cell-specific mTORC1 activation. Biochemical and Biophysical Research Communications, 2011, 408, 306-311.Genetics of Type 1 Diabetes., 2011,, 251-265.T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Seminars in Immunology, 2011, 23, 84-91.Extra-thymically induced regulatory T cells: Do they have potential in disease prevention?. Seminars in Immunology, 2011, 23, 410-417.Immune intervention in type 1 diabetes. Seminars in Immunology, 2011, 23, 214-219.A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Seminars in Immunology, 2011, 23, 174-181.	2.2 2.1 5.6 5.6 5.6	18 3 1 67 11 43 33
2337 2338 239 240 241 242 243 243	Extrathymic Generation of Regulatory T Cellsâé" Chances and Challenges for Prevention of Autoimmune Disease. Advances in Immunology, 2011, 112, 177-213. Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with β-cell-specific mTORC1 activation. Biochemical and Biophysical Research Communications, 2011, 408, 306-311. Genetics of Type 1 Diabetes., 2011,, 251-265. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Seminars in Immunology, 2011, 23, 84-91. Extra-thymically induced regulatory T cells: Do they have potential in disease prevention?. Seminars in Immunology, 2011, 23, 410-417. Immune intervention in type 1 diabetes. Seminars in Immunology, 2011, 23, 214-219. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Seminars in Immunology, 2011, 23, 174-181. Genetics and pathogenesis of type 1 diabetes: prospects for prevention and intervention. Journal of Diabetes investigation, 2011, 2, 415-420.	2.2 2.1 5.6 5.6 5.6 5.6	18 3 1 67 11 43 33 17

#	Article	IF	Citations
246	Genetic Determinants of Type 1 Diabetes. , 0, , .		0
247	Immunotherapy for Type 1 Diabetes - Necessity, Challenges and Unconventional Opportunities. , 2011, , .		0
248	Tolerance and Autoimmunity in Type 1 Diabetes. , 2011, , .		0
249	2011 Update. Current Opinion in Endocrinology, Diabetes and Obesity, 2011, 18, 235-240.	2.3	30
250	Challenges in the pursuit of immune tolerance. Immunological Reviews, 2011, 241, 49-62.	6.0	23
251	Immunomodulatory therapy to preserve pancreatic Î ² -cell function in type 1 diabetes. Nature Reviews Drug Discovery, 2011, 10, 439-452.	46.4	76
252	Understanding type 1 diabetes through genetics: advances and prospects. Nature Reviews Genetics, 2011, 12, 781-792.	16.3	196
253	Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO Journal, 2011, 30, 1137-1148.	7.8	68
254	Antibodies against insulin measured by electrochemiluminescence predicts insulitis severity and disease onset in non-obese diabetic mice and can distinguish human type 1 diabetes status. Journal of Translational Medicine, 2011, 9, 203.	4.4	22
255	Peptide-MHC-based nanovaccines for the treatment of autoimmunity: a "one size fits all―approach?. Journal of Molecular Medicine, 2011, 89, 733-742.	3.9	33
256	Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Seminars in Immunopathology, 2011, 33, 67-87.	6.1	155
257	Beta cells under attack: toward a better understanding of type 1 diabetes immunopathology. Seminars in Immunopathology, 2011, 33, 1-7.	6.1	16
258	Peptide antigens for gamma/delta T cells. Cellular and Molecular Life Sciences, 2011, 68, 2335-2343.	5.4	23
259	Inverse vaccination with islet autoantigens to halt progression of autoimmune diabetes. Drug Development Research, 2011, 72, 788-804.	2.9	4
260	Oral anti D3 monoclonal antibody delays diabetes in nonâ€obese diabetic (NOD) mice: effects on pregnancy and offspring—a preliminary report. Diabetes/Metabolism Research and Reviews, 2011, 27, 480-487.	4.0	8
261	Insulin as a key autoantigen in the development of type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2011, 27, 773-777.	4.0	48
262	Multiple antigens <i>versus</i> single major antigen in type 1 diabetes: arguing for multiple antigens. Diabetes/Metabolism Research and Reviews, 2011, 27, 778-783.	4.0	18
263	Immunization with an insulin peptide–MHC complex to prevent type 1 diabetes of NOD mice. Diabetes/Metabolism Research and Reviews, 2011, 27, 784-789.	4.0	14

~			_		
$C1^{-1}$	ΓΛΤΙ	ON	I D	FD	T

#	Article	IF	CITATIONS
264	â€~Sensing' the link between type 1 and type 2 diabetes. Diabetes/Metabolism Research and Reviews, 2011, 2 913-918.	^{!7} 4.0	16
265	Peptide Immunotherapies in Type 1 Diabetes: Lessons from Animal Models. Current Medicinal Chemistry, 2011, 18, 577-586.	2.4	22
266	Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope. Journal of Experimental Medicine, 2011, 208, 1501-1510.	8.5	124
267	Register shifting of an insulin peptide–MHC complex allows diabetogenic T cells to escape thymic deletion. Journal of Experimental Medicine, 2011, 208, 2375-2383.	8.5	121
268	Antigen-Based Immune Therapeutics for Type 1 Diabetes: Magic Bullets or Ordinary Blanks?. Clinical and Developmental Immunology, 2011, 2011, 1-15.	3.3	29
269	Prevention of type 1 diabetes mellitus using a novel vaccine. Therapeutic Advances in Endocrinology and Metabolism, 2011, 2, 9-16.	3.2	7
270	Type 1 diabetes vaccine development: Animal models vs. humans. Hum Vaccin, 2011, 7, 19-26.	2.4	14
271	T-cell vaccination leads to suppression of intrapancreatic Th17 cells through Stat3-mediated RORÎ ³ t inhibition in autoimmune diabetes. Cell Research, 2011, 21, 1358-1369.	12.0	24
272	Insulinoma-Released Exosomes or Microparticles Are Immunostimulatory and Can Activate Autoreactive T Cells Spontaneously Developed in Nonobese Diabetic Mice. Journal of Immunology, 2011, 187, 1591-1600.	0.8	94
273	Evidence That Nasal Insulin Induces Immune Tolerance to Insulin in Adults With Autoimmune Diabetes. Diabetes, 2011, 60, 1237-1245.	0.6	106
274	Single Insulin-Specific CD8+ T Cells Show Characteristic Gene Expression Profiles in Human Type 1 Diabetes. Diabetes, 2011, 60, 3289-3299.	0.6	33
275	Deletion of the <i>G6pc2</i> Gene Encoding the Islet-Specific Glucose-6-Phosphatase Catalytic Subunit–Related Protein Does Not Affect the Progression or Incidence of Type 1 Diabetes in NOD/ShiLtJ Mice. Diabetes, 2011, 60, 2922-2927.	0.6	12
276	Gutsy call on Th17 cells. Science-Business EXchange, 2011, 4, 869-869.	0.0	0
277	Thymic Self-Antigen Expression for the Design of a Negative/Tolerogenic Self-Vaccine against Type 1 Diabetes. Clinical and Developmental Immunology, 2011, 2011, 1-10.	3.3	5
278	Prevention of "Humanized―Diabetogenic CD8 T-Cell Responses in HLA-Transgenic NOD Mice by a Multipeptide Coupled-Cell Approach. Diabetes, 2011, 60, 1229-1236.	0.6	32
279	Rituximab Selectively Suppresses Specific Islet Antibodies. Diabetes, 2011, 60, 2560-2565.	0.6	65
280	The potential of Fas ligand (apoptosis-inducing molecule) as an unconventional therapeutic target in type 1 diabetes. Frontiers in Immunology, 2012, 3, 196.	4.8	15
281	Etiopathogenesis of Insulin Autoimmunity. Anatomy Research International, 2012, 2012, 1-20.	1.1	6

