Cellular APOBEC3G restricts HIV-1 infection in resting

Nature 435, 108-114 DOI: 10.1038/nature03493

Citation Report

#	Article	IF	CITATIONS
1	Viral blitzkrieg. Nature, 2005, 434, 1080-1081.	27.8	7
2	HIV-1 Vif: HIVs Weapon Against the Cellular Defense Factor APOBEC3G. Current HIV Research, 2005, 3, 339-344.	0.5	17
3	Immune deficiency in HIV-1 infection: novel therapeutic approaches targeting innate and adaptive responses. Expert Review of Clinical Immunology, 2005, 1, 529-547.	3.0	2
4	Human Immunodeficiency Virus Type 1 Can Establish Latent Infection in Resting CD4 + T Cells in the Absence of Activating Stimuli. Journal of Virology, 2005, 79, 14179-14188.	3.4	173
5	Review of the twelfth West Coast Retrovirus Meeting. Retrovirology, 2005, 2, 72.	2.0	2
6	Lentiviral Vectors and Antiretroviral Intrinsic Immunity. Human Gene Therapy, 2005, 16, 913-920.	2.7	30
7	HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, The, 2006, 368, 489-504.	13.7	496
8	Latency: the hidden HIV-1 challenge. Retrovirology, 2006, 3, 7.	2.0	102
9	HIV infection of non-dividing cells: a divisive problem. Retrovirology, 2006, 3, 74.	2.0	64
10	Persistent resistance to HIV-1 infection in CD4 T cells from exposed uninfected Vietnamese individuals is mediated by entry and post-entry blocks. Retrovirology, 2006, 3, 81.	2.0	18
11	A unified concept of HIV latency. Expert Opinion on Biological Therapy, 2006, 6, 1135-1149.	3.1	29
12	Synthesis of Cyclic Phosphonate Analogues of (Lyso)phosphatidic Acid Using a Ring-Closing Metathesis Reaction. Journal of Organic Chemistry, 2006, 71, 6061-6066.	3.2	24
13	The C-terminal 26-residue peptide of serpin A1 is an inhibitor of HIV-1. Biochemical and Biophysical Research Communications, 2006, 343, 617-622.	2.1	37
14	APOBEC-1 and AID are nucleo-cytoplasmic trafficking proteins but APOBEC3G cannot traffic. Biochemical and Biophysical Research Communications, 2006, 350, 214-219.	2.1	30
15	Natural resistance to HIV infection: The Vif–APOBEC interaction. Comptes Rendus - Biologies, 2006, 329, 871-875.	0.2	38
16	A Role for Activation-Induced Cytidine Deaminase in the Host Response against a Transforming Retrovirus. Immunity, 2006, 24, 779-786.	14.3	96
17	Type I Interferons in Host Defense. Immunity, 2006, 25, 373-381.	14.3	1,014
18	Multifaceted antiviral actions of APOBEC3 cytidine deaminases. Trends in Immunology, 2006, 27, 291-297.	6.8	54

ιτλτιώνι Ρερώ

#	Article	IF	CITATIONS
19	HIV-1-induced depletion of CD4+ T cells in the gut: mechanism and therapeutic implications. Trends in Pharmacological Sciences, 2006, 27, 4-7.	8.7	19
20	Cellular cofactors and HIV-1 infectionin vivo. Future Virology, 2006, 1, 337-347.	1.8	2
21	Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood, 2006, 107, 4257-4265.	1.4	73
22	From cell surface to the nucleus, a short but critical journey for retroviruses. Future Virology, 2006, 1, 331-336.	1.8	1
23	Functional Studies of Lymphocytes Using RNAi Technology. Transfusion Medicine and Hemotherapy, 2006, 33, 80-88.	1.6	1
25	Viral and cellular factors that regulate HIV-1 uncoating. Current Opinion in HIV and AIDS, 2006, 1, 194-199.	3.8	27
26	Regulation of Two Key Nuclear Enzymatic Activities by the 7SK Small Nuclear RNA. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 301-311.	1.1	10
27	Current World Literature. Current Opinion in HIV and AIDS, 2006, 1, 82-95.	3.8	Ο
28	Innate cellular defenses of APOBEC3 cytidine deaminases and viral counter-defenses. Current Opinion in HIV and AIDS, 2006, 1, 187-193.	3.8	27
29	Host polymorphism in steps of the HIV-1 lifecycle after entry and other genetic variants influencing HIV-1 pathogenesis. Current Opinion in HIV and AIDS, 2006, 1, 232-240.	3.8	3
30	Current World Literature. Current Opinion in HIV and AIDS, 2006, 1, 257-265.	3.8	0
32	Review of "the Twelfth West Coast Retrovirus Meeting" and "the Twenty-third Annual Symposium on Nonhuman Primate Models for AIDS". , 2006, 3, 1.		8
33	Dendritic-cell interactions with HIV: infection and viral dissemination. Nature Reviews Immunology, 2006, 6, 859-868.	22.7	479
34	APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA. Nature Structural and Molecular Biology, 2006, 13, 392-399.	8.2	263
35	Quantitative real-time analysis of HIV-1 gene expression dynamics in single living primary cells. Biotechnology Journal, 2006, 1, 682-689.	3.5	11
36	High expression of APOBEC3G in patients infected with hepatitis C virus. Journal of Molecular Histology, 2006, 37, 327-332.	2.2	25
37	APOBEC3G and HIV-1: Strike and counterstrike. Current Infectious Disease Reports, 2006, 8, 317-323.	3.0	8
38	Retroviral infection of non-dividing cells: Old and new perspectives. Virology, 2006, 344, 88-93.	2.4	169

#	Article	IF	CITATIONS
39	The Î ³ c-cytokine regulated transcription factor, STAT5, increases HIV-1 production in primary CD4 T cells. Virology, 2006, 344, 283-291.	2.4	46
40	Vif-deficient HIV reverse transcription complexes (RTCs) are subject to structural changes and mutation of RTC-associated reverse transcription products. Virology, 2006, 351, 80-91.	2.4	20
41	Directed DNA deamination by AID/APOBEC3 in immunity. Current Biology, 2006, 16, R186-R189.	3.9	25
42	Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology, 2006, 43, 1364-1374.	7.3	222
43	HIV accomplices and adversaries in macrophage infection. Journal of Leukocyte Biology, 2006, 80, 973-983.	3.3	41
44	Uracils as a Cellular Weapon Against Viruses and Mechanisms of Viral Escape. Current HIV Research, 2006, 4, 31-42.	0.5	36
45	Intracellular Restriction Factors In Mammalian Cells - An Ancient Defense System Finds A Modern Foe. Current HIV Research, 2006, 4, 141-168.	0.5	25
46	First AID (Activation-induced Cytidine Deaminase) Is Needed to Produce High Affinity Isotype-switched Antibodies. Journal of Biological Chemistry, 2006, 281, 16833-16836.	3.4	13
47	APOBEC3F and APOBEC3G mRNA Levels Do Not Correlate with Human Immunodeficiency Virus Type 1 Plasma Viremia or CD4 + T-Cell Count. Journal of Virology, 2006, 80, 2069-2072.	3.4	66
48	APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. Journal of Experimental Medicine, 2006, 203, 2887-2893.	8.5	124
49	Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti–HIV-1 activity. Journal of Experimental Medicine, 2006, 203, 41-46.	8.5	272
50	Monomeric APOBEC3G Is Catalytically Active and Has Antiviral Activity. Journal of Virology, 2006, 80, 4673-4682.	3.4	76
51	APOBEC3 Cytidine Deaminases: Distinct Antiviral Actions along the Retroviral Life Cycle. Journal of Biological Chemistry, 2006, 281, 8309-8312.	3.4	36
52	Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors. Journal of Virology, 2006, 80, 1067-1076.	3.4	253
53	CD16+ Monocyte-Derived Macrophages Activate Resting T Cells for HIV Infection by Producing CCR3 and CCR4 Ligands. Journal of Immunology, 2006, 176, 5760-5771.	0.8	66
54	The Anti-HIV-1 Editing Enzyme APOBEC3G Binds HIV-1 RNA and Messenger RNAs That Shuttle between Polysomes and Stress Granules. Journal of Biological Chemistry, 2006, 281, 29105-29119.	3.4	158
55	Alpha Interferon Potently Enhances the Anti-Human Immunodeficiency Virus Type 1 Activity of APOBEC3G in Resting Primary CD4 T Cells. Journal of Virology, 2006, 80, 7645-7657.	3.4	135
56	Modulation of specific surface receptors and activation sensitization in primary resting CD4+T lymphocytes by the Nef protein of HIV-1. Journal of Leukocyte Biology, 2006, 79, 616-627.	3.3	54

