Design and development of polymers for gene delivery

Nature Reviews Drug Discovery 4, 581-593 DOI: 10.1038/nrd1775

Citation Report

#	Article	IF	CITATIONS
1	Identification of a GiÎ \pm Binding Site on Type V Adenylyl Cyclase. Journal of Biological Chemistry, 1998, 273, 25831-25839.	1.6	143
2	Branched Cationic Peptides for Gene Delivery: Role of Type and Number of Cationic Residues in Formation and in Vitro Activity of DNA Polyplexes. Human Gene Therapy, 1999, 10, 319-332.	1.4	226
3	Gene Therapy for Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases. Human Gene Therapy, 2000, 11, 2315-2329.	1.4	49
4	Connecting cyclophosphazenes via ring N-centres with covalent linkers. Chemical Communications, 2005, , 5026.	2.2	15
5	Inductive tissue engineering with protein and DNA-releasing scaffolds. Molecular BioSystems, 2006, 2, 36-48.	2.9	67
6	Layers of opportunity: nanostructured polymer assemblies for the delivery of macromolecular therapeutics. Soft Matter, 2006, 2, 269.	1.2	77
7	Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer. Journal of Drug Targeting, 2006, 14, 413-424.	2.1	43
8	Release of Plasmid DNA from Intravascular Stents Coated with Ultrathin Multilayered Polyelectrolyte Films. Biomacromolecules, 2006, 7, 2483-2491.	2.6	153
9	Synthesis, Physicochemical Properties, and Preliminary Biological Characterizations of a Novel Amphoteric Agmatine-Based Poly(amidoamine) with RGD-Like Repeating Units. Biomacromolecules, 2006, 7, 1215-1222.	2.6	60
10	Biophysical characteristics of neurotensin polyplex for in vitro and in vivo gene transfection. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1009-1020.	1.1	25
11	Multifunctional Nanoparticles for Cancer Therapy. , 2006, , 59-75.		0
12	Polymeric Conjugates for Angiogenesis-Targeted Tumor Imaging and Therapy. , 2006, , 159-184.		1
13	Stability of Gold Nanoparticle-Bound DNA toward Biological, Physical, and Chemical Agents. Chemical Biology and Drug Design, 2006, 67, 78-82.	1.5	138
14	Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 2006, 6, 688-701.	12.8	1,828
15	Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials, 2006, 27, 5143-5150.	5.7	144
16	Characterising the size and shape of polyamidoamines in solution as a function of pH using neutron scattering and pulsed-gradient spin-echo NMR. International Journal of Pharmaceutics, 2006, 317, 175-186.	2.6	27
17	Improved Delivery in Cell Culture of Radiolabeled Antisense DNAs by Duplex Formation. Molecular Imaging and Biology, 2006, 8, 278-283.	1.3	5
18	A study of thermoresponsive poly(N-isopropylacrylamide)/polyarginine bioconjugate non-viral transgene vectors. Biomaterials, 2006, 27, 4984-4992.	5.7	55

#	Article	IF	CITATIONS
19	Degradable gene carriers based on oligomerized polyamines. European Journal of Pharmaceutical Sciences, 2006, 29, 414-425.	1.9	94
20	Acid-cleavable polymeric core–shell particles for delivery of hydrophobic drugs. Journal of Controlled Release, 2006, 115, 197-207.	4.8	90
21	Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages: Synthesis and in vitro gene transfer properties. Journal of Controlled Release, 2006, 116, 130-137.	4.8	175
22	Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. , 2006, 112, 630-648.		950
23	Light-Regulated Release of DNA and Its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles. Angewandte Chemie - International Edition, 2006, 45, 3165-3169.	7.2	248
25	Cationic Supramolecules Composed of Multiple Oligoethylenimine-Grafted β-Cyclodextrins Threaded on a Polymer Chain for Efficient Gene Delivery. Advanced Materials, 2006, 18, 2969-2974.	11.1	192
26	Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles. Nucleic Acids Research, 2006, 34, e16-e16.	6.5	38
28	Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biology, 2006, 2, 293-308.	2.0	95
29	Gene therapy and uterine leiomyoma: a review. Human Reproduction Update, 2006, 12, 385-400.	5.2	66
30	Degradative transport of cationic amphiphilic drugs across phospholipid bilayers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2597-2614.	1.6	60
31	The Regulation of Genetic Research and the Commercialisation of its Results in Finland. Medical Law International, 2006, 7, 309-328.	0.4	0
32	Polymer therapeutics—polymers as drugs, drug and protein conjugates and gene delivery systems: Past, present and future opportunities. Journal of Drug Targeting, 2006, 14, 337-341.	2.1	112
33	Evolution of DNA compaction in microchannels. Journal of Physics Condensed Matter, 2006, 18, S639-S652.	0.7	24
34	Selective Intratumoral Amplification of an Antiangiogenic Vector by an Oncolytic Virus Produces Enhanced Antivascular and Anti-tumor Efficacy. Molecular Therapy, 2006, 13, 938-946.	3.7	47
35	Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Molecular Therapy, 2006, 14, 857-865.	3.7	68
36	Dendrons with Spermine Surface Groups as Potential Building Blocks for Nonviral Vectors in Gene Therapy. Bioconjugate Chemistry, 2006, 17, 172-178.	1.8	73
37	Dual-targeting non-viral vector based on polyethylenimine improves gene transfer efficiency. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 545-560.	1.9	16
38	Imaging gene delivery with fluorescence microscopy. Nanomedicine, 2007, 2, 847-860.	1.7	26

#	Article	IF	CITATIONS
39	VISUALIZING SOFT MATTER: MESOSCOPIC SIMULATIONS OF MEMBRANES, VESICLES AND NANOPARTICLES. Biophysical Reviews and Letters, 2007, 02, 33-55.	0.9	20
42	Precisely Defined Protein–Polymer Conjugates: Construction of Synthetic DNA Binding Domains on Proteins by Using Multivalent Dendrons. ACS Nano, 2007, 1, 103-113.	7.3	77
43	Efficient gene transfection with functionalised multicalixarenes. Chemical Communications, 2007, , 4907.	2.2	53
44	Gene Delivery Properties of End-Modified Poly(β-amino ester)s. Bioconjugate Chemistry, 2007, 18, 1887-1896.	1.8	75
45	Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System. Cancer Research, 2007, 67, 8156-8163.	0.4	297
46	Nanoscale Cell Adhesion Ligand Presentation Regulates Nonviral Gene Delivery and Expression. Nano Letters, 2007, 7, 161-166.	4.5	80
47	Lipoplexes Formed by DNA and Ferrocenyl Lipids: Effect of Lipid Oxidation State on Size, Internal Dynamics, and ζ-Potential. Biophysical Journal, 2007, 93, 4414-4424.	0.2	23
48	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(\hat{I}^2 -amino ester)s. Molecular Therapy, 2007, 15, 1306-1312.	3.7	118
49	Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Chemical Communications, 2007, , 3374.	2.2	38
50	Inâ€Situ Formation of Protein–Polymer Conjugates through Reversible Addition Fragmentation Chain Transfer Polymerization. Angewandte Chemie - International Edition, 2007, 46, 3099-3103.	7.2	207
51	Optically Triggered Release of DNA from Multivalent Dendrons by Degrading and Chargeâ€Switching Multivalency. Angewandte Chemie - International Edition, 2007, 46, 7600-7604.	7.2	103
54	Design of Poly(vinyldiaminotriazine)-Based Nonviral Vectors via Specific Hydrogen Bonding with Nucleic Acid Base Pairs. Advanced Functional Materials, 2007, 17, 246-252.	7.8	30
55	pH-Tunable Endosomolytic Oligomers for Enhanced Nucleic Acid Delivery. Advanced Functional Materials, 2007, 17, 1263-1272.	7.8	78
56	Combinatorial Modification of Degradable Polymers Enables Transfection of Human Cells Comparable to Adenovirus. Advanced Materials, 2007, 19, 2836-2842.	11.1	151
57	Peeling Back the Layers: Controlled Erosion and Triggered Disassembly of Multilayered Polyelectrolyte Thin Films. Advanced Materials, 2007, 19, 4118-4130.	11.1	138
58	The synthesis and characterisation of a novel dendritic system for gene delivery. Tetrahedron, 2007, 63, 12207-12214.	1.0	25
59	Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials, 2007, 28, 2876-2884.	5.7	237
60	Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28, 540-549.	5.7	337

#	Article	IF	CITATIONS
61	Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. International Journal of Pharmaceutics, 2007, 331, 167-175.	2.6	101
62	Liposomes modified with polycation used for gene delivery: Preparation, characterization and transfection in vitro. International Journal of Pharmaceutics, 2007, 343, 255-261.	2.6	45
63	Molecular design of functional polymers for gene therapy. Progress in Polymer Science, 2007, 32, 1239-1274.	11.8	243
64	Microenvironmental regulation of biomacromolecular therapies. Nature Reviews Drug Discovery, 2007, 6, 455-463.	21.5	134
65	Cellular binding, motion, and internalization of synthetic gene delivery polymers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1583-1588.	1.9	52
66	Overall interaction of cytosolic proteins with the PEI/DNA complex. Journal of Controlled Release, 2007, 118, 364-369.	4.8	33
67	Non-viral vector delivery from PEG-hyaluronic acid hydrogels. Journal of Controlled Release, 2007, 120, 233-241.	4.8	123
68	Transfection study using multicellular tumor spheroids for screening non-viral polymeric gene vectors with low cytotoxicity and high transfection efficiencies. Journal of Controlled Release, 2007, 121, 38-48.	4.8	79
69	PEG-based block catiomers possessing DNA anchoring and endosomal escaping functions to form polyplex micelles with improved stability and high transfection efficacy. Journal of Controlled Release, 2007, 122, 252-260.	4.8	43
70	Random and block copolymers of bioreducible poly(amido amine)s with high- and low-basicity amino groups: Study of DNA condensation and buffer capacity on gene transfection. Journal of Controlled Release, 2007, 123, 67-75.	4.8	55
71	Influence of particle size and antacid on release and stability of plasmid DNA from uniform PLGA microspheres. Journal of Controlled Release, 2007, 124, 172-180.	4.8	27
72	Gene expression and gene therapy imaging. European Radiology, 2007, 17, 305-319.	2.3	30
73	Matrices and scaffolds for DNA delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59, 292-307.	6.6	241
74	Encapsulation of Nucleic Acids and Opportunities for Cancer Treatment. Pharmaceutical Research, 2007, 24, 618-627.	1.7	36
75	The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58, 205-219.	1.6	27
76	Design of dendrimer modified carbon nanotubes for gene delivery. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2007, 19, 1-6.	0.7	24
77	Cationic star polymers consisting of $\hat{l}\pm$ -cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials, 2007, 28, 3245-3254.	5.7	198
78	Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. Biomaterials, 2007, 28, 4705-4716.	5.7	94

#	Article	IF	CITATIONS
79	Synthesis and degradation of poly(beta-aminoester) with pendant primary amine. Polymer, 2007, 48, 675-681.	1.8	30
80	Enhancement of poly(orthoester) microspheres for DNA vaccine delivery by blending with poly(ethylenimine). Biomaterials, 2008, 29, 2783-2793.	5.7	57
81	Gene Delivery to the Epidermal Cells of Human Skin Explants Using Microfabricated Microneedles and Hydrogel Formulations. Pharmaceutical Research, 2008, 25, 407-416.	1.7	87
82	Nonviral Approaches for Neuronal Delivery of Nucleic Acids. Pharmaceutical Research, 2008, 25, 983-998.	1.7	114
83	Poly (amino ester) Composed of Poly (ethylene glycol) and Aminosilane Prepared by Combinatorial Chemistry as a Gene Carrier. Pharmaceutical Research, 2008, 25, 875-885.	1.7	38
84	Plasmid CpG Depletion Improves Degree and Duration of Tumor Gene Expression After Intravenous Administration of Polyplexes. Pharmaceutical Research, 2008, 25, 1654-1662.	1.7	25
85	Characterization of Polyion Complex Micelles Designed to Address the Challenges of Oligonucleotide Delivery. Pharmaceutical Research, 2008, 25, 2083-2093.	1.7	30
86	The Silent (R)evolution of Polymeric Nucleic Acid Therapeutics. Pharmaceutical Research, 2008, 25, 2920-2923.	1.7	11
87	An Acid Sensitive Ketal-Based Polyethylene Glycol-Oligoethylenimine Copolymer Mediates Improved Transfection Efficiency at Reduced Toxicity. Pharmaceutical Research, 2008, 25, 2937-2945.	1.7	67
88	Polyplex Micelles from Triblock Copolymers Composed of Tandemly Aligned Segments with Biocompatible, Endosomal Escaping, and DNA-Condensing Functions for Systemic Gene Delivery to Pancreatic Tumor Tissue. Pharmaceutical Research, 2008, 25, 2924-2936.	1.7	45
89	Study on cellular internalization of poly(vinyldiaminotriazine)-based hydrogen bonding type non-viral transgene vector. Science Bulletin, 2008, 53, 2307-2314.	4.3	8
90	Biochemical Investigation of Active Intracellular Transport of Polymeric Gene-Delivery Vectors. Journal of Pharmaceutical Sciences, 2008, 97, 1399-1413.	1.6	24
91	Analysis of the intracellular barriers encountered by nonviral gene carriers in a model of spatially controlled delivery to neurons. Journal of Gene Medicine, 2008, 10, 187-197.	1.4	45
92	Relating Chemical and Biological Diversity Space: A Tunable System for Efficient Gene Transfection. ChemBioChem, 2008, 9, 1960-1967.	1.3	11
93	Tailorâ€Made Poly(amidoamine)s for Controlled Complexation and Condensation of DNA. Chemistry - A European Journal, 2008, 14, 2025-2033.	1.7	97
94	Poly(amido amine)s as Gene Delivery Vectors: Effects of Quaternary Nicotinamide Moieties in the Side Chains. ChemMedChem, 2008, 3, 478-486.	1.6	35
95	Medical biofilms. Biotechnology and Bioengineering, 2008, 100, 1-18.	1.7	623
96	Virionâ€Mimicking Nanocapsules from pHâ€Controlled Hierarchical Selfâ€Assembly for Gene Delivery. Angewandte Chemie - International Edition, 2008, 47, 1260-1264.	7.2	70

#	Article	IF	CITATIONS
97	Filamentous Artificial Virus from a Selfâ€Assembled Discrete Nanoribbon. Angewandte Chemie - International Edition, 2008, 47, 4525-4528.	7.2	85
98	Charge onversion Ternary Polyplex with Endosome Disruption Moiety: A Technique for Efficient and Safe Gene Delivery. Angewandte Chemie - International Edition, 2008, 47, 5163-5166.	7.2	206
99	In Situ ATRPâ€Mediated Hierarchical Formation of Giant Amphiphile Bionanoreactors. Angewandte Chemie - International Edition, 2008, 47, 6263-6266.	7.2	96
100	Substituted 1,3,5â€Triazaadamantanes: Biocompatible and Degradable Building Blocks. Angewandte Chemie - International Edition, 2008, 47, 8072-8074.	7.2	21
106	A novel approach for the control of drug release rate through hydrogel membrane. Journal of Membrane Science, 2008, 321, 331-336.	4.1	7
107	Polymeric nanomedicine for cancer therapy. Progress in Polymer Science, 2008, 33, 113-137.	11.8	453
108	Determination of nanoparticle vehicle unpackaging by MR imaging of a T2 magnetic relaxation switch. Biomaterials, 2008, 29, 724-732.	5.7	58
109	Acid-degradable cationic methacrylamide polymerized in the presence of plasmid DNA as tunable non-viral gene carrier. Biomaterials, 2008, 29, 3872-3881.	5.7	47
110	Aqueous solution behaviour and membrane disruptive activity of pH-responsive PEGylated pseudo-peptides and their intracellular distribution. Biomaterials, 2008, 29, 4333-4340.	5.7	22
111	Surface-mediated delivery of DNA: Cationic polymers take charge. Current Opinion in Colloid and Interface Science, 2008, 13, 395-402.	3.4	82
112	Magnetic resonance imaging of contrast-enhanced polyelectrolyte complexes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 30-40.	1.7	23
113	Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. International Journal of Pharmaceutics, 2008, 358, 263-270.	2.6	75
114	Characterization of Multilayered Nanoparticles Encapsulated in Yeast Cell Wall Particles for DNA Delivery. Bioconjugate Chemistry, 2008, 19, 840-848.	1.8	150
115	Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene deliveryâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1018-1036.	6.6	321
116	Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeuticsâ ⁻⁺ , Advanced Drug Delivery Reviews, 2008, 60, 979-999.	6.6	286
117	Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Advanced Drug Delivery Reviews, 2008, 60, 1000-1017.	6.6	725
118	Bioconjugated quantum dots for in vivo molecular and cellular imagingâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1226-1240.	6.6	1,067
119	Drugs take control. Nature Materials, 2008, 7, 767-768.	13.3	34

#	Article	IF	Citations
120	Combination of poly(ethylenimine) and chitosan induces high gene transfection efficiency and low cytotoxicity. Journal of Bioscience and Bioengineering, 2008, 105, 65-68.	1.1	32
121	Bioreducible poly(amido amine)s with oligoamine side chains: Synthesis, characterization, and structural effects on gene delivery. Journal of Controlled Release, 2008, 126, 166-174.	4.8	156
122	Effect of chemical functionalities in poly(amido amine)s for non-viral gene transfection. Journal of Controlled Release, 2008, 132, 267-272.	4.8	122
123	Polyhydroxyethylaspartamide-spermine copolymers: Efficient vectors for gene delivery. Journal of Controlled Release, 2008, 131, 54-63.	4.8	27
124	Release of cationic polymer-DNA complexes from the endosome: A theoretical investigation of the proton sponge hypothesis. Journal of Chemical Physics, 2008, 129, 185105.	1.2	80
125	Novel Biodegradable Poly(disulfide amine)s for Gene Delivery with High Efficiency and Low Cytotoxicity. Bioconjugate Chemistry, 2008, 19, 626-633.	1.8	142
126	Current status of regenerative medical therapy based on drug delivery technology. Reproductive BioMedicine Online, 2008, 16, 70-80.	1.1	37
127	Cationic Copolymer-Mediated DNA Immobilization: Interfacial Structure and Composition As Determined by Ellipsometry, Dual Polarization Interferometry, and Neutron Reflection. Langmuir, 2008, 24, 13556-13564.	1.6	35
128	Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. Soft Matter, 2008, 4, 68-81.	1.2	109
129	Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano, 2008, 2, 2213-2218.	7.3	416
130	Application of an HIV gp41-Derived Peptide for Enhanced Intracellular Trafficking of Synthetic Gene and siRNA Delivery Vehicles. Bioconjugate Chemistry, 2008, 19, 920-927.	1.8	93
131	Polyplex Micelles with Cyclic RGD Peptide Ligands and Disulfide Cross-Links Directing to the Enhanced Transfection via Controlled Intracellular Trafficking. Molecular Pharmaceutics, 2008, 5, 1080-1092.	2.3	131
132	Adapting Polymeric Metal Complexes for Biomedical Applications. ACS Symposium Series, 2008, , 95-115.	0.5	2
133	Biopharmaceutical Drug Design and Development. , 2008, , .		2
134	PEG-Detachable Polyplex Micelles Based on Disulfide-Linked Block Catiomers as Bioresponsive Nonviral Gene Vectors. Journal of the American Chemical Society, 2008, 130, 6001-6009.	6.6	387
135	New Opportunities: The Use of Nanotechnologies to Manipulate and Track Stem Cells. Cell Stem Cell, 2008, 3, 136-146.	5.2	265
136	Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging. Journal of the American Chemical Society, 2008, 130, 9006-9012.	6.6	387
137	An Acid-Labile Block Copolymer of PDMAEMA and PEG as Potential Carrier for Intelligent Gene Delivery Systems. Biomacromolecules, 2008, 9, 109-115.	2.6	211

#	Article	IF	CITATIONS
138	Poly(amidoamine) Dendrimers on Lipid Bilayers I: Free Energy and Conformation of Binding. Journal of Physical Chemistry B, 2008, 112, 9337-9345.	1.2	74
139	Poly(β-aminosulfonamides) as gene delivery vectors: synthesis and in vitro screening. Chemical Communications, 2008, , 573-575.	2.2	5
140	Lipopolythiourea Transfecting Agents: Lysine Thiourea Derivatives. Bioconjugate Chemistry, 2008, 19, 306-314.	1.8	26
141	Enhanced Cell Penetration of Acid-Degradable Particles Functionalized with Cell-Penetrating Peptides. Bioconjugate Chemistry, 2008, 19, 876-881.	1.8	48
142	Polyplexes from Poly(aspartamide) Bearing 1,2-Diaminoethane Side Chains Induce pH-Selective, Endosomal Membrane Destabilization with Amplified Transfection and Negligible Cytotoxicity. Journal of the American Chemical Society, 2008, 130, 16287-16294.	6.6	328
143	Plasmid DNA Complexation with Phosphorylcholine Diblock Copolymers and Its Effect on Cell Transfection. Langmuir, 2008, 24, 6881-6888.	1.6	20
144	Extracellular Barriers to <i>in Vivo</i> PEI and PEGylated PEI Polyplex-Mediated Gene Delivery to the Liver. Bioconjugate Chemistry, 2008, 19, 693-704.	1.8	188
145	Design of Polymeric Carriers for Cancer-Specific Gene Targeting: Utilization of Abnormal Protein Kinase Cα Activation in Cancer Cells. Journal of the American Chemical Society, 2008, 130, 14906-14907.	6.6	83
146	Synthesis and Characterization of Four-Arm Poly(ethylene glycol)-Based Gene Delivery Vehicles Coupled to Integrin and DNA-Binding Peptides. Molecular Pharmaceutics, 2008, 5, 140-150.	2.3	31
147	Application of an Environmentally Sensitive Fluorophore for Rapid Analysis of the Binding and Internalization Efficiency of Gene Carriers. Bioconjugate Chemistry, 2008, 19, 377-384.	1.8	18
148	Addition of "Charge-Shifting―Side Chains to Linear Poly(ethyleneimine) Enhances Cell Transfection Efficiency. Biomacromolecules, 2008, 9, 2063-2071.	2.6	42
149	Decoration of the Interior Surface of Hollow Spherical Silica Colloids with Pt Nanoparticles. Chemistry of Materials, 2008, 20, 3003-3007.	3.2	19
150	Synthetic Sustained Gene Delivery Systems. Current Topics in Medicinal Chemistry, 2008, 8, 311-330.	1.0	42
151	Quantitative Comparison of Intracellular Unpacking Kinetics of Polyplexes by a Model Constructed From Quantum Dot-FRET. Molecular Therapy, 2008, 16, 324-332.	3.7	145
152	Synthetic Polymers as Drug-Delivery Vehicles in Medicine. Metal-Based Drugs, 2008, 2008, 1-19.	3.8	50
153	Gene therapy for cystic fibrosis. Expert Opinion on Therapeutic Patents, 2008, 18, 929-943.	2.4	6
154	Degradable polymers for gene delivery. , 2009, 2009, 2412-5.		3
155	Cancer-Specific Transgene Expression Mediated by Systemic Injection of Nanoparticles. Cancer Research, 2009, 69, 2655-2662.	0.4	74

#	Article	IF	CITATIONS
156	Peptide- and Aptamer-Functionalized Nanovectors for Targeted Delivery of Therapeutics. Journal of Biomechanical Engineering, 2009, 131, 074005.	0.6	65
157	Enhanced Percolation and Gene Expression in Tumor Hypoxia by PEGylated Polyplex Micelles. Molecular Therapy, 2009, 17, 1404-1410.	3.7	30
158	Delivery of PAR-4 plasmid in vivo via nanoliposomes sensitizes colon tumor cells subcutaneously implanted into nude mice to 5-FU. Cancer Biology and Therapy, 2009, 8, 1831-1837.	1.5	35
159	Synthesis of siRNA Polyplexes Adopting a Combination of RAFT Polymerization and Thiol-ene Chemistry. Australian Journal of Chemistry, 2009, 62, 1344.	0.5	39
160	Fluid Phase Endocytosis Contributes to Transfection of DNA by PEI-25. Molecular Therapy, 2009, 17, 1411-1417.	3.7	74
161	The Drug Targeting and Delivery Approach Applied to Pt-Antitumour Complexes. A Coordination Point of View. Current Medicinal Chemistry, 2009, 16, 4544-4580.	1.2	71
162	Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-α. Journal of Controlled Release, 2009, 134, 214-220.	4.8	70
163	Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. Journal of Controlled Release, 2009, 136, 54-61.	4.8	183
164	A matrix reservoir for improved control of non-viral gene delivery. Journal of Controlled Release, 2009, 136, 220-225.	4.8	66
165	A designer biomimetic vector with a chimeric architecture for targeted gene transfer. Journal of Controlled Release, 2009, 137, 46-53.	4.8	47
166	Biosynthesis and characterization of a novel genetically engineered polymer for targeted gene transfer to cancer cells. Journal of Controlled Release, 2009, 138, 188-196.	4.8	44
167	Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. Journal of Controlled Release, 2009, 138, 160-167.	4.8	66
168	Protein kinase Cα-specific peptide substrate graft-type copolymer for cancer cell-specific gene regulation systems. Journal of Controlled Release, 2009, 139, 133-139.	4.8	22
169	Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. Journal of Controlled Release, 2009, 140, 284-293.	4.8	305
170	Revisit the complexation of PEI and DNA — How to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure?. Journal of Controlled Release, 2009, 140, 40-46.	4.8	143
171	PEl–PEG–Chitosan opolymer oated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection. Advanced Functional Materials, 2009, 19, 2244-2251.	7.8	359
172	Polymeric Materials for Gene Delivery and DNA Vaccination. Advanced Materials, 2009, 21, 847-867.	11.1	241
173	Precision Polymers: Monodisperse, Monomer‣equenceâ€Defined Segments to Target Future Demands of Polymers in Medicine. Advanced Materials, 2009, 21, 3425-3431.	11.1	148

#	Article	IF	CITATIONS
174	Smallâ€Molecule Endâ€Groups of Linear Polymer Determine Cellâ€type Geneâ€Delivery Efficacy. Advanced Materials, 2009, 21, 4947-4951.	11.1	105
176	Design of Cellâ€&urfaceâ€Retained Polymers for Artificial Ligand Display. ChemBioChem, 2009, 10, 230-233.	1.3	12
177	Cationic supramolecules consisting of oligoethylenimineâ€grafted αâ€cyclodextrins threaded on poly(ethylene oxide) for gene delivery. Journal of Biomedical Materials Research - Part A, 2009, 89A, 13-23.	2.1	37
178	Thinâ€film assembly of diethanolamineâ€based lipidic material as potential gene carrier in mouse embryonic neural stem cells. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1-10.	2.1	3
179	Polyplex formation between fourâ€arm poly(ethylene oxide)â€ <i>b</i> â€poly(2â€{diethylamino)ethyl) Tj ETQq0 2009, 91A, 708-718.	0 0 rgBT / 2.1	Overlock 10 21
180	Polymeric Micelles Induced by Interpolymer Complexation. Macromolecular Rapid Communications, 2009, 30, 1871-1888.	2.0	67
181	A Supramolecular Approach for Preparation of Size ontrolled Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 4344-4348.	7.2	172
182	Coaxial electrohydrodynamic spraying of plasmid DNA/polyethylenimine (PEI) polyplexes for enhanced nonviral gene delivery. Biotechnology and Bioengineering, 2010, 105, 834-841.	1.7	22
183	Self-assembling materials for therapeutic delivery. Acta Biomaterialia, 2009, 5, 817-831.	4.1	416
184	Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Applied Surface Science, 2009, 255, 7974-7980.	3.1	250
185	A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials, 2009, 30, 649-657.	5.7	116
186	Cationic shell-crosslinked knedel-like nanoparticles for highly efficient gene and oligonucleotide transfection of mammalian cells. Biomaterials, 2009, 30, 968-977.	5.7	61
187	Bio-mimetic surface engineering of plasmid-loaded nanoparticles for active intracellular trafficking by actin comet-tail motility. Biomaterials, 2009, 30, 951-958.	5.7	23
188	The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides. Biomaterials, 2009, 30, 1954-1961.	5.7	101
189	Polyethylenimine-grafted polycarbonates as biodegradable polycations for gene delivery. Biomaterials, 2009, 30, 4824-4832.	5.7	98
190	Synthesis and properties of a novel methoxy poly(ethylene glycol)-modified galactosylated chitosan derivative. Journal of Materials Science: Materials in Medicine, 2009, 20, 673-680.	1.7	30
191	Use of cyclodextrin and its derivatives for increased transformation efficiency of competent bacterial cells. Applied Microbiology and Biotechnology, 2009, 83, 589-596.	1.7	13
192	Controlling Cellular Uptake by Surface Chemistry, Size, and Surface Topology at the Nanoscale. Small, 2009, 5, 2424-2432.	5.2	220

#	ARTICLE	IF	CITATIONS
193	Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors. Gene Therapy, 2009, 16, 533-546.	2.3	95
194	Novel Reticular Cyclenâ€Based Polymer as Gene Vector in DNA Transfection. Chemical Biology and Drug Design, 2009, 73, 216-224.	1.5	14
195	Synthesis and Biological Applications of Imidazoliumâ€Based Polymerized Ionic Liquid as a Gene Delivery Vector. Chemical Biology and Drug Design, 2009, 74, 282-288.	1.5	80
196	Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 287-297.	1.7	135
197	Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials, 2009, 30, 658-664.	5.7	169
198	A family of bioreducible poly(disulfide amine)s for gene delivery. Biomaterials, 2009, 30, 5804-5814.	5.7	103
199	The gene transfection efficiency of a folate–PEI600–cyclodextrin nanopolymer. Biomaterials, 2009, 30, 5793-5803.	5.7	106
200	Transfection and intracellular trafficking characteristics for poly(amidoamine)s with pendant primary amine in the delivery of plasmid DNA to bone marrow stromal cells. Biomaterials, 2009, 30, 5825-5833.	5.7	30
201	PAMAM–Triamcinolone acetonide conjugate as a nucleus-targeting gene carrier for enhanced transfer activity. Biomaterials, 2009, 30, 6109-6118.	5.7	66
202	Polymeric micelles from poly(ethylene glycol)–poly(amino acid) block copolymer for drug and gene delivery. Journal of the Royal Society Interface, 2009, 6, S325-39.	1.5	181
203	Delivery of Macromolecules Using Arginine-Rich Cell-Penetrating Peptides: Ways to Overcome Endosomal Entrapment. AAPS Journal, 2009, 11, 13-22.	2.2	417
204	Microglia, Cytokines and Pain. , 2009, , 367-386.		Ο
205	Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews, 2009, 61, 158-171.	6.6	1,432
206	Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Advanced Drug Delivery Reviews, 2009, 61, 327-338.	6.6	250
207	Gene therapy of benign gynecological diseases. Advanced Drug Delivery Reviews, 2009, 61, 822-835.	6.6	24
208	Relationship between the Extent of Lipid Substitution on Poly(I-lysine) and the DNA Delivery Efficiency. ACS Applied Materials & amp; Interfaces, 2009, 1, 841-848.	4.0	36
209	Charged Dendrimers on Lipid Bilayer Membranes: Insight through Dissipative Particle Dynamics Simulations. Macromolecules, 2009, 42, 6277-6283.	2.2	34
210	Facile Approach for DNA Encapsulation in Functional Polyion Complex for Triggered Intracellular Gene Delivery: Design, Synthesis, and Mechanism. Langmuir, 2009, 25, 5199-5208.	1.6	35

#	ARTICLE Nucleic Acid Therapeutic Carriers with On-Demand Triggered Release. Bioconjugate Chemistry, 2009,	IF 1.8	CITATIONS
212	20, 1773-1782. Polymer-Enhanced Adenoviral Transduction of CAR-Negative Bladder Cancer Cells. Molecular Pharmaceutics, 2009, 6, 1612-1619.	2.3	32
213	Cytosolic Delivery Mediated via Electrostatic Surface Binding of Protein, Virus, or siRNA Cargos to pH-Responsive Coreâ^'Shell Gel Particles. Biomacromolecules, 2009, 10, 756-765.	2.6	71
214	Dendritic Poly(<scp> </scp> -lysine)- <i>b</i> -Poly(<scp> </scp> -lactide)- <i>b</i> -Dendritic Poly(<scp> </scp> -lysine) Amphiphilic Gene Delivery Vectors: Roles of PLL Dendritic Generation and Enhanced Transgene Efficacies via Termini Modification, Biomacromolecules, 2009, 10, 2284-2293.	2.6	52
215	Carbon Nanosyringe Array as a Platform for Intracellular Delivery. Nano Letters, 2009, 9, 1325-1329.	4.5	117
216			
	13		

#	Article	IF	CITATIONS
230	The role of the disulfide group in disulfide-based polymeric gene carriers. Expert Opinion on Drug Delivery, 2009, 6, 421-439.	2.4	69
231	Facile Synthesis of Multivalent Folate-Block Copolymer Conjugates via Aqueous RAFT Polymerization: Targeted Delivery of siRNA and Subsequent Gene Suppression. Biomacromolecules, 2009, 10, 936-943.	2.6	106
232	Enhanced Cytoplasmic Delivery of siRNA Using a Stabilized Polyion Complex Based on PEGylated Nanogels with a Cross-Linked Polyamine Structure. Biomacromolecules, 2009, 10, 1818-1827.	2.6	93
233	Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chemical Society Reviews, 2009, 38, 925.	18.7	204
234	Functional Protein Delivery into Neurons Using Polymeric Nanoparticles. Journal of Biological Chemistry, 2009, 284, 6972-6981.	1.6	112
235	Folate receptor mediated intracellular gene delivery using the charge changing solid lipid nanoparticles. Drug Delivery, 2009, 16, 341-347.	2.5	29
236	Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology, 2009, 20, 125101.	1.3	143
237	Poly(β-aminoester)s with Pendant Primary Amines for Efficient Gene Delivery. Bioconjugate Chemistry, 2009, 20, 2317-2323.	1.8	24
238	Bioreducible Hyperbranched Poly(amido amine)s for Gene Delivery. Biomacromolecules, 2009, 10, 2921-2927.	2.6	112
239	N/P Ratio Significantly Influences the Transfection Efficiency and Cytotoxicity of a Polyethylenimine/Chitosan/DNA Complex. Biological and Pharmaceutical Bulletin, 2009, 32, 706-710.	0.6	112
240	Intracellular Trafficking, Metabolism and Toxicity of Current Gene Carriers. Current Drug Metabolism, 2009, 10, 885-894.	0.7	16
241	Peptide Mediated siRNA Delivery. Current Topics in Medicinal Chemistry, 2009, 9, 1088-1097.	1.0	25
244	Photochemical Internalization: A New Tool for Gene and Oligonucleotide Delivery. Topics in Current Chemistry, 2010, 296, 251-281.	4.0	28
245	Preparation of CpG ODN-encapsulated Anionic Poly(amino acid) Nanoparticles for Gene Delivery. Chemistry Letters, 2010, 39, 278-279.	0.7	10
246	Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers. Advances in Polymer Science, 2010, , 65-93.	0.4	12
247	Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 2010, 62, 12-27.	6.6	842
248	DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews, 2010, 62, 633-649.	6.6	180
249	Development of recombinant cationic polymers for gene therapy research. Advanced Drug Delivery Reviews 2010 62 1524-1529	6.6	58

#	Article	IF	CITATIONS
250	Polymers for Drug Delivery Systems. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 149-173.	3.3	1,205
251	Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Molecular BioSystems, 2010, 6, 1143-61.	2.9	53
252	Rational Design of Biopolymers via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Symposium Series, 2010, , 49-63.	0.5	2
253	The use of PEGylated poly [2-(N,N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses. Biomaterials, 2010, 31, 115-123.	5.7	77
254	Structure-activity relationships of cationic shell-crosslinked knedel-like nanoparticles: Shell composition and transfection efficiency/cytotoxicity. Biomaterials, 2010, 31, 1805-1813.	5.7	50
255	The therapeutic efficiency of FP-PEA/TAM67 gene complexes via folate receptor-mediated endocytosis in a xenograft mice model. Biomaterials, 2010, 31, 2435-2445.	5.7	35
256	Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials, 2010, 31, 4204-4213.	5.7	146
257	Enhanced transfection with silica-coated polyplexes loading plasmid DNA. Biomaterials, 2010, 31, 4764-4770.	5.7	29
258	Targeted minicircle DNA delivery using folate–poly(ethylene glycol)–polyethylenimine as non-viral carrier. Biomaterials, 2010, 31, 6075-6086.	5.7	79
259	Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials, 2010, 31, 8097-8105.	5.7	122
260	Bioreducible crosslinked low molecular weight branched PEI-PBLG as an efficient gene carrier. Science China Chemistry, 2010, 53, 2490-2496.	4.2	8
261	Expression pattern of testis-specific expressed gene 2 in cryptorchidism model and its role in apoptosis of spermatogenic cells. Journal of Huazhong University of Science and Technology [Medical Sciences], 2010, 30, 193-197.	1.0	2
262	pH-Sensitive Multi-PEGylated Block Copolymer as a Bioresponsive pDNA Delivery Vector. Pharmaceutical Research, 2010, 27, 2260-2273.	1.7	43
263	Effect of Serum on Transfection by Polyethylenimine/Virus-Like Particle Hybrid Gene Delivery Vectors. Pharmaceutical Research, 2010, 27, 2457-2465.	1.7	14
264	A top-down approach for construction of hybrid polymer-virus gene delivery vectors. Journal of Controlled Release, 2010, 144, 39-45.	4.8	34
265	Pegylated immuno-lipopolyplexes: A novel non-viral gene delivery system for liver cancer therapy. Journal of Controlled Release, 2010, 144, 75-81.	4.8	48
266	Didodecyldimethylammonium bromide (DDAB) induces caspase-mediated apoptosis in human leukemia HL-60 cells. Journal of Controlled Release, 2010, 147, 246-252.	4.8	31
267	Delivery of messenger RNA using poly(ethylene imine)–poly(ethylene glycol)-copolymer blends for polyplex formation: Biophysical characterization and in vitro transfection properties. Journal of Controlled Release, 2010, 148, 334-343.	4.8	56

#	Article	IF	CITATIONS
268	Sample purification improves the analysis of nonviral in vivo gene transfection. Plasmid, 2010, 63, 27-30.	0.4	2
269	PEGylation of biodegradable dextran nanogels for siRNA delivery. European Journal of Pharmaceutical Sciences, 2010, 40, 342-351.	1.9	90
270	Acetalâ€Modified Dextran Microparticles with Controlled Degradation Kinetics and Surface Functionality for Gene Delivery in Phagocytic and Nonâ€Phagocytic Cells. Advanced Materials, 2010, 22, 3593-3597.	11.1	101
271	Cooperative, Heparan Sulfateâ€Dependent Cellular Uptake of Dimeric Guanidinoglycosides. ChemBioChem, 2010, 11, 2302-2310.	1.3	29
272	Synthesis of aminated polysorbate 80 for polyplexâ€mediated gene transfection. Biotechnology Progress, 2010, 26, 1528-1533.	1.3	5
273	Dynamic and structural scalings of the complexation betweenpDNA andbPEI in semidilute and low-salt solutions. Biopolymers, 2010, 93, NA-NA.	1.2	6
274	Endosomeâ€disruptive peptides for improving cytosolic delivery of bioactive macromolecules. Biopolymers, 2010, 94, 763-770.	1.2	82
275	Low charge polyvinylamine nanogels offer sustained, lowâ€level gene expression. Journal of Applied Polymer Science, 2010, 118, 1921-1932.	1.3	5
276	Complexes for Efficient Gene Transfection. Macromolecular Rapid Communications, 2010, 31, 1142-1147.	2.0	10
277	Efficient Liposomal Nanocarrierâ€mediated Oligodeoxynucleotide Delivery Involving Dual Use of a Cellâ€Penetrating Peptide as a Packaging and Intracellular Delivery Agent. Macromolecular Rapid Communications, 2010, 31, 1155-1162.	2.0	33
278	pDNA/poly(<scp>L</scp> â€lysine) Polyplexes Functionalized with a pHâ€Sensitive Chargeâ€Conversional Poly(aspartamide) Derivative for Controlled Gene Delivery to Human Umbilical Vein Endothelial Cells. Macromolecular Rapid Communications, 2010, 31, 1181-1186.	2.0	58
279	Efficient DNA Binding and Condensation Using Low Molecular Weight, Low Charge Density Cationic Polymer Amphiphiles. Macromolecular Rapid Communications, 2010, 31, 1378-1382.	2.0	13
280	Confocal microscopy for the analysis of siRNA delivery by polymeric nanoparticles. Microscopy Research and Technique, 2010, 73, 878-885.	1.2	16
281	Investigation of polyethylenimineâ€graftedâ€ŧriamcinolone acetonide as nucleusâ€ŧargeting gene delivery systems. Journal of Gene Medicine, 2010, 12, 669-680.	1.4	18
282	A Novel Temperatureâ€Responsive Polymer as a Gene Vector. Macromolecular Bioscience, 2010, 10, 202-210.	2.1	27
283	Novel Poly(amidoamine)s with Pendant Primary Amines as Highly Efficient Gene Delivery Vectors. Macromolecular Bioscience, 2010, 10, 384-392.	2.1	23
284	Improving Gene Delivery Efficiency of Bioreducible Poly(amidoamine)s via Grafting with Dendritic Poly(amidoamine)s. Macromolecular Bioscience, 2010, 10, 404-414.	2.1	43
285	Synthesis of Linear Polyamines with Different Amine Spacings and their Ability to Form dsDNA/siRNA Complexes Suitable for Transfection. Macromolecular Bioscience, 2010, 10, 1073-1083.	2.1	21