#	Article	IF	CITATIONS
282	Removal of Bovine Insulin From Cow's Milk Formula and Early Initiation of Beta-Cell Autoimmunity in the FINDIA Pilot Study. JAMA Pediatrics, 2012, 166, 608.	3.0	108
283	Following the Fate of One Insulin-Reactive CD4 T cell. Diabetes, 2012, 61, 1169-1179.	0.6	23
284	Sequence Variation in Promoter of Ica1 Gene, Which Encodes Protein Implicated in Type 1 Diabetes, Causes Transcription Factor Autoimmune Regulator (AIRE) to Increase Its Binding and Down-regulate Expression. Journal of Biological Chemistry, 2012, 287, 17882-17893.	3.4	14
285	Role of major histocompatibility complex class II in the development of autoimmune type 1 diabetes and thyroiditis in rats. Genes and Immunity, 2012, 13, 139-145.	4.1	11
286	Paradigm Shift or Shifting Paradigm for Type 1 Diabetes: FIG. 1 Diabetes, 2012, 61, 976-978.	0.6	8
287	Enhanced Anti-Serpin Antibody Activity Inhibits Autoimmune Inflammation in Type 1 Diabetes. Journal of Immunology, 2012, 188, 6319-6327.	0.8	7
288	Autoantigen-Specific B-Cell Depletion Overcomes Failed Immune Tolerance in Type 1 Diabetes. Diabetes, 2012, 61, 2037-2044.	0.6	40
289	Humoral Autoimmunity in Type 1 Diabetes: Prediction, Significance, and Detection of Distinct Disease Subtypes. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a012831-a012831.	6.2	76
290	Islet Autoantigens: Structure, Function, Localization, and Regulation. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007658-a007658.	6.2	81
291	Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice. Diabetes, 2012, 61, 857-865.	0.6	31
292	Complete Diabetes Protection Despite Delayed Thymic Tolerance in NOD8.3 TCR Transgenic Mice Due to Antigen-Induced Extrathymic Deletion of T Cells. Diabetes, 2012, 61, 425-435.	0.6	13
293	Antigen-Specific Therapeutic Approaches in Type 1 Diabetes. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007773-a007773.	6.2	40
294	Immunotherapy for Type 1 diabetes: past and future. Diabetes Management, 2012, 2, 139-147.	0.5	1
295	B cells as effectors and regulators of autoimmunity. Autoimmunity, 2012, 45, 377-387.	2.6	68
296	Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. Journal of Autoimmunity, 2012, 39, 347-353.	6.5	97
297	Induction of antigen-specific tolerance through hematopoietic stem cell-mediated gene therapy: The future for therapy of autoimmune disease?. Autoimmunity Reviews, 2012, 12, 195-203.	5.8	20
298	Thymus and type 1 diabetes: An update. Diabetes Research and Clinical Practice, 2012, 98, 26-32.	2.8	21
299	New and future immunomodulatory therapy in type 1 diabetes. Trends in Molecular Medicine, 2012, 18,	6.7	38

#	Article	IF	CITATIONS
300	Structural basis for selfâ€recognition by autoimmune <scp>T</scp> â€cell receptors. Immunological Reviews, 2012, 250, 32-48.	6.0	68
301	Expression of the Growth Hormone/Insulin-Like Growth Factor Axis during Balb/c Thymus Ontogeny and Effects of Growth Hormone upon ex vivo T Cell Differentiation. NeuroImmunoModulation, 2012, 19, 137-147.	1.8	27
302	Autoimmunity's next top models. Nature Medicine, 2012, 18, 66-70.	30.7	43
303	Animal Models for Type 1 Diabetes. Methods in Pharmacology and Toxicology, 2012, , 303-318.	0.2	0
304	Mechanisms of Insulin Action. , 2012, , 19-38.		7
305	Treg Vaccination with a Strong-Agonistic Insulin Mimetope. Current Diabetes Reports, 2012, 12, 463-470.	4.2	0
306	Regenerative Therapies for Digestive, Respiratory and Urinary Tissues. , 2012, , 325-354.		0
307	Unconventional recognition of peptides by T cells and the implications for autoimmunity. Nature Reviews Immunology, 2012, 12, 721-728.	22.7	76
308	Self-Glycolipids Modulate Dendritic Cells Changing the Cytokine Profiles of Committed Autoreactive T Cells. PLoS ONE, 2012, 7, e52639.	2.5	7
309	Immunologic and Genetic Factors in Type 1 Diabetes Mellitus. , 2012, , .		0
310	Prevention of Type 1A Diabetes Mellitus. Endocrine Practice, 2012, 18, 745-749.	2.1	9
311	Pathogenic Mechanisms in Type 1 Diabetes: The Islet is Both Target and Driver of Disease. Review of Diabetic Studies, 2012, 9, 148-168.	1.3	55
312	Novel Biomarkers in Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 224-235.	1.3	13
313	Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems. Annals of the New York Academy of Sciences, 2012, 1261, 42-48.	3.8	10
314	Yeast one-hybrid screen of a thymus epithelial library identifies ZBTB7A as a regulator of thymic insulin expression. Molecular Immunology, 2013, 56, 637-642.	2.2	4
315	Dendritic cells in tolerance and autoimmune diabetes. Current Opinion in Immunology, 2013, 25, 670-675.	5.5	23
316	The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunologic Research, 2013, 57, 197-209.	2.9	76
317	Insulinomaâ€released exosomes activate autoreactive marginal zoneâ€like <scp>B</scp> cells that expand endogenously in prediabetic <scp>NOD</scp> mice. European Journal of Immunology, 2013, 43, 2588-2597.	2.9	57

#	Article	IF	CITATIONS
318	NIH Research To Prevent Type 1 Diabetes: George Eisenbarth's Legacy. Diabetes Technology and Therapeutics, 2013, 15, S2-1-S2-3.	4.4	2
319	Thymic Development of Autoreactive T Cells in NOD Mice Is Regulated in an Age-Dependent Manner. Journal of Immunology, 2013, 191, 5858-5866.	0.8	28
320	Therapeutic opportunities for manipulating TReg cells in autoimmunity and cancer. Nature Reviews Drug Discovery, 2013, 12, 51-63.	46.4	181
321	The multiple origins of TypeÂ1 diabetes. Diabetic Medicine, 2013, 30, 135-146.	2.3	62
322	Formation of insulin fragments by insulinâ€degrading enzyme: the role of zinc(II) and cystine bridges. Journal of Mass Spectrometry, 2013, 48, 135-140.	1.6	36
323	Proinflammatory cytokines contribute to development and function of regulatory T cells in type 1 diabetes. Annals of the New York Academy of Sciences, 2013, 1283, 81-86.	3.8	26
324	Immunomodulation With SA-FasL Protein as an Effective Means of Preventing Islet Allograft Rejection in Chemically Diabetic NOD Mice. Transplantation Proceedings, 2013, 45, 1889-1891.	0.6	4
325	Targeting the trimolecular complex. Clinical Immunology, 2013, 149, 339-344.	3.2	14
326	Mechanistic basis of immunotherapies for type 1 diabetes mellitus. Translational Research, 2013, 161, 217-229.	5.0	21
327	Trials in type 1 diabetes: Antigen-specific therapies. Clinical Immunology, 2013, 149, 345-355.	3.2	40
328	Type 1 diabetes: primary antigen/peptide/register/trimolecular complex. Immunologic Research, 2013, 55, 270-276.	2.9	18
329	Mapping I-Ag7 restricted epitopes in murine G6PC2. Immunologic Research, 2013, 55, 91-99.	2.9	3
330	Proinsulin/Insulin Autoantibodies Measured With Electrochemiluminescent Assay Are the Earliest Indicator of Prediabetic Islet Autoimmunity. Diabetes Care, 2013, 36, 2266-2270.	8.6	66
331	Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nature Reviews Immunology, 2013, 13, 243-256.	22.7	195
332	Antigen-based vs. systemic immunomodulation in type 1 diabetes. Islets, 2013, 5, 53-66.	1.8	14
333	CD4+CD45RAâ^'FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clinical and Experimental Immunology, 2013, 173, 207-216.	2.6	77
334	Inducing immune tolerance: a focus on Type 1 diabetes mellitus. Diabetes Management, 2013, 3, 415-426.	0.5	20
335	George S. Eisenbarth: Insulin and Type 1 Diabetes. Diabetes Care, 2013, 36, 1437-1442.	8.6	6