	CITATION I	Report	
#	Article	IF	CITATIONS
57	Restriction of Foamy Viruses by APOBEC Cytidine Deaminases. Journal of Virology, 2006, 80, 605-614.	3.4	126
58	Rapid Expression of Human Immunodeficiency Virus following Activation of Latently Infected Cells. Journal of Virology, 2006, 80, 1599-1603.	3.4	28
59	Interaction Between HIV-1 and APOBEC3 Sub-Family of Proteins. Current HIV Research, 2006, 4, 401-409.	0.5	5
60	APOBEC3 Proteins Inhibit Human LINE-1 Retrotransposition. Journal of Biological Chemistry, 2006, 281, 22161-22172.	3.4	322
61	Nanostructures of APOBEC3G Support a Hierarchical Assembly Model of High Molecular Mass Ribonucleoprotein Particles from Dimeric Subunits*. Journal of Biological Chemistry, 2006, 281, 38122-38126.	3.4	82
62	The Engagement of Activating FcÎ ³ Rs Inhibits Primate Lentivirus Replication in Human Macrophages. Journal of Immunology, 2006, 177, 6291-6300.	0.8	33
63	Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. Journal of Experimental Medicine, 2006, 203, 865-870.	8.5	118
64	APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Research, 2006, 34, 89-95.	14.5	252
65	A Zinc-binding Region in Vif Binds Cul5 and Determines Cullin Selection. Journal of Biological Chemistry, 2006, 281, 17259-17265.	3.4	160
66	Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination. Journal of Virology, 2006, 80, 8450-8458.	3.4	261
67	High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15588-15593.	7.1	229
68	Current Concepts in AIDS Pathogenesis: Insights from the SIV/Macaque Model. Annual Review of Medicine, 2007, 58, 461-476.	12.2	120
69	Virion-associated Uracil DNA Glycosylase-2 and Apurinic/Apyrimidinic Endonuclease Are Involved in the Degradation of APOBEC3G-edited Nascent HIV-1 DNA. Journal of Biological Chemistry, 2007, 282, 11667-11675.	3.4	119
70	Biochemical Differentiation of APOBEC3F and APOBEC3G Proteins Associated with HIV-1 Life Cycle. Journal of Biological Chemistry, 2007, 282, 1585-1594.	3.4	49
71	Stimulation of Cell Surface CCR5 and CD40 Molecules by Their Ligands or by HSP70 Up-Regulates APOBEC3G Expression in CD4+ T Cells and Dendritic Cells. Journal of Immunology, 2007, 178, 1671-1679.	0.8	60
72	Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2915-2920.	7.1	113
73	Distinct Patterns of Cytokine Regulation of APOBEC3G Expression and Activity in Primary Lymphocytes, Macrophages, and Dendritic Cells. Journal of Biological Chemistry, 2007, 282, 3539-3546.	3.4	134
74	Alpha Interferon Enhances TRIM5α-Mediated Antiviral Activities in Human and Rhesus Monkey Cells. Journal of Virology, 2007, 81, 10201-10206.	3.4	78

#	Article	IF	CITATIONS
75	The CD16+ Monocyte Subset Is More Permissive to Infection and Preferentially Harbors HIV-1 In Vivo. Journal of Immunology, 2007, 178, 6581-6589.	0.8	302
76	HIV Accessory Genes Vif and Vpu. Advances in Pharmacology, 2007, 55, 199-232.	2.0	21
77	In Vitro Derived Dendritic Cells trans-Infect CD4 T Cells Primarily with Surface-Bound HIV-1 Virions. PLoS Pathogens, 2007, 3, e4.	4.7	128
78	Target Cell APOBEC3C Can Induce Limited G-to-A Mutation in HIV-1. PLoS Pathogens, 2007, 3, e153.	4.7	51
79	T Cells Contain an RNase-Insensitive Inhibitor of APOBEC3G Deaminase Activity. PLoS Pathogens, 2007, 3, e135.	4.7	44
80	Antiviral Protein APOBEC3G Localizes to Ribonucleoprotein Complexes Found in P Bodies and Stress Granules. Journal of Virology, 2007, 81, 2165-2178.	3.4	254
81	Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H. PLoS Pathogens, 2007, 3, e15.	4.7	121
82	Human Immunodeficiency Virus Type 1 Vif Inhibits Packaging and Antiviral Activity of a Degradation-Resistant APOBEC3G Variant. Journal of Virology, 2007, 81, 8236-8246.	3.4	83
83	Addition of Deoxynucleosides Enhances Human Immunodeficiency Virus Type 1 Integration and 2LTR Formation in Resting CD4 ⁺ T Cells. Journal of Virology, 2007, 81, 13938-13942.	3.4	52
84	Centrosomal Latency of Incoming Foamy Viruses in Resting Cells. PLoS Pathogens, 2007, 3, e74.	4.7	34
85	Beyond SHM and CSR: AID and Related Cytidine Deaminases in the Host Response to Viral Infection. Advances in Immunology, 2007, 94, 215-244.	2.2	38
86	Identification of an Arsenic-Sensitive Block to Primate Lentiviral Infection of Human Dendritic Cells. Journal of Virology, 2007, 81, 12086-12090.	3.4	21
87	Regulation of AID expression in the immune response. Journal of Experimental Medicine, 2007, 204, 1145-1156.	8.5	229
88	Immediate Activation Fails To Rescue Efficient Human Immunodeficiency Virus Replication in Quiescent CD4 + T Cells. Journal of Virology, 2007, 81, 3574-3582.	3.4	63
89	Primary Cell Model for Activation-Inducible Human Immunodeficiency Virus. Journal of Virology, 2007, 81, 7424-7434.	3.4	31
90	HIV-1 Proviral DNA Excision Using an Evolved Recombinase. Science, 2007, 316, 1912-1915.	12.6	193
91	APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation. Journal of Biological Chemistry, 2007, 282, 2587-2595.	3.4	274
92	DNA Deamination in Immunity: AID in the Context of Its APOBEC Relatives. Advances in Immunology, 2007, 94, 37-73.	2.2	152

