Identification of molecular apocrine breast tumours by

Oncogene 24, 4660-4671 DOI: 10.1038/sj.onc.1208561

Citation Report

#	Article	IF	CITATIONS
2	Decreased Androgen Receptor Levels and Receptor Function in Breast Cancer Contribute to the Failure of Response to Medroxyprogesterone Acetate. Cancer Research, 2005, 65, 8487-8496.	0.4	58
3	Pathway and gene-set activation measurement from mRNA expression data: the tissue distribution of human pathways. Genome Biology, 2006, 7, R93.	13.9	93
4	High-throughput genomic technology in research and clinical management of breast cancer. Exploiting the potential of gene expression profiling: is it ready for the clinic?. Breast Cancer Research, 2006, 8, 214.	2.2	28
5	Breast cancer: not a single disease. European Journal of Cancer, Supplement, 2006, 4, 1-3.	2.2	3
6	Pathway analysis using random forests classification and regression. Bioinformatics, 2006, 22, 2028-2036.	1.8	210
7	Molecular pathology of breast apocrine carcinomas: A protein expression signature specific for benign apocrine metaplasia. FEBS Letters, 2006, 580, 2935-2944.	1.3	48
8	GATA-3 Maintains the Differentiation of the Luminal Cell Fate in the Mammary Gland. Cell, 2006, 127, 1041-1055.	13.5	576
9	Data Perturbation Independent Diagnosis and Validation of Breast Cancer Subtypes Using Clustering and Patterns. Cancer Informatics, 2006, 2, 117693510600200.	0.9	10
10	Gene Expression Profiling in Hereditary, BRCA1-linked Breast Cancer: Preliminary Report. Hereditary Cancer in Clinical Practice, 2006, 4, 28.	0.6	12
11	Basic science (July 2005). Breast Cancer Online: BCO, 2006, 9, 1-3.	0.1	0
12	Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene, 2006, 25, 2273-2284.	2.6	494
13	An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene, 2006, 25, 3994-4008.	2.6	494
14	Non-operative breast pathology: apocrine lesions. Journal of Clinical Pathology, 2006, 60, 1313-1320.	1.0	57
15	Wnt-1 is Dominant over Neu in Specifying Mammary Tumor Expression Profiles. Technology in Cancer Research and Treatment, 2006, 5, 565-571.	0.8	11
16	Genomics and the Impact of New Technologies on the Management of Colorectal Cancer. Oncologist, 2006, 11, 988-991.	1.9	5
17	PACK: Profile Analysis using Clustering and Kurtosis to find molecular classifiers in cancer. Bioinformatics, 2006, 22, 2269-2275.	1.8	61
18	Microarrays in breast cancer research and clinical practice – the future lies ahead. Endocrine-Related Cancer, 2006, 13, 1017-1031.	1.6	22
19	Apocrine Cysts of the Breast. Molecular and Cellular Proteomics, 2006, 5, 462-483.	2.5	33

#	Article		CITATIONS
20	Tissue detection of biomolecular predictors in breast cancer. Expert Review of Anticancer Therapy, 2006, 6, 1225-1232.		5
21	Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer. Bioinformatics, 2007, 23, 2273-2280.	1.8	28
22	Tenascin-W Is a Novel Marker for Activated Tumor Stroma in Low-grade Human Breast Cancer and Influences Cell Behavior. Cancer Research, 2007, 67, 9169-9179.	0.4	79
23	The Dynamics of Estrogen Receptor Status in Breast Cancer: Re-shaping the Paradigm. Clinical Cancer Research, 2007, 13, 6921-6925.		52
24	Challenges in Projecting Clustering Results Across Gene Expression–Profiling Datasets. Journal of the National Cancer Institute, 2007, 99, 1715-1723.		88
25	Notch, Myc and Breast Cancer. Cell Cycle, 2007, 6, 418-429.	1.3	65
27	To bury TNM classification in breast cancer or to praise it?. European Journal of Cancer, Supplement, 2007, 5, 23-29.	2.2	1
28	Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Research, 2007, 9, R65.	2.2	509
29	An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38.	2.2	45
30	The origins of oestrogen receptor negative breast cancer. Breast Cancer Research, 2007, 9, .	2.2	6
31	The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data. Genome Biology, 2007, 8, R187.	13.9	16
32	An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biology, 2007, 8, R157.	13.9	433
33	Strategy for encoding and comparison of gene expression signatures. Genome Biology, 2007, 8, R133.	3.8	24
34	GridR: An R-Based Grid-Enabled Tool for Data Analysis in ACGT Clinico-Genomics Trials. , 2007, , .		16
35	Identification of a subset of breast carcinomas characterized by expression of cytokeratin 15: Relationship between CK15+ progenitor/amplified cells and preâ€malignant lesions and invasive disease. Molecular Oncology, 2007, 1, 321-349.	2.1	24
36	Origins of breast cancer subtypes and therapeutic implications. Nature Clinical Practice Oncology, 2007, 4, 516-525.	4.3	155
38	The LIM-only factor LMO4 regulates expression of the BMP7 gene through an HDAC2-dependent mechanism, and controls cell proliferation and apoptosis of mammary epithelial cells. Oncogene, 2007, 26, 6431-6441.	2.6	58
39	An update on apocrine lesions of the breast. Histopathology, 2008, 52, 3-10.	1.6	79

#	Article		CITATIONS
40	Expression profiling technology: its contribution to our understanding of breast cancer. Histopathology, 2008, 52, 67-81.		42
41	Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care?. Nature Reviews Cancer, 2007, 7, 545-553.	12.8	423
42	Increased phosphorylation of Akt in triple-negative breast cancers. Cancer Science, 2007, 98, 1889-1892.	1.7	59
43	Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer, 2007, 7, 73.	1.1	134
44	A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers. BMC Genomics, 2007, 8, 199.		11
45	Molecular profiling in breast cancer. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 185-198.	2.6	35
46	Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance. Breast Cancer Research and Treatment, 2008, 112, 475-488.	1.1	49
47	"New―molecular taxonomy in breast cancer. Clinical and Translational Oncology, 2008, 10, 777-785.	1.2	16
48	The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets – improving meta-analysis and prediction of prognosis. BMC Medical Genomics, 2008, 1, 42.	0.7	134
49	Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. Journal of Pathology, 2008, 215, 398-410.	2.1	137
50	Refinement of breast cancer classification by molecular characterization of histological special types. Journal of Pathology, 2008, 216, 141-150.	2.1	471
51	Breast cancer special types: why bother?. Journal of Pathology, 2008, 216, 394-398.	2.1	62
52	KAI1/CD82 is a novel target of estrogen receptorâ€mediated gene repression and downregulated in primary human breast cancer. International Journal of Cancer, 2008, 123, 2239-2246.	2.3	33
53	Apocrine carcinomas of the breast in Turkish women: Hormone receptors, c-erbB-2 and p53 immunoexpression. Pathology Research and Practice, 2008, 204, 367-371.	1.0	9
54	Molecular diagnosis in breast cancer. Diagnostic Histopathology, 2008, 14, 202-213.	0.2	13
55	Hereditary Breast Cancer: Part II. Management of Hereditary Breast Cancer: Implications of Molecular Genetics and Pathology. Breast Journal, 2008, 14, 14-24.	0.4	17
56	A Semantic Grid Infrastructure Enabling Integrated Access and Analysis of Multilevel Biomedical Data in Support of Postgenomic Clinical Trials on Cancer. IEEE Transactions on Information Technology in Biomedicine, 2008, 12, 205-217.	3.6	33
57	A resampling-based meta-analysis for detection of differential gene expression in breast cancer. BMC Cancer, 2008, 8, 396.	1.1	17

#	Article		CITATIONS
58	GATA-3 Links Tumor Differentiation and Dissemination in a Luminal Breast Cancer Model. Cancer Cell, 2008, 13, 141-152.	7.7	314
59	Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Research, 2008, 10, R65.	2.2	765
60	Intracrinology of estrogens and androgens in breast carcinoma. Journal of Steroid Biochemistry and Molecular Biology, 2008, 108, 181-185.	1.2	73
61	A Functionally Significant Cross-talk between Androgen Receptor and ErbB2 Pathways in Estrogen Receptor Negative Breast Cancer. Neoplasia, 2008, 10, 542-548.	2.3	137
62	Understanding the Molecular Basis of Histologic Grade. Pathobiology, 2008, 75, 104-111.	1.9	55
63	15-Prostaglandin Dehydrogenase Expression Alone or in Combination with ACSM1 Defines a Subgroup of the Apocrine Molecular Subtype of Breast Carcinoma. Molecular and Cellular Proteomics, 2008, 7, 1795-1809.	2.5	31
67	Utilization of Genomic Signatures to Identify Phenotype-Specific Drugs. PLoS ONE, 2009, 4, e6772.	1.1	20
68	Using Frequent Co-expression Network to Identify Gene Clusters for Breast Cancer Prognosis. , 2009, , 428-434.		15
69	Sam-Pointed Domain Containing Ets Transcription Factor in Luminal Breast Cancer Pathogenesis. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1899-1903.	1.1	26
70	Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2359-2364.	3.3	101
71	HtrA Serine Proteases as Potential Therapeutic Targets in Cancer. Current Cancer Drug Targets, 2009, 9, 451-468.	0.8	114
72	A Bayesian Model for Cross-Study Differential Gene Expression. Journal of the American Statistical Association, 2009, 104, 1295-1310.	1.8	29
73	Confounding Effects in "A Six-Gene Signature Predicting Breast Cancer Lung Metastasis― Cancer Research, 2009, 69, 7480-7485.	0.4	34
74	Microarray-based Gene Expression Profiling as a Clinical Tool for Breast Cancer Management: Are We There Yet?. International Journal of Surgical Pathology, 2009, 17, 285-302.	0.4	66
75	A Novel Lung Metastasis Signature Links Wnt Signaling with Cancer Cell Self-Renewal and Epithelial-Mesenchymal Transition in Basal-like Breast Cancer. Cancer Research, 2009, 69, 5364-5373.	0.4	360
76	Bioinformatics and breast cancer: what can high-throughput genomic approaches actually tell us?. Journal of Clinical Pathology, 2009, 62, 879-885.	1.0	31
77	Selecting control genes for RT-QPCR using public microarray data. BMC Bioinformatics, 2009, 10, 42.	1.2	61
78	APRIL is overexpressed in cancer: link with tumor progression. BMC Cancer, 2009, 9, 83.	1.1	63

