Towards molecular spintronics

Nature Materials 4, 335-339

DOI: 10.1038/nmat1349

Citation Report

#	Article	IF	CITATIONS
2	Inverse magnetoresistance of molecular junctions. Physical Review B, 2005, 72, .	1.1	39
3	Current-driven magnetic rearrangements in spin-polarized point contacts. Physical Review B, 2005, 72, .	1.1	22
4	Single-channel conductance of H2 molecules attached to platinum or palladium electrodes. Physical Review B, 2005, 72, .	1.1	42
5	Conductance Oscillations in Zigzag Platinum Chains. Physical Review Letters, 2005, 95, 256804.	2.9	56
6	Theoretical study of spin-dependent electron transport in atomic Fe nanocontacts. Physical Review B, 2005, 72, .	1.1	25
7	Self-Interaction Errors in Density-Functional Calculations of Electronic Transport. Physical Review Letters, 2005, 95, 146402.	2.9	292
8	Organometallic Spintronics:Â Dicobaltocene Switch. Nano Letters, 2005, 5, 1959-1962.	4.5	112
9	Spintronic properties of carbon-based one-dimensional molecular structures. Physical Review B, 2006, 74, .	1.1	21
11	Spin-Polarized Electron Transport via a C <inf>60</inf> Molecule., 2006,,.		0
12	Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions. , 2006, , .		0
13	Nonlinear Spin Current and Magnetoresistance of Molecular Tunnel Junctions. Physical Review Letters, 2006, 96, 166804.	2.9	331
14	Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory. Physical Review B, 2006, 74, .	1.1	161
15	Spin and molecular electronics in atomically generated orbital landscapes. Physical Review B, 2006, 73,	1.1	623
16	Introducing Molecular Electronics: A Brief Overview. , 2006, , 1-10.		14
17	Effects of dimerization and spin polarization on the conductance of a molecular wire. Journal of Physics Condensed Matter, 2006, 18, 9189-9200.	0.7	5
18	Spin-polarized inelastic electron tunneling spectroscopy of a molecular magnetic tunnel junction. Applied Physics Letters, 2006, 89, 153105.	1.5	37
20	Spin-Polarized Electron Transport via a C>inf<60>/inf <molecule., ,="" .<="" 0,="" td=""><td></td><td>0</td></molecule.,>		0
21	Local density of states effects at the metal-molecule interfaces in a molecular device. Nature Materials, 2006, 5, 394-399.	13.3	98

#	Article	IF	Citations
22	Precision control of single-molecule electrical junctions. Nature Materials, 2006, 5, 995-1002.	13.3	294
23	Electron transport in molecular junctions. Nature Nanotechnology, 2006, 1, 173-181.	15.6	1,220
24	Theoretical study of molecule mediated spin-polarized electron tunneling between magnetic materials. Chemical Physics Letters, 2006, 428, 411-415.	1.2	4
25	Chemically Functionalized Carbon Nanotubes and Their Characterization Using Thermogravimetric Analysis, Fourier Transform Infrared, and Raman Spectroscopy. Journal of Materials Engineering and Performance, 2006, 15, 182-186.	1.2	81
26	Size-dependent alternation of magnetoresistive properties in atomic chains. Journal of Chemical Physics, 2006, 125, 121102.	1.2	11
27	An efficient molecular orbital approach for self-consistent calculations of molecular junctions. Journal of Chemical Physics, 2006, 125, 194106.	1.2	23
28	Spin-current rectification in molecular wires. Physical Review B, 2006, 73, .	1.1	53
29	Magnetic/nonmagnetic/magnetic tunnel junction based on hybrid organic Langmuir-Blodgett-films. Applied Physics Letters, 2006, 88, 242505.	1.5	39
30	On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods. Journal of Physics Condensed Matter, 2006, 18, 7999-8013.	0.7	95
31	Interface states, negative differential resistance, and rectification in molecular junctions with transition-metal contacts. Physical Review B, 2006, 73, .	1.1	52
32	Spin-polarized electron transport of a self-assembled organic monolayer on a Ni(111) substrate: An organic spin switch. Physical Review B, 2006, 73, .	1.1	35
33	First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices. Physical Review B, 2006, 73, .	1.1	60
34	Spin-dependent electronic transport through a porphyrin ring ligating anFe(II)atom: Anab initiostudy. Physical Review B, 2006, 74, .	1.1	41
35	Inelastic transport in molecular spin valves: Calculations using the tight-binding Su-Schrieffer-Heeger model. Physical Review B, 2006, 73, .	1.1	11
36	Nonuniversal behavior of the parity effect in monovalent atomic wires. Physical Review B, 2006, 73, .	1.1	10
37	Fermi level alignment in molecular nanojunctions and its relation to charge transfer. Physical Review B, 2006, 74, .	1.1	84
38	Electron transport in aPtâ^'COâ^'Ptnanocontact: Density functional theory calculations. Physical Review B, 2006, 73, .	1.1	28
39	Tuning the Electrical Conductivity of Nanotube-Encapsulated Metallocene Wires. Physical Review Letters, 2006, 96, 106804.	2.9	69

#	Article	IF	CITATIONS
40	Magnetomechanical interplay in spin-polarized point contacts. Physical Review B, 2006, 73, .	1.1	2
41	Molecular dynamics simulations of signal transmission through a glycine peptide chain. Journal of Chemical Physics, 2007, 127, 134708.	1.2	11
42	Effect of the continuity of the π conjugation on the conductance of ruthenium-octene-ruthenium molecular junctions. Journal of Chemical Physics, 2007, 126, 174706.	1.2	9
43	Oscillatory exchange coupling in magnetic molecules. Journal of Physics Condensed Matter, 2007, 19, 216205.	0.7	3
44	First-principles calculation on the zero-bias conductance of a gold/1,4-diaminobenzene/gold molecular junction. Nanotechnology, 2007, 18, 345203.	1.3	26
45	Spin polarized transport through a single-molecule magnet: Current-induced magnetic switching. Physical Review B, 2007, 76, .	1.1	89
46	Resonant magnetoresistance in organic spin valves (invited). Journal of Applied Physics, 2007, 101, 09B102.	1.1	19
47	Full counting statistics of spin transfer through ultrasmall quantum dots. Physical Review B, 2007, 76, .	1.1	18
48	Controlling spin-polarized electron transport through a molecule: The role of molecular conformation. Physical Review B, 2007, 76, .	1.1	27
49	Inelastic transport theory from first principles: Methodology and application to nanoscale devices. Physical Review B, 2007, 75, .	1.1	378
50	Ballistic electron spectroscopy of individual buried molecules. Physical Review B, 2007, 75, .	1.1	21
51	Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids. Physical Review B, 2007, 75, .	1.1	150
52	Search for magnetoresistance in excess of 1000% in Ni point contacts: Density functional calculations. Physical Review B, $2007, 76, .$	1.1	22
53	Using half-metallic manganite interfaces to reveal insights into spintronics. Journal of Physics Condensed Matter, 2007, 19, 315208.	0.7	39
55	Molecular-Scale Electronics. , 0, , 403-454.		0
56	On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods. Journal of Physics Condensed Matter, 2007, 19, 489001.	0.7	6
57	Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nature Nanotechnology, 2007, 2, 216-219.	15.6	282
58	Metallic behavior of Pd atomic clusters. Nanotechnology, 2007, 18, 365706.	1.3	18

#	ARTICLE	IF	Citations
59	Self-Assembled Organic Radicals on Au(111) Surfaces: A Combined ToF-SIMS, STM, and ESR Study. Langmuir, 2007, 23, 2389-2397.	1.6	73
60	Nanospintronics: when spintronics meets single electron physics. Journal of Physics Condensed Matter, 2007, 19, 165222.	0.7	88
61	Spin-Polarized Transport in Carbon Nanowires Inside Semiconducting Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 10130-10134.	1.5	12
62	Control of Electron Transport by Manipulating the Conjugated Framework. Journal of Physical Chemistry C, 2007, 111, 15397-15403.	1.5	22
63	Solvent Effects on the Adsorption and Self-Organization of Mn12 on Au(111). Langmuir, 2007, 23, 11836-11843.	1.6	34
64	<i>Ab initio</i> simulation of magnetic tunnel junctions. Nanotechnology, 2007, 18, 424026.	1.3	57
65	Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes. Physical Review Letters, 2007, 98, 197202.	2.9	133
66	Organic spintronics. Journal Physics D: Applied Physics, 2007, 40, R205-R228.	1.3	425
67	Efficient Atomic Self-Interaction Correction Scheme for Nonequilibrium Quantum Transport. Physical Review Letters, 2007, 99, 056801.	2.9	123
68	An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes. Journal of Chemical Physics, 2007, 127, 194710.	1.2	47
69	Injecting and controlling spins in organic materials. Journal of Materials Chemistry, 2007, 17, 4455.	6.7	79
71	Towards Molecular Magnetic Switching with an Electric Bias. Angewandte Chemie - International Edition, 2007, 46, 7640-7643.	7.2	38
73	Conductance switching, hysteresis, and magnetoresistance in organic semiconductors. Organic Electronics, 2007, 8, 487-497.	1.4	29
74	Geometry dependence of the conductance oscillations of monovalent atomic chains. Physica Status Solidi (B): Basic Research, 2007, 244, 677-684.	0.7	0
75	Spintronics goes plastic. Nature Materials, 2007, 6, 803-804.	13.3	101
76	Electronic transport through Fe/MgO/Fe(100) tunnel junctions. Journal of Magnetism and Magnetic Materials, 2007, 316, 481-483.	1.0	14
77	Synthesis, crystal structure and magnetic characterization of Na2Cu5(Si2O7)2: An inorganic ferrimagnetic chain. Journal of Solid State Chemistry, 2007, 180, 16-21.	1.4	12
78	High transmission in ruthenium–benzene–ruthenium molecular junctions. Chemical Physics, 2008, 354, 106-111.	0.9	17

