Excitatory cortical neurons form fine-scale functional n

Nature

433, 868-873

DOI: 10.1038/nature03252

Citation Report

#	Article	IF	CITATIONS
1	Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 2005, 8, 1263-1268.	7.1	4,110
2	Geometric and functional organization of cortical circuits. Nature Neuroscience, 2005, 8, 782-790.	7.1	236
3	Topographic mapping of VMH \hat{a}^{\dagger} arcuate nucleus microcircuits and their reorganization by fasting. Nature Neuroscience, 2005, 8, 1356-1363.	7.1	278
4	Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 2005, 8, 1552-1559.	7.1	348
5	Patterning and Plasticity of the Cerebral Cortex. Science, 2005, 310, 805-810.	6.0	591
6	The Human Connectome: A Structural Description of the Human Brain. PLoS Computational Biology, 2005, 1, e42.	1.5	2,641
7	The Structure of Multi-Neuron Firing Patterns in Primate Retina. Journal of Neuroscience, 2006, 26, 8254-8266.	1.7	408
8	fMRI MODELS OF DENDRITIC AND ASTROCYTIC NETWORKS. Journal of Integrative Neuroscience, 2006, 05, 273-326.	0.8	17
9	NEUROSCIENCE: Neurons Find Strength Through Synchrony in the Brain. Science, 2006, 312, 1604-1605.	6.0	8
10	Long-Term Rearrangements of Hippocampal Mossy Fiber Terminal Connectivity in the Adult Regulated by Experience. Neuron, 2006, 50, 749-763.	3.8	143
11	Computational and in vitro studies of persistent activity: Edging towards cellular and synaptic mechanisms of working memory. Neuroscience, 2006, 139, 135-151.	1.1	79
12	Local Connections to Specific Types of Layer 6 Neurons in the Rat Visual Cortex. Journal of Neurophysiology, 2006, 95, 1751-1761.	0.9	81
13	Bidirectional interaction of sleep and synaptic plasticity: A view from visual cortex. Sleep and Biological Rhythms, 2006, 4, 35-43.	0.5	3
14	Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 2006, 3, 785-792.	9.0	641
15	Making selective 'cone-ections'. Nature Neuroscience, 2006, 9, 595-596.	7.1	0
16	Cortical feed-forward networks for binding different streams of sensory information. Nature Neuroscience, 2006, 9, 1472-1473.	7.1	130
17	Plasmodium post-genomics: better the bug you know?. Nature Reviews Microbiology, 2006, 4, 344-357.	13.6	66
18	Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo. Journal of Neuroscience Methods, 2006, 157, 230-237.	1.3	34

#	ARTICLE	IF	Citations
19	Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 2006, 20, 247-264.	0.6	103
20	Manipulating proteins for neuroscience. Current Opinion in Neurobiology, 2006, 16, 585-592.	2.0	10
21	Invariance and selectivity in the ventral visual pathway. Journal of Physiology (Paris), 2006, 100, 212-224.	2.1	24
22	Model-based analysis of excitatory lateral connections in the visual cortex. Journal of Comparative Neurology, 2006, 499, 861-881.	0.9	96
23	GABAergic Excitation in the Basolateral Amygdala. Journal of Neuroscience, 2006, 26, 11881-11887.	1.7	72
24	A Statistical Analysis of Information-Processing Properties of Lamina-Specific Cortical Microcircuit Models. Cerebral Cortex, 2006, 17, 149-162.	1.6	177
25	Sensory Experience Alters Cortical Connectivity and Synaptic Function Site Specifically. Journal of Neuroscience, 2007, 27, 3456-3465.	1.7	73
26	Networks of Parvalbumin-Positive Interneurons in the Basolateral Amygdala. Journal of Neuroscience, 2007, 27, 553-563.	1.7	194
27	The Functional Microarchitecture of the Mouse Barrel Cortex. PLoS Biology, 2007, 5, e189.	2.6	199
28	Schizophrenia seen as a deficit in the modulation of cortical minicolumns by monoaminergic systems. International Review of Psychiatry, 2007, 19, 361-372.	1.4	14
29	Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving <i>in vitro</i> and <i>in vivo</i> experimental observations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16353-16358.	3.3	90
30	Neocortical Inhibitory Terminals Innervate Dendritic Spines Targeted by Thalamocortical Afferents. Journal of Neuroscience, 2007, 27, 1139-1150.	1.7	154
31	Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 347-352.	3.3	477
32	Synaptic Connections between Layer 5B Pyramidal Neurons in Mouse Somatosensory Cortex Are Independent of Apical Dendrite Bundling. Journal of Neuroscience, 2007, 27, 11473-11482.	1.7	55
33	Functional maps of neocortical local circuitry. Frontiers in Neuroscience, 2007, 1, 19-42.	1.4	354
34	Topological Determinants of Epileptogenesis in Large-Scale Structural and Functional Models of the Dentate Gyrus Derived From Experimental Data. Journal of Neurophysiology, 2007, 97, 1566-1587.	0.9	206
35	Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons. Neuron, 2007, 53, 639-647.	3.8	1,080
36	Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor. Neuron, 2007, 54, 535-545.	3.8	310

#	Article	IF	CITATIONS
37	Compression and Reflection of Visually Evoked Cortical Waves. Neuron, 2007, 55, 119-129.	3.8	214
38	Critical Periods in the Visual System: Changing Views for a Model of Experience-Dependent Plasticity. Neuron, 2007, 56, 312-326.	3.8	218
39	The functional microarchitecture of the mouse barrel cortex. Neuroscience Research, 2007, 58, S13.	1.0	1
40	Modeling the dentate gyrus. Progress in Brain Research, 2007, 163, 639-658.	0.9	46
41	Web Intelligence Meets Brain Informatics. Lecture Notes in Computer Science, 2007, , .	1.0	9
42	Anatomical Concepts of Brain Connectivity. Understanding Complex Systems, 2007, , 149-167.	0.3	12
43	Heterogeneity in the Responses of Adjacent Neurons to Natural Stimuli in Cat Striate Cortex. Journal of Neurophysiology, 2007, 97, 1326-1341.	0.9	85
44	Self-Tuning of Neural Circuits Through Short-Term Synaptic Plasticity. Journal of Neurophysiology, 2007, 97, 4079-4095.	0.9	49
45	Two-photon photostimulation and imaging of neural circuits. Nature Methods, 2007, 4, 943-950.	9.0	240
46	Reflections on the specificity of synaptic connections. Brain Research Reviews, 2007, 55, 422-429.	9.1	29
47	Specificity and randomness in the visual cortex. Current Opinion in Neurobiology, 2007, 17, 401-407.	2.0	111
48	Structure and function of the cerebral cortex. Current Biology, 2007, 17, R443-R449.	1.8	176
49	Local cortical circuit model inferred from power-law distributed neuronal avalanches. Journal of Computational Neuroscience, 2007, 22, 301-312.	0.6	58
50	Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. Journal of Computational Neuroscience, 2007, 23, 237-250.	0.6	37
51	Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Structure and Function, 2007, 212, 3-17.	1.2	199
52	Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits. Brain Structure and Function, 2007, 212, 107-119.	1.2	137
53	Culturing neuron cells on electrode with self-assembly monolayer. Biosensors and Bioelectronics, 2007, 22, 2346-2350.	5. 3	16
54	Deterministic neural dynamics transmitted through neural networks. Neural Networks, 2008, 21, 799-809.	3.3	23

