The cell biology of neurogenesis

Nature Reviews Molecular Cell Biology 6, 777-788

DOI: 10.1038/nrm1739

Citation Report

#	Article	IF	Citations
1	Mitotic Spindle Regulation by Nde1 Controls Cerebral Cortical Size. Neuron, 2004, 44, 279-293.	3.8	327
3	Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Current Opinion in Cell Biology, 2005, 17, 648-657.	2.6	248
4	Cortical development: the art of generating cell diversity. Development (Cambridge), 2005, 132, 3327-3332.	1.2	27
5	Go with the flow: signaling from the ventricle directs neuroblast migration. Nature Neuroscience, 2006, 9, 470-472.	7.1	13
6	Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus. Neuroscience Research, 2006, 55, 223-233.	1.0	398
8	Apical–basal polarity, Wnt signaling and vertebrate organogenesis. Seminars in Cell and Developmental Biology, 2006, 17, 214-222.	2.3	51
9	Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Developmental Biology, 2006, 290, 44-56.	0.9	248
10	Characterization of neogenin-expressing neural progenitor populations and migrating neuroblasts in the embryonic mouse forebrain. Neuroscience, 2006, 142, 703-716.	1.1	33
11	Radial glia: a changing role in the central nervous system. NeuroReport, 2006, 17, 1081-1084.	0.6	16
12	Midkine, a heparin-binding growth factor, is expressed in neural precursor cells and promotes their growth. Journal of Neurochemistry, 2006, 99, 1470-1479.	2.1	34
13	Rational rats. Nature Neuroscience, 2006, 9, 472-474.	7.1	44
14	The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nature Neuroscience, 2006, 9, 1099-1107.	7.1	350
15	Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 2006, 7, 179-193.	4.9	1,263
16	Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10438-10443.	3.3	379
17	Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. European Spine Journal, 2006, 15, 406-413.	1.0	162
18	Nucleotide signaling in nervous system development. Pflugers Archiv European Journal of Physiology, 2006, 452, 573-588.	1.3	147
19	Area-based analyzing technique at cell array experiment using neuronal cell line. Nanobiotechnology, 2006, 2, 95-100.	1.2	3
20	Neural stem cells in mammalian development. Current Opinion in Cell Biology, 2006, 18, 704-709.	2.6	275

#	Article	IF	Citations
21	Cell cycle progression is required for nuclear migration of neural progenitor cells. Brain Research, 2006, 1088, 57-67.	1.1	52
22	Calcium signaling in specialized glial cells. Glia, 2006, 54, 650-655.	2.5	89
23	Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. Journal of Neuroscience Research, 2006, 84, 1656-1668.	1.3	179
24	Differentiation of Neuronal Cells in Fragile X Syndrome. Cell Cycle, 2006, 5, 1528-1530.	1.3	13
25	A Century of Progress in Corticoneurogenesis: From Silver Impregnation to Genetic Engineering. Cerebral Cortex, 2006, 16, i3-i17.	1.6	131
26	LIVE IMAGING OF NEUROEPITHELIAL CELLS IN THE RAT SPINAL CORD BY CONFOCAL LASER-SCANNING MICROSCOPY. , 2006, , .		0
27	The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes and Development, 2006, 20, 1384-1393.	2.7	149
28	Inactivation of aPKCî» results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development (Cambridge), 2006, 133, 1735-1744.	1.2	160
29	Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16520-16525.	3.3	114
30	P-GAP-43 Is Enriched in Horizontal Cell Divisions throughout Rat Cortical Development. Cerebral Cortex, 2006, 16, i121-i131.	1.6	21
31	A default mechanism of spindle orientation based on cell shape is sufficient to generate cell fate diversity in polarised Xenopusblastomeres. Development (Cambridge), 2006, 133, 3883-3893.	1.2	43
32	Nonâ€psychoactive CB 2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB Journal, 2006, 20, 2405-2407.	0.2	201
33	Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development (Cambridge), 2006, 133, 3245-3254.	1.2	138
34	Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6212-6217.	3.3	79
35	Neural Stem/Progenitor Cells Express 20 Tenascin C Isoforms That Are Differentially Regulated by Pax6. Journal of Biological Chemistry, 2007, 282, 9172-9181.	1.6	76
36	Notch signaling regulates neural precursor allocation and binary neuronal fate decisions in zebrafish. Development (Cambridge), 2007, 134, 1911-1920.	1.2	69
37	PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC. Development (Cambridge), 2007, 134, 4297-4306.	1.2	43
38	ASPM and Citron Kinase Co-Localize to the Midbody Ring during Cytokinesis. Cell Cycle, 2007, 6, 1605-1612.	1.3	91

3

#	Article	IF	CITATIONS
39	Mitotic spindle orientation distinguishes stem cell and terminal modes of neuron production in the early spinal cord. Development (Cambridge), 2007, 134, 1943-1954.	1.2	99
40	Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. Journal of Cell Biology, 2007, 176, 483-495.	2.3	262
41	N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes and Development, 2007, 21, 2347-2357.	2.7	167
42	A functional study of miR-124 in the developing neural tube. Genes and Development, 2007, 21, 531-536.	2.7	308
43	The FERM protein Epb4.115 is required for organization of the neural plate and for the epithelial-mesenchymal transition at the primitive streak of the mouse embryo. Development (Cambridge), 2007, 134, 2007-2016.	1.2	70
44	Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development (Cambridge), 2007, 134, 2727-2738.	1.2	181
45	Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 175-180.	3.3	150
46	Inhibition of medulloblastoma tumorigenesis by the antiproliferative and proâ€differentiative gene PC3. FASEB Journal, 2007, 21, 2215-2225.	0.2	62
47	Unique Requirement for Rb/E2F3 in Neuronal Migration: Evidence for Cell Cycle-Independent Functions. Molecular and Cellular Biology, 2007, 27, 4825-4843.	1.1	80
48	Pax6 controls the proliferation rate of neuroepithelial progenitors from the mouse optic vesicle. Developmental Biology, 2007, 301, 374-387.	0.9	34
49	N-cadherin mediates cortical organization in the mouse brain. Developmental Biology, 2007, 304, 22-33.	0.9	275
50	Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Developmental Biology, 2007, 307, 62-78.	0.9	35
51	A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Developmental Biology, 2007, 311, 223-237.	0.9	181
52	Neurotrophin Receptor-Mediated Death of Misspecified Neurons Generated from Embryonic Stem Cells Lacking Pax6. Cell Stem Cell, 2007, 1, 529-540.	5.2	45
53	Investigating radial glia in vitro. Progress in Neurobiology, 2007, 83, 53-67.	2.8	33
54	Cell fate specification in the mammalian telencephalon. Progress in Neurobiology, 2007, 83, 37-52.	2.8	219
55	Radial glial cell heterogeneityâ€"The source of diverse progeny in the CNS. Progress in Neurobiology, 2007, 83, 2-23.	2.8	240
56	An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development. Neuron, 2007, 55, 201-215.	3.8	647

#	ARTICLE	IF	CITATIONS
57	Cep 120 and TACCs Control Interkinetic Nuclear Migration and the Neural Progenitor Pool. Neuron, 2007, 56, 79-93.	3.8	161
58	The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience, 2007, 150, 863-879.	1.1	111
59	Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Experimental Neurology, 2007, 205, 547-562.	2.0	104
60	Cell Polarity from Cell Division. Developmental Cell, 2007, 12, 664-666.	3.1	3
61	Cancer Stem Cells: At the Headwaters of Tumor Development. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 175-189.	9.6	136
62	Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Molecular and Cellular Neurosciences, 2007, 34, 99-119.	1.0	119
63	Adult Neurogenesis and Local Neuronal Progenitors in the Striatum. Neurodegenerative Diseases, 2007, 4, 322-327.	0.8	21
64	The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development (Cambridge), 2007, 134, 1243-1251.	1.2	550
65	Self-Renewing and Differentiating Properties of Cortical Neural Stem Cells Are Selectively Regulated by Basic Fibroblast Growth Factor (FGF) Signaling via Specific FGF Receptors. Journal of Neuroscience, 2007, 27, 1836-1852.	1.7	110
66	Choline acetyltransferase expressed by radial neuroglia cells in the development of elencephalon: A validated study. Neural Regeneration Research, 2007, 2, 70-73.	1.6	0
67	Changes in the proliferative activity of hippocampal neural stem cells from manganismus mice. Neural Regeneration Research, 2007, 2, 193-197.	1.6	0
68	Molecular Mechanism of Liver Development and Regeneration. International Review of Cytology, 2007, 259, 1-48.	6.2	96
69	Late-Stage Neuronal Progenitors in the Retina Are Radial Muller Glia That Function as Retinal Stem Cells. Journal of Neuroscience, 2007, 27, 7028-7040.	1.7	580
70	Cellular commitment and differentiation in the organ of Corti. International Journal of Developmental Biology, 2007, 51, 571-583.	0.3	89
71	The microenvironment of the embryonic neural stem cell: Lessons from adult niches?. Developmental Dynamics, 2007, 236, 3267-3282.	0.8	55
72	An <i>olig2</i> reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. Developmental Dynamics, 2007, 236, 3402-3407.	0.8	90
73	Cytological organization of the central gelatinosa in the turtle spinal cord. Journal of Comparative Neurology, 2007, 502, 291-308.	0.9	17
74	Steroidogenic enzymes along the ventricular proliferative zone in the developing songbird brain. Journal of Comparative Neurology, 2007, 502, 507-521.	0.9	56

#	Article	IF	CITATIONS
75	Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. Journal of Comparative Neurology, 2007, 505, 630-643.	0.9	122
76	Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Development, 2007, 2, 1.	1.1	205
77	Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nature Neuroscience, 2007, 10, 819-827.	7.1	294
78	Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nature Neuroscience, 2007, 10, 1440-1448.	7.1	220
79	Spindle regulation in neural precursors of flies and mammals. Nature Reviews Neuroscience, 2007, 8, 89-100.	4.9	53
80	Cell-cycle control and cortical development. Nature Reviews Neuroscience, 2007, 8, 438-450.	4.9	586
81	Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience, 2007, 8, 427-437.	4.9	1,444
82	Stem cells of ependymoma. British Journal of Cancer, 2007, 96, 6-10.	2.9	78
83	Development of threeâ€dimensional architecture of the neuroepithelium: Role of pseudostratification and cellular â€~community'. Development Growth and Differentiation, 2008, 50, S105-12.	0.6	44
84	Glutamate-mediated neuronal?glial transmission. Journal of Anatomy, 2007, 210, 651-660.	0.9	142
85	Comparative aspects of cortical neurogenesis in vertebrates. Journal of Anatomy, 2007, 211, 164-176.	0.9	128
86	Group I mGluR5 metabotropic glutamate receptors regulate proliferation of neuronal progenitors in specific forebrain developmental domains. Journal of Neurochemistry, 2008, 104, 155-172.	2.1	36
87	Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth. Journal of Neurochemistry, 2007, 104, 071108171001014-???.	2.1	29
88	The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering. Brain Research Reviews, 2007, 55, 204-219.	9.1	229
89	Neogenin is expressed on neurogenic and gliogenic progenitors in the embryonic and adult central nervous system. Gene Expression Patterns, 2007, 7, 784-792.	0.3	24
90	Lineage Specification of Hematopoietic Stem Cells: Mathematical Modeling and Biological Implications. Stem Cells, 2007, 25, 1791-1799.	1.4	81
91	New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signalling, 2007, 3, 317-331.	1.1	57
92	Olfactory epithelium progenitors: insights from transgenic mice and inÂvitro biology. Journal of Molecular Histology, 2007, 38, 581-599.	1.0	81

#	Article	IF	CITATIONS
93	The Pak1 Kinase: An Important Regulator of Neuronal Morphology and Function in the Developing Forebrain. Molecular Neurobiology, 2008, 37, 187-202.	1.9	45
94	Congenital subependymal giant cell astrocytoma: clinical considerations and expression of radial glial cell markers in giant cells. Child's Nervous System, 2008, 24, 1499-1503.	0.6	26
95	Cells in the astroglial lineage are neural stem cells. Cell and Tissue Research, 2008, 331, 179-191.	1.5	137
96	TGF-beta in neural stem cells and in tumors of the central nervous system. Cell and Tissue Research, 2008, 331, 225-241.	1.5	91
97	Radial glia and neural stem cells. Cell and Tissue Research, 2008, 331, 165-178.	1.5	171
98	Genetic lineage tracing defines distinct neurogenic and gliogenic stages of ventral telencephalic radial glial development. Neural Development, 2008, 3, 30.	1.1	59
99	Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Development, 2008, 3, 5.	1.1	340
100	Er81is a downstream target of Pax6 in cortical progenitors. BMC Developmental Biology, 2008, 8, 23.	2.1	32
101	Transcriptome and proteome analysis of early embryonic mouse brain development. Proteomics, 2008, 8, 1257-1265.	1.3	55
102	Activation of adenosine A ₁ receptor–induced neural stem cell proliferation via MEK/ERK and Akt signaling pathways. Journal of Neuroscience Research, 2008, 86, 2820-2828.	1.3	51
103	Transient expression of the conserved zinc finger gene INSM1 in progenitors and nascent neurons throughout embryonic and adult neurogenesis. Journal of Comparative Neurology, 2008, 507, 1497-1520.	0.9	56
104	Notchâ€regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos. Developmental Dynamics, 2008, 237, 2081-2089.	0.8	86
105	ldentification of midbrain floor plate radial gliaâ€like cells as dopaminergic progenitors. Glia, 2008, 56, 809-820.	2.5	119
106	Neurogenesis in adult CNS: From denial to opportunities and challenges for therapy. BioEssays, 2008, 30, 135-145.	1.2	19
107	Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Annals of Neurology, 2008, 64, 434-445.	2.8	157
108	Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials, 2008, 29, 4766-4774.	5.7	95
109	Neural Stem Cells in the Mammalian Brain. International Review of Cytology, 2008, 265, 55-109.	6.2	9
110	Concise Review: Pax6 Transcription Factor Contributes to both Embryonic and Adult Neurogenesis as a Multifunctional Regulator. Stem Cells, 2008, 26, 1663-1672.	1.4	312

#	Article	IF	CITATIONS
111	Mechanisms of Asymmetric Stem Cell Division. Cell, 2008, 132, 583-597.	13.5	874
112	Evolutionary Forces Shape the Human RFPL1,2,3 Genes toward a Role in Neocortex Development. American Journal of Human Genetics, 2008, 83, 208-218.	2.6	29
113	Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO Journal, 2008, 27, 3151-3163.	3.5	97
114	Development of the human cerebral cortex: Boulder Committee revisited. Nature Reviews Neuroscience, 2008, 9, 110-122.	4.9	800
115	Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biology, 2008, 10, 93-101.	4.6	449
116	Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nature Cell Biology, 2008, 10, 385-394.	4.6	412
117	Lengthening the G ₁ Phase of Neural Progenitor Cells is Concurrent with An Increase of Symmetric Neuron Generating Division after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 602-611.	2.4	47
118	Advances in Stem Cell Biology – an ASGBI International Conference held at Durham University. Journal of Anatomy, 2008, 213, 1-4.	0.9	0
119	Regulation of neural progenitor cell development in the nervous system. Journal of Neurochemistry, 2008, 106, 2272-2287.	2.1	116
120	Opioidergic regulation of astroglial/neuronal proliferation: where are we now?. Journal of Neurochemistry, 2008, 107, 883-897.	2.1	59
121	Roles of <i>Hes</i> genes in neural development. Development Growth and Differentiation, 2008, 50, S97-103.	0.6	246
122	Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development. European Journal of Neuroscience, 2008, 28, 1449-1456.	1.2	69
123	Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb. BMC Neuroscience, 2008, 9, 7.	0.8	12
124	Nuclear migration during retinal development. Brain Research, 2008, 1192, 29-36.	1.1	123
125	The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Current Opinion in Cell Biology, 2008, 20, 707-715.	2.6	216
126	Neurogenesis and asymmetric cell division. Current Opinion in Neurobiology, 2008, 18, 4-11.	2.0	138
127	New insights into the molecular mechanisms specifying neuronal polarity in vivo. Current Opinion in Neurobiology, 2008, 18, 44-52.	2.0	73
128	The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory. PLoS Biology, 2008, 6, e246.	2.6	162

#	Article	IF	CITATIONS
129	miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development (Cambridge), 2008, 135, 3911-3921.	1.2	309
130	The neural stem cell microenvironment. Stembook, 2008, , .	0.3	18
131	Molecular Pathways Regulating Cytoskeletal Organization and Morphological Changes in Migrating Neurons. Developmental Neuroscience, 2008, 30, 36-46.	1.0	92
132	Neurogenesis and Brain Repair., 2008,, 445-462.		2
133	Prospective isolation of functionally distinct radial glial subtypesâ€"Lineage and transcriptome analysis. Molecular and Cellular Neurosciences, 2008, 38, 15-42.	1.0	87
134	Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Molecular and Cellular Neurosciences, 2008, 38, 393-403.	1.0	56
135	Oscillations in Notch Signaling Regulate Maintenance of Neural Progenitors. Neuron, 2008, 58, 52-64.	3.8	611
136	Insulinoma-Associated 1 Has a Panneurogenic Role and Promotes the Generation and Expansion of Basal Progenitors in the Developing Mouse Neocortex. Neuron, 2008, 60, 40-55.	3.8	150
137	Tbr2 Directs Conversion of Radial Glia into Basal Precursors and Guides Neuronal Amplification by Indirect Neurogenesis in the Developing Neocortex. Neuron, 2008, 60, 56-69.	3.8	344
138	Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology, 2008, 55, 345-352.	2.0	144
139	Asymmetric stem cell division: Lessons from Drosophila. Seminars in Cell and Developmental Biology, 2008, 19, 283-293.	2.3	52
140	Regulation of neurocoel morphogenesis by Pard6ĵ³b. Developmental Biology, 2008, 324, 41-54.	0.9	53
141	Cardiac stem cells and myocardial disease. Journal of Molecular and Cellular Cardiology, 2008, 45, 505-513.	0.9	97
142	LIS1 and Spindle Orientation in Neuroepithelial Cells. Cell Stem Cell, 2008, 2, 193-194.	5.2	9
143	Role of Intermediate Progenitor Cells in Cerebral Cortex Development. Developmental Neuroscience, 2008, 30, 24-32.	1.0	335
144	Neural stem cells: balancing self-renewal with differentiation. Development (Cambridge), 2008, 135, 1575-1587.	1.2	361
145	Neuroepithelial Stem Cell Proliferation Requires LIS1 for Precise Spindle Orientation and Symmetric Division. Cell, 2008, 132, 474-486.	13.5	254
146	Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell, 2008, 132, 598-611.	13.5	1,706

#	Article	IF	Citations
147	Nuclear Pore Composition Regulates Neural Stem/Progenitor Cell Differentiation in the Mouse Embryo. Developmental Cell, 2008, 14, 831-842.	3.1	160
148	Brain Area-Specific Effect of TGF-Î ² Signaling on Wnt-Dependent Neural Stem Cell Expansion. Cell Stem Cell, 2008, 2, 472-483.	5.2	123
149	Connexin 43 Delimits Functional Domains of Neurogenic Precursors in the Spinal Cord. Journal of Neuroscience, 2008, 28, 3298-3309.	1.7	48
150	Absolute Threshold., 2008,, 3-3.		0
151	MALS-3 regulates polarity and early neurogenesis in the developing cerebral cortex. Development (Cambridge), 2008, 135, 1781-1790.	1.2	22
152	A Novel Embryonic Nestin-Expressing Radial Glia-Like Progenitor Gives Rise to Zonally Restricted Olfactory and Vomeronasal Neurons. Journal of Neuroscience, 2008, 28, 4271-4282.	1.7	58
153	ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension. Journal of Cell Science, 2008, 121, 1444-1454.	1.2	56
154	Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development (Cambridge), 2008, 135, 3849-3858.	1.2	73
155	Toll-Like Receptor 3 Is a Negative Regulator of Embryonic Neural Progenitor Cell Proliferation. Journal of Neuroscience, 2008, 28, 13978-13984.	1.7	183
156	Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3581-3586.	3.3	690
157	Lhx2 Selector Activity Specifies Cortical Identity and Suppresses Hippocampal Organizer Fate. Science, 2008, 319, 304-309.	6.0	288
158	Regulation of neural progenitor cell state by ephrin-B. Journal of Cell Biology, 2008, 181, 973-983.	2.3	71
159	Instructive role of aPKCζ subcellular localization in the assembly of adherens junctions in neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 335-340.	3.3	42
160	Radial Glia Cells in the Developing Human Brain. Neuroscientist, 2008, 14, 459-473.	2.6	82
161	Making bigger brains–the evolution of neural-progenitor-cell division. Journal of Cell Science, 2008, 121, 2783-2793.	1.2	250
162	Cux-2 Controls the Proliferation of Neuronal Intermediate Precursors of the Cortical Subventricular Zone. Cerebral Cortex, 2008, 18, 1758-1770.	1.6	96
163	RASSF7 Is a Member of a New Family of RAS Association Domain–containing Proteins and Is Required for Completing Mitosis. Molecular Biology of the Cell, 2008, 19, 1772-1782.	0.9	61
164	New evidence for purinergic signaling in the olfactory bulb: A 2A and P2Y 1 receptors mediate intracellular calcium release in astrocytes. FASEB Journal, 2008, 22, 2368-2378.	0.2	61

#	ARTICLE	IF	CITATIONS
165	<i>Drosophila</i> optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development (Cambridge), 2008, 135, 1471-1480.	1.2	146
166	Temporal and epigenetic regulation of neurodevelopmental plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 23-38.	1.8	32
167	Insights into neural stem cell biology from flies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 39-56.	1.8	125
168	YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes and Development, 2008, 22, 3320-3334.	2.7	370
169	Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. Journal of Cell Biology, 2008, 182, 1063-1071.	2.3	80
170	Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development (Cambridge), 2008, 135, 3113-3124.	1.2	178
171	Molecular and cell biology of brain tumor stem cells: lessons from neural progenitor/stem cells. Neurosurgical Focus, 2008, 24, E25.	1.0	16
172	Tenascin C in Stem Cell Niches: Redundant, Permissive or Instructive?. Cells Tissues Organs, 2008, 188, 170-177.	1.3	47
173	Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development (Cambridge), 2008, 135, 11-22.	1.2	188
174	Regulation of Self-renewal and Differentiation in the Drosophila Nervous System. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 523-528.	2.0	12
175	Induction of Olig2+ Precursors by FGF Involves BMP Signalling Blockade at the Smad Level. PLoS ONE, 2008, 3, e2863.	1.1	55
176	lm gemachten Nest – Struktur und Funktionen neuraler Stammzellnischen. E-Neuroforum, 2009, 15, 44-55.	0.2	0
177	Axon Guidance by Glia. , 2009, , 1063-1072.		1
178	Nuclear Movements in Neurons. , 2009, , 1277-1281.		1
179	Differentiation: The Cell Cycle Instead. , 2009, , 523-529.		1
181	In Vivo MRI of Altered Brain Anatomy and Fiber Connectivity in Adult Pax6 Deficient Mice. Cerebral Cortex, 2009, 19, 2838-2847.	1.6	30
182	Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development (Cambridge), 2009, 136, 833-841.	1.2	88
183	Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain. Journal of Cell Biology, 2009, 185, 59-66.	2.3	55

#	Article	IF	CITATIONS
184	Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21924-21929.	3.3	215
185	ZHX2 Interacts with Ephrin-B and Regulates Neural Progenitor Maintenance in the Developing Cerebral Cortex. Journal of Neuroscience, 2009, 29, 7404-7412.	1.7	43
186	ON SIMULATING THE GENERATION OF MOSAICISM DURING MAMMALIAN CEREBRAL CORTICAL DEVELOPMENT. Journal of Biological Systems, 2009, 17, 27-62.	0.5	2
187	Cdc42-mTOR Signaling Pathway Controls Hes5 and Pax6 Expression in Retinoic Acid-dependent Neural Differentiation. Journal of Biological Chemistry, 2009, 284, 5107-5118.	1.6	55
188	In vivo imaging reveals a role for Cdc42 in spindle positioning and planar orientation of cell divisions during vertebrate neural tube closure. Journal of Cell Science, 2009, 122, 2481-2490.	1.2	40
189	RhoG Promotes Neural Progenitor Cell Proliferation in Mouse Cerebral Cortex. Molecular Biology of the Cell, 2009, 20, 4941-4950.	0.9	25
190	Retinal Development: An Overview., 2009, , 195-202.		0
191	Regulation of Radial Glial Survival by Signals from the Meninges. Journal of Neuroscience, 2009, 29, 7694-7705.	1.7	122
192	The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during <i>Xenopus</i> primary neurogenesis. Development (Cambridge), 2009, 136, 2767-2777.	1.2	40
193	MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development (Cambridge), 2009, 136, 2965-2975.	1.2	65
194	Genetic mechanisms regulating stem cell self-renewal and differentiation in the central nervous system of Drosophila. Cell Adhesion and Migration, 2009, 3, 402-411.	1.1	11
195	DNA-PK: Relaying the insulin signal to USF in lipogenesis. Cell Cycle, 2009, 8, 1973-1978.	1.3	17
196	Wnt asymmetry and the terminal division of neuronal progenitors. Cell Cycle, 2009, 8, 1973-1978.	1.3	10
197	Restricted Spontaneous In Vitro Differentiation and Region-Specific Migration of Long-Term Expanded Fetal Human Neural Precursor Cells After Transplantation Into the Adult Rat Brain. Stem Cells and Development, 2009, 18, 1043-1058.	1.1	26
198	Nonselective Sister Chromatid Segregation in Mouse Embryonic Neocortical Precursor Cells. Cerebral Cortex, 2009, 19, i49-i54.	1.6	18
199	Late Origin of Clia-Restricted Progenitors in the Developing Mouse Cerebral Cortex. Cerebral Cortex, 2009, 19, i135-i143.	1.6	70
200	Expression of Guanylyl Cyclase (GC)-A and GC-B during Brain Development: Evidence for a Role of GC-B in Perinatal Neurogenesis. Endocrinology, 2009, 150, 5520-5529.	1.4	28
201	\hat{l}^21 Integrin Maintains Integrity of the Embryonic Neocortical Stem Cell Niche. PLoS Biology, 2009, 7, e1000176.	2.6	154

