Requirement of TRPC channels in netrin-1-induced che cones

Nature 434, 898-904 DOI: 10.1038/nature03478

Citation Report

#	Article	IF	CITATIONS
2	XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nature Neuroscience, 2005, 8, 730-735.	7.1	151
3	Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. Journal of Physiology, 2005, 567, 59-66.	1.3	90
4	Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature, 2005, 434, 894-898.	13.7	395
5	Channels for pathfinding. Nature, 2005, 434, 835-837.	13.7	22
6	Two's company. Nature, 2005, 434, 838-838.	13.7	1
7	TRP channels: An overview. Cell Calcium, 2005, 38, 233-252.	1.1	688
8	Phospholipase C-γ: diverse roles in receptor-mediated calcium signaling. Trends in Biochemical Sciences, 2005, 30, 688-697.	3.7	105
9	Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Developmental Dynamics, 2005, 234, 633-650.	0.8	373
10	Netrin-1: when a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cellular and Molecular Life Sciences, 2005, 62, 2599-2616.	2.4	96
11	Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 105-115.	1.3	172
12	TRPC1: store-operated channel and more. Pflugers Archiv European Journal of Physiology, 2005, 451, 53-60.	1.3	152
13	TRPC channels as signal transducers. Pflugers Archiv European Journal of Physiology, 2005, 451, 125-130.	1.3	44
14	Regulation of the mechanosensitive cation channels by ATP and cAMP in leech neurons. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 666-672.	1.4	9
15	Parallel Chemical Dosing of Subcellular Targets. Analytical Chemistry, 2006, 78, 5987-5993.	3.2	11
16	AN INTRODUCTION TO TRP CHANNELS. Annual Review of Physiology, 2006, 68, 619-647.	5.6	1,378
17	TRPC6 in glomerular health and disease: What we know and what we believe. Seminars in Cell and Developmental Biology, 2006, 17, 667-674.	2.3	22
18	Molecular mechanisms of axon guidance. Developmental Biology, 2006, 292, 13-24.	0.9	252
19	lazaro Encodes a Lipid Phosphate Phosphohydrolase that Regulates Phosphatidylinositol Turnover during Drosophila Phototransduction. Neuron, 2006, 49, 533-546.	3.8	73

#	Article	IF	CITATIONS
20	Selective labeling of central and peripheral sensory neurons in the developing zebrafish using P2X3 receptor subunit transgenes. Neuroscience, 2006, 138, 641-652.	1.1	54
21	Differential downâ€regulation of voltageâ€gated calcium channel currents by glutamate and BDNF in embryonic cortical neurons. European Journal of Neuroscience, 2006, 24, 699-708.	1.2	14
22	Capsaicin, transient receptor potential (TRP) protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons. Kaibogaku Zasshi Journal of Anatomy, 2006, 81, 135-155.	1.2	43
23	The JAK3 inhibitor WHI-P154 prevents PDGF-evoked process outgrowth in human neural precursor cells. Journal of Neurochemistry, 2006, 97, 201-210.	2.1	9
24	Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nature Neuroscience, 2006, 9, 1257-1264.	7.1	89
25	The molecular basis for calcium-dependent axon pathfinding. Nature Reviews Neuroscience, 2006, 7, 115-125.	4.9	321
26	Electrical activity in early neuronal development. Nature, 2006, 444, 707-712.	13.7	655
27	Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. Journal of Physiology, 2006, 572, 165-172.	1.3	88
28	Effects of intracellular pH and Ca2+ on the activity of stretch-sensitive cation channels in leech neurons. Pflugers Archiv European Journal of Physiology, 2006, 452, 435-443.	1.3	5
29	Cells move when ions and water flow. Pflugers Archiv European Journal of Physiology, 2006, 453, 421-432.	1.3	155
30	Directional guidance of nerve growth cones. Current Opinion in Neurobiology, 2006, 16, 52-58.	2.0	109
31	Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Research, 2006, 1085, 132-137.	1.1	67
32	Maitotoxin potently promotes Ca2+ influx in mouse spermatogenic cells and sperm, and induces the acrosome reaction. Journal of Cellular Physiology, 2006, 206, 449-456.	2.0	28
33	Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. Journal of Leukocyte Biology, 2006, 79, 539-554.	1.5	107
34	Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. American Journal of Physiology - Renal Physiology, 2006, 290, F1507-F1515.	1.3	78
35	Ca2+ Influx through Mechanosensitive Channels Inhibits Neurite Outgrowth in Opposition to Other Influx Pathways and Release from Intracellular Stores. Journal of Neuroscience, 2006, 26, 5656-5664.	1.7	126
36	Contribution of TRPM8 Channels to Cold Transduction in Primary Sensory Neurons and Peripheral Nerve Terminals. Journal of Neuroscience, 2006, 26, 12512-12525.	1.7	156
37	Mechanism of Ca2+ increase in myoblasts derived from chicken embryos. Journal of Electron Microscopy, 2006, 55, 265-271.	0.9	2