#	ARTICLE	IF	CITATIONS
55	Inferring functional connections between neurons. Current Opinion in Neurobiology, 2008, 18, 582-588.	2.0	131
56	Transneuronal circuit tracing with neurotropic viruses. Current Opinion in Neurobiology, 2008, 18, 617-623.	2.0	232
57	Telencephalon: Neocortex., 2008,, 491-679.		7
58	Dependence of Neuronal Correlations on Filter Characteristics and Marginal Spike Train Statistics. Neural Computation, 2008, 20, 2133-2184.	1.3	69
59	Neuro-inspired Speech Recognition with Recurrent Spiking Neurons. Lecture Notes in Computer Science, 2008, , 513-522.	1.0	16
60	Genetic Dissection of Neural Circuits. Neuron, 2008, 57, 634-660.	3.8	714
61	Photocontrol of Neural Activity: Biophysical Mechanisms and Performance <i>in Vivo</i> . Chemical Reviews, 2008, 108, 1588-1602.	23.0	61
62	Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6179-6184.	3.3	308
63	Asymmetric Synaptic Depression in Cortical Networks. Cerebral Cortex, 2008, 18, 771-788.	1.6	31
64	The P, M and K Streams of the Primate Visual System: What Do They Do for Vision?. , 2008, , 369-381.		7
65	A recurrent dynamic model for correspondence-based face recognition. Journal of Vision, 2008, 8, 34.	0.1	23
66	Firing-Pattern-Dependent Specificity of Cortical Excitatory Feed-Forward Subnetworks. Journal of Neuroscience, 2008, 28, 11186-11195.	1.7	78
67	Sparse Representation of Sounds in the Unanesthetized Auditory Cortex. PLoS Biology, 2008, 6, e16.	2.6	493
68	Excitatory Local Connections of Superficial Neurons in Rat Auditory Cortex. Journal of Neuroscience, 2008, 28, 11174-11185.	1.7	89
69	Correlations and Population Dynamics in Cortical Networks. Neural Computation, 2008, 20, 2185-2226.	1.3	99
70	Rapid Convergence to Feature Layer Correspondences. Neural Computation, 2008, 20, 2441-2463.	1.3	14
71	Role of Interneuron Diversity in the Cortical Microcircuit for Attention. Journal of Neurophysiology, 2008, 99, 2158-2182.	0.9	63
72	Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering. Physical Review E, 2008, 77, 051909.	0.8	40

#	ARTICLE	IF	CITATIONS
73	Detecting Synfire Chain Activity Using Massively Parallel Spike Train Recording. Journal of Neurophysiology, 2008, 100, 2165-2176.	0.9	73
74	Maturation of Intrinsic and Synaptic Properties of Layer 2/3 Pyramidal Neurons in Mouse Auditory Cortex. Journal of Neurophysiology, 2008, 99, 2998-3008.	0.9	184
75	Many specialists for suppressing cortical excitation. Frontiers in Neuroscience, 2008, 2, 155-167.	1.4	103
76	Photorelease of GABA with visible light using an inorganic caging group. Frontiers in Neural Circuits, 2008, 2, 2.	1.4	98
77	Confocal mapping of cortical inputs onto identified pyramidal neurons. Frontiers in Bioscience - Landmark, 2008, Volume, 6354.	3.0	7
78	Three-Dimensional Mapping of Unitary Synaptic Connections by Two-Photon Macro Photolysis of Caged Glutamate. Journal of Neurophysiology, 2008, 99, 1535-1544.	0.9	58
79	On the Coding of Negative Quantities in Cortical Circuits. Nature Precedings, 2008, , .	0.1	0
80	Inter- and Intralaminar Subcircuits of Excitatory and Inhibitory Neurons in Layer 6a of the Rat Barrel Cortex. Journal of Neurophysiology, 2008, 100, 1909-1922.	0.9	92
81	Using Neuroconstruct to Develop and Modify Biologically Detailed 3D Neuronal Network Models in Health and Disease., 2008,, 48-V.		0
82	Intracortical cartography in an agranular area. Frontiers in Neuroscience, 2009, 3, 337-343.	1.4	40
83	RuBi-Glutamate: Two-photon and visible-light photoactivation of neurons and dendritic spines. Frontiers in Neural Circuits, 2009, 3, 2.	1.4	172
84	Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: Implications for saccade target selection. Frontiers in Neuroanatomy, 2009, 3, 2.	0.9	103
85	Experience-driven formation of parts-based representations in a model of layered visual memory. Frontiers in Computational Neuroscience, 2009, 3, 15.	1.2	8
86	The Structure of Large-Scale Synchronized Firing in Primate Retina. Journal of Neuroscience, 2009, 29, 5022-5031.	1.7	118
87	Synaptic Output of Individual Layer 4 Neurons in Guinea Pig Visual Cortex. Journal of Neuroscience, 2009, 29, 4930-4944.	1.7	19
88	Cortical Inhibitory Cell Types Differentially Form Intralaminar and Interlaminar Subnetworks with Excitatory Neurons. Journal of Neuroscience, 2009, 29, 10533-10540.	1.7	91
89	Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons. Journal of Neuroscience, 2009, 29, 70-85.	1.7	203
90	Receptive Field Self-Organization in a Model of the Fine Structure in V1 Cortical Columns. Neural Computation, 2009, 21, 2805-2845.	1.3	21

#	Article	IF	CITATIONS
91	Generation, elimination and weight fluctuations of synapses in the cerebral cortex. Communicative and Integrative Biology, 2009, 2, 526-529.	0.6	3
92	Neocortical Disynaptic Inhibition Requires Somatodendritic Integration in Interneurons. Journal of Neuroscience, 2009, 29, 8991-8995.	1.7	35
93	Boundaries, shading, and border ownership: A cusp at their interaction. Journal of Physiology (Paris), 2009, 103, 18-36.	2.1	9
94	Correlations in spiking neuronal networks with distance dependent connections. Journal of Computational Neuroscience, 2009, 27, 177-200.	0.6	36
95	Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature, 2009, 457, 1133-1136.	13.7	335
96	Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature, 2009, 458, 501-504.	13.7	298
97	Reverse engineering the mouse brain. Nature, 2009, 461, 923-929.	13.7	127
98	Electrophysiology in the age of light. Nature, 2009, 461, 930-939.	13.7	395
99	The secret language of siblings. Nature Neuroscience, 2009, 12, 532-534.	7.1	0
100	Motoneurons buckling under stress. Nature Neuroscience, 2009, 12, 534-534.	7.1	2
101	Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 2009, 10, 647-658.	4.9	1,569
102	Comparative molecular neuroanatomy of mammalian neocortex: What can gene expression tell us about areas and layers?. Development Growth and Differentiation, 2009, 51, 343-354.	0.6	20
103	Input Specificity and Dependence of Spike Timingâ€"Dependent Plasticity on Preceding Postsynaptic Activity at Unitary Connections between Neocortical Layer 2/3 Pyramidal Cells. Cerebral Cortex, 2009, 19, 2308-2320.	1.6	34
104	Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends in Neurosciences, 2009, 32, 178-186.	4.2	136
105	The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex. Neuron, 2009, 61, 301-316.	3.8	795
106	Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes. Neuron, 2009, 62, 17-29.	3.8	136
107	Rapid Neocortical Dynamics: Cellular and Network Mechanisms. Neuron, 2009, 62, 171-189.	3.8	391
108	Cortical Circuitry Implementing Graphical Models. Neural Computation, 2009, 21, 3010-3056.	1.3	38