#	Article	IF	CITATIONS
93	Apolipoprotein B mRNA–Editing Enzyme, Catalytic Polypeptide–Like 3G: A Possible Role in the Resistance to HIV of HIVâ€Exposed Seronegative Individuals. Journal of Infectious Diseases, 2007, 195, 960-964.	4.0	87
94	Differential Inhibition of Long Interspersed Element 1 by APOBEC3 Does Not Correlate with High-Molecular-Mass-Complex Formation or P-Body Association. Journal of Virology, 2007, 81, 9577-9583.	3.4	103
95	Deamination-Independent Inhibition of Hepatitis B Virus Reverse Transcription by APOBEC3G. Journal of Virology, 2007, 81, 4465-4472.	3.4	147
96	Derepression of MicroRNA-mediated Protein Translation Inhibition by Apolipoprotein B mRNA-editing Enzyme Catalytic Polypeptide-like 3G (APOBEC3G) and Its Family Members. Journal of Biological Chemistry, 2007, 282, 33632-33640.	3.4	101
97	A Checkpoint in the Cell Cycle Progression as a Therapeutic Target to Inhibit HIV Replication. Journal of Infectious Diseases, 2007, 196, 1409-1415.	4.0	8
98	Cytidine Deaminases APOBEC3G and APOBEC3F Interact with Human Immunodeficiency Virus Type 1 Integrase and Inhibit Proviral DNA Formation. Journal of Virology, 2007, 81, 7238-7248.	3.4	200
99	Effects of point mutations in the cytidine deaminase domains of APOBEC3B on replication and hypermutation of hepatitis B virus in vitro. Journal of General Virology, 2007, 88, 3270-3274.	2.9	30
100	All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Research, 2007, 35, 2955-2964.	14.5	182
101	Dendritic Cells Are Less Susceptible to Human Immunodeficiency Virus Type 2 (HIV-2) Infection than to HIV-1 Infection. Journal of Virology, 2007, 81, 13486-13498.	3.4	49
102	APOBEC3G Inhibits DNA Strand Transfer during HIV-1 Reverse Transcription. Journal of Biological Chemistry, 2007, 282, 32065-32074.	3.4	135
103	Identification of an APOBEC3G Binding Site in Human Immunodeficiency Virus Type 1 Vif and Inhibitors of Vif-APOBEC3G Binding. Journal of Virology, 2007, 81, 13235-13241.	3.4	97
104	Multiple Restrictions of Human Immunodeficiency Virus Type 1 in Feline Cells. Journal of Virology, 2007, 81, 7048-7060.	3.4	37
105	Role of mouse APOBEC3 in the restriction of mouse mammary tumor virus replicationin vivo. Future HIV Therapy, 2007, 1, 149-152.	0.4	0
106	Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood, 2007, 110, 393-400.	1.4	179
107	Host genetic variation and susceptibility to primate lentiviruses. Future HIV Therapy, 2007, 1, 399-413.	0.4	2
108	Current World Literature. Current Opinion in Infectious Diseases, 2007, 20, 88-114.	3.1	Ο
109	Differential antiviral effect of PEG-interferon- $\hat{l}\pm$ -2b on HIV and HCV in the treatment of HIV/HCV co-infected patients. Aids, 2007, 21, 1855-1865.	2.2	34
110	Resistance of monocyte to HIV-1 infection is not due to uncoating defect. Virus Research, 2007, 126, 277-281.	2.2	11

ARTICLE IF CITATIONS # Regulation of HIV-1 latency by T-cell activation. Cytokine, 2007, 39, 63-74. 111 3.2 104 Properties, Functions, and Drug Targeting of the Multifunctional Nucleocapsid Protein of the Human Immunodeficiency Virus. Advances in Pharmacology, 2007, 55, 299-346. Defining and solving the essential protein–protein interactions in HIV infection. Journal of 113 2.8 3 Structural Biology, 2007, 158, 148-155. The interaction of HIV with dendritic cells: outcomes and pathways. Trends in Immunology, 2007, 28, 114 6.8 Reverse transcription complex: the key player of the early phase of HIV replication. Future Virology, 115 1.8 8 2007, 2, 49-64. APOBEC3G Multimers Are Recruited to the Plasma Membrane for Packaging into Human Immunodeficiency Virus Type 1 Virus-Like Particles in an RNA-Dependent Process Requiring the NC Basic Linker. Journal of Virology, 2007, 81, 5000-5013. 3.4 99 SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway 118 2.0 177 present in human dendritic cells. Retrovirology, 2007, 4, 2. APOBEC3G levels predict rates of progression to AIDS. Retrovirology, 2007, 4, 20. 119 26 The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology, 2007, 4, 120 2.0 188 40. Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 121 virions. Retrovirology, 2007, 4, 48. Centrosomal pre-integration latency of HIV-1 in quiescent cells. Retrovirology, 2007, 4, 63. 122 2.0 34 The dimerization domain of HIV-1 viral infectivity factor Vif is required to block virion incorporation 49 of APOBEC3G. Retrovirology, 2007, 4, 81. Signal transduction in the type I interferon system and viral countermeasures. Signal Transduction, 124 0.4 6 2007, 7, 5-19. Modulation of the immunological synapse: a key to HIV-1 pathogenesis?. Nature Reviews Immunology, 22.7 2007, 7, 310-317. 126 Experimental approaches to the study of HIV-1 latency. Nature Reviews Microbiology, 2007, 5, 95-106. 28.6 187 ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation. EMBO Journal, 2007, 127 26, 516-526. Inhibition of HIV-1 replication by simian restriction factors, TRIM51[±] and APOBEC3G. Gene Therapy, 2007, 128 4.5 32 14, 185-189. 129 Insights into DNA deaminases. Nature Structural and Molecular Biology, 2007, 14, 7-9. 8.2

	CITATION	Report	
#	Article	IF	CITATIONS
130	APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature, 2007, 445, 927-930.	27.8	196
131	Immunological research using RNA interference technology. Immunology, 2007, 121, 295-307.	4.4	11
132	HIVâ€1 Replication in Dendritic Cells Occurs Through a Tetraspaninâ€Containing Compartment Enriched in APâ€3. Traffic, 2008, 9, 200-214.	2.7	59
133	Inhibition of initiation of reverse transcription in HIV-1 by human APOBEC3F. Virology, 2007, 365, 92-100.	2.4	63
134	HIV-1 integrates into resting CD4+ T cells even at low inoculums as demonstrated with an improved assay for HIV-1 integration. Virology, 2007, 368, 60-72.	2.4	106
135	The interferon-induced expression of APOBEC3G in human blood–brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system. Virology, 2007, 367, 440-451.	2.4	57
136	Production of infectious virus and degradation of APOBEC3G are separable functional properties of human immunodeficiency virus type 1 Vif. Virology, 2007, 369, 329-339.	2.4	36
137	APOBEC-mediated viral restriction: not simply editing?. Trends in Biochemical Sciences, 2007, 32, 118-128.	7.5	254
138	APOBEC3G and HIV-1: Strike and counterstrike. Current HIV/AIDS Reports, 2007, 4, 3-9.	3.1	7
139	Species barrier of HIVâ€1 and its jumping by virus engineering. Reviews in Medical Virology, 2008, 18, 261-275.	8.3	31
140	Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nature Structural and Molecular Biology, 2008, 15, 1059-1066.	8.2	106
141	HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes. Virology, 2008, 372, 136-146.	2.4	42
142	HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology, 2008, 373, 85-97.	2.4	145
143	Activation of the glucocorticoid receptor releases unstimulated PBMCs from an early block in HIV-1 replication. Virology, 2008, 375, 73-84.	2.4	14
144	APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells. Virology, 2008, 375, 1-12.	2.4	41
145	Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. Virology, 2008, 376, 101-111.	2.4	51
146	The incorporation of APOBEC3 proteins into murine leukemia viruses. Virology, 2008, 378, 69-78.	2.4	15
148	Absence of H186R Polymorphism in Exon 4 of the <i>APOBEC3G</i> Gene among North Indian Individuals. Genetic Testing and Molecular Biomarkers, 2008, 12, 453-456.	1.7	10

.

ARTICLE

IF CITATIONS

Turning up the volume on mutational pressure: Is more of a good thing always better? (A case study of) Tj ETQq0 0.0 gBT /Oyerlock 10 2.0 gBT /Oyerlock 10