#	Article	IF	CITATIONS
79	Ab initio investigation of the l–V characteristics of the butadiene nano-molecular wires: A light-driven molecular switch. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 3058-3063.	0.9	9
80	Electronic and Magnetic Properties of Bimetallic Ytterbocene Complexes: The Impact of Bridging Ligand Geometry. Chemistry - A European Journal, 2008, 14, 422-431.	1.7	21
81	Carbon nanotube, graphene, nanowire, and moleculeâ€based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Journal of Computational Chemistry, 2008, 29, 1073-1083.	1.5	88
82	A Theoretical Study of Substitution Effects in Unimolecular Rectifiers. Advanced Functional Materials, 2008, 18, 1119-1130.	7.8	42
83	Density functional non-equilibrium Green's function (DFT-NEGF) study of the smallest nano-molecular switch. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2606-2613.	1.3	19
84	Electron transport phenomenon simulation through the carborane nano-molecular wire. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2965-2972.	1.3	14
85	Simulation of STM technique for electron transport through boron-nitride nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4839-4844.	0.9	7
86	Addressing single molecules of a thin magnetic film. Inorganica Chimica Acta, 2008, 361, 4089-4093.	1.2	12
87	Design of nanoswitch based on C20-bowl molecules: A first principles study. Microelectronics Journal, 2008, 39, 1499-1503.	1.1	0
88	Ab initio investigation of the switching behavior of the dithiole-benzene nano-molecular wire. Journal of the Iranian Chemical Society, 2008, 5, 566-573.	1.2	5
89	Molecular spintronics using single-molecule magnets. Nature Materials, 2008, 7, 179-186.	13.3	2,794
90	Single molecule magnets: from thin films to nano-patterns. Physical Chemistry Chemical Physics, 2008, 10, 784-793.	1.3	99
91	Tunnel magnetoresistance of a single-molecule junction. Journal of Applied Physics, 2008, 104, 123715.	1.1	23
92	Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Physical Review B, 2008, 78, .	1.1	279
93	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>I</mml:mi><mml:mtext>â^3</mml:mtext><mml:mi>V</mml:mi></mml:mrow></mml:math></pre>	ıro w ≱ <td>nl:21ath>curv</td>	nl: 21 ath>curv
94	Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. Journal of Materials Chemistry, 2008, 18, 4510.	6.7	59
95	Probing Superexchange Interaction in Molecular Magnets by Spin-Flip Spectroscopy and Microscopy. Physical Review Letters, 2008, 101, 197208.	2.9	231
96	Theory and Application of Chain Formation in Break Junctions. Nano Letters, 2008, 8, 2144-2149.	4.5	23

#	ARTICLE	IF	Citations
97	Novel One-Dimensional Organometallic Half Metals: Vanadium-Cyclopentadienyl, Vanadium-Cyclopentadienyl-Benzene, and Vanadium-Anthracene Wires. Nano Letters, 2008, 8, 3640-3644.	4.5	131
98	The effect of stretching thiyl– and ethynyl–Au molecular junctions. Journal of Physics Condensed Matter, 2008, 20, 025207.	0.7	14
99	The difference of the transport properties of graphene with corrugation structure and with flat structure. Applied Physics Letters, 2008, 92, 163104.	1.5	11
100	The SIESTA method; developments and applicability. Journal of Physics Condensed Matter, 2008, 20, 064208.	0.7	522
101	Electronic Structures and Spin Topologies of \hat{I}^3 -Picoliniumyl Radicals. A Study of the Homolysis of N-Methyl- \hat{I}^3 -picolinium and of Benzo-, Dibenzo-, and Naphthoannulated Analogs. Journal of Physical Chemistry A, 2008, 112, 4800-4814.	1.1	5
102	Josephson Effect through an Isotropic Magnetic Molecule. Physical Review Letters, 2008, 101, 146804.	2.9	28
103	Quantitative Analysis of Nonequilibrium Spin Injection into Molecular Tunnel Junctions. Physical Review Letters, 2008, 100, 056803.	2.9	48
104	Functionalized Nanopore-Embedded Electrodes for Rapid DNA Sequencing. Journal of Physical Chemistry C, 2008, 112, 3456-3459.	1.5	73
105	Conceptual molecular quantum phase transistor based on first-principles quantum transport calculations. Physical Review B, 2008, 78, .	1.1	24
106	Towards a theoretical description of molecular junctions in the Coulomb blockade regime based on density functional theory. Physical Review B, 2008, 78, .	1.1	21
107	A theoretical view of unimolecular rectification. Journal of Physics Condensed Matter, 2008, 20, 374105.	0.7	50
108	THEORETICAL STUDY OF THE ELECTRON TRANSPORT THROUGH THE CYSTEINE AMINO ACID NANOMOLECULAR WIRE. International Journal of Nanoscience, 2008, 07, 95-102.	0.4	6
109	Energy alignment induced negative differential resistance: The role of hybrid states in aromatic molecular devices. Journal of Chemical Physics, 2008, 129, 074710.	1.2	16
110	Bond dissociation and correlation effects in molecular electronic devices. Journal of Chemical Physics, 2008, 129, 194901.	1.2	11
111	Au â^• Ag and Auâ^•Pd molecular contacts to GaAs. Journal of Vacuum Science & Technology B, 2008, 26, 1597-1601.	1.3	6
112	Low temperature tunneling magnetoresistance on (La,Sr)MnO3∕Co junctions with organic spacer layers. Journal of Applied Physics, 2008, 103, .	1.1	120
113	Efficient <i>ab initio</i> method for inelastic transport in nanoscale devices: Analysis of inelastic electron tunneling spectroscopy. Physical Review B, 2008, 78, .	1.1	39
114	<i>Ab initio</i> calculations of inelastic transport in atomic/molecular junctions and waveguide effects. Journal of Physics Condensed Matter, 2008, 20, 224023.	0.7	4

#	Article	IF	CITATIONS
115	Magnetic proximity effect at the molecular scale: First-principles calculations. Physical Review B, 2008, 78, .	1.1	30
116	Large-scale simulation of the spin-lattice dynamics in ferromagnetic iron. Physical Review B, 2008, 78, .	1.1	138
117	Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions. Physical Review B, 2008, 77, .	1.1	121
118	Modeling of spin metal-oxide-semiconductor field-effect transistor: A nonequilibrium Green's function approach with spin relaxation. Journal of Applied Physics, 2008, 104, 094511.	1.1	8
119	Structure-dependent exchange in the organic magnets Cu(II)Pc and Mn(II)Pc. Physical Review B, 2008, 77,	1.1	38
120	Manipulating magnetism and conductance of an adatom-molecule junction on a metal surface: An <i>ab initio</i> britioclipstudy. Physical Review B, 2008, 78, .	1.1	11
121	Controlling the Magnetization Direction in Molecules via Their Oxidation State. Physical Review Letters, 2008, 100, 117207.	2.9	42
122	Visualizing the Spin of Individual Cobalt-Phthalocyanine Molecules. Physical Review Letters, 2008, 101, 116602.	2.9	228
123	Room-temperature spintronic effects in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Alq</mml:mtext></mml:mrow><mml:mn .<="" 2008,="" 78,="" b,="" devices.="" hybrid="" physical="" review="" td=""><td>>3<‡raml:r</td><td>nn %ønml:msı</td></mml:mn></mml:msub></mml:mrow></mml:math>	>3< ‡ra ml:r	nn %ø nml:msı
124	First-principles determination of the effects of intermolecular interactions on the electronic transport through molecular monolayers. Physical Review B, 2008, 78, .	1.1	12
125	Theory of nonequilibrium transient transport in nanostructures. International Journal of Nanotechnology, 2008, 5, 1094.	0.1	0
126	Nonequilibrium dynamical ferromagnetism of interacting single-molecule magnets. Applied Physics Letters, 2009, 95, 183110.	1.5	4
127	Charge transport through O-deficient Au-MgO-Au junctions. Physical Review B, 2009, 80, .	1.1	4
128	Multideterminant assessment of mean-field methods for the description of electron transfer in the weak-coupling regime. Physical Review B, 2009, 80, .	1.1	19
129	Resonant electronic states and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi> I</mml:mi> <mml:mtext> â^² </mml:mtext> <mml:mi> V</mml:mi> <td>mrow≽ <td>ıml:57ath>curv</td></td></mml:mrow></mml:math>	mro w ≽ <td>ıml:57ath>curv</td>	ıml :57 ath>curv
130	Switching a Single Spin on Metal Surfaces by a STM Tip: <i>AbÂlnitio</i> Studies. Physical Review Letters, 2009, 103, 057202.	2.9	60
131	Resonant spin-filtering in cobalt decorated nanotubes. Applied Physics Letters, 2009, 94, 173103.	1.5	10
132	Screening effects in a density functional theory based description of molecular junctions in the Coulomb blockade regime. Physical Review B, 2009, 79, .	1.1	17

#	Article	IF	Citations
133	Simulating STM transport in alkanes from first principles. Physical Review B, 2009, 79, .	1.1	24
134	Nonequilibrium Green's function study of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>c/mml:mn</td><td>, > ₹/mml:msi</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	c/mml:mn	, > ₹/mml:msi
135	MOLECULAR SPIN DEVICES: CURRENT UNDERSTANDING AND NEW TERRITORIES. Nano, 2009, 04, 325-338.	0.5	16
136	Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes. Chinese Physics B, 2009, 18, 5443-5450.	0.7	4
137	Dependence of Conductance of Corrugated Graphene Quantum Dot on Geometrical Features. Communications in Theoretical Physics, 2009, 52, 960-964.	1,1	2
138	Environmental Effects on the Single Molecule Conductance of bis(thiahexyl)oligothiophenes. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
139	Enhanced Intersystem Crossing in Three-Spin Systems: A Perturbation Theory Treatment. Journal of the American Chemical Society, 2009, 131, 2268-2273.	6.6	27
140	The spin filter effect of iron-cyclopentadienyl multidecker clusters: the role of the electrode band structure and the coupling strength. Nanotechnology, 2009, 20, 385401.	1.3	34
141	Organic spin valves: effect of magnetic impurities on the spin transport properties of polymer spacers. New Journal of Physics, 2009, 11, 013022.	1.2	23
142	First-principles study of structure and quantum transport properties of C20 fullerene. Journal of Chemical Physics, 2009, 131, 024311.	1.2	56
143	Efficient organometallic spin filter based on Europium-cyclooctatetraene wire. Journal of Chemical Physics, 2009, 131, .	1.2	43
144	Phonon Bottleneck Effect in Organic Molecules. Materials Research Society Symposia Proceedings, 2009, 1172, 19.	0.1	0
145	Electronic transport calculations for rough interfaces in Al, Cu, Ag, and Au. Journal of Physics Condensed Matter, 2009, 21, 315001.	0.7	5
146	Characteristic Length Scale for Spin Polarized Tunneling in Langmuir-Blodgett Molecular Magnetic Tunnel Junction. IEEE Transactions on Magnetics, 2009, 45, 3962-3964.	1.2	0
147	Nanopatterning Soluble Multifunctional Materials by Unconventional Wet Lithography. Advanced Materials, 2009, 21, 1043-1053.	11.1	131
148	The first-principles calculation of molecular conduction. Frontiers of Physics in China, 2009, 4, 327-336.	1.0	2
149	Exploring at nanoscale from first principles. Frontiers of Physics in China, 2009, 4, 256-268.	1.0	1
150	Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons. Nano Research, 2009, 2, 844-850.	5.8	11