#	Article	IF	CITATIONS
109	Animal Models of Epilepsy. Neuromethods, 2009, , .	0.2	4
110	Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording. Journal of Neuroscience, 2009, 29, 10520-10532.	1.7	143
111	Neuronal structural remodeling: is it all about access?. Current Opinion in Neurobiology, 2010, 20, 557-562.	2.0	56
112	Recent and remote memory recalls modulate different sets of stereotypical interlaminar correlations in Arc/Arg3.1 mRNA expression in cortical areas. Brain Research, 2010, 1352, 118-139.	1.1	8
113	Remodeling of inhibitory synaptic connections in developing ferret visual cortex. Neural Development, 2010, 5, 5.	1.1	10
114	Sparse coding and high-order correlations in fine-scale cortical networks. Nature, 2010, 466, 617-621.	13.7	284
115	The chemical biology of synapses and neuronal circuits. Nature Chemical Biology, 2010, 6, 560-563.	3.9	14
116	Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neuroscience, 2010, 13, 353-360.	7.1	327
117	Dichotomy of functional organization in the mouse auditory cortex. Nature Neuroscience, 2010, 13, 361-368.	7.1	233
118	The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits. Nature Neuroscience, 2010, 13, 1413-1420.	7.1	91
119	Changing tune in auditory cortex. Nature Neuroscience, 2010, 13, 271-273.	7.1	11
120	Zooming in on mouse vision. Nature Neuroscience, 2010, 13, 1045-1046.	7.1	9
121	Building the preBötzinger complex. Nature Neuroscience, 2010, 13, 1046-1046.	7.1	0
122	The Enigmatic Function of Chandelier Cells. Frontiers in Neuroscience, 2010, 4, 201.	1.4	88
123	Cellular imaging of visual cortex reveals the spatial and functional organization of spontaneous activity. Frontiers in Integrative Neuroscience, 2010, 4, .	1.0	31
124	Diversity of Intrinsic Frequency Encoding Patterns in Rat Cortical Neurons—Mechanisms and Possible Functions. PLoS ONE, 2010, 5, e9608.	1.1	6
125	Novel Use of Matched Filtering for Synaptic Event Detection and Extraction. PLoS ONE, 2010, 5, e15517.	1.1	26
126	Neuro-Inspired Speech Recognition Based on Reservoir Computing. , 0, , .		12

#	Article	IF	CITATIONS
127	Role of pre- and postsynaptic activity in thalamocortical axon branching. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7562-7567.	3.3	48
128	Triphasic Dynamics of Stimulus-Dependent Information Flow between Single Neurons in Macaque Inferior Temporal Cortex. Journal of Neuroscience, 2010, 30, 10407-10421.	1.7	18
129	Rate-synchrony relationship between input and output of spike trains in neuronal networks. Physical Review E, 2010, 81, 011917.	0.8	1
130	The Functional Properties of Barrel Cortex Neurons Projecting to the Primary Motor Cortex. Journal of Neuroscience, 2010, 30, 4256-4260.	1.7	88
131	Circuit topology for synchronizing neurons in spontaneously active networks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10244-10249.	3.3	120
132	Whisker-Related Axonal Patterns and Plasticity of Layer 2/3 Neurons in the Mouse Barrel Cortex. Journal of Neuroscience, 2010, 30, 3082-3092.	1.7	58
133	Return to forever. Communicative and Integrative Biology, 2010, 3, 567-568.	0.6	0
134	Sensory Experience and Cortical Rewiring. Neuroscientist, 2010, 16, 186-198.	2.6	79
135	Five points on columns. Frontiers in Neuroanatomy, 2010, 4, 22.	0.9	62
136	On the Use of Dynamic Bayesian Networks in Reconstructing Functional Neuronal Networks from Spike Train Ensembles. Neural Computation, 2010, 22, 158-189.	1.3	54
137	Multi-site optical excitation using ChR2 and micro-LED array. Journal of Neural Engineering, 2010, 7, 016004.	1.8	218
138	Molecular and Cellular Approaches for Diversifying and Extending Optogenetics. Cell, 2010, 141, 154-165.	13.5	919
139	Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo. Neuron, 2010, 67, 562-574.	3.8	196
140	Membrane Potential Synchrony in Primary Visual Cortex during Sensory Stimulation. Neuron, 2010, 68, 1187-1201.	3.8	72
141	An Embedded Subnetwork of Highly Active Neurons in the Neocortex. Neuron, 2010, 68, 1043-1050.	3.8	193
142	Laminar analysis of slow wave activity in humans. Brain, 2010, 133, 2814-2829.	3.7	207
143	Supervised Matrix Factorization with sparseness constraints and fast inference., 2011,,.		3
144	A history of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2011, 3, 4.	1.3	311

#	Article	IF	Citations
145	Morpho-Functional Mapping of Cortical Networks in Brain Slice Preparations Using Paired Electrophysiological Recordings. Neuromethods, 2011, , 405-431.	0.2	4
146	Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nature Neuroscience, 2011, 14, 1045-1052.	7.1	439
147	On the Distribution of Firing Rates in Networks of Cortical Neurons. Journal of Neuroscience, 2011, 31, 16217-16226.	1.7	192
148	Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain. Molecular and Cellular Neurosciences, 2011, 48, 246-257.	1.0	39
149	Dense Inhibitory Connectivity in Neocortex. Neuron, 2011, 69, 1188-1203.	3.8	491
150	Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines. Neuron, 2011, 70, 510-521.	3.8	89
151	Martinotti Cells: Community Organizers. Neuron, 2011, 69, 1042-1045.	3.8	11
152	Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience, 2011, 198, 3-18.	1.1	118
153	Network anatomy and in vivo physiology of visual cortical neurons. Nature, 2011, 471, 177-182.	13.7	797
154	Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nature Neuroscience, 2011, 14, 1174-1181.	7.1	347
155	Cognitive consilience: Primate non-primary neuroanatomical circuits underlying cognition. Frontiers in Neuroanatomy, 2011, 5, 65.	0.9	31
156	Representation of visual scenes by local neuronal populations in layer $2/3$ of mouse visual cortex. Frontiers in Neural Circuits, 2011 , 5 , 18 .	1.4	50
157	The Non-Random Brain: Efficiency, Economy, and Complex Dynamics. Frontiers in Computational Neuroscience, 2011, 5, 5.	1.2	194
158	Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary Visual Cortex of Cre-Transgenic Mice. Frontiers in Systems Neuroscience, 2011, 4, 162.	1.2	55
159	Dendritic Slow Dynamics Enables Localized Cortical Activity to Switch between Mobile and Immobile Modes with Noisy Background Input. PLoS ONE, 2011, 6, e24007.	1.1	2
160	Morphological Approaches to the Anatomical Dissection of Neuronal Circuits. Neuromethods, 2011, , 375-389.	0.2	0
161	Three-dimensional localization of neurons in cortical tetrode recordings. Journal of Neurophysiology, 2011, 106, 828-848.	0.9	40
162	Functional specificity of local synaptic connections in neocortical networks. Nature, 2011, 473, 87-91.	13.7	719

#	Article	IF	CITATIONS
163	Specificity and randomness: structure–function relationships in neural circuits. Current Opinion in Neurobiology, 2011, 21, 801-807.	2.0	22
164	Neuronal Circuits with Whisker-Related Patterns. Molecular Neurobiology, 2011, 43, 155-162.	1.9	16
165	Neural Activity in Frontal Cortical Cell Layers: Evidence for Columnar Sensorimotor Processing. Journal of Cognitive Neuroscience, 2011, 23, 1507-1521.	1.1	61
166	Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition?. Journal of Neuroscience, 2011, 31, 13260-13271.	1.7	445
167	Highly Differentiated Projection-Specific Cortical Subnetworks. Journal of Neuroscience, 2011, 31, 10380-10391.	1.7	144
168	Cell Diversity and Connection Specificity between Callosal Projection Neurons in the Frontal Cortex. Journal of Neuroscience, 2011, 31, 3862-3870.	1.7	70
169	A synaptic organizing principle for cortical neuronal groups. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5419-5424.	3.3	592
170	Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas. PLoS Biology, 2011, 9, e1000572.	2.6	204
171	Power-Law Input-Output Transfer Functions Explain the Contrast-Response and Tuning Properties of Neurons in Visual Cortex. PLoS Computational Biology, 2011, 7, e1001078.	1.5	30
172	Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex. PLoS Computational Biology, 2011, 7, e1002266.	1.5	39
173	How Structure Determines Correlations in Neuronal Networks. PLoS Computational Biology, 2011, 7, e1002059.	1.5	210
174	Sequencing the Connectome. PLoS Biology, 2012, 10, e1001411.	2.6	90
175	Columnar Interactions Determine Horizontal Propagation of Recurrent Network Activity in Neocortex. Journal of Neuroscience, 2012, 32, 5454-5471.	1.7	117
176	Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1731-1736.	3.3	166
177	Correlated neural variability in persistent state networks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6295-6300.	3.3	20
178	Intracortical convergence of layer 6 neurons. NeuroReport, 2012, 23, 736-740.	0.6	28
179	Impact of cortical plasticity on patterns of suprathreshold activity in the cerebral cortex. Journal of Neurophysiology, 2012, 107, 850-858.	0.9	3
180	Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. Journal of Neurophysiology, 2012, 107, 3116-3134.	0.9	207