#	Article	IF	CITATIONS
202	Multiple roles of \hat{l}^2 -catenin in controlling the neurogenic niche for midbrain dopamine neurons. Development (Cambridge), 2009, 136, 2027-2038.	1.2	85
203	Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes and Development, 2009, 23, 2675-2699.	2.7	348
205	Myosin II is required for interkinetic nuclear migration of neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16487-16492.	3.3	142
206	Neurovascular development. Cell Adhesion and Migration, 2009, 3, 199-204.	1.1	78
207	USP9X Enhances the Polarity and Self-Renewal of Embryonic Stem Cell-derived Neural Progenitors. Molecular Biology of the Cell, 2009, 20, 2015-2029.	0.9	52
208	Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Development (Cambridge), 2009, 136, 1859-1868.	1.2	61
209	Intermediate Neuronal Progenitors (Basal Progenitors) Produce Pyramidal–Projection Neurons for All Layers of Cerebral Cortex. Cerebral Cortex, 2009, 19, 2439-2450.	1.6	369
210	Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome. Neurobiology of Disease, 2009, 33, 250-259.	2.1	72
211	Chemokines in neuroectodermal development and their potential implication in cancer stem cell-driven metastasis. Seminars in Cancer Biology, 2009, 19, 68-75.	4.3	10
212	Primary microcephaly: do all roads lead to Rome?. Trends in Genetics, 2009, 25, 501-510.	2.9	359
213	Dynamic regulation of Notch signaling in neural progenitor cells. Current Opinion in Cell Biology, 2009, 21, 733-740.	2.6	133
214	Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurology, The, 2009, 8, 491-500.	4.9	536
215	Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 38-53.	1.1	86
216	Patterns of p57Kip2 expression in embryonic rat brain suggest roles in progenitor cell cycle exit and neuronal differentiation. Developmental Neurobiology, 2009, 69, 1-21.	1.5	38
217	Acheateâ€scute like 1 (Ascl1) is required for normal deltaâ€like (Dll) gene expression and notch signaling during retinal development. Developmental Dynamics, 2009, 238, 2163-2178.	0.8	82
218	Apical polarity protein PrkCi is necessary for maintenance of spinal cord precursors in zebrafish. Developmental Dynamics, 2009, 238, 1638-1648.	0.8	13
219	Cadmium modulates proliferation and differentiation of human neuroblasts. Journal of Neuroscience Research, 2009, 87, 228-237.	1.3	26
220	MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cells. Journal of Neuroscience Research, 2009, 87, 1522-1531.	1.3	40

#	Article	IF	CITATIONS
221	Longâ€term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. Journal of Neuroscience Research, 2009, 87, 2898-2907.	1.3	38
222	From Birth Till Death: Neurogenesis, Cell Cycle, and Neurodegeneration. Anatomical Record, 2009, 292, 1953-1961.	0.8	22
223	Plasticity and Neural Stem Cells in the Enteric Nervous System. Anatomical Record, 2009, 292, 1940-1952.	0.8	54
224	Brain Tumor Stem Cells. Neurochemical Research, 2009, 34, 2055-2066.	1.6	19
225	Dynamic Force Generation by Neural Stem Cells. Cellular and Molecular Bioengineering, 2009, 2, 464-474.	1.0	18
226	Protein tyrosine phosphatases expression during development of mouse superior colliculus. Experimental Brain Research, 2009, 199, 279-297.	0.7	7
227	cAMP Response Element Binding Protein Is Required for Mouse Neural Progenitor Cell Survival and Expansion. Stem Cells, 2009, 27, 1347-1357.	1.4	76
228	Zinc Finger Protein 191 (ZNF191/Zfp191) Is Necessary to Maintain Neural Cells As Cycling Progenitors. Stem Cells, 2009, 27, 1643-1653.	1.4	32
229	Mathematical modeling supports substantial mouse neural progenitor cell death. Neural Development, 2009, 4, 28.	1.1	16
230	Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Development, 2009, 4, 4.	1.1	64
231	Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Development, 2009, 4, 40.	1.1	107
232	A novel view on stem cell development: analysing the shape of cellular genealogies. Cell Proliferation, 2009, 42, 248-263.	2.4	28
233	Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Reports, 2009, 10, 515-520.	2.0	94
234	A new way of looking at neurogenesis at the apical surface. EMBO Reports, 2009, 10, 457-458.	2.0	0
235	Spindle orientation during asymmetric cell division. Nature Cell Biology, 2009, 11, 365-374.	4.6	440
236	The tumor suppressor Pml regulates cell fate in the developing neocortex. Nature Neuroscience, 2009, 12, 132-140.	7.1	108
237	Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neuroscience, 2009, 12, 259-267.	7.1	415
238	Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nature Neuroscience, 2009, 12, 735-744.	7.1	86

#	Article	IF	CITATIONS
239	AP2 \hat{l}^3 regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nature Neuroscience, 2009, 12, 1229-1237.	7.1	101
240	GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neuroscience, 2009, 12, 1390-1397.	7.1	355
241	Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nature Neuroscience, 2009, 12, 1381-1389.	7.1	126
242	Neurogenesis in G minor. Nature Neuroscience, 2009, 12, 669-671.	7.1	4
243	Pool rules. Nature Neuroscience, 2009, 12, 671-673.	7.1	2
244	Cerebral cortex development: From progenitors patterning to neocortical size during evolution. Development Growth and Differentiation, 2009, 51, 325-342.	0.6	38
245	Basal process and cell divisions of neural progenitors in the developing brain. Development Growth and Differentiation, 2009, 51, 251-261.	0.6	58
246	Fibroblast growth factor signaling in development of the cerebral cortex. Development Growth and Differentiation, 2009, 51, 299-323.	0.6	94
247	Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterialia, 2009, 5, 2371-2384.	4.1	134
248	PAR-1 Phosphorylates Mind Bomb to Promote Vertebrate Neurogenesis. Developmental Cell, 2009, 17, 222-233.	3.1	59
249	The N-Myc-DLL3 Cascade Is Suppressed by the Ubiquitin Ligase Huwe1 to Inhibit Proliferation and Promote Neurogenesis in the Developing Brain. Developmental Cell, 2009, 17, 210-221.	3.1	135
250	The TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors. Cell, 2009, 136, 913-925.	13.5	372
251	Cdk4/CyclinD1 Overexpression in Neural Stem Cells Shortens G1, Delays Neurogenesis, and Promotes the Generation and Expansion of Basal Progenitors. Cell Stem Cell, 2009, 5, 320-331.	5.2	490
252	Neocortical neurogenesis: morphogenetic gradients and beyond. Trends in Neurosciences, 2009, 32, 443-450.	4.2	77
253	Fgf10 Regulates Transition Period of Cortical Stem Cell Differentiation to Radial Glia Controlling Generation of Neurons and Basal Progenitors. Neuron, 2009, 63, 48-62.	3.8	167
254	p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience, 2009, 158, 1378-1389.	1.1	84
255	Molecular mechanisms of projection neuron production and maturation in the developing cerebral cortex. Seminars in Cell and Developmental Biology, 2009, 20, 726-734.	2.3	27
256	Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Developmental Biology, 2009, 325, 162-170.	0.9	64

#	ARTICLE	IF	CITATIONS
257	Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis. Developmental Biology, 2009, 326, 155-168.	0.9	88
258	Expression of the neural specific protein, GAPâ€43, dramatically lengthens the cell cycle in fibroblasts. International Journal of Developmental Neuroscience, 2009, 27, 531-537.	0.7	6
259	New drugs for brain tumors? Insights from chemical probing of neural stem cells. Medical Hypotheses, 2009, 72, 683-687.	0.8	28
260	Brain cancer propagating cells: biology, genetics and targeted therapies. Trends in Molecular Medicine, 2009, 15, 519-530.	3.5	96
261	Impaired neurogenesis in embryonic spinal cord of Phgdh knockout mice, a serine deficiency disorder model. Neuroscience Research, 2009, 63, 184-193.	1.0	25
262	Rac is involved in the interkinetic nuclear migration of cortical progenitor cells. Neuroscience Research, 2009, 63, 294-301.	1.0	31
263	Neurodegenerative Diseases: Tryptophan Metabolism. , 2009, , 2620-2623.		1
264	Neural Stem Cells Disguised as Astrocytes. , 2009, , 27-47.		3
265	Cell cycle control of Notch signaling and the functional regionalization of the neuroepithelium during vertebrate neurogenesis. International Journal of Developmental Biology, 2009, 53, 895-908.	0.3	43
266	Establishment of Axon-Dendrite Polarity in Developing Neurons. Annual Review of Neuroscience, 2009, 32, 347-381.	5.0	458
267	Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development. Biology Letters, 2009, 5, 112-116.	1.0	47
268	Stem Cells in the Adult Zebrafish Cerebellum: Initiation and Maintenance of a Novel Stem Cell Niche. Journal of Neuroscience, 2009, 29, 6142-6153.	1.7	183
269	The Transition from Radial Glial to Intermediate Progenitor Cell Is Inhibited by FGF Signaling during Corticogenesis. Journal of Neuroscience, 2009, 29, 14571-14580.	1.7	90
270	Asymmetric Cell Divisions and Asymmetric Cell Fates. Annual Review of Cell and Developmental Biology, 2009, 25, 671-699.	4.0	53
271	Neural Tube. , 2009, , 2606-2606.		0
273	14-3-3., 2008, , 1-1.		2
274	CD133 Expression by Neural Progenitors Derived from Human Embryonic Stem Cells and Its Use for Their Prospective Isolation. Stem Cells and Development, 2009, 18, 269-282.	1.1	68
275	Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both?. Nature Reviews Neuroscience, 2009, 10, 153-163.	4.9	170

#	Article	IF	CITATIONS
276	Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations BMC Neuroscience, 2009, 10, 93.	0.8	62
277	The Glial Nature of Embryonic and Adult Neural Stem Cells. Annual Review of Neuroscience, 2009, 32, 149-184.	5.0	2,067
278	Modes and regulation of glial migration in vertebrates and invertebrates. Nature Reviews Neuroscience, 2009, 10, 769-779.	4.9	70
279	Ependymal Cells., 2009, , 1133-1140.		3
280	Protein kinase D1: A novel regulator of actin-driven directed cell migration. Cell Cycle, 2009, 8, 1973-1978.	1.3	25
281	Vascular Endothelial Growth Factor and Its High-Affinity Receptor (VEGFR-2) Are Highly Expressed in the Human Forebrain and Cerebellum During Development. Journal of Neuropathology and Experimental Neurology, 2010, 69, 111-128.	0.9	36
282	Development and Regeneration of Projection Neuron Subtypes of the Cerebral Cortex. Science Progress, 2010, 93, 151-169.	1.0	14
283	Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Archives of Toxicology, 2010, 84, 825-889.	1.9	330
284	Regulation of neural stem cell by bone morphogenetic protein (BMP) signaling during brain development. Frontiers in Biology, 2010, 5, 380-385.	0.7	2
285	Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends in Cell Biology, 2010, 20, 233-243.	3.6	246
286	Mechanisms that regulate the number of neurons during mouse neocortical development. Current Opinion in Neurobiology, 2010, 20, 22-28.	2.0	70
287	Stem cells niches during developmentâ€"lessons from the cerebral cortex. Current Opinion in Neurobiology, 2010, 20, 400-407.	2.0	44
288	Brain Evolution: Microcephaly Genes Weigh In. Current Biology, 2010, 20, R244-R246.	1.8	12
289	MicroRNAs in neural cell differentiation. Brain Research, 2010, 1338, 14-19.	1.1	45
290	The intriguing links between promininâ€1 (CD133), cholesterolâ€based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Letters, 2010, 584, 1659-1664.	1.3	91
291	Expression patterns of astrocyte elevated gene-1 (AEG-1) during development of the mouse embryo. Gene Expression Patterns, 2010, 10, 361-367.	0.3	26
292	Molecular control of brain size: Regulators of neural stem cell life, death and beyond. Experimental Cell Research, 2010, 316, 1415-1421.	1.2	34
293	Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia, 2010, 58, 1345-1363.	2.5	138

#	Article	IF	CITATIONS
294	Embryonic stem cell neurogenesis and neural specification. Journal of Cellular Biochemistry, 2010, 111, 535-542.	1.2	35
295	Neural tube defects and impaired neural progenitor cell proliferation in <i>Gβ1</i> â€deficient mice. Developmental Dynamics, 2010, 239, 1089-1101.	0.8	55
296	Draxin is involved in the proper development of the dI3 interneuron in chick spinal cord. Developmental Dynamics, 2010, 239, 1654-1663.	0.8	8
297	Transcriptional regulatory networks associated with selfâ€renewal and differentiation of neural stem cells. Journal of Cellular Physiology, 2010, 225, 337-347.	2.0	17
298	Inhibition of Notch Signaling in Human Embryonic Stem Cell–Derived Neural Stem Cells Delays G1/S Phase Transition and Accelerates Neuronal Differentiation ⟨i⟩In Vitro⟨ i⟩ and ⟨i⟩In Vivo⟨ i⟩. Stem Cells, 2010, 28, 955-964.	1.4	215
299	<i>Bmi1</i> Distinguishes Immature Retinal Progenitor/Stem Cells from the Main Progenitor Cell Population and Is Required for Normal Retinal Development Â. Stem Cells, 2010, 28, 1412-1423.	1.4	27
300	Gα Subunit Coordinates with Ephrin-B to Balance Self-Renewal and Differentiation in Neural Progenitor Cells. Stem Cells, 2010, 28, 1581-1589.	1.4	17
301	Essential Role of PDZ-RGS3 in the Maintenance of Neural Progenitor Cells. Stem Cells, 2010, 28, 1602-1610.	1.4	25
302	Roles of small regulatory RNAs in determining neuronal identity. Nature Reviews Neuroscience, 2010, 11, 329-338.	4.9	168
303	Neural stem cell systems: physiological players or in vitro entities?. Nature Reviews Neuroscience, 2010, 11, 176-187.	4.9	281
304	Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 2010, 464, 554-561.	13.7	1,150
305	p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death and Differentiation, 2010, 17, 1816-1829.	5.0	102
306	WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nature Genetics, 2010, 42, 1010-1014.	9.4	255
307	Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nature Neuroscience, 2010, 13, 673-679.	7.1	147
308	OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nature Neuroscience, 2010, 13, 690-699.	7.1	699
309	Genetic regulation of human brain development: lessons from Mendelian diseases. Annals of the New York Academy of Sciences, 2010, 1214, 156-167.	1.8	20
310	PAF-AH catalytic subunits modulate the Wnt pathway in developing GABAergic neurons. Frontiers in Cellular Neuroscience, 2010, 4, .	1.8	22
311	Coordinating Division and Differentiation in Retinal Development. , 2010, , 398-407.		0

#	Article	IF	CITATIONS
312	Destroy to create: E3 ubiquitin ligases in neurogenesis. F1000 Biology Reports, 2010, 2, .	4.0	19
313	The nystagmus-associated FRMD7 gene regulates neuronal outgrowth and development. Human Molecular Genetics, 2010, 19, 342-351.	1.4	64
314	NFIA Controls Telencephalic Progenitor Cell Differentiation through Repression of the Notch Effector Hes1. Journal of Neuroscience, 2010, 30, 9127-9139.	1.7	119
316	Notch regulates the switch from symmetric to asymmetric neural stem cell division in the <i>Drosophila</i> optic lobe. Development (Cambridge), 2010, 137, 2981-2987.	1.2	146
317	Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium. Development (Cambridge), 2010, 137, 2471-2481.	1.2	85
318	Prominin-1: A Distinct Cholesterol-Binding Membrane Protein and the Organisation of the Apical Plasma Membrane of Epithelial Cells. Sub-Cellular Biochemistry, 2010, 51, 399-423.	1.0	16
319	Early Formation of a GFAP-Positive Cell Population in the Ventricular Zone during Chicken Brain Development. Cells Tissues Organs, 2010, 191, 57-65.	1.3	8
320	BDNF/MAPK/ERK–Induced BMP7 Expression in the Developing Cerebral Cortex Induces Premature Radial Glia Differentiation and Impairs Neuronal Migration. Cerebral Cortex, 2010, 20, 2132-2144.	1.6	64
321	Brain tumor stem cells. Biological Chemistry, 2010, 391, 607-17.	1.2	9
322	FAK-mediated extracellular signals are essential for interkinetic nuclear migration and planar divisions in the neuroepithelium. Journal of Cell Science, 2010, 123, 484-496.	1.2	34
323	Roles of the ubiquitin-proteosome system in neurogenesis. Cell Cycle, 2010, 9, 3194-3200.	1.3	44
324	Control of Activating Transcription Factor 4 (ATF4) Persistence by Multisite Phosphorylation Impacts Cell Cycle Progression and Neurogenesis*. Journal of Biological Chemistry, 2010, 285, 33324-33337.	1.6	68
325	Cdks and cyclins link G ₁ length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle, 2010, 9, 1893-1900.	1.3	164
326	Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development. Journal of Neuroscience, 2010, 30, 10752-10762.	1.7	41
327	Novel Embryonic Neuronal Migration and Proliferation Defects in <i>Dcx</i> Mutant Mice Are Exacerbated by <i>Lis1</i> Reduction. Journal of Neuroscience, 2010, 30, 3002-3012.	1.7	80
328	Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes and Development, 2010, 24, 1816-1826.	2.7	94
329	Zinc finger genes <i>Fezf1</i> and <i>Fezf2</i> control neuronal differentiation by repressing <i>Hes5</i> expression in the forebrain. Development (Cambridge), 2010, 137, 1875-1885.	1.2	67
330	The essential role of LIS1, NDEL1 and Aurora-A in polarity formation and microtubule organization during neurogensis. Cell Adhesion and Migration, 2010, 4, 180-184.	1.1	32

#	Article	IF	CITATIONS
331	EGFL7: A new player in homeostasis of the nervous system. Cell Cycle, 2010, 9, 1263-1269.	1.3	13
332	Cell polarity, Notch signaling and neurogenesis. Cell Cycle, 2010, 9, 1-2.	1.3	44
333	Discs large 5 is required for polarization of citron kinase in mitotic neural precursors. Cell Cycle, 2010, 9, 1990-1997.	1.3	24
334	Structural and Functional Analysis of Chondroitin Sulfate Proteoglycans in the Neural Stem Cell Niche. Methods in Enzymology, 2010, 479, 37-71.	0.4	38
335	p73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death and Disease, 2010, 1, e109-e109.	2.7	50
336	Tissue Biology of Proliferation and Cell Death Among Retinal Progenitor Cells. , 2010, , 191-230.		0
337	The ANKK1 Gene Associated with Addictions Is Expressed in Astroglial Cells and Upregulated by Apomorphine. Biological Psychiatry, 2010, 67, 3-11.	0.7	57
338	Mutations in N-cadherin and a Stardust homolog, Nagie oko, affect cell-cycle exit in zebrafish retina. Mechanisms of Development, 2010, 127, 247-264.	1.7	26
339	Adhesion molecules in the stem cell niche – more than just staying in shape?. Journal of Cell Science, 2010, 123, 1613-1622.	1.2	140
340	Essential Roles of Notch Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains. Journal of Neuroscience, 2010, 30, 3489-3498.	1.7	607
341	Embryonic exposure to ethanol disturbs regulation of mitotic spindle orientation via GABAA receptors in neural progenitors in ventricular zone of developing neocortex. Neuroscience Letters, 2010, 472, 128-132.	1.0	12
342	Morphogenesis of the thyroid gland. Molecular and Cellular Endocrinology, 2010, 323, 35-54.	1.6	121
343	Functional excitatory GABAA receptors precede ionotropic glutamate receptors in radial glia-like neural stem cells. Molecular and Cellular Neurosciences, 2010, 43, 209-221.	1.0	13
344	Lunatic fringe potentiates Notch signaling in the developing brain. Molecular and Cellular Neurosciences, 2010, 45, 12-25.	1.0	38
345	Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells. Molecular and Cellular Neurosciences, 2010, 45, 26-36.	1.0	55
346	Neural stem cells: the need for a proper orientation. Current Opinion in Genetics and Development, 2010, 20, 438-442.	1.5	28
347	Patterning the cerebral cortex: traveling with morphogens. Current Opinion in Genetics and Development, 2010, 20, 408-415.	1.5	70
348	The Apical Complex Couples Cell Fate and Cell Survival to Cerebral Cortical Development. Neuron, 2010, 66, 69-84.	3.8	97

#	Article	IF	CITATIONS
349	Neural Progenitor Nuclei IN Motion. Neuron, 2010, 67, 906-914.	3.8	196
350	Genetic Mosaic Dissection of Lis1 and Ndel1 in Neuronal Migration. Neuron, 2010, 68, 695-709.	3.8	215
351	Visual Activity Regulates Neural Progenitor Cells inÂDeveloping Xenopus CNS through Musashi1. Neuron, 2010, 68, 442-455.	3.8	40
352	Making neurons from mature glia: A far-fetched dream?. Neuropharmacology, 2010, 58, 894-902.	2.0	20
353	Cell cycle independent role of Cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function. Developmental Biology, 2010, 337, 415-424.	0.9	38
354	Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, 2010, 11, 849-860.	16.1	524
355	Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends in Neurosciences, 2010, 33, 503-512.	4.2	191
356	Epigenetic Codes in Stem Cells and Cancer Stem Cells. Advances in Genetics, 2010, 70, 177-199.	0.8	14
357	Prenatal Development of the Human Fetal Telencephalon. Medical Radiology, 2010, , 81-146.	0.0	2
358	PAR-1 promotes primary neurogenesis and asymmetric cell divisions via control of spindle orientation. Development (Cambridge), 2010, 137, 2501-2505.	1.2	21
359	Perspectives of Stem Cells. , 2010, , .		0
360	Progenitor Radial Cells and Neurogenesis in Pejerrey Fish Forebrain. Brain, Behavior and Evolution, 2010, 76, 20-31.	0.9	43
361	Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development (Cambridge), 2010, 137, 1907-1917.	1.2	233
362	Effective Adenovirus-Mediated Gene Transfer Into Neural Stem Cells Derived From Human Embryonic Stem Cells. Stem Cells and Development, 2010, 19, 569-578.	1.1	7
364	Milestones of Directed Differentiation of Mouse and Human Embryonic Stem Cells into Telencephalic Neurons Based on Neural Development In Vivo. Stem Cells and Development, 2011, 20, 947-958.	1.1	26
365	Neurogenesis at the Brain–Cerebrospinal Fluid Interface. Annual Review of Cell and Developmental Biology, 2011, 27, 653-679.	4.0	175
366	Cellular Basis for Myocardial Repair and Regeneration. , 2011, , 48-72.		1
367	The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nature Cell Biology, 2011, 13, 1029-1039.	4.6	58

#	Article	IF	CITATIONS
368	A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neuroscience, 2011, 14, 555-561.	7.1	432
369	Neurogenesis in the Adult Brain I. , 2011, , .		2
370	Neurobiology of Actin. Advances in Neurobiology, 2011, , .	1.3	1
371	In Vivo Clonal Analysis Reveals Self-Renewing and Multipotent Adult Neural Stem Cell Characteristics. Cell, 2011, 145, 1142-1155.	13.5	749
372	MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis. Developmental Cell, 2011, 20, 19-32.	3.1	148
373	SAG/RBX2/ROC2 E3ÂUbiquitin Ligase Is Essential for Vascular and Neural Development by Targeting NF1 for Degradation. Developmental Cell, 2011, 21, 1062-1076.	3.1	81
374	$\mathrm{ER}\hat{l}^2$ may contribute to the maintaining of radial glia cells polarity through cadherins during corticogenesis. Medical Hypotheses, 2011, 77, 974-976.	0.8	2
375	Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochemistry International, 2011, 59, 432-444.	1.9	22
376	Expression of GAPâ€43 in fibroblast cell lines influences the orientation of cell division. International Journal of Developmental Neuroscience, 2011, 29, 469-474.	0.7	3
377	The relevance of symmetric and asymmetric cell divisions to human central nervous system diseases. Journal of Clinical Neuroscience, 2011, 18, 458-463.	0.8	6
378	FGF signaling gradient maintains symmetrical proliferative divisions of midbrain neuronal progenitors. Developmental Biology, 2011, 349, 270-282.	0.9	28
379	Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development. Developmental Biology, 2011, 350, 414-428.	0.9	53
380	Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Developmental Biology, 2011, 351, 163-175.	0.9	42
381	Ank3-Dependent SVZ Niche Assembly Is Required for the Continued Production of New Neurons. Neuron, 2011, 71, 61-75.	3.8	112
382	From Cradle to Grave: The Multiple Roles of Fibroblast Growth Factors in Neural Development. Neuron, 2011, 71, 574-588.	3.8	205
383	Mouse Inscuteable Induces Apical-Basal Spindle Orientation to Facilitate Intermediate Progenitor Generation in the Developing Neocortex. Neuron, 2011, 72, 269-284.	3.8	149
384	Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience, 2011, 190, 409-427.	1.1	72
385	Radial Glia: Progenitor, Pathway, and Partner. Neuroscientist, 2011, 17, 288-302.	2.6	68

#	Article	IF	CITATIONS
386	Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Developmental Biology, 2011, 356, 553-565.	0.9	54
387	Drosophila twin spot clones reveal cell division dynamics in regenerating imaginal discs. Developmental Biology, 2011, 356, 576-587.	0.9	22
388	Early neural development in vertebrates is also a matter of calcium. Biochimie, 2011, 93, 2102-2111.	1.3	25
389	Time-lapse Live Imaging of Clonally Related Neural Progenitor Cells in the Developing Zebrafish Forebrain. Journal of Visualized Experiments, 2011, , .	0.2	8
390	Injury-Induced DNA Replication and Neural Proliferation in the Adult Mammalian Nervous System. , $2011,\ ,\ .$		0
391	The spinal cord ependymal region: A stem cell niche in the caudal central nervous system. Frontiers in Bioscience - Landmark, 2011, 16, 1044.	3.0	83
392	Dynamic Expression of Notch Signaling Genes in Neural Stem/Progenitor Cells. Frontiers in Neuroscience, 2011, 5, 78.	1.4	106
393	Functions of GSK-3 Signaling in Development of the Nervous System. Frontiers in Molecular Neuroscience, 2011, 4, 44.	1.4	97
394	In Vivo Fate Analysis Reveals the Multipotent and Self-Renewal Features of Embryonic AspM Expressing Cells. PLoS ONE, 2011, 6, e19419.	1.1	15
395	Toll-like Receptor 3 Regulates Neural Stem Cell Proliferation by Modulating the Sonic Hedgehog Pathway. PLoS ONE, 2011, 6, e26766.	1.1	36
396	Isolation of Radial Glia-Like Neural Stem Cells from Fetal and Adult Mouse Forebrain via Selective Adhesion to a Novel Adhesive Peptide-Conjugate. PLoS ONE, 2011, 6, e28538.	1.1	25
397	Lamotrigine increases the number of BrdU-labeled cellsinthe rat hippocampus. NeuroReport, 2011, 22, 97-100.	0.6	8
398	Creating Connections in the Developing Brain: Mechanisms Regulating Corpus Callosum Development. Colloquium Series on the Developing Brain, 2011, 2, 1-48.	0.0	7
399	Transcriptional control of differentiation and neurogenesis in autonomic ganglia. European Journal of Neuroscience, 2011, 34, 1563-1573.	1.2	85
400	Condition-dependent traits as signals of the functionality of vital cellular processes. Ecology Letters, 2011, 14, 625-634.	3.0	294
401	Immunohistochemical Analyses of NPAS3 Expression in the Developing Human Fetal Brain. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2011, 40, 196-203.	0.3	16
402	Fat / Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Development Growth and Differentiation, 2011, 53, 653-667.	0.6	36
403	Neurogenesis in Alzheimer's disease. Journal of Anatomy, 2011, 219, 78-89.	0.9	117