#	Article	IF	CITATIONS
38	A Morphology- and Kinetics-Based Cascade for Human Neural Cell High Content Screening. Assay and Drug Development Technologies, 2006, 4, 143-152.	0.6	25
39	Yeast gain-of-function mutations reveal structure–function relationships conserved among different subfamilies of transient receptor potential channels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19607-19612.	3.3	39
40	BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. Journal of Cell Biology, 2007, 178, 107-119.	2.3	166
41	Mechanisms of Gradient Detection: A Comparison of Axon Pathfinding with Eukaryotic Cell Migration. International Review of Cytology, 2007, 263, 1-62.	6.2	55
42	TRPC1 Ca2+-Permeable Channels in Animal Cells. , 2007, , 23-52.		76
43	Mechanosensitive Channels in Neurite Outgrowth. Current Topics in Membranes, 2007, 59, 111-125.	0.5	6
44	Ca ²⁺ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16176-16181.	3.3	131
45	Hyperforinâ€"a key constituent of St. John's wort specifically activates TRPC6 channels. FASEB Journal, 2007, 21, 4101-4111.	0.2	224
46	BDNF Induces Calcium Elevations Associated With <i>I</i> _{BDNF} , a Nonselective Cationic Current Mediated by TRPC Channels. Journal of Neurophysiology, 2007, 98, 2476-2482.	0.9	62
47	Combined activation of calpain and calcineurin during ligand-induced growth cone collapse. Molecular and Cellular Neurosciences, 2007, 36, 425-434.	1.0	28
48	TRPC Channels: Interacting Proteins. , 2007, , 559-574.		27
49	Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science, 2007, 316, 1212-1216.	6.0	463
50	TRP Channels. Annual Review of Biochemistry, 2007, 76, 387-417.	5.0	1,768
52	Metabotropic Glutamate Receptors in the Lateral Superior Olive Activate TRP-Like Channels: Age- and Experience-Dependent Regulation. Journal of Neurophysiology, 2007, 97, 3365-3375.	0.9	23
53	Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Nature Neuroscience, 2007, 10, 58-66.	7.1	139
54	TRPC channels promote cerebellar granule neuron survival. Nature Neuroscience, 2007, 10, 559-567.	7.1	219
55	Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptorâ€mediated calcium release. European Journal of Neuroscience, 2007, 26, 1537-1547.	1.2	22
56	TRPV1 at nerve endings regulates growth cone morphology and movement through cytoskeleton reorganization. FEBS Journal, 2007, 274, 760-772.	2.2	80

#	Article	IF	Citations
57	Netrin signaling leading to directed growth cone steering. Current Opinion in Neurobiology, 2007, 17, 15-21.	2.0	124
58	Transient receptor potential channels as novel effectors of brain-derived neurotrophic factor signaling: Potential implications for Rett syndrome. , 2007, 113, 394-409.		48
59	TRPC1 channels regulate directionality of migrating cells. Pflugers Archiv European Journal of Physiology, 2008, 457, 475-484.	1.3	71
60	Rapid activityâ€dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intact <i>Xenopus</i> tadpoles. Developmental Neurobiology, 2008, 68, 744-759.	1.5	19
61	Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS Journal, 2008, 275, 4684-4699.	2.2	34
62	Formation of a new receptorâ€operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Reports, 2008, 9, 472-479.	2.0	154
63	Ca ²⁺ microdomains near plasma membrane Ca ²⁺ channels: impact on cell function. Journal of Physiology, 2008, 586, 3043-3054.	1.3	204
64	Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. Journal of Physiology, 2008, 586, 4859-4875.	1.3	47
65	Actin-binding proteins take the reins in growth cones. Nature Reviews Neuroscience, 2008, 9, 136-147.	4.9	170
66	Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning. Nature Neuroscience, 2008, 11, 762-771.	7.1	85
67	Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas. Cell Proliferation, 2008, 41, 98-121.	2.4	69
68	Expression and localisation of TRPC channels in immortalised GnRH neurons. Brain Research, 2008, 1230, 27-36.	1.1	8
69	Reverse leukocyte migration can be attractive or repulsive. Trends in Cell Biology, 2008, 18, 298-306.	3.6	61
70	Cyclic GMP-Gated CNG Channels Function in Sema3A-Induced Growth Cone Repulsion. Neuron, 2008, 58, 694-707.	3.8	72
71	Growth cone collapse stimulated by both calpain- and Rho-mediated pathways. Neuroscience, 2008, 153, 645-653.	1.1	9
72	Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends in Neurosciences, 2008, 31, 287-295.	4.2	152
73	Interaction with dopamine D2 receptor enhances expression of transient receptor potential channel 1 at the cell surface. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 974-982.	1.4	28
74	Ion Channels in Microbes. Physiological Reviews, 2008, 88, 1449-1490.	13.1	183