#	Article	IF	Citations
151	Switching of molecular magnets. Physica Status Solidi (B): Basic Research, 2009, 246, 695-715.	0.7	27
152	Thermal Deposition of Intact Tetrairon(III) Singleâ€Molecule Magnets in Highâ€Vacuum Conditions. Small, 2009, 5, 1460-1466.	5. 2	58
153	Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Materials, 2009, 8, 194-197.	13.3	999
154	Supramolecular control of the magnetic anisotropy inÂtwo-dimensional high-spin Fe arrays at a metalÂinterface. Nature Materials, 2009, 8, 189-193.	13.3	262
155	Spin routes in organic semiconductors. Nature Materials, 2009, 8, 707-716.	13.3	796
156	Electrostatic spin crossover effect in polar magnetic molecules. Nature Materials, 2009, 8, 813-817.	13.3	148
157	Effect of gold atom contact in conjugated system of one dimensional octane dithiolate based molecular wire: A theoretical charge density study. Computational and Theoretical Chemistry, 2009, 910, 112-121.	1.5	11
158	Magnetic properties of compounds. Journal of Solid State Chemistry, 2009, 182, 253-258.	1.4	30
159	X-ray absorption spectroscopy and magnetic circular dichroism in codeposited C60–Co films with giant tunnel magnetoresistance. Chemical Physics Letters, 2009, 470, 244-248.	1.2	19
160	A practical first-principles band-theory approach to the study of correlated materials. European Physical Journal B, 2009, 71, 139-183.	0.6	42
161	Spin-dependent transport in organic-ferromagnets. European Physical Journal B, 2009, 72, 423-426.	0.6	8
162	XMCD of a single layer of single molecule magnets. European Physical Journal: Special Topics, 2009, 169, 167-173.	1.2	7
163	Transport properties of copper phthalocyanine based organic electronic devices. European Physical Journal: Special Topics, 2009, 180, 117-134.	1.2	22
164	Exploring the limits of the self-consistent Born approximation for inelastic electronic transport. Physical Review B, 2009, 79, .	1.1	32
165	First-Principles Study of Electronic Transport Properties of Dodecahedrane C20H20 and Its Endohedral Complex Li@C20H20. Journal of Physical Chemistry C, 2009, 113, 15756-15760.	1.5	27
166	Theory for Spin Diffusion in Disordered Organic Semiconductors. Physical Review Letters, 2009, 102, 156604.	2.9	167
167	Electronic Transport Properties of 1,1′-Ferrocene Dicarboxylic Acid Linked to Al(111) Electrodes. ACS Nano, 2009, 3, 4137-4143.	7.3	35
168	Manipulating Spin Transport via Vanadiumâ [*] Iron Cyclopentadienyl Multidecker Sandwich Molecules. Journal of Physical Chemistry C, 2009, 113, 7913-7916.	1.5	51

#	ARTICLE	IF	CITATIONS
169	Tuning the Magnetic Interaction between Manganese Porphyrins and Ferromagnetic Co Substrate through Dedicated Control of the Adsorption. Journal of Physical Chemistry C, 2009, 113, 14381-14383.	1.5	56
170	Electronic and Magnetic Properties of Ni Nanoparticles Embedded in Various Organic Semiconductor Matrices. Journal of Physical Chemistry B, 2009, 113, 4565-4570.	1.2	20
171	Bistability of Magnetization without Spin-Transition in a High-Spin Cobalt(II) Complex due to Angular Momentum Quenching. Journal of the American Chemical Society, 2009, 131, 4560-4561.	6.6	63
172	Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices. Chemical Society Reviews, 2009, 38, 2319.	18.7	119
173	Organic radicals on surfaces: towards molecular spintronics. Journal of Materials Chemistry, 2009, 19, 1691-1695.	6.7	127
174	Molecular vs. inorganic spintronics: the role of molecular materials and single molecules. Journal of Materials Chemistry, 2009, 19, 1678.	6.7	156
175	Interface and transport properties of Fe/V/MgO/Fe and Fe/V/Fe/MgO/Fe magnetic tunneling junctions. Physical Review B, 2009, 79, .	1.1	20
176	Direct evidence of electron spin polarization from an organic-based magnet: <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		

#	Article	IF	Citations
187	Metalâ^'Moleculeâ^'Metal Junctions via PFPE Assisted Nanotransfer Printing (nTP) onto Self-Assembled Monolayers. Journal of the American Chemical Society, 2009, 131, 13202-13203.	6.6	22
188	Effect of Electrodes on Electronic Transport of Molecular Electronic Devices. Journal of Physical Chemistry A, 2009, 113, 4100-4104.	1.1	47
189	From microelectronics to molecular spintronics: an explorer's travelling guide. Journal of Materials Chemistry, 2009, 19, 1696.	6.7	49
190	Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	74
191	Molecular spintronics using single-molecule magnets. , 2009, , 194-201.		30
192	Molecular nanomagnets: towards molecular spintronics. International Journal of Nanotechnology, 2010, 7, 497.	0.1	51
193	Spin-birefringence in molecular currents: Tellurium and gold complexes. Chemical Physics Letters, 2010, 484, 104-109.	1.2	0
194	Torsion angle dependence of the rectifying performance in molecular device with asymmetrical anchoring groups. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4876-4879.	0.9	10
195	Selection of single-walled carbon nanotubes according to both their diameter and chirality via nanotweezers. Nano Research, 2010, 3, 296-306.	5.8	13
198	A Radical Polymer as a Twoâ€Dimensional Organic Half Metal. Chemistry - A European Journal, 2010, 16, 12141-12146.	1.7	25
199	Slow Magnetic Relaxation from Hardâ€Axis Metal Ions in Tetranuclear Singleâ€Molecule Magnets. Chemistry - A European Journal, 2010, 16, 10482-10493.	1.7	53
200	Negative differential resistance and rectifying behaviors in atomic molecular device with different anchoring groups. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 524-528.	1.3	6
201	First-principles study of transport properties of endohedral Li@C20 metallofullerene. Current Applied Physics, 2010, 10, 260-265.	1.1	56
202	Spin transport in a spin-injected organic semiconductor system. Current Applied Physics, 2010, 10, 1448-1451.	1.1	1
203	Tunable Fano resonance in a ferromagnetic diatomic molecular transistor. Physica Status Solidi (B): Basic Research, 2010, 247, 129-133.	0.7	4
204	Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature, 2010, 468, 417-421.	13.7	574
205	The rise of spinterface science. Nature Physics, 2010, 6, 562-564.	6.5	377
206	Exclusive images. Nature Physics, 2010, 6, 564-564.	6.5	1

#	ARTICLE	IF	CITATIONS
207	Modification of the electronic transport in Au by prototypical impurities and interlayers. Europhysics Letters, 2010, 89, 47003.	0.7	1
208	Giant Coulomb blockade magnetoresistance in magnetic tunnel junctions with a granular layer. Physical Review B, 2010, 81, .	1.1	19
209	Effect of metallic surfaces on the electronic structure, magnetism, and transport properties of Co-phthalocyanine molecules. Physical Review B, 2010, 82, .	1.1	43
210	Semiconductorâ€"half metal transition at the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mn>3 upon hvdrogen adsorption. Physical Review B. 2010. 82</mml:mn></mml:msub></mml:mrow></mml:math>	/ <mark>m</mark> ml:mn>	श्रीmml:msi
211	Inelastic scattering and heating in a molecular spin pump. Physical Review B, 2010, 81, .	1.1	31
212	Resonant and Kondo tunneling through molecular magnets. Physical Review B, 2010, 81, .	1.1	32
213	Tuning of magnetism in ferromagnetic thin films by reversing the functional groups of molecular underlayer. Applied Physics Letters, 2010, 96, 262502.	1.5	8
214	Effects of Metallic Contacts on Electron Transport through Graphene. Physical Review Letters, 2010, 104, 076807.	2.9	138
215	Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence. Physical Review B, $2010,81,\ldots$	1.1	9
216	Quantized antiferromagnetic spin waves in the molecular Heisenberg ringCsFe8. Physical Review B, 2010, 81, .	1.1	27
217	Quantum conductance of a single magnetic atom: An <i>ab initio</i> study. Physical Review B, 2010, 82, .	1.1	19
218	Splitting and Restoration of Kondo Peak in a Deformed Molecule Quantum Dot Coupled to Ferromagnetic Electrodes. Communications in Theoretical Physics, 2010, 53, 370-376.	1.1	1
219	Computational Study of Ferrocene-Based Molecular Frameworks with 2,5-Diethynylpyridine as a Chemical Bridge. Materials, 2010, 3, 2668-2683.	1.3	37
220	Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. Journal of Chemical Physics, 2010, 132, 054703.	1.2	56
221	Investigation of Spin-Dependent Transport Properties and Spin–Spin Interactions in a Copper-Phthalocyanine–Cobalt Nanocomposite System. Japanese Journal of Applied Physics, 2010, 49, 033002.	0.8	7
222	Large magnetoresistance in Fe 3 O 4 /molecule nanoparticles. , 2010, , .		O
223	Electronic transport calculations for the conductance of Pt–1,4-phenylene diisocyanide–Pt molecular junctions. Nanotechnology, 2010, 21, 155203.	1.3	9
224	Impact of dimerization and stretching on the transport properties of molybdenum atomic wires. Nanotechnology, 2010, 21, 095205.	1.3	12