#	Article	IF	CITATIONS
404	Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nature Cell Biology, 2011, 13, 402-411.	4.6	228
405	The stem cell potential of glia: lessons from reactive gliosis. Nature Reviews Neuroscience, 2011, 12, 88-104.	4.9	480
406	Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO Journal, 2011, 30, 1690-1704.	3.5	138
407	DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature, 2011, 473, 92-96.	13.7	181
408	Primate-specific RFPL1 gene controls cell-cycle progression through cyclin B1/Cdc2 degradation. Cell Death and Differentiation, 2011, 18, 293-303.	5.0	13
409	Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death and Differentiation, 2011, 18, 383-395.	5.0	79
410	Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends in Cell Biology, 2011, 21, 470-480.	3.6	110
411	Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development. Developmental Biology, 2011, 358, 9-22.	0.9	30
412	Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective. Current Opinion in Neurobiology, 2011, 21, 23-35.	2.0	248
413	Interkinetic Nuclear Migration Is a Broadly Conserved Feature of Cell Division in Pseudostratified Epithelia. Current Biology, 2011, 21, 485-491.	1.8	131
414	Cell Division Orientation in Animals. Current Biology, 2011, 21, R599-R609.	1.8	146
415	Where the thoughts dwell: The physiology of neuronal–glial "diffuse neural net― Brain Research Reviews, 2011, 66, 133-151.	9.1	70
416	¹ H-Nuclear Magnetic Resonance Spectroscopy of Glioblastoma Cancer Stem Cells. Stem Cells and Development, 2011, 20, 2189-2195.	1.1	16
417	The Essential Role of Centrosomal NDE1 in Human Cerebral Cortex Neurogenesis. American Journal of Human Genetics, 2011, 88, 523-535.	2.6	146
418	Ect2, an Ortholog of Drosophila's Pebble, Negatively Regulates Neurite Outgrowth in NeuroblastomaÂÅ—ÂGlioma Hybrid NG108-15 Cells. Cellular and Molecular Neurobiology, 2011, 31, 663-668.	1.7	12
419	In Vitro Differentiation of Mouse Embryonic Stem Cells into Neurons of the Dorsal Forebrain. Cellular and Molecular Neurobiology, 2011, 31, 715-727.	1.7	11
420	New ependymal cells are born postnatally in two discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathologica, 2011, 121, 721-735.	3.9	26
421	The Role of Notch Signaling in Adult Neurogenesis. Molecular Neurobiology, 2011, 44, 7-12.	1.9	92

#	Article	IF	Citations
422	Seeing beyond the average cell: branching process models of cell proliferation, differentiation, and death during mouse brain development. Theory in Biosciences, 2011, 130, 31-43.	0.6	7
423	Generation and identification of rat fetal cerebral radial glia-like cells in vitro. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 431-437.	0.7	1
424	A novel reporter of notch signalling indicates regulated and random notch activation during vertebrate neurogenesis. BMC Biology, 2011, 9, 58.	1.7	39
425	Basal progenitor cells in the embryonic mouse thalamus - their molecular characterization and the role of neurogenins and Pax6. Neural Development, 2011, 6, 35.	1.1	42
426	Sox1 Maintains the Undifferentiated State of Cortical Neural Progenitor Cells via the Suppression of Prox1-Mediated Cell Cycle Exit and Neurogenesis. Stem Cells, 2011, 29, 89-98.	1.4	51
427	The Apical Polarity Determinant Crumbs 2 Is a Novel Regulator of ESC-Derived Neural Progenitors. Stem Cells, 2011, 29, 193-205.	1.4	29
428	Geminin Regulates Cortical Progenitor Proliferation and Differentiation. Stem Cells, 2011, 29, 1269-1282.	1.4	43
429	Neural Stem Cells Maintain Their Stemness through Protein Kinase C ζ-Mediated Inhibition of TRIM32. Stem Cells, 2011, 29, 1437-1447.	1.4	44
430	Ndel1, Nudel (Noodle): Flexible in the cell?. Cytoskeleton, 2011, 68, 540-554.	1.0	32
431	The role of Pax6 in forebrain development. Developmental Neurobiology, 2011, 71, 690-709.	1.5	155
432	Extracellular matrix and the neural stem cell niche. Developmental Neurobiology, 2011, 71, 1006-1017.	1.5	112
433	Spinal cord neuroepithelial progenitor cells display developmental plasticity when co-cultured with embryonic spinal cord slices at different stages of development. Developmental Dynamics, 2011, 240, 785-795.	0.8	5
434	Cell biological regulation of division fate in vertebrate neuroepithelial cells. Developmental Dynamics, 2011, 240, 1865-1879.	0.8	31
435	Headsâ€up: New roles for the fragile X mental retardation protein in neural stem and progenitor cells. Genesis, 2011, 49, 424-440.	0.8	36
436	Different reaction patterns of dopamine content to prenatal exposure to chlorpyrifos in different periods. Journal of Applied Toxicology, 2011, 31, 355-359.	1.4	26
438	Chemical Control of Stem Cell Fate and Developmental Potential. Angewandte Chemie - International Edition, 2011, 50, 200-242.	7.2	124
439	The time of timing: How Polycomb proteins regulate neurogenesis. BioEssays, 2011, 33, 519-528.	1.2	25
440	Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nature Communications, 2011, 2, 154.	5.8	330

#	Article	IF	CITATIONS
441	The H ⁺ Vacuolar ATPase Maintains Neural Stem Cells in the Developing Mouse Cortex. Stem Cells and Development, 2011, 20, 843-850.	1,1	78
442	Strategies for Analyzing Neuronal Progenitor Development and Neuronal Migration in the Developing Cerebral Cortex. Cerebral Cortex, 2011, 21, 1465-1474.	1.6	15
443	<i>Gli3</i> Is Required for Maintenance and Fate Specification of Cortical Progenitors. Journal of Neuroscience, 2011, 31, 6440-6448.	1.7	70
444	The Orchestration of Mammalian Tissue Morphogenesis through a Series of Coherent Feed-forward Loops. Journal of Biological Chemistry, 2011, 286, 43259-43271.	1.6	58
445	Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development (Cambridge), 2011, 138, 1459-1469.	1.2	170
446	Cell organization, growth, and neural and cardiac development require αII-spectrin. Journal of Cell Science, 2011, 124, 3956-3966.	1.2	72
447	Epithelial Organization of Adult Neurogenic Germinal Niches. , 2011, , 287-317.		0
448	LGN-dependent orientation of cell divisions in the dermomyotome controls lineage segregation into muscle and dermis. Development (Cambridge), 2011, 138, 4155-4166.	1.2	24
449	The Small GTPase RhoA Is Required to Maintain Spinal Cord Neuroepithelium Organization and the Neural Stem Cell Pool. Journal of Neuroscience, 2011, 31, 5120-5130.	1.7	62
450	The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development (Cambridge), 2011, 138, 5067-5078.	1.2	94
451	Transient expression of <i>Mnb/Dyrk1a</i> couples cell cycle exit and differentiation of neuronal precursors by inducing <i>p27KIP1</i> expression and suppressing NOTCH signaling. Development (Cambridge), 2011, 138, 2543-2554.	1.2	107
452	Stem Cells in Brain Tumor Development. Current Topics in Developmental Biology, 2011, 94, 15-44.	1.0	14
453	Neuronal Network Formation from Reprogrammed Early Postnatal Rat Cortical Glial Cells. Cerebral Cortex, 2011, 21, 413-424.	1.6	43
454	Drosophila Neural Stem Cells: Cell Cycle Control of Self-Renewal, Differentiation, and Termination in Brain Development. Results and Problems in Cell Differentiation, 2011, 53, 529-546.	0.2	36
455	A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes and Development, 2011, 25, 930-945.	2.7	368
456	PALS1 Is Essential for Retinal Pigment Epithelium Structure and Neural Retina Stratification. Journal of Neuroscience, 2011, 31, 17230-17241.	1.7	48
457	Adaptive Evolution of Four Microcephaly Genes and the Evolution of Brain Size in Anthropoid Primates. Molecular Biology and Evolution, 2011, 28, 625-638.	3.5	116
458	Physiological Relevance of Cell Cycle Kinases. Physiological Reviews, 2011, 91, 973-1007.	13.1	173

#	ARTICLE	IF	CITATIONS
459	Three-Dimensional Regulation of Radial Glial Functions by Lis1-Nde1 and Dystrophin Glycoprotein Complexes. PLoS Biology, 2011, 9, e1001172.	2.6	36
460	N-cadherin specifies first asymmetry in developing neurons. EMBO Journal, 2012, 31, 1893-1903.	3. 5	95
461	Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors. Molecular Biology of the Cell, 2012, 23, 1167-1180.	0.9	20
462	Wnt Signaling Has Opposing Roles in the Developing and the Adult Brain That Are Modulated by Hipk1. Cerebral Cortex, 2012, 22, 2415-2427.	1.6	35
463	Disruption of Mouse Cenpj, a Regulator of Centriole Biogenesis, Phenocopies Seckel Syndrome. PLoS Genetics, 2012, 8, e1003022.	1.5	84
464	Pten coordinates retinal neurogenesis by regulating Notch signalling. EMBO Journal, 2012, 31, 817-828.	3.5	37
465	Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates. EMBO Journal, 2012, 31, 1879-1892.	3.5	104
466	Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells. PLoS Genetics, 2012, 8, e1002566.	1.5	64
467	CyclinD2 at the edge: splitting up cell fate. EMBO Journal, 2012, 31, 1850-1852.	3.5	5
468	Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex. Neuropsychopharmacology, 2012, 37, 1387-1396.	2.8	41
469	BMP4 Sufficiency to Induce Choroid Plexus Epithelial Fate from Embryonic Stem Cell-Derived Neuroepithelial Progenitors. Journal of Neuroscience, 2012, 32, 15934-15945.	1.7	69
470	Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development (Cambridge), 2012, 139, 95-105.	1.2	88
471	Development of the Nervous System. , 2012, , 533-545.		2
472	JAM-C is an Apical Surface Marker for Neural Stem Cells. Stem Cells and Development, 2012, 21, 757-766.	1.1	17
473	When cell cycle meets development. Development (Cambridge), 2012, 139, 225-230.	1.2	17
474	DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis. Nature Neuroscience, 2012, 15, 1201-1210.	7.1	84
475	MiR-30e and miR-181d control Radial Glia cell proliferation via HtrA1 modulation. Cell Death and Disease, 2012, 3, e360-e360.	2.7	44
476	A new approach to manipulate the fate of single neural stem cells in tissue. Nature Neuroscience, 2012, 15, 329-337.	7.1	30

#	Article	IF	CITATIONS
477	Disrupted ERK Signaling during Cortical Development Leads to Abnormal Progenitor Proliferation, Neuronal and Network Excitability and Behavior, Modeling Human Neuro-Cardio-Facial-Cutaneous and Related Syndromes. Journal of Neuroscience, 2012, 32, 8663-8677.	1.7	87
478	Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11836-11841.	3.3	282
479	Neural stem cell specific fluorescent chemical probe binding to FABP7. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10214-10217.	3.3	70
480	Germinal Zones in the Developing Cerebral Cortex of Ferret: Ontogeny, Cell Cycle Kinetics, and Diversity of Progenitors. Cerebral Cortex, 2012, 22, 2039-2054.	1.6	147
481	Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development (Cambridge), 2012, 139, 3806-3816.	1.2	121
482	GSK3 Temporally Regulates Neurogenin 2 Proneural Activity in the Neocortex. Journal of Neuroscience, 2012, 32, 7791-7805.	1.7	76
483	Tangentially Migrating Transient Glutamatergic Neurons Control Neurogenesis and Maintenance of Cerebral Cortical Progenitor Pools. Cerebral Cortex, 2012, 22, 403-416.	1.6	34
484	Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development (Cambridge), 2012, 139, 678-689.	1.2	47
485	Bioelectric State and Cell Cycle Control of Mammalian Neural Stem Cells. Stem Cells International, 2012, 2012, 1-10.	1.2	27
486	Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease. Scientifica, 2012, 2012, 1-13.	0.6	21
487	Neuropathological Sequelae of Developmental Exposure to Antiepileptic and Anesthetic Drugs. Frontiers in Neurology, 2012, 3, 120.	1.1	29
488	Sox11 modulates neocortical development by regulating the proliferation and neuronal differentiation of cortical intermediate precursors. Acta Biochimica Et Biophysica Sinica, 2012, 44, 660-668.	0.9	8
489	Slit1b-Robo3 Signaling and N-Cadherin Regulate Apical Process Retraction in Developing Retinal Ganglion Cells. Journal of Neuroscience, 2012, 32, 223-228.	1.7	37
490	Self-organization and interareal networks in the primate cortex. Progress in Brain Research, 2012, 195, 341-360.	0.9	23
491	On the inscrutable role of Inscuteable: structural basis and functional implications for the competitive binding of NuMA and Inscuteable to LGN. Open Biology, 2012, 2, 120102.	1.5	31
492	Dystroglycan on Radial Glia End Feet Is Required for Pial Basement Membrane Integrity and Columnar Organization of the Developing Cerebral Cortex. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1047-1063.	0.9	78
493	Mitotic spindle orientation can direct cell fate and bias Notch activity in chick neural tube. EMBO Reports, 2012, 13, 448-454.	2.0	56
494	Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Experimental Neurology, 2012, 237, 477-488.	2.0	85

#	Article	IF	CITATIONS
495	BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nature Neuroscience, 2012, 15, 1627-1635.	7.1	117
496	Numb is Required for the Production of Terminal Asymmetric Cell Divisions in the Developing Mouse Retina. Journal of Neuroscience, 2012, 32, 17197-17210.	1.7	60
497	Positive selection on <i><scp>NIN</scp></i> , a gene involved in neurogenesis, and primate brain evolution. Genes, Brain and Behavior, 2012, 11, 903-910.	1.1	16
499	The Harmonies Played by TGF-β in Stem Cell Biology. Cell Stem Cell, 2012, 11, 751-764.	5.2	165
500	Ect2, an ortholog of Drosophila Pebble, regulates formation of growth cones in primary cortical neurons. Neurochemistry International, 2012, 61, 854-858.	1.9	1
501	Tenascin C regulates proliferation and differentiation processes during embryonic retinogenesis and modulates the de-differentiation capacity of Mýller glia by influencing growth factor responsiveness and the extracellular matrix compartment. Developmental Biology, 2012, 369, 163-176.	0.9	24
502	Hes4 Controls Proliferative Properties of Neural Stem Cells During Retinal Ontogenesis. Stem Cells, 2012, 30, 2784-2795.	1.4	47
503	Stem cells in gliomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 63-73.	1.0	10
504	The effect of methamphetamine on subventricular zone neurogenesis: Cell death, proliferation and differentiation., 2012,,.		0
505	Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus. Cerebral Cortex, 2012, 22, 469-481.	1.6	201
506	Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia. Neuron, 2012, 74, 65-78.	3.8	119
507	Dynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Precursors into the Cortical Plate. Neuron, 2012, 74, 1045-1058.	3.8	126
508	VCAM1 Is Essential to Maintain the Structure of the SVZ Niche and Acts as an Environmental Sensor to Regulate SVZ Lineage Progression. Cell Stem Cell, 2012, 11, 220-230.	5.2	175
509	MicroRNAs tune cerebral cortical neurogenesis. Cell Death and Differentiation, 2012, 19, 1573-1581.	5.0	60
510	Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nature Communications, 2012, 3, 1076.	5.8	92
511	Histamine in brain development. Journal of Neurochemistry, 2012, 122, 872-882.	2.1	35
512	Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008359-a008359.	2.3	156
513	Consequences of early life MK-801 administration: Long-term behavioural effects and relevance to schizophrenia research. Behavioural Brain Research, 2012, 227, 276-286.	1.2	61

#	Article	IF	CITATIONS
514	Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochemical and Biophysical Research Communications, 2012, 425, 762-768.	1.0	36
515	Snf2l Regulates Foxg1-Dependent Progenitor Cell Expansion in the Developing Brain. Developmental Cell, 2012, 22, 871-878.	3.1	60
516	How to keep proliferative neural stem/progenitor cells. Cell Cycle, 2012, 11, 3550-3554.	1.3	18
517	Mapping differentiation kinetics in the mouse retina reveals an extensive period of cell cycle protein expression in postâ€mitotic newborn neurons. Developmental Dynamics, 2012, 241, 1525-1544.	0.8	27
518	Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis. Cell and Bioscience, 2012, 2, 38.	2.1	14
519	Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neuroscience, 2012, 15, 477-486.	7.1	726
520	Modeling spatial population dynamics of stem cell lineage in tissue growth., 2012, 2012, 5502-5.		8
521	Fetal mouse mesencephalic NPCs generate dopaminergic neurons from post-mitotic precursors and maintain long-term neural but not dopaminergic potential in vitro. Brain Research, 2012, 1474, 8-18.	1.1	7
522	Lessons from the Embryonic Neural Stem Cell Niche for Neural Lineage Differentiation of Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 813-829.	5.6	45
523	A glial origin for periventricular nodular heterotopia caused by impaired expression of Filamin-A. Human Molecular Genetics, 2012, 21, 1004-1017.	1.4	57
525	Bmp7 Regulates the Survival, Proliferation, and Neurogenic Properties of Neural Progenitor Cells during Corticogenesis in the Mouse. PLoS ONE, 2012, 7, e34088.	1.1	73
526	Identification and Characterisation of the Early Differentiating Cells in Neural Differentiation of Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e37129.	1.1	40
527	Expression of Aromatase in Radial Glial Cells in the Brain of the Japanese Eel Provides Insight into the Evolution of the cyp191a Gene in Actinopterygians. PLoS ONE, 2012, 7, e44750.	1.1	27
528	The calcium: an early signal that initiates the formation of the nervous system during embryogenesis. Frontiers in Molecular Neuroscience, 2012, 5, 3.	1.4	111
529	Mesenchymal Stromal Cells and Neural Stem Cells Potential for Neural Repair in Spinal Cord Injury and Human Neurodegenerative Disorders. , 2012, , .		1
530	Neural Stem Cells in Development and Aging. Else-Kröner-Fresenius-Symposia, 2012, , 112-120.	0.1	1
531	Pitx2 Expression Promotes p21 Expression and Cell Cycle Exit in Neural Stem Cells. CNS and Neurological Disorders - Drug Targets, 2012, 11, 884-892.	0.8	12
532	A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biological Research, 2012, 45, 231-241.	1.5	78

#	Article	IF	CITATIONS
533	Centrosomes in fertilization, early embryonic development, stem cell division, and cancer. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012 , , .	0.1	5
534	Typical and atypical stem cells in the brain, vitamin C effect and neuropathology. Biological Research, 2012, 45, 243-256.	1.5	18
535	Genome-Wide Analysis of N1ICD/RBPJ Targets In Vivo Reveals Direct Transcriptional Regulation of Wnt, SHH, and Hippo Pathway Effectors by Notch1. Stem Cells, 2012, 30, 741-752.	1.4	144
536	Loss of Cdk2 and Cdk4 Induces a Switch from Proliferation to Differentiation in Neural Stem Cells. Stem Cells, 2012, 30, 1509-1520.	1.4	71
537	Neurogenesis requires TopBP1 to prevent catastrophic replicative DNA damage in early progenitors. Nature Neuroscience, 2012, 15, 819-826.	7.1	55
538	Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs. Nature Neuroscience, 2012, 15, 962-969.	7.1	117
539	The multiple roles of the cyclinâ€dependent kinase inhibitory protein p57 ^{KIP2} in cerebral cortical neurogenesis. Developmental Neurobiology, 2012, 72, 821-842.	1.5	29
540	Emerging roles of neural stem cells in cerebral cortex development and evolution. Developmental Neurobiology, 2012, 72, 955-971.	1.5	158
541	Circadian clock genes <i>Bmal1</i> and <i>Clock</i> during early chick development. Developmental Dynamics, 2012, 241, 1365-1373.	0.8	7
542	Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone. Glia, 2012, 60, 1451-1467.	2.5	64
543	The Germline Stem Cell Niche Unit in Mammalian Testes. Physiological Reviews, 2012, 92, 577-595.	13.1	420
544	The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes and Development, 2012, 26, 803-815.	2.7	103
545	Cortical development and asymmetric cell divisions. Frontiers in Biology, 2012, 7, 297-306.	0.7	2
546	Developmental Origin of Neural Stem Cells: The Glial Cell That Could. Stem Cell Reviews and Reports, 2012, 8, 577-585.	5.6	18
547	The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell and Tissue Research, 2012, 349, 133-145.	1.5	31
548	Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Current Opinion in Cell Biology, 2012, 24, 269-276.	2.6	91
549	Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex. Congenital Anomalies (discontinued), 2012, 52, 72-77.	0.3	57
550	Involvement of claudins in zebrafish brain ventricle morphogenesis. Annals of the New York Academy of Sciences, 2012, 1257, 193-198.	1.8	19

#	Article	IF	CITATIONS
551	hESC derived neuro-epithelial rosettes recapitulate early mammalian neurulation events; an in vitro model. Stem Cell Research, 2012, 8, 239-246.	0.3	24
552	Maternal bisphenol A oral dosing relates to the acceleration of neurogenesis in the developing neocortex of mouse fetuses. Toxicology, 2012, 295, 31-38.	2.0	61
553	F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. Developmental Biology, 2012, 365, 133-151.	0.9	45
554	Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Developmental Biology, 2012, 365, 395-413.	0.9	125
555	Developmental origins of neural tumours: old idea, new approaches. Neuropathology and Applied Neurobiology, 2012, 38, 222-227.	1.8	3
556	Interkinetic nuclear migration: A mysterious process in search of a function. Development Growth and Differentiation, 2012, 54, 306-316.	0.6	106
557	An oblique view on the role of spindle orientation in vertebrate neurogenesis. Development Growth and Differentiation, 2012, 54, 287-305.	0.6	38
558	In vivo timeâ€lapse imaging of cell proliferation and differentiation in the optic tectum of <i>Xenopus laevis</i> tadpoles. Journal of Comparative Neurology, 2012, 520, 401-433.	0.9	41
559	Wntâ∈Notch signalling: An integrated mechanism regulating transitions between cell states. BioEssays, 2012, 34, 110-118.	1.2	40
560	BMP signaling pathway and spinal cord development. Frontiers in Biology, 2012, 7, 24-29.	0.7	4
561	Interkinetic Nuclear Movement in the Ventricular Zone of the Cortex. Journal of Molecular Neuroscience, 2012, 46, 516-526.	1.1	30
562	AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. Neural Development, 2013, 8, 7.	1.1	96
563	Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice. Protein and Cell, 2013, 4, 231-242.	4.8	35
564	Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells. Cellular Oncology (Dordrecht), 2013, 36, 201-211.	2.1	2
565	Genetic visualization of notch signaling in mammalian neurogenesis. Cellular and Molecular Life Sciences, 2013, 70, 2045-2057.	2.4	47
566	Tumor suppressive pathways in the control of neurogenesis. Cellular and Molecular Life Sciences, 2013, 70, 581-597.	2.4	6
568	The mechanical control of nervous system development. Development (Cambridge), 2013, 140, 3069-3077.	1.2	199
569	Expression and subcellular distribution of imp13 are regulated in brain development. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 346-353.	0.7	12

#	Article	IF	CITATIONS
570	Neuronal Migration and Brain Patterning. , 2013, , 431-456.		2
571	Isolation and Maintenance of Cortical Neural Progenitor Cells In Vitro. Methods in Molecular Biology, 2013, 1018, 3-10.	0.4	8
572	Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development (Cambridge), 2013, 140, 3079-3093.	1.2	1,164
573	Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501, 373-379.	13.7	3,889
574	The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex. Neuron, 2013, 79, 254-265.	3.8	65
575	Protection of Neuronal Diversity at the Expense of Neuronal Numbers during Nutrient Restriction in the Drosophila Visual System. Cell Reports, 2013, 3, 587-594.	2.9	59
576	Neurogenesis is required for behavioral recovery after injury in the visual system of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2013, 521, 2262-2278.	0.9	30
577	Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO Journal, 2013, 32, 3145-3160.	3.5	215
578	Proneural genes in neocortical development. Neuroscience, 2013, 253, 256-273.	1.1	103
579	Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain. Annual Review of Cell and Developmental Biology, 2013, 29, 299-353.	4.0	134
580	Ephrin B1 maintains apical adhesion of neural progenitors. Development (Cambridge), 2013, 140, 2082-2092.	1.2	56
581	Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nature Neuroscience, 2013, 16, 1000-1007.	7.1	169
582	Asymmetric Inheritance of Centrosome-Associated Primary Cilium Membrane Directs Ciliogenesis after Cell Division. Cell, 2013, 155, 333-344.	13.5	253
583	Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nature Communications, 2013, 4, 2125.	5.8	178
584	Precursor Diversity and Complexity of Lineage Relationships in the Outer Subventricular Zone of the Primate. Neuron, 2013, 80, 442-457.	3.8	397
585	APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nature Communications, 2013, 4, 2879.	5.8	82
586	Progenitor Networking in the Fetal Primate Neocortex. Neuron, 2013, 80, 259-262.	3.8	3
587	Maintaining genome stability in the nervous system. Nature Neuroscience, 2013, 16, 1523-1529.	7.1	200

#	Article	IF	CITATIONS
588	Radial glia – from boring cables to stem cell stars. Development (Cambridge), 2013, 140, 483-486.	1.2	68
589	Neurog2 Simultaneously Activates and Represses Alternative Gene Expression Programs in the Developing Neocortex. Cerebral Cortex, 2013, 23, 1884-1900.	1.6	43
590	Zebrafish midbrain slow-amplifying progenitors exhibit high levels of transcripts for nucleotide and ribosome biogenesis. Development (Cambridge), 2013, 140, 4860-4869.	1.2	46
591	Asymmetric cell division: Implications for glioma development and treatment. Translational Neuroscience, 2013, 4, 484-503.	0.7	14
592	Dynein Recruitment to Nuclear Pores Activates Apical Nuclear Migration and Mitotic Entry in Brain Progenitor Cells. Cell, 2013, 154, 1300-1313.	13.5	158
593	Low level methylmercury enhances CNTF-evoked STAT3 signaling and glial differentiation in cultured cortical progenitor cells. NeuroToxicology, 2013, 38, 91-100.	1.4	24
594	TAG-1–assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nature Neuroscience, 2013, 16, 1556-1566.	7.1	93
595	Neurogenic potential of hESC-derived human radial glia is amplified by human fetal cells. Stem Cell Research, 2013, 11, 587-600.	0.3	6
596	Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nature Genetics, 2013, 45, 1300-1308.	9.4	247
597	Chromatin Regulation by BAF170 Controls Cerebral Cortical Size and Thickness. Developmental Cell, 2013, 25, 256-269.	3.1	149
598	'Til Eph Do Us Part': Intercellular Signaling via Eph Receptors and Ephrin Ligands Guides Cerebral Cortical Development from Birth Through Maturation. Cerebral Cortex, 2013, 23, 1765-1773.	1.6	25
599	ElevatedId2Expression Results in Precocious Neural Stem Cell Depletion and Abnormal Brain Development. Stem Cells, 2013, 31, 1010-1021.	1.4	25
600	Cellular and molecular mechanisms underlying axon formation, growth, and branching. Journal of Cell Biology, 2013, 202, 837-848.	2.3	154
601	New Insights into Mechanisms ofÂStem Cell Daughter Fate Determination in Regenerative Tissues. International Review of Cell and Molecular Biology, 2013, 300, 1-50.	1.6	16
602	Paracrine regulation of neural stem cells in the subependymal zone. Archives of Biochemistry and Biophysics, 2013, 534, 11-19.	1.4	18
603	A matter of life and death: selfâ€renewal in stem cells. EMBO Reports, 2013, 14, 39-48.	2.0	153
604	Gap junction proteins on the move: Connexins, the cytoskeleton and migration. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 94-108.	1.4	114
605	Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development (Cambridge), 2013, 140, 552-561.	1.2	35