#	Article		CITATIONS
79	A high-resolution integrated analysis of genetic and expression profiles of breast cancer cell lines. Breast Cancer Research and Treatment, 2009, 118, 481-498.	1.1	58
80	The role and regulation of the nuclear receptor co-activator AIB1 in breast cancer. Breast Cancer Research and Treatment, 2009, 116, 225-237.	1.1	80
82	Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family. BMC Medical Genomics, 2009, 2, 59.	0.7	45
83	A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 2009, 15, 68-74.	15.2	566
84	Histological and molecular types of breast cancer: is there a unifying taxonomy?. Nature Reviews Clinical Oncology, 2009, 6, 718-730.	12.5	353
85	The prolyl 3-hydroxylases P3H2 and P3H3 are novel targets for epigenetic silencing in breast cancer. British Journal of Cancer, 2009, 100, 1687-1696.	2.9	51
86	GridR: An R-based tool for scientific data analysis in grid environments. Future Generation Computer Systems, 2009, 25, 481-488.	4.9	19
87	Gene-Expression Signatures in Breast Cancer. New England Journal of Medicine, 2009, 360, 790-800.	13.9	1,286
88	GATA-3 as a Marker of Hormone Response in Breast Cancer. Journal of Surgical Research, 2009, 157, 290-295.	0.8	55
89	Molecular characterization of apocrine carcinoma of the breast: Validation of an apocrine protein signature in a wellâ€defined cohort. Molecular Oncology, 2009, 3, 220-237.	2.1	43
90	Bayesian Unsupervised Learning with Multiple Data Types. Statistical Applications in Genetics and Molecular Biology, 2009, 8, 1-27.	0.2	11
92	Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Research, 2009, 11, R81.	2.2	122
93	Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Research, 2009, 11, R13.	2.2	124
94	Breast Cancer Molecular Class ERBB2: Preponderance of Tumors With Apocrine Differentiation and Expression of Basal Phenotype Markers CK5, CK5/6, and EGFR. Applied Immunohistochemistry and Molecular Morphology, 2010, 18, 113-118.	0.6	42
95	Androgens in human breast carcinoma. Medical Molecular Morphology, 2010, 43, 75-81.	0.4	36
96	Androgen receptor is frequently expressed in HER2-positive, ER/PR-negative breast cancers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 457, 467-476.	1.4	91
97	Apocrine metaplasia of breast cancer: clinicopathological features and predicting response. Breast Cancer, 2010, 17, 290-297.	1.3	12
98	The Role of Sex Steroid Receptors on Lipogenesis in Breast and Prostate Carcinogenesis: A Viewpoint. Hormones and Cancer, 2010, 1, 63-70.	4.9	13

#	Article	IF	CITATIONS
99	Data driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer. Breast Cancer Research and Treatment, 2010, 120, 567-579.		53
100	High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Research and Treatment, 2010, 122, 661-670.	1.1	127
101	Clinical relevance of the putative stem cell marker p63 in breast cancer. Breast Cancer Research and Treatment, 2010, 122, 765-775.	1.1	27
102	Combinatorial biomarker expression in breast cancer. Breast Cancer Research and Treatment, 2010, 120, 293-308.	1.1	176
103	Comparison study of microarray meta-analysis methods. BMC Bioinformatics, 2010, 11, 408.	1.2	95
104	Functional Analysis: Evaluation of Response Intensities - Tailoring ANOVA for Lists of Expression Subsets. BMC Bioinformatics, 2010, 11, 510.	1.2	7
105	Protein kinase D as a potential new target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 183-192.	3.3	69
106	Mining patterns in disease classification forests. Journal of Biomedical Informatics, 2010, 43, 820-827.	2.5	7
107	The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. Journal of Pathology, 2010, 220, 263-280.	2.1	369
108	Aberrant expression of LMO4 induces centrosome amplification and mitotic spindle abnormalities in breast cancer cells. Journal of Pathology, 2010, 222, 271-281.	2.1	19
109	Monocarboxylate transporter 1 is upâ€regulated in basalâ€like breast carcinoma. Histopathology, 2010, 56, 860-867.	1.6	168
110	Breast cancer precursors revisited: molecular features and progression pathways. Histopathology, 2010, 57, 171-192.	1.6	286
111	Copine-III interacts with ErbB2 and promotes tumor cell migration. Oncogene, 2010, 29, 1598-1610.	2.6	52
112	Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype. British Journal of Cancer, 2010, 102, 1736-1745.	2.9	44
113	Article Commentary: Bimodal Gene expression and Biomarker Discovery. Cancer Informatics, 2010, 9, CIN.S3456.	0.9	18
115	<i>ZIC1</i> Overexpression Is Oncogenic in Liposarcoma. Cancer Research, 2010, 70, 6891-6901.	0.4	41
116	PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11405-11410.	3.3	106
117	A two-stage machine learning approach for pathway analysis. , 2010, , .		6

#	Article		CITATIONS
118	FOXC1 Is a Potential Prognostic Biomarker with Functional Significance in Basal-like Breast Cancer. Cancer Research, 2010, 70, 3870-3876.		202
119	Beyond triple-negative breast cancer: the need to define new subtypes. Expert Review of Anticancer Therapy, 2010, 10, 1197-1213.		18
121	EGFR and HER-2/neu expression in invasive apocrine carcinoma of the breast. Modern Pathology, 2010, 23, 644-653.	2.9	103
122	Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Modern Pathology, 2010, 23, 205-212.		344
123	Trefoil Factor 3 Is Oncogenic and Mediates Anti-Estrogen Resistance in Human Mammary Carcinoma. Neoplasia, 2010, 12, 1041-IN31.		53
124	DNA amplifications in breast cancer: genotypic–phenotypic correlations. Future Oncology, 2010, 6, 967-984.	1.1	19
125	High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Research, 2010, 12, R25.	2.2	123
126	Histological types of breast cancer: How special are they?. Molecular Oncology, 2010, 4, 192-208.	2.1	365
127	Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Molecular Cancer, 2010, 9, 317.	7.9	153
128	Expression of Long-chain Fatty Acyl-CoA Synthetase 4 in Breast and Prostate Cancers Is Associated with Sex Steroid Hormone Receptor Negativity. Translational Oncology, 2010, 3, 91-98.	1.7	72
129	Higher levels of GATA3 predict better survival in women with breast cancer. Human Pathology, 2010, 41, 1794-1801.	1.1	142
130	Inhibition of androgen receptor and Cdc25A phosphatase as a combination targeted therapy in molecular apocrine breast cancer. Cancer Letters, 2010, 298, 74-87.	3.2	28
131	Breast Cancer Biology and Clinical Characteristics. , 2010, , 21-46.		11
132	Triple-negative breast cancer: disease entity or title of convenience?. Nature Reviews Clinical Oncology, 2010, 7, 683-692.	12.5	708
133	Molecular apocrine differentiation is a common feature of breast cancer in patients with germline PTEN mutations. Breast Cancer Research, 2010, 12, R63.	2.2	54
134	Dynamism in gene expression across multiple studies. Physiological Genomics, 2010, 40, 128-140.	1.0	12
135	Cyclophosphamide Dose Intensification May Circumvent Anthracycline Resistance of <i>p53</i> Mutant Breast Cancers. Oncologist, 2010, 15, 246-252.	1.9	47
136	A pathway-based classification of human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6994-6999.	3.3	306

#	Article	IF	CITATIONS
137	Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern Pathology, 2011, 24, 157-167.	2.9	545
138	Pioneer transcription factors: establishing competence for gene expression. Genes and Development, 2011, 25, 2227-2241.	2.7	1,388
139	A Feedback Loop between Androgen Receptor and ERK Signaling in Estrogen Receptor-Negative Breast Cancer. Neoplasia, 2011, 13, 154-166.	2.3	79
140	Personalized Medicine: The Road Ahead. Clinical Breast Cancer, 2011, 11, 20-26.	1.1	44
141	Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer. BMC Research Notes, 2011, 4, 397.	0.6	7
142	FOXA1: master of steroid receptor function in cancer. EMBO Journal, 2011, 30, 3885-3894.	3.5	162
143	Association of FABP5 Expression With Poor Survival in Triple-Negative Breast Cancer. American Journal of Pathology, 2011, 178, 997-1008.	1.9	136
144	Context-Specific Regulation of NF-κB Target Gene Expression by EZH2 in Breast Cancers. Molecular Cell, 2011, 43, 798-810.	4.5	338
145	Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Research, 2011, 13, R36.	2.2	49
146	Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Research, 2011, 13, 212.	2.2	105
147	A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Research, 2011, 13, R97.	2.2	286
148	New insights into the role of androgen and oestrogen receptors in molecular apocrine breast tumours. Breast Cancer Research, 2011, 13, 318.	2.2	9
149	Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet, The, 2011, 378, 1812-1823.	6.3	629
150	MicroArray Technology - Expression Profiling of MRNA and MicroRNA in Breast Cancer. , 0, , .		2
151	Molecular profiling of triple negative breast cancer. Breast Disease, 2011, 32, 73-84.	0.4	22
152	Matrix Metalloproteinase-10 Promotes Kras-Mediated Bronchio-Alveolar Stem Cell Expansion and Lung Cancer Formation. PLoS ONE, 2011, 6, e26439.	1.1	31
153	Homogeneous Datasets of Triple Negative Breast Cancers Enable the Identification of Novel Prognostic and Predictive Signatures. PLoS ONE, 2011, 6, e28403.	1.1	93
154	IMP3, a Proposed Novel Basal Phenotype Marker, is Commonly Overexpressed in Adenoid Cystic Carcinomas but not in Apocrine Carcinomas of the Breast. Applied Immunohistochemistry and Molecular Morphology, 2011, 19, 413-416.	0.6	25

ARTICLE IF CITATIONS # Molecular classification of breast cancer. Pathology, 2011, 43, S7-S8. 0.3 0 155 Update on the molecular profile of the MDA-MB-453 cell line as a model for apocrine breast carcinoma 0.8 studies. Oncology Letters, 2011, 2, 1131-1137. Les signatures moléculaires des cancers du sein : le point de vue du pathologiste. Revue Francophone 157 0.0 3 Des Laboratoires, 2011, 2011, 43-47. Synthesis and in vitro evaluation of analogues of avocado-produced toxin (+)-(R)-persin in human breast cancer cells. Bioorganic and Medicinal Chemistry, 2011, 19, 7033-7043. Targeting Androgen Receptor in Estrogen Receptor-Negative Breast Cancer. Cancer Cell, 2011, 20, 159 7.7 340 119-131. Gene expression profiling of luminal B breast cancers reveals NHERF1 as a new marker of endocrine 1.1 resistance. Breast Cancer Research and Treatment, 2011, 130, 409-420. Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and 163 1.7 135 cholesterol esterification. Clinical and Experimental Metastasis, 2011, 28, 733-741. Maximizing biomarker discovery by minimizing gene signatures. BMC Genomics, 2011, 12, S6. 1.2 164 165 The molecular pathology of breast cancer progression. Journal of Pathology, 2011, 223, 308-318. 2.1 315 Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study. Modern Pathology, 2011, 24, 924-931. Androgen Receptor Expression and Breast Cancer Survival in Postmenopausal Women. Clinical Cancer 167 319 3.2 Research, 2011, 17, 1867-1874. Relationship Between Molecular Subtype of Invasive Breast Carcinoma and Expression of Gross Cystic 168 0.4 Disease Fluid Protein 15 and Mammaglobin. American Journal of Clinical Pathology, 2011, 135, 587-591. Invasive Breast Cancer: Recognition of Molecular Subtypes. Breast Care, 2011, 6, 258-264. 169 0.8 38 Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Molecular Biology of the Cell, 2011, 22, 327-341. 171 Triple-Negative Breast Cancer: Adjuvant Therapeutic Options. Chemotherapy Research and Practice, 172 50 1.6 2011, 2011, 1-13. Molecular classification of breast cancer: is it time to pack up our microscopes?. Pathology, 2011, 43, 1-8. Androgen receptor expression is significantly associated with better outcomes in estrogen 174 0.6 180 receptor-positive breast cancers. Annals of Oncology, 2011, 22, 1755-1762. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. 247 EMBO Journal, 2011, 30, 3019-3027.