#	Article	IF	CITATIONS
286	Non-viral polyplexes: Scaffold mediated delivery for gene therapy. Progress in Polymer Science, 2010, 35, 441-458.	11.8	107
287	Chitosan as a carrier for targeted delivery of small interfering RNA. International Journal of Pharmaceutics, 2010, 399, 1-11.	2.6	224
288	Tissue-specific gene delivery via nanoparticle coating. Biomaterials, 2010, 31, 998-1006.	5.7	123
289	The relationship between terminal functionalization and molecular weight of a gene delivery polymer and transfection efficacy in mammary epithelial 2-D cultures and 3-D organotypic cultures. Biomaterials, 2010, 31, 8088-8096.	5.7	83
290	Ultrapure chitosan oligomers as carriers for corneal gene transfer. Biomaterials, 2010, 31, 1814-1820.	5.7	86
291	Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers. Biomaterials, 2010, 31, 4186-4193.	5.7	35
292	The influence of mediators of intracellular trafficking on transgene expression efficacy of polymer–plasmid DNA complexes. Biomaterials, 2010, 31, 5894-5902.	5.7	55
293	Multiplexed supramolecular self-assembly for non-viral gene delivery. Biomaterials, 2010, 31, 9117-9127.	5.7	41
294	PEI grafted hyperbranched polymers with polyglycerol as a core for gene delivery. Colloids and Surfaces B: Biointerfaces, 2010, 76, 427-433.	2.5	33
295	21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery. Carbohydrate Polymers, 2010, 79, 277-283.	5.1	60
296	Sol-gel transition behavior of amphiphilic comb-like poly[(PEG-b-PLGA)acrylate] block copolymers. Journal of Polymer Science Part A, 2010, 48, 1287-1297.	2.5	6
297	Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. British Journal of Pharmacology, 2010, 159, 761-771.	2.7	55
298	Efficiency of gene transfection reagents in NG108-15, SH-SY5Y and CHO-K1 cell lines. Methods and Findings in Experimental and Clinical Pharmacology, 2010, 32, 291.	0.8	11
299	NON-CONDENSING POLYMERIC GENE DELIVERY SYSTEMS: PRINCIPLES AND APPLICATIONS. Nano LIFE, 2010, 01, 219-237.	0.6	2
300	Hyperbranched Polyamines for Transfection. Topics in Current Chemistry, 2010, 296, 95-129.	4.0	31
301	Chemically Programmed Polymers for Targeted DNA and siRNA Transfection. Topics in Current Chemistry, 2010, 296, 227-249.	4.0	22
302	Production and characterization of polymer microspheres containing trace explosives using precision particle fabrication technology. Journal of Microencapsulation, 2010, 27, 426-435.	1.2	11
303	Cationic Polymer Optimization for Efficient Gene Delivery. Mini-Reviews in Medicinal Chemistry, 2010, 10, 108-125.	1.1	125

#	Article	IF	CITATIONS
304	Nanoparticles: Functionalization and Multifunctional Applications in Biomedical Sciences. Current Medicinal Chemistry, 2010, 17, 4559-4577.	1.2	261
305	Nanotechnology in ophthalmology. Canadian Journal of Ophthalmology, 2010, 45, 457-476.	0.4	76
306	Efficient Gene Transfection Using Novel Cationic Polymers Poly(hydroxyalkylene imines). Bioconjugate Chemistry, 2010, 21, 1602-1611.	1.8	8
307	Amphiphilic block copolymers with aldehyde and ferrocene-functionalized hydrophobic block and their redox-responsive micelles. Journal of Materials Chemistry, 2010, 20, 8375.	6.7	62
308	Galactosyl conjugated N-succinyl-chitosan-graft-polyethylenimine for targeting gene transfer. Molecular BioSystems, 2010, 6, 2529.	2.9	24
309	Drug Delivery: Nanoscale Devices. , 2010, , 1-9.		4
310	Review Article: Immobilized Molecules Using Biomaterials and Nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 2010, 01, 61-77.	1.0	75
311	Self-assembled filamentous nanostructures for drug/gene delivery applications. Expert Opinion on Drug Delivery, 2010, 7, 341-351.	2.4	27
312	Cyclodextrin functionalized polymers as drug delivery systems. Polymer Chemistry, 2010, 1, 1552.	1.9	158
313	Tailored Design of Au Nanoparticle-siRNA Carriers Utilizing Reversible Additionâ ^{~,} Fragmentation Chain Transfer Polymers. Biomacromolecules, 2010, 11, 1052-1059.	2.6	55
314	Smart siRNA delivery systems based on polymeric nanoassemblies and nanoparticles. Nanomedicine, 2010, 5, 1089-1102.	1.7	68
315	Effects of PEGylation and Acetylation of PAMAM Dendrimers on DNA Binding, Cytotoxicity and <i>in Vitro</i> Transfection Efficiency. Molecular Pharmaceutics, 2010, 7, 1734-1746.	2.3	119
316	Polymeric Nanoparticles Containing Conjugated Phospholipase A2 for Nonviral Gene Delivery. Molecular Pharmaceutics, 2010, 7, 1090-1097.	2.3	4
317	Self-Assembled Nucleic Acid Nanoparticles Capable of Controlled Disassembly in Response to a Single Nucleotide Mismatch. Biomacromolecules, 2010, 11, 1705-1709.	2.6	4
318	Lipase-Catalyzed Synthesis of Poly(amine- <i>co</i> -esters) via Copolymerization of Diester with Amino-Substituted Diol. Biomacromolecules, 2010, 11, 1089-1093.	2.6	30
319	Bioresponsive hyperbranched polymers for siRNA and miRNA delivery. Journal of Drug Targeting, 2010, 18, 812-820.	2.1	43
320	Charge Density and Molecular Weight of Polyphosphoramidate Gene Carrier Are Key Parameters Influencing Its DNA Compaction Ability and Transfection Efficiency. Biomacromolecules, 2010, 11, 3432-3439.	2.6	53
321	Hostâ^'Guest Chemistry of Dendrimerâ^'Drug Complexes. 4. An In-Depth Look into the Binding/Encapsulation of Guanosine Monophosphate by Dendrimers. Journal of Physical Chemistry B, 2010, 114, 7148-7157.	1.2	41

#	Article	IF	CITATIONS
322	Construction of a Star-Shaped Copolymer as a Vector for FGF Receptor-Mediated Gene Delivery In Vitro and In Vivo. Biomacromolecules, 2010, 11, 2221-2229.	2.6	48
323	Advances with the use of bio-inspired vectors towards creation of artificial viruses. Expert Opinion on Drug Delivery, 2010, 7, 497-512.	2.4	27
324	Polyetheylenimine-Polyplexes of Spiegelmer NOX-A50 Directed against Intracellular High Mobility Group Protein A1 (HMGA1) Reduce Tumor Growth in Vivo*. Journal of Biological Chemistry, 2010, 285, 40012-40018.	1.6	32
325	Novel Fusogenic Liposomes for Fluorescent Cell Labeling and Membrane Modification. Bioconjugate Chemistry, 2010, 21, 537-543.	1.8	96
326	Supramolecular Polymers Based on Cyclodextrins for Drug and Gene Delivery. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 207-249.	0.6	9
327	Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polymer Chemistry, 2010, 1, 1171.	1.9	300
328	Nanomedicine in Ophthalmology: The New Frontier. American Journal of Ophthalmology, 2010, 150, 144-162.e2.	1.7	77
329	Nucleic acid therapeutics: concepts for targeted delivery to solid tumors. Therapeutic Delivery, 2010, 1, 91-107.	1.2	8
330	Synthesis and Gene Delivery of Poly(amido amine)s with Different Branched Architecture. Biomacromolecules, 2010, 11, 489-495.	2.6	83
331	Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. Journal of the Royal Society Interface, 2010, 7, S67-82.	1.5	181
332	A highly effective gene delivery vector – hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chemical Communications, 2010, 46, 4698.	2.2	86
333	PEGylated Polyamidoamine Dendrimers with Bis-Aryl Hydrazone Linkages for Enhanced Gene Delivery. Biomacromolecules, 2010, 11, 1940-1947.	2.6	81
334	Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3317-3322.	3.3	278
335	Targeting delivery of anti-TNFÂ oligonucleotide into activated colonic macrophages protects against experimental colitis. Gut, 2010, 59, 470-479.	6.1	76
336	Quantized Folding of Plasmid DNA Condensed with Block Catiomer into Characteristic Rod Structures Promoting Transgene Efficacy. Journal of the American Chemical Society, 2010, 132, 12343-12348.	6.6	83
338	Low Molecular Weight Polyethylenimine Conjugated Gold Nanoparticles as Efficient Gene Vectors. Bioconjugate Chemistry, 2010, 21, 836-843.	1.8	75
339	Dendritic Polyglycerols with Oligoamine Shells Show Low Toxicity and High siRNA Transfection Efficiency in Vitro. Bioconjugate Chemistry, 2010, 21, 1744-1752.	1.8	69
340	Calcium carbonate/CaIP6 nanocomposite particles as gene delivery vehicles for human vascular smooth muscle cells. Journal of Materials Chemistry, 2010, 20, 8050.	6.7	44

#	Article	IF	CITATIONS
341	Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug and Chemical Toxicology, 2010, 33, 357-366.	1.2	78
342	Azlactone-functionalized polymers as reactive templates for parallel polymer synthesis: synthesis and screening of a small library of cationic polymers in the context of DNA delivery. Chemical Communications, 2010, 46, 2016.	2.2	39
343	Taking multicalixarenes into the nanoworld: first third-generation calixarene dendrimer. Chemical Communications, 2010, 46, 8665.	2.2	9
344	Lipid and hydrophobic modification of cationic carriers on route to superior gene vectors. Soft Matter, 2010, 6, 2124.	1.2	82
345	Molecular biophysics underlying gene delivery. Annual Reports on the Progress of Chemistry Section C, 2010, 106, 305.	4.4	2
346	Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary magnetoplexes: a novel strategy for magnetofection. Journal of Materials Chemistry, 2011, 21, 13306.	6.7	54
347	Linear Cationic Click Polymers/DNA Nanoparticles: In Vitro Structure–Activity Relationship and In Vivo Evaluation for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 1153-1161.	1.8	15
348	Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization. Photochemical and Photobiological Sciences, 2011, 10, 1637-1651.	1.6	105
349	A Comparative Evaluation of Disulfide-Linked and Hydrophobically-Modified PEI for Plasmid Delivery. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 873-892.	1.9	24
351	DNA immobilization, delivery and cleavage on solid supports. Journal of Materials Chemistry, 2011, 21, 10602.	6.7	26
352	Electrostatic self-assembly of virus–polymer complexes. Journal of Materials Chemistry, 2011, 21, 2112-2117.	6.7	57
353	Reduction-Degradable Linear Cationic Polymers as Gene Carriers Prepared by Cu(I)-Catalyzed Azideâ ^{-,} 'Alkyne Cycloaddition. Biomacromolecules, 2011, 12, 66-74.	2.6	36
354	Endoprotease-Mediated Intracellular Protein Delivery Using Nanocapsules. ACS Nano, 2011, 5, 1385-1394.	7.3	99
355	Acid-Degradable Cationic Dextran Particles for the Delivery of siRNA Therapeutics. Bioconjugate Chemistry, 2011, 22, 1056-1065.	1.8	142
356	Single Chain Asymmetric Block Copolymers in Poor Solvents. Candidates for Patchy Colloids. Macromolecules, 2011, 44, 6172-6181.	2.2	11
357	Poly(propyleneimine) dendrimers as potential siRNA delivery nanocarrier: from structure to function. International Journal of Nanotechnology, 2011, 8, 36.	0.1	28
358	Degradable Polyelectrolyte Multilayers that Promote the Release of siRNA. Langmuir, 2011, 27, 7868-7876.	1.6	30
359	Clustered Magnetite Nanocrystals Cross-Linked with PEI for Efficient siRNA Delivery. Biomacromolecules, 2011, 12, 457-465.	2.6	94

#	Article	IF	CITATIONS
360	Interactions of a Charged Nanoparticle with a Lipid Membrane: Implications for Gene Delivery. Biophysical Journal, 2011, 100, 1288-1297.	0.2	46
361	Future of local bone regeneration – Protein versus gene therapy. Journal of Cranio-Maxillo-Facial Surgery, 2011, 39, 54-64.	0.7	87
362	Stents as a platform for drug delivery. Expert Opinion on Drug Delivery, 2011, 8, 813-831.	2.4	36
363	Multifunctional, Biocompatible Supramolecular Hydrogelators Consist Only of Nucleobase, Amino Acid, and Glycoside. Journal of the American Chemical Society, 2011, 133, 17513-17518.	6.6	115
364	A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector. Nanotechnology, 2011, 22, 375102.	1.3	24
365	Glutathione-mediated shedding of PEG layers based on disulfide-linked catiomers for DNA delivery. Journal of Materials Chemistry, 2011, 21, 14639.	6.7	54
366	Peptide Nanoparticles for Oligonucleotide Delivery. Progress in Molecular Biology and Translational Science, 2011, 104, 397-426.	0.9	13
367	Self-Catalyzed Degradation of Linear Cationic Poly(2-dimethylaminoethyl acrylate) in Water. Biomacromolecules, 2011, 12, 1876-1882.	2.6	84
368	Self-Catalyzed Degradable Cationic Polymer for Release of DNA. Biomacromolecules, 2011, 12, 3540-3548.	2.6	55
369	Formation and structure of PEI/DNA complexes: quantitative analysis. Soft Matter, 2011, 7, 6967.	1.2	33
370	Tailoring nanocarriers for intracellular protein delivery. Chemical Society Reviews, 2011, 40, 3638.	18.7	504
371	Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale, 2011, 3, 4314.	2.8	151
372	Non-viral Gene Therapy. Fundamental Biomedical Technologies, 2011, , 599-699.	0.2	4
373	RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA. Polymer Chemistry, 2011, 2, 1428.	1.9	63
374	Synergistic Induction of Apoptosis in Brain Cancer Cells by Targeted Codelivery of siRNA and Anticancer Drugs. Molecular Pharmaceutics, 2011, 8, 1955-1961.	2.3	76
375	A supramolecular approach to the preparation of charge-tunable dendritic polycations for efficient gene delivery. Chemical Communications, 2011, 47, 5473-5475.	2.2	81
376	Colloidal Structure and Stability of DNA/Polycations Polyplexes Investigated by Small Angle Scattering. Biomacromolecules, 2011, 12, 4272-4282.	2.6	11
377	Surface modification of crosslinked dextran nanoparticles influences transfection efficiency of dextran–polyethylenimine nanocomposites. Soft Matter, 2011, 7, 11360.	1.2	23

#	Article	IF	CITATIONS
378	Engineered Bioactive Molecules. , 2011, , 131-145.		1
379	Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery. Advances in Polymer Science, 2011, , 1-29.	0.4	6
380	Effect of Chain Length on Cytotoxicity and Endocytosis of Cationic Polymers. Macromolecules, 2011, 44, 2050-2057.	2.2	105
382	Galactosylated <i>N</i> -2-Hydroxypropyl Methacrylamide- <i>b</i> - <i>N</i> -3-Guanidinopropyl Methacrylamide Block Copolymers as Hepatocyte-Targeting Gene Carriers. Bioconjugate Chemistry, 2011, 22, 1503-1512.	1.8	28
383	Poly(2-aminoethyl methacrylate) with Well-Defined Chain Length for DNA Vaccine Delivery to Dendritic Cells. Biomacromolecules, 2011, 12, 4373-4385.	2.6	62
384	A supramolecular route for reversible protein-polymer conjugation. Chemical Science, 2011, 2, 279-286.	3.7	111
385	Efficient Orthogonal Bioconjugation of Dendrimers for Synthesis of Bioactive Nanoparticles. Bioconjugate Chemistry, 2011, 22, 1103-1114.	1.8	29
386	Engineering Viruses For Gene Therapy. , 2011, , 17-33.		1
387	Odd–Even Effect of Repeating Aminoethylene Units in the Side Chain of N-Substituted Polyaspartamides on Gene Transfection Profiles. Journal of the American Chemical Society, 2011, 133, 15524-15532.	6.6	199
388	Self-Assembled Multivalent DNA Nanostructures for Noninvasive Intracellular Delivery of Immunostimulatory CpG Oligonucleotides. ACS Nano, 2011, 5, 8783-8789.	7.3	656
389	Understanding the Effect of Polylysine Architecture on DNA Binding Using Molecular Dynamics Simulations. Biomacromolecules, 2011, 12, 3870-3879.	2.6	78
390	Uptake and Intracellular Fate of Multifunctional Nanoparticles: A Comparison between Lipoplexes and Polyplexes via Quantum Dot Mediated Förster Resonance Energy Transfer. Molecular Pharmaceutics, 2011, 8, 1662-1668.	2.3	29
391	Cyclodextrin-based gene delivery systems. Chemical Society Reviews, 2011, 40, 1586-1608.	18.7	371
392	Reconfiguring polylysine architectures for controlling polyplex binding and non-viral transfection. Biomaterials, 2011, 32, 2432-2444.	5.7	50
393	Chitosan and Its Modifications: Are They Possible Vehicles for Gene Therapy?. , 0, , .		1
395	Triolein-based polycation lipid nanocarrier for efficient gene delivery: characteristics and mechanism. International Journal of Nanomedicine, 2011, 6, 2235.	3.3	3
396	The Art of Immobilization Using Biopolymers, Biomaterials and Nanobiotechnology. , 0, , .		4
397	Nanomedicine Based Approaches to Cancer Diagonsis and Therapy. , 0, , .		2

ARTICLE IF CITATIONS Medical Polymer-Based Gene Therapy., 2011,,. 398 1 The Grand Challenge for Integrative and Regenerative Pharmacology. Frontiers in Pharmacology, 2011, 399 1.6 2, 5. 400 Non-viral Gene Delivery and Therapeutics Targeting to Brain. Current Nanoscience, 2011, 7, 55-70. 7 0.7 PEGylated bioreducible poly(amido amine)s for non-viral gene delivery. Materials Science and 29 Engineering C, 2011, 31, 1330-1337. Revisit complexation between DNA and polyethylenimine â€" Effect of uncomplexed chains free in the 402 4.8 155 solution mixture on gene transfection. Journal of Controlled Release, 2011, 155, 67-76. Polyamine/DNA polyplexes with acid-degradable polymeric shell as structurally and functionally 4.8 virús-mimicking nonviral vectors. Journal of Controlled Release, 2011, 150, 287-297. Rational design of biodegradable cationic polycarbonates for gene delivery. Journal of Controlled 404 4.8 66 Release, 2011, 152, 120-126. Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery. 405 4.8 Journal of Controlled Release, 2011, 152, 90-98. In situ quantitative monitoring of polyplexes and polyplex micelles in the blood circulation using 406 intravital real-time confocal laser scanning microscopy. Journal of Controlled Release, 2011, 151, 4.8 110 104-109. Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery 4.8 systems. Journal of Controlled Release, 2011, 152, 110-119. Dual-targeted polyplexes: One step towards a synthetic virus for cancer gene therapy. Journal of 408 4.8 96 Controlled Release, 2011, 152, 127-134. Revisit complexation between DNA and polyethylenimine â€" Effect of length of free polycationic chains 409 4.8 132 on gene transfection. Journal of Controlled Release, 2011, 152, 143-151. A novel glutathione modified chitosan conjugate for efficient gene delivery. Journal of Controlled 410 4.8 60 Release, 2011, 154, 177-188. $Poly(\hat{l}^2-amino\ ester)\hat{a}\in DNA\ complexes:$ Time-resolved fluorescence and cellular transfection studies. Journal of Controlled Release, 2011, 154, 171-176. 4.8 Development of lysineâ€"histidine dendron modified chitosan for improving transfection efficiency in 412 42 4.8 HEK293 cells. Journal of Controlled Release, 2011, 156, 195-202. Poly(ethylene oxide) grafted with low molecular weight polyethylenimines for non-viral gene 4.8 transfer. Journal of Controlled Release, 2011, 152, e186-e187. Elucidating the interplay between DNA-condensing and free polycations in gene transfection through 414 5.7103 a mechanistic study of linear and branched PEI. Biomaterials, 2011, 32, 8626-8634. Non-viral gene transfection inÂvitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine. Biomaterials, 2011, 32, 9109-9119.

#	Article	IF	CITATIONS
416	PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: Tumor immunotoxicity in B16F10 melanoma. Biomaterials, 2011, 32, 9839-9847.	5.7	30
417	Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics?. Biotechnology Advances, 2011, 29, 402-417.	6.0	98
418	<i>In Vitro</i> and <i>in Vivo</i> mRNA Delivery Using Lipid-Enveloped pH-Responsive Polymer Nanoparticles. Molecular Pharmaceutics, 2011, 8, 774-787.	2.3	226
419	Delivery of Nucleic Acid Drugs. Advances in Polymer Science, 2011, , 95-134.	0.4	27
420	Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opinion on Drug Delivery, 2011, 8, 1455-1468.	2.4	90
421	Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 772-788.	6.6	161
422	Controlling drug nanoparticle formation by rapid precipitation. Advanced Drug Delivery Reviews, 2011, 63, 417-426.	6.6	317
423	Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Advanced Drug Delivery Reviews, 2011, 63, 943-955.	6.6	257
424	Poly(I:C)-Mediated Tumor Growth Suppression in EGF-Receptor Overexpressing Tumors Using EGF-Polyethylene Glycol-Linear Polyethylenimine as Carrier. Pharmaceutical Research, 2011, 28, 731-741.	1.7	77
425	Non-viral Delivery of Inductive and Suppressive Genes to Adipose-Derived Stem Cells for Osteogenic Differentiation. Pharmaceutical Research, 2011, 28, 1328-1337.	1.7	26
426	New approach in synthesis, characterization and release study of pH-sensitive polymeric micelles, based on PLA-Lys-b-PEGm, conjugated with doxorubicin. Journal of Nanoparticle Research, 2011, 13, 6725-6736.	0.8	26
428	Polyrotaxanes for applications in life science and biotechnology. Applied Microbiology and Biotechnology, 2011, 90, 427-443.	1.7	95
429	Poly(β-amino amine) cross-linked PEIs as highly efficient gene vectors. Acta Biomaterialia, 2011, 7, 2200-2208.	4.1	24
430	Delivery of plasmid DNA to vascular tissue in vivo using catheter balloons coated with polyelectrolyte multilayers. Biomaterials, 2011, 32, 610-618.	5.7	38
431	Polyplex micelles prepared from ω-cholesteryl PEG-polycation block copolymers for systemic gene delivery. Biomaterials, 2011, 32, 652-663.	5.7	101
432	A single-monomer derived linear-like PEI-co-PEG for siRNA delivery and silencing. Biomaterials, 2011, 32, 3647-3653.	5.7	29
433	Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency. Biomaterials, 2011, 32, 4594-4603.	5.7	44
434	Chip-based impedance measurement on single cells for monitoring sub-toxic effects on cell membranes. Biosensors and Bioelectronics, 2011, 26, 3405-3412.	5.3	21

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
435	Current progress of polymeric gene vectors. Science China Life Sciences, 2011, 54, 1064-1067.	2.3	1
436	Synthesis and properties of Polycaprolactoneâ€ <i>graft</i> â€poly(2â€(dimethylamino)ethyl) Tj ETQq1 1 (Polymers for Advanced Technologies, 2011, 22, 1925-1930.	0.784314 rgBT 1.6	/Overlock 10 11
437	Water soluble poly(histamine acrylamide) with superior buffer capacity mediates efficient and nontoxic in vitro gene transfection. Journal of Polymer Science Part A, 2011, 49, 3366-3373.	2.5	10
438	Folic acidâ€conjugated depolymerized quaternized chitosan as potential targeted gene delivery vector. Polymer International, 2011, 60, 1097-1106.	1.6	12
439	Design, Assembly, and Activity of Antisense DNA Nanostructures. Small, 2011, 7, 3529-3535.	5.2	94
440	Polymerâ€based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 400-420.	3.3	61
441	Controlled Release of DNA From Photoresponsive Hyperbranched Polyglycerols with Oligoamine Shells. Macromolecular Bioscience, 2011, 11, 1736-1746.	2.1	46
442	Polymers for Control Freaks: Sequenceâ€Defined Poly(amidoamine)s and Their Biomedical Applications. Macromolecular Chemistry and Physics, 2011, 212, 8-13.	1.1	69
443	Synthesis and Properties of Novel Thermoresponsive Polyesters with Oligo(ethylene glycol) Pendent Chains. Macromolecular Chemistry and Physics, 2011, 212, 2626-2632.	1.1	28
444	Novel Biodegradable Block Copolymers of Poly(ethylene glycol) (PEG) and Cationic Polycarbonate: Effects of PEG Configuration on Gene Delivery. Macromolecular Rapid Communications, 2011, 32, 1826-1833.	2.0	41
445	Polymers in Drug Delivery—State of the Art and Future Trends. Advanced Engineering Materials, 2011, 13, B61.	1.6	105
446	Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery Across Biological Barriers. Advanced Materials, 2011, 23, H217-47.	11.1	432
447	Enzymeâ€synthesized poly(amineâ€ <i>co</i> â€esters) as nonviral vectors for gene delivery. Journal of Biomedical Materials Research - Part A, 2011, 96A, 456-465.	2.1	41
448	Challenges facing colloidal delivery systems: From synthesis to the clinic. Current Opinion in Colloid and Interface Science, 2011, 16, 171-181.	3.4	94
449	Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression. Acta Biomaterialia, 2011, 7, 2209-2217.	4.1	51
450	The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomaterialia, 2011, 7, 2846-2856.	4.1	46
451	Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials, 2011, 32, 528-537.	5.7	126
452	Polyethylenimine-grafted copolymer of poly(l-lysine) and poly(ethylene glycol) for gene delivery. Biomaterials, 2011, 32, 1694-1705.	5.7	111

#	Article	IF	CITATIONS
453	The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy. Biomaterials, 2011, 32, 2106-2116.	5.7	69
454	Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials, 2011, 32, 4630-4638.	5.7	118
455	Multifunctional silica nanotubes for dual-modality gene delivery and MR imaging. Biomaterials, 2011, 32, 3042-3052.	5.7	44
456	Gold/cationic polymer nano-scaffolds mediated transfection for non-viral gene delivery system. Carbohydrate Polymers, 2011, 84, 216-222.	5.1	20
457	Light and host–guest inclusion mediated salmon sperm DNA/surfactant interactions. Journal of Colloid and Interface Science, 2011, 362, 430-438.	5.0	15
458	Synthesis and characterization of new poly(ortho ester amidine) copolymers for non-viral gene delivery. Polymer, 2011, 52, 921-932.	1.8	51
459	Recognition and Suppression of Transfected Plasmids by Protein ZNF511-PRAP1, a Potential Molecular Barrier to Transgene Expression. Molecular Therapy, 2011, 19, 1478-1486.	3.7	2
460	Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy. Journal of Nanomaterials, 2011, 2011, 1-12.	1.5	129
461	A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo. Molecular Therapy, 2011, 19, 1457-1467.	3.7	94
462	Self-Assembly of Poly(L-glutamate)-block-poly(2-(diethylamino)ethyl methacrylate) in Aqueous Solutions. Australian Journal of Chemistry, 2011, 64, 1247.	0.5	3
463	Engineering Interfaces for Infection Immunity. , 2011, , 295-314.		1
464	Fabrication of Gene Carrier via Self-assembly of Poly[(dimethylamino)ethyl Methacrylate] and Poly(aspartic acid)- <i>grafted</i> -Poly(ethylene glycol). Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 862-871.	1.2	5
465	pH-Responsive Hyperbranched Copolymers from One-Pot RAFT Copolymerization of Propylacrylic Acid and Poly(ethylene glycol diacrylate). Advances in Science and Technology, 0, , .	0.2	1
466	We still have a Long Way to go to Effectively Deliver Genes!. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 82-91.	0.7	45
467	FGF Receptor-Mediated Gene Delivery Using Ligands Coupled to PEI-Î ² -CyD. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-7.	3.0	9
468	Design and Development of Degradable Polyethylenimines for Delivery of DNA and Small Interfering RNA: An Updated Review. ISRN Materials Science, 2012, 2012, 1-24.	1.0	25
469	A controlled biochemical release device with embedded nanofluidic channels. Applied Physics Letters, 2012, 100, 153510.	1.5	12
470	Studies on Guanidinated N-3-Aminopropyl Methacrylamide-N-2-Hydroxypropyl Methacrylamide Co-polymers as Gene Delivery Carrier. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 133-152.	1.9	4

#	Article	IF	CITATIONS
471	Critical adsorption controls translocation of polymer chains through lipid bilayers and permeation of solvent. Europhysics Letters, 2012, 98, 18003.	0.7	31
472	Minimum free energy paths for a nanoparticle crossing the lipid membrane. Soft Matter, 2012, 8, 12066.	1.2	21
473	Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 465-474.	2.0	14
474	A library of strictly linear poly(ethylene glycol)–poly(ethylene imine) diblock copolymers to perform structure–function relationship of non-viral gene carriers. Journal of Controlled Release, 2012, 162, 446-455.	4.8	40
475	Characterization of Degradable Polyelectrolyte Multilayers Fabricated Using DNA and a Fluorescently-LabeledÂPoly(β-amino ester): Shedding Light on the Role of the Cationic Polymer in Promoting Surface-Mediated Gene Delivery. Biomacromolecules, 2012, 13, 542-552.	2.6	31
476	Impact of polyplex micelles installed with cyclic RGD peptide as ligand on gene delivery to vascular lesions. Gene Therapy, 2012, 19, 61-69.	2.3	49
477	NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson's disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1052-1069.	1.7	49
478	Receptor Mediated Delivery Systems for Cancer Therapeutics. , 2012, , 329-355.		6
479	Oligonucleotide Conjugates: Rationale, Synthesis, and Applications. , 2012, , 85-120.		3
480	Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for DNA, shRNA and siRNA. Pharmaceutics, 2012, 4, 130-148.	2.0	30
481	Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?. Molecular Pharmaceutics, 2012, 9, 523-538.	2.3	98
482	Controlling Mesenchymal Stem Cell Gene Expression Using Polymer-Mediated Delivery of siRNA. Biomacromolecules, 2012, 13, 3841-3849.	2.6	37
483	Solid-phase-assisted synthesis of targeting peptide–PEG–oligo(ethane amino)amides for receptor-mediated gene delivery. Organic and Biomolecular Chemistry, 2012, 10, 3258.	1.5	65
484	Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. International Journal of Nanomedicine, 2012, 7, 2181.	3.3	151
485	Multifunctional nanoparticles of Fe ₃ O ₄ @SiO ₂ (FITC)/PAH conjugated the recombinant plasmid of pIRSE2-EGFP/VEGF ₁₆₅ with dual functions for gene delivery and cellular imaging. Expert Opinion on Drug Delivery, 2012, 9, 1197-1207.	2.4	23
486	Clucan Particles as Carriers of Nanoparticles for Macrophage-Targeted Delivery. ACS Symposium Series, 2012, , 57-79.	0.5	13
487	Nanostructures Conjugated to Nucleic Acids and Their Applications. ACS Symposium Series, 2012, , 259-288.	0.5	0
488	Novel gene transfer vectors based on artificial recombinant multi-functional oligopeptides. International Journal of Pharmaceutics, 2012, 436, 555-563.	2.6	11

ARTICLE IF CITATIONS Oral delivery of small RNA and DNA. Journal of Controlled Release, 2012, 162, 438-445. 489 4.8 65 Emerging roles for biomaterials in the treatment of liver disease. Expert Review of Medical Devices, 1.4 <u>2012, 9, 181-188.</u> Geneâ€carried chitosanâ€linked polyethylenimine induced high gene transfection efficiency on dendritic 491 1.4 22 cells. Biotechnology and Applied Biochemistry, 2012, 59, 346-352. Multifunctional Nonâ€Viral Delivery Systems Based on Conjugated Polymers. Macromolecular Bioscience, 2012, 12, 1600-1614. pHâ€Responsive Hyperbranched Copolymers from Oneâ€Pot RAFT Copolymerization. Macromolecular 493 1.7 10 Materials and Engineering, 2012, 297, 1175-1183. Synthesis and evaluation of N-(2,3-dihydroxypropyl)-PEIs as efficient vectors for nucleic acids. Molecular BioSystems, 2012, 8, 1426. 494 Biodegradable arginine-based poly(ether ester amide)s as a non-viral DNA delivery vector and their 495 6.7 71 structure–function study. Journal of Materials Chemistry, 2012, 22, 18983. PLL/pDNA/P(His-co-DMAEL) ternary complexes: assembly, stability and gene delivery. Journal of 496 6.7 36 Materials Chemistry, 2012, 22, 10743. Designing pH-sensitive gemini nanoparticles for non-viral gene delivery into keratinocytes. Journal of 497 6.7 46 Materials Chemistry, 2012, 22, 6232. Structure and stability of the complex formed by oligonucleotides. Physical Chemistry Chemical 1.3 Physics, 2012, 14, 7352. The effects of a multifunctional oligomer and its incorporation strategies on the gene delivery 499 2.2 26 efficiency of poly(l-lysine). Chemical Communications, 2012, 48, 4594. Colloidal stability and "in vitro―antitumor targeting ability of lipid nanocapsules coated by folate–chitosan conjugates. Journal of Bioactive and Compatible Polymers, 2012, 27, 388-404. 0.8 Thermo-responsive transfection of DNA complexes with well-defined chitosan terpolymers. Soft 501 1.2 12 Matter, 2012, 8, 2518. Lipophilic and cationic triphenylphosphonium grafted linear polyethylenimine polymers for efficient 6.7 gene delivery to mammalian célls. Journal of Materials Chemistry, 2012, 22, 25427. Neuron-Targeted Copolymers with Sheddable Shielding Blocks Synthesized Using a Reducible, 503 6.6 65 RAFT-ATRP Double-Head Agent. Journal of the American Chemical Society, 2012, 134, 16554-16557. Drug-Initiated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer–Drug 504 2.2 Conjugates. Macromolecules, 2012, 45, 2225-2232. Micro and Nanotechnology for Intracellular Delivery Therapy Protein. Nano-Micro Letters, 2012, 4, 505 14.4 18 118-123. Poly(ethylene oxide) Grafted with Short Polyethylenimine Gives DNA Polyplexes with Superior Colloidal Stability, Low Cytotoxicity, and Potent In Vitro Gene Transfection under Serum Conditions. Biomacromolecules, 2012, 13, 881-888.

#	Article	IF	CITATIONS
507	Incorporation of Thrombin Cleavage Peptide into a Protein Cage for Constructing a Protease-Responsive Multifunctional Delivery Nanoplatform. Biomacromolecules, 2012, 13, 4057-4064.	2.6	33
508	Degradation versus Self-Assembly of Block Co-polymer Micelles. Langmuir, 2012, 28, 3071-3076.	1.6	8
509	Effect of Thiol Pendant Conjugates on Plasmid DNA Binding, Release, and Stability of Polymeric Delivery Vectors. Biomacromolecules, 2012, 13, 1331-1339.	2.6	22
510	Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Progress in Polymer Science, 2012, 37, 1130-1176.	11.8	82
511	Spinal Interleukin-10 Therapy to Treat Peripheral Neuropathic Pain. Neuromodulation, 2012, 15, 520-526.	0.4	73
512	Well-Defined Cholesterol Polymers with pH-Controlled Membrane Switching Activity. Biomacromolecules, 2012, 13, 3064-3075.	2.6	39
513	Dual Environment-Responsive Polyplex Carriers for Enhanced Intracellular Delivery of Plasmid DNA. Biomacromolecules, 2012, 13, 3641-3649.	2.6	58
514	Information, Noise and Communication: Thresholds as Controlling Elements in Development. Signaling and Communication in Plants, 2012, , 11-35.	0.5	13
515	A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy. Cancer Gene Therapy, 2012, 19, 741-748.	2.2	83
516	Interplay of cell adhesion matrix stiffness and cell type for non-viral gene delivery. Acta Biomaterialia, 2012, 8, 2612-2619.	4.1	18
517	Glycopolymer modification on physicochemical and biological properties of poly(l-lysine) for gene delivery. International Journal of Biological Macromolecules, 2012, 50, 965-973.	3.6	34
518	Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. Journal of Controlled Release, 2012, 162, 242-254.	4.8	28
519	Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. Journal of Controlled Release, 2012, 162, 233-241.	4.8	83
520	The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 502-511.	1.4	80
521	Bioreducible polyether-based pDNA ternary polyplexes: Balancing particle stability and transfection efficiency. Colloids and Surfaces B: Biointerfaces, 2012, 99, 27-37.	2.5	22
522	Expert opinion: Responsive polymer nanoparticles in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 241-246.	2.0	180
523	Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: In vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 248-256.	2.0	124
524	Mesenchymal Stem Cells as a Novel Carrier for Targeted Delivery of Gene in Cancer Therapy Based on Nonviral Transfection. Molecular Pharmaceutics, 2012, 9, 2698-2709.	2.3	77

#	Article	IF	CITATIONS
525	Polyelectrolyte Complexes of DNA and Linear PEI: Formation, Composition and Properties. Langmuir, 2012, 28, 16167-16176.	1.6	67
526	Development of Proteinâ€Cageâ€Based Delivery Nanoplatforms by Polyvalently Displaying <i>β</i> â€Cyclodextrins on the Surface of Ferritins Through Copper(I)â€Catalyzed Azide/Alkyne Cycloaddition. Macromolecular Bioscience, 2012, 12, 1452-1458.	2.1	19
527	Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. Journal of Nanobiotechnology, 2012, 10, 39.	4.2	116
528	Establishment of a method to determine the magnetic particles in mouse tissues. Nanoscale Research Letters, 2012, 7, 665.	3.1	7
529	Extracellular matrix modulates non-viral gene transfer to mouse mesenchymal stem cells. Soft Matter, 2012, 8, 1451-1459.	1.2	13
530	Current status of gene delivery: spotlight on nanomaterial-polymer hybrids. Journal of Drug Targeting, 2012, 20, 648-666.	2.1	14
531	Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture. ACS Nano, 2012, 6, 7850-7857.	7.3	101
532	Biomimetic Polymers (for Biomedical Applications). , 2012, , 339-361.		1
533	Application of Living Free Radical Polymerization for Nucleic Acid Delivery. Accounts of Chemical Research, 2012, 45, 1089-1099.	7.6	111
534	Exploring low-positively charged thermosensitive copolymers as gene delivery vectors. Soft Matter, 2012, 8, 1385-1394.	1.2	25
536	Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length. Amino Acids, 2012, 43, 1203-1215.	1.2	24
537	PDMAEMA based gene delivery materials. Materials Today, 2012, 15, 388-393.	8.3	274
538	Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: Impact of building blocks on efficacy. Journal of Controlled Release, 2012, 164, 380-386.	4.8	59
539	Microenvironments and different nanoparticle dynamics in living cells revealed by a standard nanoparticle. Journal of Controlled Release, 2012, 163, 315-321.	4.8	14
540	Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities. Biomaterials, 2012, 33, 8557-8568.	5.7	72
541	Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors. International Journal of Nanomedicine, 2012, 7, 4661.	3.3	28
542	Streptavidin-Conjugated C3 Protein Mediates the Delivery of Mono-Biotinylated RNAse A into Macrophages. Bioconjugate Chemistry, 2012, 23, 1426-1436.	1.8	16
543	Synthesis, self-assembly and stimuli responsive properties of cholesterol conjugated polymers. Polymer Chemistry, 2012, 3, 2057.	1.9	29

#	Article	IF	CITATIONS
544	Coarse-Grained Simulation Studies of Effects of Polycation Architecture on Structure of the Polycation and Polycation $\hat{e}^{\text{"Polyanion}}$ Complexes. Macromolecules, 2012, 45, 8083-8096.	2.2	20
545	Multifunctional Giant Amphiphiles via simultaneous copper(<scp>i</scp>)-catalyzed azide–alkynecycloaddition and living radical polymerization. Chemical Communications, 2012, 48, 1586-1588.	2.2	30
546	Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Therapy, 2012, 19, 358-366.	2.2	32
547	New Cationic Biodegradable Poly(Urethane-co-Ester): Synthesis, Structural Characterization, Modification and Gene Delivery. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 27-41.	1.9	1
548	Noninvasive Detection of Passively Targeted Poly(ethylene glycol) Nanocarriers in Tumors. Molecular Pharmaceutics, 2012, 9, 144-155.	2.3	22
549	Amphoteric nano-, micro-, and macrogels, membranes, and thin films. Soft Matter, 2012, 8, 9302.	1.2	77
551	Intracellular Delivery and Trafficking Dynamics of a Lymphoma-Targeting Antibody–Polymer Conjugate. Molecular Pharmaceutics, 2012, 9, 3506-3514.	2.3	38
552	Dual Peptide Nucleic Acid- and Peptide-Functionalized Shell Cross-Linked Nanoparticles Designed to Target mRNA toward the Diagnosis and Treatment of Acute Lung Injury. Bioconjugate Chemistry, 202 23, 574-585.	12, 1.8	39
553	Reversible <i>versus</i> Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano, 2012, 6, 2532-2541.	7.3	431
554	RVG peptide as transfection reagent for specific cdk4 gene silencing <i>in vitro</i> and <i>in vivo</i> . Journal of Drug Targeting, 2012, 20, 381-388.	2.1	8
555	Surface modification of magnetic nanoparticles for stem celllabeling. Soft Matter, 2012, 8, 2057-206	9. 1.2	43
556	Suppression of lung cancer progression by biocompatible glycerol triacrylate– spermine-mediated delivery of shAkt1. International Journal of Nanomedicine, 2012, 7, 2293.	3.3	21
557	Promising plasmid DNA vector based on APTES-modified silica nanoparticles. International Journal of Nanomedicine, 2012, 7, 1061.	3.3	30
558	Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery. International Journal of Nanomedicine, 2012, 7, 4961.	3.3	21
559	Endosomal Escape Pathways for Non-Viral Nucleic Acid Delivery Systems. , 0, , .		46
560	Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. International Journal of Nanomedicine, 2012, 7, 693.	3.3	45
561	Electrospray Production of Nanoparticles for Drug/Nucleic Acid Delivery. , 0, , .		1
563	Bioreducible Cationic Polymers for Gene Transfection. , 2012, , .		1