#	Article	IF	CITATIONS
606	Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia. Trends in Cell Biology, 2013, 23, 141-150.	3.6	78
607	Predicting stem cell fate changes by differential cell cycle progression patterns. Development (Cambridge), 2013, 140, 459-470.	1.2	128
608	Comparative aspects of adult neural stem cell activity in vertebrates. Development Genes and Evolution, 2013, 223, 131-147.	0.4	148
609	The transcription factor Otx2 regulates choroid plexus development and function. Development (Cambridge), 2013, 140, 1055-1066.	1.2	109
610	Small Molecule–Based Approaches to Adult Stem Cell Therapies. Annual Review of Pharmacology and Toxicology, 2013, 53, 107-125.	4.2	27
611	A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. Journal of Comparative Neurology, 2013, 521, 233-251.	0.9	16
612	miR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins. Developmental Cell, 2013, 27, 387-398.	3.1	55
613	MicroRNA Cluster miR-17-92 Regulates Neural Stem Cell Expansion and Transition to Intermediate Progenitors in the Developing Mouse Neocortex. Cell Reports, 2013, 3, 1398-1406.	2.9	170
614	Using human induced pluripotent stem cells to treat retinal disease. Progress in Retinal and Eye Research, 2013, 37, 163-181.	7.3	65
615	Role for Lhx2 in corticogenesis through regulation of progenitor differentiation. Molecular and Cellular Neurosciences, 2013, 56, 1-9.	1.0	55
616	Evolution of Complex Higher Brain Centers and Behaviors: Behavioral Correlates of Mushroom Body Elaboration in Insects. Brain, Behavior and Evolution, 2013, 82, 9-18.	0.9	77
617	Cortical Development., 2013,,.		3
618	Transcriptional coupling of neuronal fate commitment and the onset of migration. Current Opinion in Neurobiology, 2013, 23, 957-964.	2.0	19
619	Novel anthranilamide-pyrazolo [1,5-a] pyrimidine conjugates modulate the expression of p53-MYCN associated micro RNAs in neuroblastoma cells and cause cell cycle arrest and apoptosis. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5699-5706.	1.0	20
620	Adenosine A1 receptor agonist, N6-cyclohexyladenosine, protects myelin and induces remyelination in an experimental model of rat optic chiasm demyelination; electrophysiological and histopathological studies. Journal of the Neurological Sciences, 2013, 325, 22-28.	0.3	26
621	P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacology, 2013, 73, 122-137.	2.0	67
622	EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nature Neuroscience, 2013, 16, 407-415.	7.1	85
623	Epigenetic regulation of neural stem cell fate during corticogenesis. International Journal of Developmental Neuroscience, 2013, 31, 424-433.	0.7	70

#	Article	IF	Citations
624	Scratch regulates neuronal migration onset via an epithelial-mesenchymal transition–like mechanism. Nature Neuroscience, 2013, 16, 416-425.	7.1	116
625	Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate. Cell, 2013, 153, 535-549.	13.5	238
626	Stem Cells: Neural Stem Cells in Cerebral Cortex Development. , 2013, , 137-159.		2
627	Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 638-652.	0.7	21
628	Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Molecular and Cellular Neurosciences, 2013, 53, 63-68.	1.0	57
629	Physiology of the Intrathecal Bolus: The Leptomeningeal Route for Macromolecule and Particle Delivery to CNS. Molecular Pharmaceutics, 2013, 10, 1522-1532.	2.3	77
630	Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis. Journal of Neuroscience, 2013, 33, 7799-7810.	1.7	121
631	Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo. Brain Research, 2013, 1523, 10-27.	1.1	11
632	Shaping Our Minds: Stem and Progenitor Cell Diversity in the Mammalian Neocortex. Neuron, 2013, 77, 19-34.	3.8	212
633	Replication Protein A Links Cell Cycle Progression and the Onset of Neurogenesis in <i>Drosophila</i> Optic Lobe Development. Journal of Neuroscience, 2013, 33, 2873-2888.	1.7	13
634	Neural stem cells as tools for drug discovery: novel platforms and approaches. Expert Opinion on Drug Discovery, 2013, 8, 1083-1094.	2.5	19
635	Prominin-1 (CD133): New Insights on Stem & Dell Biology. Advances in Experimental Medicine and Biology, 2013, , .	0.8	10
636	Nonmammalian Model Systems. , 2013, , 911-927.		0
637	Neocortical neurogenesis and neuronal migration. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 443-459.	5.9	50
638	Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia, 2013, 61, 150-163.	2.5	170
639	Ninein is essential for the maintenance of the cortical progenitor character by anchoring the centrosome to microtubules. Biology Open, 2013, 2, 739-749.	0.6	37
640	Prominin-1-Containing Membrane Vesicles: Origins, Formation, and Utility. Advances in Experimental Medicine and Biology, 2013, 777, 41-54.	0.8	30
641	Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO Journal, 2013, 32, 1817-1828.	3.5	185

#	Article	IF	CITATIONS
642	LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. Scientifica, 2013, 2013, 1-17.	0.6	43
643	Supersize meâ€"new insights into cortical expansion and gyration of the mammalian brain. EMBO Journal, 2013, 32, 1793-1795.	3.5	7
644	Age-Dependent Transition from Cell-Level to Population-Level Control in Murine Intestinal Homeostasis Revealed by Coalescence Analysis. PLoS Genetics, 2013, 9, e1003326.	1.5	16
645	Centrosome amplification causes microcephaly. Nature Cell Biology, 2013, 15, 731-740.	4.6	223
646	The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Human Molecular Genetics, 2013, 22, 4673-4687.	1.4	101
647	Disruption of CDH2/N-Cadherin–Based Adherens Junctions Leads to Apoptosis of Ependymal Cells and Denudation of Brain Ventricular Walls. Journal of Neuropathology and Experimental Neurology, 2013, 72, 846-860.	0.9	38
648	A self-renewing division of zebrafish M $\tilde{\text{A}}$ ¹ / ₄ ller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development (Cambridge), 2013, 140, 4510-4521.	1.2	176
649	Stem Cells Expanded from the Human Embryonic Hindbrain Stably Retain Regional Specification and High Neurogenic Potency. Journal of Neuroscience, 2013, 33, 12407-12422.	1.7	74
650	Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation. Nucleic Acids Research, 2013, 41, 711-726.	6.5	24
651	Mcl1 regulates the terminal mitosis of neural precursor cells in the mammalian brain through p27Kip1. Development (Cambridge), 2013, 140, 3118-3127.	1.2	26
652	Impact of Lipid Nutrition on Neural Stem/Progenitor Cells. Stem Cells International, 2013, 2013, 1-12.	1.2	21
653	Extraâ€cell cycle regulatory functions of cyclinâ€dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders. Genes To Cells, 2013, 18, 176-194.	0.5	50
654	Modeling spatial population dynamics of stem cell lineage in wound healing and cancerogenesis., 2013, 2013, 5550-3.		4
655	Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development (Cambridge), 2013, 140, 3323-3334.	1.2	97
656	BAF chromatin remodeling complex: Cortical size regulation and beyond. Cell Cycle, 2013, 12, 2953-2959.	1.3	36
657	TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation. Cell Death and Disease, 2013, 4, e976-e976.	2.7	38
658	PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death and Disease, 2013, 4, e751-e751.	2.7	66
659	The protomap is propagated to cortical plate neurons through an <i>Eomes</i> -dependent intermediate map. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4081-4086.	3.3	89

#	Article	IF	Citations
660	Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia, 2013, 2, 12.	1.8	52
661	Adult ciliary epithelial stem cells generate functional neurons and differentiate into both early and late born retinal neurons under non-cell autonomous influences. BMC Neuroscience, 2013, 14, 130.	0.8	24
662	The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal. Frontiers in Neuroanatomy, 2013, 7, 16.	0.9	69
663	The Specification and Generation of Neurons in the Ventral Spinal Cord. , 2013, , 401-415.		3
664	Cell Adhesion Molecules in Neural Stem Cell and Stem Cell- Based Therapy for Neural Disorders. , 0, , .		3
665	Neurogenesis and Migration., 2013,, 339-361.		2
666	Environmental Cues and Signaling Pathways that Regulate Neural Precursor Development. , 2013, , 355-383.		5
667	Specification of Cortical Projection Neurons. , 2013, , 475-502.		4
668	Heterogenic Final Cell Cycle by Chicken Retinal Lim1 Horizontal Progenitor Cells Leads to Heteroploid Cells with a Remaining Replicated Genome. PLoS ONE, 2013, 8, e59133.	1.1	20
669	Spatial Distribution of Prominin-1 (CD133) – Positive Cells within Germinative Zones of the Vertebrate Brain. PLoS ONE, 2013, 8, e63457.	1.1	18
670	Post-Proliferative Immature Radial Glial Cells Female-Specifically Express Aromatase in the Medaka Optic Tectum. PLoS ONE, 2013, 8, e73663.	1.1	27
671	Genetic Deletion of Afadin Causes Hydrocephalus by Destruction of Adherens Junctions in Radial Glial and Ependymal Cells in the Midbrain. PLoS ONE, 2013, 8, e80356.	1.1	45
672	Resident Neural Stem Cells. , 2013, , 69-87.		1
673	MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex. Frontiers in Cellular Neuroscience, 2013, 7, 151.	1.8	43
674	Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Frontiers in Human Neuroscience, 2013, 7, 424.	1.0	99
675	Cell Biology of Neuronal Progenitor Cells. , 2013, , 261-283.		2
676	Telencephalic Neurogenesis Versus Telencephalic Differentiation of Pluripotent Stem Cells., 2013,,.		3
677	Lateral inhibition and neurogenesis: novel aspects in motion. International Journal of Developmental Biology, 2013, 57, 341-350.	0.3	39

#	Article	IF	CITATIONS
678	Human Pluripotent Stem Cells Modeling Neurodegenerative Diseases., 2013,,.		2
680	Embryonic Cerebrospinal Fluid Nanovesicles Carry Evolutionarily Conserved Molecules and Promote Neural Stem Cell Amplification. PLoS ONE, 2014, 9, e88810.	1.1	74
681	A Regulatory Transcriptional Loop Controls Proliferation and Differentiation in Drosophila Neural Stem Cells. PLoS ONE, 2014, 9, e97034.	1.1	7
682	AKT Pathway Genes Define 5 Prognostic Subgroups in Glioblastoma. PLoS ONE, 2014, 9, e100827.	1.1	11
683	Prominin-1 (CD133) Defines Both Stem and Non-Stem Cell Populations in CNS Development and Gliomas. PLoS ONE, 2014, 9, e106694.	1.1	30
684	PrPCfrom stem cells to cancer. Frontiers in Cell and Developmental Biology, 2014, 2, 55.	1.8	39
685	A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Frontiers in Neuroanatomy, 2014, 8, 22.	0.9	13
686	Neuronal migration and its disorders affecting the CA3 region. Frontiers in Cellular Neuroscience, 2014, 8, 63.	1.8	13
687	Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Frontiers in Cellular Neuroscience, 2014, 8, 109.	1.8	62
688	The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration. Frontiers in Cellular Neuroscience, 2014, 8, 215.	1.8	29
689	TGF-ÃŽÂ ² 1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Frontiers in Cellular Neuroscience, 2014, 8, 393.	1.8	67
690	Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Frontiers in Cellular Neuroscience, 2014, 8, 412.	1.8	65
691	A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development. Frontiers in Neuroscience, 2014, 8, 257.	1.4	18
692	Cytoskeleton Dynamics in the Retina. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 255-268.	0.4	1
694	Robustness of differentiation cascades with symmetric stem cell division. Journal of the Royal Society Interface, 2014, 11, 20140264.	1.5	4
695	Monitoring neurogenesis in the cerebral cortex: an update. Future Neurology, 2014, 9, 323-340.	0.9	3
696	A Novel Function for <i>Foxm1</i> in Interkinetic Nuclear Migration in the Developing Telencephalon and Anxiety-Related Behavior. Journal of Neuroscience, 2014, 34, 1510-1522.	1.7	21
697	Rho GTPases in embryonic development. Small GTPases, 2014, 5, e972857.	0.7	41

#	Article	IF	Citations
698	The strength of SMAD1/5 activity determines the mode of stem cell division in the developing spinal cord. Journal of Cell Biology, 2014, 204, 591-605.	2.3	39
699	Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Development (Cambridge), 2014, 141, 3793-3798.	1.2	122
700	Symmetrical and asymmetrical division analysis provides evidence for a hierarchy of prostate epithelial cell lineages. Nature Communications, 2014, 5, 4758.	5.8	65
701	TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2337-2342.	3.3	80
702	Ancient Origins and Evolutionary Conservation of Intracellular and Neural Signaling Pathways Engaged by the Leptin Receptor. Endocrinology, 2014, 155, 4202-4214.	1.4	20
703	Role of miRNAs and epigenetics in neural stem cell fate determination. Epigenetics, 2014, 9, 90-100.	1.3	46
704	Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling. Neurogenesis (Austin, Tex), 2014, 1, e970883.	1.5	3
705	Postmitotic control of sensory area specification during neocortical development. Nature Communications, 2014, 5, 5632.	5.8	59
706	Convergent Regulation of Neuronal Differentiation and Erk and Akt Kinases in Human Neural Progenitor Cells by Lysophosphatidic Acid, Sphingosine 1-Phosphate, and LIF: Specific Roles for the LPA1 Receptor. ASN Neuro, 2014, 6, 175909141455841.	1.5	14
707	Temporal Patterns of Cortical Proliferation of Glial Cell Populations after Traumatic Brain Injury in Mice. ASN Neuro, 2014, 6, AN20130034.	1.5	80
708	p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex. Biology Open, 2014, 3, 475-485.	0.6	13
709	The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest. Cell Cycle, 2014, 13, 3698-3706.	1.3	14
710	microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states. Nature Communications, 2014, 5, 3399.	5.8	53
711	Sensoryâ€specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain. European Journal of Neuroscience, 2014, 40, 3591-3607.	1.2	40
712	Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers, 2014, 2, e28426.	1.6	174
713	Development and evolution of cortical fields. Neuroscience Research, 2014, 86, 66-76.	1.0	17
714	Sustained Wnt/ \hat{l}^2 -catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole. Nature Communications, 2014, 5, 4168.	5.8	27
715	The role of BAF (mSWI/SNF) complexes in mammalian neural development. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2014, 166, 333-349.	0.7	135

#	Article	IF	CITATIONS
716	The inner lining of the reptilian brain: A heterogeneous cellular mosaic. Glia, 2014, 62, 300-316.	2.5	3
717	Regulation of the neural stem cell compartment by extracellular matrix constituents. Progress in Brain Research, 2014, 214, 3-28.	0.9	56
718	Developmental Vascularization, Neurogenesis, Myelination, and Astrogliogenesis., 2014, , 193-221.		1
719	Career guidance for stem cells. Journal of Cell Biology, 2014, 204, 463-463.	2.3	O
720	Sp8 and COUP-TF1 Reciprocally Regulate Patterning and Fgf Signaling in Cortical Progenitors. Cerebral Cortex, 2014, 24, 1409-1421.	1.6	57
721	Filamin A mediated Big2 dependent endocytosis. Tissue Barriers, 2014, 2, e29431.	1.6	16
722	miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO Journal, 2014, 33, 906-920.	3.5	101
723	The Silencing Effect of microRNA miR-17 on p21 Maintains the Neural Progenitor Pool in the Developing Cerebral Cortex. Frontiers in Neurology, 2014, 5, 132.	1.1	22
724	Actions of endocrine-disrupting chemicals on stem/progenitor cells during development and disease. Endocrine-Related Cancer, 2014, 21, T1-T12.	1.6	31
725	Analysis and modeling of mitotic spindle orientations in three dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1014-1019.	3.3	33
726	Zrf1 is required to establish and maintain neural progenitor identity. Genes and Development, 2014, 28, 182-197.	2.7	29
727	Scratch2 Modulates Neurogenesis and Cell Migration Through Antagonism of bHLH Proteins in the Developing Neocortex. Cerebral Cortex, 2014, 24, 754-772.	1.6	30
728	Pax6 Mediates ß-Catenin Signaling for Self-Renewal and Neurogenesis by Neocortical Radial Glial Stem Cells. Stem Cells, 2014, 32, 45-58.	1.4	47
729	The Cyclin-like Protein Spy1 Regulates Growth and Division Characteristics of the CD133+ Population in Human Glioma. Cancer Cell, 2014, 25, 64-76.	7.7	35
730	Role of radial glial cells in cerebral cortex folding. Current Opinion in Neurobiology, 2014, 27, 39-46.	2.0	194
731	Reconstruction of ancestral brains: Exploring the evolutionary process of encephalization in amniotes. Neuroscience Research, 2014, 86, 25-36.	1.0	17
732	Matrix regulators in neural stem cell functions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2520-2525.	1.1	40
733	The Dynamics of Neuronal Migration. Advances in Experimental Medicine and Biology, 2014, 800, 25-36.	0.8	37

#	Article	lF	Citations
734	Convergent microRNA actions coordinate neocortical development. Cellular and Molecular Life Sciences, 2014, 71, 2975-2995.	2.4	80
735	Receptor Tyrosine Kinase (RTK) Signalling in the Control of Neural Stem and Progenitor Cell (NSPC) Development. Molecular Neurobiology, 2014, 49, 440-471.	1.9	23
736	Roles of chromatin remodeling BAF complex in neural differentiation and reprogramming. Cell and Tissue Research, 2014, 356, 575-584.	1.5	38
737	The role of targeted protein degradation in early neural development. Genesis, 2014, 52, 287-299.	0.8	8
738	Control of cerebral size and thickness. Cellular and Molecular Life Sciences, 2014, 71, 3199-3218.	2.4	14
739	Mitotic Spindle Asymmetry: A Wnt/PCP-Regulated Mechanism Generating Asymmetrical Division in Cortical Precursors. Cell Reports, 2014, 6, 400-414.	2.9	73
740	InÂVivo Targeting of Adult Neural Stem Cells in the Dentate Gyrus byÂaÂSplit-Cre Approach. Stem Cell Reports, 2014, 2, 153-162.	2.3	35
741	Selfâ€organization of neural tissue architectures from pluripotent stem cells. Journal of Comparative Neurology, 2014, 522, 2831-2844.	0.9	22
742	Cerebral organoids model human brain development and microcephaly. Movement Disorders, 2014, 29, 185-185.	2.2	43
743	Adult Stem Cells. Pancreatic Islet Biology, 2014, , .	0.1	2
744	NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis. Cerebral Cortex, 2014, 24, 261-279.	1.6	64
745	Asymmetric inheritance of Cyclin D2 maintains proliferative neural stem/progenitor cells: A critical event in brain development and evolution. Development Growth and Differentiation, 2014, 56, 349-357.	0.6	23
746	Crafting the Brain $\hat{a}\in$ Role of Histone Acetyltransferases in Neural Development and Disease. Cell and Tissue Research, 2014, 356, 553-573.	1.5	47
747	bHLH Factors in Self-Renewal, Multipotency, and Fate Choice of Neural Progenitor Cells. Neuron, 2014, 82, 9-23.	3.8	237
748	Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40. Journal of Histochemistry and Cytochemistry, 2014, 62, 369-388.	1.3	15
749	$M\tilde{A}^{1}\!\!/\!\!$ ller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Progress in Retinal and Eye Research, 2014, 40, 94-123.	7.3	273
751	Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nature Reviews Neuroscience, 2014, 15, 786-801.	4.9	235
752	The Cell Biology of Neurogenesis: Toward an Understanding of the Development and Evolution of the Neocortex. Annual Review of Cell and Developmental Biology, 2014, 30, 465-502.	4.0	616

#	Article	IF	CITATIONS
753	Splicing factor TRA2B is required for neural progenitor survival. Journal of Comparative Neurology, 2014, 522, 372-392.	0.9	31
754	Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling. Development (Cambridge), 2014, 141, 3324-3330.	1.2	59
755	Smad4 and Trim33/Tif1 \hat{l}^3 Redundantly Regulate Neural Stem Cells in the Developing Cortex. Cerebral Cortex, 2014, 24, 2951-2963.	1.6	16
756	Micro <scp>RNA</scp> â€15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing <scp>TET</scp> 3 during early neocortical development. EMBO Reports, 2014, 15, 1305-1314.	2.0	69
757	mRNA-Seq and MicroRNA-Seq Whole-Transcriptome Analyses of Rhesus Monkey Embryonic Stem Cell Neural Differentiation Revealed the Potential Regulators of Rosette Neural Stem Cells. DNA Research, 2014, 21, 541-554.	1.5	32
758	Small organelle, big responsibility: the role of centrosomes in development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130468.	1.8	128
759	Spindle orientation processes in epithelial growth and organisation. Seminars in Cell and Developmental Biology, 2014, 34, 124-132.	2.3	11
760	Microinjection of membrane-impermeable molecules into single neural stem cells in brain tissue. Nature Protocols, 2014, 9, 1170-1182.	5.5	31
761	TRIP6 regulates neural stem cell maintenance in the postnatal mammalian subventricular zone. Developmental Dynamics, 2014, 243, 1130-1142.	0.8	12
762	Global Programmed Switch in Neural Daughter Cell Proliferation Mode Triggered by a Temporal Gene Cascade. Developmental Cell, 2014, 30, 192-208.	3.1	70
763	A Novel Suppressive Effect of Alcohol Dehydrogenase 5 in Neuronal Differentiation. Journal of Biological Chemistry, 2014, 289, 20193-20199.	1.6	19
764	Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Development, 2014, 9, 18.	1.1	41
765	Glycobiology of the Nervous System. Advances in Neurobiology, 2014, , .	1.3	9
766	Role of hypothalamic neurogenesis in feeding regulation. Trends in Endocrinology and Metabolism, 2014, 25, 80-88.	3.1	88
767	Glial Cells as Progenitors and Stem Cells: New Roles in the Healthy and Diseased Brain. Physiological Reviews, 2014, 94, 709-737.	13.1	214
768	Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals. BMC Evolutionary Biology, 2014, 14, 120.	3.2	28
769	Integrin $\hat{l}\pm\nu\hat{l}^23$ and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development (Cambridge), 2014, 141, 795-806.	1.2	97
770	Microglia in Health and Disease. , 2014, , .		19

#	Article	IF	Citations
771	MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling. Developmental Biology, 2014, 395, 4-18.	0.9	84
772	Neural progenitors, neurogenesis and the evolution of the neocortex. Development (Cambridge), 2014, 141, 2182-2194.	1.2	526
773	Mechanisms of brain evolution: Regulation of neural progenitor cell diversity and cell cycle length. Neuroscience Research, 2014, 86, 14-24.	1.0	69
774	Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube. Developmental Biology, 2014, 387, 73-92.	0.9	20
775	Growth of the Developing Cerebral Cortex Is Controlled by MicroRNA-7 through the p53 Pathway. Cell Reports, 2014, 7, 1184-1196.	2.9	85
776	$3\hat{a}$ €2 UTR-Dependent, miR-92-Mediated Restriction of Tis21 Expression Maintains Asymmetric Neural Stem Cell Division to Ensure Proper Neocortex Size. Cell Reports, 2014, 7, 398-411.	2.9	42
777	A proneural gene controls <i>C. elegans</i> neuroblast asymmetric division and migration. FEBS Letters, 2014, 588, 1136-1143.	1.3	14
778	Radial glial cell: Critical functions and new perspective as a steroid synthetic cell. General and Comparative Endocrinology, 2014, 203, 181-185.	0.8	40
779	The emerging roles of TCF4 in disease and development. Trends in Molecular Medicine, 2014, 20, 322-331.	3.5	136
780	Trrap-Dependent Histone Acetylation Specifically Regulates Cell-Cycle Gene Transcription to Control Neural Progenitor Fate Decisions. Cell Stem Cell, 2014, 14, 632-643.	5.2	47
781	Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends in Neurosciences, 2014, 37, 334-342.	4.2	89
782	Unlocking epigenetic codes in neurogenesis. Genes and Development, 2014, 28, 1253-1271.	2.7	79
783	Onset of aquaporinâ€4 expression in the developing mouse brain. International Journal of Developmental Neuroscience, 2014, 36, 81-89.	0.7	23
784	Increasing our understanding of human cognition through the study of fragile X syndrome. Developmental Neurobiology, 2014, 74, 147-177.	1.5	16
785	Neurogenesis in the embryonic and adult brain: same regulators, different roles. Frontiers in Cellular Neuroscience, 2014, 8, 396.	1.8	390
786	Cell Junction Pathology of Neural Stem Cells Is Associated With Ventricular Zone Disruption, Hydrocephalus, and Abnormal Neurogenesis. Journal of Neuropathology and Experimental Neurology, 2015, 74, 653-671.	0.9	72
787	Expression and localization of the copper-ATPase ATP7A in mice neural cells. Italian Journal of Zoology, 2015, 82, 473-478.	0.6	0
788	Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors. Developmental Dynamics, 2015, 244, 748-758.	0.8	25

#	Article	IF	CITATIONS
789	Coevolution of radial glial cells and the cerebral cortex. Glia, 2015, 63, 1303-1319.	2.5	75
790	Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genomeâ€wide expression analysis. Glia, 2015, 63, 1452-1468.	2.5	215
791	Role of mechanical factors in cortical folding development. Physical Review E, 2015, 92, 032701.	0.8	39
792	Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. EMBO Journal, 2015, 34, 1859-1874.	3.5	146
793	Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Frontiers in Cellular Neuroscience, 2014, 8, 445.	1.8	45
794	A Branching Process to Characterize the Dynamics of Stem Cell Differentiation. Scientific Reports, 2015, 5, 13265.	1.6	14
795	Pathophysiological analyses of cortical malformation using gyrencephalic mammals. Scientific Reports, 2015, 5, 15370.	1.6	50
796	The p53 co-activator Zac1 neither induces cell cycle arrest nor apoptosis in chicken Lim1 horizontal progenitor cells. Cell Death Discovery, 2015, 1, 15023.	2.0	7
797	Cortical Folding Pattern and its Consistency Induced by Biological Growth. Scientific Reports, 2015, 5, 14477.	1.6	41
798	Neural Stem Cells in Cerebral Cortex Development. , 2015, , 1-25.		4
799	Building blocks of the cerebral cortex: from development to the dish. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 529-544.	5.9	4
800	The expression of <i>tubb2b</i> undergoes a developmental transition in murine cortical neurons. Journal of Comparative Neurology, 2015, 523, 2161-2186.	0.9	23
801	Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain. PLoS ONE, 2015, 10, e0127360.	1.1	20
802	Ependymal Cellsâ ⁻ †., 2015, , .		2
803	Control of the Cell Cycle in Adult Neurogenesis and its Relation with Physical Exercise. Brain Plasticity, 2015, 1, 41-54.	1.9	29
804	Local and long-range endogenous resting potential gradients antagonistically regulate apoptosis and proliferation in the embryonic CNS. International Journal of Developmental Biology, 2015, 59, 327-340.	0.3	49
805	Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics. Frontiers in Cellular Neuroscience, 2014, 8, 473.	1.8	64
806	Morphological and functional aspects of progenitors perturbed in cortical malformations. Frontiers in Cellular Neuroscience, 2015, 9, 30.	1.8	42