#	Article	IF	CITATIONS
75	TRPC4 in Rat Dorsal Root Ganglion Neurons Is Increased after Nerve Injury and Is Necessary for Neurite Outgrowth. Journal of Biological Chemistry, 2008, 283, 416-426.	1.6	76
76	TRP_2, a Lipid/Trafficking Domain That Mediates Diacylglycerol-induced Vesicle Fusion. Journal of Biological Chemistry, 2008, 283, 34384-34392.	1.6	26
77	The integrative function of TRPC channels. Frontiers in Bioscience - Landmark, 2009, Volume, 45.	3.0	41
78	TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular Ca ²⁺ with Exposure to Hydrostatic Pressure. , 2009, 50, 717.		177
79	Co-expression of Argonaute2 enhances short hairpin RNA-induced RNA interference in Xenopus CNS neurons in vivo. Frontiers in Neuroscience, 2009, 3, 63.	1.4	14
80	Transient Receptor Potential Canonical 5 Channels Activate Ca ²⁺ /Calmodulin Kinase Iγ to Promote Axon Formation in Hippocampal Neurons. Journal of Neuroscience, 2009, 29, 9794-9808.	1.7	81
81	Physiology and pathophysiology of canonical transient receptor potential channels. FASEB Journal, 2009, 23, 297-328.	0.2	291
82	Characterization of Rhythmic Ca2+ Transients in Early Embryonic Chick Motoneurons: Ca2+ Sources and Effects of Altered Activation of Transmitter Receptors. Journal of Neuroscience, 2009, 29, 15232-15244.	1.7	33
83	Muscle Contractions Guide Rohon–Beard Peripheral Sensory Axons. Journal of Neuroscience, 2009, 29, 13190-13201.	1.7	17
84	The Nitric Oxide-cGMP Pathway Controls the Directional Polarity of Growth Cone Guidance via Modulating Cytosolic Ca2+ Signals. Journal of Neuroscience, 2009, 29, 7886-7897.	1.7	41
85	Wnt5a Induces Simultaneous Cortical Axon Outgrowth and Repulsive Axon Guidance through Distinct Signaling Mechanisms. Journal of Neuroscience, 2009, 29, 5873-5883.	1.7	146
86	Netrin Participates in the Development of Retinotectal Synaptic Connectivity by Modulating Axon Arborization and Synapse Formation in the Developing Brain. Journal of Neuroscience, 2009, 29, 11065-11077.	1.7	101
87	Regulation of Early Neurite Morphogenesis by the Na+/H+ Exchanger NHE1. Journal of Neuroscience, 2009, 29, 8946-8959.	1.7	20
88	Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. American Journal of Physiology - Cell Physiology, 2009, 297, C1501-C1508.	2.1	25
89	TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP+. Cell Calcium, 2009, 46, 209-218.	1.1	78
90	Emerging mechanisms in morphogenâ€mediated axon guidance. BioEssays, 2009, 31, 1013-1025.	1.2	80
91	Heterogeneous distribution of TRPC proteins in the embryonic cortex. Histochemistry and Cell Biology, 2009, 131, 355-363.	0.8	29
92	Functional roles of TRPC channels in the developing brain. Pflugers Archiv European Journal of Physiology, 2009, 458, 283-289.	1.3	59

#	ARTICLE	IF	Citations
93	Developmental Regulation of Human Embryonic Stem Cell-Derived Neurons by Calcium Entry via Transient Receptor Potential Channels. Stem Cells, 2009, 27, 2906-2916.	1.4	40
94	Homer regulates calcium signalling in growth cone turning. Neural Development, 2009, 4, 29.	1.1	37
95	Developmental roles for Homer: more than just a pretty scaffold. Journal of Neurochemistry, 2009, 108, 1-10.	2.1	44
96	Essential Role for TRPC5 in Amygdala Function and Fear-Related Behavior. Cell, 2009, 137, 761-772.	13.5	245
97	Developmental changes in the regulation of calcium-dependent neurite outgrowth. Biochemical and Biophysical Research Communications, 2009, 379, 11-15.	1.0	18
98	Peptidyl-Prolyl Isomerase FKBP52 Controls Chemotropic Guidance of Neuronal Growth Cones via Regulation of TRPC1 Channel Opening. Neuron, 2009, 64, 471-483.	3.8	67
99	Ca2+ entry through a non-selective cation channel in Aplysia bag cell neurons. Neuroscience, 2009, 162, 1023-1038.	1.1	17
100	TRPV1 expression and activity during retinoic acid-induced neuronal differentiation. Neurochemistry International, 2009, 55, 768-774.	1.9	36
101	Control of Neuronal Growth Cone Navigation by Asymmetric Inositol 1,4,5-Trisphosphate Signals. Science Signaling, 2009, 2, ra34.	1.6	43
102	Mechanosensitive Channels in Striated Muscle and the Cardiovascular System: Not Quite a Stretch Anymore. Journal of Cardiovascular Pharmacology, 2009, 54, 116-122.	0.8	24
103	TRPC Channels and their Implications for Neurological Diseases. CNS and Neurological Disorders - Drug Targets, 2010, 9, 94-104.	0.8	61
104	Association Study of TRPC4 as a Candidate Gene for Generalized Epilepsy with Photosensitivity. NeuroMolecular Medicine, 2010, 12, 292-299.	1.8	25
105	Selective interference with TRPC3/6 channels disrupts OX1 receptor signalling via NCX and reveals a distinct calcium influx pathway. Cell Calcium, 2010, 48, 114-123.	1.1	23
106	PLCÎ ³ -activated signalling is essential for TrkB mediated sensory neuron structural plasticity. BMC Developmental Biology, 2010, 10, 103.	2.1	25
107	The transient receptor potential channel antagonist SKF96365 is a potent blocker of lowâ€voltageâ€activated Tâ€ŧype calcium channels. British Journal of Pharmacology, 2010, 160, 1464-1475.	2.7	152
108	TRPM3 is expressed in sphingosineâ€responsive myelinating oligodendrocytes. Journal of Neurochemistry, 2010, 114, 654-665.	2.1	61
109	Odors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons. American Journal of Physiology - Cell Physiology, 2010, 298, C1253-C1264.	2.1	30
110	From Guidance Signals to Movement: Signaling Molecules Governing Growth Cone Turning. Neuroscientist, 2010, 16, 65-78.	2.6	16