#	Article	lF	CITATIONS
225	Controlling the Magnetic Properties of a Single Phthalocyanine Molecule through its Strong Coupling with the GaAs Surface. Journal of Physical Chemistry Letters, 2010, 1, 2757-2762.	2.1	15
226	Can Single-Atom Change Affect Electron Transport Properties of Molecular Nanostructures such as C ₆₀ Fullerene?. Journal of Physical Chemistry Letters, 2010, 1, 1584-1589.	2.1	33
227	Weak Chemical Interaction and van der Waals Forces: A Combined Density Functional and Intermolecular Perturbation Theory – Application to Graphite and Graphitic Systems. Lecture Notes in Physics, 2010, , 45-79.	0.3	7
228	Half-Metallic Sandwich Molecular Wires with Negative Differential Resistance and Sign-Reversible High Spin-Filter Efficiency. Journal of Physical Chemistry C, 2010, 114, 21893-21899.	1.5	32
229	Tuning the Magneto-Transport Properties of Nickelâ^'Cyclopentadienyl Multidecker Clusters by Moleculeâ^'Electrode Coupling Manipulation. ACS Nano, 2010, 4, 2274-2282.	7.3	32
230	Fe _{<i>x</i>} Pb _{4â^'<i>x</i>} Sb ₄ Se ₁₀ : A New Class of Ferromagnetic Semiconductors with Quasi 1D {Fe ₂ Se ₁₀ } Ladders. Journal of the American Chemical Society, 2010, 132, 5751-5760.	6.6	37
231	Controlling spins in adsorbed molecules by a chemical switch. Nature Communications, 2010, 1, 61.	5.8	229
232	Design of the Local Spin Polarization at the Organic-Ferromagnetic Interface. Physical Review Letters, 2010, 105, 066601.	2.9	284
233	Manipulating $\langle i > I < i > \hat{a}^2 < i > V < i > Characteristics of a Molecular Switch with Chemical Modifications. Journal of Physical Chemistry C, 2010, 114, 1655-1662.$	1.5	13
234	Investigation of the Conducting Properties of a Photoswitching Dithienylethene Molecule. ACS Nano, 2010, 4, 2635-2642.	7.3	40
235	Electronic transport across <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>S</mml:mtext><mml:mn>9</mml:mn></mml:msub> clusters. Physical Review B, 2010, 82, .</mml:mrow></mml:math>	nm l: mrow	>< /m ml:math
236	Probing the Magnetic Properties of Three Interconvertible Redox States of a Single-Molecule Magnet with Magnetic Circular Dichroism Spectroscopy. Journal of the American Chemical Society, 2010, 132, 1756-1757.	6.6	110
237	The experimental determination of the conductance of single molecules. Physical Chemistry Chemical Physics, 2010, 12, 2801.	1.3	153
238	Molecular spintronics using noncollinear magnetic molecules. Physical Review B, 2010, 81, .	1.1	46
239	Building-block process for the synthesis of new chromium(iii) malonate complexes. CrystEngComm, 2010, 12, 2711.	1.3	19
240	Impact on Interface Spin Polarization of Molecular Bonding to Metallic Surfaces. Physical Review Letters, 2010, 105, 077201.	2.9	126
241	Spin transport properties of 3d transition metal(ii) phthalocyanines in contact with single-walled carbon nanotube electrodes. Physical Chemistry Chemical Physics, 2010, 12, 10805.	1.3	66
242	Molecular Spintronics in Mixed-Valence Magnetic Dimers: The Double-Exchange Blockade Mechanism. Journal of the American Chemical Society, 2010, 132, 8106-8114.	6.6	51

#	Article	IF	CITATIONS
243	Applications of the Cluster Method for Biological Systems. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2010, 1, 71-150.	0.6	1
244	Computational modeling of a carbon nanotube-based DNA nanosensor. Nanotechnology, 2010, 21, 445501.	1.3	17
245	Anomalous <i>I</i> àê" <i>V</i> curve for mono-atomic carbon chains. New Journal of Physics, 2010, 12, 103017.	1.2	16
246	Assembly of a magnetic polyoxometalate on SWNTs. Nanoscale, 2010, 2, 139-144.	2.8	50
247	One-dimensional organometallic V–anthracene wire and its B–N analogue: efficient half-metallic spin filters. Physical Chemistry Chemical Physics, 2010, 12, 6924.	1.3	22
248	The First Linear, Homoleptic Triple-Decker Sandwich Complex of an f-Element: A Molecular Model for Organolanthanide Nanowires. Organometallics, 2010, 29, 4787-4789.	1.1	37
249	<i>Ab initio</i> study of electron transport in dry poly(G)-poly(C) <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi></mml:math> -DNA strands. Physical Review B, 2010, 82, .	1,1	28
250	Dynamical Monte Carlo investigation of spin reversal and nonequilibrium magnetization of single-molecule magnets. Physical Review B, 2010, 82, .	1.1	7
251	First-principles study of spin-electric coupling in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo><<mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mo></mml:mrow></mml:mrow></mml:math>	:mtext>Cı	ر <mark>56</mark> ml:mtext
252	Realistic calculations of carbon-based disordered systems. Journal Physics D: Applied Physics, 2010, 43, 374002.	1.3	19
253	Finite-bias electronic transport of molecules in a water solution. Physical Review B, 2010, 81, .	1.1	42
254	Multiple-decker sandwich complexes of f-elements. New Journal of Chemistry, 2011, 35, 517-528.	1.4	39
255	Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state. Physical Chemistry Chemical Physics, 2011, 13, 5728.	1.3	18
256	Multilayer edge molecular electronics devices: a review. Journal of Materials Chemistry, 2011, 21, 4733.	6.7	60
257	Thin films of coordination polymer magnets. Chemical Society Reviews, 2011, 40, 3356.	18.7	79
258	Effect of cotunneling and spin polarization on the large tunneling magnetoresistance effect in granular <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">C</mml:mi></mml:msub></mml:mrow><mml:mrow>60</mml:mrow><td>1.1 ow><td>8 :math>-Co</td></td></mml:math>	1.1 ow> <td>8 :math>-Co</td>	8 :math>-Co
259	TMR and spin-dependent transport of polyacetylene-based magnetic junctions. Physica Scripta, 2011, 83, 015802.	1.2	4
260	Positioning of Single Co Atoms Steered by a Self-Assembled Organic Molecular Template. Journal of Physical Chemistry Letters, 2011, 2, 1639-1645.	2.1	20

#	Article	IF	Citations
261	Tunneling Magnetoresistance with Sign Inversion in Junctions Based on Iron Oxide Nanocrystal Superlattices. ACS Nano, 2011, 5, 1731-1738.	7.3	34
262	Graphene Spintronic Devices with Molecular Nanomagnets. Nano Letters, 2011, 11, 2634-2639.	4.5	371
263	Giant field dependence of the low temperature relaxation of the magnetization in a dysprosium(iii)–DOTA complex. Chemical Communications, 2011, 47, 3751.	2.2	204
264	Surface Supramolecular Organization of a Terbium(III) Double-Decker Complex on Graphite and its Single Molecule Magnet Behavior. Journal of the American Chemical Society, 2011, 133, 6603-6612.	6.6	189
265	Organic Spintronics., 2011,, 109-142.		6
266	Electric Field Control of Valence Tautomeric Interconversion in Cobalt Dioxolene. Physical Review Letters, 2011, 107, 047201.	2.9	73
267	Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles. Nano Letters, 2011, 11, 1941-1945.	4.5	162
268	Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chemical Science, 2011, 2, 2078.	3.7	1,757
269	Electronic Functionality in Graphene-Based Nanoarchitectures: Discovery and Design via First-Principles Modeling. Journal of Physical Chemistry Letters, 2011, 2, 73-80.	2.1	56
270	The origin of dips for the graphene-based DNA sequencing device. Physical Chemistry Chemical Physics, 2011, 13, 14293.	1.3	44
271	Mn dimers on graphene nanoribbons: An ab initio study. Journal of Applied Physics, 2011, 109, 053715.	1.1	15
272	Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. Journal Physics D: Applied Physics, 2011, 44, 393001.	1.3	33
273	Quantum interference in single molecule electronic systems. Physical Review B, 2011, 83, .	1.1	37
274	Observation and electric current control of a local spin in a single-molecule magnet. Nature Communications, 2011, 2, 217.	5.8	373
275	Relaxation dynamics of dysprosium(iii) single molecule magnets. Dalton Transactions, 2011, 40, 9953.	1.6	505
276	Hexanuclear Felll2Colll2Mll2(M = Cu, Ni, Mn) clusters based on $Kl\tilde{A}$ \ddot{u} i's tripodal ligand and tricyanometalates: syntheses, structures and magnetic properties. Dalton Transactions, 2011, 40, 2204-2212.	1.6	10
277	Room-Temperature Tunnel Magnetoresistance in Self-Assembled Chemically Synthesized Metallic Iron Nanoparticles. Nano Letters, 2011, 11, 5128-5134.	4.5	36
278	Advanced Simulation of Conductance Histograms Validated through Channel-Sensitive Experiments on Indium Nanojunctions. Physical Review Letters, 2011, 107, 276801.	2.9	20

#	Article	IF	CITATIONS
279	Supramolecular spin valves. Nature Materials, 2011, 10, 502-506.	13.3	638
280	Optical, Magnetic, Electrochemical, and Electrical Properties of 8-Hydroxyquinoline-Based Complexes with Al ³⁺ , Cr ³⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , and Zn ²⁺ . Journal of Physical Chemistry C, 2011, 115, 9182-9192.	1.5	77
281	Organic spintronics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3054-3068.	1.6	58
282	Encapsulation of single-molecule magnets in carbon nanotubes. Nature Communications, 2011, 2, 407.	5.8	147
283	Spin seebeck coefficient of a molecular spin pump. Physical Chemistry Chemical Physics, 2011, 13, 14350.	1.3	16
286	Non-equilibrium Green's function approach to the quasiparticle transport and magnetoresistance in hybrid magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, 2011, 323, 2554-2563.	1.0	4
287	l–V curves of carbon nanotubes with copper contacts using non-equilibrium Green's function method. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 146-151.	1.3	5
288	Electron transport through molecular junctions. Physics Reports, 2011, 509, 1-87.	10.3	161
289	Lanthanides in molecular magnetism: old tools in a new field. Chemical Society Reviews, 2011, 40, 3092.	18.7	963
290	Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotechnology, 2011, 6, 517-523.	15.6	312
291	Molecular spintronics. Chemical Society Reviews, 2011, 40, 3336.	18.7	1,093
292	Spatially Modulated Tunnel Magnetoresistance on the Nanoscale. Physical Review Letters, 2011, 107, 187201.	2.9	22
293	One-Dimensional Nanostructures of π-Conjugated Molecular Systems: Assembly, Properties, and Applications from Photovoltaics, Sensors, and Nanophotonics to Nanoelectronics. Chemistry of Materials, 2011, 23, 682-732.	3.2	617
294	Spin transport and magnetoresistance in organic semiconductors. Physica Status Solidi (B): Basic Research, 2011, 248, 1029-1041.	0.7	71
295	Roomâ€Temperature Electrical Addressing of a Bistable Spinâ€Crossover Molecular System. Advanced Materials, 2011, 23, 1545-1549.	11.1	328
296	Unique Dynamic Electronâ€Spin Polarization and Spin Dynamics in the Photoexcited Quartet Highâ€Spin State of an Acceptor–Donor–Radical Triad. ChemPhysChem, 2011, 12, 104-108.	1.0	18
298	Molecular (Nano) Magnets as Test Grounds of Quantum Mechanics. Angewandte Chemie - International Edition, 2011, 50, 11852-11858.	7.2	118
299	Ferromagnetic interlayer coupling in C60–Co compound/Ni bilayer structure. Chemical Physics Letters, 2011, 511, 68-72.	1.2	5