#	Article	IF	CITATIONS
564	Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity. International Journal of Nanomedicine, 2012, 7, 3191.	3.3	9
565	A comparative study of three ternary complexes prepared in different mixing orders of siRNA/redox-responsive hyperbranched poly (amido amine)/hyaluronic acid. International Journal of Nanomedicine, 2012, 7, 3837.	3.3	14
566	Synthetic polyspermine imidazole-4, 5-amide as an efficient and cytotoxicity-free gene delivery system. International Journal of Nanomedicine, 2012, 7, 3813.	3.3	19
567	Regenerative nanomedicine and the treatment of degenerative retinal diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 113-137.	3.3	23
568	Hyperbranched polymers as delivery vectors for oligonucleotides. Journal of Polymer Science Part A, 2012, 50, 2585-2595.	2.5	42
569	Molecular captain: A lightâ€sensitive linker molecule in poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf nanoâ€assembly, conformation, and solâ€gel transition. Journal of Polymer Science Part A, 2012, 50, 3184-3191.	50 552 To 2.5	d (glycol)â€ 14
570	Engineering Particles for Therapeutic Delivery: Prospects and Challenges. ACS Nano, 2012, 6, 3663-3669.	7.3	160
571	Cell-penetrating peptides for the delivery of nucleic acids. Expert Opinion on Drug Delivery, 2012, 9, 823-836.	2.4	125
572	Modular Synthesis of Folate Conjugated Ternary Copolymers: Polyethylenimine- <i>graft</i> -Polycaprolactone- <i>block</i> -Poly(ethylene glycol)-Folate for Targeted Gene Delivery. Bioconjugate Chemistry, 2012, 23, 1211-1220.	1.8	56
573	Corneal gene delivery: chitosan oligomer as a carrier of CpG rich, CpG free or S/MAR plasmid DNA. Journal of Gene Medicine, 2012, 14, 100-108.	1.4	33
574	Truncated peptides from melittin and its analog with high lytic activity at endosomal pH enhance branched polyethylenimineâ€mediated gene transfection. Journal of Gene Medicine, 2012, 14, 241-250.	1.4	24
575	Folic Acidâ€Decorated Nanocomposites Prepared by a Simple Solvent Displacement Method. Macromolecular Bioscience, 2012, 12, 438-445.	2.1	5
576	Low Charge Density Cationic Polymers for Gene Delivery: Exploring the Influence of Structural Elements on in vitro Transfection. Macromolecular Bioscience, 2012, 12, 840-848.	2.1	12
577	Hyperbranched Polylysine: A Versatile, Biodegradable Transfection Agent for the Production of Recombinant Proteins by Transient Gene Expression and the Transfection of Primary Cells. Macromolecular Bioscience, 2012, 12, 794-804.	2.1	22
578	Phenylboronicâ€Acidâ€Modified Amphiphilic Polyether as a Neutral Gene Vector. Macromolecular Bioscience, 2012, 12, 962-969.	2.1	12
579	Raman Microscopy for Noninvasive Imaging of Pharmaceutical Nanocarriers: Intracellular Distribution of Cationic Liposomes of Different Composition. Molecular Pharmaceutics, 2012, 9, 930-936.	2.3	43
580	Wellâ€Defined Degradable Cationic Polylactide as Nanocarrier for the Delivery of siRNA to Silence Angiogenesis in Prostate Cancer. Advanced Healthcare Materials, 2012, 1, 751-761.	3.9	72
581	Advanced Materials for Coâ€Delivery of Drugs and Genes in Cancer Therapy. Advanced Healthcare Materials, 2012, 1, 373-392.	3.9	123

#	Article	IF	CITATIONS
583	Polyspermine Imidazoleâ€4,5â€imine, a Chemically Dynamic and Biologically Responsive Carrier System for Intracellular Delivery of siRNA. Angewandte Chemie - International Edition, 2012, 51, 7938-7941.	7.2	52
584	Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chemical Society Reviews, 2012, 41, 4755.	18.7	268
585	Polymers for siRNA Delivery: Inspired by Viruses to be Targeted, Dynamic, and Precise. Accounts of Chemical Research, 2012, 45, 1005-1013.	7.6	293
586	How Does DNA Complex with Polyethylenimine with Different Chain Lengths and Topologies in Their Aqueous Solution Mixtures?. Macromolecules, 2012, 45, 4346-4353.	2.2	55
587	pH-sensitive degradable hydrophobe modified 1.8 kDa branched polyethylenimine as "artificial viruses― for safe and efficient intracellular gene transfection. Macromolecular Research, 2012, 20, 327-334.	1.0	15
588	Galactose Decorated Acid-Labile Nanoparticles Encapsulating Quantum Dots for Enhanced Cellular Uptake and Subcellular Localization. Pharmaceutical Research, 2012, 29, 2167-2179.	1.7	17
589	Nonviral delivery of genetic medicine for therapeutic angiogenesis. Advanced Drug Delivery Reviews, 2012, 64, 40-52.	6.6	64
590	The target gene carrying validity to HePG2 cells with the brush-like glutathione modified chitosan compound. Carbohydrate Polymers, 2012, 89, 46-53.	5.1	6
591	Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery. Colloids and Surfaces B: Biointerfaces, 2012, 91, 168-174.	2.5	101
592	Amphiphilic and biodegradable hy-PEI-g-PCL-b-PEG copolymers efficiently mediate transgene expression depending on their graft density. International Journal of Pharmaceutics, 2012, 427, 80-87.	2.6	42
593	Design of multifunctional non-viral gene vectors to overcome physiological barriers: Dilemmas and strategies. International Journal of Pharmaceutics, 2012, 427, 3-20.	2.6	232
594	Novel PLA modification of organic microcontainers based on ring opening polymerization: Synthesis, characterization, biocompatibility and drug loading/release properties. International Journal of Pharmaceutics, 2012, 428, 134-142.	2.6	33
595	Polymerized spermine as a novel polycationic nucleic acid carrier system. International Journal of Pharmaceutics, 2012, 434, 437-443.	2.6	15
596	Enhanced gene expression promoted by the quantized folding of pDNA within polyplex micelles. Biomaterials, 2012, 33, 325-332.	5.7	52
597	Self-assembled carboxymethyl poly (l-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection. Biomaterials, 2012, 33, 644-658.	5.7	57
598	Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials, 2012, 33, 2301-2309.	5.7	104
599	Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-l-lysine. Biomaterials, 2012, 33, 2361-2371.	5.7	45
600	Effect of molecular weight of amine end-modified poly(β-amino ester)s on gene delivery efficiency and toxicity. Biomaterials, 2012, 33, 3594-3603.	5.7	127

	CINTION	ILFORT	
#	ARTICLE	IF	CITATIONS
601	Hyperbranched cationic amylopectin derivatives for gene delivery. Biomaterials, 2012, 33, 4731-4740.	5.7	74
602	Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials, 2012, 33, 4917-4927.	5.7	160
603	Endosomal escape and transfection efficiency of PEGylated cationic liposome–DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials, 2012, 33, 4928-4935.	5.7	132
604	The interactions of amphiphilic antisense oligonucleotides with serum proteins and their effects on inÂvitro silencing activity. Biomaterials, 2012, 33, 5955-5965.	5.7	19
605	Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials, 2012, 33, 6868-6876.	5.7	111
606	New copolymers graft of α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide obtained from atom transfer radical polymerization as vector for gene delivery. Reactive and Functional Polymers, 2012, 72, 268-278.	2.0	6
607	Enzymatic synthesis, thermal and crystalline properties of a poly(β–amino ester) and poly(lactone-co-β–amino ester) copolymers. Polymer, 2012, 53, 1839-1848.	1.8	20
608	Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochemistry, 2012, 47, 701-711.	1.8	101
609	Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release. Journal of Controlled Release, 2012, 157, 445-454.	4.8	45
610	A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. Journal of Controlled Release, 2012, 160, 217-224.	4.8	37
611	The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. Journal of Controlled Release, 2012, 158, 304-311.	4.8	93
612	Therapeutic angiogenesis using genetically engineered human endothelial cells. Journal of Controlled Release, 2012, 160, 515-524.	4.8	38
613	Prolonging the expression duration of ultrasound-mediated gene transfection using PEI nanoparticles. Journal of Controlled Release, 2012, 160, 64-71.	4.8	32
614	Effective transgene expression without toxicity by intraperitoneal administration of PEC-detachable polyplex micelles in mice with peritoneal dissemination. Journal of Controlled Release, 2012, 160, 542-551.	4.8	22
615	A novel double-coating carrier produced by solid-in-oil and solid-in-water nanodispersion technology for delivery of genes and proteins into cells. Journal of Controlled Release, 2012, 161, 713-721.	4.8	13
616	Therapeutic siRNAs and nonviral systems for their delivery. Molecular Biology, 2012, 46, 335-348.	0.4	4
617	Poly(amidoamine)s with pendant primary amines and flexible backbone for enhanced nonviral gene delivery: Transfection and intracellular trafficking. Journal of Biomedical Materials Research - Part A, 2012, 100A, 872-881.	2.1	15
618	Realâ€ŧime gene delivery vector tracking in the endo″ysosomal pathway of live cells. Microscopy Research and Technique, 2012, 75, 691-697	1.2	29

#	Article	IF	CITATIONS
619	Folateâ€Conjugated Poly(<i>N</i> â€(2â€hydroxypropyl) methacrylamide)â€ <i>block</i> â€Poly(benzyl) Tj ETQqQ 2012, 213, 557-565.	0 0 rgBT 1.1	/Overlock 10 10
620	Design, synthesis, and biocompatibility of an arginineâ€based polyester. Biotechnology Progress, 2012, 28, 257-264.	1.3	42
621	Synthesis and characterization of a new family of cationic amino acidâ€based poly(ester amide)s and their biological properties. Journal of Applied Polymer Science, 2012, 124, 3840-3853.	1.3	38
622	The Effects of PVP(Fe(III)) Catalyst on Polymer Molecular Weight and Gene Delivery Via Biodegradable Cross-Linked Polyethylenimine. Pharmaceutical Research, 2012, 29, 500-510.	1.7	4
623	Nonâ€Viral Gene Delivery via Membraneâ€Penetrating, Mannoseâ€Targeting Supramolecular Selfâ€Assembled Nanocomplexes. Advanced Materials, 2013, 25, 3063-3070.	11.1	119
624	Hyaluronic acid / chitosan multilayer coatings on neuronal implants for localized delivery of siRNA nanoplexes. Journal of Controlled Release, 2013, 168, 289-297.	4.8	43
625	Novel hyperbranched polyethyleneimine conjugate as an efficient non-viral gene delivery vector. Macromolecular Research, 2013, 21, 1097-1104.	1.0	17
626	Bioscaffolds: Fabrication and Performance. , 2013, , 161-188.		9
627	pH- and ion-sensitive polymers for drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 1497-1513.	2.4	251
628	Switchable delivery of small interfering RNA using a negatively charged pH-responsive polyethylenimine-based polyelectrolyte complex. Chemical Communications, 2013, 49, 2670.	2.2	23
629	Development of a novel histone H1-based recombinant fusion peptide for targeted non-viral gene delivery. International Journal of Pharmaceutics, 2013, 441, 307-315.	2.6	25
630	Endoplasmic reticulum localization of poly(ω-aminohexyl methacrylamide)s conjugated with (l-)-arginines in plasmid DNA delivery. Biomaterials, 2013, 34, 7923-7938.	5.7	16
631	Bioengineered nanoparticles for <scp>siRNA</scp> delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 449-468.	3.3	42
632	Hydroxyethyl-functionalized ultrasmall chitosan nanoparticles as a gene delivery carrier. RSC Advances, 2013, 3, 14791.	1.7	3
633	Ionic Supramolecular Assemblies. Israel Journal of Chemistry, 2013, 53, 498-510.	1.0	28
634	Development of Poly(β-amino ester)-Based Biodegradable Nanoparticles for Nonviral Delivery of Minicircle DNA. ACS Nano, 2013, 7, 7241-7250.	7.3	73
635	Dendrimer-Based RNA Interference Delivery for Cancer Therapy. ACS Symposium Series, 2013, , 197-213.	0.5	5
636	Cross-linked Polymeric Micelles based on Block Ionomer Complexes. Mendeleev Communications, 2013, 23, 179-186.	0.6	28

ARTICLE IF CITATIONS # Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-1± RNA interference for IBD 637 5.7 168 therapy. Biomaterials, 2013, 34, 7471-7482. A dualâ€functionally modified chitosan derivative for efficient liverâ€targeted gene delivery. Journal of 2.1 29 Biomedical Materials Research - Part A, 2013, 101A, 1888-1897. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection. 639 5.7 96 Biomaterials, 2013, 34, 7971-7979. Mitigated Cytotoxicity and Tremendously Enhanced Gene Transfection Efficiency of PEI through Facile 640 3.9 Oneã€Step Ćarbamate Modification. Advanced Healthcare Materials, 2013, 2, 1304-1308. Nucleic Acid Delivery., 2013, , 1047-1054. 641 5 Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomaterials Science, 2013, 1, 1223. 2.6 Subtle Changes to Polymer Structure and Degradation Mechanism Enable Highly Effective 643 Nanoparticles for siRNA and DNA Delivery to Human Brain Cancer. Advanced Healthcare Materials, 3.9 85 2013, 2, 468-480. Melittin-grafted HPMA-oligolysine based copolymers for gene delivery. Biomaterials, 2013, 34, 2318-2326. 644 5.7 57 Polymericâ€Micelleâ€Based Nanomedicine for siRNA Delivery. Particle and Particle Systems 645 1.2 34 Characterization, 2013, 30, 211-228. A kind of modified bovine serum albumin with great potential for applying in gene delivery. Chinese 646 4.8 Chemical Letters, 2013, 24, 659-662. Modeling nonviral gene delivery as a macro-to-nano communication system. Nano Communication 647 1.6 15 Networks, 2013, 4, 14-22. Novel Monodisperse PEGtide Dendrons: Design, Fabrication, and Evaluation of Mannose 1.8 29 Receptor-Mediated Macrophage Targeting. Bioconjugate Chemistry, 2013, 24, 1332-1344. A pH-sensitive gene delivery system based on folic acid-PEC-chitosan– PAMAM-plasmid DNA complexes 649 5.7 94 for cancerÂcellÄtargeting. Biomaterials, 2013, 34, 10120-10132. Contribution of syndecans to lipoplex-mediated gene delivery. European Journal of Pharmaceutical Sciences, 2013, 49, 550-555. Polymer Nanocarrier System for Endosome Escape and Timed Release of siRNA with Complete Gene 651 2.6 52 Silencing and Cell Death in Cancer Cells. Biomacromolecules, 2013, 14, 3386-3389. Cell Penetrating Peptide Conjugated Polymeric Micelles as a High Performance Versatile Nonviral Gene 39 Carrier. Biomacromolecules, 2013, 14, 4071-4081. Molecular Simulations of Polycation–DNA Binding Exploring the Effect of Peptide Chemistry and Sequence in Nuclear Localization Sequence Based Polycations. Journal of Physical Chemistry B, 2013, 653 1.2 18 117, 11988-11999. A nanoparticle formulation that selectively transfects metastatic tumors in mice. Proceedings of the 654 3.3 National Academy of Sciences of the United States of America, 2013, 110, 14717-14722.
#	Article	IF	CITATIONS
655	Assessment of Cholesterol-Derived <i>Ionic</i> Copolymers as Potential Vectors for Gene Delivery. Biomacromolecules, 2013, 14, 4135-4149.	2.6	7
656	Overcoming Nonviral Gene Delivery Barriers: Perspective and Future. Molecular Pharmaceutics, 2013, 10, 4082-4098.	2.3	327
657	Preparation and characterization of oligochitosan–tragacanth nanoparticles as a novel gene carrier. Carbohydrate Polymers, 2013, 97, 277-283.	5.1	40
658	Quantitation of Complexed versus Free Polymers in Interpolyelectrolyte Polyplex Formulations. ACS Macro Letters, 2013, 2, 1038-1041.	2.3	15
659	Synthesis and Evaluation of Cyclic Cationic Polymers for Nucleic Acid Delivery. ACS Macro Letters, 2013, 2, 1047-1050.	2.3	70
660	Synthesis and preliminary cellular evaluation of phosphonium chitosan derivatives as novel non-viral vector. Carbohydrate Polymers, 2013, 97, 676-683.	5.1	28
661	Enhancement in selective mitochondrial association by direct modification of a mitochondrial targeting signal peptide on a liposomal based nanocarrier. Mitochondrion, 2013, 13, 526-532.	1.6	38
662	Engineering biodegradable and multifunctional peptide-based polymers for gene delivery. Journal of Biological Engineering, 2013, 7, 25.	2.0	23
663	Non-viral gene delivery strategies for gene therapy: a "ménage à trois―among nucleic acids, materials, and the biological environment. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	43
664	Comparison of four different particle sizing methods for siRNA polyplex characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 255-264.	2.0	55
665	Progressive Macromolecular Selfâ€Assembly: From Biomimetic Chemistry to Bioâ€Inspired Materials. Advanced Materials, 2013, 25, 5215-5256.	11.1	210
666	Mucosal Delivery of RNAi Therapeutics. Advances in Delivery Science and Technology, 2013, , 97-125.	0.4	2
667	Carboxymethyl chitosan-poly(amidoamine) dendrimer core–shell nanoparticles for intracellular lysozyme delivery. Carbohydrate Polymers, 2013, 98, 1326-1334.	5.1	23
668	From rationally designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. International Journal of Pharmaceutics, 2013, 457, 237-259.	2.6	24
669	Cell line dependent uptake and transfection efficiencies of PEl–anionic glycopolymer systems. Biomaterials, 2013, 34, 4368-4376.	5.7	36
670	Designed Nanocage Displaying Ligand-Specific Peptide Bunches for High Affinity and Biological Activity. ACS Nano, 2013, 7, 7462-7471.	7.3	67
671	Human erythropoietin gene delivery for cardiac remodeling of myocardial infarction in rats. Journal of Controlled Release, 2013, 171, 24-32.	4.8	12
672	Environment acidity triggers release of recombinant adeno-associated virus serotype 2 from a tunable matrix. Journal of Controlled Release, 2013, 170, 252-258.	4.8	21

ARTICLE IF CITATIONS # Stabilization of cancer-specific gene carrier via hydrophobic interaction for a clear-cut response to 673 4.8 9 cancer signaling. Journal of Controlled Release, 2013, 170, 469-476. Post-modification of poly(glycidyl methacrylate)s with alkyl amine and isothiocyanate for effective pDNA delivery. Polymer Chemistry, 2013, 4, 4366. 674 38 Ternary complexes DNA–polyethylenimine–Fe(iii) with linear and branched polycations: implications 675 1.2 10 on condensation, size, charge and in vitro biocompatibility. Soft Matter, 2013, 9, 10799. Effects of spatial distribution of the nuclear localization sequence on gene transfection in 2.9 catiomerâ€[']gene polyplexes. Journal of Materials Chemistry B, 2013, Ĭ, 1712. Opposites attract: influence of the molar mass of branched poly(ethylene imine) on biophysical 677 1.7 30 characteristics of siRNA-based polyplexese. RSC Advances, 2013, 3, 12774. Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes. Soft Matter, 2013, 9, 9615. 1.2 Cell Squeezing as a Robust, Microfluidic Intracellular Delivery Platform. Journal of Visualized 679 0.2 29 Experiments, 2013, , e50980. Amino Acid Grafted Chitosan for High Performance Gene Delivery: Comparison of Amino Acid 680 2.6 79 Hydrophobicity on Vector and Polyplex Characteristics. Biomacrómolecules, 2013, 14, 485-494. 681 Peptide functionalized nanoparticles for nonviral gene delivery. Soft Matter, 2013, 9, 985-1004. 1.2 69 Optimization of Brush-Like Cationic Copolymers for Nonviral Gene Delivery. Biomacromolecules, 2013, 2.6 14, 275-284. Multi-armed cationic cyclodextrin:poly(ethylene glycol) polyrotaxanes as efficient gene silencing 683 0.6 24 vectors. Integrative Biology (United Kingdom), 2013, 5, 115-121. PepFect14 Peptide Vector for Efficient Gene Delivery in Cell Cultures. Molecular Pharmaceutics, 2013, 684 2.3 10, 199-210. A Combinatorial Library of Bi-functional Polymeric Vectors for siRNA Delivery In Vitro. 685 1.7 6 Pharmaceutical Research, 2013, 30, 362-376. A vector-free microfluidic platform for intracellular delivery. Proceedings of the National Academy 3.3 386 of Sciences of the United States of America, 2013, 110, 2082-2087. Selfâ€Assembled BolAâ€like Amphiphilic Peptides as Viralâ€Mimetic Gene Vectors for Cancer Cell Targeted 687 2.1 32 Gene Delivery. Macromolecular Bioscience, 2013, 13, 84-92. Hyaluronic acid receptor-targetable imidazolized nanovectors for induction of gastric cancer cell 36 déath by RNA interference. Biomaterials, 2013, 34, 4327-4338. Dendrimer-enabled DNA delivery and transformation of Chlamydia pneumoniae. Nanomedicine: 689 1.7 51 Nanotechnology, Biology, and Medicine, 2013, 9, 996-1008. 690 Synergistic gene and drug tumor therapy using a chimeric peptide. Biomaterials, 2013, 34, 4680-4689.

#	Article	IF	CITATIONS
691	Formation of Stable Nanocarriers by <i>in Situ</i> Ion Pairing during Block-Copolymer-Directed Rapid Precipitation. Molecular Pharmaceutics, 2013, 10, 319-328.	2.3	80
692	Polyplex-Induced Cytosolic Nuclease Activation Leads to Differential Transgene Expression. Molecular Pharmaceutics, 2013, 10, 3013-3022.	2.3	21
693	Optimization of Tet1 ligand density in HPMA-co-oligolysine copolymers for targeted neuronal gene delivery. Biomaterials, 2013, 34, 9632-9637.	5.7	34
694	Formulation development of lyophilized, long-term stable siRNA/oligoaminoamide polyplexes. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 294-305.	2.0	19
695	Manipulating the pH response of 2,3-diaminopropionic acid rich peptides to mediate highly effective gene silencing with low-toxicity. Journal of Controlled Release, 2013, 172, 929-938.	4.8	9
696	Tunable, responsive nanogels containing t-butyl methacrylate and 2-(t-butylamino)ethyl methacrylate. Polymer, 2013, 54, 3784-3795.	1.8	36
697	pH-labile sheddable block copolymers by RAFT polymerization: Synthesis and potential use as siRNA conjugates. European Polymer Journal, 2013, 49, 2895-2905.	2.6	13
698	Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Advanced Drug Delivery Reviews, 2013, 65, 1204-1214.	6.6	53
699	Improvement of transfection efficiency by galactosylated N-3-guanidinopropyl methacrylamide-co-poly (ethylene glycol) methacrylate copolymers. European Polymer Journal, 2013, 49, 2884-2894.	2.6	2
700	Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomaterials Science, 2013, 1, 152-170.	2.6	137
701	siRNA therapeutics in the treatment of diseases. Therapeutic Delivery, 2013, 4, 45-57.	1.2	30
702	Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small, 2013, 9, 1533-1545.	5.2	456
703	Design of Hybrid Lipid/Retroviral-Like Particle Gene Delivery Vectors. Molecular Pharmaceutics, 2013, 10, 1725-1735.	2.3	25
704	Lectin functionalized nanocarriers for gene delivery. Biotechnology Advances, 2013, 31, 552-562.	6.0	29
705	A Diamond Nanoneedle Array for Potential Highâ€Throughput Intracellular Delivery. Advanced Healthcare Materials, 2013, 2, 1103-1107.	3.9	38
706	Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Advanced Drug Delivery Reviews, 2013, 65, 865-879.	6.6	373
707	Plasmidâ€īemplated Shape Control of Condensed DNA–Block Copolymer Nanoparticles. Advanced Materials, 2013, 25, 227-232.	11.1	112
708	High levels of ephrinB2 over-expression increases the osteogenic differentiation of human mesenchymal stem cells and promotes enhanced cell mediated mineralisation in a polyethyleneimine-ephrinB2 gene-activated matrix. Journal of Controlled Release, 2013, 165, 173-182.	4.8	52

#	Article	IF	CITATIONS
709	FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials, 2013, 34, 6482-6494.	5.7	138
710	Star Polymers with a Cationic Core Prepared by ATRP for Cellular Nucleic Acids Delivery. Biomacromolecules, 2013, 14, 1262-1267.	2.6	68
711	Bioreducible Polypeptide Containing Cell-Penetrating Sequence for Efficient Gene Delivery. Pharmaceutical Research, 2013, 30, 1968-1978.	1.7	21
712	Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Progress in Polymer Science, 2013, 38, 503-535.	11.8	450
714	Polymers in Drug Delivery: Concepts, Developments and Potential. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 1-34.	0.6	2
715	DNA delivery with hyperbranched polylysine: A comparative study with linear and dendritic polylysine. Journal of Controlled Release, 2013, 169, 276-288.	4.8	112
716	Mechanistic and functional aspects of the interaction of ARâ€23 with mammalian cell membrane and improvement of branched polyethylenimineâ€mediated gene transfection. Journal of Gene Medicine, 2013, 15, 205-214.	1.4	0
717	Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug loaded nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 174-184.	1.7	151
718	Supramolecular chemical biology; bioactive synthetic self-assemblies. Organic and Biomolecular Chemistry, 2013, 11, 219-232.	1.5	98
719	Smart Drug Delivery Nanocarriers with Selfâ€Assembled DNA Nanostructures. Advanced Materials, 2013, 25, 4386-4396.	11.1	378
720	Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery. Nanotechnology, 2013, 24, 275101.	1.3	26
721	Conjugated Oligomer-Based Fluorescent Nanoparticles as Functional Nanocarriers for Nucleic Acids Delivery. ACS Applied Materials & Interfaces, 2013, 5, 5700-5708.	4.0	51
722	Nanoparticles for Gene Delivery. Small, 2013, 9, 2034-2044.	5.2	120
723	Nanostraw–Electroporation System for Highly Efficient Intracellular Delivery and Transfection. ACS Nano, 2013, 7, 4351-4358.	7.3	257
724	Enhanced Transfection Efficiency and Reduced Cytotoxicity of Novel Lipid–Polymer Hybrid Nanoplexes. Molecular Pharmaceutics, 2013, 10, 2416-2425.	2.3	35
725	pH-Responsive Biodegradable Assemblies Containing Tunable Phenyl-Substituted Vinyl Ethers for Use as Efficient Gene Delivery Vehicles. ACS Applied Materials & Interfaces, 2013, 5, 5648-5658.	4.0	28
726	Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block–poly(propylene) Tj ETQq0 0 Science, 2013, 393, 174-181.	0 rgBT /O 5.0	verlock 10 T 23
727	Peptide Dendrimer/Lipid Hybrid Systems Are Efficient DNA Transfection Reagents: Structure–Activity Relationships Highlight the Role of Charge Distribution Across Dendrimer Generations. ACS Nano, 2013, 7, 4668-4682.	7.3	78

#	Article	IF	CITATIONS
728	Influence of Histidine Incorporation on Buffer Capacity and Gene Transfection Efficiency of HPMA- <i>co</i> -oligolysine Brush Polymers. Biomacromolecules, 2013, 14, 1961-1970.	2.6	61
729	An influenza virus-inspired polymer system for the timed release of siRNA. Nature Communications, 2013, 4, 1902.	5.8	155
730	Hydrolytic Cationic Ester Microparticles for Highly Efficient DNA Vaccine Delivery. Small, 2013, 9, 3439-3444.	5.2	36
731	Synthesis of Bioreducible Polycations with Controlled Topologies. , 2013, 948, 121-132.		0
732	Multimodal Magnetic Core–Shell Nanoparticles for Effective Stem ell Differentiation and Imaging. Angewandte Chemie - International Edition, 2013, 52, 6190-6195.	7.2	71
733	Quaternized amino poly(glycerol-methacrylate)s for enhanced pDNA delivery. Polymer Chemistry, 2013, 4, 3514.	1.9	31
734	Supramolecular Host–Guest Pseudocomb Conjugates Composed of Multiple Star Polycations Tied Tunably with a Linear Polycation Backbone for Gene Transfection. Bioconjugate Chemistry, 2013, 24, 1049-1056.	1.8	43
735	Synthesis of Cationic Polylactides with Tunable Charge Densities as Nanocarriers for Effective Gene Delivery. Molecular Pharmaceutics, 2013, 10, 1138-1145.	2.3	56
736	Delivery of a granzyme B inhibitor gene using carbamate-mannose modified PEI protects against cytotoxic lymphocyte killing. Biomaterials, 2013, 34, 3697-3705.	5.7	34
737	Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications. Molecules, 2013, 18, 5611-5647.	1.7	133
738	Real-time analysis of membrane permeabilizing effects of oleanane saponins. Bioorganic and Medicinal Chemistry, 2013, 21, 2387-2395.	1.4	46
740	Reversible maleimide–thiol adducts yield glutathione-sensitive poly(ethylene glycol)–heparin hydrogels. Polymer Chemistry, 2013, 4, 133-143.	1.9	150
741	Properties and Evaluation of Quaternized Chitosan/Lipid Cation Polymeric Liposomes for Cancer-Targeted Gene Delivery. Langmuir, 2013, 29, 8683-8693.	1.6	46
742	Nanoscale Mechanism of Molecular Transport through the Nuclear Pore Complex As Studied by Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2013, 135, 2321-2329.	6.6	76
743	The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 315-357.	0.6	2
745	Temperature-responsive cationic block copolymers as nanocarriers for gene delivery. International Journal of Pharmaceutics, 2013, 448, 105-114.	2.6	35
746	Targeted Drug Delivery in Cancer Cells with Red-Light Photoactivated Mesoporous Silica Nanoparticles. Nano Letters, 2013, 13, 2576-2583.	4.5	169
747	Dual Responsive, Stabilized Nanoparticles for Efficient Inâ€Vivo Plasmid Delivery. Angewandte Chemie - International Edition, 2013, 52, 5377-5381.	7.2	113

#	Article	IF	CITATIONS
748	Investigation of Polyethylenimine/DNA Polyplex Transfection to Cultured Cells Using Radiolabeling and Subcellular Fractionation Methods. Molecular Pharmaceutics, 2013, 10, 2145-2156.	2.3	36
749	Arginine-rich hydrophobic polyethylenimine: Potent agent with simple components for nucleic acid delivery. International Journal of Biological Macromolecules, 2013, 60, 18-27.	3.6	33
750	A Reactive Oxygen Species (ROS)â€Responsive Polymer for Safe, Efficient, and Targeted Gene Delivery in Cancer Cells. Angewandte Chemie - International Edition, 2013, 52, 6926-6929.	7.2	341
751	Multifunctional polymeric nanoparticles for oral delivery of TNF- $\hat{l}\pm$ siRNA to macrophages. Biomaterials, 2013, 34, 2843-2854.	5.7	125
752	Self-assembled magnetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery. Nanoscale, 2013, 5, 744-752.	2.8	58
753	Nanomedicine in Ophthalmology. , 2013, , 689-715.		3
754	Chainâ€Shattering Polymeric Therapeutics with Onâ€Demand Drugâ€Release Capability. Angewandte Chemie - International Edition, 2013, 52, 6435-6439.	7.2	132
755	Synthesis, characterization and application of Î ² -cyclodextrin-silica nanocomposite as potential microvessel in nucleophilic substitution reaction of phenacyl halides. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 429-438.	0.9	6
756	Reduction of intimal hyperplasia in injured rat arteries promoted by catheter balloons coated with polyelectrolyte multilayers that contain plasmid DNA encoding PKCl´. Biomaterials, 2013, 34, 226-236.	5.7	28
757	Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials, 2013, 34, 1235-1245.	5.7	198
758	The inhibition of human bladder cancer growth by calcium carbonate/CaIP6 nanocomposite particles delivering AIB1 siRNA. Biomaterials, 2013, 34, 1246-1254.	5.7	53
759	Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials, 2013, 34, 1624-1633.	5.7	90
760	PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials, 2013, 34, 2117-2129.	5.7	81
761	Supramolecular Diversity through Click Chemistry: Switching from Nanomicelles to 1D-Nanotubes and Tridimensional Hydrogels. Chemistry of Materials, 2013, 25, 4250-4261.	3.2	42
762	Biomaterials in the nano-era. Science Bulletin, 2013, 58, 4337-4341.	1.7	2
763	Differential Endosomal Pathways for Radically Modified Peptide Vectors. Bioconjugate Chemistry, 2013, 24, 1721-1732.	1.8	52
764	Microfluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer. Scientific Reports, 2013, 3, 3155.	1.6	36
765	Dendrimeric Bowties Featuring Hemispheric-Selective Decoration of Ligands for microRNA-Based Therapy. Biomacromolecules, 2013, 14, 101-109.	2.6	14

#	Article	IF	CITATIONS
766	Polyelectrolyte Multilayers Promote Stent-Mediated Delivery of DNA to Vascular Tissue. Biomacromolecules, 2013, 14, 1696-1704.	2.6	48
767	PEG-sheddable polyplex micelles as smart gene carriers based on MMP-cleavable peptide-linked block copolymers. Chemical Communications, 2013, 49, 6974.	2.2	87
768	Compact Saloplastic Poly(Acrylic Acid)/Poly(Allylamine) Complexes: Kinetic Control Over Composition, Microstructure, and Mechanical Properties. Advanced Functional Materials, 2013, 23, 673-682.	7.8	60
769	Lipase-Catalyzed Synthesis of Poly(amine-co-esters) and Poly(lactone-co-β-amino esters). ACS Symposium Series, 2013, , 29-42.	0.5	2
771	Utilizing Combinatorial Chemistry and Rational Design: Peptidic Tweezers with Nanomolar Affinity to DNA Can Be Transformed into Efficient Vectors for Gene Delivery by Addition of a Lipophilic Tail. Angewandte Chemie - International Edition, 2013, 52, 14016-14020.	7.2	42
772	Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility. Journal of Applied Polymer Science, 2013, 128, 3807-3813.	1.3	72
773	Chain‧hattering Polymeric Therapeutics with Onâ€Đemand Drugâ€Release Capability. Angewandte Chemie, 2013, 125, 6563-6567.	1.6	26
775	Cyclodextrins and cyclodextrin-containing polymers. , 2013, , 287-308.		1
776	Micro-/nanofluidics based cell electroporation. Biomicrofluidics, 2013, 7, 11301.	1.2	80
777	Photoenhanced Gene Transfection by a Star-Shaped Polymer Consisting of a Porphyrin Core and Poly(<scp>L</scp> -lysine) Dendron Arms. Macromolecular Bioscience, 2013, 13, 1221-1227.	2.1	18
779	Graft copolymer polyelectrolyte complexes for delivery of cationic antimicrobial peptides. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2548-2558.	2.1	13
780	Topâ€Down Fabrication of Polyelectrolyteâ€Thermoplastic Hybrid Microparticles for Unidirectional Drug Delivery to Single Cells. Advanced Healthcare Materials, 2013, 2, 540-545.	3.9	28
781	Lowâ€Frequency Ultrasound Effects on Intracellular Barriers in Nonviral Gene Delivery Processes. Israel Journal of Chemistry, 2013, 53, 829-838.	1.0	2
782	Galactoseâ€Functionalized Cationic Polycarbonate Diblock Copolymer for Targeted Gene Delivery to Hepatocytes. Macromolecular Rapid Communications, 2013, 34, 1714-1720.	2.0	28
783	Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications. Biomicrofluidics, 2013, 7, 44128.	1.2	55
785	Functional study of dextran-graft-poly((2-dimethyl amino)ethyl methacrylate) gene delivery vector for tumor therapy. Journal of Biomaterials Applications, 2013, 28, 125-135.	1.2	16
786	Investigating polymer thiolation in gene delivery. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 912-926.	1.9	9
787	Cyclodextrin-Based Polyrotaxanes and Polypseudorotaxanes as Drug Delivery Carriers. Journal of Drug Delivery Science and Technology, 2013, 23, 523-529.	1.4	22

#	Article	IF	CITATIONS
788	Study on Development of Polymeric Micellar Gene Carrier and Evaluation of Its Functionality. Biological and Pharmaceutical Bulletin, 2013, 36, 1045-1051.	0.6	16
789	Organic–Organic Hybrid Nanoassemblies. , 2013, , 219-302.		0
791	Engineering particles for therapeutic delivery: Prospects and challenges. Proceedings of the Royal Society of Victoria, 2013, 125, 77.	0.3	1
792	Investigations on Polyplex Stability During the Freezing Step of Lyophilization Using Controlled Ice Nucleation—The Importance of Residence Time in the Low-Viscosity Fluid State. Journal of Pharmaceutical Sciences, 2013, 102, 929-946.	1.6	22
793	Synergetic Targeted Delivery of Sleepingâ€Beauty Transposon System to Mesenchymal Stem Cells Using LPD Nanoparticles Modified with a Phageâ€Displayed Targeting Peptide. Advanced Functional Materials, 2013, 23, 1172-1181.	7.8	72
794	Polyethylenimine600-β-cyclodextrin: a promising nanopolymer for nonviral gene delivery of primary mesenchymal stem cells. International Journal of Nanomedicine, 2013, 8, 1935.	3.3	15
795	Dual-degradable disulfide-containing PEI–Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release. International Journal of Nanomedicine, 2013, 8, 3689.	3.3	25
796	Tertiary-Amine Functionalized Polyplexes Enhanced Cellular Uptake and Prolonged Gene Expression. PLoS ONE, 2014, 9, e97627.	1.1	10
797	Serum Stability and Physicochemical Characterization of a Novel Amphipathic Peptide C6M1 for SiRNA Delivery. PLoS ONE, 2014, 9, e97797.	1.1	40
798	An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives. International Journal of Nanomedicine, 2014, 9, 419.	3.3	17
799	Uptake pathways and subsequent nucleus targeting of tat-conjugated gelatin-siloxane nanoparticles as nonviral gene vector. Journal of Experimental Nanoscience, 2014, 9, 739-748.	1.3	4
800	Development and Challenges of Nanovectors in Gene Therapy. Nano LIFE, 2014, 04, 1441007.	0.6	7
801	Sequence-defined polymers for the delivery of oligonucleotides. Nanomedicine, 2014, 9, 2843-2859.	1.7	16
802	Highly compacted pH-responsive DNA nanoparticles mediate transgene silencing in experimental glioma. Journal of Materials Chemistry B, 2014, 2, 8165-8173.	2.9	9
803	Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Frontiers of Chemical Science and Engineering, 2014, 8, 387-404.	2.3	17
804	Sequence-defined shuttles for targeted nucleic acid and protein delivery. Therapeutic Delivery, 2014, 5, 1025-1045.	1.2	3
805	Hybrid biosynthetic gene therapy vector development and dual engineering capacity. Proceedings of the United States of America, 2014, 111, 12360-12365.	3.3	25
806	Revisiting Complexation between DNA and Polyethylenimine: Does the Disulfide Linkage Play a Critical Role in Promoting Gene Delivery?. Macromolecular Bioscience, 2014, 14, 1807-1815.	2.1	12

#	Article	IF	CITATIONS
807	Intracellular Microenvironmentâ€Responsive Dendrimerâ€Like Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. Advanced Functional Materials, 2014, 24, 7627-7637.	7.8	59
808	Cationic Polymers as Gene-Activated Matrices for Biomedical Applications. RSC Polymer Chemistry Series, 2014, , 438-462.	0.1	0
809	Cationic Polymers as Carriers through the Blood–Brain Barrier. RSC Polymer Chemistry Series, 2014, , 539-556.	0.1	2
810	Bioreducible Guanidinylated Polyethylenimine for Efficient Gene Delivery. ChemMedChem, 2014, 9, 2718-2724.	1.6	14
811	Shape transformation following reduction-sensitive PEG cleavage of polymer/DNA nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8106-8109.	2.9	12
812	Molecular Engineering of Cell and Tissue Surfaces with Polymer Thin Films. , 2014, , 281-314.		2
813	A pH and Redox Dual Responsive 4-Arm Poly(ethylene glycol)-block-poly(disulfide histamine) Copolymer for Non-Viral Gene Transfection in Vitro and in Vivo. International Journal of Molecular Sciences, 2014, 15, 9067-9081.	1.8	16
814	Peptide-Based Polymer Therapeutics. Polymers, 2014, 6, 515-551.	2.0	84
815	Advanced Materials for Gene Delivery. Advanced Materials Research, 0, 995, 29-47.	0.3	2
816	Gene transfection in complex media using PCBMAEE-PCBMA copolymer with both hydrolytic and zwitterionic blocks. Biomaterials, 2014, 35, 7909-7918.	5.7	36
817	DNA Vaccines: MHC II-Targeted Vaccine Protein Produced by Transfected Muscle Fibres Induces a Local Inflammatory Cell Infiltrate in Mice. PLoS ONE, 2014, 9, e108069.	1.1	10
818	Construction of a tumor cell-targeting non-viral gene delivery vector with polyethylenimine modified with RGD sequence-containing peptide. Oncology Letters, 2014, 7, 487-492.	0.8	19
819	CATIONIC BOLAAMPHIPHILES FOR GENE DELIVERY. Cosmos, 2014, 10, 25-38.	0.4	1
820	Future scenarios: nanoparticles and stem cells. , 2014, , 151-166.		0
821	Bioreducible polyspermine as less toxic and efficient gene carrier. Polymers for Advanced Technologies, 2014, 25, 545-551.	1.6	12
823	A novel solventless coating method to graft low-molecular weight polyethyleneimine on silica fine powders. Journal of Polymer Science Part A, 2014, 52, 2760-2768.	2.5	9
824	Synthesis and Properties of Polyalkylenimines. RSC Polymer Chemistry Series, 2014, , 30-61.	0.1	3
825	Multivalent Dendrimer Vectors with DNA Intercalation Motifs for Gene Delivery. Biomacromolecules, 2014, 15, 4134-4145.	2.6	36