#	Article	IF	Citations
807	Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone. Frontiers in Cellular Neuroscience, 2015, 9, 37.	1.8	25
808	Polarity transitions during neurogenesis and germinal zone exit in the developing central nervous system. Frontiers in Cellular Neuroscience, 2015, 9, 62.	1.8	45
810	MCPH1: a window into brain development and evolution. Frontiers in Cellular Neuroscience, 2015, 9, 92.	1.8	36
811	Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia. Frontiers in Cellular Neuroscience, 2015, 9, 99.	1.8	68
812	Emerging roles of Axin in cerebral cortical development. Frontiers in Cellular Neuroscience, 2015, 9, 217.	1.8	15
813	Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells. Frontiers in Cellular Neuroscience, 2015, 9, 288.	1.8	14
814	The inner CSFââ,¬â€œbrain barrier: developmentally controlled access to the brain via intercellular junctions. Frontiers in Neuroscience, 2015, 9, 16.	1.4	92
815	Spatiotemporal analyses of neural lineages after embryonic and postnatal progenitor targeting combining different reporters. Frontiers in Neuroscience, 2015, 9, 87.	1.4	13
816	Protein Expression Profiles Characterize Distinct Features of Mouse Cerebral Cortices at Different Developmental Stages. PLoS ONE, 2015, 10, e0125608.	1.1	1
817	Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern. PLoS ONE, 2015, 10, e0126484.	1.1	13
818	Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biology, 2015, 13, e1002217.	2.6	93
819	Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System. PLoS ONE, 2015, 10, e0142740.	1.1	19
820	Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	1.9	17
821	Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nature Neuroscience, 2015, 18, 657-665.	7.1	266
822	Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signalling, 2015, 11, 331-346.	1.1	27
823	Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression. Development (Cambridge), 2015, 142, 2278-90.	1.2	33
824	Mechanisms of Myogenic Specification and Patterning. Results and Problems in Cell Differentiation, 2015, 56, 77-98.	0.2	8
825	Emergence of Rich-Club Topology and Coordinated Dynamics in Development of Hippocampal Functional Networks < i > In Vitro < /i > . Journal of Neuroscience, 2015, 35, 5459-5470.	1.7	138

#	Article	IF	CITATIONS
826	Identification of novel radiation-induced p53-dependent transcripts extensively regulated during mouse brain development. Biology Open, 2015, 4, 331-344.	0.6	31
827	Novel insights into mammalian embryonic neural stem cell division: focus on microtubules. Molecular Biology of the Cell, 2015, 26, 4302-4306.	0.9	32
828	Interneuron Transplantation as a Treatment for Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022376.	2.9	52
829	A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. Developmental Cell, 2015, 35, 553-567.	3.1	169
830	Wnt/ \hat{l}^2 -Catenin Signaling Regulates Sequential Fate Decisions of Murine Cortical Precursor Cells. Stem Cells, 2015, 33, 170-182.	1.4	59
831	Calcium signaling in neocortical development. Developmental Neurobiology, 2015, 75, 360-368.	1.5	51
832	YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner. Biochemical and Biophysical Research Communications, 2015, 458, 110-116.	1.0	39
833	Emergence of neuronal diversity from patterning of telencephalic progenitors. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 197-214.	5.9	25
834	Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics-Current state-of-the-art and challenges. Proteomics, 2015, 15, 656-674.	1.3	9
835	Aromatase and Estrogens. , 2015, , 51-71.		6
836	Signal Transducer and Activator of Transcription-3 Maintains the Stemness of Radial Glia at Mid-Neurogenesis. Journal of Neuroscience, 2015, 35, 1011-1023.	1.7	23
837	Cadherins as regulators of neuronal polarity. Cell Adhesion and Migration, 2015, 9, 175-182.	1.1	26
838	Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development (Cambridge), 2015, 142, 140-150.	1.2	32
839	Deletion of RIC8A in neural precursor cells leads to altered neurogenesis and neonatal lethality of mouse. Developmental Neurobiology, 2015, 75, 984-1002.	1.5	4
840	The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs. Nucleic Acids Research, 2015, 43, 2638-2654.	6.5	48
841	MicroRNAs in Brain Development. , 2015, , 447-488.		3
842	Pax6 controls centriole maturation in cortical progenitors through Odf2. Cellular and Molecular Life Sciences, 2015, 72, 1795-1809.	2.4	11
843	Characterization of a human pluripotent stem cellâ€derived model of neuronal development using multiplexed targeted proteomics. Proteomics - Clinical Applications, 2015, 9, 684-694.	0.8	19

#	Article	IF	CITATIONS
844	The Evolution of Early Neurogenesis. Developmental Cell, 2015, 32, 390-407.	3.1	112
845	MicroRNAs in the Control of Neurogenesis in the Developing Cerebral Cortex., 2015,, 865-891.		0
846	Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6855-6862.	3.3	152
847	CTP Synthase Is Required for Optic Lobe Homeostasis in Drosophila. Journal of Genetics and Genomics, 2015, 42, 261-274.	1.7	32
848	Desarrollo neurológico. EMC Pediatria, 2015, 50, 1-11.	0.0	0
849	DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome. EBioMedicine, 2015, 2, 120-134.	2.7	62
850	Organoid Models and Applications in Biomedical Research. Nephron, 2015, 130, 191-199.	0.9	2,247
851	FAT1 cadherin acts upstream of Hippo signalling through TAZ to regulate neuronal differentiation. Cellular and Molecular Life Sciences, 2015, 72, 4653-4669.	2.4	35
852	Impairment of radial glial scaffold-dependent neuronal migration and formation of double cortex by genetic ablation of afadin. Brain Research, 2015, 1620, 139-152.	1.1	25
853	What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Molecular and Cellular Probes, 2015, 29, 271-281.	0.9	64
854	GRM7 Regulates Embryonic Neurogenesis via CREB and YAP. Stem Cell Reports, 2015, 4, 795-810.	2.3	41
855	Dimensionality of Rolled-up Nanomembranes Controls Neural Stem Cell Migration Mechanism. Nano Letters, 2015, 15, 5530-5538.	4.5	32
856	Involvement of SF-1 in neurogenesis and neuronal migration in the developing neocortex. Neuroscience Letters, 2015, 600, 85-90.	1.0	3
857	Effects of Ethanol Exposure In Utero on Cajal–Retzius Cells in the Developing Cortex. Alcoholism: Clinical and Experimental Research, 2015, 39, 853-862.	1.4	10
858	Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell and Tissue Research, 2015, 359, 201-213.	1.5	18
859	p600/UBR4 in the central nervous system. Cellular and Molecular Life Sciences, 2015, 72, 1149-1160.	2.4	63
860	Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Molecular Brain, 2015, 8, 25.	1.3	50
861	Cerebrospinal fluid-derived Semaphorin 3B orients neuroepithelial cell divisions in the apicobasal axis. Nature Communications, 2015, 6, 6366.	5.8	31

#	Article	IF	CITATIONS
862	Identification and Characterization of Secondary Neural Tube-Derived Embryonic Neural Stem Cells In Vitro. Stem Cells and Development, 2015, 24, 1171-1181.	1.1	16
863	Endogenous Gradients of Resting Potential Instructively Pattern Embryonic Neural Tissue via Notch Signaling and Regulation of Proliferation. Journal of Neuroscience, 2015, 35, 4366-4385.	1.7	103
865	Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Research, 2015, 1623, 166-173.	1.1	233
866	Fundamentals of Neurogenesis and Neural Stem Cell Development. , 2015, , 1-13.		1
867	Comprehensive Overview of CD133 Biology in Neural Tissues across Species., 2015, , 113-129.		3
868	The extracellular matrix compartment of neural stem and glial progenitor cells. Glia, 2015, 63, 1330-1349.	2.5	102
869	Transcriptional analysis of glial cell differentiation in the postnatal murine spinal cord. International Journal of Developmental Neuroscience, 2015, 42, 24-36.	0.7	3
870	Tissue-Nonspecific Alkaline Phosphatase in the Developing Brain and in Adult Neurogenesis. Sub-Cellular Biochemistry, 2015, 76, 61-84.	1.0	8
871	Mcidas and GemC1/Lynkeas are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development (Cambridge), 2015, 142, 3661-74.	1.2	91
872	Proliferation control in neural stem and progenitor cells. Nature Reviews Neuroscience, 2015, 16, 647-659.	4.9	318
873	Radial Glial Cellâ€"Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site. Journal of Neuroscience, 2015, 35, 14517-14532.	1.7	61
874	An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system. Developmental Biology, 2015, 408, 269-291.	0.9	25
875	Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms. Development (Cambridge), 2015, 143, 286-97.	1.2	63
876	In utero gene therapy rescues microcephaly caused by Pqbp1-hypofunction in neural stem progenitor cells. Molecular Psychiatry, 2015, 20, 459-471.	4.1	31
877	Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation. Nature Communications, 2015, 6, 6887.	5.8	32
878	Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cellular and Molecular Life Sciences, 2015, 72, 4157-4172.	2.4	136
879	Cell Division Modes and Cleavage Planes of Neural Progenitors during Mammalian Cortical Development. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015719.	2.3	55
880	Lhx2 regulates the timing of \hat{l}^2 -catenin-dependent cortical neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12199-12204.	3.3	50

#	Article	IF	Citations
881	Regulation of the Cytoskeleton by the Rho Family of GTPases in Hematopoietic Stem Cells in Health and Disease., 2015,, 63-85.		O
882	Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity. Genome Research, 2015, 25, 1309-1324.	2.4	46
883	The influence of GAPâ€43 on orientation of cell division through G proteins. International Journal of Developmental Neuroscience, 2015, 47, 333-339.	0.7	7
884	Radial glial cells organize the central nervous system via microtubule dependant processes. Brain Research, 2015, 1625, 171-179.	1.1	9
885	Human Pluripotent Stem Cell-Derived Radial Glia Recapitulate Developmental Events and Provide Real-Time Access to Cortical Neurons and Astrocytes. Stem Cells Translational Medicine, 2015, 4, 437-447.	1.6	15
886	ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination. Nature Communications, 2015, 6, 8763.	5.8	80
887	Cell Polarity and Neurogenesis in Embryonic Stem Cell-Derived Neural Rosettes. Stem Cells and Development, 2015, 24, 1022-1033.	1.1	27
889	How to make neuronsâ€"thoughts on the molecular logic of neurogenesis in the central nervous system. Cell and Tissue Research, 2015, 359, 5-16.	1.5	13
890	The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell and Tissue Research, 2015, 359, 161-177.	1.5	52
891	MicroRNA-dependent genetic networks during neural development. Cell and Tissue Research, 2015, 359, 179-185.	1.5	16
892	Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 112-121.	0.9	93
893	Progenitor genealogy in the developing cerebral cortex. Cell and Tissue Research, 2015, 359, 17-32.	1.5	23
894	Dynamic expression and roles of Hes factors in neural development. Cell and Tissue Research, 2015, 359, 125-133.	1.5	50
895	Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell and Tissue Research, 2015, 359, 187-200.	1.5	120
896	The cytoskeletal arrangements necessary to neurogenesis. Oncotarget, 2016, 7, 19414-19429.	0.8	44
898	Effects of ganglioside GM1 and neural growth factor on neural stem cell proliferation and differentiation. Genetics and Molecular Research, 2016, 15, .	0.3	14
899	Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. European Journal of Histochemistry, 2016, 60, 2563.	0.6	39
900	Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation. ELife, 2016, 5, .	2.8	40

#	Article	IF	CITATIONS
901	Regeneration of Zebrafish CNS: Adult Neurogenesis. Neural Plasticity, 2016, 2016, 1-21.	1.0	64
902	Insights into the Biology and Therapeutic Applications of Neural Stem Cells. Stem Cells International, 2016, 2016, 1-18.	1.2	21
904	Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels. Frontiers in Cell and Developmental Biology, 2016, 4, 139.	1.8	28
905	Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks. Frontiers in Neuroanatomy, 2016, 10, 65.	0.9	19
906	Horizontal Cells, the Odd Ones Out in the Retina, Give Insights into Development and Disease. Frontiers in Neuroanatomy, 2016, 10, 77.	0.9	35
907	Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Frontiers in Cellular Neuroscience, 2016, 10, 215.	1.8	120
908	Heterocellular Contacts with Mouse Brain Endothelial Cells Via Laminin and $\hat{1}\pm6\hat{1}^21$ Integrin Sustain Subventricular Zone (SVZ) Stem/Progenitor Cells Properties. Frontiers in Cellular Neuroscience, 2016, 10, 284.	1.8	15
909	Transgenic Mouse Expressing Optical MicroRNA Reporter for Monitoring MicroRNA-124 Action during Development. Frontiers in Molecular Neuroscience, 2016, 9, 52.	1.4	6
910	MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. International Journal of Molecular Sciences, 2016, 17, 842.	1.8	141
911	A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biology, 2016, 14, 57.	1.7	36
912	Micronutrients and neurodevelopment: An update. Archivos Argentinos De Pediatria, 2016, 114, 570-575.	0.3	20
913	Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nature Genetics, 2016, 48, 877-887.	9.4	67
914	Lowâ€density lipoprotein receptorâ€related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. Glia, 2016, 64, 1363-1380.	2.5	53
915	Crucial roles of the Arp2/3 complex during mammalian corticogenesis. Development (Cambridge), 2016, 143, 2741-52.	1.2	33
916	Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO Journal, 2016, 35, 924-941.	3.5	161
917	miRâ€30c and semaphorin 3A determine adult neurogenesis by regulating proliferation and differentiation of stem cells in the subventricular zones of mouse. Cell Proliferation, 2016, 49, 270-280.	2.4	16
918	Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase $3\hat{l}^2$. Stem Cells, 2016, 34, 2090-2101.	1.4	17
919	Impaired cortical neurogenesis in plexinâ€ <scp>B</scp> 1 and â€ <scp>B</scp> 2 double deletion mutant. Developmental Neurobiology, 2016, 76, 882-899.	1.5	26

#	Article	IF	Citations
920	Meningeal retinoic acid contributes to neocortical lamination and radial migration during mouse brain development. Biology Open, 2017, 6, 148-160.	0.6	20
921	Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 2016, 19, 690-702.	5.2	103
922	Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Scientific Reports, 2016, 6, 21206.	1.6	51
923	A data-driven method to study brain structural connectivities via joint analysis of microarray data and dMRI data. , 2016 , , .		1
924	Micro <scp>RNA</scp> â€34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO Journal, 2016, 35, 2386-2398.	3.5	53
925	Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development (Cambridge), 2016, 143, 4620-4630.	1.2	33
926	Neurogenesis in the Developing and Adult Brainâ€"Similarities and Key Differences. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018853.	2.3	120
927	Emerging Roles for the Unfolded Protein Response in the Developing Nervous System. Trends in Neurosciences, 2016, 39, 394-404.	4.2	60
928	Neural Stem Cells. , 2016, , 169-208.		1
929	mTORC1 Inhibition Corrects Neurodevelopmental and Synaptic Alterations in a Human Stem Cell Model of Tuberous Sclerosis. Cell Reports, 2016, 15, 86-95.	2.9	94
930	Purinergic signalling in a latent stem cell niche of the rat spinal cord. Purinergic Signalling, 2016, 12, 331-341.	1.1	13
931	The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. International Journal of Biochemistry and Cell Biology, 2016, 81, 174-183.	1.2	79
932	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
933	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
934	BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells. Stem Cell Research, 2016, 17, 212-221.	0.3	38
935	The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways. Cerebral Cortex, 2017, 27, 3378-3396.	1.6	31
936	<i>sequoia</i> Controls the type I>0 daughter proliferation switch in the developing <i>Drosophila</i> nervous system. Development (Cambridge), 2016, 143, 3774-3784.	1.2	14
937	Generation of improved human cerebral organoids from single copy <i>DYRK1A</i> knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biology International, 2016, 40, 1256-1270.	1.4	4

#	Article	IF	CITATIONS
938	MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis. Cell Reports, 2016, 17, 469-483.	2.9	56
939	Physiological functions and clinical implications of the N-end rule pathway. Frontiers of Medicine, 2016, 10, 258-270.	1.5	9
940	Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell, 2016, 19, 663-671.	5 . 2	437
941	Sâ€phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex. Journal of Comparative Neurology, 2016, 524, 456-470.	0.9	56
942	mTOR kinase is needed for the development and stabilization of dendritic arbors in newly born olfactory bulb neurons. Developmental Neurobiology, 2016, 76, 1308-1327.	1.5	35
943	<scp>SSEA</scp> â€4 and <scp>YKL</scp> â€40 positive progenitor subtypes in the subventricular zone of developing human neocortex. Glia, 2016, 64, 90-104.	2.5	9
944	l̂²â€cateninâ€driven binary cell fate decisions in animal development. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 377-388.	5.9	13
945	Cerebral cortex expansion and folding: what have we learned?. EMBO Journal, 2016, 35, 1021-1044.	3.5	262
946	From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2016, 92, 1-19.	1.6	50
947	Zbtb20 modulates the sequential generation of neuronal layers in developing cortex. Molecular Brain, 2016, 9, 65.	1.3	36
948	<i>In Utero</i> Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. Journal of Neuroscience, 2016, 36, 10908-10919.	1.7	37
949	Enhanced Abventricular Proliferation Compensates Cell Death in the Embryonic Cerebral Cortex. Cerebral Cortex, 2017, 27, 4701-4718.	1.6	13
950	Brain evolution and development: adaptation, allometry and constraint. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160433.	1.2	79
951	Optimal architecture of differentiation cascades with asymmetric and symmetric stem cell division. Journal of Theoretical Biology, 2016, 407, 106-117.	0.8	8
952	Dishing out mini-brains: Current progress and future prospects in brain organoid research. Developmental Biology, 2016, 420, 199-209.	0.9	256
953	Astrocytes: Key Regulators of Neuroinflammation. Trends in Immunology, 2016, 37, 608-620.	2.9	634
954	Pleiotropic Hes-1 Concomitant with its Differential Activation Mediates Neural Stem Cell Maintenance and Radial Glial Propensity in Developing Neocortex. Cerebral Cortex, 2016, 27, 3943-3961.	1.6	5
955	Embryonic origin and lineage hierarchies of the neural progenitor subtypes building the zebrafish adult midbrain. Developmental Biology, 2016, 420, 120-135.	0.9	42

#	ARTICLE	IF	Citations
956	Mediator subunit Med12 contributes to the maintenance of neural stem cell identity. BMC Developmental Biology, 2016, 16, 17.	2.1	4
957	A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates. Current Biology, 2016, 26, R1001-R1009.	1.8	28
958	Role of microglia in embryonic neurogenesis. Experimental Biology and Medicine, 2016, 241, 1669-1675.	1.1	31
959	Neural Stem Cells in Cerebral Cortex Development. , 2016, , 157-181.		2
960	A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nature Communications, 2016, 7, 11812 .	5.8	108
961	The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation. Nature Communications, 2016, 7, 10421.	5.8	92
962	Mechanism of Consistent Gyrus Formation: an Experimental and Computational Study. Scientific Reports, 2016, 6, 37272.	1.6	20
963	Modular reorganization of the global network of gene regulatory interactions during perinatal human brain development. BMC Developmental Biology, 2016, 16, 13.	2.1	5
964	Role of miRNA-9 in Brain Development. Journal of Experimental Neuroscience, 2016, 10, JEN.S32843.	2.3	81
965	The role of neurogenesis during development and in the adult brain. European Journal of Neuroscience, 2016, 44, 2291-2299.	1.2	26
966	Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish. Neurogenesis (Austin, Tex), 2016, 3, e1148101.	1.5	21
967	Epigenetic regulation of neural stem cell property from embryo to adult. Neuroepigenetics, 2016, 5, 1-10.	2.8	36
968	Neocortex expansion in development and evolution â€" from cell biology to single genes. Current Opinion in Neurobiology, 2016, 39, 122-132.	2.0	66
969	The Cadherin Superfamily. , 2016, , .		1
970	Epigenetic mechanisms in neurogenesis. Nature Reviews Neuroscience, 2016, 17, 537-549.	4.9	299
971	Differential thyroid hormone sensitivity of fast cycling progenitors in the neurogenic niches of tadpoles and juvenile frogs. Molecular and Cellular Endocrinology, 2016, 420, 138-151.	1.6	13
972	Cross-species analyses unravel the complexity of H3K27me3 and H4K20me3 in the context of neural stem progenitor cells. Neuroepigenetics, 2016, 6, 10-25.	2.8	18
973	A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies. Stem Cell Reports, 2016, 6, 228-242.	2.3	22

#	Article	IF	CITATIONS
974	Ethanol induces cytostasis of cortical basal progenitors. Journal of Biomedical Science, 2016, 23, 6.	2.6	11
975	RAB18, a protein associated with Warburg Micro syndrome, controls neuronal migration in the developing cerebral cortex. Molecular Brain, 2016, 9, 19.	1.3	23
976	Stem Cells and Asymmetric Cell Division. , 2016, , 87-121.		14
977	Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiological Reviews, 2016, 96, 1025-1069.	13.1	166
978	Vascular Influence on Ventral Telencephalic Progenitors and Neocortical Interneuron Production. Developmental Cell, 2016, 36, 624-638.	3.1	72
979	Regulation of neuronal migration, an emerging topic in autism spectrum disorders. Journal of Neurochemistry, 2016, 136, 440-456.	2.1	89
980	A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae. Developmental Biology, 2016, 411, 1-14.	0.9	4
981	EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports, 2016, 6, 396-410.	2.3	44
982	The evolution of basal progenitors in the developing non-mammalian brain. Development (Cambridge), 2016, 143, 66-74.	1.2	40
983	Microtubule plus-end tracking proteins in neuronal development. Cellular and Molecular Life Sciences, 2016, 73, 2053-2077.	2.4	76
984	DNA methylation dynamics in neurogenesis. Epigenomics, 2016, 8, 401-414.	1.0	52
985	Gas1 is present in germinal niches of developing dentate gyrus and cortex. Cell and Tissue Research, 2016, 364, 369-384.	1.5	8
986	Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure. NeuroToxicology, 2016, 52, 34-45.	1.4	16
987	Abnormal spindle-like microcephaly-associated (ASPM) mutations strongly disrupt neocortical structure but spare the hippocampus and long-term memory. Cortex, 2016, 74, 158-176.	1.1	32
988	Effects of melatonin and its analogues on neural stem cells. Molecular and Cellular Endocrinology, 2016, 420, 169-179.	1.6	39
989	Cellular and molecular introduction to brain development. Neurobiology of Disease, 2016, 92, 3-17.	2.1	128
990	The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Research, 2017, 1655, 270-276.	1.1	103
991	Decoding the ubiquitous role of microRNAs in neurogenesis. Molecular Neurobiology, 2017, 54, 2003-2011.	1.9	25

#	ARTICLE	IF	CITATIONS
992	The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Progress in Neurobiology, 2017, 157, 212-229.	2.8	25
993	The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors. Cerebral Cortex, 2017, 27, 2809-2819.	1.6	10
994	Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell, 2017, 20, 435-449.e4.	5.2	463
995	Ontogeny of pioneer neurons in the antennal nervous system of the grasshopper Schistocerca gregaria. Development Genes and Evolution, 2017, 227, 11-23.	0.4	5
996	Division modes and physical asymmetry in cerebral cortex progenitors. Current Opinion in Neurobiology, 2017, 42, 75-83.	2.0	44
997	The impact of Zika virus in the brain. Biochemical and Biophysical Research Communications, 2017, 492, 603-607.	1.0	22
998	Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions. Scientific Reports, 2017, 7, 41597.	1.6	19
999	Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids. Cell Stem Cell, 2017, 20, 397-406.e5.	5.2	267
1000	SRRM4-dependent neuron-specific alternative splicing of protrudin transcripts regulates neurite outgrowth. Scientific Reports, 2017, 7, 41130.	1.6	22
1001	MicroRNAâ€independent functions of DGCR8 are essential for neocortical development and TBR1 expression. EMBO Reports, 2017, 18, 603-618.	2.0	47
1002	Spatial distribution and characterization of non-apical progenitors in the zebrafish embryo central nervous system. Open Biology, 2017, 7, 160312.	1.5	25
1003	Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity. Biological Chemistry, 2017, 398, 663-675.	1.2	21
1004	The building of the neocortex with nonâ€hyperpolarizing neurotransmitters. Developmental Neurobiology, 2017, 77, 1023-1037.	1.5	7
1005	Lysine Acetylation and Deacetylation in Brain Development and Neuropathies. Genomics, Proteomics and Bioinformatics, 2017, 15, 19-36.	3.0	61
1006	Postembryonic Fish Brain Proliferation Zones Exhibit Neuroepithelial-Type Gene Expression Profile. Stem Cells, 2017, 35, 1505-1518.	1.4	15
1007	Neural Stem Cells and Fetal-Onset Hydrocephalus. Pediatric Neurosurgery, 2017, 52, 446-461.	0.4	32
1008	Topological defects control collective dynamics in neural progenitor cell cultures. Nature, 2017, 545, 327-331.	13.7	281
1009	The genomeâ€wide expression effects of escitalopram and its relationship to neurogenesis, hippocampal volume, and antidepressant response. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 427-434.	1.1	16

#	Article	IF	CITATIONS
1010	Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, 2017, , .	0.2	5
1011	Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. Results and Problems in Cell Differentiation, 2017, 61, 301-321.	0.2	5
1012	Regulation of Asymmetric Cell Division in Mammalian Neural Stem and Cancer Precursor Cells. Results and Problems in Cell Differentiation, 2017, 61, 375-399.	0.2	15
1013	MicroRNA-338 modulates cortical neuronal placement and polarity. RNA Biology, 2017, 14, 905-913.	1.5	10
1014	Stem Cell Technologies in Neuroscience. Neuromethods, 2017, , .	0.2	0
1015	Human cytomegalovirus infection dysregulates neural progenitor cell fate by disrupting Hes1 rhythm and down-regulating its expression. Virologica Sinica, 2017, 32, 188-198.	1.2	9
1017	Complement C5aR1 Signaling Promotes Polarization and Proliferation of Embryonic Neural Progenitor Cells through PKCI¶. Journal of Neuroscience, 2017, 37, 5395-5407.	1.7	63
1018	The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina. Cell Reports, 2017, 19, 351-363.	2.9	19
1019	Shh-mediated centrosomal recruitment of PKA promotes symmetric proliferative neuroepithelial cellÂdivision. Nature Cell Biology, 2017, 19, 493-503.	4.6	39
1020	Histone variant H3.3 orchestrates neural stem cell differentiation in the developing brain. Cell Death and Differentiation, 2017, 24, 1548-1563.	5.0	51
1021	Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats. Molecular Neurobiology, 2018, 55, 3725-3738.	1.9	23
1022	The role of MACF1 in nervous system development and maintenance. Seminars in Cell and Developmental Biology, 2017, 69, 9-17.	2.3	26
1023	Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development. Scientific Reports, 2017, 7, 43093.	1.6	30
1024	Avian brains: Insights from development, behaviors and evolution. Development Growth and Differentiation, 2017, 59, 244-257.	0.6	22
1025	Active DNA Demethylation in Neurodevelopment. , 2017, , 43-59.		1
1026	EMT―and MET―elated processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Molecular Oncology, 2017, 11, 860-877.	2.1	121
1027	Zika infection and the development of neurological defects. Cellular Microbiology, 2017, 19, e12744.	1.1	87
1028	Parkinson's diseaseâ€associated receptor <scp>GPR</scp> 37 is an <scp>ER</scp> chaperone for <scp>LRP</scp> 6. EMBO Reports, 2017, 18, 712-725.	2.0	41