#	Article	IF	CITATIONS
181	Regular Spiking and Intrinsic Bursting Pyramidal Cells Show Orthogonal Forms of Experience-Dependent Plasticity in Layer V of Barrel Cortex. Neuron, 2012, 73, 391-404.	3.8	74
182	Similarity of Visual Selectivity among Clonally Related Neurons in Visual Cortex. Neuron, 2012, 75, 65-72.	3.8	104
183	Specifying Cortical Circuits: A Role for Cell Lineage. Neuron, 2012, 75, 4-5.	3.8	10
184	Experimental evidence for sparse firing in the neocortex. Trends in Neurosciences, 2012, 35, 345-355.	4.2	327
185	Subcellular Synaptic Connectivity of Layer 2 Pyramidal Neurons in the Medial Prefrontal Cortex. Journal of Neuroscience, 2012, 32, 12808-12819.	1.7	105
186	Multiple patterns of spatiotemporal changes in layer-specific gene expression in the developing visual cortex of higher mammals. Neuroscience Research, 2012, 73, 207-217.	1.0	2
187	Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation. Molecular Brain, 2012, 5, 24.	1.3	73
188	The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map. Journal of Neuroscience, 2012, 32, 4049-4064.	1.7	118
189	Dissection of Cortical Microcircuits by Single-Neuron Stimulation InÂVivo. Current Biology, 2012, 22, 1459-1467.	1.8	113
190	Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: From animal models to human findings. Progress in Neurobiology, 2012, 99, 42-60.	2.8	124
191	Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience, 2012, 15, 1498-1505.	7.1	498
192	From Functional Architecture to Functional Connectomics. Neuron, 2012, 75, 209-217.	3.8	64
193	Neuronal Network Analysis. Neuromethods, 2012, , .	0.2	4
194	Dynamic Coding of Signed Quantities in Cortical Feedback Circuits. Frontiers in Psychology, 2012, 3, 254.	1.1	12
195	Laminar circuit organization and response modulation in mouse visual cortex. Frontiers in Neural Circuits, 2012, 6, 70.	1.4	14
196	Population coding in sparsely connected networks of noisy neurons. Frontiers in Computational Neuroscience, 2012, 6, 23.	1.2	1
197	Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine. Frontiers in Computational Neuroscience, 2012, 6, 42.	1.2	19
198	Population spikes in cortical networks during different functional states. Frontiers in Computational Neuroscience, 2012, 6, 43.	1.2	14

#	Article	IF	CITATIONS
199	Molecular codes for neuronal individuality and cell assembly in the brain. Frontiers in Molecular Neuroscience, 2012, 5, 45.	1.4	80
200	Sibling neurons bond to share sensations. Nature, 2012, 486, 41-42.	13.7	7
201	Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature, 2012, 486, 118-121.	13.7	208
202	Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 2012, 484, 62-68.	13.7	837
203	Detecting synfire chains in parallel spike data. Journal of Neuroscience Methods, 2012, 206, 54-64.	1.3	32
204	Effect of Prestimulus Alpha Power, Phase, and Synchronization on Stimulus Detection Rates in a Biophysical Attractor Network Model. Journal of Neuroscience, 2013, 33, 11817-11824.	1.7	29
205	Stimulus detection rate and latency, firing rates and 1–40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model. NeuroImage, 2013, 83, 458-471.	2.1	13
206	Negative Priming Effect. , 2013, , 1987-1987.		0
207	Genetic Basis of Neuronal Individuality in the Mammalian Brain. Journal of Neurogenetics, 2013, 27, 97-105.	0.6	39
208	Parvalbumin-Expressing Inhibitory Interneurons in Auditory Cortex Are Well-Tuned for Frequency. Journal of Neuroscience, 2013, 33, 13713-13723.	1.7	202
209	Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and Somatosensory Microcircuitry. Journal of Neuroscience, 2013, 33, 14048-14060.	1.7	42
210	Natural Language Paradigm. , 2013, , 1976-1978.		0
211	Cortical High-Density Counterstream Architectures. Science, 2013, 342, 1238406.	6.0	468
212	Cortical connectivity and sensory coding. Nature, 2013, 503, 51-58.	13.7	536
213	Differential Wiring of Layer 2/3 Neurons Drives Sparse and Reliable Firing During Neocortical Development. Cerebral Cortex, 2013, 23, 2690-2699.	1.6	22
214	Common excitatory synaptic inputs to electrically connected cortical fast-spiking cell networks. Journal of Neurophysiology, 2013, 110, 795-806.	0.9	29
215	Functional Convergence of Thalamic and Intrinsic Projections to Cortical Layers 4 and 6. Neurophysiology, 2013, 45, 396-406.	0.2	20
216	Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4. Neuron, 2013, 77, 155-167.	3.8	317

#	Article	IF	CITATIONS
217	The Logic of Inhibitory Connectivity in the Neocortex. Neuroscientist, 2013, 19, 228-237.	2.6	138
218	In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nature Neuroscience, 2013, 16, 193-200.	7.1	167
219	Cortico-cortical projections in mouse visual cortex are functionally target specific. Nature Neuroscience, 2013, 16, 219-226.	7.1	284
220	Cortical Development., 2013,,.		3
221	Tracing Inputs to Inhibitory or Excitatory Neurons of Mouse and Cat Visual Cortex with a Targeted Rabies Virus. Current Biology, 2013, 23, 1746-1755.	1.8	53
222	Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Research, 2013, 1536, 68-87.	1.1	39
223	Spatiotemporal Dynamics of Functional Clusters of Neurons in the Mouse Motor Cortex during a Voluntary Movement. Journal of Neuroscience, 2013, 33, 1377-1390.	1.7	86
224	Layer-Specific Experience-Dependent Rewiring of Thalamocortical Circuits. Journal of Neuroscience, 2013, 33, 4181-4191.	1.7	43
225	Encoding by Synchronization in the Primate Striatum. Journal of Neuroscience, 2013, 33, 4854-4866.	1.7	41
226	Inhibitory Interneurons Decorrelate Excitatory Cells to Drive Sparse Code Formation in a Spiking Model of V1. Journal of Neuroscience, 2013, 33, 5475-5485.	1.7	161
227	The emergence of functional microcircuits in visual cortex. Nature, 2013, 496, 96-100.	13.7	414
228	Functional Heterogeneity in Neighboring Neurons of Cat Primary Visual Cortex in Response to Both Artificial and Natural Stimuli. Journal of Neuroscience, 2013, 33, 7325-7344.	1.7	49
229	Cortical Columns. , 2013, , 109-129.		12
230	Enhanced viability in organizations: An approach to expanding the requirements of the viable system model. , 2013, , .		1
231	Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system. Journal of Neurophysiology, 2013, 110, 456-469.	0.9	12
232	Computing the size and number of neuronal clusters in local circuits. Frontiers in Neuroanatomy, 2013, 7, 1.	0.9	7 2
233	Structure-Dynamics Relationships in Bursting Neuronal Networks Revealed Using a Prediction Framework. PLoS ONE, 2013, 8, e69373.	1.1	15
234	Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1. Frontiers in Neural Circuits, 2013, 7, 143.	1.4	36