#	Article	IF	CITATIONS
826	Polymer–Drug Conjugate in Focal Drug Delivery. Advances in Delivery Science and Technology, 2014, , 117-147.	0.4	4
829	Direct Observation of Dynamic Mechanical Regulation of DNA Condensation by Environmental Stimuli. Angewandte Chemie - International Edition, 2014, 53, 10631-10635.	7.2	9
830	Dexamethasone‣oaded Reconstitutable Charged Polymeric (PLGA) _{<i>n</i>} â€ <i>b</i> â€bPEI Micelles for Enhanced Nuclear Delivery of Gene Therapeutics. Macromolecular Bioscience, 2014, 14, 831-841.	2.1	16
831	Flow-through electroporation of mammalian cells in decoupled flow streams using microcapillaries. Biomicrofluidics, 2014, 8, 052101.	1.2	7
832	Ultrastructure of metallopeptide-based soft spherical morphologies. RSC Advances, 2014, 4, 64457-64465.	1.7	16
833	Role of pH on the Compaction Energies and Phase Behavior of Low Generation PAMAM–DNA Complexes. Macromolecules, 2014, 47, 8768-8776.	2.2	9
834	Fabrication of Novel Reductionâ€ <scp>S</scp> ensitive Gene Vectors Based on Threeâ€ <scp>A</scp> rmed Peptides. Macromolecular Bioscience, 2014, 14, 546-556.	2.1	11
835	Use of Engineered Nanoparticle-Based Fluorescence Methods for Live-Cell Phenomena. , 2014, , 153-169.		2
836	Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. International Journal of Nanomedicine, 2014, 9, 3347.	3.3	35
837	Gold nanoparticle-based gene delivery: promises and challenges. Nanotechnology Reviews, 2014, 3, .	2.6	27
838	Study on the role of polyethylenimine as gene delivery carrier using molecular dynamics simulations. Journal of Adhesion Science and Technology, 2014, 28, 399-416.	1.4	6
839	Cationic polythiophenes as responsive DNA-binding polymers. Polymer Chemistry, 2014, 5, 314-317.	1.9	32
840	Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials, 2014, 35, 6369-6378.	5.7	59
841	Design and application of multifunctional DNA nanocarriers for therapeutic delivery. Acta Biomaterialia, 2014, 10, 1683-1691.	4.1	39
842	Full pH-range responsive hyperbranched polyethers: synthesis and responsiveness. Polymer Chemistry, 2014, 5, 3763-3770.	1.9	4
843	Template-module assembly to prepare low-molecular-weight gene transport system with enhanced transmembrane capability. Science China Chemistry, 2014, 57, 558-567.	4.2	7
844	Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection. Lab on A Chip, 2014, 14, 592-601.	3.1	32
845	Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano, 2014, 8, 1972-1994.	7.3	776

#	Article	IF	CITATIONS
846	Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Biomaterials, 2014, 35, 4589-4600.	5.7	83
847	Bone Regeneration. , 2014, , 1201-1221.		13
848	Chemically tunable cationic polymer-bonded magnetic nanoparticles for gene magnetofection. Journal of Materials Chemistry B, 2014, 2, 644-650.	2.9	10
849	Gelatin carriers for drug and cell delivery in tissue engineering. Journal of Controlled Release, 2014, 190, 210-218.	4.8	299
850	Calixarenes and related macrocycles as gene delivery vehicles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 189-200.	0.9	35
851	Magnetic nanoparticles–DNA interactions: design and applications of nanobiohybrid systems. Russian Chemical Reviews, 2014, 83, 299-322.	2.5	42
852	Nonviral gene delivery with dendritic self-assembling architectures. Nanomedicine, 2014, 9, 667-693.	1.7	29
853	Synthesis of <i>β</i> -cyclodextrin-based dendrimer as a novel encapsulation agent. Polymer International, 2014, 63, 1447-1455.	1.6	64
854	Safety of the intravenous administration of neurotensin-polyplex nanoparticles in BALB/c mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 745-754.	1.7	25
855	Endosomal pH responsive polymers for efficient cancer targeted gene therapy. Colloids and Surfaces B: Biointerfaces, 2014, 119, 55-65.	2.5	26
856	Amphiphilic chitosan derivative-based core–shell micelles: Synthesis, characterisation and properties for sustained release of Vitamin D3. Food Chemistry, 2014, 152, 307-315.	4.2	58
857	Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug–gene co-delivery to cancer cells. Nanoscale, 2014, 6, 1567-1572.	2.8	101
858	Reactive Landing of Dendrimer Ions onto Activated Self-Assembled Monolayer Surfaces. Journal of Physical Chemistry C, 2014, 118, 2602-2608.	1.5	7
859	Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnology Advances, 2014, 32, 818-830.	6.0	58
860	Inositol based non-viral vectors for transgene expression in human cervical carcinoma and hepatoma cell lines. Biomaterials, 2014, 35, 2039-2050.	5.7	11
861	Block ionomer complexes consisting of siRNA and aRAFT-synthesized hydrophilic-block-cationic copolymers: the influence of cationic block length on gene suppression. Polymer Chemistry, 2014, 5, 6967-6976.	1.9	14
862	Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings. Chemical Reviews, 2014, 114, 10976-11026.	23.0	499
863	Bioreducible Polycations as Shuttles for Therapeutic Nucleic Acid and Protein Transfection. Antioxidants and Redox Signaling, 2014, 21, 804-817.	2.5	50

#	Article	IF	CITATIONS
864	Addition of pluronics® to reducible disulfideâ€bondâ€containing Pluronic®–PEI–SS specifically enhances circulation time <i>in vivo</i> and transfection efficiency <i>in vitro</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1268-1276.	1.6	5
865	Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 124, 80-86.	2.5	128
866	Polymers for Nucleic Acid Transfer—An Overview. Advances in Genetics, 2014, 88, 231-261.	0.8	46
867	Nonviral Vectors. Advances in Genetics, 2014, 88, 1-12.	0.8	28
868	Development of functional polyplex micelles for systemic gene therapy. Polymer Journal, 2014, 46, 469-475.	1.3	25
869	Characterization of Polyethylene Glycolâ€Polyethyleneimine as a Vector for Alphaâ€Synuclein siRNA Delivery to PC12 Cells for Parkinson's Disease. CNS Neuroscience and Therapeutics, 2014, 20, 76-85.	1.9	34
870	Imidazolized magnetic nanovectors with endosome disrupting moieties for the intracellular delivery and imaging of siRNA. Journal of Materials Chemistry B, 2014, 2, 8566-8575.	2.9	9
871	UV light-triggered unpacking of DNA to enhance gene transfection of azobenzene-containing polycations. Journal of Materials Chemistry B, 2014, 2, 3868.	2.9	15
872	Unlocking a Caged Lysosomal Protein from a Polymeric Nanogel with a pH Trigger. Biomacromolecules, 2014, 15, 4046-4053.	2.6	44
873	Spectroscopic investigation of fluorinated phenols as pH-sensitive probes in mixed liposomal systems. RSC Advances, 2014, 4, 17840-17845.	1.7	18
874	Threaded macromolecules as a versatile framework for biomaterials. Chemical Communications, 2014, 50, 13433-13446.	2.2	92
875	Molecular recognition of nucleic acids by nucleolipid/dendrimer surface complexes. Soft Matter, 2014, 10, 8401-8405.	1.2	6
876	Bioinspired silica as drug delivery systems and their biocompatibility. Journal of Materials Chemistry B, 2014, 2, 5028-5042.	2.9	26
877	Immobilization of HSA on polyamidoamine-dendronized magnetic microspheres for application in direct chiral separation of racemates. Journal of Materials Chemistry B, 2014, 2, 775-782.	2.9	41
878	Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. Integrative Biology (United Kingdom), 2014, 6, 470-475.	0.6	61
879	Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 2014, 11, 20140459.	1.5	269
880	Cytoprotective Silica Coating of Individual Mammalian Cells through Bioinspired Silicification. Angewandte Chemie - International Edition, 2014, 53, 8056-8059.	7.2	130
881	Highly efficient gene transfection by a hyperosmotic polymannitol based gene tranporter through regulation of caveolae and COX-2 induced endocytosis. Journal of Materials Chemistry B, 2014, 2, 2666.	2.9	9

# 882	ARTICLE Asymmetrically functionalized β-cyclodextrin-based star copolymers for integrated gene delivery and magnetic resonance imaging contrast enhancement. Polymer Chemistry, 2014, 5, 1743-1750.	IF 1.9	Citations 39
883	Chemically modifiable N-heterocycle-functionalized polycarbonates as a platform for diverse smart biomimetic nanomaterials. Chemical Science, 2014, 5, 3294-3300.	3.7	38
884	Timed-release polymers as novel transfection reagents. Polymer Chemistry, 2014, 5, 3372-3378.	1.9	6
885	A new microscopic insight into membrane penetration and reorganization by PETIM dendrimers. Soft Matter, 2014, 10, 7577-7587.	1.2	27
886	Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture. Soft Matter, 2014, 10, 590-599.	1.2	15
887	Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation. Chemical Science, 2014, 5, 200-205.	3.7	82
888	Revisiting the complexation between DNA and polyethylenimine – when and where –S–S– linked PEI is cleaved inside the cell. Journal of Materials Chemistry B, 2014, 2, 3282.	2.9	6
889	Intracellular Microenvironmentâ€Responsive Labelâ€Free Autofluorescent Nanogels for Traceable Gene Delivery. Advanced Healthcare Materials, 2014, 3, 1839-1848.	3.9	28
890	Examination of Structure–Activity Relationship of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers. Bioconjugate Chemistry, 2014, 25, 907-917.	1.8	20
891	Hexanoic Acid and Polyethylene Glycol Double Grafted Amphiphilic Chitosan for Enhanced Gene Delivery: Influence of Hydrophobic and Hydrophilic Substitution Degree. Molecular Pharmaceutics, 2014, 11, 982-994.	2.3	54
892	Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy: An additional barrier to non viral gene delivery. Journal of Controlled Release, 2014, 195, 29-36.	4.8	40
893	Asymmetrical Polymer Vesicles with a "Stealthy―Outer Corona and an Endosomal-Escape-Accelerating Inner Corona for Efficient Intracellular Anticancer Drug Delivery. Biomacromolecules, 2014, 15, 3072-3082.	2.6	77
894	Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for in vivo applications. Journal of Materials Chemistry B, 2014, 2, 2153-2167.	2.9	32
895	Design and Evaluation of Thioalkylated Mannose-Modified Dendrimer (G3)/α-Cyclodextrin Conjugates as Antigen-Presenting Cell-Selective siRNA Carriers. AAPS Journal, 2014, 16, 1298-1308.	2.2	14
896	Quantum-Dot-Induced Self-Assembly of Cricoid Protein for Light Harvesting. ACS Nano, 2014, 8, 3743-3751.	7.3	83
897	Delivery of antisense oligonucleotides using poly(alkylene oxide)–poly(propylacrylic acid) graft copolymers in conjunction with cationic liposomes. Journal of Controlled Release, 2014, 194, 103-112.	4.8	28
898	Stimulation of Gene Transfection by Silicon Nanowire Arrays Modified with Polyethylenimine. ACS Applied Materials & Interfaces, 2014, 6, 14391-14398.	4.0	30
899	Modulated Protonation of Side Chain Aminoethylene Repeats in N-Substituted Polyaspartamides Promotes mRNA Transfection. Journal of the American Chemical Society, 2014, 136, 12396-12405.	6.6	113

#	Article	IF	CITATIONS
900	Reducible cationic PAA-g-PEI polymeric micelle/DNA complexes for enhanced gene delivery. Journal of Bioactive and Compatible Polymers, 2014, 29, 458-473.	0.8	4
901	A novel inÂvitro system for intracellular delivery of nonviral DNA. Journal of Orthopaedic Translation, 2014, 2, 157-164.	1.9	4
902	Efficient in vitro gene delivery by hybrid biopolymer/virus nanobiovectors. Journal of Controlled Release, 2014, 192, 40-46.	4.8	13
903	Differential Polymer Structure Tunes Mechanism of Cellular Uptake and Transfection Routes of Poly(β-amino ester) Polyplexes in Human Breast Cancer Cells. Bioconjugate Chemistry, 2014, 25, 43-51.	1.8	72
904	Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging. Nanoscale, 2014, 6, 7379.	2.8	24
905	Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials, 2014, 35, 9495-9507.	5.7	67
906	Interaction of Astramol Poly(propyleneimine) Dendrimers with DNA and Poly(methacrylate) Anion in Water and Water–Salt Solutions. Journal of Physical Chemistry B, 2014, 118, 8819-8826.	1.2	10
907	Dendrimer Advances for the Central Nervous System Delivery of Therapeutics. ACS Chemical Neuroscience, 2014, 5, 2-13.	1.7	130
908	Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP. Materials Science and Engineering C, 2014, 43, 350-358.	3.8	10
909	Heparosan based negatively charged nanocarrier for rapid intracellular drug delivery. International Journal of Pharmaceutics, 2014, 473, 493-500.	2.6	19
910	Multifunctional Inorganic Nanocontainers for DNA and Drug Delivery into Living Cells. Chemistry - A European Journal, 2014, 20, 10900-10904.	1.7	41
911	Transforming polyethylenimine into a pH-switchable hydrogel by additional supramolecular interactions. Chemical Communications, 2014, 50, 10464.	2.2	28
912	Polymer–Peptide Delivery Platforms: Effect of Oligopeptide Orientation on Polymer-Based DNA Delivery. Biomacromolecules, 2014, 15, 1328-1336.	2.6	22
913	Dendritic Silica Nanomaterials (KCC-1) with Fibrous Pore Structure Possess High DNA Adsorption Capacity and Effectively Deliver Genes In Vitro. Langmuir, 2014, 30, 10886-10898.	1.6	88
914	Tumorâ€Targeted Redoxâ€Responsive Nonviral Gene Delivery Nanocarriers Based on Neutralâ€Cationic Brush Block Copolymers. Macromolecular Rapid Communications, 2014, 35, 466-473.	2.0	26
915	Coacervate delivery systems for proteins and small molecule drugs. Expert Opinion on Drug Delivery, 2014, 11, 1829-1832.	2.4	97
916	Galactosylated poly(ethylene glycol) methacrylate- <i>st</i> -3-guanidinopropyl methacrylamide copolymers as siRNA carriers for inhibiting Survivin expression <i>in vitro</i> and <i>in vivo</i> . Journal of Drug Targeting, 2014, 22, 352-364.	2.1	3
917	Polyethylenimine-grafted polyamidoamine conjugates for gene delivery with high efficiency and low cytotoxicity. Macromolecular Research, 2014, 22, 757-764.	1.0	8

#	Article	IF	CITATIONS
918	PEG-Based Hyperbranched Polymer Theranostics: Optimizing Chemistries for Improved Bioconjugation. Macromolecules, 2014, 47, 5211-5219.	2.2	30
919	Amphiphilic Chitosan Derivatives-Based Liposomes: Synthesis, Development, and Properties as a Carrier for Sustained Release of Salidroside. Journal of Agricultural and Food Chemistry, 2014, 62, 626-633.	2.4	30
920	Mesoporous Fe 3 O 4 /hydroxyapatite composite for targeted drug delivery. Materials Research Bulletin, 2014, 59, 65-68.	2.7	44
921	Core–Shell Nanoparticle-Based Peptide Therapeutics and Combined Hyperthermia for Enhanced Cancer Cell Apoptosis. ACS Nano, 2014, 8, 9379-9387.	7.3	120
922	Polymeric Plerixafor: Effect of PEGylation on CXCR4 Antagonism, Cancer Cell Invasion, and DNA Transfection. Pharmaceutical Research, 2014, 31, 3538-3548.	1.7	27
923	Sandwich-Type Au-PEI/DNA/PEI-Dexa Nanocomplex for Nucleus-Targeted Gene Delivery in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2014, 6, 14196-14206.	4.0	58
924	Structurally engineered anodic alumina nanotubes as nano-carriers for delivery of anticancer therapeutics. Biomaterials, 2014, 35, 5517-5526.	5.7	55
925	pH-responsive polymers: properties, synthesis and applications. , 2014, , 45-92.		51
926	Bioreducible Polycations in Nucleic Acid Delivery: Past, Present, and Future Trends. Macromolecular Bioscience, 2014, 14, 908-922.	2.1	87
927	Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd–DTPA for T1 MR imaging. Journal of Colloid and Interface Science, 2014, 415, 70-76.	5.0	20
928	Patterned Substrates of Nano-Graphene Oxide Mediating Highly Localized and Efficient Gene Delivery. ACS Applied Materials & Interfaces, 2014, 6, 5900-5907.	4.0	36
929	Biodegradable Polymeric Nanoparticles Show High Efficacy and Specificity at DNA Delivery to Human Glioblastoma <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2014, 8, 5141-5153.	7.3	181
930	Arginine-Based Biodegradable Ether–Ester Polymers with Low Cytotoxicity as Potential Gene Carriers. Biomacromolecules, 2014, 15, 2839-2848.	2.6	21
931	Poly(ethyleneimine) functionalized carbon nanotubes as efficient nano-vector for transfecting mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2014, 122, 115-125.	2.5	41
932	Mitochondrial targeting dendrimer allows efficient and safe gene delivery. Journal of Materials Chemistry B, 2014, 2, 2546-2553.	2.9	50
933	Dextranation of Bioreducible Cationic Polyamide for Systemic Gene Delivery. Bio-Medical Materials and Engineering, 2014, 24, 673-682.	0.4	7
934	Non-viral vectors for gene-based therapy. Nature Reviews Genetics, 2014, 15, 541-555.	7.7	2,572
935	Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors. Journal of Pharmaceutical Innovation, 2014, 9, 158-173.	1.1	85

#	Article	IF	CITATIONS
936	The research of nanoparticles as gene vector for tumor gene therapy. Critical Reviews in Oncology/Hematology, 2014, 89, 352-357.	2.0	53
937	Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion, 2014, 19, 49-57.	1.6	164
938	Synthesis and biomedical applications of functional poly(\hat{l} ±-hydroxyl acid)s. Polymer Chemistry, 2014, 5, 5854-5872.	1.9	76
939	Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials, 2014, 35, 9187-9198.	5.7	74
940	Exploring the solid state properties of enzymatic poly(amine-co-ester) terpolymers to expand their applications in gene transfection. RSC Advances, 2014, 4, 8953.	1.7	12
941	Rare-earth-incorporated polymeric vector for enhanced gene delivery. Biomaterials, 2014, 35, 479-488.	5.7	11
942	The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials, 2014, 35, 6603-6613.	5.7	76
943	Polyethylenimine-immobilized core–shell nanoparticles: Synthesis, characterization, and biocompatibility test. Materials Science and Engineering C, 2014, 34, 377-383.	3.8	19
944	Structural DNA Nanotechnology for Intelligent Drug Delivery. Small, 2014, 10, 4626-4635.	5.2	101
945	siRNA Delivery to the lung: What's new?. Advanced Drug Delivery Reviews, 2014, 75, 112-128.	6.6	113
946	Ion Permeability of the Nuclear Pore Complex and Ion-Induced Macromolecular Permeation as Studied by Scanning Electrochemical and Fluorescence Microscopy. Analytical Chemistry, 2014, 86, 2090-2098.	3.2	41
947	Amphiphilic Macromolecules on Cell Membranes: From Protective Layers to Controlled Permeabilization. Journal of Membrane Biology, 2014, 247, 861-881.	1.0	50
948	Catch and release: photocleavable cationic diblock copolymers as a potential platform for nucleic acid delivery. Polymer Chemistry, 2014, 5, 5535-5541.	1.9	25
949	Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine, 2014, 9, 135-151.	1.7	27
950	Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials, 2014, 35, 7188-7193.	5.7	23
951	pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomaterialia, 2014, 10, 300-307.	4.1	91
952	Photothermally Controlled Gene Delivery by Reduced Graphene Oxide–Polyethylenimine Nanocomposite. Small, 2014, 10, 117-126.	5.2	245
953	Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Frontiers in Chemistry, 2014, 2, 69.	1.8	116

#	Article	IF	CITATIONS
960	pH and redox sensitive albumin hydrogel: A self-derived biomaterial. Scientific Reports, 2015, 5, 15977.	1.6	67
961	Polyethylenimine-based polyplex nanoparticles and features of their behavior in cells and tissues. Russian Chemical Bulletin, 2015, 64, 2749-2755.	0.4	7
962	Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Molecular Medicine Reports, 2015, 11, 4381-4388.	1.1	19
963	Enteral siRNA delivery technique for therapeutic gene silencing in the liver via the lymphatic route. Scientific Reports, 2015, 5, 17035.	1.6	26
965	Generation 3 PAMAM dendrimer TAMRA conjugates containing precise dye/dendrimer ratios. Materials Today Communications, 2015, 4, 86-92.	0.9	7
966	Polymer engineering focusing on DRUG/GENE delivery and tissue engineering. , 2015, , .		1
967	Combination of sequenceâ€defined oligoaminoamides with transferrinâ€polycation conjugates for receptorâ€targeted gene delivery. Journal of Gene Medicine, 2015, 17, 161-172.	1.4	22
968	Selfâ€Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angewandte Chemie - International Edition, 2015, 54, 11647-11651.	7.2	152
969	Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma. Archiv Der Pharmazie, 2015, 348, 681-688.	2.1	15
970	Folicâ€Acidâ€Targeted Selfâ€Assembling Supramolecular Carrier for Gene Delivery. ChemBioChem, 2015, 16, 1622-1628.	1.3	21
971	A Biomimic Reconstituted High-Density-Lipoprotein-Based Drug and p53 Gene Co-delivery System for Effective Antiangiogenesis Therapy of Bladder Cancer. Nanoscale Research Letters, 2015, 10, 965.	3.1	13
972	Patient-Specific Therapy via Cell-Reprogramming Technology: a Curative Potential for Patients with Diabetes. Nanoscale Research Letters, 2015, 10, 496.	3.1	1
973	Nanoâ€Selfâ€Assembly of Nucleic Acids Capable of Transfection without a Gene Carrier. Advanced Functional Materials, 2015, 25, 5445-5451.	7.8	46
974	Virusâ€Inspired Mimics Based on Dendritic Lipopeptides for Efficient Tumorâ€Specific Infection and Systemic Drug Delivery. Advanced Functional Materials, 2015, 25, 5250-5260.	7.8	74
975	Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology, 2015, 26, 422001.	1.3	109
976	Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro. Journal of Physics: Conference Series, 2015, 656, 012003.	0.3	6
978	CaCO3/CalP6 composite nanoparticles effectively deliver AKT1 small interfering RNA to inhibit human breast cancer growth. International Journal of Nanomedicine, 2015, 10, 4255.	3.3	14
979	Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA. International Journal of Nanomedicine, 2015, 10, 3403.	3.3	12

#	Article	IF	CITATIONS
980	Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery. International Journal of Nanomedicine, 2015, 10, 5367.	3.3	40
981	Enhanced transfection efficiency and targeted delivery of self-assembling h-R3-dendriplexes in EGFR-overexpressing tumor cells. Oncotarget, 2015, 6, 26177-26191.	0.8	14
983	Non-Nucleosidic Analogues of Polyaminonucleosides and Their Influence on Thermodynamic Properties of Derived Oligonucleotides. Molecules, 2015, 20, 12652-12669.	1.7	0
984	Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents. PLoS ONE, 2015, 10, e0134247.	1.1	19
985	Insights into Cellular Uptake of Nanoparticles. Current Drug Delivery, 2015, 12, 63-77.	0.8	60
986	Preparation and <i>In Vitro</i> Evaluation of a Multifunctional Iron Silicate@Liposome Nanohybrid for pH-Sensitive Doxorubicin Delivery and Photoacoustic Imaging. Journal of Nanomaterials, 2015, 2015, 1-13.	1.5	4
987	The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells. BioMed Research International, 2015, 2015, 1-10.	0.9	20
988	RNA-Based Vaccines in Cancer Immunotherapy. Journal of Immunology Research, 2015, 2015, 1-9.	0.9	169
990	Galactose-based Thermosensitive Nanogels for Targeted Drug Delivery of Iodoazomycin Arabinofuranoside (IAZA) for Theranostic Management of Hypoxic Hepatocellular Carcinoma. Biomacromolecules, 2015, 16, 1978-1986.	2.6	57
991	pH-sensitive triblock copolymers for efficient siRNA encapsulation and delivery. Polymer Chemistry, 2015, 6, 3472-3479.	1.9	19
992	Rigid Jeffamine-included polyrotaxane as hydrogen-bond template for salicylideneazine with aggregation-enhanced emission. RSC Advances, 2015, 5, 37979-37987.	1.7	3
993	Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Human Gene Therapy, 2015, 26, 452-462.	1.4	164
994	Light-activated RNA interference in human embryonic stem cells. Biomaterials, 2015, 63, 70-79.	5.7	38
995	Kinome-level screening identifies inhibition of polo-like kinase-1 (PLK1) as a target for enhancing non-viral transgene expression. Journal of Controlled Release, 2015, 204, 20-29.	4.8	10
996	Magnetic nanoparticles: Applications in gene delivery and gene therapy. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1-8.	1.9	44
997	Simulation and Experimental Assembly of DNA–Graft Copolymer Micelles with Controlled Morphology. ACS Biomaterials Science and Engineering, 2015, 1, 448-455.	2.6	9
998	Using inositol as a biocompatible ligand for efficient transgene expression. International Journal of Nanomedicine, 2015, 10, 2871.	3.3	1
999	Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids and Surfaces B: Biointerfaces, 2015, 132, 85-102.	2.5	43

#	Article	IF	CITATIONS
1000	Co-liposomes of redox-active alkyl-ferrocene modified low MW branched PEI and DOPE for efficacious gene delivery in serum. Journal of Materials Chemistry B, 2015, 3, 2318-2330.	2.9	18
1001	Complexation and release of DNA in polyplexes formed with reducible linear poly(β-amino esters). Colloids and Surfaces B: Biointerfaces, 2015, 133, 339-346.	2.5	3
1002	Microfluidics-Driven Strategy for Size-Controlled DNA Compaction by Slow Diffusion through Water Stream. Chemistry of Materials, 2015, 27, 8193-8197.	3.2	18
1003	Micelle-like Nanoparticles as Carriers for DNA and siRNA. Molecular Pharmaceutics, 2015, 12, 301-313.	2.3	107
1004	Mannosylated Polyion Complexes for <i>In Vivo</i> Gene Delivery into CD11c ⁺ Dendritic Cells. Molecular Pharmaceutics, 2015, 12, 453-462.	2.3	32
1005	Optical Injection of Gold Nanoparticles into Living Cells. Nano Letters, 2015, 15, 770-775.	4.5	85
1006	Defined Polymeric Materials for Gene Delivery. Macromolecular Bioscience, 2015, 15, 600-612.	2.1	53
1007	Efficient and High-Speed Transduction of an Antibody into Living Cells Using a Multifunctional Nanocarrier System to Control Intracellular Trafficking. Journal of Pharmaceutical Sciences, 2015, 104, 2845-2854.	1.6	18
1008	Synthetic control over the dynamics of mesoscaled cargo release from colloidal polymer vectors inside live cells. Journal of Polymer Science Part A, 2015, 53, 256-264.	2.5	0
1009	Modulating Polyplex-Mediated Gene Transfection by Small-Molecule Regulators of Autophagy. Molecular Pharmaceutics, 2015, 12, 932-940.	2.3	13
1010	RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer. Journal of Controlled Release, 2015, 205, 172-180.	4.8	27
1011	One-step synthesized immunostimulatory oligonucleotides-functionalized quantum dots for simultaneous enhanced immunogenicity and cell imaging. Colloids and Surfaces B: Biointerfaces, 2015, 126, 585-589.	2.5	13
1012	The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology, 2015, 96, 55-69.	2.0	174
1013	Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials, 2015, 52, 1-13.	5.7	47
1014	A Tumor Targeted Chimeric Peptide for Synergistic Endosomal Escape and Therapy by Dual‣tage Light Manipulation. Advanced Functional Materials, 2015, 25, 1248-1257.	7.8	103
1015	PEGylated Cationic Polylactides for Hybrid Biosynthetic Gene Delivery. Molecular Pharmaceutics, 2015, 12, 846-856.	2.3	27
1016	Triazine-modified dendrimer for efficient TRAIL gene therapy in osteosarcoma. Acta Biomaterialia, 2015, 17, 115-124.	4.1	47
1017	Targeted Delivery of Nucleic Acid Therapeutics via Nonviral Vectors. Advances in Delivery Science and Technology, 2015, , 271-312.	0.4	3

#	Article	IF	CITATIONS
1018	DC3-Decorated Polyplexes for Targeted Gene Delivery into Dendritic Cells. Bioconjugate Chemistry, 2015, 26, 213-224.	1.8	11
1019	Supramolecular Hydrogels for Longâ€∓erm Bioengineered Stem Cell Therapy. Advanced Healthcare Materials, 2015, 4, 237-244.	3.9	62
1020	Hydrogen-bonding dramatically modulates the gene transfection efficacy of surface-engineered dendrimers. Biomaterials Science, 2015, 3, 500-508.	2.6	11
1021	Branched Amphiphilic Cationic Oligopeptides Form Peptiplexes with DNA: A Study of Their Biophysical Properties and Transfection Efficiency. Molecular Pharmaceutics, 2015, 12, 706-715.	2.3	26
1022	Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. Journal of Controlled Release, 2015, 205, 109-119.	4.8	32
1023	Polymeric Nanoparticles for Nonviral Gene Therapy Extend Brain Tumor Survival <i>in Vivo</i> . ACS Nano, 2015, 9, 1236-1249.	7.3	203
1024	Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Advances, 2015, 5, 17862-17871.	1.7	28
1025	Complex from ionic β-cyclodextrin polyrotaxane and sodium tetraphenylthiophenesulfonate: restricted molecular rotation and aggregation-enhanced emission. RSC Advances, 2015, 5, 19512-19519.	1.7	6
1026	Bioreducible dextran–polyethylenimine conjugates regulate transgene expression distribution in vivo. Journal of Materials Chemistry B, 2015, 3, 1529-1536.	2.9	9
1027	Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for Tumor-Targeted Drug Delivery. Biomacromolecules, 2015, 16, 447-456.	2.6	114
1028	pHâ€Regulated Selectivity in Supramolecular Polymerizations: Switching between Co―and Homopolymers. Chemistry - A European Journal, 2015, 21, 3304-3309.	1.7	69
1029	Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies. ACS Biomaterials Science and Engineering, 2015, 1, 64-78.	2.6	151
1030	Fabrication of arrays of high-aspect-ratio diamond nanoneedles via maskless ECR-assisted microwave plasma etching. CrystEngComm, 2015, 17, 2791-2800.	1.3	22
1031	Bioreducible polyethylenimine nanoparticles for the efficient delivery of nucleic acids. Organic and Biomolecular Chemistry, 2015, 13, 3128-3135.	1.5	10
1032	Gene delivery by a cationic and thermosensitive nanogel promoted established tumor growth inhibition. Nanomedicine, 2015, 10, 1585-1597.	1.7	54
1033	The effect of glycosaminoglycan content on polyethylenimine-based gene delivery within three-dimensional collagen-GAG scaffolds. Biomaterials Science, 2015, 3, 645-654.	2.6	16
1034	Combining polyethylenimine and Fe(III) for mediating pDNA transfection. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1325-1335.	1.1	6
1035	Tuning the Buffering Capacity of Polyethylenimine with Glycerol Molecules for Efficient Gene Delivery: Staying In or Out of the Endosomes. Macromolecular Bioscience, 2015, 15, 622-635.	2.1	54

#	Article	IF	CITATIONS
1036	Improved biocompatibility of polyethylenimine (PEI) as a gene carrier by conjugating urocanic acid: In vitro and in vivo. Macromolecular Research, 2015, 23, 387-395.	1.0	21
1037	Preparation of Effective and Safe Gene Carriers by Grafting Alkyl Chains to Generation 5 Polypropyleneimine. AAPS PharmSciTech, 2015, 16, 1002-1012.	1.5	14
1038	Shape-memory surfaces for cell mechanobiology. Science and Technology of Advanced Materials, 2015, 16, 014804.	2.8	36
1039	Temporal endogenous gene expression profiles in response to polymer-mediated transfection and profile comparison to lipid-mediated transfection. Journal of Gene Medicine, 2015, 17, 33-53.	1.4	7
1040	Reversible PEGylation and Schiff-base linked imidazole modification of polylysine for high-performance gene delivery. Journal of Materials Chemistry B, 2015, 3, 1507-1517.	2.9	20
1041	Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes. Biomaterials Science, 2015, 3, 1114-1123.	2.6	40
1042	Droplet-based dielectrophoresis device for on-chip nanomedicine fabrication and improved gene delivery efficiency. Microfluidics and Nanofluidics, 2015, 19, 235-243.	1.0	6
1043	Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomaterials Science, 2015, 3, 894-907.	2.6	93
1044	Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydrate Polymers, 2015, 133, 391-399.	5.1	97
1045	Tumor accumulation of protein kinase-responsive gene carrier/DNA polyplex stabilized by alkanethiol for intravenous injection. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 657-668.	1.9	2
1046	Multi-arm carriers composed of an antioxidant lignin core and poly(glycidyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Journal of Materials Chemistry B, 2015, 3, 6897-6904.) 347 Td (r 2.9	nethacrylate 74
1047	A family of cationic polyamides for in vitro and in vivo gene transfection. Acta Biomaterialia, 2015, 22, 120-130.	4.1	21
1048	Toroidal Packaging of pDNA into Block Ionomer Micelles Exerting Promoted <i>in Vivo</i> Gene Expression. Biomacromolecules, 2015, 16, 2664-2671.	2.6	21
1049	Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chemical Society Reviews, 2015, 44, 8174-8199.	18.7	268
1050	Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Scientific Reports, 2015, 5, 11661.	1.6	98
1051	D-SP5 Peptide-Modified Highly Branched Polyethylenimine for Gene Therapy of Gastric Adenocarcinoma. Bioconjugate Chemistry, 2015, 26, 1494-1503.	1.8	20
1052	Diol glycidyl ether-bridged low molecular weight PEI as potential gene delivery vehicles. Journal of Materials Chemistry B, 2015, 3, 2660-2670.	2.9	21
1053	<i>In Vitro</i> Evaluation of a Novel mRNA-Based Therapeutic Strategy for the Treatment of Patients Suffering from Alpha-1-Antitrypsin Deficiency. Nucleic Acid Therapeutics, 2015, 25, 235-244.	2.0	13

#	Article	IF	CITATIONS
1054	Microneedles: an innovative platform for gene delivery. Drug Delivery and Translational Research, 2015, 5, 424-437.	3.0	54
1055	Effective co-delivery of doxorubicin and dasatinib using a PEC-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials, 2015, 67, 104-114.	5.7	111
1056	Rapid Synthesis of a Lipocationic Polyester Library via Ring-Opening Polymerization of Functional Valerolactones for Efficacious siRNA Delivery. Journal of the American Chemical Society, 2015, 137, 9206-9209.	6.6	88
1057	Targeted polymeric nanoparticles for cancer gene therapy. Journal of Drug Targeting, 2015, 23, 627-641.	2.1	41
1058	A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials, 2015, 65, 43-55.	5.7	85
1059	Tetranuclear ruthenium(<scp>ii</scp>) complexes with oligo-oxyethylene linkers as one- and two-photon luminescent tracking non-viral gene vectors. Dalton Transactions, 2015, 44, 7058-7065.	1.6	14
1060	Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2015, 134, 81-87.	2.5	31
1061	Guanidinated Thioureaâ€Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. Advanced Healthcare Materials, 2015, 4, 1369-1375.	3.9	9
1062	Chitosan Grafted with Phosphorylcholine and Macrocyclic Polyamine as an Effective Gene Delivery Vector: Preparation, Characterization and In Vitro Transfection. Macromolecular Bioscience, 2015, 15, 912-926.	2.1	10
1063	Sequence Programmable Peptoid Polymers for Diverse Materials Applications. Advanced Materials, 2015, 27, 5665-5691.	11.1	199
1064	Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-l-lysine dendrons. Bioorganic and Medicinal Chemistry, 2015, 23, 2470-2479.	1.4	8
1065	Hyaluronic acid–PEI–cyclodextrin polyplexes: implications for in vitro and in vivo transfection efficiency and toxicity. RSC Advances, 2015, 5, 41144-41154.	1.7	19
1066	Type 2 Diabetes Mellitus: Limitations of Conventional Therapies and Intervention with Nucleic Acid-Based Therapeutics. Chemical Reviews, 2015, 115, 4719-4743.	23.0	62
1067	Multifunctional poly(methacrylate) polyplex libraries: A platform for gene delivery inspired by nature. Journal of Controlled Release, 2015, 209, 1-11.	4.8	19
1068	An efficient method for in vitro gene delivery via regulation of cellular endocytosis pathway. International Journal of Nanomedicine, 2015, 10, 1667.	3.3	8
1069	Nanoscale Strategies: Treatment for Peripheral Vascular Disease and Critical Limb Ischemia. ACS Nano, 2015, 9, 3436-3452.	7.3	55
1070	Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chemical Reviews, 2015, 115, 7240-7303.	23.0	869
1071	Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. International Journal of Pharmaceutics, 2015, 487, 81-90.	2.6	95

#	Article	IF	CITATIONS
1072	Guanidinoamidized linear polyethyleneimine for gene delivery. Chinese Journal of Polymer Science (English Edition), 2015, 33, 908-919.	2.0	11
1073	Molecular Architecture Governs Cytotoxicity and Gene Transfection Efficacy of Polyethylenimine Based Nanoplexes in Mammalian Cell Lines. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 301-311.	1.9	9
1074	APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. Journal of Controlled Release, 2015, 207, 143-153.	4.8	57
1075	Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews, 2015, 115, 11043-11078.	23.0	495
1076	Guanidinylated block copolymers for gene transfer: A comparison with amine-based materials for inÂvitro and inÂvivo gene transfer efficiency. Biomaterials, 2015, 54, 87-96.	5.7	26
1077	Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery. Biomaterials, 2015, 58, 103-111.	5.7	11
1078	A supramolecular approach to improve the gene transfection efficacy of dendrimers. Chemical Communications, 2015, 51, 9741-9743.	2.2	8
1079	Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. Journal of Controlled Release, 2015, 210, 84-94.	4.8	95
1080	Increase in Transgene Expression by Pluronic L64-Mediated Endosomal/Lysosomal Escape through Its Membrane-Disturbing Action. ACS Applied Materials & Interfaces, 2015, 7, 7282-7293.	4.0	31
1081	Recycling Gene Carrier with High Efficiency and Low Toxicity Mediated by L-Cystine-Bridged Bis(12-cyclodextrin)s. Scientific Reports, 2014, 4, 7471.	1.6	22
1083	Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection. Nanoscale, 2015, 7, 8476-8484.	2.8	27
1084	A supramolecular two-photon-active hydrogel platform for direct bioconjugation under near-infrared radiation. Journal of Materials Chemistry B, 2015, 3, 1313-1320.	2.9	11
1085	The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution. Colloids and Surfaces B: Biointerfaces, 2015, 131, 83-92.	2.5	16
1086	Effect on in vitro cell response of the statistical insertion of N-(2-hydroxypropyl) methacrylamide on linear pro-dendronic polyamine's gene carriers. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 303-310.	2.0	5
1087	The Synthesis of Cyclic Poly(ethylene imine) and Exact Linear Analogues: An Evaluation of Gene Delivery Comparing Polymer Architectures. Journal of the American Chemical Society, 2015, 137, 6541-6549.	6.6	195
1088	Genipin-Cross-Linked Thermophilic Histone-Polyethylenimine as a Hybrid Gene Carrier. ACS Macro Letters, 2015, 4, 575-578.	2.3	9
1089	Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery. Journal of Controlled Release, 2015, 209, 77-87.	4.8	62
1090	Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery. Acta Biomaterialia, 2015, 22, 111-119.	4.1	35