#	Article	IF	CITATIONS
1029	Anterior-Posterior Gradient in Neural Stem and Daughter Cell Proliferation Governed by Spatial and Temporal Hox Control. Current Biology, 2017, 27, 1161-1172.	1.8	30
1030	Tubulins and brain development – The origins of functional specification. Molecular and Cellular Neurosciences, 2017, 84, 58-67.	1.0	67
1031	Mechanisms of circumferential gyral convolution in primate brains. Journal of Computational Neuroscience, 2017, 42, 217-229.	0.6	22
1032	Transplantation of GABAergic interneurons for cell-based therapy. Progress in Brain Research, 2017, 231, 57-85.	0.9	17
1033	Neurogenesis and Brain Repair., 2017,, 575-597.		0
1034	Roles of afadin in the formation of the cellular architecture of the mouse hippocampus and dentate gyrus. Molecular and Cellular Neurosciences, 2017, 79, 34-44.	1.0	8
1035	Genetic insights into the neurodevelopmental origins of schizophrenia. Nature Reviews Neuroscience, 2017, 18, 727-740.	4.9	377
1036	Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury. Advances in Experimental Medicine and Biology, 2017, 1015, 241-264.	0.8	11
1037	The Plastic Brain. Advances in Experimental Medicine and Biology, 2017, , .	0.8	9
1038	Obesity and Brain Function. Advances in Neurobiology, 2017, , .	1.3	3
1039	Pretreatment with N-acetyl cysteine suppresses chronic reactive astrogliosis following maternal nanoparticle exposure during gestational period. Nanotoxicology, 2017, 11, 1012-1025.	1.6	20
1040	Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein and Cell, 2017, 8, 823-833.	4.8	124
1041	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	5.2	163
1042	Retinoic acid controls early neurogenesis in the developing mouse cerebral cortex. Developmental Biology, 2017, 430, 129-141.	0.9	35
1043	Decoding nervous system by singleâ€cell RNA sequencing. Quantitative Biology, 2017, 5, 210-214.	0.3	2
1044	Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neuroscience and Biobehavioral Reviews, 2017, 83, 474-488.	2.9	40
1045	Ephrin-A2 regulates excitatory neuron differentiation and interneuron migration in the developing neocortex. Scientific Reports, 2017, 7, 11813.	1.6	9
1046	Functions of Maternally-Derived Taurine in Fetal and Neonatal Brain Development. Advances in Experimental Medicine and Biology, 2017, 975 Pt 1, 17-25.	0.8	29

#	Article	IF	CITATIONS
1047	<i>Zfp423/ZNF423</i> regulates cell cycle progression, the mode of cell division and the DNA damage response in Purkinje neuron progenitors. Development (Cambridge), 2017, 144, 3686-3697.	1.2	33
1048	Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Letters, 2017, 591, 3960-3977.	1.3	29
1049	Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5. Toxicologic Pathology, 2017, 45, 705-744.	0.9	114
1050	Hypothalamic Dysfunction in Obesity and Metabolic Disorders. Advances in Neurobiology, 2017, 19, 73-116.	1.3	31
1051	Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiological Reviews, 2017, 97, 1529-1554.	13.1	111
1052	Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors. Scientific Reports, 2017, 7, 8109.	1.6	24
1053	Persistent Expression of VCAM1 in Radial Glial Cells Is Required for the Embryonic Origin of Postnatal Neural Stem Cells. Neuron, 2017, 95, 309-325.e6.	3.8	52
1054	Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors. Nucleic Acids Research, 2017, 45, 3422-3436.	6.5	64
1055	Epigenome profiling and editing of neocortical progenitor cells during development. EMBO Journal, 2017, 36, 2642-2658.	3.5	94
1056	Dynamics of RNA Polymerase II Pausing and Bivalent Histone H3 Methylation during Neuronal Differentiation in Brain Development. Cell Reports, 2017, 20, 1307-1318.	2.9	47
1057	Early evolution of radial glial cells in Bilateria. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170743.	1.2	32
1058	Cerebral cortex development: an outsideâ€in perspective. FEBS Letters, 2017, 591, 3978-3992.	1.3	7 5
1059	Inter-individual variation in genes governing human hippocampal progenitor differentiation in vitro is associated with hippocampal volume in adulthood. Scientific Reports, 2017, 7, 15112.	1.6	15
1060	A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nature Communications, 2017, 8, 1456.	5.8	59
1061	FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Reports, 2017, 9, 1530-1545.	2.3	56
1062	Secretoneurin A regulates neurogenic and inflammatory transcriptional networks in goldfish (Carassius auratus) radial glia. Scientific Reports, 2017, 7, 14930.	1.6	12
1063	New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochemical Pharmacology, 2017, 141, 4-22.	2.0	61
1064	Developmental neurogenesis in mouse and Xenopus is impaired in the absence of Nosip. Developmental Biology, 2017, 429, 200-212.	0.9	10

#	Article	IF	CITATIONS
1065	Afadin controls cell polarization and mitotic spindle orientation in developing cortical radial glia. Neural Development, 2017, 12, 7.	1.1	16
1066	Tenascin-C in the matrisome of neural stem and progenitor cells. Molecular and Cellular Neurosciences, 2017, 81, 22-31.	1.0	69
1067	Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e256.	5.9	102
1068	Oxytocin and behavior: Lessons from knockout mice. Developmental Neurobiology, 2017, 77, 190-201.	1.5	59
1069	Apical Polarization of SVCT2 in Apical Radial Glial Cells and Progenitors During Brain Development. Molecular Neurobiology, 2017, 54, 5449-5467.	1.9	19
1070	Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells. Trends in Cell Biology, 2017, 27, 82-92.	3.6	38
1071	A1 Adenosine Receptor Activation Modulates Central Nervous System Development and Repair. Molecular Neurobiology, 2017, 54, 8128-8139.	1.9	20
1072	Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex. Cell Stem Cell, 2017, 20, 360-373.e7.	5 . 2	64
1073	Regulation of adult neural progenitor cell functions by purinergic signaling. Glia, 2017, 65, 213-230.	2.5	42
1074	Bloodâ€brain barrier development: Systems modeling and predictive toxicology. Birth Defects Research, 2017, 109, 1680-1710.	0.8	50
1077	Neuropsychiatric disorders and epigenetics: summary and outlook. , 2017, , 400-406.		3
1078	COUP - TF Genes, Human Diseases, and the Development of the Central Nervous System in Murine Models. Current Topics in Developmental Biology, 2017, 125, 275-301.	1.0	23
1079	The Multiple Roles of FGF Signaling in the Developing Spinal Cord. Frontiers in Cell and Developmental Biology, 2017, 5, 58.	1.8	54
1080	In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex. Brain Sciences, 2017, 7, 48.	1.1	20
1081	Genetic and Molecular Approaches to Study Neuronal Migration in the Developing Cerebral Cortex. Brain Sciences, 2017, 7, 53.	1.1	0
1082	Switch-Like Roles for Polycomb Proteins from Neurodevelopment to Neurodegeneration. Epigenomes, 2017, 1, 21.	0.8	8
1083	Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination. Frontiers in Neuroanatomy, 2017, 11, 102.	0.9	38
1084	Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex. Frontiers in Cellular Neuroscience, 2017, 11, 122.	1.8	15

#	Article	IF	CITATIONS
1085	Neural Progenitor Cell Polarity and Cortical Development. Frontiers in Cellular Neuroscience, 2017, 11, 384.	1.8	78
1086	Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex. Frontiers in Computational Neuroscience, 2017, 11, 76.	1.2	19
1087	Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool. Frontiers in Molecular Neuroscience, 2017, 10, 372.	1.4	16
1088	Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in <i>Drosophila</i> BioMed Research International, 2017, 2017, 1-14.	0.9	7
1089	Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy. Stem Cells International, 2017, 2017, 1-11.	1.2	15
1090	Smek promotes corticogenesis through regulating Mbd3's stability and Mbd3/NuRD complex recruitment to genes associated with neurogenesis. PLoS Biology, 2017, 15, e2001220.	2.6	23
1091	The Cell Biology of Neural Stem and Progenitor Cells and Neocortex Expansion in Development and Evolution., 2017,, 81-99.		0
1092	The Expansion of the Cortical Sheet in Primates. , 2017, , 59-71.		0
1093	Neocortex Expansion in Development and Evolution: The Cell Biology ofÂNeural Stem and Progenitor Cells and the Impact of Human-Specific Gene Expression. , 2017, , 73-89.		6
1094	Co-ordination of Proliferation and Differentiation in the Central Nervous Systemâ [†] , , 2017, , .		0
1095	Early emergence of cortical interneuron diversity in the mouse embryo. Science, 2018, 360, 81-85.	6.0	205
1096	In vitro 3D regeneration-like growth of human patient brain tissue. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1247-1260.	1.3	15
1097	PI3K regulates intraepithelial cell positioning through Rho GTP-ases in the developing neural tube. Developmental Biology, 2018, 436, 42-54.	0.9	12
1098	Central Nervous System and Dedifferentiation. , 2018, , 1-17.		1
1099	The Basal Radial Glia Occurs in Marsupials and Underlies the Evolution of an Expanded Neocortex in Therian Mammals. Cerebral Cortex, 2018, 28, 145-157.	1.6	21
1100	Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Journal of Cell Biology, 2018, 217, 1901-1914.	2.3	69
1101	Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2018, 526, 1712-1732.	0.9	8
1102	Cortical progenitor biology: key features mediating proliferation versus differentiation. Journal of Neurochemistry, 2018, 146, 500-525.	2.1	77

#	Article	IF	CITATIONS
1103	Specific Phospholipids Regulate the Acquisition of Neuronal and Astroglial Identities in Post-Mitotic Cells. Scientific Reports, 2018, 8, 460.	1.6	9
1104	Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. Journal of Leukocyte Biology, 2018, 103, 509-524.	1.5	39
1105	Live imaging of neurogenesis in the adult mouse hippocampus. Science, 2018, 359, 658-662.	6.0	259
1106	Cellular Dedifferentiation and Regenerative Medicine. , 2018, , .		0
1107	OTX1 regulates cell cycle progression of neural progenitors in the developing cerebral cortex. Journal of Biological Chemistry, 2018, 293, 2137-2148.	1.6	20
1108	Stem Cells to Function., 2018, , 99-132.		0
1109	Impaired neurogenesis and associated gliosis in mouse brain with PEX13 deficiency. Molecular and Cellular Neurosciences, 2018, 88, 16-32.	1.0	5
1110	TBR2 antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogenesis. Developmental Biology, 2018, 434, 231-248.	0.9	17
1111	Evolutionarily conserved anterior expansion of the central nervous system promoted by a common PcG-Hox program. Development (Cambridge), 2018, 145, .	1,2	26
1112	Engineering Brain Organoids to Probe Impaired Neurogenesis Induced by Cadmium. ACS Biomaterials Science and Engineering, 2018, 4, 1908-1915.	2.6	25
1113	Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition. Journal of Biological Chemistry, 2018, 293, 4445-4455.	1.6	16
1114	Untangling Cortical Complexity During Development. Journal of Experimental Neuroscience, 2018, 12, 117906951875933.	2.3	31
1115	Morphological Survey from Neurons to Circuits of the Mouse Retina. Methods in Molecular Biology, 2018, 1753, 3-25.	0.4	5
1116	PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and neurodegenerative diseases. Neurochemistry International, 2018, 119, 17-25.	1.9	15
1117	Genetics and mechanisms leading to human cortical malformations. Seminars in Cell and Developmental Biology, 2018, 76, 33-75.	2.3	87
1118	Threeâ€Dimensional Models of the Human Brain Development and Diseases. Advanced Healthcare Materials, 2018, 7, 1700723.	3.9	73
1119	Perinatal Exposure to the Cyanotoxin β-N-Méthylamino-l-Alanine (BMAA) Results in Long-Lasting Behavioral Changes in Offspring—Potential Involvement of DNA Damage and Oxidative Stress. Neurotoxicity Research, 2018, 33, 87-112.	1.3	23
1120	The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum. Cerebellum, 2018, 17, 42-48.	1.4	35

#	Article	IF	CITATIONS
1121	The Cadherin Superfamily in Neural Circuit Assembly. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029306.	2.3	19
1122	A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Developmental Cell, 2018, 47, 509-523.e5.	3.1	66
1123	ERK/MAPK signaling and autism spectrum disorders. Progress in Brain Research, 2018, 241, 63-112.	0.9	69
1124	MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biology, 2018, 16, e2006613.	2.6	14
1125	A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex. Development (Cambridge), 2018, 145, .	1,2	62
1126	Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biology, 2018, 16, e2005513.	2.6	42
1127	InÂVitro Systems in Neurotoxicological Studies. , 2018, , 451-461.		0
1128	Plastic Adaptation: A Neuronal Imperative Capable of Confounding the Goals of Stem Cell Replacement Therapy for either Huntington's or Parkinson's Disease. , 2018, , .		0
1129	SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression. Stem Cell Research, 2018, 33, 110-119.	0.3	29
1130	Ttyh1 regulates embryonic neural stem cell properties by enhancing the Notch signaling pathway. EMBO Reports, 2018, 19, .	2.0	31
1131	Cell biological mechanisms regulating chick neurogenesis. International Journal of Developmental Biology, 2018, 62, 167-175.	0.3	9
1132	Human Neural Stem Cells. Results and Problems in Cell Differentiation, 2018, , .	0.2	3
1133	Spatio-temporal neural stem cell behavior leads to both perfect and imperfect structural brain regeneration in adult newts. Biology Open, 2018, 7, .	0.6	12
1134	Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity. Results and Problems in Cell Differentiation, 2018, 66, 207-230.	0.2	4
1135	Chromatin Remodeling BAF155 Subunit Regulates the Genesis of Basal Progenitors in Developing Cortex. IScience, 2018, 4, 109-126.	1.9	32
1136	Conserved and divergent functions of Pax6 underlie species-specific neurogenic patterns in the developing amniote brain. Development (Cambridge), 2018, 145, .	1.2	17
1137	Epigenetic Regulation by BAF Complexes Limits Neural Stem Cell Proliferation by Suppressing Wnt Signaling in Late Embryonic Development. Stem Cell Reports, 2018, 10, 1734-1750.	2.3	50
1138	Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase. ELife, 2018, 7, .	2.8	15

#	Article	IF	Citations
1139	Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance. Molecular Immunology, 2018, 101, 176-181.	1.0	30
1140	New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Molecular Immunology, 2018, 102, 3-13.	1.0	85
1141	Development of the Concept for Stem Cell-Based Developmental Neurotoxicity Evaluation. Toxicological Sciences, 2018, 165, 14-20.	1.4	28
1142	Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. ELife, 2018, 7, .	2.8	160
1143	From Human Pluripotent Stem Cells to Cortical Circuits. Current Topics in Developmental Biology, 2018, 129, 67-98.	1.0	16
1144	S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis. FASEB Journal, 2018, 32, 3597-3613.	0.2	15
1145	Opposite Roles of Wnt7a and Sfrp1 in Modulating Proper Development of Neural Progenitors in the Mouse Cerebral Cortex. Frontiers in Molecular Neuroscience, 2018, 11, 247.	1.4	11
1146	Glycine Promotes the Survival of a Subpopulation of Neural Stem Cells. Frontiers in Cell and Developmental Biology, 2018, 6, 68.	1.8	6
1147	The Functional Role of Olfactory Bulb Granule Cell Subtypes Derived From Embryonic and Postnatal Neurogenesis. Frontiers in Molecular Neuroscience, 2018, 11, 229.	1.4	39
1148	Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. Cell Death and Disease, 2018, 9, 799.	2.7	62
1149	Heterocellular molecular contacts in the mammalian stem cell niche. European Journal of Cell Biology, 2018, 97, 442-461.	1.6	15
1150	Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Reviews in the Neurosciences, 2018, 30, 45-66.	1.4	25
1151	The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain. PLoS Biology, 2018, 16, e2006443.	2.6	75
1152	Neural Progenitors in the Developing Neocortex of the Northern Tree Shrew (Tupaia belangeri) Show a Closer Relationship to Gyrencephalic Primates Than to Lissencephalic Rodents. Frontiers in Neuroanatomy, 2018, 12, 29.	0.9	14
1153	Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex. Frontiers in Cellular Neuroscience, 2018, 12, 57.	1.8	23
1154	The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Frontiers in Cellular Neuroscience, 2018, 12, 165.	1.8	147
1155	Exploring the Complexity of Cortical Development Using Single-Cell Transcriptomics. Frontiers in Neuroscience, 2018, 12, 31.	1.4	12
1156	ATP-Dependent Chromatin Remodeling During Cortical Neurogenesis. Frontiers in Neuroscience, 2018, 12, 226.	1.4	41

#	Article	IF	CITATIONS
1157	Estradiol and the Development of the Cerebral Cortex: An Unexpected Role?. Frontiers in Neuroscience, 2018, 12, 245.	1.4	43
1158	Epigenetic and Transcriptional Pre-patterningâ€"An Emerging Theme in Cortical Neurogenesis. Frontiers in Neuroscience, 2018, 12, 359.	1.4	29
1159	Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone. Brain Structure and Function, 2018, 223, 3593-3612.	1.2	18
1160	Role of mTOR Complexes in Neurogenesis. International Journal of Molecular Sciences, 2018, 19, 1544.	1.8	117
1161	Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biology, 2018, 19, 69.	3.8	216
1162	Notch and Neurogenesis. Advances in Experimental Medicine and Biology, 2018, 1066, 223-234.	0.8	156
1163	Notch and Stem Cells. Advances in Experimental Medicine and Biology, 2018, 1066, 235-263.	0.8	27
1164	Oscillatory Control of Notch Signaling in Development. Advances in Experimental Medicine and Biology, 2018, 1066, 265-277.	0.8	26
1165	Transcriptional regulation of ependymal cell maturation within the postnatal brain. Neural Development, 2018, 13, 2.	1.1	21
1166	Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output. Cerebral Cortex, 2018, 28, 2540-2550.	1.6	25
1167	Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis. Hippocampus, 2018, 28, 586-601.	0.9	20
1168	Characterization of Midkine in tongue sole (Cynoglossus semilaevis) and its role on the germ layer genesis in zebrafish (Danio rerio). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2018, 226, 64-72.	0.7	1
1169	Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicological Sciences, 2018, 165, 21-30.	1.4	43
1170	<i>Gli3</i> controls the onset of cortical neurogenesis by regulating the radial glial cell cycle through <i>Cdk6</i> expression. Development (Cambridge), 2018, 145, .	1.2	31
1171	Minor spliceosome inactivation causes microcephaly due to cell cycle defects and death of self-amplifying radial glial cells. Development (Cambridge), 2018, 145, .	1.2	48
1172	Radial glial elements in the cerebral cortex of the lesser hedgehog tenrec. Brain Structure and Function, 2018, 223, 3909-3917.	1.2	6
1173	Laminin \hat{I}^2 2 Chain Regulates Retinal Progenitor Cell Mitotic Spindle Orientation via Dystroglycan. Journal of Neuroscience, 2018, 38, 5996-6010.	1.7	10
1174	Precise temporal regulation of alternative splicing during neural development. Nature Communications, 2018, 9, 2189.	5.8	155

#	Article	IF	CITATIONS
1175	The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Progress in Neurobiology, 2018, 170, 99-114.	2.8	46
1176	Gangliosides in Nerve Cell Specification. Progress in Molecular Biology and Translational Science, 2018, 156, 241-263.	0.9	30
1177	Non-cell Autonomous Degeneration. , 2018, , 415-440.		1
1178	Mechanisms of Cortical Differentiation. International Review of Cell and Molecular Biology, 2018, 336, 223-320.	1.6	24
1179	Tissue-Type Plasminogen Activator Controlled Corticogenesis Through a Mechanism Dependent of NMDA Receptors Expressed on Radial Glial Cells. Cerebral Cortex, 2019, 29, 2482-2498.	1.6	19
1180	Neural stem cell therapies and hypoxic-ischemic brain injury. Progress in Neurobiology, 2019, 173, 1-17.	2.8	129
1181	Cannabinoid signalling in embryonic and adult neurogenesis: possible implications for psychiatric and neurological disorders. Acta Neuropsychiatrica, 2019, 31, 1-16.	1.0	22
1182	The ASD Living Biology: from cell proliferation to clinical phenotype. Molecular Psychiatry, 2019, 24, 88-107.	4.1	210
1183	Change in Brain Plasmalogen Composition by Exposure to Prenatal Undernutrition Leads to Behavioral Impairment of Rats. Journal of Neuroscience, 2019, 39, 7689-7702.	1.7	8
1184	Lgl1 deficiency disrupts hippocampal development and impairs cognitive performance in mice. Genes, Brain and Behavior, 2019, 18, e12605.	1.1	4
1185	Contributions of Single-Cell Approaches for Probing Heterogeneity and Dynamics of Neural Progenitors Throughout Life: Concise Review. Stem Cells, 2019, 37, 1381-1388.	1.4	5
1186	Functional Integration of Newborn Neurons in the Zebrafish Optic Tectum. Frontiers in Cell and Developmental Biology, 2019, 7, 57.	1.8	15
1187	The Mode of Stem Cell Division Is Dependent on the Differential Interaction of \hat{I}^2 -Catenin with the Kat3 Coactivators CBP or p300. Cancers, 2019, 11, 962.	1.7	9
1188	Stem cells in tissues, organoids, and cancers. Cellular and Molecular Life Sciences, 2019, 76, 4043-4070.	2.4	44
1189	A novel human Cdh1 mutation impairs anaphase promoting complex/cyclosome activity resulting in microcephaly, psychomotor retardation, and epilepsy. Journal of Neurochemistry, 2019, 151, 103-115.	2.1	16
1190	Notch-mediated inhibition of neurogenesis is required for zebrafish spinal cord morphogenesis. Scientific Reports, 2019, 9, 9958.	1.6	11
1191	Malformations of Human Neocortex in Development – Their Progenitor Cell Basis and Experimental Model Systems. Frontiers in Cellular Neuroscience, 2019, 13, 305.	1.8	32
1192	In Vitro Recapitulation of Developmental Transitions in Human Neural Stem Cells. Stem Cells, 2019, 37, 1429-1440.	1.4	6

#	Article	IF	CITATIONS
1193	Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways. Neuron, 2019, 103, 1096-1108.e4.	3.8	38
1194	Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis. Nature Communications, 2019, 10, 2835.	5.8	49
1195	MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity. NeuroImage: Clinical, 2019, 24, 102031.	1.4	19
1196	The Dynamic Partnership of Polycomb and Trithorax in Brain Development and Diseases. Epigenomes, 2019, 3, 17.	0.8	12
1197	Emerging Roles of Long Non-Coding RNAs as Drivers of Brain Evolution. Cells, 2019, 8, 1399.	1.8	74
1198	Spatiotemporally Dependent Vascularization Is Differently Utilized among Neural Progenitor Subtypes during Neocortical Development. Cell Reports, 2019, 29, 1113-1129.e5.	2.9	38
1199	Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Frontiers in Molecular Neuroscience, 2019, 12, 243.	1.4	15
1200	Broad Promotes Neuroepithelial Stem Cell Differentiation in the Drosophila Optic Lobe. Genetics, 2019, 213, 941-951.	1.2	5
1201	Robotic platform for microinjection into single cells in brain tissue. EMBO Reports, 2019, 20, e47880.	2.0	17
1202	Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Frontiers in Cellular Neuroscience, 2019, 13, 381.	1.8	65
1203	FAM19A5 Expression During Embryogenesis and in the Adult Traumatic Brain of FAM19A5-LacZ Knock-in Mice. Frontiers in Neuroscience, 2019, 13, 917.	1.4	17
1204	Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development, 2019, , .	0.2	6
1205	Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Current Biology, 2019, 29, 2993-3005.e9.	1.8	29
1206	SETD5 Regulates Chromatin Methylation State and Preserves Global Transcriptional Fidelity during Brain Development and Neuronal Wiring. Neuron, 2019, 104, 271-289.e13.	3.8	75
1207	Ectopic expression of L1CAM ectodomain alters differentiation and motility, but not proliferation, of human neural progenitor cells. International Journal of Developmental Neuroscience, 2019, 78, 49-64.	0.7	1
1208	Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development. Seminars in Cell and Developmental Biology, 2019, 95, 4-11.	2.3	31
1209	Conditional Inactivation of Pen-2 in the Developing Neocortex Leads to Rapid Switch of Apical Progenitors to Basal Progenitors. Journal of Neuroscience, 2019, 39, 2195-2207.	1.7	11
1210	Increased Anxiety-Related Behavior, Impaired Cognitive Function and Cellular Alterations in the Brain of Cend1-deficient Mice. Frontiers in Cellular Neuroscience, 2018, 12, 497.	1.8	11

#	Article	IF	Citations
1211	Neurogenesis in Neurodegenerative Diseases: Role of MFG-E8. Frontiers in Neuroscience, 2019, 13, 569.	1.4	43
1212	Jagged1 is Essential for Radial Glial Maintenance in the Cortical Proliferative Zone. Neuroscience, 2019, 413, 230-238.	1.1	12
1213	Proliferation and Neuro- and Gliogenesis in Normal and Mechanically Damaged Mesencephalic Tegmentum in Juvenile Chum Salmon, Oncorhynchus keta. Russian Journal of Developmental Biology, 2019, 50, 59-76.	0.1	5
1214	Novel Strategies for the Generation of Neuronal Diversity: Lessons From the Fly Visual System. Frontiers in Molecular Neuroscience, 2019, 12, 140.	1.4	16
1215	The neuroanatomy of <i>Eml</i> 1 knockout mice, a model of subcortical heterotopia. Journal of Anatomy, 2019, 235, 637-650.	0.9	13
1216	Histamine Modulates Midbrain Dopamine Neuron Differentiation Through the Regulation of Epigenetic Marks. Frontiers in Cellular Neuroscience, 2019, 13, 215.	1.8	3
1217	Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells, 2019, 8, 568.	1.8	19
1218	Promyelocytic leukemia zinc finger is involved in the formation of deep layer cortical neurons. Journal of Biomedical Science, 2019, 26, 30.	2.6	11
1219	Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function. Stem Cells International, 2019, 2019, 1-16.	1.2	21
1220	Opposing Gradients of MicroRNA Expression Temporally Pattern Layer Formation in the Developing Neocortex. Developmental Cell, 2019, 49, 764-785.e4.	3.1	50
1221	Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nature Communications, 2019, 10, 2192.	5.8	28
1222	Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Frontiers in Cellular Neuroscience, 2019, 13, 129.	1.8	66
1223	Dysregulation of microRNA metabolism in motor neuron diseases: Novel biomarkers and potential therapeutics. Non-coding RNA Research, 2019, 4, 15-22.	2.4	16
1224	Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Translational Research, 2019, 210, 57-79.	2.2	9
1225	How the extracellular matrix shapes neural development. Open Biology, 2019, 9, 180216.	1.5	166
1226	Neocortical Expansion Due to Increased Proliferation of Basal Progenitors Is Linked to Changes in Their Morphology. Cell Stem Cell, 2019, 24, 535-550.e9.	5 . 2	114
1227	High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes and Development, 2019, 33, 511-523.	2.7	126
1228	Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. Journal of Anatomy, 2019, 235, 481-506.	0.9	45