#	Article	IF	CITATIONS
235	Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits, 2013, 7, 151.	1.4	55
236	Induction and modulation of persistent activity in a layer V PFC microcircuit model. Frontiers in Neural Circuits, 2013, 7, 161.	1.4	32
237	Associative memory model with long-tail-distributed Hebbian synaptic connections. Frontiers in Computational Neuroscience, 2012, 6, 102.	1.2	27
238	A micro-pool model for decision-related signals in visual cortical areas. Frontiers in Computational Neuroscience, 2013, 7, 115.	1.2	12
239	Attractor Hypothesis of Associative Cortex: Insights from a Biophysically Detailed Network Model. , 2013, , .		3
240	Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits. PLoS ONE, 2014, 9, e94292.	1.1	50
241	A Canonical Circuit for Generating Phase-Amplitude Coupling. PLoS ONE, 2014, 9, e102591.	1.1	68
242	Rabies virus glycoprotein variants display different patterns in rabies monosynaptic tracing. Frontiers in Neuroanatomy, 2014, 7, 47.	0.9	26
243	Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures. Frontiers in Neuroanatomy, 2014, 8, 125.	0.9	3
244	Genetic dissection of GABAergic neural circuits in mouse neocortex. Frontiers in Cellular Neuroscience, 2014, 8, 8.	1.8	85
245	Input clustering and the microscale structure of local circuits. Frontiers in Neural Circuits, 2014, 8, 112.	1.4	38
246	Balanced neural architecture and the idling brain. Frontiers in Computational Neuroscience, 2014, 8, 56.	1.2	35
247	Synaptic and nonsynaptic plasticity approximating probabilistic inference. Frontiers in Synaptic Neuroscience, 2014, 6, 8.	1.3	34
248	Dynamics of random neural networks with bistable units. Physical Review E, 2014, 90, 062710.	0.8	78
249	The Structure of Pairwise Correlation in Mouse Primary Visual Cortex Reveals Functional Organization in the Absence of an Orientation Map. Cerebral Cortex, 2014, 24, 2707-2720.	1.6	47
250	Distinct Neuronal Interactions in Anterior Inferotemporal Areas of Macaque Monkeys during Retrieval of Object Association Memory. Journal of Neuroscience, 2014, 34, 9377-9388.	1.7	14
251	Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex. PLoS Computational Biology, 2014, 10, e1003710.	1.5	16
252	Step forward to map fully parallel energy efficient cortical columns on field programmable gate arrays. IET Science, Measurement and Technology, 2014, 8, 432-440.	0.9	4

#	Article	IF	CITATIONS
253	Neuronal subtype specification in establishing mammalian neocortical circuits. Neuroscience Research, 2014, 86, 37-49.	1.0	23
254	Pyramidal Cells Make Specific Connections onto Smooth (GABAergic) Neurons in Mouse Visual Cortex. PLoS Biology, 2014, 12, e1001932.	2.6	27
255	Dendritic Nonlinearities Reduce Network Size Requirements and Mediate ON and OFF States of Persistent Activity in a PFC Microcircuit Model. PLoS Computational Biology, 2014, 10, e1003764.	1.5	15
256	Developmental Self-Construction and -Configuration of Functional Neocortical Neuronal Networks. PLoS Computational Biology, 2014, 10, e1003994.	1.5	24
257	The Stimulus Selectivity and Connectivity of Layer Six Principal Cells Reveals Cortical Microcircuits Underlying Visual Processing. Neuron, 2014, 83, 1431-1443.	3.8	165
258	Spike synchronization in cat primary visual cortex depends on similarity of surroundâ€suppression magnitude. European Journal of Neuroscience, 2014, 39, 934-945.	1.2	2
259	An Evaluation of Eastern North American Ground-Motion Models Developed Using the Hybrid Empirical Method. Bulletin of the Seismological Society of America, 2014, 104, 347-359.	1.1	11
260	The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cerebral Cortex, 2014, 24, 785-806.	1.6	338
261	Optical control of retrogradely infected neurons using drug-regulated "TLoop―lentiviral vectors. Journal of Neurophysiology, 2014, 111, 2150-2159.	0.9	24
262	Untangling GABAergic wiring in the cortical microcircuit. Current Opinion in Neurobiology, 2014, 26, 7-14.	2.0	144
263	Single neuron and population coding of natural sounds in auditory cortex. Current Opinion in Neurobiology, 2014, 24, 103-110.	2.0	62
264	Modular Organization of Axial Microcircuits in Zebrafish. Science, 2014, 343, 197-200.	6.0	109
265	Apical Abscission Alters Cell Polarity and Dismantles the Primary Cilium During Neurogenesis. Science, 2014, 343, 200-204.	6.0	154
266	Designing Tools for Assumption-Proof Brain Mapping. Neuron, 2014, 83, 1239-1241.	3.8	5
267	Connection-type-specific biases make uniform random network models consistent with cortical recordings. Journal of Neurophysiology, 2014, 112, 1801-1814.	0.9	12
268	Functional organization of synaptic connections in the neocortex. Science, 2014, 346, 555-555.	6.0	1
269	Cortical fosGFP Expression Reveals Broad Receptive Field Excitatory Neurons Targeted by POm. Neuron, 2014, 84, 1065-1078.	3.8	62
270	Interneuron firing precedes sequential activation of neuronal ensembles in hippocampal slices. European Journal of Neuroscience, 2014, 39, 2027-2036.	1.2	14

#	Article	IF	CITATIONS
271	Toward a Genetic Dissection of Cortical Circuits in the Mouse. Neuron, 2014, 83, 1284-1302.	3.8	121
272	Synapse-Specific Control of Experience-Dependent Plasticity by Presynaptic NMDA Receptors. Neuron, 2014, 83, 879-893.	3.8	70
273	Emergence of Feature-Specific Connectivity in Cortical Microcircuits in the Absence of Visual Experience. Journal of Neuroscience, 2014, 34, 9812-9816.	1.7	95
274	Structured Connectivity in Cerebellar Inhibitory Networks. Neuron, 2014, 81, 913-929.	3.8	103
275	Computational Implications of Lognormally Distributed Synaptic Weights. Proceedings of the IEEE, 2014, 102, 500-512.	16.4	33
276	Experience-Dependent Emergence of Fine-Scale Networks in Visual Cortex. Journal of Neuroscience, 2014, 34, 12576-12586.	1.7	27
278	Synergistic activity between primary visual neurons. Neuroscience, 2014, 268, 255-264.	1.1	13
279	Alterations of Neocortical Pyramidal Neurons: Turning Points in the Genesis of Mental Retardation. Frontiers in Pediatrics, 2014, 2, 86.	0.9	15
280	Transition to Chaos in Random Networks with Cell-Type-Specific Connectivity. Physical Review Letters, 2015, 114, 088101.	2.9	97
281	Mean-field dynamics of a random neural network with noise. Physical Review E, 2015, 92, 062813.	0.8	10
282	Electrophysiological and Morphological Characterization of Neuronal Microcircuits in Acute Brain Slices Using Paired Patch-Clamp Recordings. Journal of Visualized Experiments, 2015, , 52358.	0.2	19
283	Identifying and tracking simulated synaptic inputs from neuronal firing: insights from in vitro experiments. BMC Neuroscience, $2015, 16, .$	0.8	0
284	The transfer and transformation of collective network information in gene-matched networks. Scientific Reports, 2015, 5, 14984.	1.6	2
285	Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity. BMC Neuroscience, 2015, 16, 64.	0.8	11
286	Multimap formation in visual cortex. Journal of Vision, 2015, 15, 3.	0.1	1
287	From a meso- to micro-scale connectome: array tomography and mGRASP. Frontiers in Neuroanatomy, 2015, 9, 78.	0.9	13
288	Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Frontiers in Neural Circuits, 2014, 8, 149.	1.4	36
289	Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent. Frontiers in Neural Circuits, 2015, 9, 5.	1.4	17