#	ARTICLE	IF	CITATIONS
336	Growth hormone prevents the development of autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4619-27.	7.1	26
337	MECHANISMS IN ENDOCRINOLOGY: Insulin and type 1 diabetes: immune connections. European Journal of Endocrinology, 2013, 168, R19-R31.	3.7	26
338	B Lymphocyte "Original Sin―in the Bone Marrow Enhances Islet Autoreactivity in Type 1 Diabetes–Prone Nonobese Diabetic Mice. Journal of Immunology, 2013, 190, 5992-6003.	0.8	26
339	Pathogenic CD4+ T cells recognizing an unstable peptide of insulin are directly recruited into islets bypassing local lymph nodes. Journal of Experimental Medicine, 2013, 210, 2403-2414.	8.5	42
340	Tolerant Anti-Insulin B Cells Are Effective APCs. Journal of Immunology, 2013, 190, 2519-2526.	0.8	40
341	Targeting the Trimolecular Complex: The Pathway Towards Type 1 Diabetes Prevention. Diabetes Technology and Therapeutics, 2013, 15, S2-8-S2-12.	4.4	4
342	Cutting Edge: Type 1 Diabetes Occurs despite Robust Anergy among Endogenous Insulin-Specific CD4 T Cells in NOD Mice. Journal of Immunology, 2013, 191, 4913-4917.	0.8	39
343	Transient B-Cell Depletion with Anti-CD20 in Combination with Proinsulin DNA Vaccine or Oral Insulin: Immunologic Effects and Efficacy in NOD Mice. PLoS ONE, 2013, 8, e54712.	2.5	33
344	A Missing PD-L1/PD-1 Coinhibition Regulates Diabetes Induction by Preproinsulin-Specific CD8 T-Cells in an Epitope-Specific Manner. PLoS ONE, 2013, 8, e71746.	2.5	6
345	Therapeutic Use of a Selective S1P1 Receptor Modulator Ponesimod in Autoimmune Diabetes. PLoS ONE, 2013, 8, e77296.	2.5	20
346	Immunotherapeutic Treatment of Autoimmune Diabetes. Critical Reviews in Immunology, 2013, 33, 245-281.	0.5	3
347	Avidity-Dependent Programming of Autoreactive T Cells in T1D. PLoS ONE, 2014, 9, e98074.	2.5	5
348	Lack of Evidence for a Role of Islet Autoimmunity in the Aetiology of Canine Diabetes Mellitus. PLoS ONE, 2014, 9, e105473.	2.5	31
349	The Effects of Energy Intake, Insulin Therapy and Physical Activity on Glucose Homeostasis in Children and Adolescents with Type 1 Diabetes Mellitus. , 2014, , .		0
350	Antigen-specific therapy against Type 1 diabetes: mechanisms and perspectives. Immunotherapy, 2014, 6, 155-164.	2.0	13
351	MAS-1 adjuvant immunotherapy generates robust Th2 type and regulatory immune responses providing long-term protection from diabetes in late-stage pre-diabetic NOD mice. Autoimmunity, 2014, 47, 341-350.	2.6	10
352	Monitoring the Biomolecular Interactions and the Activity of Zn-Containing Enzymes Involved in Conformational Diseases. Advances in Protein Chemistry and Structural Biology, 2014, 97, 115-142.	2.3	5
353	Advances in our understanding of the pathophysiology of TypeÂ1 diabetes: lessons from the NOD mouse. Clinical Science, 2014, 126, 1-18.	4.3	49

#	Article	IF	CITATIONS
354	The Beta Cell Immunopeptidome. Vitamins and Hormones, 2014, 95, 115-144.	1.7	8
355	A practical guide to genetic engineering of pancreatic β-cellsin vivo: Getting a grip on RIP and MIP. Islets, 2014, 6, e944439.	1.8	16
356	IGRP and insulin vaccination induce CD8+ T cell-mediated autoimmune diabetes in the RIP-CD80GP mouse. Clinical and Experimental Immunology, 2014, 176, 199-206.	2.6	3
357	Monoclonal antibody blocking the recognition of an insulin peptide–MHC complex modulates type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2656-2661.	7.1	64
358	A Humanized Mouse Model of Autoimmune Insulitis. Diabetes, 2014, 63, 1712-1724.	0.6	37
359	Channeling postmarketing patient data into pharmaceutical regulatory systems. Drug Discovery Today, 2014, 19, 1897-1912.	6.4	2
360	ZnT8-Reactive T Cells Are Weakly Pathogenic in NOD Mice but Can Participate in Diabetes Under Inflammatory Conditions. Diabetes, 2014, 63, 3438-3448.	0.6	18
361	Modulation of the Pancreatic Islet-Stress Axis as a Novel Potential Therapeutic Target in Diabetes Mellitus. Vitamins and Hormones, 2014, 95, 195-222.	1.7	8
362	Immune Response in Thyroid Cancer: Widening the Boundaries. Scientifica, 2014, 2014, 1-20.	1.7	22
363	The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Current Opinion in Immunology, 2014, 26, 32-40.	5.5	46
364	Metabolic syndrome – Removing roadblocks to therapy: Antigenic immunotherapies. Molecular Metabolism, 2014, 3, 275-283.	6.5	8
365	Advances in the cellular immunological pathogenesis of type 1 diabetes. Journal of Cellular and Molecular Medicine, 2014, 18, 749-758.	3.6	56
366	Animal Models of Organ-Specific Autoimmune Disease. , 2014, , 435-448.		0
367	Antigen Presentation in the Autoimmune Diabetes of the NOD Mouse. Annual Review of Immunology, 2014, 32, 579-608.	21.8	49
368	Treg Vaccination in Autoimmune Type 1 Diabetes. BioDrugs, 2014, 28, 7-16.	4.6	9
369	<i>In vitro</i> evaluation of potential complexation between bovine insulin and bovine serum albumin. Biomedical Chromatography, 2014, 28, 428-432.	1.7	3
370	Vasostatinâ€1 antigenic epitope mapping for induction of cellular and humoral immune responses to chromogranin <scp>A</scp> autoantigen in <scp>NOD</scp> mice. European Journal of Immunology, 2014, 44, 1170-1180.	2.9	7
371	Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14840-14845.	7.1	112

#	Article	IF	CITATIONS
372	A Minor Subset of Batf3-Dependent Antigen-Presenting Cells in Islets of Langerhans Is Essential for the Development of Autoimmune Diabetes. Immunity, 2014, 41, 657-669.	14.3	124
373	Detection of T cell responses to a ubiquitous cellular protein in autoimmune disease. Science, 2014, 346, 363-368.	12.6	86
374	Skin deep: from dermal fibroblasts to pancreatic beta cells. Immunologic Research, 2014, 59, 279-286.	2.9	2
375	Insulin-Producing Intestinal K Cells Protect Nonobese Diabetic Mice From Autoimmune Diabetes. Gastroenterology, 2014, 147, 162-171.e6.	1.3	8
376	<i>Porphyromonas gingivalis</i> Lipopolysaccharide Upregulates Insulin Secretion From Pancreatic Î ² Cell Line MIN6. Journal of Periodontology, 2014, 85, 1629-1636.	3.4	37
377	γδT cells recognize the insulin B:9–23 peptide antigen when it is dimerized through thiol oxidation. Molecular Immunology, 2014, 60, 116-128.	2.2	13
378	Of Bugs and Men: Antigen-Fortified Lactoccoccus lactis for Type 1 Diabetes Immunotherapy. Diabetes, 2014, 63, 2603-2605.	0.6	3
379	Exponential increase of glutamic acid decarboxylase (GAD) antibody titer after initiating and stopping insulin in a patient with slowly progressive type 1 diabetes. Endocrine Journal, 2015, 62, 1077-1082.	1.6	2
380	Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatric Diabetes, 2015, 16, 465-484.	2.9	59
381	How Does Thymus Infection by Coxsackievirus Contribute to the Pathogenesis of Type 1 Diabetes?. Frontiers in Immunology, 2015, 6, 338.	4.8	13
382	Acetyl-L-Carnitine and Nicotinamide for Prevention of Type 1 Diabetes. I-Literature Review which Gave Support to the Treatment. II-Case Report, Evaluation of Five Years Treatment. Immunome Research, 2015, 11, .	0.1	0
383	Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8+ T Lymphocytes. Immunity, 2015, 42, 929-941.	14.3	248
384	Materno-Fetal Transfer of Preproinsulin Through the Neonatal Fc Receptor Prevents Autoimmune Diabetes. Diabetes, 2015, 64, 3532-3542.	0.6	24
385	Molecular Interactions Governing Autoantigen Presentation in Type 1 Diabetes. Current Diabetes Reports, 2015, 15, 113.	4.2	16
386	Islet-associated T-cell receptor-β CDR sequence repertoire in prediabetic NOD mice reveals antigen-driven T-cell expansion and shared usage of VβJβ TCR chains. Molecular Immunology, 2015, 64, 127-135.	2.2	19
387	Glucose-regulated insulin production in the liver improves glycemic control in type 1 diabetic mice. Molecular Metabolism, 2015, 4, 70-76.	6.5	5
388	Vascular Complications of Diabetes Mellitus. , 2015, , 1541-1593.		0
389	Immunogenetics of type 1 diabetes mellitus. Molecular Aspects of Medicine, 2015, 42, 42-60.	6.4	95