#	Article		CITATIONS
176	Proinflammatory Caspase-2-Mediated Macrophage Cell Death Induced by a Rough Attenuated Brucella suis Strain. Infection and Immunity, 2011, 79, 2460-2469.		46
177	An "elite hacker― Cell Adhesion and Migration, 2012, 6, 236-435.	1.1	34
179	Application of microarray in breast cancer: An overview. Journal of Pharmacy and Bioallied Sciences, 2012, 4, 21.	0.2	52
180	FoxA1 is a Key Mediator of Hormonal Response in Breast and Prostate Cancer. Frontiers in Endocrinology, 2012, 3, 68.		73
181	Benign and malignant apocrine lesions of the breast. Expert Review of Anticancer Therapy, 2012, 12, 215-221.		14
182	Molecular Classification of Estrogen Receptor-positive/Luminal Breast Cancers. Advances in Anatomic Pathology, 2012, 19, 39-53.	2.4	68
183	Loss of the Ceramide Transfer Protein Augments EGF Receptor Signaling in Breast Cancer. Cancer Research, 2012, 72, 2855-2866.		35
184	Cancers du sein triples négatifs: Jusqu'où doit-on aller dans le bilan histologique?. , 2012, , 565-570.		0
185	Homeodomain-interacting Protein Kinase 1 (HIPK1) Expression in Breast Cancer Tissues. Japanese Journal of Clinical Oncology, 2012, 42, 1138-1145.		5
186	Management of Unusual Histological Types of Breast Cancer. Oncologist, 2012, 17, 1135-1145.	1.9	32
187	Diverse Roles for the Paxillin Family of Proteins in Cancer. Genes and Cancer, 2012, 3, 362-370.	0.6	68
188	Reappraisal of immunohistochemical profiling of special histological types of breast carcinomas: a study of 121 cases of eight different subtypes. Journal of Clinical Pathology, 2012, 65, 1066-1071.	1.0	19
189	A Three-Gene Model to Robustly Identify Breast Cancer Molecular Subtypes. Journal of the National Cancer Institute, 2012, 104, 311-325.	3.0	272
191	The Clinicopathologic Features of Molecular Apocrine Breast Cancer. Korean Journal of Pathology, 2012, 46, 169.	1.2	17
192	The Janus Face of Lipids in Human Breast Cancer: How Polyunsaturated Fatty Acids Affect Tumor Cell Hallmarks. International Journal of Breast Cancer, 2012, 2012, 1-8.	0.6	24
193	Coordinated expression of oestrogen and androgen receptors in HER2-positive breast carcinomas: impact on proliferative activity. Journal of Clinical Pathology, 2012, 65, 64-68.	1.0	26
194	Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Annals of Oncology, 2012, 23, 2997-3006.	0.6	233
195	Pathology of Breast Cancer: from Classic Concepts to Molecular Pathology and Pathogenesis. Acta Chirurgica Latviensis, 2012, 12, 59-66.	0.2	1

#	Article	IF	Citations
196	Targeting tumor cell metabolism with statins. Oncogene, 2012, 31, 4967-4978.		193
197	Salivary duct carcinomas can be classified into luminal androgen receptorâ€positive, HER2 and basalâ€like phenotypes*. Histopathology, 2012, 61, 629-643.		93
198	Estrogen-related receptor alpha: an orphan finds a family. Breast Cancer Research, 2012, 14, 309.		6
199	CD44 enhances invasion of basal-like breast cancer cells by upregulating serine protease and collagen-degrading enzymatic expression and activity. Breast Cancer Research, 2012, 14, R84.		59
200	Prolactin-induced protein mediates cell invasion and regulates integrin signaling in estrogen receptor-negative breast cancer. Breast Cancer Research, 2012, 14, R111.	2.2	42
201	The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition. Breast Cancer Research, 2012, 14, R113.	2.2	49
202	Keratin expression in breast cancers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 461, 313-322.	1.4	77
204	ld4 protein is highly expressed in triple-negative breast carcinomas: possible implications for BRCA1 downregulation. Breast Cancer Research and Treatment, 2012, 135, 93-102.		34
205	PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer. Breast Cancer Research and Treatment, 2012, 135, 301-306.	1.1	156
206	Differences in autophagy-related activity by molecular subtype in triple-negative breast cancer. Tumor Biology, 2012, 33, 1681-1694.		22
207	Cross-regulation between FOXA1 and ErbB2 Signaling in Estrogen Receptor-Negative Breast Cancer. Neoplasia, 2012, 14, 283-IN3.	2.3	45
208	The role of androgen receptor in breast cancer. Drug Discovery Today Disease Mechanisms, 2012, 9, e19-e27.	0.8	49
209	Minireview: The Androgen Receptor in Breast Tissues: Growth Inhibitor, Tumor Suppressor, Oncogene?. Molecular Endocrinology, 2012, 26, 1252-1267.	3.7	235
210	Elucidating the role of androgen receptor in breast cancer. Clinical Investigation, 2012, 2, 1003-1011.	0.0	11
211	An androgen receptor mutation in the MDA-MB-453 cell line model of molecular apocrine breast cancer compromises receptor activity. Endocrine-Related Cancer, 2012, 19, 599-613.	1.6	51
212	Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Research and Treatment, 2012, 135, 415-432.	1.1	123
213	Apocrine Carcinoma as Triple-negative Breast Cancer: Novel Definition of Apocrine-type Carcinoma as Estrogen/Progesterone Receptor-negative and Androgen Receptor-positive Invasive Ductal Carcinoma. Japanese Journal of Clinical Oncology, 2012, 42, 375-386.	0.6	84
214	Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing. Expert Review of Molecular Diagnostics, 2012, 12, 593-602.	1.5	87

#	Article	IF	CITATIONS
215	Melanoma antigen family A identified by the bimodality index defines a subset of triple negative breast cancers as candidates for immune response augmentation. European Journal of Cancer, 2012, 48, 12-23.		43
216	Molecular characterisation of cell line models for triple-negative breast cancers. BMC Genomics, 2012, 13, 619.	1.2	69
217	The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer, 2012, 12, 306.	1.1	531
218	Androgen receptors and serum testosterone levels identify different subsets of postmenopausal breast cancers. BMC Cancer, 2012, 12, 599.	1.1	16
219	Molecular Classification of Breast Cancer. Surgical Pathology Clinics, 2012, 5, 701-717.	0.7	10
220	The EORTC Breast Cancer Group: major achievements of 50 years of research and future directions. European Journal of Cancer, Supplement, 2012, 10, 27-33.	2.2	4
221	Molecular classification of breast carcinoma. Diagnostic Histopathology, 2012, 18, 97-103.	0.2	25
222	A refined molecular taxonomy of breast cancer. Oncogene, 2012, 31, 1196-1206.	2.6	221
223	The molecular profile of luminal B breast cancer. Biologics: Targets and Therapy, 2012, 6, 289.	3.0	149
224	Arylamine <i>N</i> -Acetyltransferase 1: A Novel Drug Target in Cancer Development. Pharmacological Reviews, 2012, 64, 147-165.	7.1	80
225	Molecular insights on basal-like breast cancer. Breast Cancer Research and Treatment, 2012, 134, 21-30.	1.1	73
226	Microarray gene expression classification with few genes: Criteria to combine attribute selection and classification methods. Expert Systems With Applications, 2012, 39, 7270-7280.	4.4	45
227	Breast cancer pathology: The impact of molecular taxonomy on morphological taxonomy. Pathology International, 2012, 62, 295-302.	0.6	21
228	Comparative evaluation of set-level techniques in predictive classification of gene expression samples. BMC Bioinformatics, 2012, 13, S15.	1.2	22
229	The Androgen Receptor in Breast Cancer: Biology and Treatment Considerations. Current Breast Cancer Reports, 2012, 4, 56-65.	0.5	0
230	Embryonic mammary signature subsets are activated in Brca1 -/- and basal-like breast cancers. Breast Cancer Research, 2013, 15, R25.	2.2	52
231	The Role of the Androgen Receptor in Triple-Negative Breast Cancer. Women's Health, 2013, 9, 351-360.	0.7	40
232	High levels of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. European Journal of Cancer, 2013, 49, 3718-3728.	1.3	32

		CITATION REPORT	
# 233	ARTICLE Salivary Duct Carcinoma: New Developments—Morphological Variants Including Pure In Situ Grade Lesions; Proposed Molecular Classification. Head and Neck Pathology, 2013, 7, 48-58.	IF High 1.3	Citations
234	ROCK: a resource for integrative breast cancer data analysis. Breast Cancer Research and Treat 2013, 139, 907-921.	ment, 1.1	30
235	Metalloproteinase-disintegrin ADAM12 is associated with a breast tumor-initiating cell phenoty Breast Cancer Research and Treatment, 2013, 139, 691-703.	/pe. 1.1	24
236	Clinical–pathologic significance of cancer stem cell marker expression in familial breast cance Breast Cancer Research and Treatment, 2013, 140, 195-205.	ers. 1.1	39
237	Array Comparative Genomic Hybridization. Methods in Molecular Biology, 2013, , .	0.4	1
238	Breast Cancer Heterogeneity in Primary and Metastatic Disease. , 2013, , 65-95.		1
239	Advances in Molecular and Clinical Subtyping of Breast Cancer and Their Implications for Thera Surgical Oncology Clinics of North America, 2013, 22, 823-840.	ру. 0.6	30
240	Breast Carcinoma. Clinics in Laboratory Medicine, 2013, 33, 891-909.	0.7	4
241	Phase II Trial of Bicalutamide in Patients with Androgen Receptor–Positive, Estrogen Receptor–Negative Metastatic Breast Cancer. Clinical Cancer Research, 2013, 19, 5505-551.	2. 3.2	592
242	Pharmacologic reversion of epigenetic silencing of the PRKD1promoter blocks breast tumor ce invasion and metastasis. Breast Cancer Research, 2013, 15, R66.	ll 2.2	74
243	Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpreeither HER2 or GCDFP15. Breast Cancer Research, 2013, 15, R37.	essing 2.2	85
244	Androgen receptor in triple negative breast cancer. Journal of Steroid Biochemistry and Molecu Biology, 2013, 133, 66-76.	lar 1.2	107
245	Effect of an investigational CYP17A1 inhibitor, orteronel (TAK-700), on estrogen- and corticoid-synthesis pathways in hypophysectomized female rats and on the serum estradiol lev female cynomolgus monkeys. Journal of Steroid Biochemistry and Molecular Biology, 2013, 13 298-306.	els in 1.2 8, 1.2	6
246	Tackling the Diversity of Triple-Negative Breast Cancer. Clinical Cancer Research, 2013, 19, 638	30-6388. 3.2	141
247	Nonfamilial Breast Cancer Subtypes. Methods in Molecular Biology, 2013, 973, 279-295.	0.4	5
248	Therapeutic targets in triple negative breast cancer. Journal of Clinical Pathology, 2013, 66, 53	0-542. 1.0	117
249	Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Natu Reviews Cancer, 2013, 13, 385-396.	re 12.8	204
250	Androgenic pathway in triple negative invasive ductal tumors: Its correlation with tumor cell proliferation. Cancer Science, 2013, 104, 639-646.	1.7	71

