Regulatory networks in embryo-derived pluripotent ste

Nature Reviews Molecular Cell Biology 6, 872-881

DOI: 10.1038/nrm1744

Citation Report

#	Article	IF	CITATIONS
1	Stem cells and diabetes treatment. Apmis, 2005, 113, 858-875.	0.9	32
2	Pluripotent Stem Cells from Germ Cells. Methods in Enzymology, 2006, 419, 400-426.	0.4	32
3	Comparisons between Transcriptional Regulation and RNA Expression in Human Embryonic Stem Cell Lines. Stem Cells and Development, 2006, 15, 315-323.	1.1	36
4	Repressed by a NuRD. Nature Cell Biology, 2006, 8, 212-214.	4.6	15
5	Use of Chuk as an internal standard suitable for quantitative RT-PCR in mouse preimplantation embryos. Reproductive BioMedicine Online, 2006, 13, 394-403.	1.1	22
6	Reprogramming Efficiency Following Somatic Cell Nuclear Transfer Is Influenced by the Differentiation and Methylation State of the Donor Nucleus. Stem Cells, 2006, 24, 2007-2013.	1.4	251
7	Cynomolgus monkey embryonic stem cell lines express green fluorescent protein. Journal of Bioscience and Bioengineering, 2006, 102, 14-20.	1.1	3
8	Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochemical and Biophysical Research Communications, 2006, 351, 920-926.	1.0	103
9	Molecular control of pluripotency. Current Opinion in Genetics and Development, 2006, 16, 455-462.	1.5	238
10	Dissecting Oct3/4-Regulated Gene Networks in Embryonic Stem Cells by Expression Profiling. PLoS ONE, 2006, 1, e26.	1.1	161
11	Mechanisms Controlling Embryonic Stem Cell Self-Renewal and Differentiation. Critical Reviews in Eukaryotic Gene Expression, 2006, 16, 211-232.	0.4	38
12	Comparative Analysis of Germ Cell Transcription Factors in CNS Germinoma Reveals Diagnostic Utility of NANOG. American Journal of Surgical Pathology, 2006, 30, 1613-1618.	2.1	49
13	Identification and targeted disruption of the mouse gene encoding ESG1 (PH34/ECAT2/DPPA5). BMC Developmental Biology, 2006, 6, 11.	2.1	35
14	Esg1, expressed exclusively in preimplantation embryos, germline, and embryonic stem cells, is a putative RNA-binding protein with broad RNA targets. Development Growth and Differentiation, 2006, 48, 381-390.	0.6	33
15	Oocytes originating from skin?. Nature Cell Biology, 2006, 8, 313-314.	4.6	11
16	Uncovering stemness. Nature Cell Biology, 2006, 8, 1048-1049.	4.6	10
17	Potential of stem-cell-based therapies for heart disease. Nature, 2006, 441, 1097-1099.	13.7	143
18	Pluripotent stem cells and their niches. Stem Cell Reviews and Reports, 2006, 2, 185-201.	5.6	63

TATION REPO

#	Article	IF	Citations
19	Germ cell restricted expression of chick Nanog. Developmental Dynamics, 2006, 235, 2889-2894.	0.8	45
20	Differential Recruitment of Methylated CpG Binding Domains by the Orphan Receptor GCNF Initiates the Repression and Silencing of Oct4 Expression. Molecular and Cellular Biology, 2006, 26, 9471-9483.	1.1	47
21	Three-Dimensional Extracellular Matrix Stimulates Gastrulation-like Events in Human Embryoid Bodies. Stem Cells and Development, 2006, 15, 889-904.	1.1	23
22	Biology and Genetics of Adult Male Germ Cell Tumors. Journal of Clinical Oncology, 2006, 24, 5512-5518.	0.8	73
23	Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6946-6951.	3.3	93
24	Gene Expression Dynamics During Germline Specification in Mice Identified by Quantitative Single-Cell Gene Expression Profiling1. Biology of Reproduction, 2006, 75, 705-716.	1.2	256
25	A Dominant-negative Form of Mouse SOX2 Induces Trophectoderm Differentiation and Progressive Polyploidy in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2007, 282, 19481-19492.	1.6	82
26	Developmental Pluripotency-associated 4 (DPPA4) Localized in Active Chromatin Inhibits Mouse Embryonic Stem Cell Differentiation into a Primitive Ectoderm Lineage. Journal of Biological Chemistry, 2007, 282, 33034-33042.	1.6	54
27	Vertebrate Ctr1 coordinates morphogenesis and progenitor cell fate and regulates embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12029-12034.	3.3	37
28	FoxD3 and Grg4 Physically Interact to Repress Transcription and Induce Mesoderm in Xenopus. Journal of Biological Chemistry, 2007, 282, 2548-2557.	1.6	60
29	Global Gene Expression in Classification, Pathogenetic Understanding and Identification of Therapeutic Targets in Acute Myeloid Leukemia. Current Pharmaceutical Biotechnology, 2007, 8, 344-354.	0.9	2
30	Systematic Identification of cis-Regulatory Sequences Active in Mouse and Human Embryonic Stem Cells. PLoS Genetics, 2007, 3, e145.	1.5	83
31	Regulation of Nanog Expression by Phosphoinositide 3-Kinase-dependent Signaling in Murine Embryonic Stem Cells. Journal of Biological Chemistry, 2007, 282, 6265-6273.	1.6	130
32	2007 International Conference on Cyberworlds - Cover. , 2007, , .		Ο
33	Rat Embryonic Stem-Like (ES-Like) Cells Can Contribute to Extraembryonic Tissues In Vivo. Cloning and Stem Cells, 2007, 9, 512-522.	2.6	28
34	Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development (Cambridge), 2007, 134, 3827-3836.	1.2	440
35	Prostate Cancer Cells with Stem Cell Characteristics Reconstitute the Original Human Tumor In vivo. Cancer Research, 2007, 67, 4807-4815.	0.4	325
36	The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation. Molecular and Cellular Biology, 2007, 27, 3769-3779.	1.1	628

#	Article	IF	CITATIONS
37	In Vitro Gamete Derivation from Pluripotent Stem Cells: Progress and Perspective1. Biology of Reproduction, 2007, 76, 546-551.	1.2	49
38	Regenerative Potential of Embryonic Renal Multipotent Progenitors in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2007, 18, 3128-3138.	3.0	194
39	Nuclear Receptors in Regulation of Mouse ES Cell Pluripotency and Differentiation. PPAR Research, 2007, 2007, 1-10.	1.1	48
40	Phosphoinositide 3-kinases and regulation of embryonic stem cell fate. Biochemical Society Transactions, 2007, 35, 225-228.	1.6	31
41	Embryonic Stem Cell Transcription Factor Signatures in the Diagnosis of Primary and Metastatic Germ Cell Tumors. American Journal of Surgical Pathology, 2007, 31, 836-845.	2.1	169
42	Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118.	0.8	0
43	Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology, 2007, 67, 54-63.	0.9	59
44	Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology, 2007, 68, S206-S213.	0.9	96
45	Zfx Controls the Self-Renewal of Embryonic and Hematopoietic Stem Cells. Cell, 2007, 129, 345-357.	13.5	219
46	Chromatin organization and differentiation in embryonic stem cell models. Current Opinion in Genetics and Development, 2007, 17, 132-138.	1.5	23
47	PIAS Proteins as Repressors of Oct4 Function. Journal of Molecular Biology, 2007, 374, 1200-1212.	2.0	35
48	βâ€Catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Letters, 2007, 581, 5247-5254.	1.3	113
49	Improved Embryonic Stem Cell Technologies. , 2007, , 107-128.		13
51	Phenotypic Analysis of Human Embryonic Stem Cells. , 2007, Chapter 1, Unit 1B.3.		16
52	Reprogramming somatic cells to their embryonic state. HFSP Journal, 2007, 1, 89-93.	2.5	0
53	Visualization of Aligned Biological Networks: A Survey. , 2007, , .		18
54	Genetic Modification of Human Embryonic Stem Cells. Biotechnology and Genetic Engineering Reviews, 2007, 24, 297-310.	2.4	16
55	Embryonic stem cells in science and medicine: An invitation for dialogue. Gender Medicine, 2007, 4, 288-293.	1.4	1

#	Article	IF	Citations
56	A Cassette System to Study Embryonic Stem Cell Differentiation by Inducible RNA Interference. Stem Cells, 2007, 25, 1178-1185.	1.4	11
57	Concise Review: Epigenetic Mechanisms Contribute to Pluripotency and Cell Lineage Determination of Embryonic Stem Cells. Stem Cells, 2007, 25, 2-9.	1.4	167
58	Collagen IV Induces Trophoectoderm Differentiation of Mouse Embryonic Stem Cells. Stem Cells, 2007, 25, 1529-1538.	1.4	101
59	Functional Similarities Among Genes Regulated by Oct4 in Human Mesenchymal and Embryonic Stem Cells, 2007, 25, 3143-3154.	1.4	228
60	Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function. PLoS ONE, 2007, 2, e553.	1.1	82
61	Molecular Targets and Early Response Biomarkers for the Prediction of Developmental Toxicity <i>In Vitro</i> . ATLA Alternatives To Laboratory Animals, 2007, 35, 335-342.	0.7	8
62	Developmental potential ofGcn5â^'/â^' embryonic stem cells in vivo and in vitro. Developmental Dynamics, 2007, 236, 1547-1557.	0.8	55
63	Genomic and proteomic characterization of embryonic stem cells. Current Opinion in Chemical Biology, 2007, 11, 399-404.	2.8	17
64	Designing synthetic materials to control stem cell phenotype. Current Opinion in Chemical Biology, 2007, 11, 381-387.	2.8	208
65	Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Developmental Biology, 2007, 7, 67.	2.1	102
66	Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene, 2007, 26, 5564-5576.	2.6	74
67	Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2007, 2, 3081-3089.	5.5	945
68	POU-V factors antagonize maternal VegT activity and β-Catenin signaling in Xenopus embryos. EMBO Journal, 2007, 26, 2942-2954.	3.5	53
69	A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia, 2007, 21, 860-867.	3.3	204
70	Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Modern Pathology, 2007, 20, 474-481.	2.9	209
71	Using biomarker signature patterns for an mRNA molecular diagnostic of mouse embryonic stem cell differentiation state. BMC Genomics, 2007, 8, 210.	1.2	2
72	Programming the genome in embryonic and somatic stem cells. Journal of Cellular and Molecular Medicine, 2007, 11, 602-620.	1.6	38
73	Chromosomes and Expression in Human Testicular Germ ell Tumors. Annals of the New York Academy of Sciences, 2007, 1120, 187-214.	1.8	71