#	Article	IF	CITATIONS
111	TRPV2 Enhances Axon Outgrowth through Its Activation by Membrane Stretch in Developing Sensory and Motor Neurons. Journal of Neuroscience, 2010, 30, 4601-4612.	1.7	163
112	TRPV1 acts as a synaptic protein and regulates vesicle recycling. Journal of Cell Science, 2010, 123, 2045-2057.	1.2	51
113	Phosphatidylinositol 3-Kinase Facilitates Microtubule-dependent Membrane Transport for Neuronal Growth Cone Guidance. Journal of Biological Chemistry, 2010, 285, 41740-41748.	1.6	40
114	Signaling from Axon Guidance Receptors. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001941-a001941.	2.3	203
115	TRPC1 Is Essential for In Vivo Angiogenesis in Zebrafish. Circulation Research, 2010, 106, 1221-1232.	2.0	90
116	Structural and functional regulation of growth cone, filopodia and synaptic sites by TRPV1. Communicative and Integrative Biology, 2010, 3, 614-618.	0.6	13
117	E3 Ligase Nedd4 Promotes Axon Branching by Downregulating PTEN. Neuron, 2010, 65, 341-357.	3.8	220
118	Phenotypic checkpoints regulate neuronal development. Trends in Neurosciences, 2010, 33, 485-492.	4.2	76
119	Roles of channels and receptors in the growth cone during PNS axonal regeneration. Experimental Neurology, 2010, 223, 38-44.	2.0	38
120	Dynamic remodeling of subcellular chemical gradients using a multi-directional flow device. Lab on A Chip, 2010, 10, 2139.	3.1	5
121	Investigations of the In Vivo Requirements of Transient Receptor Potential Ion Channels Using Frog and Zebrafish Model Systems. Advances in Experimental Medicine and Biology, 2011, 704, 341-357.	0.8	5
122	Nanotechnology in Mechanobiology: Mechanical Manipulation of Cells and Organelle While Monitoring Intracellular Signaling. , 2011, , 3-19.		0
123	Signaling Mechanisms in Cortical Axon Growth, Guidance, and Branching. Frontiers in Neuroanatomy, 2011, 5, 62.	0.9	49
124	Mapping dynamic branch displacements: a versatile method to quantify spatiotemporal neurite dynamics. Frontiers in Neural Circuits, 2011, 5, 13.	1.4	1
125	Second messengers and membrane trafficking direct and organize growth cone steering. Nature Reviews Neuroscience, 2011, 12, 191-203.	4.9	172
126	Transient receptor proteins illuminated: Current views on TRPs and disease. Veterinary Journal, 2011, 187, 153-164.	0.6	23
127	Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth. BMC Biology, 2011, 9, 82.	1.7	18
128	Capturing ER calcium dynamics. European Journal of Cell Biology, 2011, 90, 613-619.	1.6	12