#	Article	IF	CITATIONS
251	Immunohistochemically Defined Subtypes and Outcome of Apocrine Breast Cancer. Clinical Breast Cancer, 2013, 13, 95-102.	1.1	52
252	Random forests-based differential analysis of gene sets for gene expression data. Gene, 2013, 518, 179-186.	1.0	21
253	Distinct <i>tumor protein p53</i> mutants in breast cancer subgroups. International Journal of Cancer, 2013, 132, 1227-1231.	2.3	88
254	Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation. Carcinogenesis, 2013, 34, 1051-1061.	1.3	52
256	Co-regulated gene expression by oestrogen receptor $\hat{I}\pm$ and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells. Nucleic Acids Research, 2013, 41, 10228-10240.	6.5	49
257	Molecular Classification and Prognostic Signatures of Breast Tumors. , 2013, , 55-62.		0
258	Molecular Characterization of Basal-Like and Non-Basal-Like Triple-Negative Breast Cancer. Oncologist, 2013, 18, 123-133.	1.9	454
259	<scp>IPH</scp> â€926 lobular breast cancer cells are tripleâ€negative but their microarray profile uncovers a luminal subtype. Cancer Science, 2013, 104, 1726-1730.	1.7	14
260	Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Therapeutic Advances in Medical Oncology, 2013, 5, 169-181.	1.4	149
261	Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. Journal of Pathology, 2013, 231, 63-76.	2.1	331
262	Amplitude modulation of androgen signaling by c-MYC. Genes and Development, 2013, 27, 734-748.	2.7	78
263	Expression of Lewis X Is Associated With Poor Prognosis in Triple-Negative Breast Cancer. American Journal of Clinical Pathology, 2013, 139, 746-753.	0.4	30
264	Ask the Experts: Role(s) of androgens in breast cancer biology and treatment. Breast Cancer Management, 2013, 2, 101-104.	0.2	0
265	Myc is required for β-catenin-mediated mammary stem cell amplification and tumorigenesis. Molecular Cancer, 2013, 12, 132.	7.9	50
267	Expression of VEGF and Semaphorin Genes Define Subgroups of Triple Negative Breast Cancer. PLoS ONE, 2013, 8, e61788.	1.1	60
268	Molecular Phenotypes in Triple Negative Breast Cancer from African American Patients Suggest Targets for Therapy. PLoS ONE, 2013, 8, e71915.	1.1	67
269	Long Chain Fatty Acyl-CoA Synthetase 4 Is a Biomarker for and Mediator of Hormone Resistance in Human Breast Cancer. PLoS ONE, 2013, 8, e77060.	1.1	78
270	Do Breast Cancer Cell Lines Provide a Relevant Model of the Patient Tumor Methylome?. PLoS ONE, 2014, 9, e105545.	1.1	20

#	Article	IF	Citations
271	Expression of Autophagy-Related Proteins According to Androgen Receptor and HER-2 Status in Estrogen Receptor-Negative Breast Cancer. PLoS ONE, 2014, 9, e105666.	1.1	11
272	FABP7 and HMGCS2 Are Novel Protein Markers for Apocrine Differentiation Categorizing Apocrine Carcinoma of the Breast. PLoS ONE, 2014, 9, e112024.	1.1	23
273	Microarray big data integrated analysis to identify robust diagnostic signature for triple negative breast cancer. , 2014, , .		1
274	Invasive Breast Carcinoma. , 2014, , 934-951.		24
275	Trefoil factor 3 promotes metastatic seeding and predicts poor survival outcome of patients with mammary carcinoma. Breast Cancer Research, 2014, 16, 429.	2.2	49
277	Androgen Receptor Expression in Early Triple-Negative Breast Cancer: Clinical Significance and Prognostic Associations. Cancers, 2014, 6, 1351-1362.	1.7	61
278	AKT-Induced Tamoxifen Resistance Is Overturned by RRM2 Inhibition. Molecular Cancer Research, 2014, 12, 394-407.	1.5	42
279	Standard of Care and Promising New Agents for Triple Negative Metastatic Breast Cancer. Cancers, 2014, 6, 2187-2223.	1.7	34
280	Emerging Understanding of Multiscale Tumor Heterogeneity. Frontiers in Oncology, 2014, 4, 366.	1.3	90
281	Negative correlation based gene markers identification in integrative gene expression data. International Journal of Data Mining and Bioinformatics, 2014, 10, 1.	0.1	3
282	Lessons learned from the intrinsic subtypes of breast cancer in the quest for precision therapy. British Journal of Surgery, 2014, 101, 925-938.	0.1	34
283	Androgen Receptor Expression Shows Distinctive Significance in ER Positive and Negative Breast Cancers. Breast Diseases, 2014, 25, 311-312.	0.0	0
284	Bringing androgens up a NOTCH in breast cancer. Endocrine-Related Cancer, 2014, 21, T183-T202.	1.6	24
285	Molecular Classification of Metaplastic Carcinoma Using Surrogate Immunohistochemical Staining. Pathobiology, 2014, 81, 69-77.	1.9	4
286	Humanization of the mouse mammary gland by replacement of the luminal layer with genetically-engineered preneoplastic human cells. Breast Cancer Research, 2014, 16, 504.	2.2	13
287	Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Molecular Cancer, 2014, 13, 228.	7.9	91
288	Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework. BMC Bioinformatics, 2014, 15, 390.	1.2	6
289	Triple-negative breast cancer. Current Opinion in Obstetrics and Gynecology, 2014, 26, 34-40.	0.9	33

# 290	ARTICLE Complexities of androgen receptor signalling in breast cancer. Endocrine-Related Cancer, 2014, 21, T161-T181.	IF 1.6	CITATIONS
291	Growth and metastatic behavior of molecularly well-characterized human breast cancer cell lines in mice. Breast Cancer Research and Treatment, 2014, 148, 19-31.	1.1	2
292	Omics Approaches in Breast Cancer. , 2014, , .		10
293	Influence of stromal–epithelial interactions on androgen action. Endocrine-Related Cancer, 2014, 21, T147-T160.	1.6	23
294	The androgen receptor as a surrogate marker for molecular apocrine breast cancer subtyping. Breast, 2014, 23, 234-243.	0.9	26
295	Androgenic pathways in the progression of triple-negative breast carcinoma: a comparison between aggressive and non-aggressive subtypes. Breast Cancer Research and Treatment, 2014, 145, 281-293.	1.1	34
296	Identification of Androgen Receptor Splice Variant Transcripts in Breast Cancer Cell Lines and Human Tissues. Hormones and Cancer, 2014, 5, 61-71.	4.9	60
297	Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Research, 2014, 16, R7.	2.2	315
298	Molecular Testing in Cancer. , 2014, , .		2
299	Identification and use of biomarkers in treatment strategies forÂtripleâ€negative breast cancer subtypes. Journal of Pathology, 2014, 232, 142-150.	2.1	354
300	Differential immunostaining of various types of breast carcinomas for growth hormoneâ€releasing hormone receptor – Apocrine epithelium and carcinomas emerging as uniformly positive. Apmis, 2014, 122, 824-831.	0.9	10
301	Revising the role of the androgen receptor in breast cancer. Journal of Molecular Endocrinology, 2014, 52, R257-R265.	1.1	72
302	Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes and Development, 2014, 28, 1191-1203.	2.7	193
303	Androgen Receptor Expression and Outcomes in Early Breast Cancer: A Systematic Review and Meta-Analysis. Journal of the National Cancer Institute, 2014, 106, djt319-djt319.	3.0	279
304	Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer, 2014, 14, 546.	1.1	68
305	PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Research, 2014, 16, 406.	2.2	267
306	Androgen Receptor Expression Shows Distinctive Significance in ER Positive and Negative Breast Cancers. Annals of Surgical Oncology, 2014, 21, 2218-2228.	0.7	60
307	Metabolic differences in estrogen receptor-negative breast cancer based on androgen receptor status. Tumor Biology, 2014, 35, 8179-8192.	0.8	8

# 308	ARTICLE Implications of differences in expression of sarcosine metabolism-related proteins according to the molecular subtype of breast cancer. Journal of Translational Medicine, 2014, 12, 149.	IF 1.8	Citations
309	Is the differentiation into molecular subtypes of breast cancer important for staging, local and systemic therapy, and follow up?. Cancer Treatment Reviews, 2014, 40, 1089-1095.	3.4	30
310	PDGFRβ and FGFR2 mediate endothelial cell differentiation capability of triple negative breast carcinoma cells. Molecular Oncology, 2014, 8, 968-981.	2.1	37
311	Elevated Protein Kinase D3 (PKD3) Expression Supports Proliferation of Triple-negative Breast Cancer Cells and Contributes to mTORC1-S6K1 Pathway Activation. Journal of Biological Chemistry, 2014, 289, 3138-3147.	1.6	45
312	VGLL1 expression is associated with a triple-negative basal-like phenotype in breast cancer. Endocrine-Related Cancer, 2014, 21, 587-599.	1.6	53
313	Molecular classification of breast cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 1-14.	1.4	149
314	Prolactin-Induced Protein Is Required for Cell Cycle Progression in Breast Cancer. Neoplasia, 2014, 16, 329-342.e14.	2.3	24
315	Gene-expression signature functional annotation of breast cancer tumours in function of age. BMC Medical Genomics, 2015, 8, 80.	0.7	6
316	Molecular Characterization of Apocrine Salivary Duct Carcinoma. American Journal of Surgical Pathology, 2015, 39, 744-752.	2.1	102
317	Overexpression of <i><scp>IGF</scp>2 </i> <scp>mRNA</scp> â€Binding Protein 2 (<scp>IMP</scp> 2/p62) as a Feature of Basalâ€like Breast Cancer Correlates with Short Survival. Scandinavian Journal of Immunology, 2015, 82, 142-143.	1.3	35
318	Triple-negative Breast Carcinoma. Advances in Anatomic Pathology, 2015, 22, 306-313.	2.4	13
319	Salivary Duct Carcinoma. American Journal of Surgical Pathology, 2015, 39, 705-713.	2.1	126
320	Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype?. Oncotarget, 2015, 6, 12890-12908.	0.8	92
321	Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget, 2015, 6, 26560-26574.	0.8	133
322	CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. Journal of Experimental Medicine, 2015, 212, 1043-1059.	4.2	520
323	Targeting the androgen receptor in prostate and breast cancer: several new agents in development. Endocrine-Related Cancer, 2015, 22, R87-R106.	1.6	76
324	Tracing the footprints of the breast cancer oncogene BRK — Past till present. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 39-54.	3.3	35
325	Beyond the C18 frontier: Androgen and glucocorticoid metabolism in breast cancer tissues. Steroids, 2015, 103, 115-122.	0.8	6

ARTICLE IF CITATIONS # Disequilibrium of BMP2 Levels in the Breast Stem Cell Niche Launches Epithelial Transformation by 326 2.3 54 Overamplifying BMPR1B Cell Response. Stem Cell Reports, 2015, 4, 239-254. Androgen Receptor Expression Predicts Decreased Survival in Early Stage Triple-Negative Breast Cancer. Annals of Surgical Oncology, 2015, 22, 82-89. Breast Cancer Genomics From Microarrays to Massively Parallel Sequencing: Paradigms and New 328 3.0 80 Insights. Journal of the National Cancer Institute, 2015, 107, . Androgen Receptor Biology in Triple Negative Breast Cancer: a Case for Classification as AR+ or 4.9 Quadruple Negative Disease. Hormones and Cancer, 2015, 6, 206-213. Molecular and diagnostic features of apocrine breast lesions. Expert Review of Molecular 330 1.5 14 Diagnostics, 2015, 15, 1011-1022. Clinical management of breast cancer heterogeneity. Nature Reviews Clinical Oncology, 2015, 12, 381-394. 12.5 400 Frequent alterations of HER2 through mutation, amplification, or overexpression in pleomorphic 332 1.1 50 lobular carcinoma of the breast. Breast Cancer Research and Treatment, 2015, 150, 447-455. Targeting the Androgen Receptor in Breast Cancer. Current Oncology Reports, 2015, 17, 4. 1.8 334 Prognostic stromal gene signatures in breast cancer. Breast Cancer Research, 2015, 17, 23. 2.2 67 Multiple Molecular Subtypes of Triple-Negative Breast Cancer Critically Rely on Androgen Receptor 184 and Respond to Enzalutamide <i>In Vivo</i>. Molecular Cancer Therapeutics, 2015, 14, 769-778. Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer?. 336 41 3.4 Cancer Treatment Reviews, 2015, 41, 547-553. Overexpression of <scp>PGC11±</scp> and accumulation of p62 in apocrine carcinoma of the breast. Pathology International, 2015, 65, 19-26. Immunohistochemical and molecular profiling of histologically defined apocrine carcinomas of the 339 1.1 44 breast. Human Pathology, 2015, 46, 1350-1359. Molecular Classification of Breast Cancer. Molecular Pathology Library, 2015, 137-155. 340 0.1 Coexpression of androgen receptor and FOXA1 in nonmetastatic triple-negative breast cancer: 341 1.1 26 ancillary study from PACS08 trial. Future Oncology, 2015, 11, 2283-2297. Transcriptional master regulator analysis in breast cancer genetic networks. Computational Biology 342 53 and Chemistry, 2015, 59, 67-77. 343 Writing style determination using the KNN text model., 2015, , . 2 The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPKÂsignalling. 344 Nature Cell Biology, 2015, 17, 81-94.