#	Article	IF	CITATIONS
300	Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films. Electrochimica Acta, 2011, 56, 4087-4091.	2.6	9
301	Exploring nanoscale magnetism in advanced materials with polarized X-rays. Materials Science and Engineering Reports, 2011, 72, 81-95.	14.8	18
302	Electronic transport on carbon nanotube networks: A multiscale computational approach. Nano Communication Networks, 2011, 2, 25-38.	1.6	14
303	Effect of the encapsulation of Li atom on the electronic transport properties of C20F20 cage. Physica B: Condensed Matter, 2011, 406, 3442-3445.	1.3	5
304	A first principles study on transport properties of benzene-based molecular junctions: The effect of side groups and anchoring atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 960-965.	1.3	9
305	Molecular spintronics. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1295-1317.	1.3	67
306	Transient electron dynamics in a vibrating quantum dot in the Kondo regime. Journal of Physics Condensed Matter, 2011, 23, 125302.	0.7	6
307	The search for a spin crossover transition in small sized π-conjugated molecules: a Monte Carlo study. Journal of Physics Condensed Matter, 2011, 23, 316001.	0.7	2
308	Tuning the transport properties of a (C60)2 bridge with electron and hole dopings. Journal of Chemical Physics, 2011, 134, 044708.	1.2	19
309	Scattered surface charge density: A tool for surface characterization. Physical Review B, 2011, 84, .	1.1	7
310	Negative differential conductance in nanojunctions: A current constrained approach. Physical Review B, 2011, 83, .	1.1	12
311	Current-induced energy barrier suppression for electromigration from first principles. Physical Review B, 2011, 84, .	1.1	22
312	Variational pseudo-self-interaction-corrected density functional approach to theab initiodescription of correlated solids and molecules. Physical Review B, 2011, 84, .	1.1	83
313	Room-temperature spin-dependent tunneling through molecules. Applied Physics Letters, 2011, 98, 172501.	1.5	15
314	Control of the magnetism of cobalt phthalocyanine by a ferromagnetic substrate. Physical Review B, 2011, 84, .	1.1	46
315	Magneto-Coulomb Effect in Carbon Nanotube Quantum Dots Filled with Magnetic Nanoparticles. Physical Review Letters, 2011, 107, 186804.	2.9	19
316	Codoping in a single molecular junction from first principles. Physical Review B, 2011, 83, .	1.1	7
317	Comparison betweens- andd-electron mediated transport in a photoswitching dithienylethene molecule usingab initiotransport methods. Physical Review B, 2011, 84, .	1.1	3

#	Article	IF	CITATIONS
318	Spin transport in higher <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -acene molecules. Physical Review B, 2011, 84, .	1.1	29
319	Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms. Journal of Chemical Physics, 2011, 134, 244704.	1.2	15
320	Spin transport properties in an organic molecule in the presence of Rashba spin-orbit interaction. AIP Advances, 2011, 1, 032113.	0.6	10
321	All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions. Chinese Physics B, 2011, 20, 047504.	0.7	4
322	Molecular Electronic Junction Transport: Some Pathways and Some Ideas. Topics in Current Chemistry, 2011, 313, 1-38.	4.0	22
323	Effects of the covalent linker groups on the spin transport properties of single nickelocene molecules attached to single-walled carbon nanotubes. Journal of Chemical Physics, 2012, 136, 194707.	1.2	4
324	Theoretical Investigation of Chemical Spin Doping into Single Porphyrin Junctions toward Ultrahigh-Sensitive Nitric Oxide Sensor. Japanese Journal of Applied Physics, 2012, 51, 045202.	0.8	1
325	Molecule Induced Strong Coupling between Ferromagnetic Electrodes of a Molecular Spintronics Device. Materials Science Forum, 2012, 736, 32-54.	0.3	7
326	Strong spin-filtering and spin-valve effects in a molecular V–C ₆₀ –V contact. Beilstein Journal of Nanotechnology, 2012, 3, 589-596.	1.5	6
327	Nucleobase adsorbed at graphene devices: Enhance bio-sensorics. Applied Physics Letters, 2012, 100, 063101.	1.5	45
328	Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups. Physical Review B, 2012, 86, .	1.1	4
329	Polymerization of cyanoacetylene under pressure: Formation of carbon nitride polymers and bulk structures. Physical Review B, 2012, 85, .	1.1	5
330	Spin-resolved characterization of single cobalt phthalocyanine molecules on a ferromagnetic support. Physical Review B, 2012, 86, .	1.1	23
331	Spin inelastic currents in molecular ring junctions. Physical Review B, 2012, 86, .	1.1	31
332	Electrostatic Spin Crossover in a Molecular Junction of a Single-Molecule Magnet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Fe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2012, 108, 017202.	2.9	65
333	Pseudospin transfer torques in semiconductor electron bilayers. Physical Review B, 2012, 85, .	1.1	5
334	Coexistance of Giant Tunneling Electroresistance and Magnetoresistance in an All-Oxide Composite Magnetic Tunnel Junction. Physical Review Letters, 2012, 109, 226803.	2.9	41
335	Current-induced switching in transport through anisotropic magnetic molecules. Physical Review B, 2012, 85, .	1.1	43

#	Article	IF	CITATIONS
336	Tailoring magnetoresistance at the atomic level: Anab initiostudy. Physical Review B, 2012, 85, .	1.1	2
337	Bias-dependent oscillatory electron transport of monatomic sulfur chains. Applied Physics Letters, 2012, 100, .	1.5	16
338	Organic magnetic tunnel junctions: The role of metal-molecule interface. Physical Review B, 2012, 86, .	1.1	28
339	Applying Large-Area Molecular Technology to Improve Magnetoresistive Performance of Hybrid Molecular Spin Valves. Applied Physics Express, 2012, 5, 063006.	1.1	1
340	The weak $\ddot{\mathbb{I}}\in \hat{\mathbb{A}}$ $\ddot{\mathbb{I}}\in \mathbb{A}$ interaction originated resonant tunneling and fast switching in the carbon based electronic devices. AIP Advances, 2012, 2, 012137.	0.6	8
341	Multiscale, Multiparadigm Modeling for Nanosystems Characterization and Design. The Electrical Engineering Handbook, 2012, , 935-982.	0.2	0
342	Topological surface states scattering in antimony. Physical Review B, 2012, 86, .	1.1	21
343	Large Magnetoresistance through a Single Molecule due to a Spin-Split Hybridized Orbital. Nano Letters, 2012, 12, 4558-4563.	4.5	85
344	Electronic transport through EuO spin-filter tunnel junctions. Physical Review B, 2012, 86, .	1.1	21
345	Enhanced Exchange Bias of Spin Valves Fabricated on Fullerene-Based Seed Layers. IEEE Transactions on Magnetics, 2012, 48, 3047-3050.	1.2	2
346	Electronic, Magnetic, and Transport Properties of Fe _{<i>n</i>} -bis(<i>n</i> -acene) and Fe _{<i>n</i>} -bis(<i>n</i> -BNacene) [<i>n</i> = 1,2, \hat{a}]: A Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 18487-18494.	1.5	9
347	Spin-Selective Transport of Electrons in DNA Double Helix. Physical Review Letters, 2012, 108, 218102.	2.9	248
348	Efficient conducting channels formed by the ⟨i⟩Ï€-Ï€⟨/i⟩ stacking in single [2,2]paracyclophane molecules. Journal of Chemical Physics, 2012, 136, 104701.	1.2	25
349	Electron transfer through a single barrier inside a molecule: From strong to weak coupling. Journal of Chemical Physics, 2012, 137, 074110.	1.2	6
350	First-principles study of naphthalene-based single-electron transistor. Applied Nanoscience (Switzerland), 2012, 2, 385-388.	1.6	7
351	Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state (II). Population transfer and magnetic field dependence of the spin polarization. Physical Chemistry Chemical Physics, 2012, 14, 10178.	1.3	13
352	Cyclopentadienyl–benzene based sandwich molecular wires showing efficient spin filtering, negative differential resistance, and pressure induced electronic transitions. Journal of Materials Chemistry, 2012, 22, 14916.	6.7	30
353	First Principles Study of Electron Tunneling through Ice. Journal of Physical Chemistry C, 2012, 116, 22129-22138.	1.5	14

#	Article	IF	CITATIONS
354	Electronic structure and transport properties of monatomic Fe chains in a vacuum and anchored to a graphene nanoribbon. Journal of Physics Condensed Matter, 2012, 24, 455304.	0.7	6
355	Magnetic properties of phthalocyanine-based organometallic nanowire. Applied Physics Letters, 2012, 101, 062405.	1.5	24
356	B, C and N adatoms effects on the transport properties in zigzag graphene nanoribbons. Solid State Communications, 2012, 152, 1635-1640.	0.9	9
357	Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chemical Society Reviews, 2012, 41, 7464.	18.7	655
358	Single Molecular Conductance of Tolanes: Experimental and Theoretical Study on the Junction Evolution Dependent on the Anchoring Group. Journal of the American Chemical Society, 2012, 134, 2292-2304.	6.6	381
359	Impact of Functional Groups onto the Electronic Structure of Metal Electrodes in Molecular Junctions. Journal of Physical Chemistry C, 2012, 116, 21810-21815.	1.5	8
360	Cation⊗3π: Cooperative Interaction of a Cation and Three Benzenes with an Anomalous Order in Binding Energy. Journal of the American Chemical Society, 2012, 134, 12104-12109.	6.6	27
361	Correlations between Molecular Structure and Single-Junction Conductance: A Case Study with Oligo(phenylene-ethynylene)-Type Wires. Journal of the American Chemical Society, 2012, 134, 5262-5275.	6.6	279
362	First principles calculations of transport properties in Si nanowires: The role of crystal orientation. Solid State Communications, 2012, 152, 2008-2012.	0.9	2
363	Magnetic Nanoparticle Characterization Using Nano-SQUID based on Niobium Dayem Bridges. Physics Procedia, 2012, 36, 293-299.	1.2	11
364	First principle investigation of transport properties of Lindqvist derivatives based molecular junction. Journal of Molecular Graphics and Modelling, 2012, 38, 220-225.	1.3	8
365	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub><mml:msub><mml:mi>X</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow>	<td>ows </td>	ow s
366	Nonequilibrium Green's function techniques in current–voltage calculations of nanoscale materials. Indian Journal of Physics, 2012, 86, 977-987.	0.9	7
367	Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. Journal of Chemical Physics, 2012, 136, 064707.	1.2	58
368	Spin Doping of Individual Molecules by Using Single-Atom Manipulation. Nano Letters, 2012, 12, 3609-3612.	4.5	51
369	Tailoring the Interface Properties of Magnetite for Spintronics. , 0, , .		7
370	Organic magnetoresistance and spin diffusion in organic semiconductor thin film devices. Physica Status Solidi - Rapid Research Letters, 2012, 6, 229-242.	1,2	31
371	Laterally patterned magnetic nanoparticles. Journal of Materials Chemistry, 2012, 22, 1962-1968.	6.7	15