#	Article	IF	CITATIONS
1091	Biocompatible Polymer–Peptide Hybrid-Based DNA Nanoparticles for Gene Delivery. ACS Applied Materials & Interfaces, 2015, 7, 10446-10456.	4.0	29
1092	Achieving successful delivery of oligonucleotides — From physico-chemical characterization to in vivo evaluation. Biotechnology Advances, 2015, 33, 1294-1309.	6.0	39
1093	Quaternization enhances the transgene expression efficacy of aminoglycoside-derived polymers. International Journal of Pharmaceutics, 2015, 489, 18-29.	2.6	13
1094	Surface-Engineered Dendrimers in Gene Delivery. Chemical Reviews, 2015, 115, 5274-5300.	23.0	369
1095	Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery. Nanoscale, 2015, 7, 8554-8565.	2.8	58
1096	Photochemical activation of drugs for the treatment of therapy-resistant cancers. Photochemical and Photobiological Sciences, 2015, 14, 1465-1475.	1.6	29
1097	An Oligonucleotide Transfection Vector Based on HSA and PDMAEMA Conjugation: Effect of Polymer Molecular Weight on Cell Proliferation and on Multicellular Tumor Spheroids. Macromolecular Bioscience, 2015, 15, 965-978.	2.1	15
1098	Exploring Advantages/Disadvantages and Improvements in Overcoming Gene Delivery Barriers of Amino Acid Modified Trimethylated Chitosan. Pharmaceutical Research, 2015, 32, 2038-2050.	1.7	14
1099	Structure–Function Assessment of Mannosylated Poly(β-amino esters) upon Targeted Antigen Presenting Cell Gene Delivery. Biomacromolecules, 2015, 16, 1534-1541.	2.6	24
1100	Identification of siRNA delivery enhancers by a chemical library screen. Nucleic Acids Research, 2015, 43, 7984-8001.	6.5	58
1101	Endosomal-Escape Polymers Based on Multicomponent Reaction-Synthesized Monomers Integrating Alkyl and Imidazolyl Moieties for Efficient Gene Delivery. ACS Macro Letters, 2015, 4, 1123-1127.	2.3	27
1102	Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid–Fe ^{III} complex. Nanoscale, 2015, 7, 18918-18922.	2.8	106
1103	Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Particle and Fibre Toxicology, 2015, 12, 19.	2.8	103
1104	Current advances in self-assembled nanogel delivery systems for immunotherapy. Advanced Drug Delivery Reviews, 2015, 95, 65-76.	6.6	143
1105	Polymeric oncolytic adenovirus for cancer gene therapy. Journal of Controlled Release, 2015, 219, 181-191.	4.8	66
1106	Synthesis and evaluation of novel chitosan derivatives for gene delivery. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 852-858.	0.4	3
1107	A self-assembling polycationic nanocarrier that exhibits exceptional gene transfection efficiency. RSC Advances, 2015, 5, 91619-91632.	1.7	11
1108	Asialoglycoprotein Receptor-Mediated Gene Delivery to Hepatocytes Using Galactosylated Polymers. Biomacromolecules, 2015, 16, 3008-3020.	2.6	63

	CITA	ation Report	
# 1109	ARTICLE Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the	IF 3.8	CITATIONS
1110	Comparative evaluation and optimization of off-the-shelf cationic polymers for gene delivery purposes. Polymer Chemistry, 2015, 6, 6325-6339.	1.9	32
1111	Selfâ€assembly and reassembly of fiberâ€forming dipeptides for pHâ€triggered DNA delivery. Journal of Polymer Science Part A, 2015, 53, 183-187.	: 2.5	1
1112	A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nature Communications, 2015, 6, 8524.	5.8	71
1113	Fast Characterization of Polyplexes by Taylor Dispersion Analysis. Macromolecules, 2015, 48, 7216-722	:1. 2 . 2	14
1114	A Facile Multifunctionalized Gene Delivery Platform Based on α,β Cyclodextrin Dimers. ACS Biomateria Science and Engineering, 2015, 1, 1151-1162.	ls 2.6	8
1116	Nano-enabled delivery of diverse payloads across complex biological barriers. Journal of Controlled Release, 2015, 219, 548-559.	4.8	54
1117	Hyperbranched lysineâ^'arginine copolymer for gene delivery. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1163-1177.	1.9	14
1118	Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery. Colloids and Surfaces B: Biointerfaces, 2015, 135, 630-638.	2.5	22
1119	Biomaterials for mRNA delivery. Biomaterials Science, 2015, 3, 1519-1533.	2.6	143
1120	A protein–polymer hybrid gene carrier based on thermophilic histone and polyethylenimine. New Journal of Chemistry, 2015, 39, 6718-6721.	1.4	4
1121	Dual functionalized amino poly(glycerol methacrylate) with guanidine and Schiff-base linked imidazole for enhanced gene transfection and minimized cytotoxicity. Journal of Materials Chemistry B, 2015, 3, 6911-6918.	2.9	27
1122	Biodegradable and versatile polyethylenimine derivatives efficiently transfer DNA and siRNA into mammalian cells. Colloids and Surfaces B: Biointerfaces, 2015, 135, 661-668.	2.5	14
1123	Cytoplasmic Reactive Cationic Amphiphiles for Efficient Intracellular Delivery and Self-Reporting Smart Release. Macromolecules, 2015, 48, 5959-5968.	2.2	18
1124	Polymer Multilayers that Promote the Rapid Release and Contact Transfer of DNA. Biomacromolecules, 2015, 16, 2998-3007.	2.6	22
1125	Intracellular delivery of CII TA genes by polycationic liposomes for suppressed immune response of dendritic cells. RSC Advances, 2015, 5, 44068-44073.	1.7	0
1126	Hyperbranched Self-Immolative Polymers (<i>h</i> SIPs) for Programmed Payload Delivery and Ultrasensitive Detection. Journal of the American Chemical Society, 2015, 137, 11645-11655.	6.6	126
1127	Liposome-based Formulation for Intracellular Delivery of Functional Proteins. Molecular Therapy - Nucleic Acids, 2015, 4, e244.	2.3	102

#	ARTICLE	IF	CITATIONS
1128	N,N,N-trimethyl chitosan/oligonucleotide nanopolyplexes. Soft Matter, 2015, 11, 8113-8125.	1.2	30
1129	Nucleobase-modified dendrimers as nonviral vectors for efficient and low cytotoxic gene delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1148-1155.	2.5	14
1130	Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown. Nanoscale, 2015, 7, 20625-20634.	2.8	22
1131	Enhanced DNA release from disulfide-containing layered nanocomplexes by heparin-electrostatic competition. Journal of Materials Chemistry B, 2015, 3, 225-237.	2.9	7
1132	Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Acta Biomaterialia, 2015, 15, 102-116.	4.1	64
1133	Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Advanced Drug Delivery Reviews, 2015, 84, 45-67.	6.6	114
1134	Secure and effective gene delivery system of plasmid DNA coated by polynucleotide. Journal of Drug Targeting, 2015, 23, 43-51.	2.1	5
1135	Reducible, dibromomaleimide-linked polymers for gene delivery. Biomaterials Science, 2015, 3, 112-120.	2.6	20
1136	Multifunctional Polymeric Nano-Carriers in Targeted Drug Delivery. Advances in Delivery Science and Technology, 2015, , 461-500.	0.4	4
1137	Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. Journal of Materials Chemistry B, 2015, 3, 642-650.	2.9	60
1138	Therapeutic face of RNAi: <i>in vivo</i> challenges. Expert Opinion on Biological Therapy, 2015, 15, 269-285.	1.4	51
1139	Photosensitisation facilitates cross-priming of adjuvant-free protein vaccines and stimulation of tumour-suppressing CD8 T cells. Journal of Controlled Release, 2015, 198, 10-17.	4.8	35
1140	Recent advances in targeted drug delivery approaches using dendritic polymers. Biomaterials Science, 2015, 3, 1025-1034.	2.6	39
1141	Tuning the pH-triggered self-assembly of dendritic peptide amphiphiles using fluorinated side chains. Organic and Biomolecular Chemistry, 2015, 13, 1030-1039.	1.5	31
1142	Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation. Biomaterials, 2015, 37, 333-344.	5.7	43
1143	Theoretical and Computational Investigations of Nanoparticle–Biomembrane Interactions in Cellular Delivery. Small, 2015, 11, 1055-1071.	5.2	232
1144	Low molecular weight polyethylenimine as a transgenic vector for tumor gene therapy. Biotechnic and Histochemistry, 2015, 90, 140-145.	0.7	1
1145	A Cationic Poly(2â€oxazoline) with High In Vitro Transfection Efficiency Identified by a Library Approach. Macromolecular Bioscience, 2015, 15, 414-425.	2.1	35

#	Article	IF	CITATIONS
1146	Star-Shaped Tetraspermine Enhances Cellular Uptake and Cytotoxicity of T-Oligo in Prostate Cancer Cells. Pharmaceutical Research, 2015, 32, 196-210.	1.7	5
1147	Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New Journal of Chemistry, 2015, 39, 1654-1664.	1.4	46
1148	Polymeric <scp>siRNA</scp> delivery vectors: knocking down cancers with polymericâ€based gene delivery systems. Journal of Chemical Technology and Biotechnology, 2015, 90, 1196-1208.	1.6	14
1149	Conjugation of poly(amidoamine) dendrimers with various acrylates for improved delivery of plasmid encoding interleukin-12 gene. Journal of Biomaterials Applications, 2015, 29, 941-953.	1.2	27
1150	Dual-Targeted Polyplexes Based on Sequence-Defined Peptide-PEG-Oligoamino Amides. Journal of Pharmaceutical Sciences, 2015, 104, 464-475.	1.6	34
1151	Organic electronic materials for gene delivery. , 2016, , 119-144.		1
1152	RNAi Therapeutic Potentials and Prospects in CNS Disease. , 0, , .		1
1153	Dendritic Polymers for Theranostics. Theranostics, 2016, 6, 930-947.	4.6	77
1154	Nanobiomaterials. , 2016, , 401-429.		5
1155	PEI and its derivatives for gene therapy. , 2016, , 29-54.		19
1155 1156	PEI and its derivatives for gene therapy. , 2016, , 29-54. Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells International, 2016, 2016, 1-9.	1.2	19 26
1155 1156 1157	PEI and its derivatives for gene therapy., 2016, , 29-54. Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells International, 2016, 2016, 1-9. Mechanism, current challenges andÂnew approaches for non viralÂgene delivery., 2016, , 1-27.	1.2	19 26 10
1155 1156 1157 1158	PEI and its derivatives for gene therapy., 2016, , 29-54. Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells International, 2016, 2016, 1-9. Mechanism, current challenges andÂnew approaches for non viralÂgene delivery., 2016, , 1-27. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 108.	1.2	19 26 10 25
1155 1156 1157 1158 1159	PEI and its derivatives for gene therapy., 2016, , 29-54. Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells International, 2016, 2016, 1-9. Mechanism, current challenges andÂnew approaches for non viralÂgene delivery., 2016, , 1-27. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 108. Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34.	1.2 1.4 2.2	19 26 10 25 205
1155 1156 1157 1158 1159 1160	PEI and its derivatives for gene therapy., 2016, , 29-54. Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells International, 2016, 2016, 1-9. Mechanism, current challenges andÂnew approaches for non viralÂgene delivery., 2016, , 1-27. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 108. Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34. Targeted Nanotheranostics for Future Personalized Medicine: Recent Progress in Cancer Therapy. Theranostics, 2016, 6, 1362-1377.	1.2 1.4 2.2 4.6	 19 26 10 25 205 170
1155 1156 1157 1158 1159 1160	PEI and its derivatives for gene therapy., 2016, , 29-54. Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells International, 2016, 2016, 1-9. Mechanism, current challenges andÂnew approaches for non viralÂgene delivery., 2016, , 1-27. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 108. Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34. Targeted Nanotheranostics for Future Personalized Medicine: Recent Progress in Cancer Therapy. Theranostics, 2016, 6, 1362-1377. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers. Frontiers in Pharmacology, 2016, 7, 15.	1.2 1.4 2.2 4.6	 19 26 10 25 205 170 9
 1155 1156 1157 1158 1159 1160 1161 1162 	PEI and its derivatives for gene therapy., 2016, , 29-54. Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells International, 2016, 2016, 1-9. Mechanism, current challenges andÂnew approaches for non viralÂgene delivery., 2016, , 1-27. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 108. Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34. Targeted Nanotheranostics for Future Personalized Medicine: Recent Progress in Cancer Therapy. Theranostics, 2016, 6, 1362-1377. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers. Frontiers in Pharmacology, 2016, 7, 15. Microneedles As a Delivery System for Gene Therapy. Frontiers in Pharmacology, 2016, 7, 137.	1.2 1.4 2.2 4.6 1.6	19 26 10 25 205 170 9 59

#	Article	IF	CITATIONS
1164	Next-Generation Therapeutics: mRNA as a Novel Therapeutic Option for Single-Gene Disorders. , 0, , .		2
1165	A Universal Platform for Macromolecular Deliveryinto Cells Using Gold Nanoparticle Layers via the Photoporation Effect. Advanced Functional Materials, 2016, 26, 5787-5795.	7.8	55
1166	Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic–Inorganic Hybridization into Frameworks. Advanced Materials, 2016, 28, 3235-3272.	11.1	291
1167	Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 842-871.	3.3	84
1168	How can nanomedicines overcome cellular-based anticancer drug resistance?. Journal of Materials Chemistry B, 2016, 4, 5078-5100.	2.9	32
1169	Selfâ€Assembled Dendron–Cyclodextrin Nanotubes with a Polyethylenimine Surface and Their Gene Delivery Capability. ChemPlusChem, 2016, 81, 229-234.	1.3	3
1170	Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers. Macromolecular Bioscience, 2016, 16, 619-626.	2.1	10
1171	Therapeutic Potentials of Noncoding RNAs: Targeted Delivery of ncRNAs in Cancer Cells. Advances in Experimental Medicine and Biology, 2016, 927, 429-458.	0.8	11
1172	Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids. Advanced Materials, 2016, 28, 1159-1175.	11.1	54
1173	Deciphering of polycationic carbohydrate based non-viral gene delivery agents by ESI-LTQ-Orbitrap using CID/HCD pairwise tandem mass spectrometry. RSC Advances, 2016, 6, 78803-78817.	1.7	6
1174	Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes. Journal of Chemical Physics, 2016, 144, 164902.	1.2	10
1175	Entry of PIP3-containing polyplexes into MDCK epithelial cells by local apical-basal polarity reversal. Scientific Reports, 2016, 6, 21436.	1.6	14
1176	How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles. Scientific Reports, 2016, 6, 22033.	1.6	19
1177	Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction. Scientific Reports, 2016, 6, 29436.	1.6	30
1178	Salting-Out and Salting-In of Polyelectrolyte Solutions: A Liquid-State Theory Study. Macromolecules, 2016, 49, 9720-9730.	2.2	63
1179	Development of Branched Poly(5-Amino-1-pentanol- <i>co</i> -1,4-butanediol Diacrylate) with High Gene Transfection Potency Across Diverse Cell Types. ACS Applied Materials & Interfaces, 2016, 8, 34218-34226.	4.0	37
1180	Polymeric nanoparticleâ€based delivery of TRAIL DNA for cancerâ€specific killing. Bioengineering and Translational Medicine, 2016, 1, 149-159.	3.9	33
1181	Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin for enhanced gene delivery applications. RSC Advances, 2016, 6, 25633-25640.	1.7	43

	CITA	ation Report	
#	ARTICLE Polycations and their biomedical applications. Progress in Polymer Science, 2016, 60, 18-50.	IF 11.8	CITATIONS 88
1183	Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats. Biomaterials, 2016, 97, 164-175.	5.7	12
1184	Sequence-defined cMET/HGFR-targeted Polymers as Gene Delivery Vehicles for the Theranostic Sodium Iodide Symporter (NIS) Gene. Molecular Therapy, 2016, 24, 1395-1404.	3.7	30
1185	Jumping the nuclear envelope barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306. Journal of Controlled Release, 2016, 234, 90-97.	4.8	12
1186	Synthesis and characterization of metallo-supramolecular polymers. Chemical Society Reviews, 2016, 45, 5311-5357.	18.7	332
1187	Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin. Materials Science and Engineering C, 2016, 62, 524-531.	3.8	12
1188	Gene therapy for bone tissue engineering. Tissue Engineering and Regenerative Medicine, 2016, 13, 111-125.	1.6	20
1189	Endocytosis in gene therapy with non-viral vectors. Wiener Medizinische Wochenschrift, 2016, 166, 227-235.	0.5	14
1190	One-step gene delivery into the cytoplasm in a fusion-dependent manner based on a new membrane fusogenic lipid. Chemical Communications, 2016, 52, 7406-7408.	2.2	9
1191	mRNA vaccine delivery using lipid nanoparticles. Therapeutic Delivery, 2016, 7, 319-334.	1.2	414
1192	Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacological Research, 2016, 110, 1-9.	3.1	28
1193	Current status of non-viral gene therapy for CNS disorders. Expert Opinion on Drug Delivery, 2016, 13, 1433-1445.	2.4	73
1194	Comparison of Modular PEG Incorporation Strategies for Stabilization of Peptide–siRNA Nanocomplexes. Bioconjugate Chemistry, 2016, 27, 2323-2331.	1.8	14
1195	A nanogel with passive targeting function and adjustable polyplex surface properties for efficient anti-tumor gene therapy. RSC Advances, 2016, 6, 84445-84456.	1.7	9
1196	Comparative study of calf-thymus DNA complexation by low generation PAMAM dendrimers and linear cationic PEGylated block copolymers by time-resolved fluorescence spectroscopy. Journal of Molecular Liquids, 2016, 221, 547-556.	2.3	5
1197	Multiâ€Responsive "Turnâ€On―Nanocarriers for Efficient Siteâ€Specific Gene Delivery In Vitro and Advanced Healthcare Materials, 2016, 5, 2799-2812.	In Vivo. 3.9	18
1198	An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome. Acta Biomaterialia, 2016, 44, 341-354.	4.1	34
1199	Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery. Acta Biomaterialia, 2016, 46, 204-210.	4.1	46

#	Article	IF	CITATIONS
1200	Multifunctional Poly(amine- <i>co</i> -ester- <i>co</i> -orthoester) for Efficient and Safe Gene Delivery. ACS Biomaterials Science and Engineering, 2016, 2, 2080-2089.	2.6	17
1201	Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 103-112.	2.0	26
1202	Cyclodextrin-based facial amphiphiles: assessing the impact of the hydrophilic–lipophilic balance in the self-assembly, DNA complexation and gene delivery capabilities. Organic and Biomolecular Chemistry, 2016, 14, 10037-10049.	1.5	19
1203	Cationic BSA Templated Au–Ag Bimetallic Nanoclusters As a Theranostic Gene Delivery Vector for HeLa Cancer Cells. ACS Biomaterials Science and Engineering, 2016, 2, 2090-2098.	2.6	38
1205	Recent progress in nanomaterials for gene delivery applications. Biomaterials Science, 2016, 4, 1291-1309.	2.6	183
1206	Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Research, 2016, 9, 3027-3037.	5.8	19
1207	Supramolecular host-guest polycationic gene delivery system based on poly(cyclodextrin) and azobenzene-terminated polycations. Colloids and Surfaces B: Biointerfaces, 2016, 147, 25-35.	2.5	22
1208	Photochemical Internalization (PCI) $\hat{a} \in$ " A Technology for Intracellular Drug Delivery. , 2016, , 245-300.		0
1209	Synthesis of a novel PEGDCA-coated hPAMAM complex as an efficient and biocompatible gene delivery vector: an <i>in vitro</i> and <i>in vivo</i> study. Drug Delivery, 2016, 23, 2956-2969.	2.5	9
1210	Block ionomer complexes consisting of siRNA and aRAFT-synthesized hydrophilic-block-cationic copolymers II: the influence of cationic block charge density on gene suppression. Polymer Chemistry, 2016, 7, 6044-6054.	1.9	10
1211	Enhanced siRNA delivery of a cyclododecylated dendrimer compared to its linear derivative. Journal of Materials Chemistry B, 2016, 4, 5654-5658.	2.9	6
1212	Synthesis and Characterization of Backbone Degradable Azlactone-Functionalized Polymers. Macromolecules, 2016, 49, 5514-5526.	2.2	26
1213	Synthesis of Stable Multifunctional Perfluorocarbon Nanoemulsions for Cancer Therapy and Imaging. Langmuir, 2016, 32, 10870-10880.	1.6	73
1214	Disulfide-functional poly(amido amine)s with tunable degradability for gene delivery. Journal of Controlled Release, 2016, 244, 357-365.	4.8	53
1215	Model system for multifunctional delivery nanoplatforms based on DNA-Polymer complexes containing silver nanoparticles and fluorescent dye. Journal of Biotechnology, 2016, 236, 78-87.	1.9	16
1216	Endocytosis and the Endolysosomal Route in Drug Delivery. , 2016, , 331-358.		Ο
1217	Biocompatible Polymers: Biopolymers. , 2016, , 552-573.		0
1218	Current Understanding of Direct Translocation of Arginine-Rich Cell-Penetrating Peptides and Its Internalization Mechanisms. Chemical and Pharmaceutical Bulletin, 2016, 64, 1431-1437.	0.6	100

#	Article	IF	CITATIONS
1219	Biodegradable functional biomaterials exploiting substituted trimethylene carbonates and organocatalytic transesterification. Polymer Journal, 2016, 48, 1103-1114.	1.3	21
1220	Lipopolyplex Nanoparticles for Tumor Targeting Theranostics. , 2016, , 251-275.		0

Fabrication of Magnetically Modified Chlorella pyrenoidosa Microalgae Using Poly(diallyldimethyl) Tj ETQq000 rgBT /Overlock 10 Tf 50

1222	Highly Branched Poly(β-amino esters) for Non-Viral Gene Delivery: High Transfection Efficiency and Low Toxicity Achieved by Increasing Molecular Weight. Biomacromolecules, 2016, 17, 3640-3647.	2.6	78
1223	Continuous Production of Discrete Plasmid DNAâ€Polycation Nanoparticles Using Flash Nanocomplexation. Small, 2016, 12, 6214-6222.	5.2	62
1224	Self-assembling Janus dendritic polymer for gene delivery with low cytotoxicity and high gene transfection efficiency. Journal of Materials Chemistry B, 2016, 4, 6462-6467.	2.9	19
1225	Nanoparticle delivery systems for siRNA-based therapeutics. Journal of Materials Chemistry B, 2016, 4, 6620-6639.	2.9	53
1226	Screening of efficient polymers for siRNA delivery in a library of hydrophobically modified polyethyleneimines. Journal of Materials Chemistry B, 2016, 4, 6468-6474.	2.9	39
1227	Quantitative study of effects of free cationic chains on gene transfection in different intracellular stages. Journal of Controlled Release, 2016, 238, 71-79.	4.8	36
1228	Quantifying the Interactions between PEI and Double-Stranded DNA: Toward the Understanding of the Role of PEI in Gene Delivery. ACS Applied Materials & Interfaces, 2016, 8, 21055-21062.	4.0	21
1230	Nucleic Acid Delivery for Endothelial Dysfunction in Cardiovascular Diseases. Methodist DeBakey Cardiovascular Journal, 2021, 12, 134.	0.5	5
1231	Production and clinical development of nanoparticles for gene delivery. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16023.	1.8	207
1232	Peptide-conjugated PEGylated PAMAM as a highly affinitive nanocarrier towards HER2-overexpressing cancer cells. RSC Advances, 2016, 6, 107337-107343.	1.7	14
1233	The transition from linear to highly branched poly(β-amino ester)s: Branching matters for gene delivery. Science Advances, 2016, 2, e1600102.	4.7	163
1234	miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452.	5.8	113
1235	Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. Scientific Reports, 2016, 6, 35786.	1.6	62
1236	A light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations. Journal of Materials Chemistry B, 2016, 4, 7731-7740.	2.9	19
1237	PLL/PAE/DNA ternary complexes with enhanced endosomal escape ability for efficient and safe gene transfection. New Journal of Chemistry, 2016, 40, 9806-9812.	1.4	10

#	Article	IF	CITATIONS
1238	PHEA-g-PDMAEA well-defined graft copolymers: SET-LRP synthesis, self-catalyzed hydrolysis, and quaternization. Polymer Chemistry, 2016, 7, 6973-6979.	1.9	19
1239	Movement of a Quantum Dot Covered with Cytocompatible and pH-Responsible Phospholipid Polymer Chains under a Cellular Environment. Biomacromolecules, 2016, 17, 3986-3994.	2.6	10
1240	Complex Coacervation-Integrated Hybrid Nanoparticles Increasing Plasmid DNA Delivery Efficiency <i>in Vivo</i> . ACS Applied Materials & Interfaces, 2016, 8, 30735-30746.	4.0	21
1241	Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS. Biointerphases, 2016, 11, 02A304.	0.6	19
1242	High DNAâ€Binding Affinity and Geneâ€Transfection Efficacy of Bioreducible Cationic Nanomicelles with a Fluorinated Core. Angewandte Chemie - International Edition, 2016, 55, 755-759.	7.2	111
1243	Delivering Nucleicâ€Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. Advanced Materials, 2016, 28, 5447-5469.	11.1	95
1244	Nanotherapy silencing the interleukin $\hat{a} \in 8$ gene produces regression of prostate cancer by inhibition of angiogenesis. Immunology, 2016, 148, 387-406.	2.0	24
1245	Double-Chambered Ferritin Platform: Dual-Function Payloads of Cytotoxic Peptides and Fluorescent Protein. Biomacromolecules, 2016, 17, 12-19.	2.6	36
1246	Polycationic adamantane-based dendrons form nanorods in complex with plasmid DNA. RSC Advances, 2016, 6, 42933-42942.	1.7	9
1247	Eradication of Acute Myeloid Leukemia with FLT3 Ligand–Targeted miR-150 Nanoparticles. Cancer Research, 2016, 76, 4470-4480.	0.4	48
1248	Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy. Acta Biomaterialia, 2016, 41, 293-301.	4.1	51
1249	Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunology Letters, 2016, 176, 57-64.	1.1	31
1250	Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI. Nanoscale Research Letters, 2016, 11, 263.	3.1	12
1251	CD44-Targeted Hyaluronic Acid-Coated Redox-Responsive Hyperbranched Poly(amido amine)/Plasmid DNA Ternary Nanoassemblies for Efficient Gene Delivery. Bioconjugate Chemistry, 2016, 27, 1723-1736.	1.8	30
1252	Synthesis of diblock/statistical cationic glycopolymers with pendant galactose and lysine moieties: gene delivery application and intracellular behaviors. Journal of Materials Chemistry B, 2016, 4, 4696-4706.	2.9	28
1253	Peptides for nucleic acid delivery. Advanced Drug Delivery Reviews, 2016, 106, 172-182.	6.6	174
1254	Poly(lactic acid) for delivery of bioactive macromolecules. Advanced Drug Delivery Reviews, 2016, 107, 277-288.	6.6	49
1255	Glyco-copolypeptide grafted magnetic nanoparticles: the interplay between particle dispersion and RNA loading. Polymer Chemistry, 2016, 7, 3221-3224.	1.9	4

#	Article	IF	CITATIONS
1256	InÂvivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ä^erenkov imaging. Biomaterials, 2016, 98, 53-63.	5.7	36
1257	Photoinduced inhibition of DNA unwinding in vitro with water-soluble polymers containing both phosphorylcholine and photoreactive groups. Acta Biomaterialia, 2016, 40, 226-234.	4.1	11
1258	Highly branched poly(β-amino ester)s for skin gene therapy. Journal of Controlled Release, 2016, 244, 336-346.	4.8	95
1259	Towards DNA sensing polymers: interaction between acrylamide/3-(N,N-dimethylaminopropyl)-acrylamide and DNA phage λ at various N/P ratios. RSC Advances, 2016, 6, 58212-58217.	1.7	3
1260	Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opinion on Drug Delivery, 2016, 13, 1475-1487.	2.4	30
1261	Nanoâ€Sized Sunflower Polycations As Effective Gene Transfer Vehicles. Small, 2016, 12, 2750-2758.	5.2	39
1262	Polymer-Based DNA Delivery Systems for Cancer Immunotherapy. Advances in Delivery Science and Technology, 2016, , 221-244.	0.4	1
1263	Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 191-204.	2.0	29
1264	A block copolymer containing PEG and histamine-like segments: well-defined functions for gene delivery. New Journal of Chemistry, 2016, 40, 7222-7228.	1.4	5
1265	Clustering Small Dendrimers into Nanoaggregates for Efficient DNA and siRNA Delivery with Minimal Toxicity. Advanced Healthcare Materials, 2016, 5, 584-592.	3.9	33
1267	Engineering Stem Cells for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 10-55.	3.9	25
1268	Imaging-guided delivery of RNAi for anticancer treatment. Advanced Drug Delivery Reviews, 2016, 104, 44-60.	6.6	102
1269	Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles. Applied Biochemistry and Biotechnology, 2016, 179, 251-269.	1.4	9
1270	Synthesis of a carboxymethylated guar gum grafted polyethyleneimine copolymer as an efficient gene delivery vehicle. RSC Advances, 2016, 6, 13730-13741.	1.7	22
1271	Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer. International Journal of Pharmaceutics, 2016, 500, 144-153.	2.6	10
1272	Gene-Based Approaches to Bone Regeneration. , 2016, , 343-356.		2
1273	Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nature Communications, 2016, 7, 10376.	5.8	203
1274	Structure–activity relationship of dendrimers engineered with twenty common amino acids in gene delivery. Acta Biomaterialia, 2016, 29, 94-102.	4.1	40

#	Article	IF	CITATIONS
1275	N,N,N-trimethylchitosan modified with well defined multifunctional polymer modules used as pDNA delivery vector. Carbohydrate Polymers, 2016, 137, 222-230.	5.1	10
1276	Rapid Exchange Between Free and Bound States in RNA–Dendrimer Polyplexes: Implications on the Mechanism of Delivery and Release. Biomacromolecules, 2016, 17, 154-164.	2.6	20
1277	Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?. International Journal of Energy Production and Management, 2016, 3, 87-98.	1.9	30
1278	Sequence-Independent Cloning and Post-Translational Modification of Repetitive Protein Polymers through Sortase and Sfp-Mediated Enzymatic Ligation. Biomacromolecules, 2016, 17, 1330-1338.	2.6	26
1279	Reactivity of chitosan derivatives and their interaction with guanine: A computational study. Journal of Chemical Sciences, 2016, 128, 589-598.	0.7	10
1280	Tailoring the dendrimer core for efficient gene delivery. Acta Biomaterialia, 2016, 35, 1-11.	4.1	73
1281	Design of pH-responsive gold nanoparticles in oncology. Materials Science and Technology, 2016, 32, 794-804.	0.8	10
1282	Critical Length of PEG Grafts on IPEI/DNA Nanoparticles for Efficient in Vivo Delivery. ACS Biomaterials Science and Engineering, 2016, 2, 567-578.	2.6	43
1283	Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity. Carbohydrate Polymers, 2016, 143, 25-34.	5.1	34
1284	Being Two Is Better than Being One: A Facile Strategy to Fabricate Multicomponent Nanoparticles for Efficient Gene Delivery. Bioconjugate Chemistry, 2016, 27, 638-646.	1.8	6
1285	Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line. International Journal of Pharmaceutics, 2016, 502, 1-9.	2.6	30
1286	Combinatorial Optimization of Sequence-Defined Oligo(ethanamino)amides for Folate Receptor-Targeted pDNA and siRNA Delivery. Bioconjugate Chemistry, 2016, 27, 647-659.	1.8	38
1287	Charge Type, Charge Spacing, and Hydrophobicity of Arginine-Rich Cell-Penetrating Peptides Dictate Gene Transfection. Molecular Pharmaceutics, 2016, 13, 1047-1057.	2.3	36
1288	Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination. Journal of Materials Chemistry B, 2016, 4, 2028-2037.	2.9	31
1289	Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery. Journal of Controlled Release, 2016, 226, 205-216.	4.8	57
1290	One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials, 2016, 87, 57-68.	5.7	67
1291	Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA. Nanoscale, 2016, 8, 5106-5119.	2.8	24
1292	Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: Optimal substitution is critical for effective delivery. Acta Biomaterialia, 2016, 33, 213-224.	4.1	28

ARTICLE IF CITATIONS # <i>N</i>-Acetylgalactosamine Block-<i>co</i>-Polycations Form Stable Polyplexes with Plasmids and 1293 2.6 42 Promote Liver-Targeted Delivery. Biomacromolecules, 2016, 17, 830-840. Elucidating the role of free polycations in gene knockdown by siRNA polyplexes. Acta Biomaterialia, 1294 4.1 28 2016, 35, 248-259. Inhibition of Gene Expression and Cancer Cell Migration by CD44v3/6-Targeted Polyion Complexes. 1295 1.8 11 Bioconjugate Chemistry, 2016, 27, 947-960. Tumor Acidity-Induced Sheddable Polyethylenimine-Poly(trimethylene carbonate)/DNA/Polyethylene Glycol-2,3-Dimethylmaleicanhydride Ternary Complex for Efficient and Safe Gene Delivery. ACS Applied 1296 4.0 Materials & amp; Interfaces, 2016, 8, 6400-6410. Vectorization of Nucleic Acids for Therapeutic Approach: Tutorial Review. ACS Chemical Biology, 2016, 1297 1.6 23 11, 1180-1191. 1298 Smart Polymer-Based Nanomedicines., 2016, , 373-413. Polymer-coated pH-responsive high-density lipoproteins. Journal of Controlled Release, 2016, 228, 1299 4.8 10 132-140. Recent advances of biomaterials in biotherapy. International Journal of Energy Production and 1300 1.9 49 Management, 2016, 3, 99-105. Designing hyperbranched polymers for gene delivery. Molecular Systems Design and Engineering, 2016, 1301 1.7 21 1, 25-39. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity. 3.6 International Journal of Biological Macromolecules, 2016, 85, 157-167. Enzymatic PEGylated Poly(lactone-<i>co</i>-l²-amino ester) Nanoparticles as Biodegradable, Biocompatible and Stable Vectors for Gene Delivery. ACS Applied Materials & Amp; Interfaces, 2016, 8, 1303 4.035 490-501. Synergistic nanomedicine by combined gene and photothermal therapy. Advanced Drug Delivery 6.6 221 Réviews, 2016, 98, 99-112. Cationic Micelles Based on Polyhedral Oligomeric Silsesquioxanes for Enhanced Gene Transfection. 1305 0.5 20 Australian Journal of Chemistry, 2016, 69, 363. Catalytic self-assembly of a DNA dendritic complex for efficient gene silencing. Chemical Communications, 2016, 52, 1413-1415. 1306 2.2 24 Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy. Acta 1307 30 4.1 Biomaterialia, 2016, 30, 155-167. Co-delivery of drugs and plasmid DNA for cancer therapy. Advanced Drug Delivery Reviews, 2016, 98, 191 41-63. Nanoparticles for Imaging and Non-viral Gene Therapy. Biosystems and Biorobotics, 2016, , 3-18. 1309 0.2 0 A knot polymer mediated non-viral gene transfection for skin cells. Biomaterials Science, 2016, 4, 92-95.

#	Article	IF	CITATIONS
1311	Bioreducible Poly(Beta-Amino Ester)s for Intracellular Delivery of SiRNA. Methods in Molecular Biology, 2016, 1364, 79-87.	0.4	4
1312	Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for inÂvivo cardiac repair. Biomaterials, 2016, 74, 188-199.	5.7	49
1313	Target gene delivery from targeting ligand conjugated chitosan–PEI copolymer for cancer therapy. Carbohydrate Polymers, 2016, 135, 153-161.	5.1	73
1315	Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Delivery, 2016, 23, 2596-2607.	2.5	96
1316	How to Tackle the Challenge of siRNA Delivery with Sequenceâ€Defined Oligoamino Amides. Macromolecular Bioscience, 2017, 17, 1600152.	2.1	19
1317	Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier. Colloids and Surfaces B: Biointerfaces, 2017, 152, 260-268.	2.5	41
1318	Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy. ACS Nano, 2017, 11, 1419-1431.	7.3	284
1319	Conjugation of poly(ethylene glycol) to poly(lactide)-based polyelectrolytes: An effective method to modulate cytotoxicity in gene delivery. Materials Science and Engineering C, 2017, 73, 275-284.	3.8	56
1320	Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E448-E456.	3.3	207
1321	Multi-functional nanotracers for image-guided stem cell gene therapy. Nanoscale, 2017, 9, 4665-4676.	2.8	13
1322	Polyelectrolyte Complexes (PECs) for Biomedical Applications. Advanced Structured Materials, 2017, , 45-93.	0.3	19
1323	Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery. Scientific Reports, 2017, 7, 41507.	1.6	33
1324	An amphiphilic non-viral gene vector prepared by a combination of enzymatic atom transfer radical polymerization and enzymatic ring-opening polymerization. RSC Advances, 2017, 7, 9926-9932.	1.7	8
1325	Virus-Inspired Self-Assembled Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery. ACS Applied Materials & amp; Interfaces, 2017, 9, 4425-4432.	4.0	41
1326	Will Nanotechnology Bring New Hope for Gene Delivery?. Trends in Biotechnology, 2017, 35, 434-451.	4.9	97
1327	Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with $\langle i \rangle \hat{1} \pm \langle i \rangle$ -cyclodextrin. Nanotechnology, 2017, 28, 125102.	1.3	14
1328	A biomaterial approach to cell reprogramming and differentiation. Journal of Materials Chemistry B, 2017, 5, 2375-2389.	2.9	25
1329	Effect of shear stress on structure and function of polyplex micelles from poly(ethylene) Tj ETQq1 1 0.784314 rg	BT_/Qverlc	ock_10 Tf 50 (
#	Article	IF	CITATIONS
------	--	------	-----------
1330	Membrane-Anchoring, Comb-Like Pseudopeptides for Efficient, pH-Mediated Membrane Destabilization and Intracellular Delivery. ACS Applied Materials & Interfaces, 2017, 9, 8021-8029.	4.0	26
1331	Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Advanced Materials, 2017, 29, 1606628.	11.1	771
1332	Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chemical Science, 2017, 8, 2923-2930.	3.7	101
1333	The effects of polyethylenimine/DNA nanoparticle on transcript levels of apoptosis-related genes. Drug and Chemical Toxicology, 2017, 40, 406-409.	1.2	11
1334	Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Topics in Current Chemistry, 2017, 375, 27.	3.0	52
1335	Polyplex Evolution: Understanding Biology, Optimizing Performance. Molecular Therapy, 2017, 25, 1476-1490.	3.7	146
1336	Low generation PAMAM-based nanomicelles as ROS-responsive gene vectors with enhanced transfection efficacy and reduced cytotoxicity in vitro. New Journal of Chemistry, 2017, 41, 3273-3279.	1.4	15
1337	Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. International Journal of Pharmaceutics, 2017, 521, 249-258.	2.6	153
1338	Development of switchable polymers to address the dilemma of stability and cargo release in polycationic nucleic acid carriers. Biomaterials, 2017, 127, 89-96.	5.7	49
1339	Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1452.	3.3	185
1340	"Click―chemistry mediated construction of cationic curdlan nanocarriers for efficient gene delivery. Carbohydrate Polymers, 2017, 163, 191-198.	5.1	20
1341	Non-viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system cells. International Journal of Pharmaceutics, 2017, 521, 130-140.	2.6	19
1342	Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers. Topics in Current Chemistry, 2017, 375, 24.	3.0	22
1343	Improvement of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(β-amino ester)s. Acta Biomaterialia, 2017, 53, 152-164.	4.1	26
1344	MicroRNA-mediated non-viral direct conversion of embryonic fibroblasts to cardiomyocytes: comparison of commercial and synthetic non-viral vectors. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1070-1085.	1.9	8
1345	History of Polymeric Gene Delivery Systems. Topics in Current Chemistry, 2017, 375, 26.	3.0	58
1346	Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles. Biomacromolecules, 2017, 18, 1218-1228.	2.6	25
1347	Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nanoâ€Electromechanical Device. Small, 2017, 13, 1602962.	5.2	53

#	Article	IF	CITATIONS
1348	Synthesis and Assembly of Clickâ€Nucleicâ€Acid ontaining PEG–PLGA Nanoparticles for DNA Delivery. Advanced Materials, 2017, 29, 1700743.	11.1	71
1349	Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Advanced Drug Delivery Reviews, 2017, 115, 98-114.	6.6	107
1350	PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. Journal of Controlled Release, 2017, 256, 79-91.	4.8	38
1351	Binding efficacy and kinetics of chitosan with DNA duplex: The effects of deacetylation degree and nucleotide sequences. Carbohydrate Polymers, 2017, 169, 451-457.	5.1	15
1352	Hydroxyl versus permethylated glycopolymers as gene carriers. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 68-76.	2.0	2
1353	A combinatorial library of triazine-cored polymeric vectors for pDNA delivery in vitro and in vivo. Journal of Materials Chemistry B, 2017, 5, 3907-3918.	2.9	2
1354	Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discovery Today, 2017, 22, 1318-1335.	3.2	96
1355	Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Advanced Drug Delivery Reviews, 2017, 119, 120-142.	6.6	102
1356	A smart gene delivery platform: Cationic oligomer. European Journal of Pharmaceutical Sciences, 2017, 105, 33-40.	1.9	10
1357	In Vivo Anticancer Efficacy and Toxicity Studies of a Novel Polymer Conjugate N-Acetyl Glucosamine (NAC)–PEG–Doxorubicin for Targeted Cancer Therapy. AAPS PharmSciTech, 2017, 18, 3021-3033.	1.5	11
1358	A core–shell structured polyplex for efficient and non-toxic gene delivery. Journal of Materials Chemistry B, 2017, 5, 5101-5108.	2.9	11
1359	Characterization of complexes made of polylysine–polyleucine–polylysine and pDNA. Journal of Materials Chemistry B, 2017, 5, 3842-3851.	2.9	6
1360	Chitosan modified by γ-ray-induced grafting of poly(tributyl-(4-vinylbenzyl)phosphonium) as a biosafe and high-efficiency gene carrier. New Journal of Chemistry, 2017, 41, 4182-4189.	1.4	6
1361	Enzymatic synthesis and protein adsorption properties of crystalline nanoribbons composed of cellulose oligomer derivatives with primary amino groups. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 925-938.	1.9	28
1362	Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromolecular Bioscience, 2017, 17, 1700022.	2.1	37
1363	Gene delivery nanoparticles to modulate angiogenesis. Advanced Drug Delivery Reviews, 2017, 119, 20-43.	6.6	61
1364	Complexation induced by weak interaction between DNA and PEO-b-P4VP below the CMC of the polymer. Chinese Journal of Polymer Science (English Edition), 2017, 35, 46-53.	2.0	3
1365	Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydrate Polymers, 2017, 159, 66-75.	5.1	36