#	Article	IF	CITATIONS
345	Pathway-level disease data mining through hyper-box principles. Mathematical Biosciences, 2015, 260, 25-34.	0.9	5
346	Coagulation factor VII is regulated by androgen receptor in breast cancer. Experimental Cell Research, 2015, 331, 239-250.	1.2	16
348	The intracrinology of breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 2015, 145, 172-178.	1.2	61
349	Genomic Applications in Pathology. , 2015, , .		1
350	Anatomie pathologique des cancers du sein en phase précoce. , 2016, , 35-48.		0
351	A Stromal Immune Module Correlated with the Response to Neoadjuvant Chemotherapy, Prognosis and Lymphocyte Infiltration in HER2-Positive Breast Carcinoma Is Inversely Correlated with Hormonal Pathways. PLoS ONE, 2016, 11, e0167397.	1.1	9
352	Transcriptional Network Architecture of Breast Cancer Molecular Subtypes. Frontiers in Physiology, 2016, 7, 568.	1.3	48
353	Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer: Targets and Therapy, 2016, 8, 93.	1.0	201
354	A highly invasive subpopulation of MDA-MB-231 breast cancer cells shows accelerated growth, differential chemoresistance, features of apocrine tumors and reduced tumorigenicity <i>in vivo</i> . Oncotarget, 2016, 7, 68803-68820.	0.8	30
355	Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. Journal of Cancer, 2016, 7, 1281-1294.	1.2	300
356	Androgen and breast cancer. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 249-256.	1.2	15
357	Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples. Breast Cancer Research, 2016, 18, 69.	2.2	9
358	p62 Regulates the Proliferation of Molecular Apocrine Breast Cancer Cells. Acta Histochemica Et Cytochemica, 2016, 49, 125-130.	0.8	7
359	Pure Apocrine Carcinomas Represent a Clinicopathologically Distinct Androgen Receptor–Positive Subset of Triple-Negative Breast Cancers. American Journal of Surgical Pathology, 2016, 40, 1109-1116.	2.1	58
360	Androgen receptor and metastasis-associated protein-1 are frequently expressed in estrogen receptor negative/HER2 positive breast cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 468, 687-696.	1.4	9
361	Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Modern Pathology, 2016, 29, 476-488.	2.9	95
362	Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clinical Cancer Research, 2016, 22, 4623-4633.	3.2	153
363	A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Annals of Oncology, 2016, 27, 812-818.	0.6	234

#	Article	IF	CITATIONS
364	Less Common Triple Negative Breast Cancers. , 2016, , 445-518.		0
365	Immunohistochemical Surrogates for Molecular Classification of Breast Carcinoma: A 2015 Update. Archives of Pathology and Laboratory Medicine, 2016, 140, 806-814.	1.2	116
366	Hereditary breast and ovarian cancer: new genes in confined pathways. Nature Reviews Cancer, 2016, 16, 599-612.	12.8	305
367	Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Research, 2016, 76, 5881-5893.	0.4	50
368	Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. Npj Breast Cancer, 2016, 2, 16036.	2.3	127
369	Targeting the androgen receptor in triple-negative breast cancer. Current Problems in Cancer, 2016, 40, 141-150.	1.0	70
370	Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacological Research, 2016, 111, 577-591.	3.1	46
372	The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. Journal of Pathology, 2016, 240, 256-261.	2.1	31
373	Biology and Management of Patients With Triple-Negative Breast Cancer. Oncologist, 2016, 21, 1050-1062.	1.9	220
374	Breast cancer subtype predictors revisited: from consensus to concordance?. BMC Medical Genomics, 2016, 9, 26.	0.7	6
375	Upregulation of Cyclooxygenase-2/Prostaglandin E ₂ (COX-2/PGE ₂) Pathway Member Multiple Drug Resistance-Associated Protein 4 (MRP4) and Downregulation of Prostaglandin Transporter (PGT) and 15-Prostaglandin Dehydrogenase (15-PGDH) in Triple-Negative Breast Cancer. Breast Cancer: Basic and Clinical Research, 2016, 10, BCBCR.S38529.	0.6	35
376	Prognostic value of FOXA1 in breast cancer: A systematic review and meta-analysis. Breast, 2016, 27, 35-43.	0.9	28
377	Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Human Pathology, 2016, 55, 190-195.	1.1	19
378	Androgen receptor expression predicts beneficial tamoxifen response in oestrogen receptor-α-negative breast cancer. British Journal of Cancer, 2016, 114, 248-255.	2.9	46
379	Emerging therapeutic targets in metastatic progression: A focus on breast cancer. , 2016, 161, 79-96.		53
380	EJE PRIZE 2016: Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. European Journal of Endocrinology, 2016, 175, R41-R49.	1.9	68
381	Preclinical evaluation of the AR inhibitor enzalutamide in triple-negative breast cancer cells. Endocrine-Related Cancer, 2016, 23, 323-334.	1.6	50
382	Heat shock protein 27 and gross cystic disease fluid protein 15 play critical roles in molecular apocrine breast cancer. Tumor Biology, 2016, 37, 8027-8036.	0.8	3

		CITATION REPORT		
#	Article		IF	CITATIONS
383	Proteomic maps of breast cancer subtypes. Nature Communications, 2016, 7, 10259.		5.8	256
384	Biomarkers That Predict Sensitivity to Heat Shock Protein 90 Inhibitors. Clinical Breast 16, 276-283.	Cancer, 2016,	1.1	11
385	A novel non-parametric method for uncertainty evaluation of correlation-based molecu signatures: its application on PAM50 algorithm. Bioinformatics, 2017, 33, 693-700.	ılar	1.8	25
386	Overexpression of trefoil factor 3 (TFF3) contributes to the malignant progression in c cells. Cancer Cell International, 2017, 17, 7.	ervical cancer	1.8	19
387	A review of estrogen receptor/androgen receptor genomics in male breast cancer. End Cancer, 2017, 24, R27-R34.	ocrine-Related	1.6	23
388	Regulatory elements in molecular networks. Wiley Interdisciplinary Reviews: Systems & Medicine, 2017, 9, e1374.	Biology and	6.6	23
389	Breast Cancer Heterogeneity: Roles in Tumorigenesis and Therapeutic Implications. Cu Cancer Reports, 2017, 9, 34-44.	rrent Breast	0.5	11
390	Pentraxin-3 is a PI3K signaling target that promotes stem cell–like traits in basal-like Science Signaling, 2017, 10, .	breast cancers.	1.6	43
391	MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying Androgen Receptor in Triple-Negative Breast Cancer Progression. Hormones and Cancer	the Role of the er, 2017, 8, 69-77.	4.9	45
392	Androgen receptorâ€positive, tripleâ€negative breast cancer. Cancer, 2017, 123, 168	5-1688.	2.0	14
393	Apocrine Lesions. , 2017, , 191-222.			1
394	Atlas of Differential Diagnosis in Breast Pathology. , 2017, , .			10
395	Activity of distinct growth factor receptor network components in breast tumors unco biologically relevant subtypes. Genome Medicine, 2017, 9, 40.	overs two	3.6	16
396	Androgen Receptor Supports an Anchorage-Independent, Cancer Stem Cell-like Popula Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 3455-3466.	ition in	0.4	70
397	Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the huma lines MCF-7 and MDA-MB-231. Molecular and Cellular Probes, 2017, 34, 45-52.	n breast cancer cell	0.9	41
398	Salivary Duct Carcinoma: An Update on Morphologic Mimics and Diagnostic Use of An Immunohistochemistry. Head and Neck Pathology, 2017, 11, 288-294.	drogen Receptor	1.3	53
399	The Prognostic Role of Androgen Receptor in Patients with Early-Stage Breast Cancer: of Clinical and Gene Expression Data. Clinical Cancer Research, 2017, 23, 2702-2712.	A Meta-analysis	3.2	82
400	Medical ovariectomy in menopausal breast cancer patients with high testosterone leve step toward tailored therapy. Endocrine-Related Cancer, 2017, 24, C21-C29.	els: a further	1.6	3

	CITATION	N REPORT	
#	Article	IF	CITATIONS
401	Breast Cancer Molecular Stratification. American Journal of Pathology, 2017, 187, 2152-2162.	1.9	198
402	The Spectrum of Triple-Negative Breast Disease. American Journal of Pathology, 2017, 187, 2139-2151.	1.9	118
403	A novel FOXA1/ESR1 interacting pathway: A study of Oncomineâ,,¢ breast cancer microarrays. Oncology Letters, 2017, 14, 1247-1264.	0.8	18
404	Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biology International, 2017, 41, 1345-1355.	1.4	25
405	The Androgen Receptor: Is It a Promising Target?. Annals of Surgical Oncology, 2017, 24, 2876-2880.	0.7	22
406	Androgen Receptor-Targeted Therapy for Breast Cancer. Current Breast Cancer Reports, 2017, 9, 242-250.	0.5	1
407	Targeting Androgen Receptor in Treating HER2 Positive Breast Cancer. Scientific Reports, 2017, 7, 14584.	1.6	45
408	Androgen receptor expression and breast cancer mortality in a population-based prospective cohort. Breast Cancer Research and Treatment, 2017, 165, 645-657.	1.1	34
409	Steroid Hormone Receptor Positive Breast Cancer Patient-Derived Xenografts. Hormones and Cancer, 2017, 8, 4-15.	4.9	22
410	p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene, 2017, 36, 2355-2365.	2.6	20
411	Pathology and Molecular Pathology of Breast Cancer. , 2017, , 173-231.		1
412	GATA3 and TRPS1 are distinct biomarkers and prognostic factors in breast cancer: database mining for GATA family members in malignancies. Oncotarget, 2017, 8, 34750-34761.	0.8	39
413	Network Modularity in Breast Cancer Molecular Subtypes. Frontiers in Physiology, 2017, 8, 915.	1.3	53
414	A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Cancers, 2017, 9, 14.	1.7	38
415	Tackling intra- and inter-tumor heterogeneity to combat triple negative breast cancer. Frontiers in Bioscience - Landmark, 2017, 22, 1549-1580.	3.0	14
416	AR-Signaling in Human Malignancies: Prostate Cancer and Beyond. Cancers, 2017, 9, 7.	1.7	49
417	AR Signaling in Breast Cancer. Cancers, 2017, 9, 21.	1.7	81
418	Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2–8) in Normal and Cancerous Breast and Prostate Cells. International Journal of Molecular Sciences, 2017, 18, 40.	1.8	15