#	ARTICLE Preproinsulin specific CD8+ T cells in subjects with latent autoimmune diabetes show lower	IF	CITATIONS
390	frequency and different pathophysiological characteristics than those with type 1 diabetes. Clinical Immunology, 2015, 157, 78-90.	3.2	21
391	Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetesâ [~] †. Molecular Aspects of Medicine, 2015, 42, 105-118.	6.4	143
392	Type 1 Diabetes Mellitus. , 2015, , 99-113.		0
393	Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue. Nature Communications, 2015, 6, 7405.	12.8	64
394	Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. Journal of Biological Chemistry, 2015, 290, 18924-18933.	3.4	28
395	BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells. Diabetes, 2015, 64, 3229-3238.	0.6	13
396	Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nature Genetics, 2015, 47, 898-905.	21.4	235
397	Type 1 diabetes: A predictable disease. World Journal of Diabetes, 2015, 6, 380.	3.5	80
398	Less Is More: The Detrimental Consequences of Immunosuppressive Therapy in the Treatment of Type-1 Diabetes. International Reviews of Immunology, 2015, 34, 523-537.	3.3	2
399	Diabetes and Tryptophan Metabolism. Molecular and Integrative Toxicology, 2015, , 147-171.	0.5	12
400	Regulatory vs. inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4429-4434.	7.1	62
402	T Cell Epitopes and Post-Translationally Modified Epitopes in Type 1 Diabetes. Current Diabetes Reports, 2015, 15, 90.	4.2	65
403	Combination Therapy Using IL-2/IL-2 Monoclonal Antibody Complexes, Rapamycin, and Islet Autoantigen Peptides Increases Regulatory T Cell Frequency and Protects against Spontaneous and Induced Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2015, 195, 5203-5214.	0.8	33
404	Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proceedings of the United States of America, 2015, 112, E5496-502.	7.1	85
405	Antibodies to post-translationally modified insulin in type 1 diabetes. Diabetologia, 2015, 58, 2851-2860.	6.3	51
406	Proinsulin-Specific, HLA-DQ8, and HLA-DQ8-Transdimer–Restricted CD4+ T Cells Infiltrate Islets in Type 1 Diabetes. Diabetes, 2015, 64, 172-182.	0.6	137
407	Identification of Candidate Tolerogenic CD8 ⁺ T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model. Journal of Diabetes Research, 2016, 2016, 1-12.	2.3	9
408	B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes. Journal of Clinical Medicine, 2016, 5, 98.	2.4	15

#	Article	IF	CITATIONS
409	Oral Administration of Silkworm-Produced GAD65 and Insulin Bi-Autoantigens against Type 1 Diabetes. PLoS ONE, 2016, 11, e0147260.	2.5	5
410	Type 1 Diabetes Mellitus. , 2016, , 1451-1483.		5
411	The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the <scp>NOD</scp> mouse. Immunological Reviews, 2016, 272, 183-201.	6.0	32
412	HLAâ€G 14â€bp polymorphism affects the age of onset in Type I Diabetes Mellitus. International Journal of Immunogenetics, 2016, 43, 135-142.	1.8	13
413	Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. Journal of Autoimmunity, 2016, 71, 19-25.	6.5	21
414	Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+T Cells. Diabetes, 2016, 65, 1679-1689.	0.6	9
415	How to Make Mice Tell the Truth. Diabetes, 2016, 65, 1161-1163.	0.6	4
416	CD26/DPPIV inhibition alters the expression of immune response-related genes in the thymi of NOD mice. Molecular and Cellular Endocrinology, 2016, 426, 101-112.	3.2	7
417	Primary prevention of beta-cell autoimmunity and type 1 diabetes – The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) perspectives. Molecular Metabolism, 2016, 5, 255-262.	6.5	54
418	Rapamycin/GABA combination treatment ameliorates diabetes in NOD mice. Molecular Immunology, 2016, 73, 130-137.	2.2	22
419	Analysis of antigen specific T cells in diabetes – Lessons from pre-clinical studies and early clinical trials. Journal of Autoimmunity, 2016, 71, 35-43.	6.5	15
420	Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites. Journal of Experimental Medicine, 2016, 213, 967-978.	8.5	39
421	Bridging Mice to Men: Using HLA Transgenic Mice to Enhance the Future Prediction and Prevention of Autoimmune Type 1 Diabetes in Humans. Methods in Molecular Biology, 2016, 1438, 137-151.	0.9	12
422	Restoring Regulatory T Cells in Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 110.	4.2	35
423	Peripheral Proinsulin Expression Controls Low-Avidity Proinsulin-Reactive CD8 T Cells in Type 1 Diabetes. Diabetes, 2016, 65, 3429-3439.	0.6	19
424	The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia, 2016, 59, 2047-2057.	6.3	55
425	Immune Intervention and Preservation of Pancreatic Beta Cell Function in Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 97.	4.2	20
426	Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice. Nature Communications, 2016, 7, 10991.	12.8	99

\sim	1 TE A TE 1	ON	DED	DDT
				דער
<u> </u>			INCLI V	

#	Article	IF	CITATIONS
427	Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2. Science Signaling, 2016, 9, ra61.	3.6	165
428	Predictors of slow progression to diabetes in children with multiple islet autoantibodies. Journal of Autoimmunity, 2016, 72, 113-117.	6.5	30
429	Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice. Autoimmunity, 2016, 49, 298-311.	2.6	23
430	Maintenance of peripheral tolerance to islet antigens. Journal of Autoimmunity, 2016, 72, 118-125.	6.5	7
431	Mechanisms of diabetic autoimmunity: l—the inductive interface between islets and the immune system at onset of inflammation. Immunologic Research, 2016, 64, 360-368.	2.9	7
432	Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science, 2016, 351, 711-714.	12.6	407
433	Therapeutic Perspectives in Type-1 Diabetes. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.4	0
434	Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes. Journal of Immunology, 2016, 196, 39-43.	0.8	35
435	T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. Journal of Autoimmunity, 2016, 66, 7-16.	6.5	54
436	The Mechanisms of Insulin Action. , 2016, , 556-585.e13.		7
436 437	The Mechanisms of Insulin Action. , 2016, , 556-585.e13. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38.	4.1	7 9
436 437 438	The Mechanisms of Insulin Action. , 2016, , 556-585.e13. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nature Medicine, 2017, 23, 501-507.	4.1 30.7	7 9 182
436437438439	The Mechanisms of Insulin Action., 2016, 556-585.e13. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nature Medicine, 2017, 23, 501-507. Metabolically inactive insulin analogue does not prevent autoimmune diabetes in NOD mice. Diabetologia, 2017, 60, 1475-1482.	4.1 30.7 6.3	7 9 182 8
 436 437 438 439 440 	The Mechanisms of Insulin Action., 2016,, 556-585.e13. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nature Medicine, 2017, 23, 501-507. Metabolically inactive insulin analogue does not prevent autoimmune diabetes in NOD mice. Diabetologia, 2017, 60, 1475-1482. Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update. Current Opinion in Immunology, 2017, 46, 30-37.	4.1 30.7 6.3 5.5	7 9 182 8 14
 436 437 438 439 440 441 	The Mechanisms of Insulin Action. , 2016, , 556-585.e13. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nature Medicine, 2017, 23, 501-507. Metabolically inactive insulin analogue does not prevent autoimmune diabetes in NOD mice. Diabetologia, 2017, 60, 1475-1482. Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update. Current Opinion in Immunology, 2017, 46, 30-37. APCâ€targeted proinsulin expression inactivates insulinâ€specific memory CD8 + T cells in NOD mice. Immunology and Cell Biology, 2017, 95, 765-774.	4.1 30.7 6.3 5.5 2.3	7 9 182 8 14 2
 436 437 438 439 440 441 442 	The Mechanisms of Insulin Action., 2016,, 556-585.e13. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nature Medicine, 2017, 23, 501-507. Metabolically inactive insulin analogue does not prevent autoimmune diabetes in NOD mice. Diabetologia, 2017, 60, 1475-1482. Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update. Current Opinion in Immunology, 2017, 46, 30-37. APCâ€targeted proinsulin expression inactivates insulinâ€specific memory CD8 + T cells in NOD mice. Immunology and Cell Biology, 2017, 95, 765-774. Cutting Edge: Dual TCRα Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. Journal of Immunology, 2017, 199, 33-38.	4.1 30.7 6.3 5.5 2.3 0.8	7 9 182 8 14 2 20
 436 437 438 439 440 441 442 443 	The Mechanisms of Insulin Action., 2016,, 556-585.e13.Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38.Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nature Medicine, 2017, 23, 501-507.Metabolically inactive insulin analogue does not prevent autoimmune diabetes in NOD mice. Diabetologia, 2017, 60, 1475-1482.Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update. Current Opinion in Immunology, 2017, 46, 30-37.APCâ€targeted proinsulin expression inactivates insulinâ€specific memory CD8 + T cells in NOD mice. Immunology and Cell Biology, 2017, 95, 765-774.Cutting Edge: Dual TCRα Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. Journal of Immunology, 2017, 199, 33-38.Antigen-Specific T Cell Analysis Reveals That Active Immune Responses to β Cell Antigens Are Focused on a Unique Set of Epitopes. Journal of Immunology, 2017, 199, 91-96.	4.1 30.7 6.3 5.5 2.3 0.8	7 9 182 8 14 2 20 20