#	Article	IF	CITATIONS
1366	Big data analysis of global advances in pharmaceutics and drug delivery 1980–2014. Drug Discovery Today, 2017, 22, 1201-1208.	3.2	12
1367	Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules, 2017, 18, 2118-2127.	2.6	9
1368	pH-controllable cell-penetrating polypeptide that exhibits cancer targeting. Acta Biomaterialia, 2017, 57, 187-196.	4.1	19
1369	CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chemical Reviews, 2017, 117, 9874-9906.	23.0	418
1370	A rGO–CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 14775-14782.	5.2	71
1371	TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. International Journal of Pharmaceutics, 2017, 527, 171-183.	2.6	54
1372	Successive outermost-to-core shell directionality of the protonation of poly(propyl ether imine) dendritic gene delivery vectors. Canadian Journal of Chemistry, 2017, 95, 965-974.	0.6	0
1373	Design of Polyâ€ <scp>l</scp> â€Glutamateâ€Based Complexes for pDNA Delivery. Macromolecular Bioscience, 2017, 17, 1700029.	2.1	7
1374	Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection. Acta Biomaterialia, 2017, 54, 201-211.	4.1	26
1375	Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials, 2017, 131, 86-97.	5.7	52
1376	Molecular nanoparticle-based gene delivery systems. Journal of Drug Delivery Science and Technology, 2017, 42, 18-37.	1.4	47
1377	Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. Journal of Controlled Release, 2017, 263, 18-28.	4.8	51
1378	Stimuli-Responsive Mesoporous Silica NPs as Non-viral Dual siRNA/Chemotherapy Carriers for Triple Negative Breast Cancer. Molecular Therapy - Nucleic Acids, 2017, 7, 164-180.	2.3	40
1379	Multifunctional Hybrid Nanoparticles for Traceable Drug Delivery and Intracellular Microenvironmentâ€Controlled Multistage Drugâ€Release in Neurons. Small, 2017, 13, 1603966.	5.2	21
1380	Polymer–Nucleic Acid Interactions. Topics in Current Chemistry, 2017, 375, 44.	3.0	23
1381	Synthesis of Norbornene Derived Helical Copolymer by Simple Molecular Marriage Approach to Produce Smart Nanocarrier. Scientific Reports, 2017, 7, 44857.	1.6	7
1382	Biodegradable and bioreducible poly(betaâ€amino ester) nanoparticles for intracellular delivery to treat brain cancer. AICHE Journal, 2017, 63, 1470-1482.	1.8	6
1383	Efficient Fabrication of Photosensitive Polymeric Nano-objects via an Ingenious Formulation of RAFT Dispersion Polymerization and Their Application for Drug Delivery. Biomacromolecules, 2017, 18, 1210-1217.	2.6	79

#	Article	IF	CITATIONS
1384	Size matters for in vitro gene delivery: investigating the relationships among complexation protocol, transfection medium, size and sedimentation. Scientific Reports, 2017, 7, 44134.	1.6	88
1385	Silica-based nanoparticles for therapeutic protein delivery. Journal of Materials Chemistry B, 2017, 5, 3241-3252.	2.9	65
1386	Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function. Journal of Controlled Release, 2017, 254, 107-118.	4.8	45
1387	Propelled Transnuclear Gene Transport Achieved through Intracellularly Redox-Responsive and Acidity-Accelerative Decomposition of Supramolecular Florescence-Quenchable Vectors. ACS Applied Materials & Interfaces, 2017, 9, 255-265.	4.0	17
1388	2-Isopropenyl-2-oxazoline: Well-Defined Homopolymers and Block Copolymers via Living Anionic Polymerization. Macromolecules, 2017, 50, 54-62.	2.2	19
1389	Biological and related applications of pillar[n]arenes. Chemical Communications, 2017, 53, 677-696.	2.2	148
1390	Phosphonium polymers for gene delivery. Polymer Chemistry, 2017, 8, 353-360.	1.9	29
1391	Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry. Biomacromolecules, 2017, 18, 272-280.	2.6	17
1392	Advancement of the Emerging Field of RNA Nanotechnology. ACS Nano, 2017, 11, 1142-1164.	7.3	276
1393	Triblock copolymers for nano-sized drug delivery systems. Journal of Pharmaceutical Investigation, 2017, 47, 27-35.	2.7	43
1394	A Redoxâ€Activatable Fluorescent Sensor for the Highâ€Throughput Quantification of Cytosolic Delivery of Macromolecules. Angewandte Chemie, 2017, 129, 1339-1343.	1.6	6
1395	A Redoxâ€Activatable Fluorescent Sensor for the Highâ€Throughput Quantification of Cytosolic Delivery of Macromolecules. Angewandte Chemie - International Edition, 2017, 56, 1319-1323.	7.2	30
1396	Construction of core–shell tecto dendrimers based on supramolecular host–guest assembly for enhanced gene delivery. Journal of Materials Chemistry B, 2017, 5, 8459-8466.	2.9	37
1397	Ternary complex of plasmid DNA with NLS-Mu-Mu protein and cationic niosome for biocompatible and efficient gene delivery: a comparative study with protamine and lipofectamine. Artificial Cells, Nanomedicine and Biotechnology, 2017, 46, 1-11.	1.9	19
1398	ζ potential changing nanoparticles as cystic fibrosis transmembrane conductance regulator gene delivery system: an <i>in vitro</i> evaluation. Nanomedicine, 2017, 12, 2713-2724.	1.7	24
1399	Tuning DNA Condensation with Zwitterionic Polyamidoamine (zPAMAM) Dendrimers. Macromolecules, 2017, 50, 8202-8211.	2.2	10
1400	Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chemical Society Reviews, 2017, 46, 6570-6599.	18.7	290
1401	Oneâ€pot synthesis of hyperbranched polyamines based on novel amino glycidyl ether. Journal of Polymer Science Part A, 2017, 55, 4013-4019.	2.5	9

#	Article	IF	CITATIONS
1402	Solution Conformation of Polymer Brushes Determines Their Interactions with DNA and Transfection Efficiency. Biomacromolecules, 2017, 18, 4121-4132.	2.6	36
1403	Cross-linked polymers with fluorinated bridges for efficient gene delivery. Journal of Materials Chemistry B, 2017, 5, 8542-8553.	2.9	25
1404	A Systematic Structure–Activity Study of a New Type of Small Peptidic Transfection Vector Reveals the Importance of a Special Oxoâ€Anionâ€Binding Motif for Gene Delivery. ChemBioChem, 2017, 18, 2268-2279.	1.3	14
1405	Multifunctional nanoparticles co-delivering EZH2 siRNA and etoposide for synergistic therapy of orthotopic non-small-cell lung tumor. Journal of Controlled Release, 2017, 268, 198-211.	4.8	40
1406	The AGMA1 polyamidoamine mediates the efficient delivery of siRNA. Journal of Drug Targeting, 2017, 25, 891-898.	2.1	14
1407	Supramolecular assemblies of alkane functionalized polyethylene glycol copolymers for drug delivery. Materials Science and Engineering C, 2017, 81, 432-442.	3.8	4
1408	Minicircle Versus Plasmid DNA Delivery by Receptor-Targeted Polyplexes. Human Gene Therapy, 2017, 28, 862-874.	1.4	21
1409	Polymeric Vectors for Strategic Delivery of Nucleic Acids. Nano LIFE, 2017, 07, 1730003.	0.6	3
1410	Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 31543-31556.	4.0	48
1411	The histidine-rich peptide LAH4-L1 strongly promotes PAMAM-mediated transfection at low nitrogen to phosphorus ratios in the presence of serum. Scientific Reports, 2017, 7, 9585.	1.6	9
1412	Nanocarriers for TRAIL delivery: driving TRAIL back on track for cancer therapy. Nanoscale, 2017, 9, 13879-13904.	2.8	38
1413	Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types. Bioconjugate Chemistry, 2017, 28, 2035-2040.	1.8	11
1414	Acoustic-transfection for genomic manipulation of single-cells using high frequency ultrasound. Scientific Reports, 2017, 7, 5275.	1.6	40
1415	Application Progress of DNA Nanostructures in Drug Delivery and Smart Drug Carriers. Chinese Journal of Analytical Chemistry, 2017, 45, 1078-1087.	0.9	8
1416	Fully charged: Maximizing the potential of cationic polyelectrolytes in applications ranging from membranes to gene delivery through rational design. Journal of Polymer Science Part A, 2017, 55, 3167-3174.	2.5	16
1417	Topological effects of macrocyclic polymers: from precise synthesis to biomedical applications. Science China Chemistry, 2017, 60, 1153-1161.	4.2	21
1418	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017, 115, 115-154.	6.6	307
1419	Inverted Quasiâ€Spherical Droplets on Polydopamine–TiO ₂ Substrates for Enhancing Gene Delivery. Macromolecular Bioscience, 2017, 17, 1700148.	2.1	4

#	Article	IF	CITATIONS
1420	Dual-Targeted Cascade-Responsive Prodrug Micelle System for Tumor Therapy <i>in Vivo</i> . Chemistry of Materials, 2017, 29, 6976-6992.	3.2	50
1421	Dextranated poly(urethane amine)s designed for systemic gene delivery in ovarian cancer therapy. Journal of Materials Chemistry B, 2017, 5, 6119-6127.	2.9	10
1422	Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block. Bioconjugate Chemistry, 2017, 28, 2985-2997.	1.8	21
1423	Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromolecular Research, 2017, 25, 1172-1186.	1.0	42
1424	Ratio of Polycation and Serum Is a Crucial Index for Determining the RNAi Efficiency of Polyplexes. ACS Applied Materials & Interfaces, 2017, 9, 43529-43537.	4.0	10
1425	Self-assembled core–shell-corona multifunctional non-viral vector with AIE property for efficient hepatocyte-targeting gene delivery. Polymer Chemistry, 2017, 8, 7486-7498.	1.9	30
1426	Temperature- and Composition-Dependent DNA Condensation by Thermosensitive Block Copolymers. ACS Omega, 2017, 2, 7946-7958.	1.6	10
1427	Tween 85-Modified Low Molecular Weight PEI Enhances Exon-Skipping of Antisense Morpholino Oligomer InÂVitro and in mdx Mice. Molecular Therapy - Nucleic Acids, 2017, 9, 120-131.	2.3	2
1428	A Combination of Guanidyl and Phenyl Groups on a Dendrimer Enables Efficient siRNA and DNA Delivery. Biomacromolecules, 2017, 18, 2371-2378.	2.6	53
1429	Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Medicine, 2017, 9, 60.	3.6	491
1430	Local Delivery of CTGF siRNA with Poly(sorbitol-co-PEI) Reduces Scar Contraction in Cutaneous Wound Healing. Tissue Engineering and Regenerative Medicine, 2017, 14, 211-220.	1.6	19
1431	Rational design of acid-labile branched polycation with superior gene transfection capacity. Polymer, 2017, 123, 1-9.	1.8	6
1432	Controlling supramolecular polymerization through multicomponent selfâ€assembly. Journal of Polymer Science Part A, 2017, 55, 34-78.	2.5	117
1433	Chitosan for DNA and gene therapy. , 2017, , 209-244.		12
1434	Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice. ACS Nano, 2017, 11, 95-111.	7.3	202
1435	High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids and Surfaces B: Biointerfaces, 2017, 150, 362-372.	2.5	28
1436	The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 2017, 245, 27-40.	4.8	193
1437	DNA Nanostructure as Smart Carriers for Drug Delivery. Methods in Molecular Biology, 2017, 1500, 121-132.	0.4	3

#	Article	IF	CITATIONS
1438	Systemic delivery of siRNA by aminated poly(α)glutamate for the treatment of solid tumors. Journal of Controlled Release, 2017, 257, 132-143.	4.8	24
1439	Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 403-410.	1.7	67
1440	Bone Regeneration Using Gene-Activated Matrices. AAPS Journal, 2017, 19, 43-53.	2.2	64
1441	Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor. Carbohydrate Polymers, 2017, 157, 311-320.	5.1	19
1442	High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomaterialia, 2017, 47, 113-123.	4.1	29
1443	Synthesis of pHâ€Cleavable dPGâ€Amines for Gene Delivery Application. Macromolecular Bioscience, 2017, 17, 1600190.	2.1	12
1444	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125
1445	4.28 Non-Viral Delivery of Nucleic Acid Complexes â~†. , 2017, , 506-526.		1
1446	Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Bioscience Reports, 2017, 37, .	1.1	7
1447	Biopolymer in Gene Delivery. , 2017, , .		3
1448	Peptoids: tomorrow's therapeutics. , 2017, , 251-280.		10
1448 1449	Peptoids: tomorrow's therapeutics. , 2017, , 251-280. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. International Journal of Nanomedicine, 2017, Volume 12, 5443-5460.	3.3	10 78
1448 1449 1450	Peptoids: tomorrow's therapeutics. , 2017, , 251-280. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. International Journal of Nanomedicine, 2017, Volume 12, 5443-5460. Tumor microenvironment dual-responsive core–shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. International Journal of Nanomedicine, 2017, Volume 12, 4773-4788.	3.3 3.3	10 78 20
1448 1449 1450 1451	Peptoids: tomorrow's therapeutics., 2017,, 251-280. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. International Journal of Nanomedicine, 2017, Volume 12, 5443-5460. Tumor microenvironment dual-responsive core–shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. International Journal of Nanomedicine, 2017, Volume 12, 4773-4788. Polymer-based nanocarriers for therapeutic nucleic acids delivery., 2017, 445-460.	3.3 3.3	10 78 20 20
1448 1449 1450 1451 1452	Peptoids: tomorrow's therapeutics., 2017, , 251-280. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. International Journal of Nanomedicine, 2017, Volume 12, 5443-5460. Tumor microenvironment dual-responsive core–shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. International Journal of Nanomedicine, 2017, Volume 12, 4773-4788. Polymer-based nanocarriers for therapeutic nucleic acids delivery., 2017, , 445-460. Innovative nonviral vectors for small-interfering RNA delivery and therapy., 2017, , 713-740.	3.3	10 78 20 20 5
1448 1449 1450 1451 1452 1453	Peptoids: tomorrow's therapeutics., 2017,, 251-280. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. International Journal of Nanomedicine, 2017, Volume 12, 5443-5460. Tumor microenvironment dual-responsive core–shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. International Journal of Nanomedicine, 2017, Volume 12, 4773-4788. Polymer-based nanocarriers for therapeutic nucleic acids delivery., 2017, , 445-460. Innovative nonviral vectors for small-interfering RNA delivery and therapy., 2017, , 713-740. Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery. Molecules, 2017, 22, 86.	3.3 3.3	10 78 20 20 5 20
1448 1449 1450 1451 1452 1453 1454	Peptoids: tomorrow's therapeutics. , 2017, , 251-280. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. International Journal of Nanomedicine, 2017, Volume 12, 5443-5460. Tumor microenvironment dual-responsive core–shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. International Journal of Nanomedicine, 2017, Volume 12, 4773-4788. Polymer-based nanocarriers for therapeutic nucleic acids delivery. , 2017, , 445-460. Innovative nonviral vectors for small-interfering RNA delivery and therapy. , 2017, , 713-740. Novel PEI/Poly- ¹³ -Cutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery. Molecules, 2017, 22, 86. Nucleobase-Containing Polymers: Structure, Synthesis, and Applications. Polymers, 2017, 9, 666.	3.3 3.3 1.7 2.0	 10 78 20 20 5 20 32

#	Article	IF	CITATIONS
1456	Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles. Frontiers in Neuroscience, 2017, 11, 476.	1.4	53
1457	4.33 Engineering Viruses For Gene Therapy. , 2017, , 600-616.		0
1458	4.21 Engineering Interfaces for Infection Immunity \hat{a} , 2017, 381-403.		0
1459	Invention Is not an Option. Technology and Innovation, 2017, 18, 267-274.	0.2	0
1460	Biopolymers for gene delivery applications. , 2017, , 289-323.		1
1461	pH-sensitive and folic acid-targeted MPEG-PHIS/FA-PEG-VE mixed micelles for the delivery of PTX-VE and their antitumor activity. International Journal of Nanomedicine, 2017, Volume 12, 5863-5877.	3.3	14
1462	Systematic Study of a Library of PDMAEMA-Based, Superparamagnetic Nano-Stars for the Transfection of CHO-K1 Cells. Polymers, 2017, 9, 156.	2.0	6
1463	Medicated Nanoparticle for Gene Delivery. , 0, , .		6
1464	Biomimetic Polymers (for Biomedical Applications). , 2017, , .		0
1465	Nanoparticles for siRNA-mediated gene silencing. , 2017, , 83-111.		0
1466	Gene Delivery System: Non-Viral Mediated Chemical Approaches. Journal of Tissue Science & Engineering, 2017, 08, .	0.2	0
1467	Highly Branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) for High Performance Gene Transfection. Polymers, 2017, 9, 161.	2.0	23
1468	Supramolecular Gene Transfection Agents. , 2017, , 365-389.		1
1469	Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 223-236.	2.0	42
1470	Synthesis, characterization, and in vitro cytotoxicity of fatty acyl-CGKRK-chitosan oligosaccharides conjugates for siRNA delivery. International Journal of Biological Macromolecules, 2018, 112, 694-702.	3.6	21
1471	Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking. Handbook of Experimental Pharmacology, 2018, 245, 385-425.	0.9	10
1472	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
1473	Controlled and localized delivery of c-myc AS-ODN to cells by 3-aminopropyl-trimethoxylsilane modified SBA-15 mesoporous silica. AIP Advances, 2018, 8, 015220.	0.6	1

#	Article	IF	CITATIONS
1474	<i>N</i> -Acetyl- <scp>l</scp> -leucine-polyethylenimine-mediated miR-34a delivery improves osteogenesis and bone formation <i>in vitro</i> and <i>in vivo</i> .RSC Advances, 2018, 8, 8080-8088.	1.7	5
1475	Cationic polymers for non-viral gene delivery to human T cells. Journal of Controlled Release, 2018, 282, 140-147.	4.8	151
1476	Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles. ACS Nano, 2018, 12, 2332-2345.	7.3	154
1477	Serum Nuclease Susceptibility of mRNA Cargo in Condensed Polyplexes. Molecular Pharmaceutics, 2018, 15, 2268-2276.	2.3	39
1478	Dendritic peptide bolaamphiphiles for siRNA delivery to primary adipocytes. Biomaterials, 2018, 178, 458-466.	5.7	26
1479	Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomaterials Science, 2018, 6, 1800-1817.	2.6	50
1480	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129
1481	Probing the nanoparticle–AGO2 interaction for enhanced gene knockdown. Soft Matter, 2018, 14, 4169-4177.	1.2	1
1482	Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids. Chinese Journal of Polymer Science (English Edition), 2018, 36, 999-1010.	2.0	19
1483	Electrostatically assembled dendrimer complex with a high-affinity protein binder for targeted gene delivery. International Journal of Pharmaceutics, 2018, 544, 39-45.	2.6	13
1484	Comparison of random and gradient amino functionalized poly(2â€oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure?. Journal of Polymer Science Part A, 2018, 56, 1210-1224.	2.5	5
1485	Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 2018, 171, 207-218.	5.7	289
1486	Nanomedicine Approaches Against Parasitic Worm Infections. Advanced Healthcare Materials, 2018, 7, e1701494.	3.9	12
1487	Gene Therapy Approaches Toward Biomedical Breakthroughs. , 2018, , 153-176.		1
1488	Synthesis and characterization of pyrene modified polyethylenimine as a novel fluorescent self-reporter for gene condensation. Materials Chemistry and Physics, 2018, 211, 177-180.	2.0	4
1490	Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials, 2018, 171, 72-82.	5.7	77
1491	Progress of Multicompartmental Particles for Medical Applications. Advanced Healthcare Materials, 2018, 7, e1701319.	3.9	19
1492	Plasmidâ€Templated Control of DNA–Cyclodextrin Nanoparticle Morphology through Molecular	1.7	22

#	Article	IF	CITATIONS
1493	Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chemical Society Reviews, 2018, 47, 1874-1900.	18.7	300
1494	Organocatalytic Synthesis and Evaluation of Polycarbonate Pendant Polymer:β-Cyclodextrin-Based Nucleic Acid Delivery Vectors. Macromolecules, 2018, 51, 670-678.	2.2	13
1495	The synthesis of amphiphilic polyethyleneimine/calcium phosphate composites for bispecific T-cell engager based immunogene therapy. Biomaterials Science, 2018, 6, 633-641.	2.6	6
1496	Development of Targeted Therapies Based on Gene Modification. Methods in Molecular Biology, 2018, 1706, 39-51.	0.4	1
1497	Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Acta Biomaterialia, 2018, 70, 57-70.	4.1	60
1498	Squalene/polyethylenimine based non-viral vectors: synthesis and use in systems for sustained gene release. Polymer Chemistry, 2018, 9, 1072-1081.	1.9	13
1499	Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Research, 2018, 11, 3746-3761.	5.8	37
1500	Chaperonin-GroEL as a Smart Hydrophobic Drug Delivery and Tumor Targeting Molecular Machine for Tumor Therapy. Nano Letters, 2018, 18, 921-928.	4.5	44
1501	Targeted, Stimuli-Responsive Delivery of Plasmid DNA and miRNAs Using a Facile Self-Assembled Supramolecular Nanoparticle System. Biomacromolecules, 2018, 19, 353-363.	2.6	22
1502	Development of Cationic Quaternary Ammonium Sulfonamide Amino Lipids for Nucleic Acid Delivery. ACS Applied Materials & Interfaces, 2018, 10, 2302-2311.	4.0	32
1503	Cationic Metalloâ€Polyelectrolytes for Robust Alkaline Anionâ€Exchange Membranes. Angewandte Chemie - International Edition, 2018, 57, 2388-2392.	7.2	163
1504	Cationic Metalloâ€Polyelectrolytes for Robust Alkaline Anionâ€Exchange Membranes. Angewandte Chemie, 2018, 130, 2412-2416.	1.6	20
1505	Acid-sensitive poly(β-cyclodextrin)-based multifunctional supramolecular gene vector. Polymer Chemistry, 2018, 9, 450-462.	1.9	12
1506	Recent Advances in Self-assembled Nano-therapeutics. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0	.784314 r 2.0	gBJ /Overloc
1507	Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Materials Science and Engineering C, 2018, 92, 1041-1060.	3.8	264
1508	RNAâ€Peptide nanoplexes drug DNA damage pathways in highâ€grade serous ovarian tumors. Bioengineering and Translational Medicine, 2018, 3, 26-36.	3.9	12
1509	Synthesis and characterization of bioreducible cationic biarm polymer for efficient gene delivery. International Journal of Biological Macromolecules, 2018, 110, 366-374.	3.6	12
1510	Role of MDA5 and interferon-I in dendritic cells for T cell expansion by anti-tumor peptide vaccines in mice. Cancer Immunology, Immunotherapy, 2018, 67, 1091-1103.	2.0	20

#	Article	IF	CITATIONS
1511	One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules, 2018, 19, 2870-2879.	2.6	51
1512	In vivo methods for acute modulation of gene expression in the central nervous system. Progress in Neurobiology, 2018, 168, 69-85.	2.8	19
1513	<i>In vivo</i> tumor gene delivery using novel peptideticles: pHâ€responsive and ligand targeted core–shell nanoassembly. International Journal of Cancer, 2018, 143, 2017-2028.	2.3	21
1514	Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery. Biomaterials, 2018, 178, 559-569.	5.7	50
1515	(Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. Nanoscale, 2018, 10, 7494-7504.	2.8	70
1516	One-Pot Parallel Synthesis of Lipid Library via Thiolactone Ring Opening and Screening for Gene Delivery. Bioconjugate Chemistry, 2018, 29, 992-999.	1.8	14
1517	Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation. Nano Letters, 2018, 18, 2411-2419.	4.5	50
1518	Polymer and Photonic Materials Towards Biomedical Breakthroughs. , 2018, , .		4
1519	Intracellular distribution and internalization pathways of guanidinylated bioresponsive poly(amido) Tj ETQq0 0 0	rgBT /Ove 4.3	rloçk 10 Tf 50
1520	Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovascular Diabetology, 2018, 17, 43.	2.7	53
1521	Nasal delivery of H5N1 avian influenza vaccine formulated with GenJetâ"¢ or in vivo-jetPEI [®] induces enhanced serological, cellular and protective immune responses. Drug Delivery, 2018, 25, 773-779.	2.5	10
1522	Non-viral Methodology for Efficient Co-transfection. Methods in Molecular Biology, 2018, 1767, 241-254.	0.4	5
1523	Polymeric nanomicelles for cancer theragnostics. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 119-130.	1.8	10
1524	Synthesis of biocompatible amino acid-modified poly(acrylic acid) derivatives for intracellular gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 174-180.	1.8	4
1525	Scaffoldâ€Based microRNA Therapies in Regenerative Medicine and Cancer. Advanced Healthcare Materials, 2018, 7, 1700695.	3.9	55
1526	Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. Nanoscale Horizons, 2018, 3, 6-27.	4.1	44
1527	Photolabile protecting groups: a strategy for making primary amine polymers by RAFT. Polymer Chemistry, 2018, 9, 1557-1561.	1.9	15
1528	PEGylation for enhancing nanoparticle diffusion in mucus. Advanced Drug Delivery Reviews, 2018, 124, 125-139.	6.6	273

#	Article	IF	CITATIONS
1529	EGFR Targeting and Shielding of pDNA Lipopolyplexes via Bivalent Attachment of a Sequenceâ€Đefined PEG Agent. Macromolecular Bioscience, 2018, 18, 1700203.	2.1	18
1530	Efficient gene editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 97-108.	1.7	99
1531	Thiolactone Chemistry-Based Combinatorial Methodology to Construct Multifunctional Polymers for Efficacious Gene Delivery. Bioconjugate Chemistry, 2018, 29, 23-28.	1.8	8
1532	Ring-opening polymerization of diepoxides as an alternative method to overcome PEG dilemma in gene delivery. Polymer, 2018, 134, 53-62.	1.8	11
1533	Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Analytica Chimica Acta, 2018, 1002, 70-81.	2.6	18
1534	Quantitative contributions of processes by which polyanion drugs reduce intracellular bioavailability and transfection efficiency of cationic siRNA lipoplex. Journal of Controlled Release, 2018, 270, 101-113.	4.8	2
1535	Telechelic polymers from reversible-deactivation radical polymerization for biomedical applications. Chemical Communications, 2018, 54, 228-240.	2.2	26
1536	Gene delivery system of pDNA using the blood glycoprotein fetuin. Journal of Drug Targeting, 2018, 26, 604-609.	2.1	2
1537	Preparation of multifunctional micelles from two different amphiphilic block copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 566-571.	2.3	2
1538	Brushlike Cationic Polymers with Low Charge Density for Gene Delivery. Biomacromolecules, 2018, 19, 1410-1415.	2.6	21
1539	Synthesis and Evaluation of Chloroquineâ€Containing DMAEMA Copolymers as Efficient Antiâ€miRNA Delivery Vectors with Improved Endosomal Escape and Antimigratory Activity in Cancer Cells. Macromolecular Bioscience, 2018, 18, 1700194.	2.1	24
1540	Branched poly (trimethylphosphonium ethylacrylateâ€ <i>co</i> â€PEGA) by RAFT: alternative to cationic polyammoniums for nucleic acid complexation. Journal of Interdisciplinary Nanomedicine, 2018, 3, 164-174.	3.6	8
1541	Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells. Nano Letters, 2018, 18, 7935-7941.	4.5	54
1542	Emerging Technologies for Low ost, Rapid Vaccine Manufacture. Biotechnology Journal, 2019, 14, e1800376.	1.8	86
1543	Synthesis and Complexing Properties of p-Toluensulfonylamido and Phosphorylamido Derivatives of Second-Generation Hyperbranched Polyester. Russian Journal of General Chemistry, 2018, 88, 2300-2306.	0.3	2
1544	Synthesis of Bisthiacalix[4]arene: Reaction of Piperazine with Monoacrylamide Derivative of p-tert-Butylthiacalix[4]arene. Russian Journal of General Chemistry, 2018, 88, 2314-2320.	0.3	1
1545	Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated Peptoids. Small, 2018, 14, e1803544.	5.2	34
1546	AIEgen based drug delivery systems for cancer therapy. Journal of Controlled Release, 2018, 290, 129-137.	4.8	31

#	Article	IF	CITATIONS
1547	Mechanoporation: Toward Single Cell Approaches. , 2018, , 1-29.		5
1548	Poly(ethylene glycol)-poly- <scp>l</scp> -glutamate complexed with polyethyleneimineâ^'polyglycine for highly efficient gene delivery <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2018, 6, 3053-3062.	2.6	9
1549	Near-infrared AIEgen-functionalized and diselenide-linked oligo-ethylenimine with self-sufficing ROS to exert spatiotemporal responsibility for promoted gene delivery. Journal of Materials Chemistry B, 2018, 6, 6660-6666.	2.9	14
1550	Polymeric nucleic acid delivery for immunoengineering. Current Opinion in Biomedical Engineering, 2018, 7, 42-50.	1.8	24
1551	Manipulation of Glutathione-Mediated Degradation of Thiol–Maleimide Conjugates. Bioconjugate Chemistry, 2018, 29, 3595-3605.	1.8	27
1552	Selfâ€Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800670.	3.9	63
1553	Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS Journal, 2018, 20, 108.	2.2	67
1554	Succinylated Polyethylenimine Derivatives Greatly Enhance Polyplex Serum Stability and Gene Delivery In Vitro. Biomacromolecules, 2018, 19, 4348-4357.	2.6	22
1555	Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. International Journal of Pharmaceutics, 2018, 552, 443-452.	2.6	31
1556	Metallo-polyelectrolytes as a class of ionic macromolecules for functional materials. Nature Communications, 2018, 9, 4329.	5.8	83
1557	A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy. Journal of the American Chemical Society, 2018, 140, 16264-16274.	6.6	159
1558	Polyplex interaction strength as a driver of potency during cancer immunotherapy. Nano Research, 2018, 11, 5642-5656.	5.8	24
1559	Zinc Coordinated Cationic Polymers Break Up the Paradox between Low Molecular Weight and High Transfection Efficacy. Biomacromolecules, 2018, 19, 4270-4276.	2.6	11
1560	Functionalized Scaffold for in Situ Efficient Gene Transfection of Mesenchymal Stem Cells Spheroids toward Chondrogenesis. ACS Applied Materials & Interfaces, 2018, 10, 33993-34004.	4.0	23
1561	Enzymatically synthesized poly(amino-co-ester) polyplexes for systemic delivery of pcDNA-miRNA-214 to suppress colorectal cancer liver metastasis. Journal of Materials Chemistry B, 2018, 6, 6365-6376.	2.9	7
1562	Transcellular delivery of messenger RNA payloads by a cationic supramolecular MOF platform. Chemical Communications, 2018, 54, 11304-11307.	2.2	33
1563	The great escape: how cationic polyplexes overcome the endosomal barrier. Journal of Materials Chemistry B, 2018, 6, 6904-6918.	2.9	263
1564	Lipoplexâ€Mediated Single ell Transfection via Droplet Microfluidics. Small, 2018, 14, e1802055.	5.2	36

	CITATION	Report	
#	Article	IF	CITATIONS
1565	Biomimetic delivery of signals for bone tissue engineering. Bone Research, 2018, 6, 25.	5.4	178
1566	Dendrimers as Drug Nanocarriers: The Future of Gene Therapy and Targeted Therapies in Cancer. , 0, , .		13
1567	Safety of nanoparticles based on albumin–polymer conjugates as a carrier of nucleotides for pancreatic cancer therapy. Journal of Materials Chemistry B, 2018, 6, 6278-6287.	2.9	20
1568	Synergistic anticancer effects of nanocarrier loaded with berberine andmiR-122. Bioscience Reports, 2018, 38, BSR20180311.	1.1	6
1569	The Power of Shielding: Low Toxicity and High Transfection Performance of Cationic Graft Copolymers Containing Poly(2-oxazoline) Side Chains. Biomacromolecules, 2018, 19, 2759-2771.	2.6	11
1570	Complexation of plasmid DNA and poly(ethylene oxide)/poly(propylene oxide) polymers for safe gene delivery. Environmental Chemistry Letters, 2018, 16, 1457-1462.	8.3	10
1571	Delivering miRNA modulators for cancer treatment. , 2018, , 517-565.		4
1572	A Universal GSH-Responsive Nanoplatform for the Delivery of DNA, mRNA, and Cas9/sgRNA Ribonucleoprotein. ACS Applied Materials & Interfaces, 2018, 10, 18515-18523.	4.0	55
1573	Layer-by-layer siRNA/poly(L-lysine) Multilayers on Polydopamine-coated Surface for Efficient Cell Adhesion and Gene Silencing. Scientific Reports, 2018, 8, 7738.	1.6	35
1574	Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. Small, 2018, 14, e1800360.	5.2	29
1575	The proton sponge hypothesis: Fable or fact?. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 184-190.	2.0	199
1576	Poly(βâ€amino ester)â€ <i>co</i> â€poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Advanced Healthcare Materials, 2018, 7, e1800249.	3.9	58
1577	In situ polymerization on biomacromolecules for nanomedicines. Nano Research, 2018, 11, 5028-5048.	5.8	23
1578	Ionizable Aminoâ€Polyesters Synthesized via Ring Opening Polymerization of Tertiary Aminoâ€Alcohols for Tissue Selective mRNA Delivery. Advanced Materials, 2018, 30, e1801151.	11.1	95
1579	Cationic and hydrolysable branched polymers by RAFT for complexation and controlled release of dsRNA. Polymer Chemistry, 2018, 9, 4025-4035.	1.9	29
1580	Synthesis and characterization of fourth generation polyesterâ€based dendrimers with cationic amino acidsâ€modified crown as promising water soluble biomedical devices. Polymers for Advanced Technologies, 2018, 29, 2735-2749.	1.6	20
1581	The Recent Advances of Magnetic Nanoparticles in Medicine. Journal of Nanomaterials, 2018, 2018, 1-8.	1.5	74
1582	Target-specific delivery. , 2018, , 117-154.		4

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1583	Block Copolymer Micelles in Nanomedicine Applications. Chemical Reviews, 2018, 118	, 6844-6892.	23.0	925
1584	Immunomodulation of the NLRP3 Inflammasome through Structure-Based Activator De Functional Regulation via Lysosomal Rupture. ACS Central Science, 2018, 4, 982-995.	esign and	5.3	42
1585	Oral Nonviral Gene Delivery for Chronic Protein Replacement Therapy. Advanced Science 1701079.	ce, 2018, 5,	5.6	28
1586	The potential for clinical translation of antibody-targeted nanoparticles in the treatmer myeloid leukaemia. Journal of Controlled Release, 2018, 286, 154-166.	t of acute	4.8	19
1587	Synthesis and characterization of versatile amphiphilic dendrimers peripherally decorat positively charged amino acids. Polymer International, 2018, 67, 1572-1584.	ed with	1.6	13
1588	Providing hyper-branched dendrimer conjugated with \hat{I}^2 -cyclodextrin based on magnet for the separation of methylprednisolone acetate. Journal of Chromatography A, 2018,	c nanoparticles 1571, 38-46.	1.8	8
1589	Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated g to CRISPR/Cas gene editing. Nano Research, 2018, 11, 5310-5337.	ene silencing	5.8	31
1590	Dually Gated Polymersomes for Gene Delivery. Nano Letters, 2018, 18, 5562-5568.		4.5	67
1591	Structure–activity relationship of novel low-generation dendrimers for gene delivery. Biomolecular Chemistry, 2018, 16, 7833-7842.	Organic and	1.5	9
1592	Enhanced Delivery of Therapeutic siRNA into Glioblastoma Cells Using Dendrimer-Entra Nanoparticles Conjugated with β-Cyclodextrin. Nanomaterials, 2018, 8, 131.	pped Gold	1.9	66
1593	Comparative Study of Diethylaminoethyl-Chitosan and Methylglycol-Chitosan as Poten Vectors for Gene Therapy. Polymers, 2018, 10, 442.	tial Non-Viral	2.0	42
1594	Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Cancer and Rare Diseases Therapies. Polymers, 2018, 10, 444.	nsights in	2.0	83
1595	Modular Synthesis of Bioreducible Gene Vectors through Polyaddition of N,N′-Dime Diglycidyl Ethers. Polymers, 2018, 10, 687.	hylcystamine and:	2.0	7
1596	DNA-Induced Novel Optical Features of Ethyl Viologen-Tethered Perylenediimide Triad. Physical Chemistry C, 2018, 122, 18061-18069.	lournal of	1.5	8
1597	Future directions for therapeutic strategies in post-ischaemic vascularization: a positio European Society of Cardiology Working Group on Atherosclerosis and Vascular Biolog Cardiovascular Research, 2018, 114, 1411-1421.	n paper from ſy.	1.8	19
1598	Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Revie miRNA and antimiR Conjugates. Genes, 2018, 9, 74.	w on siRNA,	1.0	54
1599	Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Catio ACS Macro Letters, 2018, 7, 909-915.	nic Polymers.	2.3	28
1600	A review on core–shell structured unimolecular nanoparticles for biomedical applicat Advanced Drug Delivery Reviews, 2018, 130, 58-72.	ions.	6.6	63

ARTICLE IF CITATIONS Integrative control of mechanical and degradation properties of in situ crosslinkable polyamine-based 1601 21 1.8 hydrogels for dual-mode drug release kinetics. Polymer, 2018, 145, 272-280. Enzyme-Responsive Charge-Reversal Polymer-Mediated Effective Gene Therapy for Intraperitoneal 2.6 Tumors. Biomacromolecules, 2018, 19, 2308-2319. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel. International Journal 1603 2.6 28 of Pharmaceutics, 2018, 545, 318-328. Fine tuning neuronal targeting of nanoparticles by adjusting the ligand grafting density and combining PEG spacers of different length. Acta Biomaterialia, 2018, 78, 247-259. 1604 Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with 1605 5.1 42 AS1411 aptamer for cancer treatment. Carbohydrate Polymers, 2018, 201, 131-140. Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. Angewandte Chemie -7.2 64 International Edition, 2018, 57, 13582-13586. Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. Angewandte Chemie, 1607 1.6 14 2018, 130, 13770-13774. Calcium enhances gene expression when using low molecular weight poly-l-lysine delivery vehicles. International Journal of Pharmaceutics, 2018, 547, 274-281. 2.6 Clinical Evaluations of Toxicity and Efficacy of Nanoparticle-Mediated Gene Therapy. Human Gene 1609 1.4 20 Therapy, 2018, 29, 1227-1234. Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials, 2018, 5.7 178, 317-325. Ligand-directed tumor targeting with hybrid viral phage nanoparticles., 2018, , 483-516. 1611 2 Design and development of a robust photo-responsive block copolymer framework for tunable 1.3 nucleic acid delivery and efficient gene silencing. Polymer Journal, 2018, 50, 711-723. Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of 1613 5.8 306 CO2. CheM, 2018, 4, 1696-1709. Applications of Nanotechnology for Regenerative Medicine; Healing Tissues at the Nanoscale., 2019,, 1614 485-504. Efficient and Robust Highly Branched Poly(Î²-amino ester)/Minicircle <i>COL7A1</i> Polymeric 1615 Nanoparticles for Gene Delivery to Recessive Dystrophic Épidermolysis Bullosa Keratinocytes. ACS 4.0 31 Applied Materials & amp; Interfaces, 2019, 11, 30661-30672. Mannose-coated polydiacetylene (PDA)-based nanomicelles: synthesis, interaction with concanavalin A 1616 and application in the water solubilization and delivery of hydrophobic molecules. Journal of 14 Materials Chemistry B, 2019, 7, 5930-5946. Tissue-Specific Delivery of Oligonucleotides. Methods in Molecular Biology, 2019, 2036, 17-50. 1617 0.4 6 Thiourea-Functional Bioreducible Poly(amido amine)s in Gene Delivery. ACS Symposium Series, 2019, , 93-117.