#	Article	IF	CITATIONS
372	Giant Resistance Change across the Phase Transition in Spin-Crossover Molecules. Physical Review Letters, 2012, 108, 217201.	2.9	100
373	What Determines the Sign Reversal of Magnetoresistance in a Molecular Tunnel Junction?. ACS Nano, 2012, 6, 3580-3588.	7.3	54
374	Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material. Nanoscale, 2012, 4, 1321.	2.8	42
375	First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes. Physical Review B, 2012, 85, .	1.1	30
376	Synthesis, Structures, and Magnetic Properties of Three 3D Coordination Polymers Based on M ₄ O ₄ Cubanes (M = Mn ^{II} , Fe ^{II} , Co ^{II}). European Journal of Inorganic Chemistry, 2012, 2012, 4029-4035.	1.0	22
377	Molecular Spintronics Based on Singleâ€Molecule Magnets Composed of Multipleâ€Decker Phthalocyaninato Terbium(III) Complex. Chemistry - an Asian Journal, 2012, 7, 1154-1169.	1.7	83
378	Charge Transport through Graphene Junctions with Wetting Metal Leads. Nano Letters, 2012, 12, 3424-3430.	4.5	18
379	Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon, 2012, 50, 784-790.	5.4	54
380	Biradical and triradical organic magnetic molecules as spin filters and rectifiers. Chemical Physics, 2012, 397, 1-8.	0.9	19
381	Contact geometry and electronic transport properties of Ag–benzene–Ag molecular junctions. Chemical Physics, 2012, 397, 82-86.	0.9	6
382	Computational design for interconnection of graphene nanoribbons. Chemical Physics Letters, 2012, 531, 119-125.	1.2	5
383	Transport spin polarization of magnetic C28 molecular junctions. Chemical Physics Letters, 2012, 535, 111-115.	1.2	15
384	Orientation effect on the electronic transport properties of C24 fullerene molecule. Physica B: Condensed Matter, 2012, 407, 2247-2253.	1.3	9
385	Quantum transport through anisotropic molecular magnets: Hubbard Green function approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1481-1488.	0.9	16
386	Bias voltage dependence of tunneling magnetoresistance in granular C60–Co films with current-perpendicular-to-plane geometry. Journal of Magnetism and Magnetic Materials, 2012, 324, 1970-1974.	1.0	3
387	Dilution-Triggered SMM Behavior under Zero Field in a Luminescent Zn ₂ Dy ₂ Tetranuclear Complex Incorporating Carbonato-Bridging Ligands Derived from Atmospheric CO ₂ Fixation. Inorganic Chemistry, 2013, 52, 9620-9626.	1.9	113
388	Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. Journal of Physics Condensed Matter, 2013, 25, 275301.	0.7	1
389	Active control of thermal transport in molecular spin valves. Physical Review B, 2013, 88, .	1.1	5

#	Article	IF	CITATIONS
390	Single-Molecule Conductance of Functionalized Oligoynes: Length Dependence and Junction Evolution. Journal of the American Chemical Society, 2013, 135, 12228-12240.	6.6	277
391	Coherent electron transport through freestanding graphene junctions with metal contacts: a materials approach. Journal of Computational Electronics, 2013, 12, 145-164.	1.3	8
392	Atomistic deconstruction of current flow in graphene based hetero-junctions. Journal of Computational Electronics, 2013, 12, 232-247.	1.3	16
393	Can heterometallic 1-dimensional chains support current rectification?. Chemical Communications, 2013, 49, 9116.	2.2	36
394	Spin-polarized transport through single-molecule magnet Mn6 complexes. Nanoscale, 2013, 5, 4751.	2.8	20
395	Significant Enhancement of Energy Barriers in Dinuclear Dysprosium Single-Molecule Magnets Through Electron-Withdrawing Effects. Journal of the American Chemical Society, 2013, 135, 13242-13245.	6.6	265
396	XMCD study of the magnetic exchange coupling in a fluoride-bridged Dy-Cr molecular cluster. Journal of the Korean Physical Society, 2013, 62, 1368-1371.	0.3	6
397	Chemisorption of Exchangeâ€Coupled [Ni ₂ L(dppba)] ⁺ Complexes on Gold by Using Ambidentate 4â€(Diphenylphosphino)benzoate Coâ€Ligands. Chemistry - A European Journal, 2013, 19, 7787-7801.	1.7	6
398	Tunnel magnetoresistance of Cnâ^'2X2 (n=60, 70; X=N, B) molecular bridge. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 49, 18-24.	1.3	2
399	Collective spin wave and phonon excitations in ferromagnetic organic polymers. Physica Scripta, 2013, 88, 055701.	1.2	0
400	Modelling electric field control of the spin state in the mixed-valence polyoxometalate [GeV14O40]8â^. Chemical Communications, 2013, 49, 9621.	2.2	24
401	In Search of Organic Compounds Presenting a Double Exchange Phenomenon. Journal of Chemical Theory and Computation, 2013, 9, 4805-4815.	2.3	6
402	Theoretical Insights into Adsorption of Cobalt Phthalocyanine on Ag(111): A Combination of Chemical and van der Waals Bonding. Journal of Physical Chemistry C, 2013, 117, 23887-23898.	1.5	23
403	Electronic transport in patterned graphene nanoroads. Nanotechnology, 2013, 24, 495201.	1.3	10
404	An Azophenine Radical-Bridged Fe ₂ Single-Molecule Magnet with Record Magnetic Exchange Coupling. Journal of the American Chemical Society, 2013, 135, 16845-16848.	6.6	128
405	Electronic transport properties of graphyne and its family. Computational Materials Science, 2013, 78, 22-28.	1.4	43
406	Transport Properties of Molecular Junctions. Springer Tracts in Modern Physics, 2013, , .	0.1	22
407	Structural and tunneling properties of Si nanowires. Physical Review B, 2013, 88, .	1.1	4

#	Article	IF	CITATIONS
408	Spin-valve giant magnetoresistance in scandium-benzene sandwich cluster. Europhysics Letters, 2013, 104, 50006.	0.7	5
409	Spin nutation effects in molecular nanomagnet–superconductor tunnel junctions. Journal of Physics Condensed Matter, 2013, 25, 465701.	0.7	1
410	Charged stacks of dithiin, diselenin, thianthrene and selenanthrene radical cations: long range multicenter bonds. Physical Chemistry Chemical Physics, 2013, 15, 18702.	1.3	13
411	Accessing 4f-states in single-molecule spintronics. Nature Communications, 2013, 4, 2425.	5.8	71
412	Electric control of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>{</mml:mo></mml:math> Fe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow><</mml:math>	1.1 ath>single	29 -molecule
413	Interface effects on tunneling magnetoresistance in organic spintronics with flexible amine–Au links. Nanotechnology, 2013, 24, 415201.	1.3	13
414	Controllable spin polarization in an organic molecule. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 338-341.	0.9	3
415	Spin-dependent trapping of electrons atÂspinterfaces. Nature Physics, 2013, 9, 242-247.	6.5	147
416	Bias-dependent conductance of Si2 cluster. Chemical Physics Letters, 2013, 590, 160-164.	1.2	2
417	Magnetoresistance, spin filtering and negative differential resistance effects in an endohedral Fe@C60 dimer. Solid State Communications, 2013, 174, 5-9.	0.9	13
418	A computational perspective on magnetic coupling, magneto-structural correlations and magneto-caloric effect of a ferromagnetically coupled {GdIII–GdIII} Pair. Polyhedron, 2013, 52, 1299-1305.	1.0	53
419	Large negative differential resistance and rectifying performance modulated by contact sites in fused thiophene trimmer-based molecular devices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1920-1924.	0.9	8
420	Atomic-scale inversion of spin polarization at an organic-antiferromagnetic interface. Physical Review B, 2013, 88, .	1.1	30
421	Organic-ferromagnetic hetero-structures with spin transport properties and fundamental physical effects. Science China: Physics, Mechanics and Astronomy, 2013, 56, 151-165.	2.0	2
422	Magnetic cluster excitations. Reviews of Modern Physics, 2013, 85, 367-420.	16.4	142
423	Interface-engineered templates for molecular spin memory devices. Nature, 2013, 493, 509-513.	13.7	401
424	Correlation-Mediated Processes for Electron-Induced Switching between Néel States of Fe Antiferromagnetic Chains. Physical Review Letters, 2013, 110, 087201.	2.9	26
425	Electron transport through Ni/1,4-benzenedithiol/Ni single-molecule junctions under magnetic field. Journal of Applied Physics, 2013, 113, 144313.	1.1	16

#	Article	IF	Citations
427	Theoretical Study on the Rectifying Performance of Organoimido Derivatives of Hexamolybdates. ChemPhysChem, 2013, 14, 610-617.	1.0	16
428	Spin-dependent rectification in the C 59 N molecule. Pramana - Journal of Physics, 2013, 80, 327-336.	0.9	O
429	Engineering the Thermopower of C ₆₀ Molecular Junctions. Nano Letters, 2013, 13, 2141-2145.	4.5	156
430	Quantum Transport Modeling From First Principles. Proceedings of the IEEE, 2013, 101, 518-530.	16.4	78
431	Voltage-controlled spin injection with an endohedral fullerene Co@C60 dimer. Applied Physics Letters, 2013, 102, .	1.5	14
432	Spin transport in molecules studied by Fe3O4/molecule nanoparticles. Applied Physics A: Materials Science and Processing, 2013, 111, 347-354.	1.1	8
433	l–V Curves of graphene nanoribbons under uniaxial compressive and tensile strain. Chemical Physics Letters, 2013, 559, 82-87.	1.2	10
434	Organic Single Molecular Structures for Light Induced Spin-Pump Devices. ACS Nano, 2013, 7, 1064-1071.	7.3	26
435	Narrowing of nanogap for purpose of molecular single-electronics. , 2013, , .		0
436	Electrically Driven Spin Currents in DNA. Journal of Physical Chemistry C, 2013, 117, 13730-13737.	1.5	57
437	Effects of electrode orientation on the transport properties of pyridine-terminated dithienylethene light molecule switch under bias. Solid State Communications, 2013, 153, 1-7.	0.9	5
438	The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Organic Electronics, 2013, 14, 3240-3248.	1.4	33
439	Spin transport and magnetic properties of a copper(II) coordination organometallic molecule. Journal of Magnetism and Magnetic Materials, 2013, 344, 14-19.	1.0	3
440	First Observation of a Kondo Resonance for a Stable Neutral Pure Organic Radical, 1,3,5-Triphenyl-6-oxoverdazyl, Adsorbed on the Au(111) Surface. Journal of the American Chemical Society, 2013, 135, 651-658.	6.6	56
441	Phase-locking of oscillating images using laser-induced spin-polarized pulse TEM. Microscopy (Oxford,) Tj ETQq0	0 0 rgBT /(Overlock 10 1
442	Origin of the transition voltage in gold–vacuum–gold atomic junctions. Nanotechnology, 2013, 24, 025203.	1.3	19
443	Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges. Journal of Chemical Physics, 2013, 138, 014704.	1.2	2
444	Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions. Journal of Chemical Physics, 2013, 139, 194703.	1.2	8