ARTICLE IF CITATIONS # <i>Zfp206</i> Is a Transcription Factor That Controls Pluripotency of Embryonic Stem Cells. Stem 1.4 50 74 Cells, 2007, 25, 2173-2182. Efficient Derivation of Embryonic Stem Cells by Inhibition of Glycogen Synthase Kinase-3. Stem Cells, 1.4 2007, 25, 2705-2711. Bone-marrow-derived stem cells â€" our key to longevity?. Journal of Applied Genetics, 2007, 48, 307-319. 76 1.0 45 From Stem Cells to Oligodendrocytes: Prospects for Brain Therapy. Stem Cell Reviews and Reports, 2007, 3, 280-288. Nanog reporter system in mouse embryonic stem cells based on highly efficient BAC homologous 78 1.7 0 recombination. Science Bulletin, 2007, 52, 2782-2788. Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. Journal of Molecular Medicine, 2008, 86, 875-886. 1.7 Interactome of a Cardiopoietic Precursor. Journal of Cardiovascular Translational Research, 2008, 1, 81 1.1 9 120-126. Stem cells in liver regeneration and therapy. Cell and Tissue Research, 2008, 331, 271-282. 1.5 83 microRNA and stem cell function. Cell and Tissue Research, 2008, 331, 57-66. 1.5 145 Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell and Tissue 84 1.5 Research, 2008, 331, 23-29. Development of a decoy immunization strategy to identify cell-surface molecules expressed on 85 1.5 30 undifferentiated human embryonic stem cells. Cell and Tissue Research, 2008, 333, 197-206. Cell surface biomarkers of embryonic stem cells. Proteomics, 2008, 8, 4025-4035. 1.3 86 64 Aberrant expression of SOX2 upregulates MUC5AC gastric foveolar mucin in mucinous cancers of the colorectum and related lesions. International Journal of Cancer, 2008, 122, 1253-1260. 87 2.3 79 Pluripotency Associated Genes Are Reactivated by Chromatin-Modifying Agents in Neurosphere Cells. Stem Cells, 2008, 26, 920-926. 1.4 MicroRNA Discovery and Profiling in Human Embryonic Stem Cells by Deep Sequencing of Small RNA 89 1.4 273 Libraries. Stem Cells, 2008, 26, 2496-2505. OCT4 and NANOG are the key genes in the system of pluripotency maintenance in mammalian cells. Russian Journal of Genetics, 2008, 44, 1377-1393. Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFI²B and cooperating with 91 4.6 127 Stat3. Nature Cell Biology, 2008, 10, 194-201. Molecular and biological properties of pluripotent embryonic stem cells. Gene Therapy, 2008, 15, 74-81. 2.3

#	Article	IF	CITATIONS
93	Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation, 2008, 76, 130-144.	1.0	83
94	ReXSpecies – a tool for the analysis of the evolution of gene regulation across species. BMC Evolutionary Biology, 2008, 8, 111.	3.2	6
95	Embryonic Stem Cells in Cattle. Reproduction in Domestic Animals, 2008, 43, 32-37.	0.6	22
96	Human embryonic stem cells as a model system for studying the effects of smoke exposure on the embryo. Reproductive Toxicology, 2008, 26, 86-93.	1.3	32
97	Epigenetic Regulation of Mammalian Stem Cells. Stem Cells and Development, 2008, 17, 1043-1052.	1.1	73
98	Recent Advances in the Derivation of Germ Cells from the Embryonic Stem Cells. Stem Cells and Development, 2008, 17, 399-412.	1.1	44
99	Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis. Genome Biology, 2008, 9, R65.	13.9	86
100	Genomic chart guiding embryonic stem cell cardiopoiesis. Genome Biology, 2008, 9, R6.	13.9	66
101	Crystal Structure and DNA Binding of the Homeodomain of the Stem Cell Transcription Factor Nanog. Journal of Molecular Biology, 2008, 376, 758-770.	2.0	76
102	Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Developmental Biology, 2008, 315, 1-17.	0.9	90
103	TGFβ and SMADs Talk to NANOG in Human Embryonic Stem Cells. Cell Stem Cell, 2008, 3, 127-128.	5.2	22
104	Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology, 2008, 69, 1159-1164.	0.9	64
105	Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells. Cell, 2008, 133, 1106-1117.	13.5	2,279
106	Cancer Stem Cells Contribute to Cisplatin Resistance in <i>Brca1/p53</i> –Mediated Mouse Mammary Tumors. Cancer Research, 2008, 68, 3243-3250.	0.4	292
107	Characterization, Chromosomal Assignment, and Role of LIFR in Early Embryogenesis and Stem Cell Establishment of Rabbits. Cloning and Stem Cells, 2008, 10, 523-534.	2.6	13
108	Wnt/Notch signalling and information processing during development. Development (Cambridge), 2008, 135, 411-424.	1.2	260
109	Coupled Global and Targeted Proteomics of Human Embryonic Stem Cells during Induced Differentiation. Molecular and Cellular Proteomics, 2008, 7, 750-767.	2.5	50
110	Epigenetic Basis for the Differentiation Potential of Mesenchymal and Embryonic Stem Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 205-215.	0.7	23

#	Article	IF	CITATIONS
111	SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2907-2912.	3.3	330
112	Characterization and Genetic Manipulation of Human Umbilical Cord Vein Mesenchymal Stem Cells: Potential Application in Cell-Based Gene Therapy. Rejuvenation Research, 2008, 11, 379-386.	0.9	42
113	ECSA/DPPA2 is an Embryo-Cancer Antigen that Is Coexpressed with Cancer-Testis Antigens in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2008, 14, 3291-3298.	3.2	32
114	Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells. PLoS ONE, 2008, 3, e2637.	1.1	444
115	Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes and Development, 2008, 22, 746-755.	2.7	444
116	Genetic Approaches in Human Embryonic Stem Cells and Their Derivatives. , 2008, , 190-209.		0
117	Positive Correlations of Oct-4 and Nanog in Oral Cancer Stem-Like Cells and High-Grade Oral Squamous Cell Carcinoma. Clinical Cancer Research, 2008, 14, 4085-4095.	3.2	592
119	Transcription factors that behave as master regulators during mammalian embryogenesis function as molecular rheostats. Biochemical Journal, 2008, 411, e5-e7.	1.7	14
120	Murine Embryonic Stem Cell-Derived Hepatic Progenitor Cells Engraft in Recipient Livers with Limited Capacity of Liver Tissue Formation. Cell Transplantation, 2008, 17, 313-323.	1.2	53
121	Differentiation of Murine Embryonic Stem Cells in Skeletal Muscles of Mice. Cell Transplantation, 2008, 17, 325-335.	1.2	7
122	Transcriptional Regulatory Networks in Embryonic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 203-209.	2.0	70
123	Stem cells and regeneration in planarians. Frontiers in Bioscience - Landmark, 2008, Volume, 6374.	3.0	74
124	Restricted Expression of Epstein-Barr Virus Latent Genes in Murine B Cells Derived from Embryonic Stem Cells. PLoS ONE, 2008, 3, e1996.	1.1	2
125	Novel MicroRNA Candidates and miRNA-mRNA Pairs in Embryonic Stem (ES) Cells. PLoS ONE, 2008, 3, e2548.	1.1	48
126	The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells. PLoS ONE, 2008, 3, e3001.	1.1	139
127	Epiblast-derived stem cells in embryonic and adult tissues. International Journal of Developmental Biology, 2009, 53, 1529-1540.	0.3	67
128	Mouse Cofactor of BRCA1 (Cobra1) Is Required for Early Embryogenesis. PLoS ONE, 2009, 4, e5034.	1.1	55
129	The 3′-Phosphoadenosine 5′-Phosphosulfate Transporters, PAPST1 and 2, Contribute to the Maintenance and Differentiation of Mouse Embryonic Stem Cells. PLoS ONE, 2009, 4, e8262.	1.1	46

#	Article	IF	CITATIONS
130	Foetal germ cells: striking the balance between pluripotency and differentiation. International Journal of Developmental Biology, 2009, 53, 393-409.	0.3	47
131	Identification and Purification of Mesodermal Progenitor Cells From Human Adult Bone Marrow. Stem Cells and Development, 2009, 18, 857-866.	1.1	47
132	The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation. Cell Cycle, 2009, 8, 916-924.	1.3	54
133	Potential Existence of Stem Cells With Multiple Differentiation Abilities to Three Different Germ Lineages in Mouse Neurospheres. Stem Cells and Development, 2009, 18, 1433-1440.	1.1	7
134	Isolation and Differentiation of Chicken Mesenchymal Stem Cells From Bone Marrow. Stem Cells and Development, 2009, 18, 1485-1492.	1.1	52
135	Role for Med12 in Regulation of Nanog and Nanog Target Genes. Journal of Biological Chemistry, 2009, 284, 3709-3718.	1.6	58
136	MOLECULAR REGULATION OF CELLULAR INTERACTIONS BY THE RHO-ROCK-MYOSIN II SIGNALING AXIS IN PLURIPOTENT STEM CELLS. Gene Therapy and Regulation, 2009, 04, 57-80.	0.3	0
137	The C-terminal Pentapeptide of Nanog Tryptophan Repeat Domain Interacts with Nac1 and Regulates Stem Cell Proliferation but Not Pluripotency. Journal of Biological Chemistry, 2009, 284, 16071-16081.	1.6	25
138	Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells. PLoS Biology, 2009, 7, e1000149.	2.6	498
139	Distinct roles for isoforms of the catalytic subunit of class-IA PI3K in the regulation of behaviour of murine embryonic stem cells. Journal of Cell Science, 2009, 122, 2311-2321.	1.2	32
139 140		1.2 1.4	32 60
	murine embryonic stem cells. Journal of Cell Science, 2009, 122, 2311-2321. Valproic Acid–Induced Deregulation In Vitro of Genes Associated In Vivo with Neural Tube Defects.		
140	 murine embryonic stem cells. Journal of Cell Science, 2009, 122, 2311-2321. Valproic Acid–Induced Deregulation In Vitro of Genes Associated In Vivo with Neural Tube Defects. Toxicological Sciences, 2009, 108, 132-148. VANLO - Interactive visual exploration of aligned biological networks. BMC Bioinformatics, 2009, 10, 	1.4	60
140 141	 murine embryonic stem cells. Journal of Cell Science, 2009, 122, 2311-2321. Valproic Acid–Induced Deregulation In Vitro of Genes Associated In Vivo with Neural Tube Defects. Toxicological Sciences, 2009, 108, 132-148. VANLO - Interactive visual exploration of aligned biological networks. BMC Bioinformatics, 2009, 10, 327. Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by 	1.4 1.2	60 10
140 141 142	 murine embryonic stem cells. Journal of Cell Science, 2009, 122, 2311-2321. Valproic Acid–Induced Deregulation In Vitro of Genes Associated In Vivo with Neural Tube Defects. Toxicological Sciences, 2009, 108, 132-148. VANLO - Interactive visual exploration of aligned biological networks. BMC Bioinformatics, 2009, 10, 327. Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives. BMC Genomics, 2009, 10, 73. Derivation of a novel undifferentiated human foetal phenotype in serumâ€free cultures with BMPâ€2. 	1.4 1.2 1.2	60 10 29
140 141 142 143	 murine embryonic stem cells. Journal of Cell Science, 2009, 122, 2311-2321. Valproic Acid–Induced Deregulation In Vitro of Genes Associated In Vivo with Neural Tube Defects. Toxicological Sciences, 2009, 108, 132-148. VANLO - Interactive visual exploration of aligned biological networks. BMC Bioinformatics, 2009, 10, 327. Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives. BMC Genomics, 2009, 10, 73. Derivation of a novel undifferentiated human foetal phenotype in serumâ€free cultures with BMPâ€2. Journal of Cellular and Molecular Medicine, 2009, 13, 3541-3555. "Small stem cells―in adult tissues: Very small embryonicâ€like stem cells stand up!. Cytometry Part A: 	1.4 1.2 1.2 1.6	60 10 29 4
140 141 142 143 144	 murine embryonic stem cells. Journal of Cell Science, 2009, 122, 2311-2321. Valproic Acid〓Induced Deregulation In Vitro of Genes Associated In Vivo with Neural Tube Defects. Toxicological Sciences, 2009, 108, 132-148. VANLO - Interactive visual exploration of aligned biological networks. BMC Bioinformatics, 2009, 10, 327. Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives. BMC Genomics, 2009, 10, 73. Derivation of a novel undifferentiated human foetal phenotype in serumã€free cultures with BMPã€2. Journal of Cellular and Molecular Medicine, 2009, 13, 3541-3555. 〜Small stem cells―in adult tissues: Very small embryonicâ€like stem cells stand up!. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 4-13. Two potent transactivation domains in the Câ€terminal region of human NANOG mediate transcriptional 	1.4 1.2 1.2 1.6 1.1	 60 10 29 4 98