#	Article	IF	CITATIONS
445	Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes, 2017, 66, 722-734.	0.6	154
446	Bridge between type 1 diabetes in mouse and man. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10821-10823.	7.1	8
447	Autoimmune Responses to Exosomes and Candidate Antigens Contribute to Type 1 Diabetes in Non-Obese Diabetic Mice. Current Diabetes Reports, 2017, 17, 130.	4.2	16
448	Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime― Current Diabetes Reports, 2017, 17, 95.	4.2	28
449	Type 1 diabetes induction in humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10954-10959.	7.1	67
450	Tolerogenic Nanoparticles to Treat Islet Autoimmunity. Current Diabetes Reports, 2017, 17, 84.	4.2	23
451	Metabolically inactive insulin: friend or foe in the prevention of autoimmune diabetes?. Diabetologia, 2017, 60, 1382-1384.	6.3	1
452	Antigen presenting cellâ€targeted proinsulin expression converts insulinâ€specific CD8 + Tâ€cell priming to tolerance in autoimmuneâ€prone NOD mice. European Journal of Immunology, 2017, 47, 1550-1561.	2.9	4
453	An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. Journal of Autoimmunity, 2017, 78, 11-18.	6.5	75
454	Direct Analysis of Insulin-Specific T Cells Provides New Insights. Diabetes, 2017, 66, 2940-2941.	0.6	1
455	Increased Effector Memory Insulin-Specific CD4+ T Cells Correlate With Insulin Autoantibodies in Patients With Recent-Onset Type 1 Diabetes. Diabetes, 2017, 66, 3051-3060.	0.6	38
456	Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Frontiers in Endocrinology, 2017, 8, 276.	3.5	17
457	T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Frontiers in Endocrinology, 2017, 8, 343.	3.5	194
458	Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Frontiers in Endocrinology, 2017, 8, 351.	3.5	9
459	Sulforaphane inhibits the interferon-γ-induced expression of MIG, IP-10 and I-TAC in INS-1 pancreatic β-cells through the downregulation of IRF-1, STAT-1 and PKB. International Journal of Molecular Medicine, 2017, 40, 907-912.	4.0	6
460	MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2329-E2337.	7.1	5
461	Pathogenesis of Type 1 Diabetes. Endocrinology, 2018, , 1-40.	0.1	0
462	Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5265-5270.	7.1	64

#	Article	IF	Citations
463	Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). Journal of Autoimmunity, 2018, 86, 75-92.	6.5	26
464	On type 1 diabetes mellitus pathogenesis. Endocrine Connections, 2018, 7, R38-R46.	1.9	145
465	Antigen recognition in autoimmune diabetes: a novel pathway underlying disease initiation. Precision Clinical Medicine, 2018, 1, 102-110.	3.3	9
466	Proinsulin C-peptide is an autoantigen in people with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10732-10737.	7.1	47
468	Rapid CLIP dissociation from MHC II promotes an unusual antigen presentation pathway in autoimmunity. Journal of Experimental Medicine, 2018, 215, 2617-2635.	8.5	20
469	Tissue Crosstalk in T1D: Is Insulin Special?. Immunity, 2018, 49, 394-396.	14.3	0
470	CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes, 2018, 67, 1836-1846.	0.6	52
471	Humanized Mouse Model to Study Type 1 Diabetes. Diabetes, 2018, 67, 1816-1829.	0.6	20
472	Anti-Insulin B Cells Are Poised for Antigen Presentation in Type 1 Diabetes. Journal of Immunology, 2018, 201, 861-873.	0.8	23
473	Clonal dynamics studied in cultured induced pluripotent stem cells reveal major growth imbalances within a few weeks. Stem Cell Research and Therapy, 2018, 9, 165.	5.5	8
474	Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature, 2018, 560, 107-111.	27.8	81
475	Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. Journal of Autoimmunity, 2019, 96, 50-58.	6.5	56
476	Programmed Death-1 Restrains the Germinal Center in Type 1 Diabetes. Journal of Immunology, 2019, 203, 844-852.	0.8	15
477	Chaperones may cause the focus of diabetes autoimmunity on distinct (pro)insulin peptides. Journal of Autoimmunity, 2019, 105, 102304.	6.5	6
478	Significance of peripheral mononuclear cells producing interferon-γ in response to insulin B:9–23-related peptides in subtypes of type 1 diabetes. Clinical Immunology, 2019, 208, 108260.	3.2	2
479	High-Efficiency Generation of Antigen-Specific Primary Mouse Cytotoxic T Cells for Functional Testing in an Autoimmune Diabetes Model. Journal of Visualized Experiments, 2019, , .	0.3	0
480	Position β57 of I-A ^{g7} controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Science Immunology, 2019, 4, .	11.9	37
481	On the mark: genetically engineered immunotherapies for autoimmunity. Current Opinion in Immunology, 2019, 61, 69-73.	5.5	9

#	Article	IF	CITATIONS
482	Pancreatic ductal cell antigens are important in the development of invasive insulitis in Non-Obese Diabetic mice. Journal of Neuroimmunology, 2019, 327, 1-9.	2.3	1
483	Isolation and enrichment of mouse insulin-specific CD4+ T regulatory cells. Journal of Immunological Methods, 2019, 470, 46-54.	1.4	3
484	Transgenic substitution with Greater Amberjack Seriola dumerili fish insulin 2 in NOD mice reduces beta cell immunogenicity. Scientific Reports, 2019, 9, 4965.	3.3	0
485	Determining Antigen Specificity of Human Islet Infiltrating T Cells in Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 365.	4.8	9
486	Variants in the <i>BACH2</i> and <i>CLEC16A</i> gene might be associated with susceptibility to insulinâ€triggered typeÂ1 diabetes. Journal of Diabetes Investigation, 2019, 10, 1447-1453.	2.4	8
487	T-Cell–Specific PTPN2 Deficiency in NOD Mice Accelerates the Development of Type 1 Diabetes and Autoimmune Comorbidities. Diabetes, 2019, 68, 1251-1266.	0.6	27
488	How C-terminal additions to insulin B-chain fragments create superagonists for T cells in mouse and human type 1 diabetes. Science Immunology, 2019, 4, .	11.9	38
489	Altered Gut Microbiota Activate and Expand Insulin B15-23–Reactive CD8+ T Cells. Diabetes, 2019, 68, 1002-1013.	0.6	28
490	Beneficial effects of 6-shogaol on hyperglycemia, islet morphology and apoptosis in some tissues of streptozotocin-induced diabetic mice. Diabetology and Metabolic Syndrome, 2019, 11, 15.	2.7	22
491	The Immunoreactive Platform of the Pancreatic Islets Influences the Development of Autoreactivity. Diabetes, 2019, 68, 1544-1551.	0.6	13
492	What the HLA-I!—Classical and Non-classical HLA Class I and Their Potential Roles in Type 1 Diabetes. Current Diabetes Reports, 2019, 19, 159.	4.2	30
493	Replacing murine insulin 1 with human insulin protects NOD mice from diabetes. PLoS ONE, 2019, 14, e0225021.	2.5	11
494	A Novel Liposome Formulation Carrying Both an Insulin Peptide and a Ligand for Invariant Natural Killer T Cells Induces Accumulation of Regulatory T Cells to Islets in Nonobese Diabetic Mice. Journal of Diabetes Research, 2019, 2019, 1-9.	2.3	3
495	Thymus-specific serine protease, a protease that shapes the CD4 T cell repertoire. Immunogenetics, 2019, 71, 223-232.	2.4	7
496	A multi-epitope DNA vaccine enables a broad engagement of diabetogenic T cells for tolerance in Type 1 diabetes. Journal of Autoimmunity, 2019, 98, 13-23.	6.5	20
497	Preproinsulin Designer Antigens Excluded from Endoplasmic Reticulum Suppressed Diabetes Development in NOD Mice by DNA Vaccination. Molecular Therapy - Methods and Clinical Development, 2019, 12, 123-133.	4.1	3
498	Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Annals of the New York Academy of Sciences, 2020, 1461, 73-103.	3.8	15
499	Tissue-specific autoimmunity controlled by Aire in thymic and peripheral tolerance mechanisms. International Immunology, 2020, 32, 117-131.	4.0	9