150	HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells. Retrovirology, 2008, 5, 47.	2.0	35
151	HIV-1 Vif, APOBEC, and Intrinsic Immunity. Retrovirology, 2008, 5, 51.	2.0	290
152	The AID/APOBEC family of nucleic acid mutators. Genome Biology, 2008, 9, 229.	9.6	458
153	The APOBEC3 Cytidine Deaminases: An Innate Defensive Network Opposing Exogenous Retroviruses and Endogenous Retroelements. Annual Review of Immunology, 2008, 26, 317-353.		385
154	Molecular Biology of HIV: Implications for New Therapies. , 2008, , 23-38.		2
155	Has HIV evolved to induce immune pathogenesis?. Trends in Immunology, 2008, 29, 322-328.	6.8	17
156	The emerging role of innate immunity in protection against HIV-1 infection. Vaccine, 2008, 26, 2997-3001.	3.8	24
157	APOBEC3 proteins and reverse transcription. Virus Research, 2008, 134, 74-85.	2.2	49
158	Restriction of retroviral replication by APOBEC3C/F and TRIM5α. Trends in Microbiology, 2008, 16, 612-619.	7.7	80
159	HIV Envelope-CXCR4 Signaling Activates Cofilin to Overcome Cortical Actin Restriction in Resting CD4 T Cells. Cell, 2008, 134, 782-792.	28.9	264
160	Human Immunodeficiency Virus Type 1 Tat Protein Inhibits the SIRT1 Deacetylase and Induces T Cell Hyperactivation. Cell Host and Microbe, 2008, 3, 158-167.	11.0	149
161	HIV-1 Accessory Proteins—Ensuring Viral Survival in a Hostile Environment. Cell Host and Microbe, 2008, 3, 388-398.	11.0	481
162	Disruption of the Î ³ c cytokine network in T cells during HIV infection. Cytokine, 2008, 43, 1-14.	3.2	30
165	Role of miRNA in HIV-1 latency. Future HIV Therapy, 2008, 2, 281-290.	0.4	0
166	Vpr.A3A Chimera Inhibits HIV Replication. Journal of Biological Chemistry, 2008, 283, 2518-2525.	3.4	57
167	A Model for Oligomeric Regulation of APOBEC3G Cytosine Deaminase-dependent Restriction of HIV. Journal of Biological Chemistry, 2008, 283, 13780-13791.	3.4	90
168	APOBEC3G Subunits Self-associate via the C-terminal Deaminase Domain. Journal of Biological Chemistry, 2008, 283, 33329-33336.	3.4	43

#	Article	IF	CITATIONS
169	Comparison of G-to-A Mutation Frequencies Induced by APOBEC3 Proteins in H9 Cells and Peripheral Blood Mononuclear Cells in the Context of Impaired Processivities of Drug-Resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Variants. Journal of Virology, 2008, 82, 6536-6545.	3.4	15
170	Mouse APOBEC3 Restricts Friend Leukemia Virus Infection and Pathogenesis In Vivo. Journal of Virology, 2008, 82, 10998-11008.	3.4	108
171	Species-Specific Restriction of Apobec3-Mediated Hypermutation. Journal of Virology, 2008, 82, 1305-1313.	3.4	68
172	Feline immunodeficiency virus dendritic cell infection and transfer. Journal of General Virology, 2008, 89, 709-715.	2.9	5
173	APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. Journal of General Virology, 2008, 89, 722-730.	2.9	70
174	The antiretroviral potency of APOBEC1 deaminase from small animal species. Nucleic Acids Research, 2008, 36, 6859-6871.	14.5	40
175	Vif and Apobec3G in the innate immune response to HIV: a tale of two proteins. Future Microbiology, 2008, 3, 145-154.	2.0	11
176	The DNA Deaminase Activity of Human APOBEC3G Is Required for Ty1, MusD, and Human Immunodeficiency Virus Type 1 Restriction. Journal of Virology, 2008, 82, 2652-2660.	3.4	149
177	Reverse Transcriptase- and RNA Packaging Signal-Dependent Incorporation of APOBEC3G into Hepatitis B Virus Nucleocapsids. Journal of Virology, 2008, 82, 6852-6861.	3.4	63
178	Human Immunodeficiency Virus Type 1 Vif Functionally Interacts with Diverse APOBEC3 Cytidine Deaminases and Moves with Them between Cytoplasmic Sites of mRNA Metabolism. Journal of Virology, 2008, 82, 987-998.	3.4	51
179	Comparison of Cellular Ribonucleoprotein Complexes Associated with the APOBEC3F and APOBEC3G Antiviral Proteins. Journal of Virology, 2008, 82, 5636-5642.	3.4	74
180	Nuclear Exclusion of the HIV-1 Host Defense Factor APOBEC3G Requires a Novel Cytoplasmic Retention Signal and Is Not Dependent on RNA Binding. Journal of Biological Chemistry, 2008, 283, 7320-7327.	3.4	49
181	Human Immunodeficiency Virus Type 1 Replication and Regulation of APOBEC3G by Peptidyl Prolyl Isomerase Pin1. Journal of Virology, 2008, 82, 9928-9936.	3.4	37
182	Current Topics in Prevention of Human T-Cell Leukemia Virus Type I Infection: NF-κ B Inhibitors and APOBEC3. International Reviews of Immunology, 2008, 27, 225-253.	3.3	7
183	Two Regions within the Amino-Terminal Half of APOBEC3G Cooperate To Determine Cytoplasmic Localization. Journal of Virology, 2008, 82, 9591-9599.	3.4	68
184	APOBEC3G and APOBEC3F Require an Endogenous Cofactor to Block HIV-1 Replication. PLoS Pathogens, 2008, 4, e1000095.	4.7	28
185	APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts. PLoS Pathogens, 2008, 4, e1000231.	4.7	274
186	Relationship between Human Immunodeficiency Type 1 Infection and Expression of Human APOBEC3G and APOBEC3F. Journal of Infectious Diseases, 2008, 198, 486-492.	4.0	45

	CITATION	Report	
# 187	ARTICLE Human Immunodeficiency Virus (HIV) Type 1 Proviral Hypermutation Correlates with CD4 Count in HIV-Infected Women from Kenya. Journal of Virology, 2008, 82, 8172-8182.	IF 3.4	Citations 84
188	Human APOBEC3G Can Restrict Retroviral Infection in Avian Cells and Acts Independently of both UNG and SMUG1. Journal of Virology, 2008, 82, 4660-4664.	3.4	47
189	Role of APOBEC3G/F-Mediated Hypermutation in the Control of Human Immunodeficiency Virus Type 1 in Elite Suppressors. Journal of Virology, 2008, 82, 3125-3130.	3.4	77
190	The Level of APOBEC3G (hA3G)-Related G-to-A Mutations Does Not Correlate with Viral Load in HIV Type 1-Infected Individuals. AIDS Research and Human Retroviruses, 2008, 24, 1285-1290.	1.1	35
191	Antiviral Function of APOBEC3 Cytidine Deaminases. , 0, , 231-254.		0
192	Chemistry, Phylogeny, and Three-Dimensional Structure of the APOBEC Protein Family. , 0, , 369-419.		1
194	Vpr14-88-Apobec3G Fusion Protein Is Efficiently Incorporated into Vif-Positive HIV-1 Particles and Inhibits Viral Infection. PLoS ONE, 2008, 3, e1995.	2.5	31
195	Mouse Apolipoprotein B Editing Complex 3 (APOBEC3) Is Expressed in Germ Cells and Interacts with Dead-End (DND1). PLoS ONE, 2008, 3, e2315.	2.5	25
196	The Role of the APOBEC3 Family of Cytidine Deaminases in Innate Immunity, G-to-A Hypermutation, and Evolution of Retroviruses. , 2008, , 183-205.		5
197	APOBEC3G-Depleted Resting CD4+ T Cells Remain Refractory to HIV1 Infection. PLoS ONE, 2009, 4, e6571.	2.5	25
198	Restriction of HIV-1 Replication in Monocytes Is Abolished by Vpx of SIVsmmPBj. PLoS ONE, 2009, 4, e7098.	2.5	24
199	Primary Culture of Human Blood–Retinal Barrier Cells and Preliminary Study of APOBEC3 Expression: An In Vitro Study. , 2009, 50, 4436.		4
200	Human Immunodeficiency Virus, Restriction Factors, and Interferon. Journal of Interferon and Cytokine Research, 2009, 29, 569-580.	1.2	116
201	Biochemical Basis of Immunological and Retroviral Responses to DNA-targeted Cytosine Deamination by Activation-induced Cytidine Deaminase and APOBEC3G. Journal of Biological Chemistry, 2009, 284, 27761-27765.	3.4	15
202	AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Research, 2009, 37, 1854-1867.	14.5	64
203	Exosomes Packaging APOBEC3G Confer Human Immunodeficiency Virus Resistance to Recipient Cells. Journal of Virology, 2009, 83, 512-521.	3.4	145
204	Tumultuous Relationship between the Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) and the Human APOBEC-3G and APOBEC-3F Restriction Factors. Microbiology and Molecular Biology Reviews, 2009, 73, 211-232.	6.6	61
205	The AKV Murine Leukemia Virus Is Restricted and Hypermutated by Mouse APOBEC3. Journal of Virology, 2009, 83, 11550-11559.	3.4	54