#	Article	IF	CITATIONS
290	Model-based analysis of pattern motion processing in mouse primary visual cortex. Frontiers in Neural Circuits, 2015, 9, 38.	1.4	28
291	Functional Network Overlap as Revealed by fMRI Using sICA and Its Potential Relationships with Functional Heterogeneity, Balanced Excitation and Inhibition, and Sparseness of Neuron Activity. PLoS ONE, 2015, 10, e0117029.	1.1	19
292	Emergence of Slow-Switching Assemblies in Structured Neuronal Networks. PLoS Computational Biology, 2015, 11, e1004196.	1.5	45
293	Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses. PLoS Computational Biology, 2015, 11, e1004458.	1.5	64
294	Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex. PLoS ONE, 2015, 10, e0144403.	1.1	2
295	Cortical Cliques: A Few Plastic Neurons Get All the Action. Neuron, 2015, 86, 1113-1116.	3.8	7
296	Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex InÂVivo. Neuron, 2015, 86, 1290-1303.	3.8	96
297	Rapid Bidirectional Reorganization of Cortical Microcircuits. Cerebral Cortex, 2015, 25, 3025-3035.	1.6	25
298	InÂVivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons. Cell Reports, 2015, 13, 2098-2106.	2.9	74
299	Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex. Cerebral Cortex, 2015, 25, 1782-1791.	1.6	112
300	Cortical folding scales universally with surface area and thickness, not number of neurons. Science, 2015, 349, 74-77.	6.0	218
301	Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules. Science, 2015, 349, 70-74.	6.0	212
302	Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex. Journal of Neuroscience, 2015, 35, 10236-10251.	1.7	82
303	Eigenspectrum bounds for semirandom matrices with modular and spatial structure for neural networks. Physical Review E, 2015, 91, 042808.	0.8	15
304	Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments. PLoS Computational Biology, 2015, 11, e1004167.	1.5	21
305	Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration. Neuropsychologia, 2015, 76, 108-124.	0.7	43
306	Global Order and Local Disorder in Brain Maps. Annual Review of Neuroscience, 2015, 38, 247-268.	5.0	36
307	Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cerebral Cortex, 2015, 25, 3561-3571.	1.6	57

#	Article	IF	CITATIONS
308	Motor Cortex Maturation Is Associated with Reductions in Recurrent Connectivity among Functional Subpopulations and Increases in Intrinsic Excitability. Journal of Neuroscience, 2015, 35, 4719-4728.	1.7	27
309	Development and function of human cerebral cortex neural networks from pluripotent stem cells <i>in vitro</i> . Development (Cambridge), 2015, 142, 3178-3187.	1.2	103
310	Packet-based communication in the cortex. Nature Reviews Neuroscience, 2015, 16, 745-755.	4.9	160
311	Electrophysiological and firing properties of neurons: Categorizing soloists and choristers in primary visual cortex. Neuroscience Letters, 2015, 604, 103-108.	1.0	13
312	Modulation of functional connectivity following visual adaptation: Homeostasis in V1. Brain Research, 2015, 1594, 136-153.	1.1	11
313	<i>Cux1</i> and <i>Cux2</i> selectively target basal and apical dendritic compartments of layer Ilâ€III cortical neurons. Developmental Neurobiology, 2015, 75, 163-172.	1.5	49
314	A gradual depth-dependent change in connectivity features of supragranular pyramidal cells in rat barrel cortex. Brain Structure and Function, 2015, 220, 1317-1337.	1.2	48
315	Geometrical Structure of Single Axons of Visual Corticocortical Connections in the Mouse. , 2016, , 93-116.		2
316	Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware. Frontiers in Neuroanatomy, 2016, 10, 37.	0.9	16
317	Inhibitory Circuits in Cortical Layer 5. Frontiers in Neural Circuits, 2016, 10, 35.	1.4	103
318	Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity. Frontiers in Neural Circuits, 2016, 10, 41.	1.4	13
319	High-Degree Neurons Feed Cortical Computations. PLoS Computational Biology, 2016, 12, e1004858.	1.5	78
320	A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity. PLoS Computational Biology, 2016, 12, e1004930.	1.5	21
321	Shaping Neural Circuits by High Order Synaptic Interactions. PLoS Computational Biology, 2016, 12, e1005056.	1.5	30
322	Neural Elements for Predictive Coding. Frontiers in Psychology, 2016, 7, 1792.	1.1	218
323	Primary visual cortex shows laminarâ€specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity. Journal of Physiology, 2016, 594, 1891-1910.	1.3	58
324	Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus. Nature Neuroscience, 2016, 19, 1034-1040.	7.1	62
325	Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity. ENeuro, 2016, 3, ENEURO.0048-15.2016.	0.9	11

#	ARTICLE	IF	CITATIONS
326	Correlations and Neuronal Population Information. Annual Review of Neuroscience, 2016, 39, 237-256.	5.0	314
327	Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. Journal of Neurophysiology, 2016, 115, 1399-1409.	0.9	129
328	Is cortical connectivity optimized for storing information?. Nature Neuroscience, 2016, 19, 749-755.	7.1	114
329	Synaptic refinement during development and its effect on slow-wave activity: a computational study. Journal of Neurophysiology, 2016, 115, 2199-2213.	0.9	22
330	Functional synchrony and stimulus selectivity of visual cortical units: Comparison between cats and mice. Neuroscience, 2016, 337, 331-338.	1.1	6
331	Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nature Communications, 2016, 7, 11313.	5.8	83
332	Spatial clustering of tuning in mouse primary visual cortex. Nature Communications, 2016, 7, 12270.	5.8	102
333	Microglia contact induces synapse formation in developing somatosensory cortex. Nature Communications, 2016, 7, 12540.	5.8	495
334	Optical Control of a Neuronal Protein Using a Genetically Encoded Unnatural Amino Acid in Neurons. Journal of Visualized Experiments, 2016, , e53818.	0.2	5
335	Noise-sustained synchronization of electrically coupled FitzHugh–Nagumo networks under counterphase external forcing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1964-1970.	0.9	4
336	Functional Local Input to Layer 5 Pyramidal Neurons in the Rat Visual Cortex. Cerebral Cortex, 2016, 26, 991-1003.	1.6	13
337	Anatomy and function of an excitatory network in the visual cortex. Nature, 2016, 532, 370-374.	13.7	447
338	Optical detection of neuron connectivity by random access two-photon microscopy. Journal of Neuroscience Methods, 2016, 263, 48-56.	1.3	8
339	Spatial clusters of constitutively active neurons in mouse visual cortex. Anatomical Science International, 2016, 91, 188-195.	0.5	9
340	Optogenetic Mapping of Neuronal Connections and their Plasticity., 0,, 224-238.		0
341	Cortical Spike Synchrony as a Measure of Input Familiarity. Neural Computation, 2017, 29, 2491-2510.	1.3	13
342	Spontaneous activity in the visual cortex is organized by visual streams. Human Brain Mapping, 2017, 38, 4613-4630.	1.9	9
343	Lattice system of functionally distinct cell types in the neocortex. Science, 2017, 358, 610-615.	6.0	65

#	Article	IF	CITATIONS
344	Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices. Journal of Neuroscience, 2017, 37, 8919-8928.	1.7	9
345	The Role of Structural Plasticity in Producing Nonrandom Neural Connectivity. , 2017, , 221-245.		1
346	Temporally precise single-cell-resolution optogenetics. Nature Neuroscience, 2017, 20, 1796-1806.	7.1	227
347	Synaptic organization of visual space in primary visual cortex. Nature, 2017, 547, 449-452.	13.7	178
348	Selection of Synaptic Connections by Wiring Plasticity for Robust Learning by Synaptic Weight Plasticity., 2017,, 275-292.		0
349	Connectivity motifs of inhibitory neurons in the mouse Auditory Cortex. Scientific Reports, 2017, 7, 16987.	1.6	9
350	Bifurcation Analysis on Phase-Amplitude Cross-Frequency Coupling in Neural Networks with Dynamic Synapses. Frontiers in Computational Neuroscience, 2017, 11, 18.	1.2	8
351	Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons. Frontiers in Computational Neuroscience, 2017, 11, 52.	1.2	22
352	Information and the Origin of Qualia. Frontiers in Systems Neuroscience, 2017, 11, 22.	1.2	7
354	Specific excitatory connectivity for feature integration in mouse primary visual cortex. PLoS Computational Biology, 2017, 13, e1005888.	1.5	5
355	Vocal learning promotes patterned inhibitory connectivity. Nature Communications, 2017, 8, 2105.	5.8	28
356	Dynamic micro-circuit analysis for calcium imaging data. , 2017, , .		1
357	Clustering promotes switching dynamics in networks of noisy neurons. Chaos, 2018, 28, 023111.	1.0	11
358	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	3.8	374
359	Efficient communication dynamics on macro-connectome, and the propagation speed. Scientific Reports, 2018, 8, 2510.	1.6	7
360	Indistinguishable Synapses Lead to Sparse Networks. Neural Computation, 2018, 30, 708-722.	1.3	2
361	Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse. Cerebral Cortex, 2018, 28, 370-386.	1.6	38
362	Structured networks support sparse traveling waves in rodent somatosensory cortex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5277-5282.	3.3	18