#	Article	IF	CITATIONS
148	Recent developments in testicular germ cell tumor research. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 96-113.	3.6	51
149	Novel STAT3 Target Genes Exert Distinct Roles in the Inhibition of Mesoderm and Endoderm Differentiation in Cooperation with Nanog. Stem Cells, 2009, 27, 1760-1771.	1.4	166
150	KLF4 and PBX1 Directly Regulate <i>NANOG</i> Expression in Human Embryonic Stem Cells. Stem Cells, 2009, 27, 2114-2125.	1.4	115
151	RNA Polymerase II Associated Factor 1/PD2 Maintains Self-Renewal by Its Interaction with Oct3/4 in Mouse Embryonic Stem Cells. Stem Cells, 2009, 27, 3001-3011.	1.4	48
152	Non Cell-Autonomous Reprogramming of Adult Ocular Progenitors: Generation of Pluripotent Stem Cells without Exogenous Transcription Factors. Stem Cells, 2009, 27, 3053-3062.	1.4	41
153	A Novel Signaling by Vitamin A/Retinol Promotes Self Renewal of Mouse Embryonic Stem Cells by Activating PI3K/Akt Signaling Pathway via Insulin-Like Growth Factor-1 Receptor Â. Stem Cells, 2010, 28, 57-63.	1.4	70
154	Characterization of the Phosphoinositide 3-Kinase-Dependent Transcriptome in Murine Embryonic Stem Cells: Identification of Novel Regulators of Pluripotency. Stem Cells, 2009, 27, 764-775.	1.4	66
155	Sox2 and Octâ€3/4: a versatile pair of master regulators that orchestrate the selfâ€renewal and pluripotency of embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 228-236.	6.6	136
156	Proteomic analysis of membrane proteins expressed specifically in pluripotent murine embryonic stem cells. Proteomics, 2009, 9, 126-137.	1.3	25
157	Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos. BMC Molecular Biology, 2009, 10, 88.	3.0	42
158	Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathology and Applied Neurobiology, 2009, 35, 380-393.	1.8	38
159	Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 2009, 11, 197-203.	4.6	428
160	Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nature Reviews Cancer, 2009, 9, 773-784.	12.8	537
161	Involvement of GSK-3 in Regulation of Murine Embryonic Stem Cell Self-Renewal Revealed by a Series of Bisindolylmaleimides. Chemistry and Biology, 2009, 16, 15-27.	6.2	57
162	Stem Cells in Marine Organisms. , 2009, , .		18
163	Molecular Characterization of the Human NANOG Protein. Stem Cells, 2009, 27, 812-821.	1.4	40
164	Improved Electrospray Ionization Efficiency Compensates for Diminished Chromatographic Resolution and Enables Proteomics Analysis of Tyrosine Signaling in Embryonic Stem Cells. Analytical Chemistry, 2009, 81, 3440-3447.	3.2	100
165	Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell, 2009, 136, 411-419.	13.5	858

#	Article	IF	CITATIONS
166	Regulatory circuits underlying pluripotency and reprogramming. Trends in Pharmacological Sciences, 2009, 30, 296-302.	4.0	61
167	SOX2 is highly expressed in squamous cell carcinomas of the gastrointestinal tract. Human Pathology, 2009, 40, 1768-1773.	1.1	55
168	Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mechanisms of Development, 2009, 126, 42-55.	1.7	65
169	Functional dissection of XDppa2/4 structural domains in Xenopus development. Mechanisms of Development, 2009, 126, 974-989.	1.7	13
170	Isolation and Identification of Cancer Stem-Like Cells in Esophageal Carcinoma Cell Lines. Stem Cells and Development, 2009, 18, 465-474.	1.1	143
171	Adipocyte Differentiation in Human Embryonic Stem Cells Transduced With Oct4 shRNA Lentivirus. Stem Cells and Development, 2009, 18, 653-660.	1.1	17
172	Chapter 6 Molecular and Cell Biology of Testicular Germ Cell Tumors. International Review of Cell and Molecular Biology, 2009, 278, 277-308.	1.6	42
173	Stem Cell Sources for Regenerative Medicine. Methods in Molecular Biology, 2009, 482, 55-90.	0.4	46
175	Biology of Stem Cells and the Molecular Basis of the Stem State. , 2009, , .		18
176	Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency. Integrative Biology (United Kingdom), 2009, 1, 260.	0.6	52
177	Loss of Caveolin-3 Induces a Lactogenic Microenvironment that Is Protective Against Mammary Tumor Formation. American Journal of Pathology, 2009, 174, 613-629.	1.9	20
178	STAT3 and SMAD1 Signaling in Medaka Embryonic Stem-Like Cells and Blastula Embryos. Stem Cells and Development, 2009, 18, 151-160.	1.1	8
179	Expression of Pluripotency-Related Genes during Bovine Inner Cell Mass Explant Culture. Cloning and Stem Cells, 2009, 11, 355-365.	2.6	48
180	Working Hypothesis: Elimination of Cancer Stem Cells in Solid Tumors by Immuno-Gene Therapy Using Cancer Vaccines and Created-Inhibitory RNA. Current Cancer Therapy Reviews, 2009, 5, 217-226.	0.2	0
181	Therapeutic Use of Cloning: Osmangazi Turk Identical Embryonic Stem Cells and Embryonic Stem Cell Transfer to Diabetic Mice. Journal of Health Science, 2009, 55, 503-515.	0.9	1
182	Epigenetic regulation of reprogramming factors towards pluripotency in mouse preimplantation development. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 500-506.	1.2	5
183	Zebrafish Pou5f1â€dependent transcriptional networks in temporal control of early development. Molecular Systems Biology, 2010, 6, 354.	3.2	77
184	Overlapping Genes May Control Reprogramming of Mouse Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) and Breast Cancer Stem Cells. In Silico Biology, 2010, 10, 207-221.	0.4	6

ARTICLE IF CITATIONS # Differential expression profiling between atypical teratoid/rhabdoid and medulloblastoma tumor in 185 0.6 23 vitro and in vivo using microarray analysis. Child's Nervous System, 2010, 26, 293-303. Regulation of embryonic stem cell self-renewal and differentiation by TGF-12 family signaling. Science 2.3 China Life Sciences, 2010, 53, 497-503. Epiblast/Germ Line Hypothesis of Cancer Development Revisited: Lesson from the Presence of Oct-4+ 187 70 5.6 Cells in Adult Tissues. Stem Cell Reviews and Reports, 2010, 6, 307-316. Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous 188 cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Óncology, 2010, 46, 158-165. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell 189 1.2 39 lineages. Experimental Cell Research, 2010, 316, 2365-2376. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential 190 3.6 Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology, 2010, 52, 528-539. 191 Transcriptional repression in ES cells. Journal of Cellular Biochemistry, 2010, 110, 288-293. 1.2 7 Comparison of extraembryonic expression of <i>Eomes</i> and <i>Cdx2</i> in pregastrulation chick and mouse embryo unveils regulatory changes along evolution. Developmental Dynamics, 2010, 239, 0.8 620-629 Relationships between multidrug resistance (MDR) and stem cell markers in human chronic myeloid 193 0.4 49 leukemia cell lines. Leukemia Research, 2010, 34, 757-762. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in 194 2.6 human mesenchymal stem cell lines. Journal of Biomedical Science, 2010, 17, 64. Decoded Calreticulin-Deficient Embryonic Stem Cell Transcriptome Resolves Latent Cardiophenotype. 195 1.4 19 Stem Cells, 2010, 28, 1281-1291. Canonical Wnt/l²-Catenin Regulation of Liver Receptor Homolog-1 Mediates Pluripotency Gene 1.4 120 Expression Â. Stem Cells, 2010, 28, 1794-1804. A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4. 197 3.0 15 Aging Cell, 2010, 9, 580-591. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO Journal, 2010, 29, 2646-2658. 198 3.5 208 Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/l²-catenin signalling. 199 3.565 EMBO Journal, 2010, 29, 3236-3248. Epigenetic modifications in pluripotent and differentiated cells. Nature Biotechnology, 2010, 28, 1079-1088. 9.4 331 DPPA4 modulates chromatin structure via association with DNA and core histone H3 in mouse 201 0.5 18 embryonic stem cells. Genes To Cells, 2010, 15, 327-337. Direct reprogramming 101. Development Growth and Differentiation, 2010, 52, 319-333.

ARTICLE IF CITATIONS Reversal of Xenopus Oct25 Function by Disruption of the POU Domain Structure. Journal of 203 1.6 6 Biological Chemistry, 2010, 285, 8408-8421. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes and Development, 2010, 24, 312-326. 204 2.7 270 Porcine Skin-Derived Progenitor (SKP) Spheres and Neurospheres: Distinct "Stemness―Identified by 205 0.5 8 Microarray Analysis. Cellular Reprogramming, 2010, 12, 329-345. Systems Biology and Stem Cell Biology., 2010, , 153-173. 206 Differentiation of Embryonic Stem Cells 1 (Dies1) Is a Component of Bone Morphogenetic Protein 4 208 (BMP4) Signaling Pathway Required for Proper Differentiation of Mouse Embryonic Stem Cells. 1.6 47 Journal of Biological Chemistry, 2010, 285, 7776-7783. High recovery of mesenchymal progenitor cells with non-density gradient separation of human bone marrow. Cytotherapy, 2010, 12, 579-586. 209 0.3 Stem cell approaches for the treatment of type 1 diabetes mellitus. Translational Research, 2010, 156, 210 2.2 29 169-179. Coexpression of <i>Oct4</i> and <i>Nanog</i> Enhances Malignancy in Lung Adenocarcinoma by Inducing Cancer Stem Cell–Like Properties and Epithelial–Mesenchymal Transdifferentiation. Cancer 211 0.4 563 Research, 2010, 70, 10433-10444. Different temporal gene expression patterns for ovine pre-implantation embryos produced by 212 0.9 23 parthenogenesis or in vitro fertilization. Theriogenology, 2010, 74, 712-723. No shortcuts to pig embryonic stem cells. Theriogenology, 2010, 74, 544-550. 39 Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and 214 0.9 46 heterologous feeder cells. Theriogenology, 2010, 74, 498-515. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac 148 differentiation. Journal of Molecular and Cellular Cardiology, 2010, 48, 725-734. Cancer Stem Cells in Lung Tumorigenesis. Annals of Thoracic Surgery, 2010, 89, S2090-S2095. 216 0.7 25 On the origin of amniotic stem cells: of mice and men. International Journal of Developmental Biology, 2010, 54, 761-777. 217 0.3 Disparate Companions: Tissue Engineering Meets Cancer Research. Cells Tissues Organs, 2010, 192, 218 1.3 6 141-157. Non-muscle myosin II regulates survival threshold of pluripotent stem cells. Nature Communications, 5.8 78 2010, 1, 71. 220 The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, 2010, , . 0.8 3 Chromatin Regulatory Mechanisms in Pluripotency. Annual Review of Cell and Developmental Biology, 161 2010, 26, 503-532.