#	Article	IF	CITATIONS
206	Sole copy of Z2â€ŧype human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIVâ€1 FASEB Journal, 2009, 23, 279-287.	0.5	81
207	Defining APOBEC3 Expression Patterns in Human Tissues and Hematopoietic Cell Subsets. Journal of Virology, 2009, 83, 9474-9485.	3.4	298
208	Regulation of APOBEC3 Proteins by a Novel YXXL Motif in Human Immunodeficiency Virus Type 1 Vif and Simian Immunodeficiency Virus SIVagm Vif. Journal of Virology, 2009, 83, 2374-2381.	3.4	84
209	Cytoplasmic APOBEC3G Restricts Incoming Vif-Positive Human Immunodeficiency Virus Type 1 and Increases Two-Long Terminal Repeat Circle Formation in Activated T-Helper-Subtype Cells. Journal of Virology, 2009, 83, 8646-8654.	3.4	28
210	Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virology, 2009, 4, 605-619.	1.8	26
211	Reassessing the Role of APOBEC3G in Human Immunodeficiency Virus Type 1 Infection of Quiescent CD4+ T-Cells. PLoS Pathogens, 2009, 5, e1000342.	4.7	43
212	RNA-Dependent Oligomerization of APOBEC3G Is Required for Restriction of HIV-1. PLoS Pathogens, 2009, 5, e1000330.	4.7	155
213	The HIV Envelope but Not VSV Glycoprotein Is Capable of Mediating HIV Latent Infection of Resting CD4 T Cells. PLoS Pathogens, 2009, 5, e1000633.	4.7	71
214	Development of a Human Immunodeficiency Virus Type 1-Based Lentiviral Vector That Allows Efficient Transduction of both Human and Rhesus Blood Cells. Journal of Virology, 2009, 83, 9854-9862.	3.4	53
215	Human Immunodeficiency Virus Integrates Directly into Nail^ve Resting CD4 ⁺ T Cells but Enters Nail^ve Cells Less Efficiently than Memory Cells. Journal of Virology, 2009, 83, 4528-4537.	3.4	86
216	APOBEC3G: an intracellular centurion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 689-703.	4.0	43
217	APOBEC proteins and intrinsic resistance to HIV-1 infection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 675-687.	4.0	236
218	Induction of APOBEC3 In Vivo Causes Increased Restriction of Retrovirus Infection. Journal of Virology, 2009, 83, 3486-3495.	3.4	47
219	Gâ€ŧoâ€A Hypermutation in Hepatitis B Virus (HBV) and Clinical Course of Patients with Chronic HBV Infection. Journal of Infectious Diseases, 2009, 199, 1599-1607.	4.0	21
220	The CXCR4-Tropic Human Immunodeficiency Virus Envelope Promotes More-Efficient Gene Delivery to Resting CD4 ⁺ T Cells than the Vesicular Stomatitis Virus Glycoprotein G Envelope. Journal of Virology, 2009, 83, 8153-8162.	3.4	41
221	Human Immunodeficiency Virus Integration Efficiency and Site Selection in Quiescent CD4 ⁺ T Cells. Journal of Virology, 2009, 83, 6222-6233.	3.4	48
222	Differential Sensitivity of "Old―versus "New―APOBEC3G to Human Immunodeficiency Virus Type 1 Vif. Journal of Virology, 2009, 83, 1156-1160.	3.4	15
223	Expression and regulation of antiviral protein APOBEC3C in human neuronal cells. Journal of Neuroimmunology, 2009, 206, 14-21.	2.3	35

		CITATION R	EPORT	
#	Article		IF	Citations
224	Human cellular restriction factors that target HIV-1 replication. BMC Medicine, 2009, 7	7, 48.	5.5	120
225	Mutations in the highly conserved SLQYLA motif of Vif in a simian–human immunod result in a less pathogenic virus and are associated with G-to-A mutations in the viral g Virology, 2009, 383, 362-372.		2.4	12
226	Enhanced replication and pathogenesis of Moloney murine leukemia virus in mice defe murine APOBEC3 gene. Virology, 2009, 385, 455-463.	ective in the	2.4	82
227	Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology, 2009, 3	87, 313-321.	2.4	94
228	Efficient magnetic bead-based separation of HIV-1-infected cells using an improved rep system reveals that p53 up-regulation occurs exclusively in the virus-expressing cell po Virology, 2009, 393, 160-167.		2.4	59
229	Ubiquitin-fusion as a strategy to modulate protein half-life: A3G antiviral activity revisit 2009, 393, 286-294.	ted. Virology,	2.4	2
230	The effect of allogeneic <i>in vitro</i> stimulation and <i>in vivo</i> immunization on CD4 ⁺ Tâ€cell APOBEC3G expression and HIVâ€I infectivity. European Jon 2009, 39, 1956-1965.		2.9	18
231	Antiviral roles of APOBEC proteins against HIV-1 and suppression by Vif. Archives of Vi 154, 1579-1588.	rology, 2009,	2.1	31
232	APOBEC deaminases-mutases with defensive roles for immunity. Science in China Seri 2009, 52, 893-902.	es C: Life Sciences,	1.3	25
233	Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs Reviews Microbiology, 2009, 7, 798-812.	. Nature	28.6	235
234	HIV and SIV infection: the role of cellular restriction and immune responses in viral rep pathogenesis. Apmis, 2009, 117, 400-412.	lication and	2.0	42
235	Genetic determinants of HIVâ€1 infection and progression to AIDS: susceptibility to H Antigens, 2009, 73, 289-301.	IV infection. Tissue	1.0	40
236	Functional Analysis and Structural Modeling of Human APOBEC3G Reveal the Role of I Conserved Elements in the Inhibition of Human Immunodeficiency Virus Type 1 Infecti Transposition. Journal of Virology, 2009, 83, 12611-12621.	Evolutionarily on and <i>Alu</i>	3.4	73
237	A Hydrodynamic Analysis of APOBEC3G Reveals a Monomerâ ^{^,} Dimerâ ^{^,} Tetramer Self-A Implications for Anti-HIV Function. Biochemistry, 2009, 48, 10685-10687.	ssociation That Has	2.5	39
238	A Cellular Restriction Dictates the Permissivity of Nondividing Monocytes/Macrophage and Gammaretrovirus Infection. Cell Host and Microbe, 2009, 6, 68-80.	es to Lentivirus	11.0	87
239	Multiple ways of targeting APOBEC3–virion infectivity factor interactions for anti-HI development. Trends in Pharmacological Sciences, 2009, 30, 638-646.	V-1 drug	8.7	45
240	An Extended Structure of the APOBEC3G Catalytic Domain Suggests a Unique Holoen Journal of Molecular Biology, 2009, 389, 819-832.	zyme Model.	4.2	101
241	Host Factors that Restrict Retrovirus Replication. , 2009, , 297-334.			0