#	Article	IF	Citations
1229	Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules, 2019, 24, 1350.	1.7	28
1230	Prenatal Nicotine Exposure and Neuronal Progenitor Cells. , 2019, , 41-48.		0
1231	PACT increases mammalian embryonic neural stem cell properties by facilitating activation of the notch signaling pathway. Biochemical and Biophysical Research Communications, 2019, 513, 392-397.	1.0	4
1232	Derepression of sonic hedgehog signaling upon Gpr161 deletion unravels forebrain and ventricular abnormalities. Developmental Biology, 2019, 450, 47-62.	0.9	22
1233	Cortical Development and Brain Malformations: Insights From the Differential Regulation of Early Events of DNA Replication. Frontiers in Cell and Developmental Biology, 2019, 7, 29.	1.8	10
1234	Zinc Uptake and Storage During the Formation of the Cerebral Cortex in Mice. Molecular Neurobiology, 2019, 56, 6928-6940.	1.9	8
1235	Neural stem cells promote glioblastoma formation in nude mice. Clinical and Translational Oncology, 2019, 21, 1551-1560.	1.2	13
1236	Craniofacial skeletal response to encephalization: How do we know what we think we know?. American Journal of Physical Anthropology, 2019, 168, 27-46.	2.1	18
1237	Combined loss of LAP1B and LAP1C results in an early onset multisystemic nuclear envelopathy. Nature Communications, 2019, 10, 605.	5.8	40
1238	Organoids â€" Preclinical Models of Human Disease. New England Journal of Medicine, 2019, 380, 569-579.	13.9	212
1239	Mutations in thyroid hormone receptor $\hat{l}\pm 1$ cause premature neurogenesis and progenitor cell depletion in human cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22754-22763.	3.3	27
1240	Reduced mTORC1-signaling in retinal progenitor cells leads to visual pathway dysfunction. Biology Open, 2019, 8, .	0.6	5
1241	Neuronal maturation reduces the type I IFN response to orthobunyavirus infection and leads to increased apoptosis of human neurons. Journal of Neuroinflammation, 2019, 16, 229.	3.1	22
1242	Developmental Cytoplasmic-to-Nuclear Translocation of RNA-Binding Protein HuR Is Required for Adult Neurogenesis. Cell Reports, 2019, 29, 3101-3117.e7.	2.9	26
1243	An Integrated Model of Minor Intron Emergence and Conservation. Frontiers in Genetics, 2019, 10, 1113.	1.1	17
1244	Dynamic control of neural stem cells by bHLH factors. Neuroscience Research, 2019, 138, 12-18.	1.0	72
1245	From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience, 2019, 399, 39-52.	1.1	19
1246	Loss of Lgl1 Disrupts the Radial Glial Fiber-guided Cortical Neuronal Migration and Causes Subcortical Band Heterotopia in Mice. Neuroscience, 2019, 400, 132-145.	1.1	10

#	Article	IF	CITATIONS
1247	Nestin Regulates Neurogenesis in Mice Through Notch Signaling From Astrocytes to Neural Stem Cells. Cerebral Cortex, 2019, 29, 4050-4066.	1.6	46
1248	Human SPG11 cerebral organoids reveal cortical neurogenesis impairment. Human Molecular Genetics, 2019, 28, 961-971.	1.4	20
1249	Physiopathology of Foetal Onset Hydrocephalus. , 2019, , 3-30.		6
1250	Nerve cells developmental processes and the dynamic role of cytokine signaling. International Journal of Developmental Neuroscience, 2019, 77, 3-17.	0.7	7
1251	Biophysical factors in the regulation of asymmetric division of stem cells. Biological Reviews, 2019, 94, 810-827.	4.7	8
1252	Diffuse Intrinsic Pontine Gliomas Exhibit Cell Biological and Molecular Signatures of Fetal Hindbrain-Derived Neural Progenitor Cells. Neuroscience Bulletin, 2019, 35, 216-224.	1.5	10
1253	Role of Astrocytes in the Neurogenic Niches. Methods in Molecular Biology, 2019, 1938, 19-33.	0.4	16
1254	Purinergic receptors in neurogenic processes. Brain Research Bulletin, 2019, 151, 3-11.	1.4	22
1255	Neuronal migration in the CNS during development and disease: insights from <i>in vivo</i> and <i>in vitro</i> models. Development (Cambridge), 2019, 146, .	1.2	110
1256	IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Research, 2019, 1704, 174-186.	1.1	29
1257	The Pace of Neurogenesis Is Regulated by the Transient Retention of the Apical Endfeet of Differentiating Cells. Cerebral Cortex, 2019, 29, 3725-3737.	1.6	3
1258	Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Structure and Function, 2019, 224, 33-56.	1.2	18
1259	Brain Organoids: A New, Transformative Investigational Tool for Neuroscience Research. Advanced Biology, 2019, 3, e1800174.	3.0	4
1260	Cytoskeletal Associated Filamin A and RhoA Affect Neural Progenitor Specification During Mitosis. Cerebral Cortex, 2019, 29, 1280-1290.	1.6	15
1261	Formin 2 Regulates Lysosomal Degradation of Wnt-Associated \hat{l}^2 -Catenin in Neural Progenitors. Cerebral Cortex, 2019, 29, 1938-1952.	1.6	9
1262	Using brain organoids to study human neurodevelopment, evolution and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e347.	5.9	23
1263	Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiologica, 2020, 228, e13316.	1.8	28
1264	Molecular and cellular evolution of corticogenesis in amniotes. Cellular and Molecular Life Sciences, 2020, 77, 1435-1460.	2.4	51

#	Article	IF	CITATIONS
1265	Probing disrupted neurodevelopment in autism using human stem cellâ€derived neurons and organoids: An outlook into future diagnostics and drug development. Developmental Dynamics, 2020, 249, 6-33.	0.8	25
1266	High-mobility group nucleosomal binding domain 2 protects against microcephaly by maintaining global chromatin accessibility during corticogenesis. Journal of Biological Chemistry, 2020, 295, 468-480.	1.6	10
1267	Organotypic Neurovascular Models: Past Results and Future Directions. Trends in Molecular Medicine, 2020, 26, 273-284.	3.5	11
1268	Regulation of active and quiescent somatic stem cells by Notch signaling. Development Growth and Differentiation, 2020, 62, 59-66.	0.6	57
1269	Polycomb repressive complex 1: Regulators of neurogenesis from embryonic to adult stage. Journal of Cellular Physiology, 2020, 235, 4031-4045.	2.0	28
1270	Patterning via local cell-cell interactions in developing systems. Developmental Biology, 2020, 460, 77-85.	0.9	10
1271	Profilin1-Dependent F-Actin Assembly Controls Division of Apical Radial Glia and Neocortex Development. Cerebral Cortex, 2020, 30, 3467-3482.	1.6	16
1272	Loss of Dmrt5 Affects the Formation of the Subplate and Early Corticogenesis. Cerebral Cortex, 2020, 30, 3296-3312.	1.6	10
1273	Evaluation of Fluoro-Jade C Staining: Specificity and Application to Damaged Immature Neuronal Cells in the Normal and Injured Mouse Brain. Neuroscience, 2020, 425, 146-156.	1.1	33
1274	Serotonin Receptor 2A Activation Promotes Evolutionarily Relevant Basal Progenitor Proliferation in the Developing Neocortex. Neuron, 2020, 108, 1113-1129.e6.	3.8	26
1275	Tuberous Sclerosis Complex as Disease Model for Investigating mTOR-Related Gliopathy During Epileptogenesis. Frontiers in Neurology, 2020, 11, 1028.	1.1	25
1276	Evolution and development of complex eyes: a celebration of diversity. Development (Cambridge), 2020, 147, .	1.2	22
1277	Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida. BMC Evolutionary Biology, 2020, 20, 84.	3.2	11
1278	YAP Enhances FGF2-Dependent Neural Stem Cell Proliferation by Induction of FGF Receptor Expression. Stem Cells and Development, 2020, 29, 1240-1246.	1.1	9
1279	Epigenomic programming in early fetal brain development. Epigenomics, 2020, 12, 1053-1070.	1.0	9
1280	NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO Journal, 2020, 39, e104163.	3.5	49
1281	Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions. Brain Sciences, 2020, 10, 909.	1.1	25
1282	Neurogenesis From Embryo to Adult – Lessons From Flies and Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 533.	1.8	38

#	Article	IF	CITATIONS
1283	Gyral-sulcal contrast in intrinsic functional brain networks across task performances. Brain Imaging and Behavior, 2021, 15, 1483-1498.	1.1	6
1284	Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nature Communications, 2020, 11, 4063.	5.8	50
1285	Lengthening Neurogenic Period during Neocortical Development Causes a Hallmark of Neocortex Expansion. Current Biology, 2020, 30, 4227-4237.e5.	1.8	35
1286	Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nature Neuroscience, 2020, 23, 1496-1508.	7.1	171
1287	MYC in Brain Development and Cancer. International Journal of Molecular Sciences, 2020, 21, 7742.	1.8	20
1288	Involvement of JNK1 in Neuronal Polarization During Brain Development. Cells, 2020, 9, 1897.	1.8	8
1289	Convergent lines of evidence support <i>NOTCH4</i> as a schizophrenia risk gene. Journal of Medical Genetics, 2021, 58, 666-678.	1.5	9
1290	Differential expression of microRNAs in the human fetal left and right cerebral cortex. Molecular Biology Reports, 2020, 47, 6573-6586.	1.0	7
1291	Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. Science Advances, 2020, 6, eaaz2978.	4.7	88
1292	The Extracellular Matrix in the Evolution of Cortical Development and Folding. Frontiers in Cell and Developmental Biology, 2020, 8, 604448.	1.8	24
1293	Hydrogen Sulfide Modulates Adult and Reparative Neurogenesis in the Cerebellum of Juvenile Masu Salmon, Oncorhynchus masou. International Journal of Molecular Sciences, 2020, 21, 9638.	1.8	9
1294	Talpid3-Mediated Centrosome Integrity Restrains Neural Progenitor Delamination to Sustain Neurogenesis by Stabilizing Adherens Junctions. Cell Reports, 2020, 33, 108495.	2.9	14
1296	Membrane Elastic Properties during Neural Precursor Cell Differentiation. Cells, 2020, 9, 1323.	1.8	8
1297	YAP1/TAZ drives ependymoma-like tumour formation in mice. Nature Communications, 2020, 11, 2380.	5.8	32
1298	Quadrella incana (Capparaceae) Leaf Extract Enhances Proliferation and Maintenance of Neural Stem/Progenitor Cells through Upregulating Glycolytic Flux and Redox Potential. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	0
1299	Neurotransmitters as Modulators of Neural Progenitor Cell Proliferation During Mammalian Neocortex Development. Frontiers in Cell and Developmental Biology, 2020, 8, 391.	1.8	23
1300	Cyclins, Cyclin-Dependent Kinases, and Cyclin-Dependent Kinase Inhibitors in the Mouse Nervous System. Molecular Neurobiology, 2020, 57, 3206-3218.	1.9	11
1301	Surrogate-Assisted Evolutionary Search of Spiking Neural Architectures in Liquid State Machines. Neurocomputing, 2020, 406, 12-23.	3.5	20

#	Article	IF	Citations
1302	The Fetal Functional Connectome Offers Clues for Early Maturing Networks and Implications for Neurodevelopmental Disorders. Journal of Neuroscience, 2020, 40, 4436-4438.	1.7	1
1303	Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Translational Psychiatry, 2020, 10, 191.	2.4	50
1304	CYCLIN-B1/2 and -D1 act in opposition to coordinate cortical progenitor self-renewal and lineage commitment. Nature Communications, 2020, 11, 2898.	5.8	31
1305	Loss of PP2A Disrupts the Retention of Radial Glial Progenitors in the Telencephalic Niche to Impair the Generation for Late-Born Neurons During Cortical Developmentâ€. Cerebral Cortex, 2020, 30, 4183-4196.	1.6	11
1306	Gestational exposure to valproic acid upregulates total Stat3 protein expression while downregulating phosphorylated Stat3 in CDâ€1 mouse embryos with neural tube defects. Birth Defects Research, 2020, 112, 555-568.	0.8	3
1307	Genetic mechanisms controlling anterior expansion of the central nervous system. Current Topics in Developmental Biology, 2020, 137, 333-361.	1.0	5
1308	Cortical 3-hinges could serve as hubs in cortico-cortical connective network. Brain Imaging and Behavior, 2020, 14, 2512-2529.	1.1	16
1309	The corepressor CtBP2 is required for proper development of the mouse cerebral cortex. Molecular and Cellular Neurosciences, 2020, 104, 103481.	1.0	10
1310	Tead transcription factors differentially regulate cortical development. Scientific Reports, 2020, 10, 4625.	1.6	38
1311	Wnt ligands regulate the asymmetric divisions of neuronal progenitors in <i>C. elegans</i> embryos. Development (Cambridge), 2020, 147, .	1.2	12
1312	C2H2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Frontiers in Neurology, 2020, 11, 32.	1.1	40
1313	Insights on nervous system biology and anatomy. , 2020, , 1-28.		2
1314	Huntington's Diseaseâ€"An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells, 2020, 9, 1514.	1.8	17
1315	Formation of gyri and sulci. , 2020, , 223-252.		0
1316	Cell biology of neuronal progenitor cells. , 2020, , 255-283.		1
1317	The specification and generation of neurons in the ventral spinal cord. , 2020, , 333-347.		0
1318	Specification of cortical projection neurons. , 2020, , 427-459.		1
1319	Posttranscriptional and translational control of neurogenesis. , 2020, , 731-750.		4

#	Article	IF	CITATIONS
1320	Nonmammalian model systems of zebrafish. , 2020, , 919-936.		0
1321	Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. International Journal of Molecular Sciences, 2020, 21, 4614.	1.8	23
1322	The Expansion of the Cortical Sheet in Primates. , 2020, , 519-532.		0
1323	Hypothalamic IRX3: A New Player in the Development of Obesity. Trends in Endocrinology and Metabolism, 2020, 31, 368-377.	3.1	25
1324	A Highly Conserved Circular RNA Is Required to Keep Neural Cells in a Progenitor State in the Mammalian Brain. Cell Reports, 2020, 30, 2170-2179.e5.	2.9	53
1325	Abundant Self-Amplifying Intermediate Progenitors in the Subventricular Zone of the Chinese Tree Shrew Neocortex. Cerebral Cortex, 2020, 30, 3370-3380.	1.6	5
1326	Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, 2020, , .	0.8	0
1327	Characterization of neurogenic niches in the telencephalon of juvenile and adult sharks. Brain Structure and Function, 2020, 225, 817-839.	1.2	12
1328	Cell stress in cortical organoids impairs molecular subtype specification. Nature, 2020, 578, 142-148.	13.7	387
1329	Persistent Cyfip1 Expression Is Required to Maintain the Adult Subventricular Zone Neurogenic Niche. Journal of Neuroscience, 2020, 40, 2015-2024.	1.7	6
1330	Signs of Reduced Basal Progenitor Levels and Cortical Neurogenesis in Human Fetuses with Open Spina Bifida at 11–15 Weeks of Gestation. Journal of Neuroscience, 2020, 40, 1766-1777.	1.7	5
1331	Cep55 promotes cytokinesis of neural progenitors but is dispensable for most mammalian cell divisions. Nature Communications, 2020, 11, 1746.	5.8	37
1332	Tissue organoid models and applications. , 2020, , 1537-1549.		3
1333	Hypoxia/Hif1 \hat{l} ± prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Research, 2020, 45, 101770.	0.3	20
1334	Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview. Nano-Micro Letters, 2020, 12, 101.	14.4	87
1335	Inhibitory Effects of <i>Olea europaea</i> Leaf Extract on Mesenchymal Transition Mechanism in Glioblastoma Cells. Nutrition and Cancer, 2021, 73, 713-720.	0.9	3
1336	Deciphering neural heterogeneity through cell lineage tracing. Cellular and Molecular Life Sciences, 2021, 78, 1971-1982.	2.4	9
1337	Deficient or Excess Folic Acid Supply During Pregnancy Alter Cortical Neurodevelopment in Mouse Offspring. Cerebral Cortex, 2021, 31, 635-649.	1,6	44

#	ARTICLE	IF	CITATIONS
1338	RNA-binding proteins balance brain function in health and disease. Physiological Reviews, 2021, 101, 1309-1370.	13.1	57
1339	The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. Journal of Histochemistry and Cytochemistry, 2021, 69, 61-80.	1.3	33
1340	Neuronal Hippo signaling: From development to diseases. Developmental Neurobiology, 2021, 81, 92-109.	1.5	33
1341	Orchestrated freedom: new insights into cortical neurogenesis. Current Opinion in Neurobiology, 2021, 66, 48-56.	2.0	13
1342	Dynamics of cortical progenitors and production of subcerebral neurons are altered in embryos of a maternal inflammation model for autism. Molecular Psychiatry, 2021, 26, 1535-1550.	4.1	19
1343	Mechanical Brain Injury Increases Cells' Production of Cystathionine β-Synthase and Glutamine Synthetase, but Reduces Pax2 Expression in the Telencephalon of Juvenile Chum Salmon, Oncorhynchus keta. International Journal of Molecular Sciences, 2021, 22, 1279.	1.8	7
1344	Molecular mechanisms of Zika virus-induced neurological pathology., 2021,, 83-93.		0
1345	Adherens junctions and cell polarity: What they are and how they relate to congenital Zika virus syndrome., 2021,, 111-122.		0
1346	Development of the central nervous system. , 2021, , 23-66.		0
1347	Stick around: Cell–Cell Adhesion Molecules during Neocortical Development. Cells, 2021, 10, 118.	1.8	14
1348	Epigenetic regulation of cortical neurogenesis. , 2021, , 49-61.		3
1349	The regulation of cortical neurogenesis. Current Topics in Developmental Biology, 2021, 142, 1-66.	1.0	39
1350	OUP accepted manuscript. Cerebral Cortex, 2021, 31, 4554-4575.	1.6	9
1352	Proteoglycans of the Neural Stem Cell Niche. Biology of Extracellular Matrix, 2021, , 179-203.	0.3	0
1355	A centriole's subdistal appendages: contributions to cell division, ciliogenesis and differentiation. Open Biology, 2021, 11, 200399.	1.5	25
1356	HoxB genes regulate neuronal delamination in the trunk neural tube by controlling the expression of Lzts1. Development (Cambridge), 2021, 148, .	1.2	6
1357	Post-transcriptional regulation by the exosome complex is required for cell survival and forebrain development via repression of P53 signaling. Development (Cambridge), 2021, 148, .	1.2	14
1358	Established, New and Emerging Concepts in Brain Vascular Development. Frontiers in Physiology, 2021, 12, 636736.	1.3	16

#	Article	IF	CITATIONS
1359	New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Frontiers in Molecular Neuroscience, 2021, 14, 642016.	1.4	24
1360	Kinase Signaling in Dendritic Development and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 624648.	1.8	18
1362	Progenitor cell diversity in the developing mouse neocortex. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	33
1363	Impact of the Olig Family on Neurodevelopmental Disorders. Frontiers in Neuroscience, 2021, 15, 659601.	1.4	16
1364	The role and mechanisms of polycomb repressive complex 2 on the regulation of osteogenic and neurogenic differentiation of stem cells. Cell Proliferation, 2021, 54, e13032.	2.4	12
1365	Ultrastructural Morphology of the Ependyma and Choroid Plexus in the African Giant Rat (Cricetomys gambianus). Folia Veterinaria, 2021, 65, 45-53.	0.2	0
1366	Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex. Cell Reports, 2021, 34, 108788.	2.9	55
1367	From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS Journal, 2022, 289, 1524-1535.	2.2	11
1368	Cannibalized erythroblasts accelerate developmental neurogenesis by regulating mitochondrial dynamics. Cell Reports, 2021, 35, 108942.	2.9	9
1369	An early cell shape transition drives evolutionary expansion of the human forebrain. Cell, 2021, 184, 2084-2102.e19.	13.5	139
1371	Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. ELife, 2021, 10, .	2.8	15
1372	Saikosaponinâ€d improved the stemness of mouse neural stem cells and increased their thermotolerance potential. International Journal of Developmental Neuroscience, 2021, 81, 324-332.	0.7	2
1373	Using organoids to study human brain development and evolution. Developmental Neurobiology, 2021, 81, 608-622.	1.5	5
1374	Prenatal exposure to low doses of fungicides corrupts neurogenesis in neonates. Environmental Research, 2021, 195, 110829.	3.7	6
1375	MACF1, Involved in the 1p34.2p34.3 Microdeletion Syndrome, is Essential in Cortical Progenitor Polarity and Brain Integrity. Cellular and Molecular Neurobiology, 2022, 42, 2187-2204.	1.7	2
1376	Slit/Robo Signaling Regulates Multiple Stages of the Development of the Drosophila Motion Detection System. Frontiers in Cell and Developmental Biology, 2021, 9, 612645.	1.8	1
1378	Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Proliferation, 2021, 54, e13042.	2.4	9
1379	A Novel Methodology Using Dexamethasone to Induce Neuronal Differentiation in the CNS-Derived Catecholaminergic CAD Cells. Cellular and Molecular Neurobiology, 2022, 42, 2337-2353.	1.7	1

#	Article	IF	CITATIONS
1381	Effect of buscopan, a compound that alleviates cramps, on the developing nervous system of the chick embryo. Birth Defects Research, 2021, 113, 1140-1151.	0.8	4
1382	Neural Stem Cell-Derived Exosomes Regulate Neural Stem Cell Differentiation Through miR-9-Hes1 Axis. Frontiers in Cell and Developmental Biology, 2021, 9, 601600.	1.8	45
1383	Dbnl and \hat{l}^2 -catenin promote pro-N-cadherin processing to maintain apico-basal polarity. Journal of Cell Biology, 2021, 220, .	2.3	8
1384	Spatiotemporal Patterns of Menin Localization in Developing Murine Brain: Co-Expression with the Elements of Cholinergic Synaptic Machinery. Cells, 2021, 10, 1215.	1.8	3
1385	MacroH2A1.2 deficiency leads to neural stem cell differentiation defects and autismâ€ike behaviors. EMBO Reports, 2021, 22, e52150.	2.0	8
1386	Length of the Neurogenic Period—A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 676911.	1.8	27
1387	Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	8
1388	Biological Potential of Polyethylene Glycol (PEG)-Functionalized Graphene Quantum Dots in In Vitro Neural Stem/Progenitor Cells. Nanomaterials, 2021, 11, 1446.	1.9	26
1389	Differential expression of Dp71 and Dp40 isoforms in proliferating and differentiated neural stem cells: Identification of Dp40 splicing variants. Biochemical and Biophysical Research Communications, 2021, 560, 152-158.	1.0	3
1390	An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma. Cancers, 2021, 13, 3221.	1.7	5
1391	Engineering <i>in vitro</i> human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioengineering, 2021, 5, 020901.	3.3	15
1392	<i>RGCC</i> balances selfâ€renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Reports, 2021, 22, e51781.	2.0	12
1393	Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochemistry International, 2021, 147, 105055.	1.9	10
1394	Novel vertebrate- and brain-specific driver of neuronal outgrowth. Progress in Neurobiology, 2021, 202, 102069.	2.8	1
1395	(H)IF applicable: promotion of neurogenesis by induced HIF-2 signalling after ischaemia. Pflugers Archiv European Journal of Physiology, 2021, 473, 1287-1299.	1.3	5
1396	Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration., 2021, 42, 43-62.		18
1397	Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Frontiers in Cell and Developmental Biology, 2021, 9, 702404.	1.8	33
1398	Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. ELife, 2021, 10, .	2.8	29

#	Article	IF	Citations
1399	Local Translation Across Neural Development: A Focus on Radial Glial Cells, Axons, and Synaptogenesis. Frontiers in Molecular Neuroscience, 2021, 14, 717170.	1.4	17
1400	A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nature Neuroscience, 2021, 24, 1377-1391.	7.1	80
1402	How neural stem cells contribute to neocortex development. Biochemical Society Transactions, 2021, 49, 1997-2006.	1.6	22
1403	Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO Journal, 2021, 40, e108041.	3.5	26
1404	Centrosome regulation and function in mammalian cortical neurogenesis. Current Opinion in Neurobiology, 2021, 69, 256-266.	2.0	7
1405	Spontaneous activity in developing thalamic and cortical sensory networks. Neuron, 2021, 109, 2519-2534.	3.8	75
1407	iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Molecular Psychiatry, 2021, , .	4.1	3
1408	Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development (Cambridge), 2021, 148, .	1.2	7
1409	Specificity and Redundancy of Profilin 1 and 2 Function in Brain Development and Neuronal Structure. Cells, 2021, 10, 2310.	1.8	8
1410	Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines, 2021, 9, 1222.	1.4	0
1411	Visualization of individual cell division history in complex tissues using iCOUNT. Cell Stem Cell, 2021, 28, 2020-2034.e12.	5.2	14
1412	Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene <i>TYW5</i> expression. Brain, 2022, 145, 770-786.	3.7	8
1414	The role of Extracellular Vesicles during CNS development. Progress in Neurobiology, 2021, 205, 102124.	2.8	26
1415	Mid-pregnancy maternal immune activation increases Pax6-positive and Tbr2-positive neural progenitor cells and causes integrated stress response in the fetal brain in a mouse model of maternal viral infection. IBRO Neuroscience Reports, 2021, 11, 73-80.	0.7	7
1416	Neocortex expansion in development and evolutionâ€"from genes to progenitor cell biology. Current Opinion in Cell Biology, 2021, 73, 9-18.	2.6	28
1417	Manipulation of Single Neural Stem Cells and Neurons in Brain Slices using Robotic Microinjection. Journal of Visualized Experiments, 2021, , .	0.2	2
1419	Kaedeâ€Centrin1 Labeling of Mother and Daughter Centrosomes in Mammalian Neocortical Neural Progenitors. Current Protocols in Stem Cell Biology, 2010, 15, Unit 5A.5.	3.0	8
1420	Selfâ€Organization and Pattern Formation in Primate Cortical Networks. Novartis Foundation Symposium, 2008, 288, 178-198.	1.2	11

#	Article	IF	CITATIONS
1422	Developmental Molecular Biology of the Pancreas., 2010,, 71-117.		7
1423	Gene Regulation of Prominin-1 (CD133) in Normal and Cancerous Tissues. Advances in Experimental Medicine and Biology, 2013, 777, 73-85.	0.8	6
1424	Prominin-1 (CD133) and the Cell Biology of Neural Progenitors and Their Progeny. Advances in Experimental Medicine and Biology, 2013, 777, 89-98.	0.8	10
1425	Potential of Glial Cells., 2013,, 347-361.		4
1426	Glycolipid and Glycoprotein Expression During Neural Development. Advances in Neurobiology, 2014, 9, 185-222.	1.3	16
1427	Engrailed2 and Cerebellar Development in the Pathogenesis of Autism Spectrum Disorders. , 2008, , 3-40.		5
1428	Immunofluorescent Labeling of Neural Stem Cells in the Drosophila Optic Lobe. Methods in Molecular Biology, 2014, 1082, 71-78.	0.4	1
1429	The Golgi Apparatus in Polarized Neuroepithelial Stem Cells and Their Progeny: Canonical and Noncanonical Features. Results and Problems in Cell Differentiation, 2019, 67, 359-375.	0.2	6
1430	Molecular Markers in the Study of Non-model Vertebrates: Their Significant Contributions to the Current Knowledge of Tetrapod Glial Cells and Fish Olfactory Neurons. Results and Problems in Cell Differentiation, 2019, 68, 355-377.	0.2	2
1431	Notch Signaling and Embryonic Development: An Ancient Friend, Revisited. Advances in Experimental Medicine and Biology, 2020, 1218, 9-37.	0.8	25
1432	Mechanics and Regulation of Cell Shape During the Cell Cycle. Results and Problems in Cell Differentiation, 2011, 53, 31-73.	0.2	54
1433	Dynamic Notch Signaling in Neural Progenitor Cells. , 2013, , 1-17.		4
1434	Neocortical Neurogenesis and Circuit Assembly. , 2013, , 153-180.		1
1435	Cadherins in Neural Development. , 2016, , 315-340.		4
1436	Axonal and Dendritic Identity and Structure: Control of. , 2009, , 1093-1100.		1
1437	Different Gene Networks Are Disturbed by Zika Virus Infection in A Mouse Microcephaly Model. Genomics, Proteomics and Bioinformatics, 2020, 18, 737-748.	3.0	12
1438	Graphene oxide-functionalized nanofibre composite matrices to enhance differentiation of hippocampal neuronal cells. Materials Advances, 2020, 1, 3496-3506.	2.6	12
1439	Apicobasal polarity and cell proliferation during development. Essays in Biochemistry, 2012, 53, 95-109.	2.1	10