#	Article	IF	CITATIONS
419	Tumor Heterogeneity in Breast Cancer. Frontiers in Medicine, 2017, 4, 227.	1.2	379
420	Anti-cancer Effect of Cyanidin-3-glucoside from Mulberry via Caspase-3 Cleavage and DNA Fragmentation in vitro and in vivo. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1519-1525.	0.9	75
421	Targeting the androgen receptor in triple-negative breast cancer: current perspectives. OncoTargets and Therapy, 2017, Volume 10, 4675-4685.	1.0	48
422	C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer. Oncotarget, 2017, 8, 57907-57933.	0.8	11
423	Novel Targeted Agents and Immunotherapy in Breast Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 65-75.	1.8	8
424	Expression of <scp>MAGE</scp> â€A and <scp>NY</scp> â€ <scp>ESO</scp> â€1 cancer/testis antigens is enriched in tripleâ€negative invasive breast cancers. Histopathology, 2018, 73, 68-80.	1.6	34
425	The Magnitude of Androgen Receptor Positivity in Breast Cancer Is Critical for Reliable Prediction of Disease Outcome. Clinical Cancer Research, 2018, 24, 2328-2341.	3.2	63
426	Molecular diagnosis in breast cancer. Diagnostic Histopathology, 2018, 24, 71-82.	0.2	4
427	Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer and Metastasis Reviews, 2018, 37, 125-145.	2.7	13
428	Pharmacotherapeutic Management of Breast Cancer in Elderly Patients: The Promise of Novel Agents. Drugs and Aging, 2018, 35, 93-115.	1.3	6
429	The importance of EGFR as a biomarker in molecular apocrine breast cancer. Human Pathology, 2018, 77, 1-10.	1.1	13
430	High N-Acetyltransferase 1 Expression is Associated with Estrogen Receptor Expression in Breast Tumors, but is not Under Direct Regulation by Estradiol, 5 <i>α</i> androstane-3 <i>β</i> , 17 <i>β</i> -Diol, or Dihydrotestosterone in Breast Cancer Cells. Journal of Pharmacology and Experimental Therapeutics. 2018. 365. 84-93.	1.3	16
431	Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann's Refined Classification. Clinical Cancer Research, 2018, 24, 1845-1852.	3.2	84
432	Differential microRNA expression profiles in tamoxifen-resistant human breast cancer cell lines induced by two methods. Oncology Letters, 2018, 15, 3532-3539.	0.8	20
433	Harnessing a Different Dependency: How to Identify and Target Androgen Receptor-Positive Versus Quadruple-Negative Breast Cancer. Hormones and Cancer, 2018, 9, 82-94.	4.9	21
434	Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer, 2018, 25, 489-496.	1.3	10
435	Molecular Classification of Breast Cancer. PET Clinics, 2018, 13, 325-338.	1.5	103
436	Feasibility of Classification of Triple Negative Breast Cancer by Immunohistochemical Surrogate Markers. Clinical Breast Cancer, 2018, 18, e1123-e1132.	1.1	36

#	Article	IF	CITATIONS
437	Identification of differentially expressed genes regulated by molecular signature in breast cancer-associated fibroblasts by bioinformatics analysis. Archives of Gynecology and Obstetrics, 2018, 297, 161-183.	0.8	8
438	Therapeutic Implications of the Molecular and Immune Landscape of Triple-Negative Breast Cancer. Pathology and Oncology Research, 2018, 24, 701-716.	0.9	17
439	The interplay of endocrine therapy, steroid pathways and therapeutic resistance: Importance of androgen in breast carcinoma. Molecular and Cellular Endocrinology, 2018, 466, 31-37.	1.6	10
440	Molecular subtyping of breast cancer improves identification of both high and low risk patients. Acta Oncol³gica, 2018, 57, 58-66.	0.8	12
441	The immunohistochemical expression and potential prognostic value of HDAC6 and AR in invasive breast cancer. Human Pathology, 2018, 75, 16-25.	1.1	20
442	The GDNF Family: A Role in Cancer?. Neoplasia, 2018, 20, 99-117.	2.3	54
443	Molecular Subtypes and Local-Regional Control of Breast Cancer. Surgical Oncology Clinics of North America, 2018, 27, 95-120.	0.6	297
444	Differential expression of PMCA2 mRNA isoforms in a cohort of Spanish patients with breast tumor types. Oncology Letters, 2018, 16, 6950-6959.	0.8	3
445	Giant apocrine carcinoma of the breast: A case report with review. Asian Journal of Oncology, 0, 04, 021-024.	0.2	0
446	Physiological and Evolutionary Changes in a Biological Control Agent During Prey Shifts Over Several Generations. Frontiers in Physiology, 2018, 9, 971.	1.3	1
447	Long-Term Complete Response of an Androgen Receptor–Positive Triple-Negative Metastatic Breast Cancer to Abiraterone Acetate. JCO Precision Oncology, 2018, 2, 0-0.	1.5	3
448	GSAE: an autoencoder with embedded gene-set nodes for genomics functional characterization. BMC Systems Biology, 2018, 12, 142.	3.0	52
449	Racial Disparity and Triple-Negative Breast Cancer in African-American Women: A Multifaceted Affair between Obesity, Biology, and Socioeconomic Determinants. Cancers, 2018, 10, 514.	1.7	141
450	The Divergent Function of Androgen Receptor in Breast Cancer; Analysis of Steroid Mediators and Tumor Intracrinology. Frontiers in Endocrinology, 2018, 9, 594.	1.5	32
451	Prognostic Genes of Breast Cancer Identified by Gene Co-expression Network Analysis. Frontiers in Oncology, 2018, 8, 374.	1.3	231
452	A clinicopathologic study of invasive apocrine carcinoma of the breast: A single-center experience. Breast Journal, 2018, 24, 1105-1108.	0.4	12
453	Androgen Receptor Inhibitor Enhances the Antitumor Effect of PARP Inhibitor in Breast Cancer Cells by Modulating DNA Damage Response. Molecular Cancer Therapeutics, 2018, 17, 2507-2518.	1.9	20
454	Updates on Molecular Classification of Triple Negative Breast Cancer. Current Breast Cancer Reports, 2018, 10, 289-295.	0.5	1

#	Article	IF	CITATIONS
455	Génomique du cancer du sein appliquée aux traitements. Revue Francophone Des Laboratoires, 2018, 2018, 52-60.	0.0	0
456	An Update on Breast Cancer Multigene Prognostic Tests—Emergent Clinical Biomarkers. Frontiers in Medicine, 2018, 5, 248.	1.2	139
457	Enzalutamide for the Treatment of Androgen Receptor–Expressing Triple-Negative Breast Cancer. Journal of Clinical Oncology, 2018, 36, 884-890.	0.8	365
458	AR–PDEF pathway promotes tumour proliferation and upregulates MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative breast cancer. Molecular Cancer, 2018, 17, 136.	7.9	17
459	The impact of transcription on metabolism in prostate and breast cancers. Endocrine-Related Cancer, 2018, 25, R435-R452.	1.6	8
460	Breast Carcinoma. Clinics in Laboratory Medicine, 2018, 38, 401-420.	0.7	28
461	Androgen blockade based clinical trials landscape in triple negative breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 283-290.	3.3	13
462	miRNA-135b Contributes to <i>Triple Negative Breast Cancer</i> Molecular Heterogeneity: Different Expression Profile in <i>Basal-like</i> Versus <i>non-Basal-like</i> Phenotypes. International Journal of Medical Sciences, 2018, 15, 536-548.	1.1	31
463	Genetic Markers in Triple-Negative Breast Cancer. Clinical Breast Cancer, 2018, 18, e841-e850.	1.1	148
464	Differential Integration of Transcriptome and Proteome Identifies Pan-Cancer Prognostic Biomarkers. Frontiers in Genetics, 2018, 9, 205.	1.1	14
465	HER2 is not a cancer subtype but rather a pan-cancer event and is highly enriched in AR-driven breast tumors. Breast Cancer Research, 2018, 20, 8.	2.2	44
466	Androgen receptor and heat shock protein 27 co-regulate the malignant potential of molecular apocrine breast cancer. Journal of Experimental and Clinical Cancer Research, 2018, 37, 90.	3.5	21
467	Phase 1 study of seviteronel, a selective CYP17 lyase and androgen receptor inhibitor, in women with estrogen receptor-positive or triple-negative breast cancer. Breast Cancer Research and Treatment, 2018, 171, 111-120.	1.1	38
468	Regulation of Immunity in Breast Cancer. Cancers, 2019, 11, 1080.	1.7	43
469	Androgen Receptor as a Biomarker of Oral Squamous Cell Carcinoma Progression Risk. Anticancer Research, 2019, 39, 4285-4289.	0.5	17
470	Molecular Classification and Prognostic Signatures of Breast Tumors. , 2019, , 129-138.		0
471	EGFL9 promotes breast cancer metastasis by inducing cMET activation and metabolic reprogramming. Nature Communications, 2019, 10, 5033.	5.8	42
472	Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, 2019, , .	0.8	38

#	Article	IF	CITATIONS
473	Emerging Novel Therapeutics in Triple-Negative Breast Cancer. Advances in Experimental Medicine and Biology, 2019, 1152, 377-399.	0.8	23
474	Breast Cancer Heterogeneity in Primary and Metastatic Disease. Advances in Experimental Medicine and Biology, 2019, 1152, 75-104.	0.8	27
475	pAKT pathway activation is associated with PIK3CA mutations and good prognosis in luminal breast cancer in contrast to p-mTOR pathway activation. Npj Breast Cancer, 2019, 5, 7.	2.3	18
476	Breast Cancer Pathology. , 2019, , 87-127.		1
477	Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications. Breast Cancer Research, 2019, 21, 65.	2.2	78
478	Molecular apocrine tumours in EORTC 10994/BIG 1-00 phase III study: pathological response after neoadjuvant chemotherapy and clinical outcomes. British Journal of Cancer, 2019, 120, 913-921.	2.9	11
479	SOX10, GATA3, GCDFP15, Androgen Receptor, and Mammaglobin for the Differential Diagnosis Between Triple-negative Breast Cancer and TTF1-negative Lung Adenocarcinoma. American Journal of Surgical Pathology, 2019, 43, 293-302.	2.1	41
480	MicroRNAs and Androgen Receptor: Emerging Players in Breast Cancer. Frontiers in Genetics, 2019, 10, 203.	1.1	19
481	Association of FOSL1 copy number alteration and triple negative breast tumors. Genetics and Molecular Biology, 2019, 42, 26-31.	0.6	7
482	Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers, 2019, 11, 363.	1.7	35
483	iTRAQâ€Based Quantitative Proteomic Analysis Strengthens Transcriptomic Subtyping of Tripleâ€Negative Breast Cancer Tumors. Proteomics, 2019, 19, 1800484.	1.3	14
484	TBX3 promotes progression of preâ€invasive breast cancer cells by inducing EMT and directly upâ€regulating SLUG. Journal of Pathology, 2019, 248, 191-203.	2.1	28
485	Estrogen receptor beta increases sensitivity to enzalutamide in androgen receptor-positive triple-negative breast cancer. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1221-1233.	1.2	38
486	Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine, 2019, 25, 477-486.	15.2	932
487	Genomics applied to the treatment of breast cancer. Oncotarget, 2019, 10, 4786-4801.	0.8	20
488	Short-Term Microgravity Influences Cell Adhesion in Human Breast Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 5730.	1.8	28
489	Genomic Applications in Breast Carcinoma. , 2019, , 347-361.		0
490	Apocrine lesions of the breast: part 2 of a two-part review. Invasive apocrine carcinoma, the molecular apocrine signature and utility of immunohistochemistry in the diagnosis of apocrine lesions of the breast. Journal of Clinical Pathology, 2019, 72, 7-11.	1.0	33