#	Article	IF	CITATIONS
129	Chemotaxis of MDCK-F cells toward fibroblast growth factor-2 depends on transient receptor potential canonical channel 1. Pflugers Archiv European Journal of Physiology, 2011, 461, 295-306.	1.3	26
130	The history of TRP channels, a commentary and reflection. Pflugers Archiv European Journal of Physiology, 2011, 461, 499-506.	1.3	95
131	Transient receptor potential canonical channels in angiogenesis and axon guidance. Cellular and Molecular Life Sciences, 2011, 68, 3815-3821.	2.4	5
132	Unraveling the Role of Peptidyl-Prolyl Isomerases in Neurodegeneration. Molecular Neurobiology, 2011, 44, 13-27.	1.9	37
133	Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. Journal of Cellular Physiology, 2011, 226, 1879-1888.	2.0	109
134	Wnt/calcium signaling mediates axon growth and guidance in the developing corpus callosum. Developmental Neurobiology, 2011, 71, 269-283.	1.5	78
135	Asymmetric PI(3,4,5)P ₃ and Akt Signaling Mediates Chemotaxis of Axonal Growth Cones. Journal of Neuroscience, 2011, 31, 7016-7027.	1.7	50
136	Netrins: versatile extracellular cues with diverse functions. Development (Cambridge), 2011, 138, 2153-2169.	1.2	363
137	Postsynaptic TRPC1 Function Contributes to BDNF-Induced Synaptic Potentiation at the Developing Neuromuscular Junction. Journal of Neuroscience, 2011, 31, 14754-14762.	1.7	21
138	A Signaling Mechanism Coupling Netrin-1/Deleted in Colorectal Cancer Chemoattraction to SNARE-Mediated Exocytosis in Axonal Growth Cones. Journal of Neuroscience, 2011, 31, 14463-14480.	1.7	59
139	Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4482-4487.	3.3	131
140	Calcium Signaling in Neuronal Development. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004259-a004259.	2.3	241
141	Ion channels and tranporters in cancer. 2. Ion channels and the control of cancer cell migration. American Journal of Physiology - Cell Physiology, 2011, 301, C541-C549.	2.1	146
142	Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. Journal of Psychiatry and Neuroscience, 2011, 36, 296-310.	1.4	51
143	The SSRI Citalopram Affects Fetal Thalamic Axon Responsiveness to Netrin-1 In vitro Independently of SERT Antagonism. Neuropsychopharmacology, 2012, 37, 1879-1884.	2.8	26
144	Calcium Signaling in Neuronal Motility: Pharmacological Tools for Investigating Specific Pathways. Current Medicinal Chemistry, 2012, 19, 5793-5801.	1.2	3
145	Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo–activated ERK1/2 is critical for the promyogenic function of Stim1. Molecular Biology of the Cell, 2012, 23, 1376-1387.	0.9	27
146	Activation of TRPC Cationic Channels by Mercurial Compounds Confers the Cytotoxicity of Mercury Exposure. Toxicological Sciences, 2012, 125, 56-68.	1.4	33

#	Article	IF	CITATIONS
147	Syntaxin 1 is required for DCC/Netrinâ€1â€dependent chemoattraction of migrating neurons from the lower rhombic lip. European Journal of Neuroscience, 2012, 36, 3152-3164.	1.2	26
148	Suppression of spikes during posttetanic hyperpolarization in auditory neurons: the role of temperature, Ih currents, and the Na+-K+-ATPase pump. Journal of Neurophysiology, 2012, 108, 1924-1932.	0.9	28
149	<scp>TRP</scp> Channels. , 2012, 2, 563-608.		134
150	STIM1 is necessary for storeâ€operated calcium entry in turning growth cones. Journal of Neurochemistry, 2012, 122, 1155-1166.	2.1	43
151	Intracellular signaling and membrane trafficking control bidirectional growth cone guidance. Neuroscience Research, 2012, 73, 269-274.	1.0	18
152	Semaphorin3A facilitates axonal transport through a local calcium signaling and tetrodotoxin-sensitive voltage-gated sodium channels. Biochemical and Biophysical Research Communications, 2012, 422, 333-338.	1.0	14
153	Coexpression of highâ€voltageâ€activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. Journal of Comparative Neurology, 2012, 520, 3650-3672.	0.9	13
154	Role of Ion Channels and Transporters in Cell Migration. Physiological Reviews, 2012, 92, 1865-1913.	13.1	350
155	6.4 Biophysics of TRP Channels. , 2012, , 68-107.		2
156	6.5 Mechanosensory Transduction. , 2012, , 108-141.		6
157	Methods in Neuronal Growth Cone Biology. Methods in Pharmacology and Toxicology, 2012, , 239-252.	0.1	0
158	TRPs in the Brain. , 2012, 163, 27-64.		59
159	Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. Journal of Clinical Investigation, 2012, 122, 1354-1367.	3.9	197
160	Shaping brain connections through spontaneous neural activity. European Journal of Neuroscience, 2012, 35, 1595-1604.	1.2	73
161	Analysis of laser-induced heating in optical neuronal guidance. Journal of Neuroscience Methods, 2012, 209, 168-177.	1.3	32
162	Effect of oxidative stress on TRPM2 and TRPC3 channels in B lymphoblast cells in bipolar disorder. Bipolar Disorders, 2012, 14, 151-161.	1.1	39
163	Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: The role of TRPC channels. Journal of Cellular Physiology, 2012, 227, 1408-1419.	2.0	30
164	In pursuit of small molecule chemistry for calciumâ€permeable nonâ€selective TRPC channels – mirage or pot of gold?. British Journal of Pharmacology, 2013, 170, 459-474.	2.7	86