#	Article	IF	CITATIONS
223	Low Doses of Bone Morphogenetic Protein 4 Increase the Survival of Human Adipose-Derived Stem Cells Maintaining Their Stemness and Multipotency. Stem Cells and Development, 2011, 20, 1011-1019.	1.1	52
224	Self-renewal and scalability of human embryonic stem cells for human therapy. Regenerative Medicine, 2011, 6, 327-334.	0.8	31
226	Activin/TGF-beta signaling regulates Nanog expression in the epiblast during gastrulation. Mechanisms of Development, 2011, 128, 268-278.	1.7	30
227	Stem Cells & amp; Regenerative Medicine. Pancreatic Islet Biology, 2011, , .	0.1	6
228	Oct4-Enhanced Green Fluorescent Protein Transgenic Pigs: A New Large Animal Model for Reprogramming Studies. Stem Cells and Development, 2011, 20, 1563-1575.	1.1	49
229	The Function of E-Cadherin in Stem Cell Pluripotency and Self-Renewal. Genes, 2011, 2, 229-259.	1.0	68
231	In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Research and Therapy, 2011, 2, 26.	2.4	6
232	Roles of the Polycomb group proteins in stem cells and cancer. Cell Death and Disease, 2011, 2, e204-e204.	2.7	217
233	Genetic Approaches in Human Embryonic Stem Cells and their Derivatives: Prospects for Regenerative Medicine. , 2011, , 179-198.		0
234	Sox2 expression is maintained while gastric phenotype is completely lost in Cdx2-induced intestinal metaplastic mucosaâ ⁺ . Differentiation, 2011, 81, 92-98.	1.0	16
235	Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology, 2011, 75, 513-526.	0.9	69
236	Induced Pluripotent Stem Cells. , 2011, , 187-205.		0
237	FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology, 2011, 13, 1092-1099.	4.6	231
238	Pluripotency Regulators in Human Mesenchymal Stem Cells: Expression of NANOG But Not of OCT-4 and SOX-2. Stem Cells and Development, 2011, 20, 915-923.	1.1	125
239	Controlling embryonic stem cell proliferation and pluripotency: the role of PI3K- and GSK-3-dependent signalling. Biochemical Society Transactions, 2011, 39, 674-678.	1.6	31
240	Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Developmental Biology, 2011, 356, 323-336.	0.9	46
241	Intratracheal Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Dose-Dependently Attenuates Hyperoxia-Induced Lung Injury in Neonatal Rats. Cell Transplantation, 2011, 20, 1843-1854.	1.2	130
242	Mouse Embryonic Stem Cells Basics from a Fertilized Zygote to These Promising Pluripotent Stem Cells. , 2011, , .		0

#	Article	IF	CITATIONS
243	OCT4 Expression Enhances Features of Cancer Stem Cells in a Mouse Model of Breast Cancer. Laboratory Animal Research, 2011, 27, 147.	1.1	121
244	The Role of the Leukemia Inhibitory Factor (LIF) — Pathway in Derivation and Maintenance of Murine Pluripotent Stem Cells. Genes, 2011, 2, 280-297.	1.0	59
245	The Past, Present and Future of Induced Pluripotent Stem Cells. , O, , .		0
246	The genetics of anophthalmia and microphthalmia. Current Opinion in Ophthalmology, 2011, 22, 309-313.	1.3	60
247	Advances in Translational Research in Neuro-oncology. Archives of Neurology, 2011, 68, 303-8.	4.9	4
248	High hydrostatic pressure treatment improves the quality of in vitro-produced ovine blastocysts. Reproduction, Fertility and Development, 2011, 23, 809.	0.1	25
249	Differential mRNA Expression in Rabbit <i>In vivo</i> Preâ€implantatory Embryos. Reproduction in Domestic Animals, 2011, 46, 567-572.	0.6	14
250	Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2011, 40, 621-628.	1.4	164
251	The transcriptional and signalling networks of pluripotency. Nature Cell Biology, 2011, 13, 490-496.	4.6	284
252	Ldb1, a new guardian of hematopoietic stem cell maintenance. Nature Immunology, 2011, 12, 113-114.	7.0	2
253	2 methylate or not 2 methylate: viral evasion of the type I interferon response. Nature Immunology, 2011, 12, 114-115.	7.0	16
254	Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene, 2011, 30, 654-667.	2.6	19
255	MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncology, 2011, 47, 202-210.	0.8	110
256	Stemness markers characterize ICR-CaP1, a new cell line derived from primary epithelial prostate cancer. Experimental Cell Research, 2011, 317, 262-275.	1.2	25
257	Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. Biomaterials, 2011, 32, 9077-9088.	5.7	43
258	Inhibition of mouse embryonic carcinoma cell growth by lidamycin through down-regulation of embryonic stem cell-like genes Oct4, Sox2 and Myc. Investigational New Drugs, 2011, 29, 1188-1197.	1.2	8
259	Cancer stem cells and cancer therapy. Tumor Biology, 2011, 32, 425-440.	0.8	124
260	Proteomics of human embryonic stem cells. Proteomics, 2011, 11, 675-690.	1.3	17

#	Article	IF	CITATIONS
261	Investigating the role of FGFâ $\in 2$ in stem cell maintenance by global phosphoproteomics profiling. Proteomics, 2011, 11, 3962-3971.	1.3	32
262	Pramel7 Mediates LIF/STAT3-Dependent Self-Renewal in embryoniC Stem Cells. Stem Cells, 2011, 29, 474-485.	1.4	40
263	LacdiNAc (GalNAcβ1-4GlcNAc) Contributes to Self-Renewal of Mouse Embryonic Stem Cells by Regulating Leukemia Inhibitory Factor/STAT3 Signaling. Stem Cells, 2011, 29, 641-650.	1.4	55
264	Differential Recruitment of Methyl CpGâ€Binding Domain Factors and DNA Methyltransferases by the Orphan Receptor Germ Cell Nuclear Factor Initiates the Repression and Silencing of <i>Oct4</i> . Stem Cells, 2011, 29, 1041-1051.	1.4	38
265	Potential New Anticancer Molecular Targets for the Treatment of Human Testicular Seminomas. Mini-Reviews in Medicinal Chemistry, 2011, 11, 1075-1081.	1.1	13
266	New Prognostic Markers and Potential Therapeutic Targets in Human Testicular Germ Cell Tumors. Current Medicinal Chemistry, 2011, 18, 5033-5040.	1.2	17
267	Pluripotent Hybrid Cells Contribute to Extraembryonic as well as Embryonic Tissues. Stem Cells and Development, 2011, 20, 1063-1069.	1.1	12
268	Identification and Characterization of Adenovirus Early Region 1B-Associated Protein 5 as a Surface Marker on Undifferentiated Human Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 609-620.	1.1	22
269	Dnmt3a1 Upregulates Transcription of Distinct Genes and Targets Chromosomal Gene Clusters for Epigenetic Silencing in Mouse Embryonic Stem Cells. Molecular and Cellular Biology, 2011, 31, 1577-1592.	1.1	30
270	Sall1 Regulates Embryonic Stem Cell Differentiation in Association with Nanog. Journal of Biological Chemistry, 2011, 286, 1037-1045.	1.6	59
271	Large-scale Exploration of Gene–Gene Interactions in Prostate Cancer Using a Multistage Genome-wide Association Study. Cancer Research, 2011, 71, 3287-3295.	0.4	28
272	Pluripotency and lineages in the mammalian blastocyst: An evolutionary view. Cell Cycle, 2011, 10, 1731-1738.	1.3	6
273	Glioma-initiating Cells Retain Their Tumorigenicity through Integration of the Sox Axis and Oct4 Protein. Journal of Biological Chemistry, 2011, 286, 41434-41441.	1.6	129
274	Detection and Characterization of 2-E2-Specific Surface Protein in Human Pluripotent Stem Cells. Hybridoma, 2011, 30, 401-404.	0.5	1
275	Chromatin regulation landscape of embryonic stem cell identity. Bioscience Reports, 2011, 31, 77-86.	1.1	3
276	Expression of Sox2 and Oct4 and Their Clinical Significance in Human Non-Small-Cell Lung Cancer. International Journal of Molecular Sciences, 2012, 13, 7663-7675.	1.8	95
277	Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert Opinion on Therapeutic Targets, 2012, 16, 651-664.	1.5	46
278	SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death and Differentiation, 2012, 19, 534-545.	5.0	107

#	Article	IF	CITATIONS
279	Histone Deacetylase Inhibitors in Cell Pluripotency, Differentiation, and Reprogramming. Stem Cells International, 2012, 2012, 1-10.	1.2	103
280	Interleukin-6 Enhances Porcine Parthenote Development <i>In Vitro</i> , through the IL-6/Stat3 Signaling Pathway. Journal of Reproduction and Development, 2012, 58, 453-460.	0.5	14
281	Oct4 and Sox2 are overexpressed in human neuroblastoma and inhibited by chemotherapy. Oncology Reports, 2012, 28, 186-92.	1.2	28
282	Embryonic Stem Cell Markers. Molecules, 2012, 17, 6196-6236.	1.7	157
283	Spatial and temporal distribution of Oct-4 and acetylated H4K5 in rabbit embryos. Reproductive BioMedicine Online, 2012, 24, 433-442.	1.1	19
284	Pluripotent and multipotent stem cells in adult tissues. Advances in Medical Sciences, 2012, 57, 1-17.	0.9	54
285	ld1 Maintains Embryonic Stem Cell Self-Renewal by Up-Regulation of Nanog and Repression of Brachyury Expression. Stem Cells and Development, 2012, 21, 384-393.	1.1	56
286	Foxp-Mediated Suppression of N-Cadherin Regulates Neuroepithelial Character and Progenitor Maintenance in the CNS. Neuron, 2012, 74, 314-330.	3.8	157
287	Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase. Cell, 2012, 150, 1209-1222.	13.5	769
288	Exploring stemness gene expression and vasculogenic mimicry capacity in well- and poorly-differentiated hepatocellular carcinoma cell lines. Biochemical and Biophysical Research Communications, 2012, 422, 429-435.	1.0	37
289	Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. Cancer Letters, 2012, 322, 70-77.	3.2	78
290	Derivation of an interaction/regulation network describing pluripotency in human. Gene, 2012, 502, 99-107.	1.0	6
291	HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology, 2012, 9, 111.	0.9	188
292	Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Veterinary Research, 2012, 8, 150.	0.7	118
293	Protein intrinsic disorder and induced pluripotent stem cells. Molecular BioSystems, 2012, 8, 134-150.	2.9	45
294	Mouse-Induced Pluripotent Stem Cells. Results and Problems in Cell Differentiation, 2012, 55, 395-411.	0.2	0
295	MicroRNA-193 Pro-Proliferation Effects for Bone Mesenchymal Stem Cells After Low-Level Laser Irradiation Treatment Through Inhibitor of Growth Family, Member 5. Stem Cells and Development, 2012, 21, 2508-2519.	1.1	68
296	Reciprocal Regulation of Akt and Oct4 Promotes the Self-Renewal and Survival of Embryonal Carcinoma Cells. Molecular Cell, 2012, 48, 627-640.	4.5	155