ARTICLE IF CITATIONS Lethal Mutagenesis., 2009, , 571-587. 242 0 243 The Gastrointestinal Tract and AIDS Pathogenesis. Gastroenterology, 2009, 136, 1966-1978. 1.3 74 Molecular control of HIV-1 postintegration latency: implications for the development of new 244 2.0 182 therapeutic strategies. Retrovirology, 2009, 6, 111. APOBEC3G mRNA expression in exposed seronegative and early stage HIV infected individuals decreases 245 2.0 with removal of exposure and with disease progression. Retrovirology, 2009, 6, 23. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is 246 2.0 69 dependent on its association with RNA. Retrovirology, 2009, 6, 56. Double-Stranded RNA Analog Poly(I:C) Inhibits Human Immunodeficiency Virus Amplification in Dendritic Cells via Type I Interferon-Mediated Activation of APOBEC3G. Journal of Virology, 2009, 83, 3.4 884-895. 248 HIV pathogenesis: 25 years of progress and persistent challenges. Aids, 2009, 23, 147-160. 2.2 118 Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 250 1.4 217 infection. Blood, 2009, 113, 671-674. 251 CCR6 ligands inhibit HIV by inducing APOBEC3G. Blood, 2010, 115, 1564-1571. 45 1.4 Lessons from viral latency in T cells: manipulating HIV-1 transcription by siRNA. HIV Therapy, 2010, 4, 199-213. Quiescent T cells and HIV: an unresolved relationship. Immunologic Research, 2010, 48, 110-121. 253 2.9 26 254 Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology, 2010, 7, 31. Interleukin-4 inhibits an early phase in the HIV-1 life cycle in the human colorectal cell line HT-29. 255 3.2 5 Clinical Immunology, 2010, 135, 146-155. Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. 2.4 Virology, 2010, 400, 68-75. Specific eradication of HIV-1 from infected cultured cells. AIDS Research and Therapy, 2010, 7, 31. 257 12 1.7 Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T 101 lymphocytes. Nature Medicine, 2010, 16, 329-333. A look behind closed doors: interaction of persistent viruses with dendritic cells. Nature Reviews 260 28.6 62 Microbiology, 2010, 8, 350-360. The challenge of obtaining therapeutic levels of genetically modified hematopoietic stem cells in 3.8 Ĩ²â€thalassemia patients. Annals of the New York Academy of Sciences, 2010, 1202, 69-74.

#	Article	IF	CITATIONS
262	Different interaction between HIV-1 Vif and its cellular target proteins APOBEC3G/APOBEC3F. Journal of Medical Investigation, 2010, 57, 89-94.	0.5	6
263	The Interaction between AID and CIB1 Is Nonessential for Antibody Gene Diversification by Gene Conversion or Class Switch Recombination. PLoS ONE, 2010, 5, e11660.	2.5	9
264	Determinants of Protection among HIVâ€Exposed Seronegative Persons: An Overview. Journal of Infectious Diseases, 2010, 202, S333-S338.	4.0	49
265	HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. Journal of Leukocyte Biology, 2009, 87, 575-588.	3.3	56
266	Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis. Nucleic Acids Research, 2010, 38, 1902-1912.	14.5	57
267	The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. Journal of Experimental Medicine, 2010, 207, 39-49.	8.5	86
268	Identification of Dominant Negative Human Immunodeficiency Virus Type 1 Vif Mutants That Interfere with the Functional Inactivation of APOBEC3G by Virus-Encoded Vif. Journal of Virology, 2010, 84, 5201-5211.	3.4	30
269	Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Reviews in Molecular Medicine, 2010, 12, e4.	3.9	171
270	Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9843-9848.	7.1	88
271	Structural Model for Deoxycytidine Deamination Mechanisms of the HIV-1 Inactivation Enzyme APOBEC3G. Journal of Biological Chemistry, 2010, 285, 16195-16205.	3.4	114
272	Productive Replication of <i>vif</i> -Chimeric HIV-1 in Feline Cells. Journal of Virology, 2010, 84, 7378-7395.	3.4	35
273	Stably Expressed APOBEC3F Has Negligible Antiviral Activity. Journal of Virology, 2010, 84, 11067-11075.	3.4	45
274	Towards Inhibition of Vif-APOBEC3G Interaction: Which Protein to Target?. Advances in Virology, 2010, 2010, 1-10.	1.1	6
275	Arsenic modulates APOBEC3G-mediated restriction to HIV-1 infection in myeloid dendritic cells. Journal of Leukocyte Biology, 2010, 88, 1251-1258.	3.3	8
276	Innate Immune Signaling Induces High Levels of TC-specific Deaminase Activity in Primary Monocyte-derived Cells through Expression of APOBEC3A Isoforms. Journal of Biological Chemistry, 2010, 285, 27753-27766.	3.4	96
277	Characterization of the Alpha Interferon-Induced Postentry Block to HIV-1 Infection in Primary Human Macrophages and T Cells. Journal of Virology, 2010, 84, 9254-9266.	3.4	130
278	Diverse functions for DNA and RNA editing in the immune system. RNA Biology, 2010, 7, 220-228.	3.1	47
279	Interaction of Vpx and Apolipoprotein B mRNA-editing Catalytic Polypeptide 3 Family Member A (APOBEC3A) Correlates with Efficient Lentivirus Infection of Monocytes. Journal of Biological Chemistry, 2010, 285, 12248-12254.	3.4	29

#	Article	IF	CITATIONS
280	Establishment and maintenance of HIV latency: model systems and opportunities for intervention. Future Virology, 2010, 5, 97-109.	1.8	26
281	Regulation of HIV-1 Infection in Cells Derived from Purified CD34+ Cells Through Manipulation of APOBEC3G Expression Current HIV Research, 2010, 8, 554-563.	0.5	1
282	Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology, 2010, 7, 32.	2.0	159
283	HIV-1 Vif versus the APOBEC3 cytidine deaminases: An intracellular duel between pathogen and host restriction factors. Molecular Aspects of Medicine, 2010, 31, 383-397.	6.4	61
284	Immune Evasion and Counteraction of Restriction Factors by HIV-1 and Other Primate Lentiviruses. Cell Host and Microbe, 2010, 8, 55-67.	11.0	273
285	Restriction of feline retroviruses: Lessons from cat APOBEC3 cytidine deaminases and TRIM5α proteins. Veterinary Immunology and Immunopathology, 2010, 134, 14-24.	1.2	18
286	Genetics of Host Resistance to Retroviruses and Cancer. , 2010, , 95-118.		0
287	Epigenetic regulation of HIV-1 transcription. Epigenomics, 2011, 3, 487-502.	2.1	34
290	Innate Immunity and HIV-1 Infection. Advances in Dental Research, 2011, 23, 19-22.	3.6	21
291	Curing HIV: Pharmacologic Approaches to Target HIV-1 Latency. Annual Review of Pharmacology and Toxicology, 2011, 51, 397-418.	9.4	84
293	TLR agonists and/or IL-15 adjuvanted mucosal SIV vaccine reduced gut CD4+ memory T cell loss in SIVmac251-challenged rhesus macaques. Vaccine, 2011, 30, 59-68.	3.8	18
294	Intracellular Defenses Against HIV, Viral Evasion and Novel Therapeutic Approaches. Journal of the Formosan Medical Association, 2011, 110, 350-362.	1.7	8
295	A novel role for Slit2/Robo1 axis in modulating HIV-1 replication in T cells. Aids, 2011, 25, 2105-2111.	2.2	7
296	Induction of innate immunity in control of mucosal transmission of HIV. Current Opinion in HIV and AIDS, 2011, 6, 398-404.	3.8	10
297	Perception of object–context relations: Eye-movement analyses in infants and adults Developmental Psychology, 2011, 47, 364-375.	1.6	14
298	Exosomes and retroviruses: the chicken or the egg?. Cellular Microbiology, 2011, 13, 10-17.	2.1	71
299	APOBEC3G: a double agent in defense. Trends in Biochemical Sciences, 2011, 36, 239-244.	7.5	37
300	Intracellular detection of differential APOBEC3G, TRIM5alpha, and LEDGF/p75 protein expression in peripheral blood by flow cytometry. Journal of Immunological Methods, 2011, 372, 52-64.	1.4	12