#	Article	IF	CITATIONS
1619	Design and anti-tumor activity of self-loaded nanocarriers of siRNA. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110385.	2.5	12
1620	The Role of Electrospun Fiber Scaffolds in Stem Cell Therapy for Skin Tissue Regeneration. Med One, 2019, 4, e190002.	1.5	13
1621	EDTAâ€Capped Iron Oxide Coreâ€Corona System as Vehicle for Gene Delivery to Transform E.coli : Mimicking the Lipid Bilayer Environment. ChemistrySelect, 2019, 4, 7883-7890.	0.7	1
1623	An overview on the potential biomedical applications of polysaccharides. , 2019, , 33-94.		4
1624	Development of functional dendrisomes based on a single molecule of polyesterbenzylether dendrimer and their application in cancer stem cell therapy. NPG Asia Materials, 2019, 11, .	3.8	9
1625	Highly branched Âpoly(β-amino ester)Âdelivery of minicircle DNA for transfection of neurodegenerativeÂdisease related cells. Nature Communications, 2019, 10, 3307.	5.8	80
1626	Application of nanomaterials in threeâ€dimensional stem cell culture. Journal of Cellular Biochemistry, 2019, 120, 18550-18558.	1.2	2
1627	Applications of Nanostructured Polymer Composites for Gene Delivery. , 2019, , 211-226.		2
1628	Recent Advances in Chitosan-Based Carriers for Gene Delivery. Marine Drugs, 2019, 17, 381.	2.2	221
1629	Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges. Therapeutic Delivery, 2019, 10, 311-332.	1.2	18
1630	Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 14586-14599.	1.9	15
1631	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	7.8	43
1632	Intracellular Delivery of Glucose Oxidase for Enhanced Cytotoxicity toward PSMAâ€Expressing Prostate Cancer Cells. Macromolecular Bioscience, 2019, 19, 1900183.	2.1	7
1633	In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomaterialia, 2019, 100, 191-201.	4.1	142
1634	Biodegradable Polymers for Gene Delivery. Molecules, 2019, 24, 3744.	1.7	100
1635	Gal8 Visualization of Endosome Disruption Predicts Carrier-Mediated Biologic Drug Intracellular Bioavailability. ACS Nano, 2019, 13, 1136-1152.	7.3	67
1636	Nearâ€Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasisâ€Inhibited Combination Cancer Therapy. Advanced Materials, 2019, 31, e1905091.	11.1	157
1637	Homotypic Cell Membrane-Cloaked Biomimetic Nanocarrier for the Targeted Chemotherapy of Hepatocellular Carcinoma. Theranostics, 2019, 9, 5828-5838.	4.6	47

#	Article	IF	Citations
1638	Gradient Redox-Responsive and Two-Stage Rocket-Mimetic Drug Delivery System for Improved Tumor Accumulation and Safe Chemotherapy. Nano Letters, 2019, 19, 8690-8700.	4.5	60
1639	Facilitating plasmid nuclear delivery by interfering with the selective nuclear pore barrier. Bioengineering and Translational Medicine, 2019, 4, e10136.	3.9	5
1640	Oncolytic Adenovirus—A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Frontiers in Oncology, 2019, 9, 1182.	1.3	34
1641	Polyethylenimineâ€Based Nanogels for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1900272.	2.1	48
1642	Lucifer Yellow - A Robust Paracellular Permeability Marker in a Cell Model of the Human Blood-brain Barrier. Journal of Visualized Experiments, 2019, , .	0.2	15
1643	TRAIL-based gene delivery and therapeutic strategies. Acta Pharmacologica Sinica, 2019, 40, 1373-1385.	2.8	42
1644	Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 5583-5601.	2.9	108
1645	Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules, 2019, 20, 3613-3626.	2.6	67
1646	Controlling complexation/decomplexation and sizes of polymer-based electrostatic pDNA polyplexes is one of the key factors in effective transfection. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110497.	2.5	13
1647	A facile methodology using quantum dot multiplex labels for tracking co-transfection. RSC Advances, 2019, 9, 20053-20057.	1.7	2
1648	Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. Journal of the American Chemical Society, 2019, 141, 15804-15817.	6.6	77
1649	A lysosomal chloride ion-selective fluorescent probe for biological applications. Chemical Science, 2019, 10, 56-66.	3.7	45
1650	Delivery of 5′-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy. Biomaterials Science, 2019, 7, 547-559.	2.6	49
1651	Cationic Niosomes as Non-Viral Vehicles for Nucleic Acids: Challenges and Opportunities in Gene Delivery. Pharmaceutics, 2019, 11, 50.	2.0	59
1652	Peptide-based gene delivery vectors. Journal of Materials Chemistry B, 2019, 7, 1824-1841.	2.9	88
1653	Library of Cationic Polymers Composed of Polyamines and Arginine as Gene Transfection Agents. ACS Omega, 2019, 4, 2090-2101.	1.6	22
1654	Linear Polyethylenimine-DNA Nanoconstruct for Corneal Gene Delivery. Journal of Ocular Pharmacology and Therapeutics, 2019, 35, 23-31.	0.6	20
1655	Vacuum/Compression Infiltration-mediated Permeation Pathway of a Peptide-pDNA Complex as a Non-Viral Carrier for Gene Delivery in Planta. Scientific Reports, 2019, 9, 271.	1.6	24

#	Article	IF	CITATIONS
1656	Synthesis of degradable linear cationic poly(amide triazole)s with DNA-condensation capability. European Polymer Journal, 2019, 113, 36-46.	2.6	7
1657	Hierarchical Self-Assembly of Cholesterol-DNA Nanorods. Bioconjugate Chemistry, 2019, 30, 1845-1849.	1.8	21
1658	Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale, 2019, 11, 12973-12982.	2.8	50
1659	Molecular Insights into Dipole Relaxation Processes in Water–Lysine Mixtures. Journal of Physical Chemistry B, 2019, 123, 6056-6064.	1.2	3
1660	Supramolecular Assemblies of Peptides or Nucleopeptides for Gene Delivery. Theranostics, 2019, 9, 3213-3222.	4.6	46
1661	Peptide Sequence-Dependent Gene Expression of PEGylated Peptide/DNA Complexes. Molecular Pharmaceutics, 2019, 16, 3072-3082.	2.3	4
1662	Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics, 2019, 9, 3280-3292.	4.6	84
1663	Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment. Theranostics, 2019, 9, 3134-3149.	4.6	82
1664	Paromomycin-loaded mannosylated chitosan nanoparticles: Synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Tropica, 2019, 197, 105045.	0.9	23
1665	Development of double strand RNA mPEI nanoparticles and application in treating invasive breast cancer. RSC Advances, 2019, 9, 13186-13200.	1.7	3
1666	Combinatorial siRNA Polyplexes for Receptor Targeting. Methods in Molecular Biology, 2019, 1974, 83-98.	0.4	2
1667	Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Letters, 2019, 458, 102-112.	3.2	82
1668	Chitosan- <i>graft</i> -Poly(<scp> </scp> -lysine) Dendron-Assisted Facile Self-Assembly of Au Nanoclusters for Enhanced X-ray Computer Tomography Imaging and Precise MMP-9 Plasmid shRNA Delivery. Chemistry of Materials, 2019, 31, 3992-4007.	3.2	32
1669	Strategies, design, and chemistry in siRNA delivery systems. Advanced Drug Delivery Reviews, 2019, 144, 133-147.	6.6	330
1670	Hypersound-Enhanced Intracellular Delivery of Drug-Loaded Mesoporous Silica Nanoparticles in a Non-Endosomal Pathway. ACS Applied Materials & Interfaces, 2019, 11, 19734-19742.	4.0	17
1671	Nucleic acid delivery to differentiated retinal pigment epithelial cells using cell-penetrating peptide as a carrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 140, 91-99.	2.0	11
1672	A non-conjugated polyethylenimine copolymer-based unorthodox nanoprobe for bioimaging and related mechanism exploration. Biomaterials Science, 2019, 7, 3016-3024.	2.6	20
1673	Optimization of miRNA delivery by using a polymeric conjugate based on deoxycholic acid-modified polyethylenimine. International Journal of Pharmaceutics, 2019, 565, 391-408.	2.6	7

#	ARTICLE	IF	CITATIONS
1674	polymerization. Polymer Chemistry, 2019, 10, 3257-3283.	1.9	88
1675	microRNA Modulation. , 2019, , 1-66.		0
1676	Folate Receptor-Mediated Renal-Targeting Nanoplatform for the Specific Delivery of Triptolide to Treat Renal Ischemia/Reperfusion Injury. ACS Biomaterials Science and Engineering, 2019, 5, 2877-2886.	2.6	32
1677	Ferrimagnetic Nanochainsâ€Based Mesenchymal Stem Cell Engineering for Highly Efficient Postâ€Stroke Recovery. Advanced Functional Materials, 2019, 29, 1900603.	7.8	59
1678	Advanced Polymers for Nonviral Gene Delivery. , 2019, , 311-364.		4
1679	Possibilities and perspectives of chitosan scaffolds and composites for tissue engineering. , 2019, , 167-203.		4
1680	Creatine based polymer for codelivery of bioengineered MicroRNA and chemodrugs against breast cancer lung metastasis. Biomaterials, 2019, 210, 25-40.	5.7	36
1681	Immunoisolation of pancreatic islets via thin-layer surface modification. Journal of Controlled Release, 2019, 305, 176-193.	4.8	24
1682	Recent advances in the development of gene delivery systems. Biomaterials Research, 2019, 23, 8.	3.2	276
1683	Temperatureâ€induced selfâ€assembly and metalâ€ion stabilization of histidine functional block copolymers. Journal of Polymer Science Part A, 2019, 57, 1964-1973.	2.5	11
1684	Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation. Theranostics, 2019, 9, 1580-1598.	4.6	22
1685	Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS Nano, 2019, 13, 3754-3782.	7.3	220
1686	Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Molecular Pharmaceutics, 2019, 16, 1678-1693.	2.3	6
1687	Advances in CRISPR/Cas9 Technology for <i>in Vivo</i> Translation. Biological and Pharmaceutical Bulletin, 2019, 42, 304-311.	0.6	4
1688	The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome. Biomaterials Science, 2019, 7, 1888-1897.	2.6	19
1689	Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca ²⁺ Effects on Transport Barriers. Analytical Chemistry, 2019, 91, 5446-5454.	3.2	11
1690	New copolymers as hosts of ribosomal RNA. BMC Chemistry, 2019, 13, 33.	1.6	4
1691	Glycopolycation–DNA Polyplex Formulation N/P Ratio Affects Stability, Hemocompatibility, and in Vivo Biodistribution. Biomacromolecules, 2019, 20, 1530-1544.	2.6	14

#	Article	IF	CITATIONS
1692	Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy. Acta Biomaterialia, 2019, 90, 300-313.	4.1	50
1693	A Matter of Genes: The Hurdles of Gene Therapy for Epilepsy. Epilepsy Currents, 2019, 19, 38-43.	0.4	11
1694	Synthesis of Polyethylenimine-Based Nanocarriers for Systemic Tumor Targeting of Nucleic Acids. Methods in Molecular Biology, 2019, 1943, 83-99.	0.4	7
1695	Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)—Mediated Anti-tumor Therapy. Frontiers in Immunology, 2019, 10, 707.	2.2	53
1697	A core–shell polymeric–inorganic hybrid nanocomposite system for MRI-visible gene delivery application in cancer immunotherapy. Journal of Industrial and Engineering Chemistry, 2019, 76, 188-196.	2.9	17
1698	Macro- and Microphase Separated Protein-Polyelectrolyte Complexes: Design Parameters and Current Progress. Polymers, 2019, 11, 578.	2.0	56
1699	Tumor microenvironment as the "regulator―and "target―for gene therapy. Journal of Gene Medicine, 2019, 21, e3088.	1.4	40
1700	Deformation of amphibolites from the Paleoproterozoic Liaohe Group, Liaodong Peninsula, China: Implications to the crustal structure of the Jiaoâ€Liaoâ€Ji mobile belt in the eastern block, North China Craton. Geological Journal, 2019, 54, 791-803.	0.6	3
1701	Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series, 2019, , 1-34.	0.5	0
1702	Light-Controlled in Vitro Gene Delivery Using Polymer-Tethered Spiropyran as a Photoswitchable Photosensitizer. ACS Applied Materials & Interfaces, 2019, 11, 15222-15232.	4.0	12
1703	A nanogel based oral gene delivery system targeting SUMOylation machinery to combat gut inflammation. Nanoscale, 2019, 11, 4970-4986.	2.8	29
1704	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	7.8	226
1705	Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie, 2019, 160, 61-75.	1.3	96
1706	Conjugation of prostate cancer-specific aptamers to polyethylene glycol-grafted polyethylenimine for enhanced gene delivery to prostate cancer cells. Journal of Industrial and Engineering Chemistry, 2019, 73, 182-191.	2.9	11
1707	Cationic polymer-derived carbon dots for enhanced gene delivery and cell imaging. Biomaterials Science, 2019, 7, 1940-1948.	2.6	33
1708	Gene-therapy Inspired Polycation Coating for Protection of DNA Origami Nanostructures. Journal of Visualized Experiments, 2019, , .	0.2	2
1709	Sequential Delivery and Cascade Targeting of Peptide Therapeutics for Triplexed Synergistic Therapy with Real-Time Monitoring Shuttled by Magnetic Gold Nanostars. Analytical Chemistry, 2019, 91, 4608-4617.	3.2	12
1710	Mapping Molecular Structure of Protein Locating on Nanoparticles with Limited Proteolysis. Analytical Chemistry, 2019, 91, 4204-4212.	3.2	10

UTATION RE	PORT

#	Article	IF	CITATIONS
1711	DNA tetrahedron-based nanogels for siRNA delivery and gene silencing. Chemical Communications, 2019, 55, 4222-4225.	2.2	83
1712	In Situ Loading and Delivery of Short Single- and Double-Stranded DNA by Supramolecular Organic Frameworks. CCS Chemistry, 2019, 1, 156-165.	4.6	50
1713	Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Materials, 2019, 1, .	6.8	81
1714	Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. Nanoscale, 2019, 11, 20045-20057.	2.8	44
1715	Poly(Boc-acryloyl hydrazide): the importance of temperature and RAFT agent degradation on its preparation. Polymer Chemistry, 2019, 10, 5645-5651.	1.9	0
1716	Progress in the application of CRISPR: From gene to base editing. Medicinal Research Reviews, 2019, 39, 665-683.	5.0	21
1717	Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. Advanced Materials, 2019, 31, e1802725.	11.1	230
1718	Lipodendriplexes: A promising nanocarrier for enhanced gene delivery with minimal cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 135, 72-82.	2.0	29
1719	ROS-Response-Induced Zwitterionic Dendrimer for Gene Delivery. Langmuir, 2019, 35, 1613-1620.	1.6	14
1720	Manipulation of Transgene Expression in Fibroblast Cells by a Multifunctional Linear-Branched Hybrid Poly(l²-Amino Ester) Synthesized through an Oligomer Combination Approach. Nano Letters, 2019, 19, 381-391.	4.5	48
1721	Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomaterialia, 2019, 86, 15-40.	4.1	46
1722	Auto-fluorescent polymer nanotheranostics for self-monitoring of cancer therapy via triple-collaborative strategy. Biomaterials, 2019, 194, 105-116.	5.7	44
1723	pH-Sensitive Polymers as Dynamic Mediators of Barriers to Nucleic Acid Delivery. Bioconjugate Chemistry, 2019, 30, 350-365.	1.8	22
1724	pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery. Biomaterials, 2019, 192, 235-244.	5.7	55
1725	Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. International Journal of Pharmaceutics, 2019, 555, 322-336.	2.6	41
1726	A comprehensive review on histone-mediated transfection for gene therapy. Biotechnology Advances, 2019, 37, 132-144.	6.0	11
1727	Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials, 2019, 192, 416-428.	5.7	36
1728	Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. Journal of Advanced Research, 2019, 18, 81-93.	4.4	102

#	Article	IF	CITATIONS
1729	Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Materials Today, 2019, 26, 40-66.	8.3	89
1730	Nonpolymeric pH-Sensitive Carbon Dots for Treatment of Tumor. Bioconjugate Chemistry, 2019, 30, 621-632.	1.8	22
1731	Size-Transformable, Multifunctional Nanoparticles from Hyperbranched Polymers for Environment-Specific Therapeutic Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 1354-1365.	2.6	26
1732	Preparation of Messenger RNA Nanomicelles via Non-Cytotoxic PEG-Polyamine Nanocomplex for Intracerebroventicular Delivery: A Proof-of-Concept Study in Mouse Models. Nanomaterials, 2019, 9, 67.	1.9	21
1733	Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo. Advanced Science, 2019, 6, 1801423.	5.6	128
1734	Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of Drug Delivery Science and Technology, 2019, 49, 66-81.	1.4	149
1735	Glycopolymers/PEI complexes as serum-tolerant vectors for enhanced gene delivery to hepatocytes. Carbohydrate Polymers, 2019, 205, 167-175.	5.1	32
1736	Targeted polyethylenimine/(p53 plasmid) nanocomplexes for potential antitumor applications. Nanotechnology, 2019, 30, 145601.	1.3	7
1737	Targeted codelivery of doxorubicin and IL-36γ expression plasmid for an optimal chemo-gene combination therapy against cancer lung metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 129-141.	1.7	28
1738	Multifunctional polystyrene nanofiber membrane with bounded polyethyleneimine and NO photodonor: dark- and light-induced antibacterial effect and enhanced CO2 adsorption. Journal of Materials Science, 2019, 54, 2740-2753.	1.7	5
1739	SAHA (vorinostat) facilitates functional polymer-based gene transfection via upregulation of ROS and synergizes with TRAIL gene delivery for cancer therapy. Journal of Drug Targeting, 2019, 27, 306-314.	2.1	13
1740	RGD peptide-based non-viral gene delivery vectors targeting integrin α _v l² ₃ for cancer therapy. Journal of Drug Targeting, 2019, 27, 1-11.	2.1	83
1741	Charge reduction: an efficient strategy to reduce toxicity and increase the transfection efficiency of high molecular weight polyethylenimine. Journal of Pharmaceutical Investigation, 2019, 49, 105-114.	2.7	7
1742	Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1528.	3.3	8
1743	Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Advanced Functional Materials, 2020, 30, 1901001.	7.8	109
1744	Tumor microenvironment responsive drug delivery systems. Asian Journal of Pharmaceutical Sciences, 2020, 15, 416-448.	4.3	114
1745	Assembling structurally customizable synthetic carriers of siRNA through thermodynamically self-regulated process. Asian Journal of Pharmaceutical Sciences, 2020, 15, 356-364.	4.3	0
1746	Star polymers with acid-labile diacetal-based cores synthesized by aqueous RAFT polymerization for intracellular DNA delivery. Polymer Chemistry, 2020, 11, 344-357.	1.9	25

#	Article	IF	CITATIONS
1747	A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chinese Chemical Letters, 2020, 31, 275-280.	4.8	26
1748	Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics, 2020, 12, 30.	2.0	78
1749	Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. Materials Horizons, 2020, 7, 317-337.	6.4	71
1750	Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo–photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 1235-1244.	2.9	16
1751	Poly(amine- <i>co</i> -ester)s by Binary Organocatalytic Ring-Opening Polymerization of <i>N</i> -Boc-1,4-oxazepan-7-one: Synthesis, Characterization, and Self-Assembly. Macromolecules, 2020, 53, 223-232.	2.2	12
1752	Self-Assembled Supramolecular Bilayer Nanoparticles Composed of Near-Infrared Dye as a Theranostic Nanoplatform To Encapsulate Hydrophilic Drugs Effectively. ACS Biomaterials Science and Engineering, 2020, 6, 474-484.	2.6	10
1753	Magnetic nanocarriers: Emerging tool for the effective targeted treatment of lung cancer. Journal of Drug Delivery Science and Technology, 2020, 55, 101493.	1.4	19
1754	Polyplexes System to Enhance the LL-37 Antimicrobial Peptide Expression in Human Skin Cells. Tissue Engineering - Part A, 2020, 26, 400-410.	1.6	3
1755	Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. Journal of the American Chemical Society, 2020, 142, 1083-1089.	6.6	91
1756	Dendrimers in gene delivery. , 2020, , 211-231.		5
1756 1757	Dendrimers in gene delivery. , 2020, , 211-231. Strategies for nonviral nanoparticleâ€based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1609.	3.3	5 106
1756 1757 1758	Dendrimers in gene delivery., 2020, , 211-231. Strategies for nonviral nanoparticleâ€based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1609. Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery. International Journal of Biological Macromolecules, 2020, 152, 948-956.	3.3 3.6	5 106 13
1756 1757 1758 1759	Dendrimers in gene delivery., 2020, , 211-231. Strategies for nonviral nanoparticleâ€based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1609. Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery. International Journal of Biological Macromolecules, 2020, 152, 948-956. Electrostatically driven self-assembled nanoparticles and coatings., 2020, , 349-370.	3.3 3.6	5 106 13 6
1756 1757 1758 1759 1760	Dendrimers in gene delivery., 2020, , 211-231. Strategies for nonviral nanoparticleâ€based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1609. Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery. International Journal of Biological Macromolecules, 2020, 152, 948-956. Electrostatically driven self-assembled nanoparticles and coatings., 2020, , 349-370. Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS Applied Bio Materials, 2020, 3, 7598-7610.	3.3 3.6 2.3	5 106 13 6 17
1756 1757 1758 1759 1760 1761	Dendrimers in gene delivery., 2020, , 211-231. Strategies for nonviral nanoparticleâ€based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1609. Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery. International Journal of Biological Macromolecules, 2020, 152, 948-956. Electrostatically driven self-assembled nanoparticles and coatings., 2020, , 349-370. Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS Applied Bio Materials, 2020, 3, 7598-7610. Circumvent PEGylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. Chinese Chemical Letters, 2020, 31, 3143-3148.	3.3 3.6 2.3 4.8	 5 106 13 6 17 22
1756 1757 1758 1759 1760 1761	Dendrimers in gene delivery., 2020, , 211-231. Strategies for nonviral nanoparticleâ€based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1609. Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery. International Journal of Biological Macromolecules, 2020, 152, 948-956. Electrostatically driven self-assembled nanoparticles and coatings., 2020, , 349-370. Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS Applied Bio Materials, 2020, 3, 7598-7610. Circumvent PECylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. Chinese Chemical Letters, 2020, 31, 3143-3148. Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules, 2020, 21, 5173-5188.	3.3 3.6 2.3 4.8 2.6	5 106 13 6 17 22 9
1756 1757 1758 1759 1760 1761 1762	Dendrimers in gene delivery., 2020, , 211-231. Strategies for nonviral nanoparticleâ&based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1609. Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery. International Journal of Biological Macromolecules, 2020, 152, 948-956. Electrostatically driven self-assembled nanoparticles and coatings., 2020, , 349-370. Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS Applied Bio Materials, 2020, 3, 7598-7610. Circumvent PECylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. Chinese Chemical Letters, 2020, 31, 3143-3148. Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules, 2020, 21, 5173-5188. Pillar[5]arenes as potential personage for DNA compactization and gene therapy. Journal of Molecular Liquids, 2020, 319, 114178.	3.3 3.6 2.3 4.8 2.6 2.3	5 106 13 6 17 22 9

#	Article	IF	CITATIONS
1765	Early healing of alveolar bone promoted by microRNA-21-loaded nanoparticles combined with Bio-Oss particles. Chemical Engineering Journal, 2020, 401, 126026.	6.6	11
1766	Optically Active Polymers with Cationic Units Connected through Neutral Spacers: Helical Conformation and Chirality Transfer to External Molecules. Macromolecules, 2020, 53, 9916-9928.	2.2	3
1767	Non-viral Gene Delivery Methods for Bone and Joints. Frontiers in Bioengineering and Biotechnology, 2020, 8, 598466.	2.0	32
1768	Nanomaterials for Therapeutic RNA Delivery. Matter, 2020, 3, 1948-1975.	5.0	67
1769	<p>Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat?</p> . International Journal of Nanomedicine, 2020, Volume 15, 9469-9496.	3.3	121
1770	Efficient Polymer-Mediated Delivery of Gene-Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning. ACS Nano, 2020, 14, 17626-17639.	7.3	58
1771	Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 2020, 258, 120275.	5.7	81
1772	Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules, 2020, 25, 3482.	1.7	35
1773	The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes, 2020, 11, 915.	1.0	3
1774	N -Acetyl-l-Leucine-Polyethyleneimine-Mediated Delivery of CpG Oligodeoxynucleotides 2006 Inhibits RAW264.7 Cell Osteoclastogenesis. Drug Design, Development and Therapy, 2020, Volume 14, 2657-2665.	2.0	1
1775	A Mixed-Surface Polyamidoamine Dendrimer for In Vitro and In Vivo Delivery of Large Plasmids. Pharmaceutics, 2020, 12, 619.	2.0	4
1776	New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. Small, 2020, 16, e2001588.	5.2	33
1777	Chitosan-Based Non-viral Gene and Drug Delivery Systems for Brain Cancer. Frontiers in Neurology, 2020, 11, 740.	1.1	33
1778	Poly(2â€{dimethylamino]ethyl methacrylate)―b â€poly(hydroxypropyl methacrylate)/ DNA polyplexes in aqueous solutions. Journal of Polymer Science, 2020, 58, 2335-2346.	2.0	3
1779	Efficient Delivery of Transducing Polymer Nanoparticles for Gene-Mediated Induction of Osteogenesis for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 849.	2.0	8
1780	[12]aneN ₃ -Based Gemini-Type Amphiphiles with Two-Photon Absorption Properties for Enhanced Nonviral Gene Delivery and Bioimaging. ACS Applied Materials & Interfaces, 2020, 12, 40094-40107.	4.0	20
1781	Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics, 2020, 12, 888.	2.0	13
1782	Strategies and materials of "SMART" non-viral vectors: Overcoming the barriers for brain gene therapy. Nano Today, 2020, 35, 101006.	6.2	23

щ.		IF	CITATIONS
#	Structural Optimization of Polymeric Carriers to Enhance the Immunostimulatory Activity of	IF	CHATIONS
1783	Molecularly Defined RIG-I Agonists. ACS Central Science, 2020, 6, 2008-2022.	5.3	20
1785	<i>In Vivo</i> Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS Applied Materials & Interfaces, 2020, 12, 45763-45771.	4.0	21
1786	Evaluation of low molecular weight polyethylenimine-introduced chitosan for gene delivery to mesenchymal stem cells. Materials Express, 2020, 10, 1170-1176.	0.2	2
1787	Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nature Communications, 2020, 11, 4615.	5.8	27
1788	Cochlear Transfection Gene Guinea Pigs Mediates Atoh1-EGFP Based Hyaluronic Acid Modified Polyethyleneimine Nanoparticles. Journal of Nanoscience and Nanotechnology, 2020, 20, 6116-6122.	0.9	4
1789	Cationic dynamic covalent polymers for gene transfection. Journal of Materials Chemistry B, 2020, 8, 9385-9403.	2.9	24
1790	Multistage Sensitive NanoCRISPR Enable Efficient Intracellular Disruption of Immune Checkpoints for Robust Innate and Adaptive Immune Coactivation. Advanced Functional Materials, 2020, 30, 2004940.	7.8	27
1791	Targeting DNA to the endoplasmic reticulum efficiently enhances gene delivery and therapy. Nanoscale, 2020, 12, 18249-18262.	2.8	22
1792	Water-Soluble and Cytocompatible Phospholipid Polymers for Molecular Complexation to Enhance Biomolecule Transportation to Cells In Vitro. Polymers, 2020, 12, 1762.	2.0	4
1793	The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 947.	2.0	30
1794	Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer. Journal of Materials Science: Materials in Medicine, 2020, 31, 118.	1.7	6
1795	Lipodendriplexes mediated enhanced gene delivery: a cellular to pre-clinical investigation. Scientific Reports, 2020, 10, 21446.	1.6	18
1796	Endosomal escape tendency of drug delivery systems to mediate cytosolic delivery of therapeutics. , 2020, , 227-258.		2
1797	Aerosolizable Lipid Nanoparticles for Pulmonary Delivery of mRNA through Design of Experiments. Pharmaceutics, 2020, 12, 1042.	2.0	75
1798	Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale, 2020, 12, 12057-12067.	2.8	49
1799	How to overcome endosomal entrapment of cellâ€penetrating peptides to release the therapeutic potential of peptides?. Peptide Science, 2020, 112, e24168.	1.0	17
1800	Polyethylenimine-based nanovector grafted with mannitol moieties to achieve effective gene delivery and transfection. Nanotechnology, 2020, 31, 325101.	1.3	8
1801	Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules, 2020, 21, 2557-2573.	2.6	116

#	Article	IF	CITATIONS
1802	Influence of Cross-Linking Degree on Hydrodynamic Behavior and Stimulus-Sensitivity of Derivatives of Branched Polyethyleneimine. Polymers, 2020, 12, 1085.	2.0	5
1803	Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. Journal of Polymer Science, 2020, 58, 1481-1502.	2.0	67
1804	Low molecular weight polyethyleneimine conjugated guar gum for targeted gene delivery to triple negative breast cancer. International Journal of Biological Macromolecules, 2020, 161, 1149-1160.	3.6	19
1805	Bioreducible cationic random copolymer for gene delivery. Polymers for Advanced Technologies, 2020, 31, 2378.	1.6	2
1806	Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano, 2020, 14, 7760-7782.	7.3	289
1807	Polymeric vehicles for nucleic acid delivery. Advanced Drug Delivery Reviews, 2020, 156, 119-132.	6.6	106
1808	Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chemical Society Reviews, 2020, 49, 4737-4834.	18.7	178
1809	Recent advances in polymeric drug delivery systems. Biomaterials Research, 2020, 24, 12.	3.2	318
1810	Rapamycin–PLGA microparticles prevent senescence, sustain cartilage matrix production under stress and exhibit prolonged retention in mouse joints. Biomaterials Science, 2020, 8, 4308-4321.	2.6	29
1811	Nanoparticulate systems for monitoring of therapeutic cells. , 2020, , 113-123.		1
1812	Degradable branched polycationic systems for nucleic acid delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1631.	3.3	4
1813	Nanoparticle depots for controlled and sustained gene delivery. Journal of Controlled Release, 2020, 322, 622-631.	4.8	28
1814	Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. Journal of Controlled Release, 2020, 322, 236-247.	4.8	83
1815	Glutathione-Specific and Intracellularly Labile Polymeric Nanocarrier for Efficient and Safe Cancer Gene Delivery. ACS Applied Materials & Interfaces, 2020, 12, 14825-14838.	4.0	20
1816	Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal of Molecular Medicine, 2020, 98, 615-632.	1.7	66
1817	Phospholipid-Coated Guanosine Diphosphate Auxiliary CaP Active Nanoparticles Can Systematically Improve the Efficiency of Gene Therapy for Cancer Disease. ACS Biomaterials Science and Engineering, 2020, 6, 2107-2116.	2.6	5
1818	A Versatile Polymerâ€Based Platform for Intracellular Delivery of Macromolecules. Advanced Therapeutics, 2020, 3, 1900169.	1.6	5
1819	Complexation of DNA with QPDMAEMA- <i>b</i> PLMA- <i>b</i> POEGMA Cationic Triblock Terpolymer Micelles. Macromolecules, 2020, 53, 5747-5755.	2.2	14

#	Article	IF	CITATIONS
1820	Charge reversible hyaluronic acid-modified dendrimer-based nanoparticles for siMDR-1 and doxorubicin co-delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 43-49.	2.0	31
1821	In vivo gene delivery mediated by non-viral vectors for cancer therapy. Journal of Controlled Release, 2020, 325, 249-275.	4.8	156
1822	Tuning Cellular Interactions of Carboxylic Acid-Side-Chain-Containing Polyacrylates: The Role of Cyanine Dye Label and Side-Chain Type. Biomacromolecules, 2020, 21, 3007-3016.	2.6	14
1823	Acylation of the antimicrobial peptide CAMEL for cancer gene therapy. Drug Delivery, 2020, 27, 964-973.	2.5	6
1824	Physicochemical Evaluation of Insulin Complexes with QPDMAEMA-b-PLMA-b-POEGMA Cationic Amphiphlic Triblock Terpolymer Micelles. Polymers, 2020, 12, 309.	2.0	13
1825	Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharmaceutica Sinica B, 2020, 10, 1347-1359.	5.7	94
1826	A zipped-up tunable metal coordinated cationic polymer for nanomedicine. Journal of Materials Chemistry B, 2020, 8, 1350-1358.	2.9	4
1827	Multivalent Peptide-Functionalized Bioreducible Polymers for Cellular Delivery of Various RNAs. Biomacromolecules, 2020, 21, 1613-1624.	2.6	16
1828	Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar!. Pharmaceutics, 2020, 12, 183.	2.0	104
1829	Highâ€Throughput Screening of Cell Transfection Enhancers Using Miniaturized Droplet Microarrays. Advanced Biology, 2020, 4, e1900257.	3.0	14
1830	Synthesis of Poly(acyclic orthoester)s: Acidâ€6ensitive Biomaterials for Enhancing Immune Responses of Protein Vaccine. Angewandte Chemie, 2020, 132, 7302-7306.	1.6	2
1831	Synthesis of Poly(acyclic orthoester)s: Acidâ€Sensitive Biomaterials for Enhancing Immune Responses of Protein Vaccine. Angewandte Chemie - International Edition, 2020, 59, 7235-7239.	7.2	19
1832	Triazine-cored polymeric vectors for antisense oligonucleotide delivery in vitro and in vivo. Journal of Nanobiotechnology, 2020, 18, 34.	4.2	3
1833	Lipidâ€Modified Aminoglycosides for mRNA Delivery to the Liver. Advanced Healthcare Materials, 2020, 9, e1901487.	3.9	25
1834	Polyplexes Are Endocytosed by and Trafficked within Filopodia. Biomacromolecules, 2020, 21, 1379-1392.	2.6	13
1835	Noncationic Material Design for Nucleic Acid Delivery. Advanced Therapeutics, 2020, 3, 1900206.	1.6	32
1836	Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: Repurposing quinacrine for lung cancer therapeutics. International Journal of Pharmaceutics, 2020, 577, 118995.	2.6	53
1837	Novel therapeutics for brain tumors: current practice and future prospects. Expert Opinion on Drug Delivery, 2020, 17, 9-21.	2.4	10

#	Article	IF	CITATIONS
1838	Temperature‣ensitive Amphiphilic Nonâ€ionic Triblock Copolymers for Enhanced In Vivo Skeletal Muscle Transfection. Macromolecular Bioscience, 2020, 20, 1900276.	2.1	5
1839	Virus-esque nucleus-targeting nanoparticles deliver trojan plasmid for release of anti-tumor shuttle protein. Journal of Controlled Release, 2020, 320, 253-264.	4.8	21
1840	Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration. Nanomaterials, 2020, 10, 146.	1.9	36
1841	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
1842	Effective naked plasmid DNA delivery into stem cells by microextrusion-based transient-transfection system for in situ cardiac repair. Cytotherapy, 2020, 22, 70-81.	0.3	9
1843	Supramolecular nucleobase-functionalized polymers: synthesis and potential biological applications. Journal of Materials Chemistry B, 2020, 8, 1576-1588.	2.9	24
1844	Nanoparticle-Mediated Gene Silencing for Sensitization of Lung Cancer to Cisplatin Therapy. Molecules, 2020, 25, 1994.	1.7	9
1845	Gene regulations and delivery vectors for treatment of cancer. Journal of Pharmaceutical Investigation, 2020, 50, 309-326.	2.7	5
1846	Tuning of endosomal escape and gene expression by functional groups, molecular weight and transfection medium: a structure–activity relationship study. Journal of Materials Chemistry B, 2020, 8, 5026-5041.	2.9	20
1847	Complex Size and Surface Charge Determine Nucleic Acid Transfer by Fusogenic Liposomes. International Journal of Molecular Sciences, 2020, 21, 2244.	1.8	20
1848	IL36 Cooperates With Anti-CTLA-4 mAbs to Facilitate Antitumor Immune Responses. Frontiers in Immunology, 2020, 11, 634.	2.2	21
1849	Effects of Branching Strategy on the Gene Transfection of Highly Branched Poly(β-amino ester)s. Chinese Journal of Polymer Science (English Edition), 2020, 38, 830-839.	2.0	13
1850	Delivery of nucleic acid therapeutics for cancer immunotherapy. Medicine in Drug Discovery, 2020, 6, 100023.	2.3	22
1851	Poly(ethylene glycol)–Poly(beta-amino ester)-Based Nanoparticles for Suicide Gene Therapy Enhance Brain Penetration and Extend Survival in a Preclinical Human Glioblastoma Orthotopic Xenograft Model. ACS Biomaterials Science and Engineering, 2020, 6, 2943-2955.	2.6	26
1852	<scp>l</scp> -Carnitine conjugated chitosan-stearic acid polymeric micelles for improving the oral bioavailability of paclitaxel. Drug Delivery, 2020, 27, 575-584.	2.5	29
1853	Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing. Advanced Drug Delivery Reviews, 2021, 168, 55-78.	6.6	46
1854	Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 554-573.	1.8	2
1855	Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry, 2021, 60, 941-955.	1.2	96

#		IE	CITATIONS
#	PEI fluorination reduces tovicity and promotes liver-targeted siPNA delivery. Drug Delivery and	IF	CHATIONS
1856	Translational Research, 2021, 11, 255-260.	3.0	46
1857	Functional star polymers as reagents for efficient nucleic acids delivery into HT-1080 cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 356-370.	1.8	15
1858	ls Viral Vector Gene Delivery More Effective Using Biomaterials?. Advanced Healthcare Materials, 2021, 10, e2001238.	3.9	34
1859	Cellular gene delivery via poly(hexamethylene biguanide)/pDNA self-assembled nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 62-71.	2.0	6
1860	Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery. International Journal of Pharmaceutics, 2021, 593, 120080.	2.6	23
1861	Revisiting gene delivery to the brain: silencing and editing. Biomaterials Science, 2021, 9, 1065-1087.	2.6	14
1862	Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials, 2021, 268, 120597.	5.7	93
1863	α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Advanced Drug Delivery Reviews, 2021, 171, 139-163.	6.6	56
1864	Biocompatibility of magnetic nanoparticles coating with polycations using A549 cells. Journal of Biotechnology, 2021, 325, 25-34.	1.9	23
1865	Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery. Biomaterials, 2021, 268, 120600.	5.7	37
1866	Ionic Liquid-Mediated Preparation of Noncytotoxic Hemocompatible Stable DNAâ^îµ-Poly- <scp>l</scp> -lysine Polyplexes: A New Sustainable Approach for the Bulk Production of Potential Nonviral Vectors for Gene Delivery Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 264-272.	3.2	6
1867	Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. Journal of Leukocyte Biology, 2021, 109, 415-424.	1.5	7
1868	Non-coding RNAs: the new central dogma of cancer biology. Science China Life Sciences, 2021, 64, 22-50.	2.3	93
1869	Gene and cell therapy. , 2021, , 463-488.		0
1870	Self-assembled PEGylated amphiphilic polypeptides for gene transfection. Journal of Materials Chemistry B, 2021, 9, 8224-8236.	2.9	7
1871	Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomaterials Science, 2021, 9, 6673-6690.	2.6	18
1872	Conjugation Approaches for Peptide-Mediated Delivery of Oligonucleotides Therapeutics. Australian Journal of Chemistry, 2022, 75, 24-33.	0.5	6
1873	Lipophilic Peptide Dendrimers for Delivery of Splice-Switching Oligonucleotides. Pharmaceutics, 2021, 13, 116.	2.0	5

#	Article	IF	CITATIONS
1874	Fabrication of TiO ₂ microspikes for highly efficient intracellular delivery by pulse laser-assisted photoporation. RSC Advances, 2021, 11, 9336-9348.	1.7	18
1875	<i>In vitro</i> vascularization of tissue engineered constructs by non-viral delivery of pro-angiogenic genes. Biomaterials Science, 2021, 9, 2067-2081.	2.6	9
1876	Confocal Laser Scanning Microscopy and Fluorescence Correlation Methods for the Evaluation of Molecular Interactions. Advances in Experimental Medicine and Biology, 2021, 1310, 1-30.	0.8	4
1877	siRNA Design and Delivery Based on Carbon Nanotubes. Methods in Molecular Biology, 2021, 2282, 181-193.	0.4	4
1878	Dendrimers for gene therapy. , 2021, , 285-309.		2
1879	Dendrimers: A Novel Nanomaterial. Springer Series in Materials Science, 2021, , 411-449.	0.4	0
1881	Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel. Acta Pharmacologica Sinica, 2021, 42, 1714-1722.	2.8	31
1883	Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomaterials Science, 2021, 9, 4289-4300.	2.6	52
1884	Nanostructures in gene delivery. , 2021, , 101-135.		4
1885	Revisiting the role of TRAIL/TRAIL-R in cancer biology and therapy. Future Oncology, 2021, 17, 581-596.	1.1	18
1886	Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Medicinal Chemistry, 2021, 13, 393-418.	1.1	1
1887	Biopolymeric Materials Used as Nonviral Vectors: A Review. Polysaccharides, 2021, 2, 100-109.	2.1	1
1888	Construction of Poly(amidoamine) Dendrimer/Carbon Dot Nanohybrids for Biomedical Applications. Macromolecular Bioscience, 2021, 21, e2100007.	2.1	13
1889	Photocrosslinked Bioreducible Polymeric Nanoparticles for Enhanced Systemic siRNA Delivery as Cancer Therapy. Advanced Functional Materials, 2021, 31, 2009768.	7.8	29
1890	Photoluminescent carbon quantum dot/poly-l-Lysine core-shell nanoparticles: A novel candidate for gene delivery. Journal of Drug Delivery Science and Technology, 2021, 61, 102118.	1.4	20
1891	Synthesis of Double Interfering Biodegradable Nano-MgO Micelle Composites and Their Effect on Parkinson's Disease. ACS Biomaterials Science and Engineering, 2021, 7, 1216-1229.	2.6	14
1892	Therapeutic Biomaterial Approaches to Alleviate Chronic Limb Threatening Ischemia. Advanced Science, 2021, 8, 2003119.	5.6	7
1893	Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics, 2021, 13, 206.	2.0	122

		CITATION REPORT		
#	Article		IF	CITATIONS
1894	Challenges of Gene Therapy for Neurodegenerative Disorders. Current Gene Therapy, 2	2021, 21, 3-10.	0.9	1
1895	A Nanoplasmonic Assay of Oligonucleotideâ€Cargo Delivery from Cationic Lipoplexes. e2005815.	Small, 2021, 17,	5.2	5
1896	Dopamine-Grafted Hyaluronic Acid Coated Hyperbranched Poly(β-Amino Esters)/DNA for Enhanced Gene Delivery and Biosafety. Crystals, 2021, 11, 347.	Nano-Complexes	1.0	8
1897	Smart, Naturally-Derived Macromolecules for Controlled Drug Release. Molecules, 202	1, 26, 1918.	1.7	6
1898	Sialic acid-engineered mesoporous polydopamine dual loaded with ferritin gene and SI achieving endogenous and exogenous synergistic T2-weighted magnetic resonance im Journal of Nanobiotechnology, 2021, 19, 76.	기O for laging of HCC.	4.2	10
1899	Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces l angiogenesis. Angiogenesis, 2021, 24, 657-676.	ocalized	3.7	27
1900	Acoustofection: High-Frequency Vibrational Membrane Permeabilization for Intracellul Delivery into Nonadherent Cells. ACS Applied Bio Materials, 2021, 4, 2781-2789.	ar siRNA	2.3	23
1901	Importance of pH in Synthesis of pH-Responsive Cationic Nano- and Microgels. Polyme	ers, 2021, 13, 827.	2.0	21
1902	Hyaluronic acid and albumin based nanoparticles for drug delivery. Journal of Controlle 2021, 331, 416-433.	[.] d Release,	4.8	116
1903	Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. Biolog	gy, 2021, 10, 265.	1.3	26
1904	Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sciences, 2021, 268, 118932.		2.0	34
1905	Imaging modalities delivery of RNAi therapeutics in cancer therapy and clinical applicat of Radiology and Oncology, 2021, 5, 005-034.	ions. Journal	0.2	0
1906	Protein Kinase C α-Responsive Gene Carrier for Cancer-Specific Transgene Expression Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 2530-2537.	and Cancer	2.6	4
1908	Oligo(ethylene imine)â€grafted glycidyl methacrylate linear and star homopolymers: C correlated transfection efficiency. Journal of Polymer Science, 2021, 59, 870-881.)dd–even	2.0	1
1909	Efficient intracellular delivery of p53 protein by engineered protein crystals restores tu suppressing function in vivo. Biomaterials, 2021, 271, 120759.	mor	5.7	16
1910	Design and Validation of a Process Based on Cationic Niosomes for Gene Delivery into Urine-Derived Mesenchymal Stem Cells. Pharmaceutics, 2021, 13, 696.	Novel	2.0	3
1911	Insights into the effect of polymer functionalization of multiwalled carbon nanotubes of flexible strain sensor. Sensors and Actuators A: Physical, 2021, 322, 112605.	n the design	2.0	19
1912	Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. Advanced 33, e2007576.	Materials, 2021,	11.1	42