		CITATION REPORT		
#	Article		IF	Citations
298	LIF-Dependent Signaling: New Pieces in the Lego. Stem Cell Reviews and Reports, 2012	, 8, 1-15.	5.6	79
299	Evaluation of Senescence in Mesenchymal Stem Cells Isolated from Equine Bone Marro Tissue, and Umbilical Cord Tissue. Stem Cells and Development, 2012, 21, 273-283.	w, Adipose	1.1	143
300	Inhibition of Plateletâ€Đerived Growth Factor Receptor Signaling Regulates Oct4 and N Cell Shape, and Mesenchymal Stem Cell Potency. Stem Cells, 2012, 30, 548-560.	lanog Expression,	1.4	63
301	5-Aminoimidazole-4-carboxyamide Ribonucleoside Induces G1/S Arrest and Nanog Dow p53 and Enhances Erythroid Differentiation. Stem Cells, 2012, 30, 140-149.	nregulation via	1.4	37
302	CD49f Enhances Multipotency and Maintains Stemness Through the Direct Regulation SOX2. Stem Cells, 2012, 30, 876-887.	of OCT4 and	1.4	129
303	Molecular Signatures of the Three Stem Cell Lineages in Hydra and the Emergence of S Function at the Base of Multicellularity. Molecular Biology and Evolution, 2012, 29, 326	tem Cell 57-3280.	3.5	140
304	Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastr Carcinogenesis, 2012, 33, 1985-1992.	ic cells.	1.3	56
305	Epigenetic Control of Embryonic Stem Cell Differentiation. Stem Cell Reviews and Repc 67-77.	rts, 2012, 8,	5.6	20
306	Maintenance of feeder free anchorage independent cultures of ES and iPS cells by retin Journal of Cellular Biochemistry, 2012, 113, 3002-3010.	ol/vitamin A.	1.2	7
307	Small Molecule Inhibitors of Signal Transducer and Activator of Transcription 3 (Stat3) Journal of Medicinal Chemistry, 2012, 55, 6645-6668.	Protein.	2.9	168
308	Comparison of Gene-Specific DNA Methylation Patterns in Equine Induced Pluripotent with Cells Derived From Equine Adult and Fetal Tissues. Stem Cells and Development, 2	Stem Cell Lines 2012, 21, 1803-1811.	1.1	17
309	Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts af fertilization. Cytotechnology, 2012, 64, 379-389.	iter external	0.7	17
310	Pulmonary adenocarcinoma: A renewed entity in 2011. Respirology, 2012, 17, 50-65.		1.3	65
311	Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of gliod using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 2012, 3	olastoma 3, 1462-1476.	5.7	219
312	Stem Cells in the Reproductive System. American Journal of Reproductive Immunology, 445-462.	2012, 67,	1.2	5
313	Stem cells and veterinary medicine: Tools to understand diseases and enable tissue reg drug discovery. Veterinary Journal, 2012, 191, 19-27.	eneration and	0.6	16
314	Upâ€Regulation of Insulinâ€Like Growth Factor I and Uteroglobin in <i>In Vivo</i> â€De Parthenogenetic Embryos. Reproduction in Domestic Animals, 2013, 48, 126-130.	eveloped	0.6	3
315	Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO Journal, 20 2191-2203.	13, 32,	3.5	38

#	Article	IF	CITATIONS
317	Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer Letters, 2013, 340, 113-123.	3.2	129
318	Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway. Stem Cell Research, 2013, 11, 1323-1334.	0.3	21
319	Nanog expression is negatively regulated by protein kinase C activities in human cancer cell lines. Carcinogenesis, 2013, 34, 1497-1509.	1.3	8
320	Downregulation of KPNA2 in non-small-cell lung cancer is associated with Oct4 expression. Journal of Translational Medicine, 2013, 11, 232.	1.8	44
321	Colorectal micropapillary carcinomas are associated with poor prognosis and enriched in markers of stem cells. Modern Pathology, 2013, 26, 1123-1131.	2.9	59
322	Polycomb complexes in stem cells and embryonic development. Development (Cambridge), 2013, 140, 2525-2534.	1.2	279
323	Not All Side Population Cells Contain Cancer Stem-Like Cells in Human Gastric Cancer Cell Lines. Digestive Diseases and Sciences, 2013, 58, 132-139.	1.1	23
324	Mesenchymal Stem Cells Prevent Hydrocephalus After Severe Intraventricular Hemorrhage. Stroke, 2013, 44, 497-504.	1.0	151
325	Fluorouracil selectively enriches stem-like cells in the lung adenocarcinoma cell line SPC. Tumor Biology, 2013, 34, 1503-1510.	0.8	9
326	Fetal membranes as a source of stem cells. Advances in Medical Sciences, 2013, 58, 185-195.	0.9	39
327	Derivation of goat embryonic stem cell-like cell lines from in vitro produced parthenogenetic blastocysts. Small Ruminant Research, 2013, 113, 145-153.	0.6	3
328	Abundant Nucleostemin Expression Supports the Undifferentiated Properties of Germ Cell Tumors. American Journal of Pathology, 2013, 183, 592-603.	1.9	7
329	Differentiation of Human Atrial Myocytes From Endothelial Progenitor Cell-Derived Induced Pluripotent Stem Cells. Canadian Journal of Cardiology, 2013, 29, S128.	0.8	0
330	Pluripotent genes in avian stem cells. Development Growth and Differentiation, 2013, 55, 41-51.	0.6	16
331	Pituitary stem cells: candidates and implications. Pituitary, 2013, 16, 413-418.	1.6	7
332	TGF-β-Superfamily Signaling Regulates Embryonic Stem Cell Heterogeneity: Self-Renewal as a Dynamic and Regulated Equilibrium. Stem Cells, 2013, 31, 48-58.	1.4	48
333	Genetic Approaches in Human Embryonic Stem Cells and their Derivatives. , 2013, , 311-325.		1
334	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0

#	Article	IF	CITATIONS
335	MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1894-1903.	1.9	51
336	iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells. Journal of Proteomics, 2013, 90, 38-51.	1.2	10
337	Maternal Exposure to High Temperatures Disrupts <scp>OCT</scp> 4 <scp>mRNA</scp> Expression of Rabbit Preâ€Implantation Embryos and Endometrial Tissue. Reproduction in Domestic Animals, 2013, 48, 429-434.	0.6	7
338	Regenerative Therapies for Liver Diseases. , 2013, , 203-231.		0
339	The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells. Biology Open, 2013, 2, 1070-1077.	0.6	17
340	Characteristics and neural-like differentiation of mesenchymal stem cells derived from foetal porcine bone marrow. Bioscience Reports, 2013, 33, e00032.	1.1	21
341	Smad2 Is Essential for Maintenance of the Human and Mouse Primed Pluripotent Stem Cell State. Journal of Biological Chemistry, 2013, 288, 18546-18560.	1.6	78
342	Effect of different culture systems on mRNA expression in developing rabbit embryos. Zygote, 2013, 21, 103-109.	0.5	13
343	Characterization of Monoclonal Antibodies Recognizing 130 kDa Surface Proteins on Human Embryonic Stem Cells and Cancer Cell Lines. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 136-139.	0.8	8
344	Heterogeneous Nuclear Ribonucleoprotein A2/B1 Regulates the Self-Renewal and Pluripotency of Human Embryonic Stem Cells Via the Control of the G1/S Transition. Stem Cells, 2013, 31, 2647-2658.	1.4	42
345	Transcription Elongation Factor <i>Tcea3</i> Regulates the Pluripotent Differentiation Potential of Mouse Embryonic Stem Cells Via the <i>Lefty1</i> -Nodal-Smad2 Pathway. Stem Cells, 2013, 31, 282-292.	1.4	30
346	Advances in biomarkers for esophageal cancer. Expert Review of Anticancer Therapy, 2013, 13, 1169-1180.	1.1	5
347	Intraspinal Transplantation of Mouse and Human Neural Precursor Cells. Current Protocols in Stem Cell Biology, 2013, 26, 2D.16.1-2D.16.16.	3.0	5
348	Long-Term (Postnatal Day 70) Outcome and Safety of Intratracheal Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Neonatal Hyperoxic Lung Injury. Yonsei Medical Journal, 2013, 54, 416.	0.9	54
350	Timing of Umbilical Cord Blood Derived Mesenchymal Stem Cells Transplantation Determines Therapeutic Efficacy in the Neonatal Hyperoxic Lung Injury. PLoS ONE, 2013, 8, e52419.	1.1	116
351	Differential Expression of ID4 and Its Association with TP53 Mutation, SOX2, SOX4 and OCT-4 Expression Levels. PLoS ONE, 2013, 8, e61605.	1.1	18
352	β-Catenin Functions Pleiotropically in Differentiation and Tumorigenesis in Mouse Embryo-Derived Stem Cells. PLoS ONE, 2013, 8, e63265.	1.1	15
353	Adipose-Derived Stem Cells in Tissue Regeneration: A Review. ISRN Stem Cells, 2013, 2013, 1-35.	1.8	121

#	Article	IF	CITATIONS
354	The Oct4 promoter-EGFP transgenic rabbit: a new model for monitoring the pluripotency of rabbit stem cells. International Journal of Developmental Biology, 2013, 57, 845-852.	0.3	11
355	Conditions and Techniques for Mouse Embryonic Stem Cell Derivation and Culture. , 2013, , .		3
356	Vitamin A/Retinol and Maintenance of Pluripotency of Stem Cells. Nutrients, 2014, 6, 1209-1222.	1.7	47
357	Beta-Catenin Is Vital for the Integrity of Mouse Embryonic Stem Cells. PLoS ONE, 2014, 9, e86691.	1.1	26
358	KSR-Based Medium Improves the Generation of High-Quality Mouse iPS Cells. PLoS ONE, 2014, 9, e105309.	1.1	19
359	MicroRNA-383 Regulates the Apoptosis of Tumor Cells through Targeting Gadd45g. PLoS ONE, 2014, 9, e110472.	1.1	33
360	Myocardial Reprogramming Medicine: The Development, Application, and Challenge of Induced Pluripotent Stem Cells. New Journal of Science, 2014, 2014, 1-22.	1.0	2
361	Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells and Cloning: Advances and Applications, 2014, 7, 19.	2.3	53
363	Induced pluripotent stem cells: From derivation to application in biochemical and biomedical research. Biochemistry (Moscow), 2014, 79, 1425-1441.	0.7	8
364	BRG1 Is Required to Maintain Pluripotency of Murine Embryonic Stem Cells. BioResearch Open Access, 2014, 3, 1-8.	2.6	17
365	Correlation of <scp>ALDH</scp> 1, <scp>CD</scp> 44, <scp>OCT</scp> 4 and <scp>SOX</scp> 2 in tongue squamous cell carcinoma and their association with disease progression and prognosis. Journal of Oral Pathology and Medicine, 2014, 43, 492-498.	1.4	79
366	Differentiation of human dental stem cells reveals a role for micro <scp>RNA</scp> â€218. Journal of Periodontal Research, 2014, 49, 110-120.	1.4	74
367	SIRT1 Directly Regulates SOX2 to Maintain Self-Renewal and Multipotency in Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells, 2014, 32, 3219-3231.	1.4	107
368	Cancer stem cells: An insight and future perspective. Journal of Cancer Research and Therapeutics, 2014, 10, 846.	0.3	22
369	Zrf1 is required to establish and maintain neural progenitor identity. Genes and Development, 2014, 28, 182-197.	2.7	29
370	Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Molecular Reproduction and Development, 2014, 81, 608-618.	1.0	46
371	An Experimental Approach to the Generation of Human Embryonic Stem Cells Equivalents. Molecular Biotechnology, 2014, 56, 12-37.	1.3	5
372	Significant association of combination of OCT4, NANOG, and SOX2 gene polymorphisms in susceptibility and response to treatment in North Indian breast cancer patients. Cancer Chemotherapy and Pharmacology, 2014, 74, 1065-1078.	1.1	13