#	Article	IF	CITATIONS
491	CREBBP/EP300 Bromodomain Inhibition Affects the Proliferation of AR-Positive Breast Cancer Cell Lines. Molecular Cancer Research, 2019, 17, 720-730.	1.5	24
492	Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes. FEBS Journal, 2019, 286, 688-709.	2.2	69
493	Enhancing Abiraterone Acetate Efficacy in Androgen Receptor–positive Triple-negative Breast Cancer: Chk1 as a Potential Target. Clinical Cancer Research, 2019, 25, 856-867.	3.2	19
494	The role of SOX family members in solid tumours and metastasis. Seminars in Cancer Biology, 2020, 67, 122-153.	4.3	238
495	Src Kinase Is Biphosphorylated at Y416/Y527 and Activates the CUB-Domain Containing Protein 1/Protein Kinase C δPathway in a Subset of Triple-Negative Breast Cancers. American Journal of Pathology, 2020, 190, 484-502.	1.9	15
496	Molecular Classification of Breast Cancer. Advances in Anatomic Pathology, 2020, 27, 27-35.	2.4	283
497	MiCA: An extended tool for microarray gene expression analysis. Computers in Biology and Medicine, 2020, 116, 103561.	3.9	0
498	ARe we there yet? Understanding androgen receptor signaling in breast cancer. Npj Breast Cancer, 2020, 6, 47.	2.3	57
499	Breast Cancer Cells in Microgravity: New Aspects for Cancer Research. International Journal of Molecular Sciences, 2020, 21, 7345.	1.8	18
500	Tripleâ€negative apocrine carcinoma: A rare pathologic subtype with a better prognosis than other tripleâ€negative breast cancers. Journal of Surgical Oncology, 2020, 122, 1232-1239.	0.8	13
501	Avoidance and Period-Shortening of Neoadjuvant Chemotherapy Against Triple-Negative Breast Cancer in Stages I and II: Importance of Ki-67 Labeling Index and the Recognition of Apocrine-Type Lesions. Technology in Cancer Research and Treatment, 2020, 19, 153303382094324.	0.8	5
502	Androgen receptor expression is useful to predict the therapeutic effect in HER2-positive breast carcinoma. Breast Cancer Research and Treatment, 2020, 184, 277-285.	1.1	11
503	Triple-negative pleomorphic lobular carcinoma and expression of androgen receptor: Personal case series and review of the literature. PLoS ONE, 2020, 15, e0235790.	1.1	3
504	High Ki-67 expression is a marker of poor survival in apocrine breast carcinoma. Polish Journal of Pathology, 2020, 71, 107-119.	0.1	1
505	Prognosis of selected triple negative apocrine breast cancer patients who did not receive adjuvant chemotherapy. Breast, 2020, 53, 138-142.	0.9	9
506	Revisiting the Concept of Stress in the Prognosis of Solid Tumors: A Role for Stress Granules Proteins?. Cancers, 2020, 12, 2470.	1.7	14
507	Genomic Signatures in Luminal Breast Cancer. Breast Care, 2020, 15, 355-365.	0.8	20
508	Apocrine Variant of Pleomorphic Lobular Carcinoma In Situ. American Journal of Surgical Pathology, 2020, 44, 1092-1103.	2.1	12

#	Article	IF	CITATIONS
509	Prognostic value of the androgen receptor in addition to the established hormone receptors and HER2 status for predicting survival in women with early breast cancer. The Cochrane Library, 2020, , .	1.5	2
510	Molecular subtypes of triple-negative breast cancer: understanding of subtype categories and clinical implication. Genes and Genomics, 2020, 42, 1381-1387.	0.5	23
511	Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research, 2020, 22, 61.	2.2	1,022
512	Insights into the Role of Estrogen Receptor Î ² in Triple-Negative Breast Cancer. Cancers, 2020, 12, 1477.	1.7	33
513	Molecular Classification and Future Therapeutic Challenges of Triple-negative Breast Cancer. In Vivo, 2020, 34, 1715-1727.	0.6	16
514	The transcriptional repressor BCL11A promotes breast cancer metastasis. Journal of Biological Chemistry, 2020, 295, 11707-11719.	1.6	29
515	Breast Pathology. , 2020, , 921-1047.		0
516	The International Academy of Cytology Yokohama System for Reporting Breast Fine Needle Aspiration Biopsy Cytopathology. , 2020, , .		15
517	Ret Receptor Has Distinct Alterations and Functions in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 13-26.	1.0	12
518	AR pathway activity correlates with AR expression in a HER2-dependent manner and serves as a better prognostic factor in breast cancer. Cellular Oncology (Dordrecht), 2020, 43, 321-333.	2.1	12
519	Sphingosine Kinase 1 in Breast Cancer—A New Molecular Marker and a Therapy Target. Frontiers in Oncology, 2020, 10, 289.	1.3	18
521	Development of an absolute assignment predictor for triple-negative breast cancer subtyping using machine learning approaches. Computers in Biology and Medicine, 2021, 129, 104171.	3.9	8
522	Molecular intrinsic versus clinical subtyping in breast cancer: A comprehensive review. Clinical Genetics, 2021, 99, 613-637.	1.0	42
523	A Positive Feedback Loop Between TCFβ and Androgen Receptor Supports Triple-negative Breast Cancer Anoikis Resistance. Endocrinology, 2021, 162, .	1.4	13
524	The TGFÎ ² and Androgen Receptor Signaling Pathways Converge to Support Anoikis Resistance in Triple Negative Breast Cancer. , 2021, , 173-192.		1
526	Breast and Gynecologic Tumors. , 2021, , 89-120.		0
527	Editorial: The Androgen Receptor in Breast Cancer. Frontiers in Endocrinology, 2020, 11, 636480.	1.5	6
528	Epigenetic Alterations in Triple-Negative Breast Cancer—The Critical Role of Extracellular Matrix. Cancers, 2021, 13, 713.	1.7	35

ARTICLE IF CITATIONS # Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and 529 3.3 25 LOXL1. EMBO Molecular Medicine, 2021, 13, e13180. Involvement of Î²-catenin in Androgen-induced Mesenchymal Transition of Breast MDA-MB-453 Cancer 0.6 Cells. Endocrine Research, 2021, 46, 114-128. Role of Non-Coding Regulatory Elements in the Control of GR-Dependent Gene Expression. 531 0 1.8 International Journal of Molecular Sciences, 2021, 22, 4258. Triple-Negative Breast Cancer Cells RecruitÂNeutrophils by Secreting TGF-Î² and CXCR2 Ligands. Frontiers in İmmunology, 2021, 12, 659996. The importance of androgen receptors in breast cancer. Medicine and Pharmacy Reports, 2021, 94, 533 0.2 2 273-281. Androgens enhance the ability of intratumoral macrophages to promote breast cancer progression. 534 1.2 Oncology Reports, 2021, 46, Androgen receptor expression in breast cancer: Implications on prognosis and treatment, a brief 535 1.6 13 review. Molecular and Cellular Endocrinology, 2021, 531, 111324. Expression of Ki67 in Triple Negative Breast Carcinoma and Its Correlation with Clinicopathological Variables – A Study from a Tertiary Care Center in Thrissur, Kerala. Journal of Evidence Based Medicine and Healthcare, 2021, 8, 2439-2443. Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals 538 1.4 10 biomarkers of clinical prognosis. Cell Reports Methods, 2021, 1, 100050. A novel IncRNA derived from an ultraconserved region: Inc-uc.147, a potential biomarker in luminal A 1.5 breast cancer. RNA Biology, 2021, , 1-14. Unveiling Novel Therapeutic Drug Targets and Prognostic Markers of Triple Negative Breast Cancer. 540 7 0.8 Current Cancer Drug Targets, 2021, 21, 907-918. Apocrine lesions of the breast. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur 1.4 Klinische Medizin, 2022, 480, 177-189. Androgen receptor splice variant-7 in breast cancer: clinical and pathologic correlations. Modern 542 2.9 9 Pathology, 2022, 35, 396-402. Androgen Receptor Pathway in Salivary Gland Cancer. Journal of Clinical Oncology, 2021, 39, 543 0.8 4069-4072. Hormone receptor expression in aging mammary tissue and carcinoma from a rodent model after 544 2.0 10 xenoestrogen disruption. Life Sciences, 2021, 285, 120010. $\hat{\mathsf{l}}$ +Methylacyl-CoA racemase: a useful immunohistochemical marker of breast carcinoma with apocrine 545 1.1 differentiation. Human Pathology, 2021, 116, 39-48. RosettaSX: Reliable gene expression signature scoring of cancer models and patients. Neoplasia, 2021, 546 2.33 23, 1069-1077. 548 Triple Negative Breast Cancer., 2022, , 35-48.

		CITATION F	Report	
# 549	ARTICLE Molecular Pathology of Breast Cancer. , 2013, , 95-128.		IF	Citations 3
550	Prolactin-Induced Protein in Breast Cancer. Advances in Experimental Medicine and Bio 189-200.	logy, 2015, 846,	0.8	21
551	Systems Biology and Integrative Omics in Breast Cancer. , 2014, , 333-352.			4
552	The Molecular Evolution of Breast Cancer Precursors and Risk Indicators. , 2011, , 89-1	17.		4
553	Immunohistochemistry and Molecular Biology of Breast Cancers: Old and New Prognos 2011, , 119-148.	tic Factors. ,		5
555	Molecular-based Testing in Breast Disease for Therapeutic Decisions. , 2012, , 173-188.			1
556	Apocrine Carcinoma of the Breast. , 2012, , 502-511.			2
559	Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. Journal of Breas 2021, 3, 12-24.	t Imaging,	0.5	82
561	Hormone-Targeted Therapy and Resistance. Annual Review of Cancer Biology, 2018, 2,	291-312.	2.3	11
562	Identification of human triple-negative breast cancer subtypes and preclinical models for targeted therapies. Journal of Clinical Investigation, 2011, 121, 2750-2767.	or selection of	3.9	4,137
563	Breast cancer $\hat{a} \in $ one term, many entities?. Journal of Clinical Investigation, 2011, 121	, 3789-3796.	3.9	183
566	Expression of Protein 4.1 Family in Breast Cancer: Database Mining for 4.1 Family Mem Malignancies. Medical Science Monitor, 2019, 25, 3374-3389.	bers in	0.5	10
567	Meta-Analysis and Gene Set Enrichment Relative to ER Status Reveal Elevated Activity o the "Basal―Breast Cancer Subgroup. PLoS ONE, 2009, 4, e4710.	of MYC and E2F in	1.1	88
568	The Role of Master Regulators in the Metabolic/Transcriptional Coupling in Breast Carci ONE, 2012, 7, e42678.	nomas. PLoS	1.1	20
569	Reduced Androgen Receptor Expression Accelerates the Onset of ERBB2 Induced Breas Female Mice. PLoS ONE, 2013, 8, e60455.	t Tumors in	1.1	11
570	Genomic Insights into Triple-Negative and HER2-Positive Breast Cancers Using Isogenic PLoS ONE, 2013, 8, e74993.	Model Systems.	1.1	7
571	Identification of a Novel Luminal Molecular Subtype of Breast Cancer. PLoS ONE, 2014,	, 9, e103514.	1.1	14
572	Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Indirectly via IL-8/CXCR2. PLoS ONE, 2015, 10, e0141947.	Directly and	1.1	27