#	Article	IF	CITATIONS
165	Calcium signals and FGF-2 induced neurite growth in cultured parasympathetic neurons: spatial localization and mechanisms of activation. Pflugers Archiv European Journal of Physiology, 2013, 465, 1355-1370.	1.3	16
166	The role of passive calcium influx through the cell membrane in galvanotaxis. Cellular and Molecular Biology Letters, 2013, 18, 187-99.	2.7	7
167	A critical role for STIM1 in filopodial calcium entry and axon guidance. Molecular Brain, 2013, 6, 51.	1.3	26
168	Effect of glutamate receptor antagonists on migrating neural progenitor cells. European Journal of Neuroscience, 2013, 37, 1369-1382.	1.2	30
169	Mechanosensitive TRPC1 Channels Promote Calpain Proteolysis of Talin to Regulate Spinal Axon Outgrowth. Journal of Neuroscience, 2013, 33, 273-285.	1.7	120
170	Chronic oxidative stress modulates TRPC3 and TRPM2 channel expression and function in rat primary cortical neurons: Relevance to the pathophysiology of bipolar disorder. Brain Research, 2013, 1517, 16-27.	1.1	23
171	Roles of Ion Transport in Control of Cell Motility. , 2013, 3, 59-119.		32
172	Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Frontiers in Physiology, 2013, 4, 311.	1.3	86
173	Bradykinin-Induced Chemotaxis of Human Gliomas Requires the Activation of K _{Ca} 3.1 and ClC-3. Journal of Neuroscience, 2013, 33, 1427-1440.	1.7	74
174	Epidermal keratinocyte polarity and motility require Ca2+ influx through TRPV1. Journal of Cell Science, 2013, 126, 4602-13.	1.2	32
175	Chronic exposure to stress hormones alters the subtype of storeâ€operated channels expressed in H19â€7 hippocampal neuronal cells. Journal of Cellular Physiology, 2013, 228, 1332-1343.	2.0	6
176	The Xenopus TRPV6 homolog encodes a Mg 2+ â€permeant channel that is inhibited by interaction with TRPC1. Journal of Cellular Physiology, 2013, 228, 2386-2398.	2.0	14
177	Imaging and Manipulating Calcium Transients in Developing <i>Xenopus</i> Spinal Neurons. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot066803.	0.2	3
178	The roles of PIKE in tumorigenesis. Acta Pharmacologica Sinica, 2013, 34, 991-997.	2.8	10
179	BDNF Regulates the Expression and Distribution of Vesicular Glutamate Transporters in Cultured Hippocampal Neurons. PLoS ONE, 2013, 8, e53793.	1.1	56
180	Protective Effects of SKF-96365, a Non-Specific Inhibitor of SOCE, against MPP+-Induced Cytotoxicity in PC12 Cells: Potential Role of Homer1. PLoS ONE, 2013, 8, e55601.	1.1	45
181	Importance of TRP channels in pain implications for stress. Frontiers in Bioscience - Scholar, 2013, S5, 19-38.	0.8	5
182	TGFβ1 downregulates neurite outgrowth, expression of Ca2+ transporters, and mitochondrial dynamics of in vitro cerebellar granule cells. NeuroReport, 2014, 25, 340-346.	0.6	9

#	Article	IF	CITATIONS
183	KCa3.1 Modulates Neuroblast Migration Along the Rostral Migratory Stream (RMS) In Vivo. Cerebral Cortex, 2014, 24, 2388-2400.	1.6	29
184	TRPC1. Handbook of Experimental Pharmacology, 2014, 222, 15-51.	0.9	37
185	Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator?. Cells, 2014, 3, 939-962.	1.8	72
186	The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. Journal of Neural Transmission, 2014, 121, 819-836.	1.4	94
187	Developmental mapping of smallâ€conductance calciumâ€activated potassium channel expression in the rat nervous system. Journal of Comparative Neurology, 2014, 522, 1072-1101.	0.9	30
188	Ion Channels in Regulation of Neuronal Regenerative Activities. Translational Stroke Research, 2014, 5, 156-162.	2.3	30
189	The <scp>TRPC</scp> channel blocker <scp>SKF</scp> 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the <scp><scp>Na⁺</scp></scp> / <scp>Ca²⁺</scp> exchanger and increasing intracellular <scp><scp>Ca²⁺</scp>. British Journal of Pharmacology, 2014, 171, 3432-3447.</scp>	2.7	47
190	Actin dynamics in growth cone motility and navigation. Journal of Neurochemistry, 2014, 129, 221-234.	2.1	215
191	Calcium signaling in axon guidance. Trends in Neurosciences, 2014, 37, 424-432.	4.2	64
192	Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacological Reviews, 2014, 66, 676-814.	7.1	440
193	Microtubule dynamics in axon guidance. Neuroscience Bulletin, 2014, 30, 569-583.	1.5	64
194	New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 1241-1257.	1.3	41
195	Co-localization of TRPV2 and Insulin-Like Growth Factor-I Receptor in Olfactory Neurons in Adult and Fetal Mouse. Biological and Pharmaceutical Bulletin, 2014, 37, 1907-1912.	0.6	4
197	Second messenger networks for accurate growth cone guidance. Developmental Neurobiology, 2015, 75, 411-422.	1.5	15
198	Mechanochemical regulation of growth cone motility. Frontiers in Cellular Neuroscience, 2015, 9, 244.	1.8	127
199	Acute Treatment with a Novel TRPC4/C5 Channel Inhibitor Produces Antidepressant and Anxiolytic-Like Effects in Mice. PLoS ONE, 2015, 10, e0136255.	1.1	44
200	Transient Receptor Potential Channels and Their Role in Modulating Radial Glial–Neuronal Interaction: A Signaling Pathway Involving mGluR5. Stem Cells and Development, 2015, 24, 701-713.	1.1	15
201	Inhibition of clathrin-mediated endocytosis prevents amyloid β-induced axonal damage. Neurobiology of Aging, 2015, 36, 1808-1819.	1.5	21