#	Article	IF	CITATIONS
363	Random Recurrent Networks Near Criticality Capture the Broadband Power Distribution of Human ECoG Dynamics. Cerebral Cortex, 2018, 28, 3610-3622.	1.6	34
364	Interneuron Cooperativity in Cortical Circuits. Neuroscientist, 2018, 24, 329-341.	2.6	5
365	Versatility and Flexibility of Cortical Circuits. Neuroscientist, 2018, 24, 456-470.	2.6	8
366	Feedforward Approximations to Dynamic Recurrent Network Architectures. Neural Computation, 2018, 30, 546-567.	1.3	2
367	Studies of cortical connectivity using optical circuit mapping methods. Journal of Physiology, 2018, 596, 145-162.	1.3	17
368	Visual physiology of the layer 4 cortical circuit in silico. PLoS Computational Biology, 2018, 14, e1006535.	1.5	7 5
369	Segregated Subnetworks of Intracortical Projection Neurons in Primary Visual Cortex. Neuron, 2018, 100, 1313-1321.e6.	3.8	61
370	A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLoS Computational Biology, 2018, 14, e1006359.	1.5	91
371	Modeling driver cells in developing neuronal networks. PLoS Computational Biology, 2018, 14, e1006551.	1.5	13
372	Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. Journal of Neurophysiology, 2018, 120, 3063-3076.	0.9	11
373	Microglia Enhance Synapse Activity to Promote Local Network Synchronization. ENeuro, 2018, 5, ENEURO.0088-18.2018.	0.9	134
374	Coordinated neuronal ensembles in primary auditory cortical columns. ELife, 2018, 7, .	2.8	38
375	Experience-Dependent Development of Feature-Selective Synchronization in the Primary Visual Cortex. Journal of Neuroscience, 2018, 38, 7852-7869.	1.7	6
376	The Effect of Single Pyramidal Neuron Firing Within Layer 2/3 and Layer 4 in Mouse V1. Frontiers in Neural Circuits, 2018, 12, 29.	1.4	2
377	Transient and Persistent UP States during Slow-wave Oscillation and their Implications for Cell-Assembly Dynamics. Scientific Reports, 2018, 8, 10680.	1.6	3
378	Fast Inhibitory Decay Facilitates Adult-like Temporal Processing in Layer 5 of Developing Primary Auditory Cortex. Cerebral Cortex, 2018, 28, 4319-4335.	1.6	2
379	Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Research, 2018, 28, 730-745.	5.7	179
380	Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. Journal of Physiological Sciences, 2019, 69, 65-77.	0.9	2

#	Article	IF	CITATIONS
381	Cortical layer–specific critical dynamics triggering perception. Science, 2019, 365, .	6.0	447
382	Development and Arealization of the Cerebral Cortex. Neuron, 2019, 103, 980-1004.	3.8	241
383	Objective Morphological Classification of Neocortical Pyramidal Cells. Cerebral Cortex, 2019, 29, 1719-1735.	1.6	75
384	Leveraging heterogeneity for neural computation with fading memory in layer 2/3 cortical microcircuits. PLoS Computational Biology, 2019, 15, e1006781.	1.5	22
385	Dynamics and orientation selectivity in a cortical model of rodent V1 with excess bidirectional connections. Scientific Reports, 2019, 9, 3334.	1.6	3
386	Inhibitory Units: An Organizing Nidus for Feature-Selective SubNetworks in Area V1. Journal of Neuroscience, 2019, 39, 4931-4944.	1.7	7
387	Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks. Nature Communications, 2019, 10, 5224.	5. 8	26
388	Audio-visual experience strengthens multisensory assemblies in adult mouse visual cortex. Nature Communications, 2019, 10, 5684.	5. 8	46
389	Synaptic topography – Converging connections and emerging function. Neuroscience Research, 2019, 141, 29-35.	1.0	1
390	Morphological and Physiological Characteristics of Ebf2-EGFP-Expressing Cajal-Retzius Cells in Developing Mouse Neocortex. Cerebral Cortex, 2019, 29, 3864-3878.	1.6	6
391	What do we know about laminar connectivity?. NeuroImage, 2019, 197, 772-784.	2.1	51
392	Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity. Cerebral Cortex, 2019, 29, 937-951.	1.6	30
393	Excitatory and Inhibitory Subnetworks Are Equally Selective during Decision-Making and Emerge Simultaneously during Learning. Neuron, 2020, 105, 165-179.e8.	3.8	82
394	Tuning network dynamics from criticality to an asynchronous state. PLoS Computational Biology, 2020, 16, e1008268.	1.5	19
395	A recurrent circuit implements normalization, simulating the dynamics of V1 activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22494-22505.	3.3	24
396	Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24514-24525.	3.3	50
397	Autonomous emergence of connectivity assemblies via spike triplet interactions. PLoS Computational Biology, 2020, 16, e1007835.	1.5	26
398	The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. Neuron, 2020, 107, 566-579.e7.	3.8	61

#	Article	IF	CITATIONS
399	Identification of region-specific astrocyte subtypes at single cell resolution. Nature Communications, 2020, 11, 1220.	5.8	444
400	Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron, 2020, 106, 388-403.e18.	3.8	163
401	Coordination of different modes of neuronal migration and functional organization of the cerebral cortex., 2020,, 531-553.		0
402	Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System. Neuron, 2020, 106, 21-36.	3.8	124
403	Long-Range Interhemispheric Projection Neurons Show Biased Response Properties and Fine-Scale Local Subnetworks in Mouse Visual Cortex. Cerebral Cortex, 2021, 31, 1307-1315.	1.6	7
404	Compensatory neuroadaptation to binge drinking: Human evidence for allostasis. Addiction Biology, 2021, 26, e12960.	1.4	6
405	Causal Network Inference for Neural Ensemble Activity. Neuroinformatics, 2021, 19, 515-527.	1.5	2
406	Neural Mechanisms in Autism. , 2021, , 3102-3115.		0
408	Learning excitatory-inhibitory neuronal assemblies in recurrent networks. ELife, 2021, 10, .	2.8	24
409	Cortical ensembles selective for context. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	29
411	Information capacity of a stochastically responding neuron assembly. Neurocomputing, 2021, 436, 22-34.	3.5	1
412	Multi-scale network imaging in a mouse model of amyloidosis. Cell Calcium, 2021, 95, 102365.	1.1	9
413	A new era for executive function research: On the transition from centralized to distributed executive functioning. Neuroscience and Biobehavioral Reviews, 2021, 124, 235-244.	2.9	24
414	Functional and Structural Properties of Highly Responsive Somatosensory Neurons in Mouse Barrel Cortex. Cerebral Cortex, 2021, 31, 4533-4553.	1.6	4
415	How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. Annual Review of Neuroscience, 2021, 44, 517-546.	5.0	51
416	Identification of Pattern Completion Neurons in Neuronal Ensembles Using Probabilistic Graphical Models. Journal of Neuroscience, 2021, 41, 8577-8588.	1.7	11
417	Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision. Neuroscience Research, 2021, 171, 9-18.	1.0	5
418	OUP accepted manuscript. Cerebral Cortex, 2021, 32, 76-92.	1.6	1