		CITATION REPORT		
#	Article		IF	CITATIONS
573	Claudin-Low Breast Cancer; Clinical & amp; Pathological Characteristics. PLoS ONE, 2017,	12, e0168669.	1.1	111
574	Clinicopathologic features of molecular subtypes of triple negative breast cancer based or immunohistochemical markers. Histology and Histopathology, 2012, 27, 1481-93.		0.5	51
575	Apocrine carcinoma of the breast: a comprehensive review. Histology and Histopathology, 1393-409.	2013, 28,	0.5	67
576	Androgen excess in breast cancer development: implications for prevention and treatment Endocrine-Related Cancer, 2019, 26, R81-R94.		1.6	42
577	Prognostic value of androgen receptor in triple negative breast cancer: A meta-analysis. On 2016, 7, 46482-46491.	ncotarget,	0.8	92
578	Early versus late distant metastasis and adjuvant chemotherapy alone <i>versus</i> both and chemotherapy in molecular apocrine breast cancer. Oncotarget, 2016, 7, 48905-4891	radiotherapy .7.	0.8	6
579	Overexpression of the E2F target gene <i>CENPI</i> promotes chromosome instability and poor prognosis in estrogen receptor-positive breast cancer. Oncotarget, 2017, 8, 62167-6		0.8	38
580	VEGF121, is predictor for survival in activated B-cell-like diffuse large B-cell lymphoma and to an immune response gene signature conserved in cancers. Oncotarget, 2017, 8, 90808		0.8	3
581	Lack of both androgen receptor and forkhead box A1 (FOXA1) expression is a poor progno estrogen receptor-positive breast cancers. Oncotarget, 2017, 8, 82940-82955.	ostic factor in	0.8	8
582	FoxM1 is a promising candidate target in the treatment of breast cancer. Oncotarget, 201	8, 9, 842-852.	0.8	31
583	Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of gr invasion in triple-negative breast cancer. Oncotarget, 2015, 6, 21685-21703.	owth and	0.8	24
584	Identification and evaluation of network modules for the prognosis of basal-like breast car Oncotarget, 2015, 6, 17713-17724.	ncer.	0.8	3
585	Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget, 201 44728-44744.	.5, 6,	0.8	77
586	Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tur clinical outcome. Oncotarget, 2016, 7, 11165-11193.	norigenesis and	0.8	76
587	Androgens downregulate miR-21 expression in breast cancer cells underlining the protecti androgen receptor. Oncotarget, 2016, 7, 12651-12661.	ve role of	0.8	17
588	Gene Expression Profiling in Human Breast Cancer - Toward Personalised Therapeutics?~!2009-04-21~!2010-02-19~!2010-07-06~!. Open Breast Cancer Journal, 20	010, 2, 46-59.	0.2	6
589	PBX1 is a valuable prognostic biomarker for patients with breast cancer. Experimental and Medicine, 2020, 20, 385-394.	Therapeutic	0.8	26
590	CXCR4 and CXCR3 are two distinct prognostic biomarkers in breast cancer: Database min family members. Molecular Medicine Reports, 2019, 20, 4791-4802.	ing for CXCR	1.1	11

#	Article	IF	CITATIONS
591	Inverted Apical CD24 and Weak EZH2 Expressions Are Phenotypic Characteristics of Pure Invasive Micropapillary Carcinoma of the Breast. Open Journal of Pathology, 2013, 03, 85-95.	0.0	1
592	Cancer stem cells and early stage basal-like breast cancer. World Journal of Obstetrics and Gynecology, 2016, 5, 150.	0.5	5
593	Ranking, selecting, and prioritising genes with desirability functions. PeerJ, 2015, 3, e1444.	0.9	11
594	Screening of immunosuppressive factors for biomarkers of breast cancer malignancy phenotypes and subtype-specific targeted therapy. PeerJ, 2019, 7, e7197.	0.9	2
595	The Origin of Estrogen Receptor α-Positive and α-Negative Breast Cancer. Advances in Experimental Medicine and Biology, 2008, 617, 79-86.	0.8	1
596	New Perspectives for Therapy Choice. Cancer Treatment and Research, 2009, 151, 31-40.	0.2	0
597	Grid Technologies for Cancer Research in the ACGT Project. , 2010, , 93-105.		0
598	Endocrine Therapy. , 2010, , 329-352.		0
599	Meta-Analysis of Clinical Trials. , 2010, , 221-246.		4
600	Invasive Carcinoma. , 2011, , 227-259.		1
603	Computational Infrastructures for Large-Scale Data Access and Analysis in Post-Genomic Clinical Trials. , 2012, , 363-392.		0
605	Amplification of the Oncogene HER2 in Breast Cancer: Molecular Basis and Therapeutic Significance. SIS Journal, 2012, 1, .	0.0	0
606	Understanding Triple-Negative Breast Cancer. , 2013, , 97-116.		0
607	Molecular Testing in Breast Cancer. , 2014, , 169-188.		0
608	Neoadjuvant Chemotherapeutic and Targeted Therapies for Early-stage, High-risk Breast Cancer. European Oncology and Haematology, 2014, 10, 28.	0.0	0
609	Genomic Applications in Breast Carcinoma. , 2015, , 359-382.		0
610	Genomic Markers in ER-Negative Breast Cancer. , 2016, , 283-298.		0
611	Future Role of Molecular Profiling in Small Breast Samples and Personalised Medicine. , 2016, , 803-817.		Ο

	Сітаті	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
613	Molecular Classification of Breast Cancer. , 2017, , 1-22.		0
614	Androgen Receptor in Stage I-II Primary Breast Cancer –Prognostic Value and Distribution in Subgroups. Anticancer Research, 2017, 37, 6845-6853.	0.5	4
616	Malignant. , 2020, , 83-118.		1
618	Secreted indicators of androgen receptor activity in breast cancer pre-clinical models. Breast Cancer Research, 2021, 23, 102.	2.2	7
619	Resistance-Associated Signatures in Breast Cancer. , 2007, 176, 37-50.		0
620	Data perturbation independent diagnosis and validation of breast cancer subtypes using clustering and patterns. Cancer Informatics, 2007, 2, 243-74.	0.9	9
622	A comparison of selective classification methods in DNA microarray data of cancer: some recommendations for application in health promotion. Health Promotion Perspectives, 2013, 3, 129-34.	0.8	0
623	Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified?. American Journal of Cancer Research, 2014, 4, 353-68.	1.4	48
624	Expression of sarcosine metabolism-related proteins in estrogen receptor negative breast cancer according to the androgen receptor and HER-2 status. International Journal of Clinical and Experimental Pathology, 2015, 8, 7967-77.	0.5	7
625	HER2 status in molecular apocrine breast cancer: associations with clinical, pathological, and molecular features. International Journal of Clinical and Experimental Pathology, 2015, 8, 8008-17.	0.5	8
626	Role of the androgen receptor in triple-negative breast cancer. Clinical Advances in Hematology and Oncology, 2016, 14, 186-93.	0.3	68
628	Prolactin-induced protein (PIP)-characterization and role in breast cancer progression. American Journal of Cancer Research, 2018, 8, 2150-2164.	1.4	13
629	Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS ONE, 2021, 16, e0260327.	1.1	22
630	Triple-negative apocrine carcinoma as a rare cause of a breast lump in a Syrian female: a case report and review of the literature. BMC Women's Health, 2021, 21, 396.	0.8	4
631	Paxillin promotes breast tumor collective cell invasion through maintenance of adherens junction integrity. Molecular Biology of the Cell, 2022, 33, mbcE21090432.	0.9	10
632	Triple-negative breast cancer and basal-like subtypeâ€: Pathology and targeted therapy. Journal of Medical Investigation, 2021, 68, 213-219.	0.2	7
633	Prognostic Role of Androgen Receptor Expression in HER2+ Breast Carcinoma Subtypes. Biomedicines, 2022, 10, 164.	1.4	4
634	Breast cancer hypoxia in relation to prognosis and benefit from radiotherapy after breast-conserving surgery in a large, randomised trial with long-term follow-up. British Journal of Cancer, 2022, 126, 1145-1156	2.9	20

#	Article	IF	CITATIONS
635	Androgen Receptor: A New Marker to Predict Pathological Complete Response in HER2-Positive Breast Cancer Patients Treated with Trastuzumab Plus Pertuzumab Neoadjuvant Therapy. Journal of Personalized Medicine, 2022, 12, 261.	1.1	4
636	A Transcriptional Link between HER2, JAM-A and FOXA1 in Breast Cancer. Cells, 2022, 11, 735.	1.8	9
637	Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. International Journal of Molecular Sciences, 2021, 22, 13184.	1.8	8
638	An Update on the Molecular and Clinical Characteristics of Apocrine Carcinoma of the Breast. Clinical Breast Cancer, 2022, 22, e576-e585.	1.1	15
639	Clinical-pathologic characteristics and response to neoadjuvant chemotherapy in triple-negative low Ki-67 proliferation (TNLP) breast cancers. Npj Breast Cancer, 2022, 8, 51.	2.3	9
645	Subclassifying triple-negative breast cancers and its potential clinical utility. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 481, 13-21.	1.4	5
648	Impact of HER2 Status on Pathological Response after Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer. Cancers, 2022, 14, 2509.	1.7	22
649	Upregulated GATA3/miR205-5p Axis Inhibits MFNG Transcription and Reduces the Malignancy of Triple-Negative Breast Cancer. Cancers, 2022, 14, 3057.	1.7	2
650	Ceritinib is a novel triple negative breast cancer therapeutic agent. Molecular Cancer, 2022, 21, .	7.9	14
651	MicroRNAs miR-142-5p, miR-150-5p, miR-320a-3p, and miR-4433b-5p in Serum and Tissue: Potential Biomarkers in Sporadic Breast Cancer. Frontiers in Genetics, 0, 13, .	1.1	10
655	Diverse role of androgen action in human breast cancer. Endocrine Oncology, 2022, , .	0.1	0
656	Disease Behavior and Treatment Response of Special Histological Types of Triple-Negative Breast Cancer. Clinical Breast Cancer, 2022, 22, e892-e900.	1.1	3
657	Câncer de mama e sistema purinérgico. , 2021, , 138-155.		0
658	Distinct Uroplakin II Staining Pattern in Apocrine Breast Carcinoma. Applied Immunohistochemistry and Molecular Morphology, 2022, 30, 681-686.	0.6	2
661	CAXII Is a Surrogate Marker for Luminal Breast Tumors Regulated by ER and GATA3. Cancers, 2022, 14, 5453.	1.7	1
663	Future Role of Molecular Profiling in Small Breast Samples and Personalised Medicine. , 2022, , 895-915.		0
664	Less Common Triple-Negative Breast Cancers. , 2022, , 463-573.		0
665	The POLR3G Subunit of Human RNA Polymerase III Regulates Tumorigenesis and Metastasis in Triple-Negative Breast Cancer. Cancers, 2022, 14, 5732.	1.7	7

#	Article	IF	CITATIONS
667	AMACR Expression is a Potential Diagnostic Marker in Apocrine Lesions of Breast, and is Associated with High Histologic Grade and Lymph Node Metastases in Some Invasive Apocrine Breast Cancers. Clinical Breast Cancer, 2022, , .	1.1	1
668	Atorvastatin improves cisplatin sensitivity through modulation of cholesteryl ester homeostasis in breast cancer cells. Discover Oncology, 2022, 13, .	0.8	3
669	Novel Implications of Prognostic Markers to Monitor the Disease: An Overview. , 2023, , 182-197.		0
670	Molecular Sub-Typing and Exploration of Key Signalling Pathways Involved in Complicating the Disease. , 2023, , 47-72.		1
672	RUNX1 Is Regulated by Androgen Receptor to Promote Cancer Stem Markers and Chemotherapy Resistance in Triple Negative Breast Cancer. Cells, 2023, 12, 444.	1.8	9
673	Rewiring of the 3D genome during acquisition of carboplatin resistance in a triple-negative breast cancer patient-derived xenograft. Scientific Reports, 2023, 13, .	1.6	0
674	Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomedicine and Pharmacotherapy, 2023, 162, 114648.	2.5	1
676	Invasive Breast Carcinomas. , 2013, , 147-212.		2
677	Revisiting Androgen Receptor Signaling in Breast Cancer. Oncologist, 2023, 28, 383-391.	1.9	7
678	Molecular breast cancer subtype identification using photoacoustic spectral analysis and machine learning at the biomacromolecular level. Photoacoustics, 2023, 30, 100483.	4.4	7

691 Invasive Carcinomas of the Breast. , 2024, , 191-264.

0