#	Article	IF	CITATIONS
373	Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia, 2014, 57, 246-256.	2.9	65
374	Antibody approaches to prepare clinically transplantable cells from human embryonic stem cells: Identification of human embryonic stem cell surface markers by monoclonal antibodies. Biotechnology Journal, 2014, 9, 915-920.	1.8	11
375	Sox2 Is a Potent Inhibitor of Osteogenic and Adipogenic Differentiation in Human Mesenchymal Stem Cells. Cellular Reprogramming, 2014, 16, 355-365.	0.5	17
376	Derivation of stable zebrafish ES-like cells in feeder-free culture. Cell and Tissue Research, 2014, 357, 623-632.	1.5	18
377	Expression analysis of BORIS during pluripotent, differentiated, cancerous, and non-cancerous cell states. Acta Biochimica Et Biophysica Sinica, 2014, 46, 647-658.	0.9	6
378	Transcription regulation of Oct4 (Pou5F1) gene by its distal enhancer. Cell and Tissue Biology, 2014, 8, 27-32.	0.2	5
379	Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy. Antioxidants and Redox Signaling, 2014, 21, 2018-2031.	2.5	27
380	Ultrasensitive Detection of Transcription Factors Using Transcription-Mediated Isothermally Exponential Amplification-Induced Chemiluminescence. Analytical Chemistry, 2014, 86, 6006-6011.	3.2	105
381	The effects of artificial E-cadherin matrix-induced embryonic stem cell scattering on paxillin and RhoA activation via α-catenin. Biomaterials, 2014, 35, 1797-1806.	5.7	13
382	ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Research, 2014, 13, 1-11.	0.3	91
383	Reorganization of Enhancer Patterns in Transition from Naive to Primed Pluripotency. Cell Stem Cell, 2014, 14, 838-853.	5.2	421
384	B-Cell Receptor-Associated Protein 31 Regulates Human Embryonic Stem Cell Adhesion, Stemness, and Survival via Control of Epithelial Cell Adhesion Molecule. Stem Cells, 2014, 32, 2626-2641.	1.4	34
385	Immunohistochemical expression of four different stem cell markers in prostate cancer: High expression of NANOG in conjunction with hypoxia-inducible factor-1α expression is involved in prostate epithelial malignancy. Oncology Letters, 2014, 8, 985-992.	0.8	39
386	OCT3 and SOX2 promote the transformation of Barrett's esophagus to adenocarcinoma by regulating the formation of tumor stem cells. Oncology Reports, 2014, 31, 1745-1753.	1.2	6
388	Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation. Molecular Medicine Reports, 2015, 11, 1851-1858.	1.1	10
390	Expression of Oct3/4 and Nanog in the head and neck squamous carcinoma cells and its clinical implications for delayed neck metastasis in stage I/II oral tongue squamous cell carcinoma. BMC Cancer, 2015, 15, 730.	1.1	33
391	Density-Dependent Metabolic Heterogeneity in Human Mesenchymal Stem Cells. Stem Cells, 2015, 33, 3368-3381.	1.4	34
392	Regulation of NANOG in cancer cells. Molecular Carcinogenesis, 2015, 54, 679-687.	1.3	79

#	Article	IF	CITATIONS
393	Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells. Drug Design, Development and Therapy, 2015, 9, 993.	2.0	23
394	Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development. Current Genomics, 2015, 16, 32-46.	0.7	35
395	Fate of the Molar Dental Lamina in the Monophyodont Mouse. PLoS ONE, 2015, 10, e0127543.	1.1	25
397	Regeneration of Full-Thickness Rotator Cuff Tendon Tear After Ultrasound-Guided Injection With Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Rabbit Model. Stem Cells Translational Medicine, 2015, 4, 1344-1351.	1.6	52
398	GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth. EBioMedicine, 2015, 2, 536-543.	2.7	15
399	ZRF1: a novel epigenetic regulator of stem cell identity and cancer. Cell Cycle, 2015, 14, 510-515.	1.3	26
400	Ctbp2 Modulates NuRD-Mediated Deacetylation of H3K27 and Facilitates PRC2-Mediated H3K27me3 in Active Embryonic Stem Cell Genes During Exit from Pluripotency. Stem Cells, 2015, 33, 2442-2455.	1.4	61
401	Bioreactors and the Design of the Stem Cell Niche. Pancreatic Islet Biology, 2015, , 107-128.	0.1	0
402	Coordination of m 6 A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell, 2015, 17, 689-704.	5.2	249
405	VisuFect-mediated siRNA delivery into zygotes. Colloids and Surfaces B: Biointerfaces, 2015, 135, 646-651.	2.5	2
406	SOX2 as a Novel Marker to Predict Neoplastic Progression in Barrett's Esophagus. American Journal of Gastroenterology, 2015, 110, 1420-1428.	0.2	24
407	Medaka Oct4 is Essential for Pluripotency in Blastula Formation and ES Cell Derivation. Stem Cell Reviews and Reports, 2015, 11, 11-23.	5.6	30
408	Rbm46 Regulates Trophectoderm Differentiation by Stabilizing <i>Cdx2</i> mRNA in Early Mouse Embryos. Stem Cells and Development, 2015, 24, 904-915.	1.1	8
409	Production of Human Pluripotent Stem Cell Therapeutics under Defined Xeno-free Conditions: Progress and Challenges. Stem Cell Reviews and Reports, 2015, 11, 96-109.	5.6	33
410	Gene Expression in Single Cells Isolated from the CWR-R1 Prostate Cancer Cell Line and Human Prostate Tissue Based on the Side Population Phenotype. Single Cell Biology, 2016, 5, .	0.2	0
411	Role of Autophagy in Mammalian Embryogenesis. , 2016, , 135-145.		0
412	Protein binding-protected DNA three-way junction-mediated rolling circle amplification for sensitive and specific detection of transcription factors. RSC Advances, 2016, 6, 68846-68851.	1.7	8
413	Implications of OCT4 in breast carcinoma from initiation to lymph node metastasis. Egyptian Journal of Pathology, 2016, 36, 194-200.	0.0	1

#	Article	IF	CITATIONS
414	Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1. Cell Chemical Biology, 2016, 23, 494-507.	2.5	25
415	Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Seminars in Cell and Developmental Biology, 2016, 57, 40-50.	2.3	11
416	Embryonic Stem Cells and Fetal Development Models. Pancreatic Islet Biology, 2016, , 81-99.	0.1	0
417	Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing. Cell and Tissue Banking, 2016, 17, 517-529.	0.5	12
418	Oct4 plays a crucial role in the maintenance of gefitinib-resistant lung cancer stem cells. Biochemical and Biophysical Research Communications, 2016, 473, 125-132.	1.0	45
419	Fetal Stem Cells in Regenerative Medicine. Pancreatic Islet Biology, 2016, , .	0.1	6
420	TNIK inhibition abrogates colorectal cancer stemness. Nature Communications, 2016, 7, 12586.	5.8	117
422	Pretreatment of BMSCs with TZD solution decreases the proliferation rate of MCF-7 cells by reducing FGF4 protein expression. Molecular Medicine Reports, 2016, 13, 3406-3414.	1.1	3
423	Nanog RNAâ€binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells. Cell Biology International, 2016, 40, 847-860.	1.4	13
424	Cellular localization of NRF2 determines the self-renewal and osteogenic differentiation potential of human MSCs via the P53–SIRT1 axis. Cell Death and Disease, 2016, 7, e2093-e2093.	2.7	85
425	Inflammation Promotes a Conversion of Astrocytes into Neural Progenitor Cells via NF-κB Activation. Molecular Neurobiology, 2016, 53, 5041-5055.	1.9	50
426	Embryonic stem cells markers Oct4 and Nanog correlate with perineural invasion in human salivary gland mucoepidermoid carcinoma. Journal of Oral Pathology and Medicine, 2017, 46, 112-120.	1.4	21
427	Primate embryogenesis predicts the hallmarks of human naÃ ⁻ ve pluripotency. Development (Cambridge), 2017, 144, 175-186.	1.2	106
428	Melatoninâ€mediated upregulation of GLUT1 blocks exit from pluripotency by increasing the uptake of oxidized vitamin C in mouse embryonic stem cells. FASEB Journal, 2017, 31, 1731-1743.	0.2	19
429	Induction of male germ cell-like lineage from chicken fetal bone marrow stem cells with chicken testis extract. Biotechnology and Bioprocess Engineering, 2017, 22, 1-8.	1.4	3
430	Transcriptional Regulation of Stem Cell and Cancer Stem Cell Metabolism. Current Stem Cell Reports, 2017, 3, 19-27.	0.7	14
431	Stem cells: from biomedical research towards clinical applications. Journal of Molecular Medicine, 2017, 95, 683-685.	1.7	2
432	Sox2â€dependent inhibition of p21 is associated with poor prognosis of endometrial cancer. Cancer Science, 2017, 108, 632-640.	1.7	29

ARTICLE

IF CITATIONS

 $_{433}$ Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4,) Tj ETQq0 0 0 rgBT $_{28}^{10}$ Verlock 10 Tf 50

434	Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nature Communications, 2017, 8, 14550.	5.8	73
435	Distinctive expression pattern of OCT4 variants in different types of breast cancer. Cancer Biomarkers, 2017, 18, 69-76.	0.8	13
436	Effect of <i>NR5A2</i> inhibition on pancreatic cancer stem cell (CSC) properties and epithelialâ€mesenchymal transition (EMT) markers. Molecular Carcinogenesis, 2017, 56, 1438-1448.	1.3	38
437	Phosphorylation of Threonine343 Is Crucial for OCT4 Interaction with SOX2 in the Maintenance of Mouse Embryonic Stem Cell Pluripotency. Stem Cell Reports, 2017, 9, 1630-1641.	2.3	17
438	OCT4B2, a novel alternative spliced variant of OCT4, is significantly upregulated under heat-stress condition and downregulated in differentiated cells. Tumor Biology, 2017, 39, 101042831772428.	0.8	11
439	Copper chaperone ATOX1 regulates pluripotency factor OCT4 in preimplantation mouse embryos. Biochemical and Biophysical Research Communications, 2017, 491, 147-153.	1.0	6
440	Simultaneous targeted inhibition of Sox2â€Oct4 transcription factors using decoy oligodeoxynucleotides to repress stemness properties in mouse embryonic stem cells. Cell Biology International, 2017, 41, 1335-1344.	1.4	19
441	CFTR- β -catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development. Cell Death and Differentiation, 2017, 24, 98-110.	5.0	28
442	Central Nervous System and Vertebrae Development in Horses: a Chronological Study with Differential Temporal Expression of Nestin and GFAP. Journal of Molecular Neuroscience, 2017, 61, 61-78.	1.1	8
443	Frizzled gene expression and negative regulation of canonical WNT–β-catenin signaling in mouse F9 teratocarcinoma cells. Biochemistry and Cell Biology, 2017, 95, 251-262.	0.9	7
444	Current status in cancer cell reprogramming and its clinical implications. Journal of Cancer Research and Clinical Oncology, 2017, 143, 371-383.	1.2	16
445	MiR-629 promotes human pancreatic cancer progression by targeting FOXO3. Cell Death and Disease, 2017, 8, e3154-e3154.	2.7	40
446	Epigenetic Manipulation Facilitates the Generation of Skeletal Muscle Cells from Pluripotent Stem Cells. Stem Cells International, 2017, 2017, 1-8.	1.2	5
447	Rbm46 regulates mouse embryonic stem cell differentiation by targeting \hat{I}^2 -Catenin mRNA for degradation. PLoS ONE, 2017, 12, e0172420.	1.1	8
448	Altered expression of epithelial mesenchymal transition and pluripotent associated markers by sex steroid hormones in human embryonic stem cells. Molecular Medicine Reports, 2017, 16, 828-836.	1.1	7
449	Heterodimer formation by Oct4 and Smad3 differentially regulates epithelial-to-mesenchymal transition-associated factors in breast cancer progression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2053-2066.	1.8	9
450	Imaging mRNA In Vivo, from Birth to Death. Annual Review of Biophysics, 2018, 47, 85-106.	4.5	106