#	Article	IF	CITATIONS
1440	SNAP23 deficiency causes severe brain dysplasia through the loss of radial glial cell polarity. Journal of Cell Biology, 2021, 220, .	2.3	9
1441	Astrocytes and Ependymal Glia. , 2013, , .		7
1442	Radial Glial Cells., 2013,,.		8
1458	ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration. Journal of Clinical Investigation, 2019, 129, 2145-2162.	3.9	37
1459	Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny. PLoS ONE, 2008, 3, e2388.	1.1	157
1460	Impaired Terminal Differentiation of Hippocampal Granule Neurons and Defective Contextual Memory in PC3/Tis21 Knockout Mice. PLoS ONE, 2009, 4, e8339.	1.1	74
1461	Dynamic Distribution of Histone H4 Arginine 3 Methylation Marks in the Developing Murine Cortex. PLoS ONE, 2010, 5, e13807.	1.1	23
1462	Sonic Hedgehog and Notch Signaling Can Cooperate to Regulate Neurogenic Divisions of Neocortical Progenitors. PLoS ONE, 2011, 6, e14680.	1.1	88
1463	Distinct Regulatory Functions of Calpain 1 and 2 during Neural Stem Cell Self-Renewal and Differentiation. PLoS ONE, 2012, 7, e33468.	1.1	49
1464	Developmental Regulation and Spatiotemporal Redistribution of the Sumoylation Machinery in the Rat Central Nervous System. PLoS ONE, 2012, 7, e33757.	1.1	55
1465	The Niche Factor Syndecan-1 Regulates the Maintenance and Proliferation of Neural Progenitor Cells during Mammalian Cortical Development. PLoS ONE, 2012, 7, e42883.	1.1	47
1466	Pax6 Interactions with Chromatin and Identification of Its Novel Direct Target Genes in Lens and Forebrain. PLoS ONE, 2013, 8, e54507.	1.1	72
1467	Carboxypeptidase E-Î"N, a Neuroprotein Transiently Expressed during Development Protects Embryonic Neurons against Glutamate Neurotoxicity. PLoS ONE, 2014, 9, e112996.	1.1	11
1468	Administration of Non-Absorbable Antibiotics to Pregnant Mice to Perturb the Maternal Gut Microbiota Is Associated with Alterations in Offspring Behavior. PLoS ONE, 2016, 11, e0138293.	1.1	119
1469	Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex. ENeuro, 2016, 3, ENEURO.0142-16.2016.	0.9	22
1470	Repression of Irs2 by letâ€7 mi <scp>RNA</scp> s is essential for homeostasis of the telencephalic neuroepithelium. EMBO Journal, 2020, 39, e105479.	3.5	12
1471	<scp>ECE</scp> 2 regulates neurogenesis and neuronal migration during human cortical development. EMBO Reports, 2020, 21, e48204.	2.0	40
1472	The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Current Stem Cell Research and Therapy, 2019, 14, 278-289.	0.6	19

#	Article	IF	CITATIONS
1473	Co-Expression of Functional P2X4 and P2X7 Receptors at Adult Neural Progenitor Cells of the Mouse Subventricular Zone. The Open Neuroscience Journal, 2013, 7, 1-4.	0.8	5
1474	The significance of gene expression dynamics in neural stem cell regulation. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 351-363.	1.6	11
1475	Polarity as a physiological modulator of cell function. Frontiers in Bioscience - Landmark, 2019, 24, 451-462.	3.0	28
1476	Maternal Protein Restriction in Rats Alters the Expression of Genes Involved in Mitochondrial Metabolism and Epitranscriptomics in Fetal Hypothalamus. Nutrients, 2020, 12, 1464.	1.7	8
1477	P2X7 receptor signaling during adult hippocampal neurogenesis. Neural Regeneration Research, 2019, 14, 1684.	1.6	19
1478	Chemobrain as a Product of Growing Success in Chemotherapy - Focus On Glia As Both A Victim And A Cure. Neuropsychiatry, 2019, 09, 2207-2216.	0.4	20
1479	Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World Journal of Stem Cells, 2020, 12, 1553-1575.	1.3	8
1480	Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World Journal of Stem Cells, 2016, 8, 136.	1.3	14
1481	Anesthetic Drug-Induced Neurotoxicity and Compromised Neural Stem Cell Proliferation. Journal of Drug and Alcohol Research, 2015, 4, 1-8.	0.9	3
1482	Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm. Journal of Networks, 2013, 8, .	0.4	13
1483	The Adaptability of Somatic Stem Cells: A Review. Journal of Stem Cells and Regenerative Medicine, 2017, 13, 3-13.	2.2	18
1484	Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe. BMB Reports, 2020, 53, 181-190.	1.1	30
1485	Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. ELife, 2014, 3, .	2.8	61
1486	The REST remodeling complex protects genomic integrity during embryonic neurogenesis. ELife, 2016, 5, e09584.	2.8	61
1487	Give it a REST!. ELife, 2016, 5, e12615.	2.8	1
1488	Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. ELife, 2016, 5, .	2.8	200
1489	Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia. ELife, 2017, 6, .	2.8	32
1490	Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. ELife, 2018, 7, .	2.8	84

#	Article	IF	CITATIONS
1491	Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. ELife, $2019,8,.$	2.8	27
1492	Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. ELife, 2020, 9, .	2.8	33
1493	A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. ELife, 2019, 8 , .	2.8	79
1494	New insights into the mechanism of dynein motor regulation by lissencephaly-1. ELife, 2020, 9, .	2.8	52
1495	Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. ELife, 2020, 9, .	2.8	17
1496	Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. International Journal of Molecular Sciences, 2021, 22, 10757.	1.8	10
1497	Folding brains: from development to disease modeling. Physiological Reviews, 2022, 102, 511-550.	13.1	28
1498	Genes Associated with Disturbed Cerebral Neurogenesis in the Embryonic Brain of Mouse Models of Down Syndrome. Genes, 2021, 12, 1598.	1.0	4
1499	Neuroimmune Evasion of Zika Virus to Facilitate Viral Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 662447.	1.8	5
1501	Lis1 mutation prevents basal radial glia-like cell production in the mouse. Human Molecular Genetics, 2022, 31, 942-957.	1.4	5
1503	A stochastic model of homeostasis: The roles of noise and nuclear positioning in deciding cell fate. IScience, 2021, 24, 103199.	1.9	1
1504	Primary Cilia and Centrosomes in Neocortex Development. Frontiers in Neuroscience, 2021, 15, 755867.	1.4	24
1505	Neural Stem Cells: On Where They Hide, in Which Disguise, and How We May Lure Them Out. Handbook of Experimental Pharmacology, 2006, , 319-360.	0.9	12
1506	LABELING OF NEUROEPITHELIAL CELLS USING WHOLE EMBRYO CULTURE AND GENE TRANSFER METHODS TO CHARACTERIZE THE CELL CYCLE. , 2006, , .		O
1509	Glial Cells as the Source of Neurons and Glia in the Developing and Adult CNS. Journal of Medical Sciences, 2008, 1, 114-128.	0.2	0
1510	Tumors of the Brain and Spinal Cord. , 2009, , 601-720.		2
1511	Ultradian Oscillation Networks in Somite Segmentation and Other Biological Events., 2009,, 199-207.		0
1512	Neurotransmitters as Main Players in the Neural Differentiation and Fate Determination Game. , 2010, , $115\text{-}134$.		O

#	Article	IF	CITATIONS
1513	Actin and Neuronal Polarity. Advances in Neurobiology, 2011, , 161-176.	1.3	1
1514	Stem Cells and Asymmetric Cell Division. , 2011, , 103-123.		0
1515	Stem Cells in the Developing and Adult Nervous System. , 2011, , 125-145.		0
1516	Neural Stem Cells. , 2011, , 287-326.		O
1519	Targeted Transgenic RNAi Knockdown of Cell Fate Determinants Induces Neoplastic Tumor Growth and Metastasis in a Drosophila Transplantation Model of Neural Stem Cell Derived Cancer. Journal of Stem Cell Research & Therapy, 2013, S12, .	0.3	2
1520	Stem Cells and Asymmetric Cell Division. , 2013, , 107-127.		O
1521	Neural Stem Cells. , 2013, , 297-335.		0
1522	Stem Cells in the Developing and Adult Nervous System. , 2013, , 129-152.		О
1523	Review point on neural stem cells and neurogenic areas of the central nervous system. Open Journal of Animal Sciences, 2013, 03, 242-247.	0.2	2
1524	Molecular and Endocrine Mechanisms Underlying the Stem Cell Theory of Aging. Pancreatic Islet Biology, 2014, , 389-417.	0.1	0
1525	Neuron Migration and Axon Guidance. , 2013, , .		0
1526	Neurogenesis and Outer Subventricular Zone Radial Glial Cells. , 2013, , .		0
1527	Stem Cells and Neurogenesis. , 2014, , 300-303.		0
1528	Vacuolar H+-ATPase: Functional Mechanism and Potential as a Target for Cancer Chemotherapy. , 2014, , 413-432.		0
1530	Differential Intrinsic and Extrinsic Regulations of the Two Adult Neurogenic Regions. Pancreatic Islet Biology, 2015, , 23-40.	0.1	0
1531	Retinal Development: An Overviewâ~†., 2015,,.		0
1532	Control of Axon and Dendrite Identity and Structureâ~†., 2015,,.		0
1534	Neuronal Polarity. , 2015, , 147-165.		0

#	Article	IF	CITATIONS
1536	Effect of explant's size and phytohormonal composition of nutritive medium on post-vitification recovery of garlic meristems. Problems of Cryobiology and Cryomedicine, 2015, 25, 13-23.	0.3	0
1537	Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells. Journal of Stem Cell Research & Therapy, 2016, 06, .	0.3	1
1540	Genetics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, 2017, , 629-647.	0.1	0
1548	Molecular Landscapes of Embryonic and Post-Embryonic Neurogenesis in the Vertebrate Retina. SSRN Electronic Journal, 0, , .	0.4	0
1549	Cerebral organoids: a promising model in cellular technologies. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 168-178.	0.4	0
1555	The key stages of iPSCs differentiation into neuronal and glial cells. Genes and Cells, 2018, 13, 52-55.	0.2	1
1558	Three-Dimensional Cell Culture and Tissue Restoration of Neural Stem Cells Under Microgravity. Research for Development, 2019, , 235-279.	0.2	1
1559	Live-cell Migration Assays to Study Motility of Neural and Glial (Oligodendrocyte) Progenitor Cells. Bio-protocol, 2019, 9, e3275.	0.2	0
1565	Morphofunctional peculiarities of brain development and circulatory system in ontogenesis. International Neurological Journal, 2019, .	0.2	1
1566	XLF/Cernunnos Loss Impairs Mouse Brain Development by Altering Symmetric Proliferative Divisions of Neural Progenitors. SSRN Electronic Journal, 0, , .	0.4	0
1571	Irx3 and Irx5 - Novel Regulatory Factors of Postnatal Hypothalamic Neurogenesis. Frontiers in Neuroscience, 2021, 15, 763856.	1.4	10
1572	Loss of Oligodendrocytes by Oxidative Phosphorylation Inhibitor Rotenone and its Reversal by Phenylbutyrate (PB) in Human Brain Developmental Organoid Model. Translational Neuroscience Research and Reviews, 2020, 3, .	0.0	0
1573	The Emerging Role of microRNAs in Post-ischemic Angiogenesis and Neurogenesis. , 2020, , 67-86.		0
1574	Neurological Disorders in the Lower Extremity. , 2020, , 115-144.		0
1575	Role and Regulation of Lin28 in Progenitor Cells During Central Nervous System Development. Advances in Experimental Medicine and Biology, 2020, 1326, 55-72.	0.8	1
1576	PDK1 regulates the lengthening of G1 phase to balance RGC proliferation and differentiation during cortical neurogenesis. Cerebral Cortex, 2022, 32, 3488-3500.	1.6	1
1579	Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity. Nature Communications, 2021, 12, 6298.	5.8	21
1581	Microcephalies and DNA Repair. , 2008, , 109-120.		0

#	Article	IF	CITATIONS
1586	From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. Journal of Neuroscience, 2021, 41, 9483-9502.	1.7	18
1587	RYBP modulates embryonic neurogenesis involving the Notch signaling pathway in a PRC1-independent pattern. Stem Cell Reports, 2021, , .	2.3	2
1588	Identification of ASCL1 as a determinant for human iPSC-derived dopaminergic neurons. Scientific Reports, 2021, 11, 22257.	1.6	10
1589	SUMO control of nervous system development. Seminars in Cell and Developmental Biology, 2022, 132, 203-212.	2.3	6
1590	Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Frontiers in Neuroscience, 2021, 15, 771557.	1.4	20
1591	Gliogenic Potential of Single Pallial Radial Glial Cells in Lower Cortical Layers. Cells, 2021, 10, 3237.	1.8	6
1592	Time is of the essence: the molecular mechanisms of primary microcephaly. Genes and Development, 2021, 35, 1551-1578.	2.7	34
1594	The Role of Astrocytes in the Central Nervous System: Physiological and Pathophysiological Conditions. The Neuroscience Journal of Shefaye Khatam, 2021, 9, 119-139.	0.4	3
1595	Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Frontiers in Cell and Developmental Biology, 2021, 9, 784700.	1.8	28
1596	Multifaceted Microcephaly-Related Gene MCPH1. Cells, 2022, 11, 275.	1.8	10
1598	From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Frontiers in Neuroscience, 2021, 15, 781160.	1.4	15
1599	L-DOPA-Induced Neurogenesis in the Hippocampus Is Mediated Through GPR143, a Distinct Mechanism of Dopamine. Stem Cells, 2022, 40, 215-226.	1.4	5
1600	Histone modifications in neurodifferentiation of embryonic stem cells. Heliyon, 2022, 8, e08664.	1.4	1
1601	BuMPing Into Neurogenesis: How the Canonical BMP Pathway Regulates Neural Stem Cell Divisions Throughout Space and Time. Frontiers in Neuroscience, 2021, 15, 819990.	1.4	4
1602	The RNA helicases DDX5 and DDX17 facilitate neural differentiation of human pluripotent stem cells NTERA2. Life Sciences, 2022, 291, 120298.	2.0	9
1603	Development of the mammalian main olfactory bulb. Development (Cambridge), 2022, 149, .	1.2	23
1605	Melatonin and the Programming of Stem Cells. International Journal of Molecular Sciences, 2022, 23, 1971.	1.8	4
1606	A new method for obtaining bankable and expandable adult-like microglia in mice. Journal of Neuroinflammation, 2021, 18, 294.	3.1	6

#	Article	IF	CITATIONS
1607	Graphene-Based Materials for Efficient Neurogenesis. Advances in Experimental Medicine and Biology, 2022, 1351, 43-64.	0.8	2
1609	Cerebral Organoids Maintain the Expression of Neural Stem Cell-Associated Glycoepitopes and Extracellular Matrix. Cells, 2022, 11, 760.	1.8	8
1611	Taurine: A Maternally Derived Nutrient Linking Mother and Offspring. Metabolites, 2022, 12, 228.	1.3	12
1612	Hif1α-dependent hypoxia signaling contributes to the survival of deep-layer neurons and cortex formation in a mouse model. Molecular Brain, 2022, 15, 28.	1.3	3
1613	Maternal Exercise Before and During Pregnancy Facilitates Embryonic Myogenesis by Enhancing Thyroid Hormone Signaling. Thyroid, 2022, 32, 581-593.	2.4	1
1614	Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Frontiers in Cell and Developmental Biology, 2022, 10, 851613.	1.8	8
1615	ZIKV Teratogenesis: Clinical Findings in Humans, Mechanisms and Experimental Models. Frontiers in Virology, 2022, $1,\ldots$	0.7	0
1616	Molecular divergence of mammalian astrocyte progenitor cells at early gliogenesis. Development (Cambridge), 2022, 149, .	1.2	6
1617	Restricted Proliferation During Neurogenesis Contributes to Regionalisation of the Amphioxus Nervous System. Frontiers in Neuroscience, 2022, 16, 812223.	1.4	1
1619	In vivo evaluation of tricalcium phosphate scaffold for cranial prosthesis application. Materials Chemistry and Physics, 2022, 283, 125993.	2.0	1
1620	The chromatin repressors EZH2 and Suv4â€20h coregulate cell fate specification during hippocampal development. FEBS Letters, 2022, 596, 294-308.	1.3	1
1622	Morphological Development in Robotic Learning: A Survey. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 750-768.	2.6	8
1623	Multiple Functions of the Dmrt Genes in the Development of the Central Nervous System. Frontiers in Neuroscience, 2021, 15, 789583.	1.4	9
1624	Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers, 2021, 13, 6100.	1.7	4
1625	Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Frontiers in Neuroscience, 2022, 16, 824802.	1.4	3
1626	What Makes Organoids Good Models of Human Neurogenesis?. Frontiers in Neuroscience, 2022, 16, 872794.	1.4	5
1627	Dynamics of Metabolic Pathways and Stress Response Patterns during Human Neural Stem Cell Proliferation and Differentiation. Cells, 2022, 11, 1388.	1.8	2
1628	What Are the Human-Specific Aspects of Neocortex Development?. Frontiers in Neuroscience, 2022, 16, 878950.	1.4	7

#	Article	IF	CITATIONS
1632	Neurogenesis., 2009,, 2673-2676.		0
1633	Cell Differentiation. , 2009, , 591-596.		0
1653	Polycombâ€mediated gene regulation in human brain development and neurodevelopmental disorders. Developmental Neurobiology, 2022, 82, 345-363.	1.5	11
1654	Non-autonomous regulation of neurogenesis by extrinsic cues: a <i>Drosophila</i> perspective. , 2022, 1, .		2
1656	Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Frontiers in Molecular Neuroscience, 2022, 15, 840265.	1.4	1
1657	A2B5 Expression in Central Nervous System and Gliomas. International Journal of Molecular Sciences, 2022, 23, 4670.	1.8	4
1658	Centrin 2: A Novel Marker of Mature and Neoplastic Human Astrocytes. Frontiers in Cellular Neuroscience, 2022, 16, 858347.	1.8	2
1659	Vascular Regulation of Developmental Neurogenesis. Frontiers in Cell and Developmental Biology, 2022, 10, 890852.	1.8	19
1660	Establishing Neuronal Polarity: Microtubule Regulation during Neurite Initiation. , 0, , .		0
1661	Transcriptome profiling reveals that VNPP433â€3β, the lead nextâ€generation galeterone analog inhibits prostate cancer stem cells by downregulating epithelial–mesenchymal transition and stem cell markers. Molecular Carcinogenesis, 2022, 61, 643-654.	1.3	25
1662	Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development. Nature Communications, 2022, 13, 2746.	5.8	4
1663	The impact of phosphorylated PTEN at threonine 366 on cortical connectivity and behaviour. Brain, 2022, 145, 3608-3621.	3.7	4
1664	<scp>DNA</scp> damage response in neurodevelopment and neuromaintenance. FEBS Journal, 2023, 290, 3300-3310.	2.2	7
1669	Evolution of genetic mechanisms regulating cortical neurogenesis. Developmental Neurobiology, 2022, 82, 428-453.	1.5	17
1670	Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex. Nature Neuroscience, 2022, 25, 865-875.	7.1	19
1671	Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1673	Aberrant induction of p19Arf-mediated cellular senescence contributes to neurodevelopmental defects. PLoS Biology, 2022, 20, e3001664.	2.6	7
1674	[Ca2+] fluctuation mediated by T-type Ca2+ channel is required for the differentiation of cortical neural progenitor cells. Developmental Biology, 2022, 489, 84-97.	0.9	1

#	Article	IF	CITATIONS
1675	Astrocytes: the neglected stars in the central nervous system and drug addiction. Medical Review, 2022, 2, 417-426.	0.3	1
1676	Characterisation of the consequences of maternal immune activation on distinct cell populations in the developing rat spinal cord. Journal of Anatomy, 2022, 241, 938-950.	0.9	1
1677	Dynamic switching of lateral inhibition spatial patterns. Journal of the Royal Society Interface, 2022, 19, .	1.5	3
1678	Assessment of endocytic traffic and Ocrl function in the developing zebrafish neuroepithelium. Journal of Cell Science, 2022, 135, .	1.2	1
1679	Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	1
1680	It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
1682	Corticogenesis across species at singleâ€cell resolution. Developmental Neurobiology, 2022, 82, 517-532.	1.5	2
1683	Bioengineering the human spinal cord. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1684	SETD4 cells contribute to brain development and maintain adult stem cell reservoir for neurogenesis. Stem Cell Reports, 2022, 17, 2081-2096.	2.3	4
1685	Dyslexia associated gene KIAA0319 regulates cell cycle during human neuroepithelial cell development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
1686	Role of the histone methyltransferases Ezh2 and Suv4-20h1/Suv4-20h2 in neurogenesis. Neural Regeneration Research, 2023, 18, 469.	1.6	3
1687	Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications. Biomimetics, 2022, 7, 131.	1.5	14
1688	How mechanisms of stem cell polarity shape the human cerebral cortex. Nature Reviews Neuroscience, 2022, 23, 711-724.	4.9	16
1689	Neuronal and astrocytic protein connections and associated adhesion molecules. Neuroscience Research, 2023, 187, 14-20.	1.0	2
1690	Cerebral Organoids in Developmental Neuroscience. , 2022, , 551-567.		0
1691	Neural Stem Cells in Cerebral Cortex Development. , 2022, , 161-192.		O
1692	microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sciences, 2022, 12, 1366.	1.1	7
1694	Biphasic cell cycle defect causes impaired neurogenesis in down syndrome. Frontiers in Genetics, 0, 13,	1.1	3

#	Article	IF	CITATIONS
1695	Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Frontiers in Neuroscience, $0,16,.$	1.4	11
1696	PRG3 and PRG5 C-Termini: Important Players in Early Neuronal Differentiation. International Journal of Molecular Sciences, 2022, 23, 13007.	1.8	0
1697	The molecular biology of tubulinopathies: Understanding the impact of variants on tubulin structure and microtubule regulation. Frontiers in Cellular Neuroscience, $0,16,.$	1.8	9
1698	Genetics of Cortical Development. , 2022, , .		0
1699	Autophagy in Embryonic Stem Cells and Neural Stem Cells. Pancreatic Islet Biology, 2023, , 59-83.	0.1	0
1700	Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis. EMBO Journal, 2022, 41, .	3.5	6
1701	A balance of noncanonical Semaphorin signaling from the cerebrospinal fluid regulates apical cell dynamics during corticogenesis. Science Advances, 2022, 8, .	4.7	1
1703	Gene–environment interactions in the pathogenesis of common craniofacial anomalies. Current Topics in Developmental Biology, 2023, , 139-168.	1.0	2
1705	Embryonic Neurogenesis in the Mammalian Brain. Learning Materials in Biosciences, 2023, , 165-178.	0.2	0
1707	Computational Model Exploring Characteristic Pattern Regulation in Periventricular Vessels. Life, 2022, 12, 2069.	1.1	0
1708	Methylation in MAD1L1 is associated with the severity of suicide attempt and phenotypes of depression. Clinical Epigenetics, 2023, 15 , .	1.8	2
1709	Ethanol exposure disrupted the formation of radial glial processes and impaired the generation and migration of outer radial glial cells in forebrain organoids derived from human embryonic stem cells. Experimental Neurology, 2023, , 114325.	2.0	2
1712	Dynamic Regulation of DNA Methylation and Brain Functions. Biology, 2023, 12, 152.	1.3	9
1713	XLF/Cernunnos loss impairs mouse brain development by altering symmetric proliferative divisions of neural progenitors. Cell Reports, 2023, 42, 112342.	2.9	2
1714	Developmental mechanisms of gyrification. Current Opinion in Neurobiology, 2023, 80, 102711.	2.0	5
1715	Increased Nuclear FOXP2 Is Related to Reduced Neural Stem Cell Number and Increased Neurogenesis in the Dorsal Telencephalon of Embryos of Diabetic Rats through Histamine H1 Receptors. Cells, 2023, 12, 510.	1.8	0
1716	Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA m3C modification. Cell Stem Cell, 2023, 30, 300-311.e11.	5.2	10
1717	Impaired neurogenesis and neural progenitor fate choice in a human stem cell model of SETBP1 disorder. Molecular Autism, 2023, 14, .	2.6	6

#	Article	IF	CITATIONS
1718	Crosstalk between microRNAs and epigenetics during brain development and neurological diseases., 2023,, 173-207.		0
1719	Cellular senescence and developmental defects. FEBS Journal, 2023, 290, 1303-1313.	2.2	5
1720	The impact of maternal immune activation on embryonic brain development. Frontiers in Neuroscience, 0, 17 , .	1.4	3
1721	Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. International Journal of Molecular Sciences, 2023, 24, 5665.	1.8	2
1722	Genomic Interplay between Neoneurogenesis and Neoangiogenesis in Carcinogenesis: The rapeutic Interventions. Cancers, 2023, 15 , 1805 .	1.7	1
1724	Homophilic interaction of cell adhesion molecule 3 coordinates retina neuroepithelial cell proliferation. Journal of Cell Biology, 2023, 222, .	2.3	1
1725	Alpha-SNAP (M105I) mutation promotes neuronal differentiation of neural stem/progenitor cells through overactivation of AMPK. Frontiers in Cell and Developmental Biology, $0,11,.$	1.8	0
1726	Microglial tissue surveillance: The neverâ€resting gardener in the developing and adult CNS. European Journal of Immunology, 2023, 53, .	1.6	2
1727	Multimodal Wnt signalling in the mouse neocortex. Cells and Development, 2023, 174, 203838.	0.7	0
1728	P2 receptor-mediated signaling in the physiological and pathological brain: From development to aging and disease. Neuropharmacology, 2023, 233, 109541.	2.0	4
1729	Transfer of nuclear and ribosomal material from $Sox10$ -lineage cells to neurons in the mouse brain. Journal of Experimental Medicine, 2023, 220, .	4.2	2
1749	Purinergic Signaling in Neurogenesis and Neural Fate Determination: Current Knowledge and Future Challenges., 2023,, 69-96.		O
1774	Resident Neural Stem Cells. , 2024, , 127-157.		0
1780	Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neuroscience Bulletin, 0, , .	1.5	0
1785	Neurogenesis., 2023,,.		0
1797	Glial Cells During the Life Cycle. , 2023, , 29-57.		0
1803	Endogenous In Situ Tissue Regeneration Using Inductive Bioscaffolds After Acute Brain Injury. Pancreatic Islet Biology, 2024, , 219-249.	0.1	0