#	Article	IF	CITATIONS
500	THE USE OF MASS SPECTROMETRY TO STUDY ZNâ€METALLOPROTEASEâ€SUBSTRATE INTERACTIONS. Mass Spectrometry Reviews, 2020, 39, 574-585.	5.4	2
501	A Critical Insulin TCR Contact Residue Selects High-Affinity and Pathogenic Insulin-Specific T Cells. Diabetes, 2020, 69, 392-400.	0.6	6
502	New Frontiers in the Treatment of Type 1 Diabetes. Cell Metabolism, 2020, 31, 46-61.	16.2	147
503	Animal Models of Organ-Specific Autoimmune Disease. , 2020, , 493-511.		2
504	Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. Journal of Translational Autoimmunity, 2020, 3, 100061.	4.0	9
505	Immune therapies for autoimmune diabetes targeting pathogenic peptide–MHC complexes. Journal of Molecular Cell Biology, 2020, 12, 759-763.	3.3	3
506	T–B Lymphocyte Interactions Promote Type 1 Diabetes Independently of SLAM-Associated Protein. Journal of Immunology, 2020, 205, 3263-3276.	0.8	4
507	A monoclonal antibody with broad specificity for the ligands of insulin B:9-23 reactive T cells prevents spontaneous type 1 diabetes in mice. MAbs, 2020, 12, 1836714.	5.2	5
508	Insulin-Reactive T Cells Convert Diabetogenic Insulin-Reactive VH125 B Cells Into Tolerogenic Cells by Reducing Germinal Center T:B Cell Interactions in NOD Mice. Frontiers in Immunology, 2020, 11, 585886.	4.8	1
509	Cytocidal macrophages in symbiosis with CD4 and CD8 T cells cause acute diabetes following checkpoint blockade of PD-1 in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31319-31330.	7.1	29
510	Retro-inverso D-peptides as a novel targeted immunotherapy for Type 1 diabetes. Journal of Autoimmunity, 2020, 115, 102543.	6.5	10
511	Induction of Antigen-Specific Tolerance in T Cell Mediated Diseases. Frontiers in Immunology, 2020, 11, 2194.	4.8	12
512	Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. Journal of Experimental Medicine, 2020, 217, .	8.5	78
513	In Vivo Differentiation of Stem Cell-derived Human Pancreatic Progenitors to Treat Type 1 Diabetes. Stem Cell Reviews and Reports, 2020, 16, 1139-1155.	3.8	2
514	Role of the PD-1/PD-L1 Dyad in the Maintenance of Pancreatic Immune Tolerance for Prevention of Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 569.	3.5	39
515	A biomimetic five-module chimeric antigen receptor (^{5M} CAR) designed to target and eliminate antigen-specific T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28950-28959.	7.1	19
516	Hybrid Insulin Peptides Are Recognized by Human T Cells in the Context of DRB1*04:01. Diabetes, 2020, 69, 1492-1502.	0.6	30
517_	T-Cell Epitopes and Neo-epitopes in Type 1 Diabetes: A Comprehensive Update and Reappraisal. Diabetes, 2020, 69, 1311-1335	0.6	62

#	Article	IF	CITATIONS
518	The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides. Nature Immunology, 2020, 21, 455-463.	14.5	53
519	Peptide mimotopes alter T cell function in cancer and autoimmunity. Seminars in Immunology, 2020, 47, 101395.	5.6	13
520	Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes–Associated HLA Class II Molecules. Journal of Immunology, 2020, 204, 2349-2359.	0.8	13
521	Gold nanoparticles in delivery applications. , 2020, , 329-345.		2
522	β-Cell Stress Shapes CTL Immune Recognition of Preproinsulin Signal Peptide by Posttranscriptional Regulation of Endoplasmic Reticulum Aminopeptidase 1. Diabetes, 2020, 69, 670-680.	0.6	29
523	Beta Cell Dedifferentiation Induced by IRE1α Deletion Prevents Type 1 Diabetes. Cell Metabolism, 2020, 31, 822-836.e5.	16.2	84
524	Coâ€microencapsulation of human umbilical cordâ€derived mesenchymal stem and pancreatic isletâ€derived insulin producing cells in experimental type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2021, 37, e3372.	4.0	9
525	InsB9-23 Gene Transfer to Hepatocyte-Based Combined Therapy Abrogates Recurrence of Type 1 Diabetes After Islet Transplantation. Diabetes, 2021, 70, 171-181.	0.6	7
526	Proinsulinâ€specific Tâ€cell responses correlate with estimated câ€peptide and predict partial remission duration in type 1 diabetes. Clinical and Translational Immunology, 2021, 10, e1315.	3.8	15
527	B Quiet: Autoantigen-Specific Strategies to Silence Raucous B Lymphocytes and Halt Cross-Talk with T Cells in Type 1 Diabetes. Biomedicines, 2021, 9, 42.	3.2	6
528	Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation. Frontiers in Immunology, 2020, 11, 612737.	4.8	20
529	Biologia Futura: Emerging antigen-specific therapies for autoimmune diseases. Biologia Futura, 2021, 72, 15-24.	1.4	7
530	Insulin's other life: an autoantigen in type 1 diabetes. Immunology and Cell Biology, 2021, 99, 448-460.	2.3	3
531	T-cell responses to hybrid insulin peptides prior to type 1 diabetes development. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
532	Non-Genetically Encoded Epitopes Are Relevant Targets in Autoimmune Diabetes. Biomedicines, 2021, 9, 202.	3.2	8
533	Tolerance to Proinsulin-1 Reduces Autoimmune Diabetes in NOD Mice. Frontiers in Immunology, 2021, 12, 645817.	4.8	2
534	Grape seed proanthocyanidin extract suppresses oxidative stress in the rat pancreas of type-1 diabetes. Archives of Physiology and Biochemistry, 2021, , 1-13.	2.1	4
535	Blood leukocytes recapitulate diabetogenic peptide–MHC-II complexes displayed in the pancreatic islets. Journal of Experimental Medicine, 2021, 218,	8.5	8

#	Article	IF	CITATIONS
536	Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Frontiers in Immunology, 2021, 12, 667989.	4.8	26
537	The Role of Programmed Death-1 in Type 1 Diabetes. Current Diabetes Reports, 2021, 21, 20.	4.2	11
538	Generation of self-reactive, shared T-cell receptor $\hat{I}\pm$ chains in the human thymus. Journal of Autoimmunity, 2021, 119, 102616.	6.5	5
539	Review Article: Autoimmunity and Pathogenesis of Type 1 Diabetes. Medical Journal of the University of Cairo Faculty of Medicine, 2021, 89, 1341-1347.	0.0	1
541	Altered islet prohormone processing: a cause or consequence of diabetes?. Physiological Reviews, 2022, 102, 155-208.	28.8	15
542	The dark side of insulin: A primary autoantigen and instrument of self-destruction in type 1 diabetes. Molecular Metabolism, 2021, 52, 101288.	6.5	9
543	Recent Applications of Retro-Inverso Peptides. International Journal of Molecular Sciences, 2021, 22, 8677.	4.1	48
544	Oral Fc-Coupled Preproinsulin Achieves Systemic and Thymic Delivery Through the Neonatal Fc Receptor and Partially Delays Autoimmune Diabetes. Frontiers in Immunology, 2021, 12, 616215.	4.8	4
545	Therapeutic Strategies for Diabetes: Immune Modulation in Pancreatic \hat{I}^2 Cells. Frontiers in Endocrinology, 2021, 12, 716692.	3.5	10
546	Multicomponent Plasmid Protects Mice From Spontaneous Autoimmune Diabetes. Diabetes, 2022, 71, 157-169.	0.6	9
548	100 Years of insulin: Lifesaver, immune target, and potential remedy for prevention. Med, 2021, 2, 1120-1137.	4.4	4
549	Chromogranin A Deficiency Confers Protection From Autoimmune Diabetes via Multiple Mechanisms. Diabetes, 2021, 70, 2860-2870.	0.6	5
551	Rational Development of Antigen-Specific Therapies for Type 1 Diabetes. Advances in Experimental Medicine and Biology, 2007, 601, 313-319.	1.6	17
552	FoxP3 and Regulatory T Cells. , 2008, , 17-28.		2
553	Animal Models of Spontaneous Autoimmune Disease. Methods in Molecular Biology, 2007, 380, 285-311.	0.9	52
554	Animal Models of Type 1 Diabetes Mellitus. , 2007, , 217-241.		2
555	Bridging Mice to Men: Using HLA Transgenic Mice to Enhance the Future Prediction and Prevention of Autoimmune Type 1 Diabetes in Humans. Methods in Molecular Biology, 2010, 602, 119-134.	0.9	6
556	The Mechanisms of Insulin Action. , 2010, , 636-659.		3