#	Article	IF	CITATIONS
451	Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors. Talanta, 2018, 179, 331-336.	2.9	11
452	Molecular cloning and expression of Octamer-binding transcription factor (Oct4) in the large yellow croaker, Larimichthys crocea. Gene Expression Patterns, 2018, 27, 16-30.	0.3	7
453	Promoter activity and regulation of the Pou5f1 homolog from a teleost, Nile tilapia. Gene, 2018, 642, 277-283.	1.0	6
454	Agent-Based Modelling of Pattern Formation in Pluripotent Stem Cells: Initial Experiments and Results. , 2018, , .		0
455	EGFR-TKI resistance and MAP17 are associated with cancer stem cell like properties. Oncology Letters, 2018, 15, 6655-6665.	0.8	8
456	Interfacial tissue engineering of heart regenerative medicine based on soft cell-porous scaffolds. Journal of Thoracic Disease, 2018, 10, S2333-S2345.	0.6	18
457	Combination therapy of canine osteosarcoma with canine bone marrow stem cells, bone morphogenetic protein and carboplatin in an in vivo model. Veterinary and Comparative Oncology, 2018, 16, 478-488.	0.8	6
458	From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. Epigenomes, 2018, 2, 4.	0.8	13
459	Exclusive Liquid Repellency: An Open Multi-Liquid-Phase Technology for Rare Cell Culture and Single-Cell Processing. ACS Applied Materials & Interfaces, 2018, 10, 17065-17070.	4.0	28
460	Co-expression of Cancer Stem Cell Markers OCT4 and NANOG Predicts Poor Prognosis in Renal Cell Carcinomas. Scientific Reports, 2018, 8, 11739.	1.6	75
461	Embryonic Stem Cells. , 2019, , 113-123.		0
462	TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature, 2019, 571, 211-218.	13.7	934
463	Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sciences, 2019, 237, 116952.	2.0	69
464	LncRNAs and PRC2: Coupled Partners in Embryonic Stem Cells. Epigenomes, 2019, 3, 14.	0.8	10
465	Targeting cancer stem cells in squamous cell carcinoma. Precision Clinical Medicine, 2019, 2, 152-165.	1.3	67
466	Alterations in IL-6/STAT3 Signaling by Korean Mistletoe Lectin Regulate the Self-Renewal Activity of Placenta-Derived Mesenchymal Stem Cells. Nutrients, 2019, 11, 2604.	1.7	3
467	HDAC5-mediated deacetylation and nuclear localisation of SOX9 is critical for tamoxifen resistance in breast cancer. British Journal of Cancer, 2019, 121, 1039-1049.	2.9	34
468	Regenerative effects of mesenchymal stem cells by dosage in a chronic rotator cuff tendon tear in a rabbit model. Regenerative Medicine, 2019, 14, 1001-1012.	0.8	13

#	Article	IF	CITATIONS
469	Optogenetic stimulation inhibits the self-renewal of mouse embryonic stem cells. Cell and Bioscience, 2019, 9, 73.	2.1	6
470	Automated System for Small-Population Single-Particle Processing Enabled by Exclusive Liquid Repellency. SLAS Technology, 2019, 24, 535-542.	1.0	16
471	Derivation of primitive neural stem cells from humanâ€induced pluripotent stem cells. Journal of Comparative Neurology, 2019, 527, 3023-3033.	0.9	3
472	Hypoxia and Cancer Metastasis. Advances in Experimental Medicine and Biology, 2019, , .	0.8	5
473	Hypoxia-Induced Phenotypes that Mediate Tumor Heterogeneity. Advances in Experimental Medicine and Biology, 2019, 1136, 43-55.	0.8	49
474	Induced Pluripotent Stem Cells. , 2019, , 67-94.		0
475	The extracellular domain of epithelial cell adhesion molecule (EpCAM) enhances multipotency of mesenchymal stem cells through EGFR–LIN28–LET7 signaling. Journal of Biological Chemistry, 2019, 294, 7769-7786.	1.6	11
476	FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Research, 2019, 47, 5325-5340.	6.5	78
477	A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Scientific Reports, 2019, 9, 1761.	1.6	43
478	CD146â€mediated acquisition of stemness phenotype enhances tumour invasion and metastasis after EGFRâ€TKI resistance in lung cancer. Clinical Respiratory Journal, 2019, 13, 23-33.	0.6	16
479	The molecular markers of cancer stem cells in head and neck tumors. Journal of Cellular Physiology, 2020, 235, 65-73.	2.0	77
480	The role of DNA-demethylating agents in cancer therapy. , 2020, 205, 107416.		26
481	Therapeutic potential of HERS spheroids in tooth regeneration. Theranostics, 2020, 10, 7409-7421.	4.6	11
482	Extrinsic modulation of integrin α6 and progenitor cell behavior in mesenchymal stem cells. Stem Cell Research, 2020, 47, 101899.	0.3	16
483	Astaxanthin Reduces Stemness Markers in BT20 and T47D Breast Cancer Stem Cells by Inhibiting Expression of Pontin and Mutant p53. Marine Drugs, 2020, 18, 577.	2.2	13
484	Behavioral Changes in Stem-Cell Potency by HepG2-Exhausted Medium. Cells, 2020, 9, 1890.	1.8	7
485	MEIS1 promotes expression of stem cell markers in esophageal squamous cell carcinoma. BMC Cancer, 2020, 20, 789.	1,1	12
486	AICAR Stimulates the Pluripotency Transcriptional Complex in Embryonic Stem Cells Mediated by PI3K, GSK3β, and β-Catenin. ACS Omega, 2020, 5, 20270-20282.	1.6	3

#	Article	IF	CITATIONS
487	Developmental exposure to endocrine disrupter dichlorodiphenyltrichloroethane alters transcriptional regulation of postnatal morphogenesis of adrenal zona fasciculata. Saudi Journal of Biological Sciences, 2020, 27, 3655-3659.	1.8	4
488	A 3-Dimensional Bioprinted Scaffold With Human Umbilical Cord Blood–Mesenchymal Stem Cells Improves Regeneration of Chronic Full-Thickness Rotator Cuff Tear in a Rabbit Model. American Journal of Sports Medicine, 2020, 48, 947-958.	1.9	22
489	<p>Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment</p> . Journal of Hepatocellular Carcinoma, 2020, Volume 7, 45-76.	1.8	60
490	Long noncoding RNA Q associates with Sox2 and is involved in the maintenance of pluripotency in mouse embryonic stem cells. Stem Cells, 2020, 38, 834-848.	1.4	8
491	A statistical framework for predicting critical regions of p53-dependent enhancers. Briefings in Bioinformatics, 2021, 22, .	3.2	4
492	Organization of the Pluripotent Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040204.	2.3	13
493	Markers of Stem Cells. , 2021, , 147-175.		0
494	Epigenetic regulationâ^'The guardian of cellular homeostasis and lineage commitment. Biocell, 2021, 45, 501-515.	0.4	3
495	An integrated network analysis approach to identify potential key genes, transcription factors, and microRNAs regulating human hematopoietic stem cell aging. Molecular Omics, 2021, 17, 967-984.	1.4	2
496	Regulation of the protein stability and transcriptional activity of OCT4 in stem cells. Advances in Biological Regulation, 2021, 79, 100777.	1.4	11
497	An Esrrb and Nanog Cell Fate Regulatory Module Controlled by Feed Forward Loop Interactions. Frontiers in Cell and Developmental Biology, 2021, 9, 630067.	1.8	8
498	Pluripotent and Multipotent Stem Cells and Current Therapeutic Applications: Review. Stem Cells and Cloning: Advances and Applications, 2021, Volume 14, 3-7.	2.3	8
499	Impaired stem cell differentiation and somatic cell reprogramming in DIDO3 mutants with altered RNA processing and increased R-loop levels. Cell Death and Disease, 2021, 12, 637.	2.7	8
500	Oral Cancer Stem Cells: Therapeutic Implications and Challenges. Frontiers in Oral Health, 2021, 2, 685236.	1.2	13
501	Induced pluripotent stem cells. Obtaining, properties and application prospects in biology and medicine. Vestsi Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2021, 66, 345-356.	0.2	0
502	Interkingdom Comparison of Threonine Metabolism for Stem Cell Maintenance in Plants and Animals. Frontiers in Cell and Developmental Biology, 2021, 9, 672545.	1.8	7
503	Current reprogramming methods to generate high-quality iPSCs. , 2021, , 1-36.		0
505	Epigenetic Regulation of Pluripotency. Advances in Experimental Medicine and Biology, 2010, 695, 26-40.	0.8	8

#	Article	IF	CITATIONS
506	Derivation and Manipulation of Murine Embryonic Stem Cells. Methods in Molecular Biology, 2009, 482, 3-19.	0.4	26
507	Differentiation Analysis of Pluripotent Mouse Embryonic Stem (ES) Cells In Vitro. Methods in Molecular Biology, 2009, 530, 219-250.	0.4	10
508	The Molecular Basis of Embryonic Stem Cell Self-Renewal. , 2009, , 3-12.		1
509	Epigenetic Basis for Differentiation Plasticity in Stem Cells. , 2009, , 257-268.		1
510	Polycomb Group Protein Homeostasis in Stem Cell Identity – A Hypothetical Appraisal. , 2009, , 285-290.		1
511	Determinants of Pluripotency in Mouse and Human Embryonic Stem Cells. , 2009, , 27-36.		1
512	Feeder-Independent Culture of Mouse Embryonic Stem Cells Using Vitamin A/Retinol. Methods in Molecular Biology, 2010, 652, 75-83.	0.4	1
513	A Two- and Three-Dimensional Approach for Visualizing Human Embryonic Stem Cell Differentiation. Methods in Molecular Biology, 2009, 584, 179-193.	0.4	3
514	Embryonic Stem Cell Use. , 2009, , 159-166.		2
515	Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals. , 2009, , 215-244.		1
517	The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation. PLoS ONE, 2009, 4, e6804.	1.1	54
518	Sex Determining Region Y-Box 2 (SOX2) Is a Potential Cell-Lineage Gene Highly Expressed in the Pathogenesis of Squamous Cell Carcinomas of the Lung. PLoS ONE, 2010, 5, e9112.	1.1	117
519	The PluriNetWork: An Electronic Representation of the Network Underlying Pluripotency in Mouse, and Its Applications. PLoS ONE, 2010, 5, e15165.	1.1	67
520	Prion Protein Expression Regulates Embryonic Stem Cell Pluripotency and Differentiation. PLoS ONE, 2011, 6, e18422.	1.1	37
521	Epigenetic Dysregulation in Mesenchymal Stem Cell Aging and Spontaneous Differentiation. PLoS ONE, 2011, 6, e20526.	1.1	174
522	Leucine-Rich Repeat Kinase 2 Modulates Retinoic Acid-Induced Neuronal Differentiation of Murine Embryonic Stem Cells. PLoS ONE, 2011, 6, e20820.	1.1	18
523	Genome-Wide Profiling of Pluripotent Cells Reveals a Unique Molecular Signature of Human Embryonic Germ Cells. PLoS ONE, 2012, 7, e39088.	1.1	23
524	3-O-Sulfated Heparan Sulfate Recognized by the Antibody HS4C3 Contribute to the Differentiation of Mouse Embryonic Stem Cells via Fas Signaling. PLoS ONE, 2012, 7, e43440.	1.1	43