#	Article	IF	CITATIONS
445	Organic electronic memory devices., 2013,, 618-653.		2
446	Josephson current through a quantum dot coupled to a molecular magnet. Physical Review B, 2013, 88,	1.1	7
447	Organic spintronics., 2013,, 535-576.		O
448	Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene alignmers. Physical Review B 2013, 88 Systematic theoretical investigation of the phthalocyanine based dimer: MnPc <mml:math< td=""><td>1.1</td><td>4</td></mml:math<>	1.1	4
449	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup><mml:mrow></mml:mrow> <mml:mrow>i^<mml:mo>+</mml:mo></mml:mrow></mml:msup> /F <mml:mathxmlns:mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml:mrow></mml:mrow> <mml:mrow></mml:mrow> <mml:mn>16</mml:mn></mml:msub>CoPc<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow< td=""><td>:h 1.1</td><td>8</td></mml:mrow<></mml:msup></mml:math></mml:mathxmlns:mml="http:>	:h 1.1	8
450	Spintronic transport of a non-magnetic molecule between magnetic electrodes. Applied Physics Letters, 2013, 103, .	1.5	15
451	Fermi level engineering in organic semiconductors for controlled manufacturing of charge and spin transfer materials. Physical Review B, $2013,88,.$	1.1	5
452	Applicability of carbon and boron nitride nanotubes as biosensors: Effect of biomolecular adsorption on the transport properties of carbon and boron nitride nanotubes. Applied Physics Letters, 2013, 102, .	1.5	10
453	Charge localization on a redox-active single-molecule junction and its influence on coherent electron transport. Physical Review B, 2013, 88, .	1.1	24
454	Manipulation of spin state of iron porphyrin by chemisorption on magnetic substrates. Physical Review B, 2013, 88, .	1.1	50
455	Large magnetoresistance of paracyclophane-based molecular tunnel junctions: A first-principles study. Journal of Applied Physics, 2013, 114, 213906.	1.1	12
456	Mechano-switching devices from carbon wire-carbon nanotube junctions. Physical Review B, 2013, 87, .	1.1	11
457	A Bipodal Dicyano Anchor Unit for Singleâ€Molecule Spintronic Devices. ChemPhysChem, 2013, 14, 2470-2475.	1.0	7
458	Room Temperature Current Suppression on Magnetic Tunnel Junction Based Molecular Spintronics Devices. Materials Research Society Symposia Proceedings, 2013, 1507, 1.	0.1	O
459	Multifunctional Single-Molecule Magnets and Single-Chain Magnets. , 2013, , 105-131.		0
460	Theoretical Study of Spin Conduction in the Ni/DTE/Ni Nanohybrid. Nano Hybrids, 2013, 4, 1-20.	0.3	1
461	Modified Li chains as atomic switches. Scientific Reports, 2013, 3, 2605.	1.6	6
462	Introduction to carbon-based nanostructures. , 0, , 1-10.		O

#	Article	IF	CITATIONS
463	Electronic properties of carbon-based nanostructures., 0,, 11-90.		0
464	Cyclodextrinâ€Assisted Synthesis of a Metallosupramolecular Terbium(III) Polymer and Its Fluorescence Properties and Chiral Recognition. Chemistry - A European Journal, 2013, 19, 15485-15488.	1.7	11
465	Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films. Beilstein Journal of Nanotechnology, 2013, 4, 320-324.	1.5	36
466	Microscopic origin of the 1.3 GO conductance observed in oxygen-doped silver quantum point contacts. Journal of Chemical Physics, 2014, 141, 194702.	1.2	3
467	Negative Differential Resistance of Au-MgB2-Au Nanoscale Junctions. Chinese Journal of Chemical Physics, 2014, 27, 407-411.	0.6	0
468	GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New Journal of Physics, 2014, 16, 093029.	1.2	269
469	A First-principles Study of Spin-polarized Transport Properties of a Co-coordination Complex. Chinese Physics Letters, 2014, 31, 067302.	1.3	2
470	Spin transport in dangling-bond wires on doped H-passivated Si(100). Nanotechnology, 2014, 25, 465703.	1.3	10
471	Electronic properties of sculpturenes. New Journal of Physics, 2014, 16, 013060.	1.2	10
472	Boron Nitride Nanotubes for Spintronics. Sensors, 2014, 14, 17655-17685.	2.1	47
473	Rational design of a room temperature molecular spin switch. The light-driven coordination induced spin state switch (LD-CISSS) approach. Dalton Transactions, 2014, 43, 17395-17405.	1.6	66
474	Tunnel junction testbed based molecular devices. , 2014, , .		0
475	Superpoissonian shot noise in organic magnetic tunnel junctions. Applied Physics Letters, 2014, 105, .	1.5	10
476	Unraveling the Influence of Lanthanide Ions on Intra―and Interâ€Molecular Electronic Processes in Fe ₁₀ Ln ₁₀ Nanoâ€Toruses. Advanced Functional Materials, 2014, 24, 6280-6290.	7.8	44
477	Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes. Journal of Chemical Physics, 2014, 141, 014707.	1.2	7
478	Thermoelectric performance of various benzo-difuran wires. Journal of Chemical Physics, 2014, 140, 174711.	1.2	4
479	Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor. Applied Physics Letters, 2014, 104, 162404.	1.5	16
480	Real-space method for highly parallelizable electronic transport calculations. Physical Review B, 2014, 90, .	1.1	10

#	Article	IF	CITATIONS
481	Magnetic and Quantum Transport Properties of Small-Sized Transition-Metal-Pentalene Sandwich Cluster. Journal of Physical Chemistry C, 2014, 118, 29695-29703.	1.5	7
482	On the separability of the extended molecule: Constructing the best localized molecular orbitals for an organic molecule bridging two model electrodes. Journal of Chemical Physics, 2014, 141, 124712.	1.2	1
483	Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes. Journal of Chemical Physics, 2014, 141, 174702.	1.2	7
484	Ab initiotransport across bismuth selenide surface barriers. Physical Review B, 2014, 90, .	1.1	14
485	Two <i>C</i> ₃ â€Symmetric Dy ₃ ^{III} Complexes with Triple Diâ€Î¼â€methoxoâ€Î¼â€phenoxo Bridges, Magnetic Ground State, and Singleâ€Molecule Magnetic Behavior. Chemistry - A European Journal, 2014, 20, 8410-8420.	1.7	40
486	Density functional theory based calculations of the transfer integral in a redox-active single-molecule junction. Physical Review B, 2014, 89, .	1.1	7
487	Linear {Ni ^{II} –Ln ^{III} –Ni ^{II} } Complexes Containing Twisted Planar Ni(μâ€phenolate) ₂ Ln Fragments: Synthesis, Structure, and Magnetothermal Properties. Chemistry - an Asian Journal, 2014, 9, 1876-1887.	1.7	22
488	ORGANIC SPINTRONICS: PAST, PRESENT AND FUTURE. Spin, 2014, 04, 1440013.	0.6	10
489	Negative magnetoresistance and spin filtering of spin-coupled di-iron-oxo clusters. Physical Review B, 2014, 89, .	1.1	6
490	X-ray induced demagnetization of single-molecule magnets. Applied Physics Letters, 2014, 105, .	1.5	34
491	Magnetoresistance in multilayer fullerene spin valves: A first-principles study. Physical Review B, 2014, 90, .	1.1	20
492	Temperature driven transition from giant to tunneling magneto-resistance in Fe ₃ O ₄ /Alq ₃ /Co spin Valve: Role of Verwey transition of Fe ₃ O ₄ . Journal of Applied Physics, 2014, 115, 17C110.	1.1	13
493	Negative differential conductance and hysteretic current switching of benzene molecular junction in a transverse electric field. Nanotechnology, 2014, 25, 465202.	1.3	8
494	On the path toward organic spintronics. MRS Bulletin, 2014, 39, 578-581.	1.7	30
495	Spinterface: Crafting spintronics at the molecular scale. MRS Bulletin, 2014, 39, 602-607.	1.7	74
496	<i>Ab initio</i> non-relativistic spin dynamics. Journal of Chemical Physics, 2014, 141, 214111.	1.2	20
497	TAILORING FERROMAGNET–MOLECULE INTERFACES: TOWARDS MOLECULAR SPINTRONICS. Spin, 2014, 04, 1440014.	0.6	4
498	Spin-dependent transport properties of a chromium porphyrin-based molecular embedded between two graphene nanoribbon electrodes. RSC Advances, 2014, 4, 60376-60381.	1.7	26