#	Article	IF	CITATIONS
557	Type 1 Diabetes Mellitus. , 2011, , 1436-1461.		16
560	Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes. JCI Insight, 2016, 1, e86065.	5.0	14
561	Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. Journal of Clinical Investigation, 2006, 116, 1292-1301.	8.2	100
562	TGF-Â signaling is required for the function of insulin-reactive T regulatory cells. Journal of Clinical Investigation, 2006, 116, 1360-1370.	8.2	47
563	Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. Journal of Clinical Investigation, 2006, 116, 1371-1381.	8.2	266
564	An immunologic homunculus for type 1 diabetes. Journal of Clinical Investigation, 2006, 116, 1212-1215.	8.2	20
565	Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. Journal of Clinical Investigation, 2006, 116, 3258-3265.	8.2	197
566	Proinsulin: a unique autoantigen triggering autoimmune diabetes. Journal of Clinical Investigation, 2006, 116, 3108-3110.	8.2	20
567	Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity. Journal of Clinical Investigation, 2007, 117, 1835-1843.	8.2	93
568	CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. Journal of Clinical Investigation, 2008, 118, 3390-402.	8.2	315
569	Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice. Journal of Clinical Investigation, 2011, 121, 1810-1821.	8.2	36
570	Autoreactive T cells in type 1 diabetes. Journal of Clinical Investigation, 2017, 127, 2881-2891.	8.2	260
571	Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000Research, 2016, 5, 728.	1.6	11
572	BDC12-4.1 T-Cell Receptor Transgenic Insulin-Specific CD4 T Cells Are Resistant to In Vitro Differentiation into Functional Foxp3+ T Regulatory Cells. PLoS ONE, 2014, 9, e112242.	2.5	5
573	Reduction of T Cell Receptor Diversity in NOD Mice Prevents Development of Type 1 Diabetes but Not Sjögren's Syndrome. PLoS ONE, 2014, 9, e112467.	2.5	11
574	PD-1 pathway-mediated regulation of islet-specific CD4+ T cell subsets in autoimmune diabetes. Immunoendocrinology (Houston, Tex), 2016, 3, .	1.0	14
575	Genetic Basis of Type 1 Diabetes: Similarities and Differences between East and West. Review of Diabetic Studies, 2008, 5, 64-72.	1.3	29
576	The Role of the CXCL10/CXCR3 System in Type 1 Diabetes. Review of Diabetic Studies, 2009, 6, 81-84.	1.3	15

C	- A	DEDODT
\sim		

#	Article	IF	CITATIONS
577	Tolerance Strategies Employing Antigen-Coupled Apoptotic Cells and Carboxylated PLG Nanoparticles for the Treatment of Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 319-327.	1.3	35
578	Clinical Potential of Antigen-Specific Therapies in Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 328-337.	1.3	8
579	Immunotherapy in Autoimmune Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 68-81.	1.3	8
580	Target-organ specificity of autoimmunity is modified by thymic stroma and bone marrow-derived cells. Journal of Medical Investigation, 2007, 54, 54-64.	0.5	5
581	Beta-cell Specific Autoantibodies: Are they Just an Indicator of Type 1 Diabetes?. Current Diabetes Reviews, 2017, 13, 322-329.	1.3	25
582	T Cell Receptor Variable Regions in Diabetes Bind to Each Other, to Insulin, Glucagon or Insulin Receptor, and to Their Antibodies. The Open Autoimmunity Journal, 2012, 4, 10-22.	0.4	8
583	A Hybrid Insulin Epitope Maintains High 2D Affinity for Diabetogenic T Cells in the Periphery. Diabetes, 2020, 69, 381-391.	0.6	12
584	Investigation of osteopontin levels and genomic variation of osteopontin and its receptors in Type 1 diabetes mellitus. Journal of Endocrinological Investigation, 2013, 36, 1090-3.	3.3	14
585	Investigating Immune Responses to Putative Diabetogenic Modified Bovine Proteins Subjected to Microwave Heating among Young Jordanian Children with Type 1 Diabetes Mellitus. Research Journal of Biological Sciences, 2010, 5, 521-528.	0.1	1
586	Current and Future Clinical Applications of Zinc Transporter-8 in Type 1 Diabetes Mellitus. Chinese Medical Journal, 2015, 128, 2387-2394.	2.3	20
587	Peripheral blood mononuclear cells of patients with latent autoimmune diabetes secrete higher levels of pro- & anti-inflammatory cytokines compared to those with type-1 diabetes mellitus following in vitro stimulation with β-cell autoantigens. Indian Journal of Medical Research, 2017, 145, 767.	1.0	9
588	Regeneration and DNA demethylation do not trigger PDX-1 expression in rat hepatocytes. World Journal of Biological Chemistry, 2010, 1, 281.	4.3	1
589	Echovirus Epidemics, Autoimmunity, and Type 1 Diabetes. , 0, , .		2
590	A Humanized Mouse Strain That Develops Spontaneously Immune-Mediated Diabetes. Frontiers in Immunology, 2021, 12, 748679.	4.8	5
591	How benign autoimmunity becomes detrimental in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
592	CD4+CD25+ Regulatory T Cells in Autoimmune Disease. , 2007, , 152-170.		0
593	Molecular Basis for Induction of Tolerance in Type I Diabetes. , 2007, , 87-120.		0
594	Natural CD4 + CD25 + Regulatory T Cells in Regulation of Autoimmune Disease. , 2008, , 253-264.		0

#	Article	IF	CITATIONS
595	Novel epitope begets a novel pathway in type 1 diabetes progression. Journal of Clinical Investigation, 2008, 118, 3268-71.	8.2	0
596	Transdifferentiation. , 2009, , 91-97.		0
597	The Genetic Basis of Diabetes. , 2009, , 377-413.		1
598	Type 1 Diabetes—Pathogenesis, Prediction, and Prevention. US Endocrinology, 2009, 05, 79.	0.3	1
599	Prevention of Islet Graft Rejection and Recipient Tolerization. , 2010, , 263-279.		0
600	Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000 Biology Reports, 2010, 2, 75.	4.0	9
601	Immunopathogenesis of the NOD Mouse. , 2011, , 199-213.		1
602	Characterizing T-Cell Autoimmunity. , 2011, , 53-68.		0
603	Immunotherapy of Type-1 Diabetes: Immunoprevention and Immunoreversal. , 2011, , 293-314.		0
604	Entering a new phase of multiple sclerosis genetic epidemiology. Future Neurology, 2011, 6, 511-519.	0.5	0
605	Multi-Component Vaccines for Suppression of Type 1 Diabetes. , 0, , .		0
606	Genetics of Type 1 Diabetes. , 0, , .		1
608	Pancreatic Reprogramming. , 2013, , 155-168.		0
609	Diabetes and related autoimmune diseases. , 2013, , 847-859.		0
610	Gastrointestinal Tract and Endocrine System. , 2013, , 983-1022.		0
611	Vascular Complications of Diabetes Mellitus. , 2014, , 1-65.		0
612	Type 1 Diabetes Mellitus Associated With Autoimmune Thyroid Disorders in Iranian Children: A Review. Journal of Pediatrics Review, 2015, 3, .	0.3	1
613	Epitope specific T cells in type 1 diabetes: From detection to immunotherapy. Immunoendocrinology (Houston, Tex), 0, , .	1.0	0