ARTICLE

CITATIONS

IF Photonic control of axonal guidance., 2015,, 205-220. 202 0 Is birth a critical period in the pathogenesis of autism spectrum disorders?. Nature Reviews 99 Neuroscience, 2015, 16, 498-505. Ca2+ signaling initiated by canonical transient receptor potential channels in dendritic development. 204 1.5 5 Neuroscience Bulletin, 2015, 31, 351-356. Microtopographical features generated by photopolymerization recruit RhoA/ROCK through TRPV1 to 24 direct cell and neurite growth. Biomaterials, 2015, 53, 95-106. SOCE in neurons: Signaling or just refilling?. Biochimica Et Biophysica Acta - Molecular Cell Research, 206 1.9 90 2015, 1853, 1940-1952. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons. Molecular and Cellular Biology, 2015, 35, 4238-4252. 1.1 Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating 208 α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate 1.6 31 Receptors. Journal of Biological Chemistry, 2015, 290, 20748-20760. The interdependent roles of Ca²⁺ and cAMP in axon guidance. Developmental 209 1.5 14 Neurobiology, 2015, 75, 402-410. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through 210 2.5 23 TRPC Channels. Glia, 2016, 64, 2154-2165. Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical 2.1 substrate features. Journal of Biomedical Materials Research - Part A, 2016, 104, 2037-2048. Roles of phosphoinositide-specific phospholipase Cl³1 in brain development. Advances in Biological 212 1.4 26 Regulation, 2016, 60, 167-173. Loss of Transient Receptor Potential Ankyrin 1 Channel Deregulates Emotion, Learning and Memory, Cognition, and Social Behavior in Mice. Molecular Neurobiology, 2017, 54, 3606-3617 Calpain-Mediated Proteolysis of Talin and FAK Regulates Adhesion Dynamics Necessary for Axon 214 1.7 75 Guidance. Journal of Neuroscience, 2017, 37, 1568-1580. Inhibition of L-Type Ca²⁺Channels by TRPC1-STIM1 Complex Is Essential for the Protection of Dopaminergic Neurons. Journal of Neuroscience, 2017, 37, 3364-3377. 1.7 TRPC Channels and Programmed Cell Death. Advances in Experimental Medicine and Biology, 2017, 976, 217 0.8 5 47-60. TRPC Channels and Parkinson's Disease. Advances in Experimental Medicine and Biology, 2017, 976, 85-94. 0.8 TRPC Channels and Glioma. Advances in Experimental Medicine and Biology, 2017, 976, 157-165. 219 0.8 14 K⁺Channel Kv3.4 Is Essential for Axon Growth by Limiting the Influx of Ca²⁺into Growth Cones. Journal of Neuroscience, 2017, 37, 4433-4449.

#	Article	IF	Citations
	Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires		
221	interaction with the actin cytoskeleton and enhances growth cone motility. FASEB Journal, 2017, 31, 1368-1381.	0.2	37
222	How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding?. Molecular and Cellular Neurosciences, 2017, 84, 29-35.	1.0	60
223	Localization and expression patterns of TRP channels in submandibular gland development. Archives of Oral Biology, 2017, 74, 46-50.	0.8	6
224	Mechanosensory Transduction: Focus on Ion Channels \hat{a} $^+$. , 2017, , .		16
225	Xenopus laevis as a Model Organism for the Study of Spinal Cord Formation, Development, Function and Regeneration. Frontiers in Neural Circuits, 2017, 11, 90.	1.4	30
226	The binding of DCC-P3 motif and FAK-FAT domain mediates the initial step of netrin-1/DCC signaling for axon attraction. Cell Discovery, 2018, 4, 8.	3.1	10
227	Human TUBB3 Mutations Disrupt Netrin Attractive Signaling. Neuroscience, 2018, 374, 155-171.	1.1	20
228	TRPC1 Null Exacerbates Memory Deficit and Apoptosis Induced by Amyloid-β. Journal of Alzheimer's Disease, 2018, 63, 761-772.	1.2	12
229	Computational Methods for Estimating Molecular System from Membrane Potential Recordings in Nerve Growth Cone. Scientific Reports, 2018, 8, 4559.	1.6	0
230	The axonal endoplasmic reticulum: One organelle—many functions in development, maintenance, and plasticity. Developmental Neurobiology, 2018, 78, 181-208.	1.5	44
231	Electromechanics of polarized cell growth. BioSystems, 2018, 173, 114-132.	0.9	5
232	Activity-Dependent Netrin-1 Secretion Drives Synaptic Insertion of GluA1-Containing AMPA Receptors in the Hippocampus. Cell Reports, 2018, 25, 168-182.e6.	2.9	59
233	Activation of TRPC1 Channel by Metabotropic Glutamate Receptor mGluR5 Modulates Synaptic Plasticity and Spatial Working Memory. Frontiers in Cellular Neuroscience, 2018, 12, 318.	1.8	48
234	An open source tool for automatic spatiotemporal assessment of calcium transients and local â€~signal-close-to-noise' activity in calcium imaging data. PLoS Computational Biology, 2018, 14, e1006054.	1.5	35
235	A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plasticity, 2019, 2019, 1-26.	1.0	28
236	STIM1 Is Required for Remodeling of the Endoplasmic Reticulum and Microtubule Cytoskeleton in Steering Growth Cones. Journal of Neuroscience, 2019, 39, 5095-5114.	1.7	39
237	Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. International Journal of Molecular Sciences, 2019, 20, 1497.	1.8	32
238	Current Understanding of the Role of Neuronal Calcium Sensor 1 in Neurological Disorders. Molecular Neurobiology, 2019, 56, 6080-6094.	1.9	17