#	Article	IF	CITATIONS
301	XPB mediated retroviral cDNA degradation coincides with entry to the nucleus. Virology, 2011, 410, 291-298.	2.4	10
302	Infection of primary human tonsillar lymphoid cells by KSHV reveals frequent but abortive infection of T cells. Virology, 2011, 413, 1-11.	2.4	45
303	HIV latency is influenced by regions of the viral genome outside of the long terminal repeats and regulatory genes. Virology, 2011, 417, 394-399.	2.4	8
304	Pathogenic Mechanisms of HIV Disease. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 223-248.	22.4	312
305	Biophysical characterization of recombinant HIV-1 subtype C virus infectivity factor. Amino Acids, 2011, 40, 981-989.	2.7	11
306	Increased APOBEC3G and APOBEC3F expression is associated with low viral load and prolonged survival in simian immunodeficiency virus infected rhesus monkeys. Retrovirology, 2011, 8, 77.	2.0	27
307	Downregulation of APOBEC3G by xenotropic murine leukemia-virus related virus (XMRV) in prostate cancer cells. Virology Journal, 2011, 8, 531.	3.4	4
308	Fighting with the Enemys Weapons? The Role of Costimulatory Molecules in HIV. Current Molecular Medicine, 2011, 11, 172-196.	1.3	4
309	HIV-1 and the macrophage. Future Virology, 2011, 6, 187-208.	1.8	11
310	Atomic Force Microscopy Studies Provide Direct Evidence for Dimerization of the HIV Restriction Factor APOBEC3G. Journal of Biological Chemistry, 2011, 286, 3387-3395.	3.4	91
311	Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Research, 2011, 39, 2404-2415.	14.5	30
312	Characterization of Anti-HIV Activity Mediated by R88-APOBEC3G Mutant Fusion Proteins in CD4+T cells, Peripheral Blood Mononuclear Cells, and Macrophages. Human Gene Therapy, 2011, 22, 1225-1237.	2.7	16
313	Viral Exploitation of Host SOCS Protein Functions. Journal of Virology, 2011, 85, 1912-1921.	3.4	110
314	Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy. PLoS Computational Biology, 2012, 8, e1002371.	3.2	18
315	Modulation of Intracellular Restriction Factors Contributes to Methamphetamine- Mediated Enhancement of Acquired Immune Deficiency Syndrome Virus Infection of Macrophages. Current HIV Research, 2012, 10, 407-414.	0.5	24
316	The Adaptor Protein SLP-76 Regulates HIV-1 Release and Cell-to-Cell Transmission in T Cells. Journal of Immunology, 2012, 188, 2769-2777.	0.8	4
317	APOBEC3 versus Retroviruses, Immunity versus Invasion: Clash of the Titans. Molecular Biology International, 2012, 2012, 1-11.	1.7	11
318	HIV-1 Gag-Virus-Like Particles Inhibit HIV-1 Replication in Dendritic Cells and T Cells through IFN-a-Dependent Upregulation of APOBEC3G and 3F. Journal of Innate Immunity, 2012, 4, 579-590.	3.8	7

#	Article	IF	Citations
319	The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses. Journal of General Virology, 2012, 93, 565-576.	2.9	49
320	Hydrodynamic and Functional Analysis of HIV-1 Vif Oligomerization. Biochemistry, 2012, 51, 2078-2086.	2.5	8
321	HIV-1 Nef: a multifaceted modulator of T cell receptor signaling. Cell Communication and Signaling, 2012, 10, 39.	6.5	66
322	Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology, 2012, 9, 35.	2.0	32
323	The cytoplasmic AID complex. Seminars in Immunology, 2012, 24, 273-280.	5.6	18
324	The myeloid cytokine network in AIDS pathogenesis. Cytokine and Growth Factor Reviews, 2012, 23, 223-231.	7.2	9
325	Random Mutagenesis MAPPIT Analysis Identifies Binding Sites for Vif and Gag in Both Cytidine Deaminase Domains of Apobec3G. PLoS ONE, 2012, 7, e44143.	2.5	19
326	LINE-1 Retroelements Complexed and Inhibited by Activation Induced Cytidine Deaminase. PLoS ONE, 2012, 7, e49358.	2.5	18
327	Molecular Understanding of HIV-1 Latency. Advances in Virology, 2012, 2012, 1-14.	1.1	29
328	Role of host-encoded proteins in restriction of retroviral integration. Frontiers in Microbiology, 2012, 3, 227.	3.5	16
329	A novel HIV-1 reporter virus with a membrane-bound Gaussia princeps luciferase. Journal of Virological Methods, 2012, 183, 49-56.	2.1	7
330	APOBEC3G/F as one possible driving force for co-receptor switch of the human immunodeficiency virus-1. Medical Microbiology and Immunology, 2012, 201, 7-16.	4.8	9
331	HIV-1 transcription and latency: an update. Retrovirology, 2013, 10, 67.	2.0	271
332	HIV restriction in quiescent CD4+T cells. Retrovirology, 2013, 10, 37.	2.0	45
333	War in the Body. , 2013, , .		2
334	SIV replication is directly downregulated by four antiviral miRNAs. Retrovirology, 2013, 10, 95.	2.0	28
335	microRNA control of interferons and interferon induced anti-viral activity. Molecular Immunology, 2013, 56, 781-793.	2.2	51
336	Virus-modified exosomes for targeted RNA delivery; A new approach in nanomedicine. Advanced Drug Delivery Reviews, 2013, 65, 348-356.	13.7	114

	CITATION REPORT		
#	Article	IF	Citations
337	HIV-1 Nef and T-cell activation: a history of contradictions. Future Virology, 2013, 8, 391-404.	1.8	20
338	Reactivation of latent HIV: do all roads go through P-TEFb?. Future Virology, 2013, 8, 649-659.	1.8	22
339	The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections. BioMed Research International, 2013, 2013, 1-18.	1.9	110
340	Human Ubc9 Is Involved in Intracellular HIV-1 Env Stability after Trafficking out of the Trans-Golgi Network in a Gag Dependent Manner. PLoS ONE, 2013, 8, e69359.	2.5	8
341	Host Factors and HIV-1 Replication: Clinical Evidence and Potential Therapeutic Approaches. Frontiers in Immunology, 2013, 4, 343.	4.8	45
342	Dendritic cell based vaccines for HIV infection. Human Vaccines and Immunotherapeutics, 2013, 9, 2445-2452.	3.3	57
343	Impact of H216 on the DNA Binding and Catalytic Activities of the HIV Restriction Factor APOBEC3G. Journal of Virology, 2013, 87, 7008-7014.	3.4	49
344	Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle?. Virology: Research and Treatment, 2013, 4, VRT.S11046.	3.5	8
345	RIG-I activation inhibits HIV replication in macrophages. Journal of Leukocyte Biology, 2013, 94, 337-341.	3.3	35
346	M1 polarization of human monocyte-derived macrophages restricts pre and postintegration steps of HIV-1 replication. Aids, 2013, 27, 1847-1856.	2.2	54
347	Greater ethnic diversity correlates with lower HIV prevalence in Africa: justification for an alloimmunity vaccine. HIV/AIDS - Research and Palliative Care, 2013, 5, 75.	0.8	2
348	Positioning of APOBEC3G/F Mutational Hotspots in the Human Immunodeficiency Virus Genome Favors Reduced Recognition by CD8+ T Cells. PLoS ONE, 2014, 9, e93428.	2.5	43
349	The multifaceted roles of <scp>RNA</scp> binding in <scp>APOBEC</scp> cytidine deaminase functions. Wiley Interdisciplinary Reviews RNA, 2014, 5, 493-508.	6.4	49
350	HIV-1 Intersection with CD4ââ,¬â€°T Cell Vesicle Exocytosis: Intercellular Communication Goes Viral. Frontiers in Immunology, 2014, 5, 454.	4.8	8
351	Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity. Nucleic Acids Research, 2014, 42, 396-416.	14.5	94
352	Quiescent CD4+ T Cells Inhibit Multiple Stages of HIV Infection. , 2014, , 253-262.		0
354	Cullin4A and Cullin4B Are Interchangeable for HIV Vpr and Vpx Action through the CRL4 Ubiquitin Ligase Complex. Journal of Virology, 2014, 88, 6944-6958.	3.4	10
355	A computational analysis of the structural determinants of APOBEC3's catalytic activity and vulnerability to HIV-1 Vif. Virology, 2014, 471-473, 105-116.	2.4	23