#	Article	IF	CITATIONS
1913	Enhanced gene expression by a novel designed leucine zipper endosomolytic peptide. International Journal of Pharmaceutics, 2021, 601, 120556.	2.6	5
1914	Nanoparticleâ€Mediated siRNA Delivery and Multifunctional Modification Strategies for Effective Cancer Therapy. Advanced Materials Technologies, 2021, 6, 2001236.	3.0	13
1915	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
1916	Translational Applications of Hydrogels. Chemical Reviews, 2021, 121, 11385-11457.	23.0	438
1917	Biologics and their delivery systems: Trends in myocardial infarction. Advanced Drug Delivery Reviews, 2021, 173, 181-215.	6.6	23
1918	Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS Journal, 2021, 23, 78.	2.2	179
1919	Functional Gels Containing Hydroxamic Acid Degrade Organophosphates in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2021, 60, 8799-8811.	1.8	2
1920	Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sciences, 2021, 274, 119337.	2.0	21
1921	Cell-penetrating Peptide-mediated Nanovaccine Delivery. Current Drug Targets, 2021, 22, 896-912.	1.0	14
1922	Side group ratio as a novel means to tune the hydrolytic degradation of thiolated and disulfide cross-linked polyaspartamides. Polymer Degradation and Stability, 2021, 188, 109577.	2.7	5
1923	Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Applied Materials Today, 2021, 23, 101003.	2.3	28
1924	Highly Photoluminescent Nitrogen- and Zinc-Doped Carbon Dots for Efficient Delivery of CRISPR/Cas9 and mRNA. Bioconjugate Chemistry, 2021, 32, 1875-1887.	1.8	17
1925	Complexation behavior of PNIPAM-b-QPDMAEA copolymer aggregates with linear DNAs of different lengths. European Polymer Journal, 2021, 155, 110575.	2.6	5
1926	CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Research and Therapy, 2021, 12, 374.	2.4	33
1927	Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals, 2021, 14, 707.	1.7	68
1928	Nanoparticle Size Effects in Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 6471-6496.	2.4	90
1929	Electrochemical fabrication of TiO2 micro-flowers for an efficient intracellular delivery using nanosecond light pulse. Materials Chemistry and Physics, 2021, 267, 124604.	2.0	16
1930	(Bis)phosphonic Acid-Functionalized Poly(ethyleneimine)–Poly(amido amine)s for Selective In Vitro Transfection of Osteosarcoma Cells. ACS Applied Polymer Materials, 2021, 3, 3776-3787.	2.0	3

#	Article	IF	CITATIONS
1931	PnBA-b-PNIPAM-b-PDMAEA Thermo-Responsive Triblock Terpolymers and Their Quaternized Analogs as Gene and Drug Delivery Vectors. Polymers, 2021, 13, 2361.	2.0	8
1932	Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer. Nano Research, 2022, 15, 1135-1144.	5.8	23
1933	Cyclam-Modified Polyethyleneimine for Simultaneous TGFβ siRNA Delivery and CXCR4 Inhibition for the Treatment of CCl4-Induced Liver Fibrosis. International Journal of Nanomedicine, 2021, Volume 16, 4451-4470.	3.3	12
1934	Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annual Review of Biomedical Engineering, 2021, 23, 225-248.	5.7	62
1935	Synthesis and characterization of vitamin D ₃ -functionalized carbon dots for CRISPR/Cas9 delivery. Nanomedicine, 2021, 16, 1673-1690.	1.7	6
1936	A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. Journal of Drug Delivery Science and Technology, 2021, 64, 102551.	1.4	Ο
1937	Cationic polymer brush-coated bioglass nanoparticles for the design of bioresorbable RNA delivery vectors. European Polymer Journal, 2021, 156, 110593.	2.6	7
1938	Synthesis and validation of DOPY: A new gemini dioleylbispyridinium based amphiphile for nucleic acid transfection. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 279-292.	2.0	7
1939	Non-viral delivery of CRISPR–Cas9 complexes for targeted gene editing via a polymer delivery system. Gene Therapy, 2022, 29, 157-170.	2.3	34
1940	Facile Formation of PAMAM Dendrimer Nanoclusters for Enhanced Gene Delivery and Cancer Gene Therapy. ACS Applied Bio Materials, 2021, 4, 7168-7175.	2.3	14
1941	Surface modified cellulose nanocrystalline hybrids actualizing efficient and precise delivery of doxorubicin into nucleus with: In vitro and in vivo evaluation. Journal of Applied Polymer Science, 2021, 138, 51536.	1.3	3
1943	Enhanced Gene Delivery and CRISPR/Cas9 Homology-Directed Repair in Serum by Minimally Succinylated Polyethylenimine. Molecular Pharmaceutics, 2021, 18, 3452-3463.	2.3	7
1944	Increasing Angiogenesis Factors in Hypoxic Diabetic Wound Conditions by siRNA Delivery: Additive Effect of LbL-Gold Nanocarriers and Desloratadine-Induced Lysosomal Escape. International Journal of Molecular Sciences, 2021, 22, 9216.	1.8	19
1945	The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. Journal of Nanobiotechnology, 2021, 19, 292.	4.2	20
1946	Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. Journal of Controlled Release, 2021, 339, 248-258.	4.8	10
1947	Considerations for the delivery of STING ligands in cancer immunotherapy. Journal of Controlled Release, 2021, 339, 235-247.	4.8	18
1948	Non-Viral Gene Delivery Systems for Treatment of Myocardial Infarction: Targeting Strategies and Cardiac Cell Modulation. Pharmaceutics, 2021, 13, 1520.	2.0	4
1949	Advanced Delivery Systems Based on Lysine or Lysine Polymers. Molecular Pharmaceutics, 2021, 18, 3652-3670.	2.3	26

#	Article	IF	CITATIONS
1950	Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Advanced Drug Delivery Reviews, 2021, 176, 113842.	6.6	34
1951	Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. Bioconjugate Chemistry, 2021, 32, 2245-2256.	1.8	4
1952	An artificial virus-like triblock protein shows low in vivo humoral immune response and high stability. Materials Science and Engineering C, 2021, 129, 112348.	3.8	1
1953	Accurate and efficient intracellular delivery biosensing system by nanostrawed electroporation array. Biosensors and Bioelectronics, 2021, 194, 113583.	5.3	8
1954	Breast cancer-derived DAMPs enhance cell invasion and metastasis, while nucleic acid scavengers mitigate these effects. Molecular Therapy - Nucleic Acids, 2021, 26, 1-10.	2.3	11
1955	Delivery strategies for ex vivo and in vivo T-cell reprogramming. , 2022, , 31-62.		0
1956	Challenges and opportunities of nanotechnology in cancer immunotherapy. , 2022, , 197-239.		1
1957	Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. Nanoscale, 2021, 13, 15445-15463.	2.8	15
1958	<i>In silico</i> prediction of the <i>in vitro</i> behavior of polymeric gene delivery vectors. Nanoscale, 2021, 13, 8333-8342.	2.8	7
1959	Efficient transfection and long-term stability of rno-miRNA-26a-5p for osteogenic differentiation by large pore sized mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2021, 9, 2275-2284.	2.9	15
1960	Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chemical Society Reviews, 2021, 50, 5435-5467.	18.7	151
1963	Disulfide ontaining Macromolecules for Therapeutic Delivery. Israel Journal of Chemistry, 2020, 60, 132-139.	1.0	21
1964	<scp>PDEGMAâ€bâ€PDIPAEMA</scp> copolymers via <scp>RAFT</scp> polymerization and their <scp>pH</scp> and thermoresponsive schizophrenic selfâ€assembly in aqueous media. Journal of Polymer Science, 2020, 58, 1867-1880.	2.0	14
1965	Stimuli-Sensitive Nanosystems: For Drug and Gene Delivery. Fundamental Biomedical Technologies, 2008, , 161-199.	0.2	8
1966	Advanced Fluorescence Imaging to Distinguish Between Intracellular Fractions of Antisense Oligonucleotides. Methods in Molecular Biology, 2020, 2063, 119-138.	0.4	3
1967	Intravital Real-Time Confocal Laser Scanning Microscopy for the In Situ Evaluation of Nanocarriers. , 2013, , 607-620.		1
1968	Recombinant Stem Cells as Carriers for Cancer Gene Therapy. Methods in Molecular Biology, 2014, 1141, 103-108.	0.4	2
1969	Quantitative Comparison of Endocytosis and Intracellular Trafficking of DNA/Polymer Complexes in the Absence/Presence of Free Polycationic Chains. Springer Theses, 2013, , 73-94.	0.0	1

#	Article	IF	Citations
1970	Amphiphilic Block Copolymer Based Nanocarriers for Drug and Gene Delivery. Fundamental Biomedical Technologies, 2011, , 251-289.	0.2	3
1971	Molecular Dynamics Simulations of Polyplexes and Lipoplexes Employed in Gene Delivery. Fundamental Biomedical Technologies, 2014, , 277-311.	0.2	1
1972	Therapeutic Gene Editing with CRISPR. Clinics in Laboratory Medicine, 2020, 40, 205-219.	0.7	3
1973	Quantitating Endosomal Escape of a Library of Polymers for mRNA Delivery. Nano Letters, 2020, 20, 1117-1123.	4.5	59
1974	Immunopolymer Lipid Nanoparticles for Delivery of Macromolecules to Antigen-Expressing Cells. ACS Applied Bio Materials, 2020, 3, 8481-8495.	2.3	4
1975	Direct Incorporation of Functional Peptides into M-DNA through Ligand-to-Metal Charge Transfer. ACS Macro Letters, 2017, 6, 98-102.	2.3	3
1977	VNB-mediated endosomal escape triggers robust gene silencing in human cell lines. , 2020, , .		1
1978	Biopolymers in Regenerative Medicine: Overview, Current Advances and Future Trends. , 2016, , 1-37.		1
1980	Cellular Cytoskeleton Dynamics Modulates Non-Viral Gene Delivery through RhoGTPases. PLoS ONE, 2012, 7, e35046.	1.1	24
1981	The Inhibition of Anti-DNA Binding to DNA by Nucleic Acid Binding Polymers. PLoS ONE, 2012, 7, e40862.	1.1	22
1982	In Vitro Efficient Transfection by CM18-Tat11 Hybrid Peptide: A New Tool for Gene-Delivery Applications. PLoS ONE, 2013, 8, e70108.	1.1	27
1983	Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection. PLoS ONE, 2017, 12, e0171699.	1.1	44
1984	Synthesis and evaluation of L-arabinose-based cationic glycolipids as effective vectors for pDNA and siRNA in vitro. PLoS ONE, 2017, 12, e0180276.	1.1	2
1985	Delivering Factors for Reprogramming a Somatic Cell to Pluripotency. International Journal of Stem Cells, 2012, 5, 6-11.	0.8	8
1986	The practical application of gene vectors in cancer therapy. Integrative Cancer Science and Therapeutics, 2018, 5, .	0.1	2
1987	Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics. Oncotarget, 2017, 8, 48222-48239.	0.8	9
1988	MDM2 knockdown mediated by a triazine-modified dendrimer in the treatment of non-small cell lung cancer. Oncotarget, 2016, 7, 44013-44022.	0.8	17
1989	COMPARISON OF INFLUENZA A VIRUS INHIBITION IN VITRO BY SIRNA COMPLEXES WITH CHITOSAN DERIVATIVES, POLYETHYLENEIMINE AND HYBRID POLYARGININE-INORGANIC MICROCAPSULES. Voprosy Virusologii, 2017, 62, 259-265.	0.1	4
# 1990	ARTICLE Journey to the Center of the Cell: Current Nanocarrier Design Strategies Targeting Biopharmaceuticals to the Cytoplasm and Nucleus. Current Pharmaceutical Design, 2016, 22, 1227-1244.	IF 0.9	Citations 28
-----------	---	-----------	-----------------
1991	Gene Delivery with Organic Electronic Biomaterials. Current Pharmaceutical Design, 2017, 23, 3614-3625.	0.9	12
1992	Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and Pharmacokinetics. Current Drug Metabolism, 2013, 14, 661-674.	0.7	15
1993	Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector. Current Gene Therapy, 2019, 19, 274-287.	0.9	2
1994	Reversible DNA Compaction. Current Topics in Medicinal Chemistry, 2014, 14, 766-773.	1.0	12
1995	Comparison between Cationic Polymer and Lipid in Plasmidic DNA Delivery to the Cell Nucleus. The Open Gene Therapy Journal, 2009, 2, 21-28.	1.2	4
1996	Synthesis and characterization of novel water-soluble polyamide based on spermine and aspartic acid as a potential gene delivery vehicle. EXPRESS Polymer Letters, 2008, 2, 330-338.	1.1	6
1997	Monitoring of the Zeta Potential of Human Cells upon Reduction in Their Viability and Interaction with Polymers. Acta Naturae, 2012, 4, 78-81.	1.7	109
1998	Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs. Acta Naturae, 2013, 5, 35-53.	1.7	21
1999	PEPTIDES AND POLYPEPTIDES FOR GENE AND DRUG DELIVERY. Acta Polymerica Sinica, 2011, 011, 799-811.	0.0	5
2000	POLYASPARTAMIDES GRAFTED WITH 1-(3-AMINOPROPYL)IMIDAZOLE AS LESS TOXIC AND HIGHLY EFFICIENT GENE CARRIERS. Acta Polymerica Sinica, 2011, 011, 874-882.	0.0	1
2001	Effects of the Lipophilic Core of Polymer Nanoassemblies on Intracellular Delivery and Transfection of siRNA. AIMS Biophysics, 2015, 2, 284-302.	0.3	4
2002	Therapeutic Potential of Anti-HIV RNA-loaded Exosomes. Biomedical and Environmental Sciences, 2018, 31, 215-226.	0.2	8
2003	Accelerated Blood Clearance of Lipid Nanoparticles Entails a Biphasic Humoral Response of B-1 Followed by B-2 Lymphocytes to Distinct Antigenic Moieties. ImmunoHorizons, 2019, 3, 282-293.	0.8	50
2004	PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier. Bulletin of the Korean Chemical Society, 2014, 35, 1036-1042.	1.0	9
2005	Nanomaterials as Non-viral siRNA Delivery Agents for Cancer Therapy. BioImpacts, 2013, 3, 53-65.	0.7	23
2006	A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer. Theranostics, 2021, 11, 9833-9846.	4.6	13
2007	Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules, 2021, 26, 5976.	1.7	6

#	Article	IF	Citations
2008	An Insight into the Biological Properties of Imidazoleâ€Based Schiff Bases: A Review. ChemistrySelect, 2021, 6, 10918-10947.	0.7	17
2009	Data-Driven Modeling of the Cellular Pharmacokinetics of Degradable Chitosan-Based Nanoparticles. Nanomaterials, 2021, 11, 2606.	1.9	3
2010	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(β-amino ester)s. Molecular Therapy, 2007, 15, 1306-12.	3.7	47
2011	Viral, Nonviral, and Physical Methods for Gene Delivery. , 2008, , 141-173.		0
2012	Introduction to Gene Therapy. , 2009, , 119-128.		0
2014	Efficient and Safe Intra-cellular Transport of Targeted Nanomedicines: are we there Yet?. Journal of Nanomedicine & Biotherapeutic Discovery, 2011, 01, .	0.6	2
2017	Revisiting Complexation Between DNA and Polyethylenimine: The Effect of Length of Free Polycationic Chains on Gene Transfection. Springer Theses, 2013, , 49-72.	0.0	0
2018	Revisiting Complexation Between DNA and Polyethylenimine: The Effect of Uncomplexed Chains Free in the Solution Mixture on Gene Transfection. Springer Theses, 2013, , 29-48.	0.0	0
2020	Chapter 4. Functional Polymers for Gene Delivery. RSC Polymer Chemistry Series, 2013, , 63-120.	0.1	0
2021	Polymeric Imidazoles and Imidazoliums in Nanomedicine: Comparison to Ammoniums and Phosphoniums. , 2015, , 231-266.		1
2022	Dendritic Nanomaterials for Therapeutic and Diagnostic Applications. Biosystems and Biorobotics, 2016, , 41-75.	0.2	0
2023	Nanoparticles: Biological Applications. , 0, , 5437-5497.		0
2024	Engineering peptide-conjugated non-viral delivery systems for enhanced SiRNA and DNA therapeutics. , 2016, , 99-111.		0
2025	Immunotherapy and Vaccines. , 2016, , 441-464.		0
2026	Degradable copolymers with incorporated ester groups by radical ring-opening polymerization using atom transfer radical polymerization. Polimery, 2017, 62, 262-271.	0.4	1
2028	Nanoparticles: Biological Applications. , 2017, , 1109-1169.		0
2030	Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardiovascular Systems. , 2019, , 1-67.		1
2031	Immunotherapy with mRNA vaccination and immunomodulation nanomedicine for cancer therapy. , 2019, , 551-600.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
2032	Gene-activated hydrogels in regenerative medicine. Genes and Cells, 2019, 14, 16-21.		0.2	0
2040	<i>In Situ</i> Detection of Intracellular Messenger RNA and MicroRNA. RSC Detection 47-66.	Science, 2020, ,	0.0	0
2041	Polysaccharide-based polyelectrolyte complex systems for biomedical uses. , 2020, , 1	51-174.		2
2042	microRNA Modulation. , 2020, , 511-576.			0
2044	A Review of Brain-Targeted Nonviral Gene-Based Therapies for the Treatment of Alzheir Molecular Pharmaceutics, 2021, 18, 4237-4255.	mer's Disease.	2.3	5
2045	Mechanoporation: Toward Single Cell Approaches. , 2022, , 31-59.			0
2046	Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequenceâ€Đefine Macromolecular Rapid Communications, 2022, 43, e2100602.	d Components.	2.0	11
2047	The convergence of nanotechnologyâ€stem cell, nanotopographyâ€mechanobiology, interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and hea Nano Select, 2021, 2, 655-687.	and bioticâ€abiotic rt attacks.	1.9	13
2049	Polymeric nanoparticles for RNA delivery. , 2023, , 555-573.			4
2050	Hitching a Ride: Enhancing Nucleic Acid Delivery into Target Cells Through Nanoparticl Environmental Chemistry for A Sustainable World, 2020, , 373-457.	es.	0.3	2
2051	Nucleic-Acid Scavengers Mitigate Breast Cancer Induced Inflammation, Invasion, and N Electronic Journal, O, , .	letastasis. SSRN	0.4	1
2052	Bionanotechnology in Pharmaceuticals. , 2020, , 149-170.			0
2053	Cytosolic Delivery of Single-Chain Polymer Nanoparticles. ACS Macro Letters, 2021, 10), 1443-1449.	2.3	15
2054	Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes. Materials, 2021, 4, 7979-7992.	ACS Applied Bio	2.3	14
2056	PEGylation of nanoparticles improves their cytoplasmic transport. International Journa Nanomedicine, 2007, 2, 735-41.	l of	3.3	56
2057	Perspectives in vector development for systemic cancer gene therapy. Gene Therapy a Biology, 2009, 13, 15-19.	nd Molecular	1.3	20
2058	Tumor-targeted RNA-interference: functional non-viral nanovectors. American Journal o Research, 2011, 1, 25-42.	of Cancer	1.4	14
2059	Monitoring of the Zeta Potential of Human Cells upon Reduction in Their Viability and with Polymers. Acta Naturae, 2012, 4, 78-81.	Interaction	1.7	31

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2060	Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs. Acta Naturae, 2013	3, 5, 35-53.	1.7	9
2061	Engineering biodegradable nanoparticles for drug and gene delivery. Chemical Engineering P 2013, 109, 25-30.	rogress,	0.0	23
2063	Nanoparticle-based targeted gene therapy for lung cancer. American Journal of Cancer Resea 6, 1118-34.	ırch, 2016,	1.4	20
2064	Optimizing Nanoparticle Design for Gene Therapy: Protection of Oligonucleotides from Degr Without Impeding Release of Cargo. Nanomedicine & Nanoscience Research, 2018, 2, .	radation	0.0	5
2065	Brevinin-2R-linked polyethylenimine as a promising hybrid nano-gene-delivery vector. Iranian of Basic Medical Sciences, 2019, 22, 1026-1035.	Journal	1.0	2
2067	Cutting-edge polymer/graphene nanocomposites for biomedical applications. , 2022, , 245-2	.68.		0
2068	The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccine 1345.	s, 2021, 9,	2.1	22
2069	Gene Therapy for Huntington's Disease: The Final Strategy for a Cure?. Journal of Movem 2022, 15, 15-20.	ient Disorders,	0.7	10
2070	miRNA Delivery by Nanosystems: State of the Art and Perspectives. Pharmaceutics, 2021, 13	s, 1901.	2.0	33
2071	Nanoparticular CpG-adjuvanted SARS-CoV-2 S1 protein elicits broadly neutralizing and Th1-t immunoreactivity in mice. International Journal of Biological Macromolecules, 2021, 193, 18	iased 85-1897.	3.6	12
2072	Combination of epigenetic regulation with gene therapy-mediated immune checkpoint block anti-tumour effects and immune response in vivo. Nature Communications, 2021, 12, 6742.	ade induces	5.8	45
2073	Bioinspired Fabrication of Peptide-Based Capsid-Like Nanoparticles for Gene Delivery. Biomat Engineering, 2021, , 1-15.	cerial	0.1	0
2074	High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomice Biomaterial Engineering, 2021, , 1-15.	lles.	0.1	0
2075	Cationic vs. non-cationic polymeric vectors for nucleic acid delivery. , 2023, , 574-589.			1
2076	Microneedle systems for delivering nucleic acid drugs. Journal of Pharmaceutical Investigatio 52, 273-292.	n, 2022,	2.7	10
2077	Advances in the Development of Biodegradable Polymeric Materials for Biomedical Application, 532-566.	ons. , 2022,		1
2078	Gene Therapy for Acute Respiratory Distress Syndrome. Frontiers in Physiology, 2021, 12, 78	36255.	1.3	4
2079	Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: a comprehe review of the literature. Nanomedicine, 2022, 17, 41-64.	nsive	1.7	2

#	Article	IF	CITATIONS
2080	From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nano-Micro Letters, 2022, 14, 41.	14.4	26
2081	Effect of mRNA Delivery Modality and Formulation on Cutaneous mRNA Distribution and Downstream eGFP Expression. Pharmaceutics, 2022, 14, 151.	2.0	1
2082	Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice. Science Translational Medicine, 2022, 14, eabh2548.	5.8	8
2083	Glutathione targeted tragacanthic acid-chitosan as a non-viral vector for brain delivery of miRNA-219a-5P: An in vitro/in vivo study. International Journal of Biological Macromolecules, 2022, 200, 543-556.	3.6	16
2084	The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid, 2022, 119-120, 102619.	0.4	1
2085	Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release, 2022, 343, 564-583.	4.8	21
2086	In Vitro Cellular Uptake and Transfection of Oligoarginine-Conjugated Glycol Chitosan/siRNA Nanoparticles. Polymers, 2021, 13, 4219.	2.0	4
2087	Uniform iron oxide nanoparticles reduce the required amount of polyethylenimine in the gene delivery to mesenchymal stem cells. Nanotechnology, 2022, 33, 125101.	1.3	2
2088	Contemporary approaches for nonviral gene therapy. Discovery Medicine, 2015, 19, 447-54.	0.5	11
2089	Biomaterials in Gene Delivery. , 2022, , 129-148.		2
2090	Chitosan Oligosaccharide-Based Nanoparticle Delivery Systems for Medical Applications. , 2022, , 157-171.		0
2091	Role of genetic insights and tumor microenvironment in liver cancer: new opportunities for gene therapy. , 2022, , 293-310.		0
2092	Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular Cancer, 2022, 21, 57.	7.9	85
2093	Polymeric Systems for Cancer Immunotherapy: A Review. Frontiers in Immunology, 2022, 13, 826876.	2.2	12
2094	Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications. Polymers, 2022, 14, 993.	2.0	41
2095	Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. Nanomaterials, 2022, 12, 783.	1.9	10
2096	Gene Therapy, A Potential Therapeutic Tool for Neurological and Neuropsychiatric Disorders: Applications, Challenges and Future Perspective. Current Gene Therapy, 2023, 23, 20-40.	0.9	6
2097	AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. Journal of Clinical Medicine, 2022, 11, 1484.	1.0	8

#	Article	IF	CITATIONS
2098	Development of a novel vector for <scp>siRNA</scp> delivery based on arginineâ€modified polyvinylamine. Polymer International, 2022, 71, 1022-1029.	1.6	2
2099	pH/enzyme dual sensitive and nucleus-targeting dendrimer nanoparticles to enhance the antitumour activity of doxorubicin. Pharmaceutical Development and Technology, 2022, 27, 357-371.	1.1	5
2100	Microfluidic Nanoparticles for Drug Delivery. Small, 2022, 18, e2106580.	5.2	58
2101	Pseudo Polyampholytes with Sensitively Ionâ€Responsive Conformational Transition Based on Positively Charged Host–Guest Complexes. Macromolecular Rapid Communications, 2022, , 2200127.	2.0	2
2102	A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA. Journal of Controlled Release, 2022, 345, 354-370.	4.8	14
2103	Multimeric RNAs for efficient RNA-based therapeutics and vaccines. Journal of Controlled Release, 2022, 345, 770-785.	4.8	3
2104	αâ€Tocopherol onjugated, Open Chain Sugarâ€Mimicking Cationic Lipids: Design, Synthesis and In–Vitro Gene Transfection Properties. ChemistrySelect, 2021, 6, 13025-13033.	0.7	2
2105	Phenylboronic Acid-Modified Polyamidoamine Mediated the Transfection of Polo-Like Kinase-1 siRNA to Achieve an Anti-Tumor Efficacy. International Journal of Nanomedicine, 2021, Volume 16, 8037-8048.	3.3	2
2106	Bottlebrush copolymers for gene delivery: influence of architecture, charge density, and backbone length on transfection efficiency. Journal of Materials Chemistry B, 2022, 10, 3696-3704.	2.9	9
2107	A novel gene-activated matrix composed of PEI/plasmid-BMP2 complexes and hydroxyapatite/chitosan-microspheres promotes bone regeneration. Nano Research, 2022, 15, 6348-6360.	5.8	11
2108	Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Advanced Drug Delivery Reviews, 2022, 185, 114300.	6.6	19
2109	Nanodelivery of nucleic acids. Nature Reviews Methods Primers, 2022, 2, .	11.8	146
2110	Poly‣‣ysine/Hyaluronan Nanocarriers As a Novel Nanosystem for Gene Delivery. Journal of Microscopy, 2022, , .	0.8	1
2111	Nano-vectors for CRISPR/Cas9-mediated genome editing. Nano Today, 2022, 44, 101482.	6.2	15
2112	Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. Journal of Controlled Release, 2022, 346, 110-135.	4.8	23
2116	Polymer Microparticles for Nucleic Acid Delivery. , 0, , 245-267.		0
2119	Bioinspired Fabrication of Peptide-Based Capsid-Like Nanoparticles for Gene Delivery. Biomaterial Engineering, 2022, , 219-233.	0.1	0
2121	Molecular and Supramolecular Construction of Arginine-Rich Nanohybrids for Visible Gene Delivery. Biomaterial Engineering, 2022, , 199-217.	0.1	0

#	Article	IF	CITATIONS
2122	High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles. Biomaterial Engineering, 2022, , 293-307.	0.1	0
2123	ROS responsive polyethylenimine-based fluorinated polymers for enhanced transfection efficiency and lower cytotoxicity. Bosnian Journal of Basic Medical Sciences, 2022, , .	0.6	0
2125	Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. Nano Convergence, 2022, 9, 19.	6.3	12
2126	Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials, 2022, 286, 121567.	5.7	19
2127	Exosome-mediated aptamer S58 reduces fibrosis in a rat glaucoma filtration surgery model. International Journal of Ophthalmology, 2022, 15, 690-700.	0.5	6
2128	Smart pH-responsive nanomedicines for disease therapy. Journal of Pharmaceutical Investigation, 2022, 52, 427-441.	2.7	28
2129	Essential cues of engineered polymeric materials regulating gene transfer pathways. Progress in Materials Science, 2022, 128, 100961.	16.0	7
2130	Supramolecular Ionic Networks: Design and Synthesis. , 2022, , 1-27.		1
2131	Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chemical Society Reviews, 2022, 51, 4996-5041.	18.7	179
2134	In Vitro Cytotoxicity and Cytokine Production by Lipid-Substituted Low Molecular Weight Branched PEIs Used for Gene Delivery. Acta Biomaterialia, 2022, 148, 279-297.	4.1	7
2135	Design and Gene Delivery Application of Polymeric Materials in Cancer Immunotherapy. , 2023, 01, .		2
2137	Nanotechnology-based approaches against COVID-19. , 2022, , 305-364.		0
2138	Emerging Approaches for Enabling RNAi Therapeutics. Chemistry - an Asian Journal, 0, , .	1.7	2
2139	Harnessing cGASâ€STING Pathway for Cancer Immunotherapy: From Bench to Clinic. Advanced Therapeutics, 2022, 5, .	1.6	2
2140	Lipidâ€Polymer Hybrid "Particleâ€inâ€Particle―Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVIDâ€19 Vaccines. Advanced Functional Materials, 2022, 32, .	7.8	16
2141	Thiolâ€Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
2142	Nanozymeâ€Based Artificial Organelles: An Emerging Direction for Artificial Organelles. Small, 2022, 18,	5.2	25
2143	Thiolâ€Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles. Angewandte Chemie, 2022, 134, .	1.6	6

#	Article	IF	CITATIONS
2144	An overview of polyallylamine applications in gene delivery. Pharmaceutical Development and Technology, 2022, 27, 714-724.	1.1	5
2145	Perfluoroalkyl-containing Compounds as a Tool for Drug Delivery Systems. , 2022, , 477-515.		2
2146	Design and Development of Ornidazole Loaded Polymeric Nanoparticles. Research Journal of Pharmacy and Technology, 2022, , 2639-2644.	0.2	0
2147	Nanobiotechnology: Applications in Chronic Wound Healing. International Journal of Nanomedicine, 0, Volume 17, 3125-3145.	3.3	19
2148	Structural Characterization of Dendriplexes In Vacuo: A Joint Ion Mobility/Molecular Dynamics Investigation. Journal of the American Society for Mass Spectrometry, 2022, 33, 1555-1568.	1.2	4
2149	Non-Viral Delivery of Gene Therapy to the Tendon. Polymers, 2022, 14, 3338.	2.0	3
2150	Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	3
2151	Identification of a βCD-Based Hyper-Branched Negatively Charged Polymer as HSV-2 and RSV Inhibitor. International Journal of Molecular Sciences, 2022, 23, 8701.	1.8	3
2153	Recent Advances of Magnetic Nanomaterials for Bioimaging, Drug Delivery, and Cell Therapy. ACS Applied Nano Materials, 2022, 5, 10118-10136.	2.4	11
2154	Nano-drug delivery systems for T cell-based immunotherapy. Nano Today, 2022, 46, 101621.	6.2	13
2155	Triggered amplification of gene theranostics with high accuracy and efficacy using metallo-nanoassemblies. Chemical Engineering Journal, 2023, 452, 139323.	6.6	2
2156	RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Advances, 2022, 12, 25397-25404.	1.7	9
2157	Dual-responsive polymeric micelles for drug delivery. , 2022, , 429-447.		0
2158	Hemiacetal-linked pH-sensitive PEG-lipids for non-viral gene delivery. New Journal of Chemistry, 2022, 46, 15414-15422.	1.4	1
2159	Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics, 2022, 14, 1811.	2.0	9
2160	Deagglomeration of DNA nanomedicine carriers using controlled ultrasonication. Ultrasonics Sonochemistry, 2022, 89, 106141.	3.8	0
2161	SQSTM1/p62 promotes miR-198 loading into extracellular vesicles and its autophagy-related secretion. Human Cell, 2022, 35, 1766-1784.	1.2	1
2162	Well-Defined pH-Responsive Self-Assembled Block Copolymers for the Effective Codelivery of Doxorubicin and Antisense Oligonucleotide to Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 4779-4792.	2.3	5

#	Article	IF	CITATIONS
2163	Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. International Journal of Molecular Sciences, 2022, 23, 10521.	1.8	21
2164	Stimuli-Responsive Polymer Coatings for the Rapid and Tunable Contact Transfer of Plasmid DNA to Soft Surfaces. ACS Biomaterials Science and Engineering, 0, , .	2.6	1
2165	Synthesis, Characterization, and Evaluation of Sulfonium Lipids as Potential Nonviral Gene Vectors. Letters in Drug Design and Discovery, 2024, 21, 339-348.	0.4	0
2166	Plasmid encoding <i>miRNA-200c</i> delivered by CaCO ₃ -based nanoparticles enhances rat alveolar bone formation. Nanomedicine, 2022, 17, 1339-1354.	1.7	4
2167	Nanovaccines to combat virusâ€related diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	3
2168	Polymersomes for Targeted Drug and Gene Delivery Systems. Nanotechnology in the Life Sciences, 2022, , 399-427.	0.4	1
2169	Polyethyleneimine-based immunoadjuvants for designing cancer vaccines. Journal of Materials Chemistry B, 2022, 10, 8166-8180.	2.9	2
2170	Dendrimer–siRNA Conjugates for Targeted Intracellular Delivery in Glioblastoma Animal Models. ACS Applied Materials & Interfaces, 2022, 14, 46290-46303.	4.0	13
2171	Leishmaniasis Vaccines: Applications of RNA Technology and Targeted Clinical Trial Designs. Pathogens, 2022, 11, 1259.	1.2	4
2172	Leadingâ€Edge Pulmonary Gene Therapy Approached by Barrierâ€Permeable Delivery System: A Concise Review on Peptide System. Advanced NanoBiomed Research, 0, , 2200113.	1.7	1
2173	Photoswitchable polyurethane based nanoaggregates for on-command release of noncovalent guest molecules. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 838-848.	1.2	5
2174	Potential roles of hyaluronic acid in <i>in vivo</i> CAR T cell reprogramming for cancer immunotherapy. Nanoscale, 2022, 14, 17821-17840.	2.8	2
2175	Repurposing pentamidine using hyaluronic acid-based nanocarriers for skeletal muscle treatment in myotonic dystrophy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 47, 102623.	1.7	4
2176	Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. European Journal of Medical Research, 2022, 27, .	0.9	8
2177	Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics, 2022, 14, 2432.	2.0	7
2178	Recent Progress in Carrierâ€Free Nanomedicine for Tumor Phototherapy. Advanced Healthcare Materials, 2023, 12, .	3.9	17
2179	Mannosylated Polycations Target CD206 ⁺ Antigen-Presenting Cells and Mediate T-Cell-Specific Activation in Cancer Vaccination. Biomacromolecules, 2022, 23, 5148-5163.	2.6	6
2180	How does the polymer architecture and position of cationic charges affect cell viability?. Polymer Chemistry, 2023, 14, 303-317.	1.9	3

#	Article	IF	Citations
2181	Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomaterials Science, 2023, 11, 1589-1606.	2.6	6
2182	Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/Fe3O4-PCL/DNA micelles for gene delivery into MCF-7 cells. Journal of Drug Delivery Science and Technology, 2023, 79, 104016.	1.4	10
2183	Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	12
2184	Recent Advances in Biomedical Applications of Polymeric Nanoplatform Assisted with Two-Photon Absorption Process. Polymers, 2022, 14, 5134.	2.0	2
2185	Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B, 2023, 13, 4105-4126.	5.7	13
2186	Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. Advances in Experimental Medicine and Biology, 2023, , 315-339.	0.8	0
2187	MicroRNAs in T Cell-Immunotherapy. International Journal of Molecular Sciences, 2023, 24, 250.	1.8	3
2188	Nanotechnology in stem cell research and therapy. Journal of Nanoparticle Research, 2023, 25, .	0.8	5
2190	Coâ€Polymer Carrier with Dual Advantages of Cartilageâ€Penetrating and Targeting Improves Delivery and Efficacy of MicroRNA Treatment of Osteoarthritis. Advanced Healthcare Materials, 2023, 12, .	3.9	3
2191	Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Current Drug Metabolism, 2022, 23, 1027-1053.	0.7	0
2192	Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharmaceutical Research, 2023, 40, 27-46.	1.7	31
2193	CRISPR-Cas9 base editors and their current role in human therapeutics. Cytotherapy, 2023, 25, 270-276.	0.3	4
2194	A Novel Form of Arginine-Chitosan as Nanoparticles Efficient for siRNA Delivery into Mouse Leukemia Cells. International Journal of Molecular Sciences, 2023, 24, 1040.	1.8	3
2195	Development and evaluation of polyethylenimine polyplexes as non-viral vectors for delivery of plasmid DNA encoding shRNA against STAT3 activity into triple negative breast cancer cells. Journal of Drug Delivery Science and Technology, 2023, 82, 104113.	1.4	0
2196	Self-assembled Nanocomplex Using Cellulose Nanocrystal Based on Zinc/DNA Nanocluster for Gene Delivery. Biotechnology and Bioprocess Engineering, 2023, 28, 83-90.	1.4	3
2197	Nanomaterials for <scp>mRNA</scp> â€based therapeutics: Challenges and opportunities. Bioengineering and Translational Medicine, 2023, 8, .	3.9	14
2198	Efficient Transfection via an Unexpected Mechanism by Near Neutral Polypiperazines with Tailored Response to Endosomal pH. Macromolecular Bioscience, 2023, 23, .	2.1	1
2200	Trioleyl Pyridinium, a Cationic Transfection Agent for the Lipofection of Therapeutic Oligonucleotides into Mammalian Cells. Pharmaceutics, 2023, 15, 420.	2.0	2

#	Article	IF	CITATIONS
2201	Materials-based nanotherapeutics for injured and diseased bone. Progress in Materials Science, 2023, 135, 101087.	16.0	11
2202	Cationic ring-opening polymerization of <i>N</i> -benzylaziridines to polyamines <i>via</i> organic boron. Chemical Communications, 2023, 59, 2982-2985.	2.2	3
2203	Near-Infrared Photoresponsive Nanotransducers for Precise Regulation of Gene Expression. Bioconjugate Chemistry, 0, , .	1.8	1
2204	Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes and Diseases, 2024, 11, 268-282.	1.5	5
2205	Nano-carrier for gene delivery and bioimaging based on pentaetheylenehexamine modified carbon dots. Journal of Colloid and Interface Science, 2023, 639, 180-192.	5.0	15
2206	Efficient intracellular and in vivo delivery of toxin proteins by a ROS-responsive polymer for cancer therapy. Journal of Controlled Release, 2023, 355, 160-170.	4.8	3
2207	Emerging application of magnetic nanoparticles for breast cancer therapy. European Polymer Journal, 2023, 187, 111898.	2.6	28
2208	Transfection Efficacy and Cellular Uptake of Lipid-Modified Polyethyleneimine Derivatives for Anionic Nanoparticles as Gene Delivery Vectors. ACS Applied Bio Materials, 2023, 6, 1105-1121.	2.3	7
2209	Gene Therapy for Regenerative Medicine. Pharmaceutics, 2023, 15, 856.	2.0	11
2210	A New Optimization Strategy of Highly Branched Poly(β-Amino Ester) for Enhanced Gene Delivery: Removal of Small Molecular Weight Components. Polymers, 2023, 15, 1518.	2.0	6
2211	Recent Advances in Nano-Drug Delivery Systems for the Treatment of Diabetic Wound Healing. International Journal of Nanomedicine, 0, Volume 18, 1537-1560.	3.3	10
2212	Recent progress in polymeric gene vectors: Delivery mechanisms, molecular designs, and applications. Biophysics Reviews, 2023, 4, .	1.0	0
2213	Molecular Chameleon Carriers for Nucleic Acid Delivery: The Sweet Spot between Lipoplexes and Polyplexes. Advanced Materials, 2023, 35, .	11.1	6
2214	Therapeutic nanoparticles for targeted drug delivery: A mini-review. AIP Conference Proceedings, 2023,	0.3	0
2232	Biological and biomedical applications of fluoropolymer nanocomposites. , 2023, , 755-785.		0
2234	Charge-shifting polyplex as a viral RNA extraction carrier for streamlined detection of infectious viruses. Materials Horizons, 2023, 10, 4571-4580.	6.4	0
2237	A catch-and-release nano-based gene delivery system. Nanoscale Horizons, 2023, 8, 1588-1594.	4.1	0
2254	Nanoscience for Nucleotide Delivery in Diabetes. , 2023, , 102-110.		0

IF

ARTICLE

Role of Gold Nanoparticles for Targeted Drug Delivery. , 2024, , 243-269.

0

CITATIONS