#	Article	IF	CITATIONS
239	The calciumâ€activated protease calpain regulates netrinâ€1 receptor deleted in colorectal cancerâ€induced axon outgrowth in cortical neurons. Journal of Neurochemistry, 2020, 152, 315-332.	2.1	4
240	Target Molecules of STIM Proteins in the Central Nervous System. Frontiers in Molecular Neuroscience, 2020, 13, 617422.	1.4	25
241	How TRPC Channels Modulate Hippocampal Function. International Journal of Molecular Sciences, 2020, 21, 3915.	1.8	9
242	TPC2-mediated Ca2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. Journal of Cell Science, 2020, 133, .	1.2	7
243	From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development. Frontiers in Molecular Neuroscience, 2020, 13, 62.	1.4	11
244	TRPC1 Regulates the Activity of a Voltage-Dependent Nonselective Cation Current in Hippocampal CA1 Neurons. Cells, 2020, 9, 459.	1.8	5
245	RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Scientific Reports, 2020, 10, 7227.	1.6	11
246	Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Molecular Brain, 2020, 13, 56.	1.3	32
247	Role of Oxidative Stress and Ca2+ Signaling in Psychiatric Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 615569.	1.8	24
248	Molecular and functional diversity of the TRPC family of ion channels. TRPC channels and their role in ROCE/SOCE. , 2006, , 1-22.		1
249	Signaling Mechanisms of Axon Guidance and Early Synaptogenesis. Current Topics in Behavioral Neurosciences, 2013, 16, 19-48.	0.8	18
250	Signaling Mechanisms of Axon Guidance and Early Synaptogenesis. Current Topics in Behavioral Neurosciences, 2013, , 19-48.	0.8	22
251	TRPC Channels and Neuron Development, Plasticity, and Activities. Advances in Experimental Medicine and Biology, 2017, 976, 95-110.	0.8	8
252	TRPV2 interacts with actin and reorganizes submembranous actin cytoskeleton. Bioscience Reports, 2020, 40, .	1.1	5
254	The TRPC Family of Ion Channels. Frontiers in Neuroscience, 2006, , 1-30.	0.0	4
255	Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels. PLoS ONE, 2009, 4, e6723.	1.1	38
256	ProBDNF Collapses Neurite Outgrowth of Primary Neurons by Activating RhoA. PLoS ONE, 2012, 7, e35883.	1.1	130
257	Highly Effective Photonic Cue for Repulsive Axonal Guidance. PLoS ONE, 2014, 9, e86292.	1.1	8

#	Article	IF	CITATIONS
258	NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System. PLoS ONE, 2015, 10, e0141290.	1.1	11
259	Netrin and DCC: Axon Guidance Regulators at the Intersection of Nervous System Development and Cancer. Current Drug Targets, 2009, 10, 602-610.	1.0	29
260	Expression of Genes Involved in Axon Guidance: How Much Have We Learned?. International Journal of Molecular Sciences, 2020, 21, 3566.	1.8	15
261	New Insight on the Role of Transient Receptor Potential (TRP) Channels in Driven Gliomagenesis Pathways. , 0, , .		1
262	Physiological Rules of Endocannabinoid Action During Fetal and Neonatal Brain Development. Cannabis and Cannabinoid Research, 2021, 6, 381-388.	1.5	4
263	TRP Channels and Axon Pathfinding. Frontiers in Neuroscience, 2006, , 55-67.	0.0	0
264	Multimodal Activation and Regulation of Neuronal Mechanosensitive Cation Channels. , 2008, , 291-302.		0
268	Quantitative Modeling of Neuronal Polarization. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 354-361.	0.2	0
272	Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium, 2022, 101, 102521.	1.1	6
273	How filopodia respond to calcium in the absence of a calcium-binding structural protein: non-channel functions of TRP. Cell Communication and Signaling, 2022, 20, .	2.7	2
274	Wireless neuromodulation in vitro and in vivo by intrinsic TRPC-mediated magnetomechanical stimulation. Communications Biology, 2022, 5, .	2.0	4
276	Neogenin suppresses tumor progression and metastasis via inhibiting Merlin/YAP signaling. Cell Death Discovery, 2023, 9, .	2.0	2
277	Impact of <scp>FKBP52</scp> on cell proliferation and hormoneâ€dependent cancers. Cancer Science, 0,	1.7	0
278	TRP Channels in Stroke. Neuroscience Bulletin, 0, , .	1.5	0