#	Article	IF	CITATIONS
525	Glycogen Synthase Kinase-3 Inhibition Enhances Translation of Pluripotency-Associated Transcription Factors to Contribute to Maintenance of Mouse Embryonic Stem Cell Self-Renewal. PLoS ONE, 2013, 8, e60148.	1.1	16
526	Zscan4 Is Regulated by PI3-Kinase and DNA-Damaging Agents and Directly Interacts with the Transcriptional Repressors LSD1 and CtBP2 in Mouse Embryonic Stem Cells. PLoS ONE, 2014, 9, e89821.	1.1	27
527	Optimal Route for Mesenchymal Stem Cells Transplantation after Severe Intraventricular Hemorrhage in Newborn Rats. PLoS ONE, 2015, 10, e0132919.	1.1	63
528	Sequential Differentiation of Embryonic Stem Cells into Neural Epithelial-Like Stem Cells and Oligodendrocyte Progenitor Cells. PLoS ONE, 2016, 11, e0155227.	1.1	11
529	Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histology and Histopathology, 2010, 25, 405-12.	0.5	77
530	Splitomicin, a SIRT1 Inhibitor, Enhances Hematopoietic Differentiation of Mouse Embryonic Stem Cells. International Journal of Stem Cells, 2019, 12, 21-30.	0.8	5
531	Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget, 2014, 5, 10803-10815.	0.8	136
532	A novel role of metal response element binding transcription factor 2 at the Hox gene cluster in the regulation of H3K27me3 by polycomb repressive complex 2. Oncotarget, 2018, 9, 26572-26585.	0.8	3
533	CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget, 2015, 6, 144-158.	0.8	48
534	Regenerative Medicine for the Aging Brain. Enliven Journal of Stem Cell Research & Regenerative Medicine, 2014, 01, .	0.2	4
535	Adult mesenchymal stem cells for the treatment in patients with rotator cuff disease: present and future direction. Annals of Translational Medicine, 2018, 6, 432-432.	0.7	6
536	Protein Kinases and Associated Pathways in Pluripotent State and Lineage Differentiation. Current Stem Cell Research and Therapy, 2014, 9, 366-387.	0.6	9
537	Genomic studies to explore self-renewal and differentiation properties of embryonic stem cells. Frontiers in Bioscience - Landmark, 2008, 13, 276.	3.0	17
538	Model Systems of Motor Neuron Diseases As a Platform for Studying Pathogenic Mechanisms and Searching for Therapeutic Agents. Acta Naturae, 2015, 7, 19-36.	1.7	5
539	Implantation of Sinoatrial Node Cells Into Canine Right Ventricle: Biological Pacing Appears Limited by the Substrate. Cell Transplantation, 2011, 20, 1907-1914.	1.2	82
540	Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells. World Journal of Gastroenterology, 2006, 12, 6818.	1.4	31
541	Expression of OCT4 in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. World Journal of Gastroenterology, 2012, 18, 712.	1.4	36
542	Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation. Open Access Macedonian Journal of Medical Sciences, 2016, 4, 9-16.	0.1	45

#	ARTICLE Adipocyte activation of cancer stem cell signaling in breast cancer. World Journal of Biological	IF	Citations
543	iPS cells generation: an overview of techniques and methods. Journal of Stem Cells and Regenerative	1.7	41
544	Medicine, 2013, 9, 2-8.	2.2	9
545	Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathology and Applied Neurobiology, 2008, 35, no-no.	1.8	33
546	Trends in Stem Cell Biology and Technology. , 2009, , .		4
548	Stem Cells with No Tissue Specificity. , 2009, , 57-108.		1
549	Observing and Manipulating Pluripotency in Normal and Cloned Mouse Embryos. , 2009, , 101-121.		1
550	A Critical Analysis of Properties Commonly Ascribed to Stem Cells. , 2009, , 151-175.		1
551	Mesenchymal Stem Cells and Transdifferentiated Neurons in Cross Talk with the Tissue Microenvironment: Implications for Translational Science. , 2009, , 215-230.		0
552	Insights into Embryonic Stem Cells of Bovines. Asian Journal of Animal Sciences, 2010, 5, 1-18.	0.3	4
553	Interaction of cytokine LIF with the lipidic matrix of membranes. Computer Research and Modeling, 2010, 2, 43-49.	0.2	Ο
554	Stem Cells and Biomaterials: The Tissue Engineering Approach. Pancreatic Islet Biology, 2011, , 451-464.	0.1	0
557	Effects of Recombinant Leukemia Inhibitory Factor (LIF) on Functional Status of Mouse Embryonic Stem Cells. , 0, , .		0
558	The Function of Glycan Structures for the Maintenance and Differentiation of Embryonic Stem Cells. , 0, , .		0
559	Progress and Future Challenges of Human Induced Pluripotents Stem Cell in Regenerative Medicine. Indonesian Biomedical Journal, 2011, 3, 76.	0.2	0
560	Human Embryonic Stem Cells. Series in Medical Physics and Biomedical Engineering, 2011, , 1-30.	0.1	0
561	Human Stem Cell Derivatives Retain More Open Epigenomic Landscape When Derived from Pluripotent Cells than from Tissues. Journal of Regenerative Medicine, 2012, 01, .	0.1	9
562	Retinoic Acid Regulates Germ Gene Transcription In Vitro and Spermatogenesis in Testicular Organ Culture. Biological Systems, Open Access, 2012, 01, .	0.1	0
563	Gene interaction studies in cellular reprogramming of adult stem cells to embyronic like stem cells. Bioinformation, 2012, 8, 912-915.	0.2	0

#	ARTICLE	IF	CITATIONS
564	Bioreactor Expansion of Pluripotent Stem Cells. , 2013, , 129-138.		0
569	Single-Cell Culture and Analysis on Microfluidics. Integrated Analytical Systems, 2019, , 53-84.	0.4	0
570	Octamer 4 expression and lymph node metastasis in ductal carcinoma of breast: Are they associated?. Indian Journal of Medical and Paediatric Oncology, 2019, 40, 63-66.	0.1	0
571	The Prognostic and Clinicopathologic Characteristics of OCT4 and Lung Cancer: A Meta-Analysis. Current Molecular Medicine, 2019, 19, 54-75.	0.6	5
573	TNF-α up-regulates Nanog by activating NF-κB pathway to induce primary rat spinal cord astrocytes dedifferentiation. Life Sciences, 2021, 287, 120126.	2.0	1
574	Efficient Techniques for Graph Searching and Biological Network Mining. Advances in Data Mining and Database Management Book Series, 0, , 89-111.	0.4	0
575	Immunohistochemical expression of Nanog protein in prostate cancer cells of distinct grade groups. Bulletin of Russian State Medical University, 2020, , .	0.3	0
576	Identification of novel mutations and sequence variants in the SOX2 and CHX10 genes in patients with anophthalmia/microphthalmia. Molecular Vision, 2008, 14, 583-92.	1.1	25
578	Epigenetics of pluripotent cells. Acta Naturae, 2012, 4, 28-46.	1.7	7
579	Evaluating the expression of oct4 as a prognostic tumor marker in bladder cancer. Iranian Journal of Basic Medical Sciences, 2012, 15, 1154-61.	1.0	29
580	Elevated expression of SOX2 and FGFR1 in correlation with poor prognosis in patients with small cell lung cancer. International Journal of Clinical and Experimental Pathology, 2013, 6, 2846-54.	0.5	39
581	The Oct4 protein: more than a magic stemness marker. American Journal of Stem Cells, 2014, 3, 74-82.	0.4	96
582	Regenerative Medicine for the Aging Brain. Enliven Journal of Stem Cell Research & Regenerative Medicine, 2014, 1, 1-9.	0.2	7
583	Model systems of motor neuron diseases as a platform for studying pathogenic mechanisms and searching for therapeutic agents. Acta Naturae, 2015, 7, 19-36.	1.7	1
585	GM-CSF perturbs cell identity in mouse pre-implantation embryos. PLoS ONE, 2022, 17, e0263793.	1.1	2
586	Vitamin D3 Stimulates Proliferation Capacity, Expression of Pluripotency Markers, and Osteogenesis of Human Bone Marrow Mesenchymal Stromal/Stem Cells, Partly through SIRT1 Signaling. Biomolecules, 2022, 12, 323.	1.8	15
587	Mesenchymal Stem Cell Behavior on Soft Hydrogels with Aligned Surface Topographies. ACS Applied Bio Materials, 2022, 5, 1890-1900.	2.3	8
588	MicroRNA 630 Represses NANOG Expression through Transcriptional and Post-Transcriptional Regulation in Human Embryonal Carcinoma Cells. International Journal of Molecular Sciences, 2022, 23, 46.	1.8	5

#	Article	IF	CITATIONS
589	Oct4 facilitates chondrogenic differentiation of mesenchymal stem cells by mediating CIP2A expression. Cell and Tissue Research, 2022, , 1.	1.5	2
592	Resveratrol maintain Human Iliac Bone Marrow Mesenchymal Stem Cells Stemness through Sirtuin 1 Mediated Regulation of SRY-Box Transcription Factor 2: an in vitro and in silico study. Research Journal of Pharmacy and Technology, 2022, , 2313-2319.	0.2	0
593	CHD4 mediates SOX2 transcription through TRPS1 in luminal breast cancer. Cellular Signalling, 2022, 100, 110464.	1.7	4
594	Regulation of Tumor and Metastasis Initiation by Chemokine Receptors. Journal of Cancer, 2022, 13, 3160-3176.	1.2	4
595	The Role of HERV-K in Cancer Stemness. Viruses, 2022, 14, 2019.	1.5	9
597	Bmi-1: A master regulator of head and neck cancer stemness. Frontiers in Oral Health, 0, 4, .	1.2	2
598	Retinol/Vitamin A Signaling and Self-renewal of Embryonic Stem Cells. , 2012, , 457-469.		0
599	Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie, 2023, 211, 35-56.	1.3	4
600	Pluripotency retention and exogenous mRNA introduction in planarian stem cells in culture. IScience, 2023, 26, 106001.	1.9	2
601	Comparison of proliferation and osteogenic differentiation potential of bovine adipose tissue and bone marrow derived stem cells. Biotechnic and Histochemistry, 0, , 1-13.	0.7	0
602	Molecular Pathology of Micropapillary Carcinomas: Is Characteristic Morphology Related to Molecular Mechanisms?. Applied Immunohistochemistry and Molecular Morphology, 0, Publish Ahead of Print, .	0.6	0
603	Maintenance of Human Pluripotent Stem Cells. , 2023, , 57-66.		0
607	The Human GP130 Cytokine Receptor and Its Expression—an Atlas and Functional Taxonomy of Genetic Variants. Journal of Clinical Immunology, 2024, 44, .	2.0	1