#	Article	IF	CITATIONS
356	Multiple APOBEC3 Restriction Factors for HIV-1 and One Vif to Rule Them All. Journal of Molecular Biology, 2014, 426, 1220-1245.	4.2	188
357	The impact of Nucleofection \hat{A}^{\circledast} on the activation state of primary human CD4 T cells. Journal of Immunological Methods, 2014, 408, 123-131.	1.4	42
358	Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review). Molecular Medicine Reports, 2015, 12, 6405-6414.	2.4	7
359	Role of the host restriction factor APOBEC3 on papillomavirus evolution. Virus Evolution, 2015, 1, vev015.	4.9	57
360	The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology, 2015, 12, 53.	2.0	48
361	Impact of APOBEC Mutations on CD8+ T Cell Recognition of HIV Epitopes Varies Depending on the Restricting HLA. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 70, 172-178.	2.1	23
362	Differential Specificity of Interferon-alpha Inducible Gene Expression in Association with Human Immunodeficiency Virus and Hepatitis C Virus Levels and Declines in vivo. Journal of AIDS & Clinical Research, 2015, 06, .	0.5	7
363	Interaction between Nef and INI1/SMARCB1 augments replicability of HIV-1 in resting human peripheral blood mononuclear cells. Archives of Virology, 2015, 160, 727-737.	2.1	2
364	RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency. Virology, 2015, 483, 141-148.	2.4	26
365	Baculovirus Infection of Human Monocyte-Derived Dendritic Cells Restricts HIV-1 Replication. AIDS Research and Human Retroviruses, 2015, 31, 1023-1031.	1.1	0
366	Promiscuous RNA Binding Ensures Effective Encapsidation of APOBEC3 Proteins by HIV-1. PLoS Pathogens, 2015, 11, e1004609.	4.7	86
368	Short Communication: Expression of APOBEC3G and Interferon Gamma in Pleural Fluid Mononuclear Cells from HIV/TB Dual Infected Subjects. AIDS Research and Human Retroviruses, 2015, 31, 692-695.	1.1	2
369	Pin1 liberates the human immunodeficiency virus type-1 (HIV-1): Must we stop it?. Gene, 2015, 565, 9-14.	2.2	10
370	The HIV-1 accessory protein Vpr induces the degradation of the anti-HIV-1 agent APOBEC3G through a VprBP-mediated proteasomal pathway. Virus Research, 2015, 195, 25-34.	2.2	21
371	Homeostatically Maintained Resting Naive CD4+ T Cells Resist Latent HIV Reactivation. Frontiers in Microbiology, 2016, 7, 1944.	3.5	22
372	The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid. PLoS Pathogens, 2016, 12, e1005833.	4.7	54
373	APOBEC3 proteins can copackage and comutate HIV-1 genomes. Nucleic Acids Research, 2016, 44, 7848-7865.	14.5	41
374	Crystal structures of APOBEC3G N-domain alone and its complex with DNA. Nature Communications, 2016, 7, 12193.	12.8	80

		15	0
#	ARTICLE	IF	CITATIONS
375	RDDpred: a condition-specific RNA-editing prediction model from RNA-seq data. BMC Genomics, 2016, 17, 5.	2.8	35
376	MORF9 increases the RNA-binding activity of PLS-type pentatricopeptide repeat protein in plastid RNA editing. Nature Plants, 2017, 3, 17037.	9.3	73
377	Understanding the Structure, Multimerization, Subcellular Localization and mC Selectivity of a Genomic Mutator and Anti-HIV Factor APOBEC3H. Scientific Reports, 2018, 8, 3763.	3.3	39
378	Interferons and beyond: Induction of antiretroviral restriction factors. Journal of Leukocyte Biology, 2018, 103, 465-477.	3.3	28
379	Variable Effect of HIV Superinfection on Clinical Status: Insights From Mathematical Modeling. Frontiers in Microbiology, 2018, 9, 1634.	3.5	1
380	The inference of HIV-1 transmission direction between HIV-1 positive couples based on the sequences of HIV-1 quasi-species. BMC Infectious Diseases, 2019, 19, 566.	2.9	6
381	Mechanism for APOBEC3G catalytic exclusion of RNA and non-substrate DNA. Nucleic Acids Research, 2019, 47, 7676-7689.	14.5	7
382	Morphine Withdrawal Enhances HIV Infection of Macrophages. Frontiers in Immunology, 2019, 10, 2601.	4.8	17
383	Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains. Journal of Molecular Biology, 2020, 432, 6042-6060.	4.2	12
384	Methadone Inhibits Viral Restriction Factors and Facilitates HIV Infection in Macrophages. Frontiers in Immunology, 2020, 11, 1253.	4.8	9
385	Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics, 2021, 11, 3348-3358.	10.0	10
387	HIV Latency and Reactivation: Role in Neuropathogenesis. , 2010, , 87-118.		1
388	Biochemical Fractionation and Purification of High-Molecular-Mass APOBEC3G Complexes. Methods in Molecular Biology, 2011, 718, 185-206.	0.9	8
389	Host Restriction of HIV-1 by APOBEC3 and Viral Evasion Through Vif. Current Topics in Microbiology and Immunology, 2009, 339, 1-25.	1.1	24
390	The Inhibitory Effect of Apolipoprotein B mRNA-Editing Enzyme Catalytic Polypeptide-Like 3G (APOBEC3G) and Its Family Members on the Activity of Cellular MicroRNAs. Progress in Molecular and Subcellular Biology, 2010, 50, 71-83.	1.6	5
391	Epigenetic Regulation of HIV-1 Persistence and Evolving Strategies for Virus Eradication. Sub-Cellular Biochemistry, 2013, 61, 479-505.	2.4	2
392	Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Research, 2017, 45, 7494-7506.	14.5	36
393	Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. Journal of General Virology, 2012, 93, 1151-1172.	2.9	8

#	Article	IF	CITATIONS
395	Genetic Editing of HBV DNA by Monodomain Human APOBEC3 Cytidine Deaminases and the Recombinant Nature of APOBEC3G. PLoS ONE, 2009, 4, e4277.	2.5	74
396	Morphine Suppresses IFN Signaling Pathway and Enhances AIDS Virus Infection. PLoS ONE, 2012, 7, e31167.	2.5	41
397	Insights into the Dual Activity of SIVmac239 Vif against Human and African Green Monkey APOBEC3G. PLoS ONE, 2012, 7, e48850.	2.5	8
398	HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA. PLoS ONE, 2015, 10, e0139037.	2.5	4
399	The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by a RNA-Mediated Dimerization Mechanism. SSRN Electronic Journal, 0, , .	0.4	1
400	An Overview of Antiretroviral Agents for Treating HIV Infection in Paediatric Population. Current Medicinal Chemistry, 2020, 27, 760-794.	2.4	5
401	Sirtuin-1 and HIV-1: An Overview. Current Drug Targets, 2013, 14, 648-652.	2.1	36
402	Alcohol Enhances HIV Infection of Cord Blood Monocyte-Derived Macrophages. Current HIV Research, 2014, 12, 301-308.	0.5	5
403	N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication. World Journal of Gastroenterology, 2006, 12, 7488.	3.3	11
404	Lentiviral Vectors and Antiretroviral Intrinsic Immunity. Human Gene Therapy, 2005, .	2.7	0
405	Immunopathogenesis of HIV Infection. , 2007, , 245-295.		2
406	Viral and Host Determinants of HIV-1 Disease Progression. , 2008, , 51-61.		0
407	HIV-1 Accessory Proteins: Crucial Elements for Virus-Host Interactions. , 2010, , 59-71.		0
409	Cellular Restriction Factors: Exploiting the Body's Antiviral Proteins to Combat HIV-1/AIDS. , 0, , .		0
410	The HIV Infection Model. , 2013, , 39-47.		0
412	Resistance against hIV-1: role of chemokine receptor, CCR5 and restriction factor, APOBEC3G. International Journal of Pharma and Bio Sciences, 2017, 8, .	0.1	0
413	Toleranz, Transplantatabstoßung, Allergie, Autoimmunitä, HIV und AIDS. , 2008, , 181-243.		0
417	Encapsidation of Staufen-2 Enhances Infectivity of HIV-1. Viruses, 2021, 13, 2459.	3.3	4

#	Article	IF	CITATIONS
420	Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology, 2022, 19, .	2.0	15