#	Article	IF	CITATIONS
420	A Dynamical Model for Receptive Field Self-organization in V1 Cortical Columns. Lecture Notes in Computer Science, 2007, , 389-398.	1.0	3
421	Biophysical Models of Neural Computation: Max and Tuning Circuits. , 2006, , 164-189.		8
422	A Correspondence-Based Neural Model for Face Recognition. Studies in Computational Intelligence, 2010, , 29-67.	0.7	1
423	Training of Sparsely Connected MLPs. Lecture Notes in Computer Science, 2011, , 356-365.	1.0	1
424	Neocortical Neurogenesis and Circuit Assembly. , 2013, , 153-180.		1
425	Cortical columns. , 2020, , 103-126.		10
426	Functional Consequences of Transformed Network Topology in Hippocampal Sclerosis., 2008,, 112-131.		1
442	A Phenomenological Theory of Spatially Structured Local Synaptic Connectivity. PLoS Computational Biology, 2005, 1, e11.	1.5	20
443	Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity. PLoS Computational Biology, 2012, 8, e1002311.	1.5	23
444	Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity. PLoS Computational Biology, 2015, 11, e1004420.	1.5	45
445	Locking of correlated neural activity to ongoing oscillations. PLoS Computational Biology, 2017, 13, e1005534.	1.5	5
446	Linking structure and activity in nonlinear spiking networks. PLoS Computational Biology, 2017, 13, e1005583.	1.5	45
447	High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression. PLoS ONE, 2008, 3, e2005.	1.1	159
448	Columnar Connectivity and Laminar Processing in Cat Primary Auditory Cortex. PLoS ONE, 2010, 5, e9521.	1.1	86
449	Spatiotemporal Properties of the Action Potential Propagation in the Mouse Visual Cortical Slice Analyzed by Calcium Imaging. PLoS ONE, 2010, 5, e13738.	1.1	18
450	Reactivation in Working Memory: An Attractor Network Model of Free Recall. PLoS ONE, 2013, 8, e73776.	1.1	30
451	Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits. PLoS ONE, 2014, 9, e85643.	1.1	56
452	An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity. ENeuro, 2020, 7, ENEURO.0374-19.2020.	0.9	23

#	Article	IF	CITATIONS
453	Anterior Thalamic Excitation and Feedforward Inhibition of Presubicular Neurons Projecting to Medial Entorhinal Cortex. Journal of Neuroscience, 2018, 38, 6411-6425.	1.7	22
454	Temporal Association Cortex - A Cortical Hub for Processing Infant Vocalizations. SSRN Electronic Journal, 0, , .	0.4	1
455	Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. ELife, $2015,4,.$	2.8	76
456	Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. ELife, 2015, 4, .	2.8	68
457	Complementary networks of cortical somatostatin interneurons enforce layer specific control. ELife, 2019, 8, .	2.8	89
458	How many neurons are sufficient for perception of cortical activity?. ELife, 2020, 9, .	2.8	82
459	Comprehensive characterization of oscillatory signatures in a model circuit with PV- and SOM-expressing interneurons. Biological Cybernetics, 2021, 115, 487-517.	0.6	8
460	Synchronous inhibitory synaptic inputs to layer II/III pyramidal neurons in the murine barrel cortex. Brain Research, 2021, 1773, 147686.	1.1	1
461	å\$e,,³çš®è³ªã®ä,ã®ãf¢ãfãf¶4ãf•:è¨`算諗的神経解剗å¦ã•ãfãffãf^ãf¯ãf¼ã,¯ç§'å¦ã®æŽ¥ç,¹.The B	raino& Neu	raldNetworks
462	Neuropsychology and basic neuroscience. Neuropsychological Trends (discontinued), 2007, , .	0.4	0
463	Synchrony-Induced Attractor Transition in Cortical Neural Networks Organized by Spike-Timing Dependent Plasticity. Journal of Robotics and Mechatronics, 2007, 19, 409-415.	0.5	0
464	Neural Ensembles in Taste Coding. , 2008, , 329-337.		0
465	Functional Networks Based on Pairwise Spike Synchrony Can Capture Topologies of Synaptic Connectivity in a Local Cortical Network Model. Lecture Notes in Computer Science, 2009, , 978-985.	1.0	1
466	Complexity Untangled: Large-Scale Realistic Computational Models in Epilepsy. Neuromethods, 2009, , 163-182.	0.2	0
467	Learning of Lateral Connections for Representational Invariant Recognition. Lecture Notes in Computer Science, 2010, , 21-30.	1.0	0
468	Telencefalo: neocortex., 2010,, 491-679.		1
468	Telencefalo: neocortex. , 2010, , 491-679. Optical Imaging and Control of Neurons. , 2012, , 245-256.		0

#	ARTICLE	IF	Citations
472	Experience Dependent Emergence of Fine-scale Networks in Visual Cortex. The Brain & Neural Networks, 2015, 22, 37-43.	0.1	0
474	S1 Laminar Specialization., 2016,, 505-531.		2
495	Integration of Spiking Neural Networks for Understanding Interval Timing. , 0, , .		0
496	Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Frontiers in Neuroanatomy, 2021, 15, 757499.	0.9	3
499	Bridging the Functional and Wiring Properties of V1 Neurons Through Sparse Coding. Neural Computation, 2022, 34, 104-137.	1.3	1
500	Frequency Synchronization and Excitabilities of Two Coupled Heterogeneous Morris-Lecar Neurons. SSRN Electronic Journal, 0, , .	0.4	0
501	Synaptic connectivity to L2/3 of primary visual cortex measured by two-photon optogenetic stimulation. ELife, 2022, 11 , .	2.8	35
504	Monosynaptic rabies virus tracing from projection-targeted single neurons. Neuroscience Research, 2022, 178, 20-32.	1.0	5
505	Multi-regional module-based signal transmission in mouse visual cortex. Neuron, 2022, 110, 1585-1598.e9.	3.8	27
506	Neuronal Activity Patterns Regulate Brain-Derived Neurotrophic Factor Expression in Cortical Cells via Neuronal Circuits. Frontiers in Neuroscience, 2021, 15, 699583.	1.4	13
509	Metastable dynamics of neural circuits and networks. Applied Physics Reviews, 2022, 9, 011313.	5.5	25
510	Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons. Chaos, Solitons and Fractals, 2022, 157, 111959.	2.5	2
511	The impact of neuron morphology on cortical network architecture. Cell Reports, 2022, 39, 110677.	2.9	29
515	Intrinsic excitability mechanisms of neuronal ensemble formation. ELife, 2022, 11, .	2.8	19
516	Translaminar recurrence from layer 5 suppresses superficial cortical layers. Nature Communications, 2022, 13, 2585.	5.8	9
518	Two sparsities are better than one: unlocking the performance benefits of sparse–sparse networks. Neuromorphic Computing and Engineering, 2022, 2, 034004.	2.8	2
519	HPC Data Analysis Pipeline for Neuronal Cluster Detection. , 2022, , .		0
522	Formation and computational implications of assemblies in neural circuits. Journal of Physiology, 2023, 601, 3071-3090.	1.3	9

#	ARTICLE	IF	CITATIONS
524	Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Frontiers in Integrative Neuroscience, $0, 16, .$	1.0	3
525	Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neuroscience and Therapeutics, 2023, 29, 24-36.	1.9	29
528	Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs. ELife, 0, 11 , .	2.8	3
529	Uncovering hidden network architecture from spiking activities using an exact statistical input-output relation of neurons. Communications Biology, 2023, 6, .	2.0	1
530	Developmental neuronal origin regulates neocortical map formation. Cell Reports, 2023, 42, 112170.	2.9	5
532	Sleep spindles in primates: Modeling the effects of distinct laminar thalamocortical connectivity in core, matrix, and reticular thalamic circuits. Network Neuroscience, 2023, 7, 743-768.	1.4	3
533	Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice. Nature Communications, 2023, 14, .	5.8	9
537	Single-Cell RNA-Sequencing in Astrocyte Development, Heterogeneity, and Disease. Cellular and Molecular Neurobiology, 2023, 43, 3449-3464.	1.7	1