#	Article	IF	CITATIONS
614	Predictors and Pathogenesis of Type 1 Diabetes. SpringerBriefs in Applied Sciences and Technology, 2016, , 21-28.	0.4	0
615	Type 1 Diabetes: Past, Present, and Future Therapies. SpringerBriefs in Applied Sciences and Technology, 2016, , 29-78.	0.4	0
616	Control of Chronic Inflammation Through Elucidation of Organ-Specific Autoimmune Disease Mechanisms. , 2016, , 489-500.		0
617	Gastrointestinal Tract and Endocrine System. , 2016, , 179-221.		0
618	Antigen Deimination in Human Type 1 Diabetes and Nonobese Diabetic Mice. , 2017, , 173-189.		0
619	Pathogenesis of Type 1 Diabetes. Endocrinology, 2018, , 141-179.	0.1	0
620	Activation of CD4 and CD8 T cell receptors and regulatory T cells in response to human proteins. PeerJ, 2018, 6, e4462.	2.0	7
621	Development and Characterization of a Preclinical Model for the Evaluation of CD205-Mediated Antigen Delivery Therapeutics in Type 1 Diabetes. ImmunoHorizons, 2019, 3, 236-253.	1.8	1
624	THE ASSOCIATION OF GENETIC POLYMORPHISMS WITH DIABETES MELLITUS TYPE 1. Acta Medica Medianae, 2020, 59, 125-132.	0.1	0
625	Islet Cell Autoantigens. , 2007, , 243-274.		0
626	Juvenile diabetes. Indian Journal of Medical Research, 2012, 136, 179-81.	1.0	0
627	Novel Insights into the Immunotherapy-Based Treatment Strategy for Autoimmune Type 1 Diabetes. International Journal of Diabetology, 2022, 3, 79-96.	2.0	9
628	Activation pathways that drive CD4 ⁺ T cells to break tolerance in autoimmune diseases*. Immunological Reviews, 2022, 307, 161-190.	6.0	19
629	Preclinical evaluation of a precision medicine approach to DNA vaccination in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110987119.	7.1	3
630	Clinical Significance of Insulin Peptide–specific Interferon-γ–related Immune Responses in Ketosis-prone Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, , .	3.6	2
631	Preclinical Models to Evaluate the Human Response to Autoantigen and Antigen-Specific Immunotherapy in Human Type 1 Diabetes. Frontiers in Endocrinology, 2022, 13, 883000.	3.5	1
637	The effects of dexpanthenol in streptozotocin-induced diabetic rats: histological, histochemical and immunological evidences. Histology and Histopathology, 2014, 29, 1305-13.	0.7	3
638	Editing TÂcell repertoire by thymic epithelial cell-directed gene transfer abrogates risk of type 1 diabetes development. Molecular Therapy - Methods and Clinical Development, 2022, 25, 508-519.	4.1	1

#	Article	IF	CITATIONS
639	Melatonin relieves diabetic complications and regenerates pancreatic beta cells by the reduction in NF-kB expression in streptozotocin induced diabetic rats. Saudi Journal of Biological Sciences, 2022, 29, 103313.	3.8	21
640	Autoreactive CD8+ T cells are restrained by an exhaustion-like program that is maintained by LAG3. Nature Immunology, 2022, 23, 868-877.	14.5	32
641	Antibody-Mediated Targeting of a Hybrid Insulin Peptide Toward Neonatal Thymic Langerin-Positive Cells Enhances T-Cell Central Tolerance and Delays Autoimmune Diabetes. Diabetes, 2022, 71, 1735-1745.	0.6	2
642	Tolerogenic Immune-Modifying Nanoparticles Encapsulating Multiple Recombinant Pancreatic β Cell Proteins Prevent Onset and Progression of Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2022, 209, 465-475.	0.8	7
643	The β-Cell in Type 1 Diabetes Pathogenesis: A Victim of Circumstances or an Instigator of Tragic Events?. Diabetes, 2022, 71, 1603-1610.	0.6	7
644	Structural plasticity in I-Ag7 links autoreactivity to hybrid insulin peptides in type I diabetes. Frontiers in Immunology, 0, 13, .	4.8	1
645	Insulin B-chain hybrid peptides are agonists for T cells reactive to insulin B:9-23 in autoimmune diabetes. Frontiers in Immunology, 0, 13, .	4.8	2
646	A Novel Tolerogenic Antibody Targeting Disulfide-Modified Autoantigen Effectively Prevents Type 1 Diabetes in NOD Mice. Frontiers in Immunology, 0, 13, .	4.8	3
647	Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Molecular Metabolism, 2022, 64, 101565.	6.5	5
648	Dynamic <i>Ins2</i> Gene Activity Defines β-Cell Maturity States. Diabetes, 2022, 71, 2612-2631.	0.6	5
649	PREPARATION AND CHARACTERIZATION OF ALGINATE CHITOSAN CROSSLINKED NANOPARTICLES BEARING DRUG FOR THE EFFECTIVE MANAGEMENT OF ULCERATIVE COLITIS. International Journal of Current Pharmaceutical Research, 0, , 48-61.	0.2	2
650	Isletâ€specific <scp>CD8</scp> ⁺ T cells gain effector function in the gut lymphoid tissues <i>via</i> bystander activation not molecular mimicry. Immunology and Cell Biology, 2023, 101, 36-48.	2.3	7
651	Comparative study on early recognition and identifying diabetic retinopathy with different layers in CNN. International Journal of Advanced and Applied Sciences, 2022, 9, 135-144.	0.4	1
652	Insights on the role of anti-inflammatory and immunosuppressive agents in the amelioration of diabetes. Diabetology International, 2023, 14, 134-144.	1.4	2
653	Microbiota-dependent proteolysis of gluten subverts diet-mediated protection against type 1 diabetes. Cell Host and Microbe, 2023, 31, 213-227.e9.	11.0	3
654	Characterizing T cell responses to enzymatically modified beta cell neo-epitopes. Frontiers in Immunology, 0, 13, .	4.8	2
655	Epitope-based precision immunotherapy of Type 1 diabetes. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	2
657	The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sciences, 2023, 323, 121701.	4.3	1

#	Article	IF	CITATIONS
658	A patient with type 1 diabetes mellitus who developed exogenous insulin antibody syndrome ameliorated by immunosuppressive treatment for concomitant systemic lupus erythematosus: A case report. The Showa University Journal of Medical Sciences, 2022, 34, 225-232.	0.1	0
660	Shedding new light on the role of ERAP1 in Type 1 diabetes: A perspective on disease management. Autoimmunity Reviews, 2023, 22, 103291.	5.8	2
661	Application of CARâ€T cell technology in autoimmune diseases and human immunodeficiency virus infection treatment. Journal of Gene Medicine, 2023, 25, .	2.8	4
662	Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Seminars in Immunology, 2023, 66, 101730.	5.6	5
663	Chromogranin A-derived peptides pancreastatin and catestatin: emerging therapeutic target for diabetes. Amino Acids, 2023, 55, 549-561.	2.7	4
665	Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes?. Nature Reviews Endocrinology, 2023, 19, 425-434.	9.6	10
666	Transcriptional re-programming of insulin B-chain epitope-specific T-follicular helper cells into anti-diabetogenic T-regulatory type-1 cells. Frontiers in Immunology, 0, 14, .	4.8	1
667	Vitamin D in Diabetes: Uncovering the Sunshine Hormone's Role in Glucose Metabolism and Beyond. Nutrients, 2023, 15, 1997.	4.1	4
668	Human induced pluripotent stem cells (hiPSC), enveloped in elastin-like recombinamers for cell therapy of type 1 diabetes mellitus (T1D): preliminary data. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	1
669	Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus. International Journal of Molecular Sciences, 2023, 24, 8336.	4.1	1
670	Monitoring immunomodulation strategies in type 1 diabetes. Frontiers in Immunology, 0, 14, .	4.8	2
671	Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia, 2023, 66, 1971-1982.	6.3	1
672	Regulatory T cells targeting a pathogenic MHC class II: Insulin peptide epitope postpone spontaneous autoimmune diabetes. Frontiers in Immunology, 0, 14, .	4.8	6
674	Islet beta-cells and intercellular adhesion molecule-1 (ICAM-1): Integrating immune responses that influence autoimmunity and graft rejection. Autoimmunity Reviews, 2023, 22, 103414.	5.8	1
675	The beta cell-immune cell interface in type 1 diabetes (T1D). Molecular Metabolism, 2023, 78, 101809.	6.5	2
676	Ectopic expression of insulin in a type 1 diabetic rat model by injection of manipulated mesenchymal stem cells with an insulin construct driven by a glucoseâ€sensitive promoter in the port vein. Cell Biochemistry and Function, 2023, 41, 1412-1421.	2.9	0
677	Validation of a murine proteome-wide phage display library for identification of autoantibody specificities. JCI Insight, 2023, 8, .	5.0	0
678	Autoimmune diseases: targets, biology, and drug discovery. Acta Pharmacologica Sinica, 0, , .	6.1	1

#	Article	IF	CITATIONS
679	Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Reviews and Reports, 2024, 20, 585-600.	3.8	0
680	The immunology of type 1 diabetes. Nature Reviews Immunology, 0, , .	22.7	0
681	Mapping of a hybrid insulin peptide in the inflamed islet \hat{I}^2 -cells from NOD mice. Frontiers in Immunology, 0, 15, .	4.8	0
682	An antigen-specific immunotherapeutic, AKS-107, deletes insulin-specific B cells and prevents murine autoimmune diabetes. Frontiers in Immunology, 0, 15, .	4.8	0