#	Article	IF	Citations
499	CONTROL OF CONDUCTANCE AND MAGNETORESISTANCE OF MOLECULAR JUNCTIONS. Spin, 2014, 04, 1440011.	0.6	1
500	Redox control of thermopower and figure of merit in phase-coherent molecular wires. Nanotechnology, 2014, 25, 205402.	1.3	30
501	Size dependence rectification performances induced by boron and nitrogen co-doping in rhombic graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 904-908.	0.9	4
502	Molecular rectification modulated by alternating boron and nitrogen co-doping in a combined heterostructure of two zigzag-edged trigonal graphenes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 646-649.	0.9	3
503	Electron transport properties of boron nitride fullerene B24N24 doped with lithium atom: first-principles calculations. Structural Chemistry, 2014, 25, 339-345.	1.0	3
504	First principles calculation on quantum transport of Au-Si3-Au nanoscale junction. European Physical Journal D, 2014, 68, 1.	0.6	4
505	Magnetotransport and magnetization dynamics of GaMnAs thin films and magnetic tunnel junctions. Physica Status Solidi (B): Basic Research, 2014, 251, 1652-1662.	0.7	3
506	Emissive molecular nanomagnets: introducing optical properties in triangular oximato {Mn ^{III} ₃ } SMMs from the deliberate replacement of simple carboxylate ligands with their fluorescent analogues. Dalton Transactions, 2014, 43, 1965-1969.	1.6	28
507	Silicene-based DNA nucleobase sensing. Applied Physics Letters, 2014, 104, .	1.5	49
508	Fully spin-polarized transport induced by B doping in graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1945-1951.	0.9	1
509	Dual Functionality of a Simple Magnetic/Semiconductor Heterostructure Device: Diode and Magnetoresistive Element. IEEE Transactions on Magnetics, 2014, 50, 1-8.	1.2	0
510	Spin filtering and large magnetoresistance behaviors in carbon chain-zigzag graphene nanoribbon nanojunctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1540-1547.	0.9	14
511	Does a Cyclopropane Ring Enhance the Electronic Communication in Dumbbell-Type C60 Dimers?. Journal of Organic Chemistry, 2014, 79, 4871-4877.	1.7	10
512	Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties. Progress in Surface Science, 2014, 89, 127-160.	3.8	40
513	From Molecular Magnets to Magnetic Nanomaterials – Deposition of Co ₇ Singleâ€Molecule Magnet; Theoretical Investigation of the Exchange Interactions. European Journal of Inorganic Chemistry, 2014, 2014, 2678-2686.	1.0	9
514	Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes. Physical Review B, 2014, 89, .	1.1	45
515	The first decade of organic spintronics research. Chemical Communications, 2014, 50, 1781-1793.	2.2	167
516	Magnetic Interactions in Molecules and Highly Correlated Materials: Physical Content, Analytical Derivation, and Rigorous Extraction of Magnetic Hamiltonians. Chemical Reviews, 2014, 114, 429-492.	23.0	342

#	Article	IF	CITATIONS
517	Bifunctional Zn ^{II} Ln ^{III} Dinuclear Complexes Combining Field Induced SMM Behavior and Luminescence: Enhanced NIR Lanthanide Emission by 9-Anthracene Carboxylate Bridging Ligands. Inorganic Chemistry, 2014, 53, 1465-1474.	1.9	95
518	The basis of organic spintronics: Fabrication of organic spin valves. Chinese Physics B, 2014, 23, 018104.	0.7	8
519	Rational Design of Lamellar π–π Stacked Organic Crystalline Materials with Short Interplanar Distance. Crystal Growth and Design, 2014, 14, 350-356.	1.4	43
520	Manipulating the spin states in a double molecular magnets tunneling junction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 426-430.	0.9	8
521	Tuning spin transport properties and molecular magnetoresistance through contact geometry. Journal of Chemical Physics, 2014, 140, 044716.	1.2	16
522	Generation of adjustable pure spin currents in negative-U systems. Frontiers of Physics, 2014, 9, 477-482.	2.4	1
523	Single-Molecule Magnet Behavior and Magnetocaloric Effect in Ferromagnetically Coupled $Ln < sup > III < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni < sup > -Ni $	etqiq 9 o c) rg B7 /Overloc
524	Rectifying, giant magnetoresistance, spin-filtering, newgative differential resistance, and switching effects in single-molecule magnet Mn(dmit) 2 -based molecular device with graphene nanoribbon electrodes. Organic Electronics, 2014, 15, 3615-3623.	1.4	13
525	In search of structure–function relationships in transition-metal based rectifiers. Inorganic Chemistry Frontiers, 2014, 1, 468-477.	3.0	5
526	The anchoring effect on the spin transport properties and I–V characteristics of pentacene molecular devices suspended between nickel electrodes. Physical Chemistry Chemical Physics, 2014, 16, 13191.	1.3	19
527	Bottom-up nanoarchitectonics of two-dimensional freestanding metal doped carbon nanosheet. RSC Advances, 2014, 4, 22035-22041.	1.7	19
528	A new D2d-symmetry Dylll mononuclear single-molecule magnet containing a monodentate N-heterocyclic donor ligand. CrystEngComm, 2014, 16, 2283-2289.	1.3	25
529	Size-dependent magnetic order and giant magnetoresistance in organic titanium–benzene multidecker cluster. Physical Chemistry Chemical Physics, 2014, 16, 1902-1908.	1.3	8
530	Spin-Dependent Electron Transfer Dynamics Probed by Resonant Photoemission Spectroscopy. Physical Review Letters, 2014, 112, .	2.9	10
531	Significant variation of surface spin polarization through group IV atom (C, Si, Ge, Sn) adsorption on Fe ₃ O ₄ (100). Physical Chemistry Chemical Physics, 2014, 16, 95-102.	1.3	10
532	Structural, magnetic and transport properties of carbon chains sandwiched between zigzag graphene nanoribbons. RSC Advances, 2014, 4, 9172.	1.7	8
533	Ab initio calculations of quantum transport of Au–GaN–Au nanoscale junctions. RSC Advances, 2014, 4, 51838-51844.	1.7	4
534	Hysteretic behaviour in a vacuum deposited submonolayer of single ion magnets. Dalton Transactions, 2014, 43, 10686-10689.	1.6	43

#	Article	IF	CITATIONS
535	The emergence of complex behaviours in molecular magnetic materials. Physical Chemistry Chemical Physics, 2014, 16, 18076-18082.	1.3	8
536	Anion controlled structural and magnetic diversity in unusual mixed-bridged polynuclear Ni ^{II} complexes with a versatile bis(2-methoxy phenol)diamine hexadentate ligand. An experimental and theoretical magneto-structural study. Dalton Transactions, 2014, 43, 13509-13524.	1.6	37
537	High-Conductive Organometallic Molecular Wires with Delocalized Electron Systems Strongly Coupled to Metal Electrodes. Nano Letters, 2014, 14, 5932-5940.	4.5	87
538	Probing the Influence of the Ligands on the Magnetism of Dinuclear Manganese, Iron, and Chromium Complexes Supported by Aroylhydrazone. European Journal of Inorganic Chemistry, 2014, 2014, 2552-2560.	1.0	8
539	Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles. Journal of Physical Chemistry C, 2014, 118, 8775-8782.	1.5	12
540	Difficulties in theab initiodescription of electron transport through spin filters. Journal of Physics Condensed Matter, 2014, 26, 104203.	0.7	6
541	Structural versus Electrical Functionalization of Oligo(phenylene ethynylene) Diamine Molecular Junctions. Journal of Physical Chemistry C, 2014, 118, 21655-21662.	1.5	42
542	Variation of Kondo Temperature Induced by Molecule–Substrate Decoupling in Film Formation of Bis(phthalocyaninato)terbium(III) Molecules on Au(111). ACS Nano, 2014, 8, 4866-4875.	7.3	43
543	Interface-assisted molecular spintronics. Applied Physics Reviews, 2014, 1, 031101.	5.5	58
544	Spin-filtering, giant magnetoresistance, rectifying and negative differential resistance effects in planar four-coordinate Fe complex with graphene nanoribbon electrodes. Journal of Chemical Physics, 2014, 140, 044311.	1.2	27
545	Spin-polarized transport properties of GdN nanocontacts. Physical Review B, 2014, 89, .	1.1	5
546	Electrical tuning of spin current in a boron nitride nanotube quantum dot. Physical Chemistry Chemical Physics, 2014, 16, 7996-8002.	1.3	9
547	Structural and Magnetic Depth Profiling and Their Correlation in Self-Assembled Co and Fe Based Phthalocyanine Thin Films. Journal of Physical Chemistry C, 2014, 118, 4072-4077.	1.5	8
548	Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. Journal of Materials Chemistry C, 2014, 2, 7943-7951.	2.7	128
549	New manganese (II) structures derived from 2,6-dichlorobenzoic acid: Syntheses, crystal structures and magnetism. Materials Chemistry and Physics, 2014, 147, 611-616.	2.0	5
550	Electronic transport properties of graphene nanoribbon heterojunctions with 5–7–5 ring defect. Computational Materials Science, 2014, 95, 84-88.	1.4	2
552	Probing the Electronic Properties of Individual MnPc Molecules Coupled to Topological States. Nano Letters, 2014, 14, 5092-5096.	4.5	35
553	Predictive DFT-Based Approaches to Charge and Spin Transport in Single-Molecule Junctions and Two-Dimensional Materials: Successes and Challenges. Accounts of Chemical Research, 2014, 47, 3250-3257.	7.6	41

#	Article	IF	CITATIONS
554	Spins of adsorbed molecules investigated by the detection of Kondo resonance. Surface Science, 2014, 630, 343-355.	0.8	18
555	Spin-polarized quantum confinement in nanostructures: Scanning tunneling microscopy. Reviews of Modern Physics, 2014, 86, 1127-1168.	16.4	65
556	Transition Metal Embedded Two-Dimensional C ₃ N ₄ –Graphene Nanocomposite: A Multifunctional Material. Journal of Physical Chemistry C, 2014, 118, 15487-15494.	1.5	93
557	Electrical switching in a Fe-thiacrown molecular device. Journal of Applied Physics, 2014, 115, 013702.	1.1	3
558	Nanoscale Spin Seebeck Rectifier: Controlling Thermal Spin Transport across Insulating Magnetic Junctions with Localized Spin. Physical Review B, 2014, 89, .	1.1	33
559	Aromatic molecules as spintronic devices. Journal of Chemical Physics, 2014, 140, 104308.	1.2	13
560	Nontrivial Bloch oscillation and Zener tunneling frequencies in helicoidal molecules due to spin-orbit coupling. Physical Review B, 2014, 89, .	1.1	4
561	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">Fe<mml:mo>/</mml:mo><mml:mi mathvariant="normal">MoS<mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub><mml:mo>/</mml:mo></mml:mi </mml:mi 	1.1	85
562	mathvariant="normal">Fejunctions. Physical Review B, 2014, 90, . Electric field control of the optical properties in magnetic mixed-valence molecules. Chemical Science, 2014, 5, 3598-3602.	3.7	23
563	Emergence of high spin polarization of conductance in atomic-size Co-Au contacts. Physical Review B, 2014, 89, .	1.1	13
564	From spin-polarized interfaces to giant magnetoresistance in organic spin valves. Physical Review B, 2014, 89, .	1.1	15
565	Graphene Sculpturene Nanopores for DNA Nucleobase Sensing. Journal of Physical Chemistry B, 2014, 118, 6908-6914.	1.2	43
566	Design and Synthesis of New Stable Fluorenyl-Based Radicals. Journal of the American Chemical Society, 2014, 136, 12784-12793.	6.6	83
567	High-efficiency spin filtering in salophen-based molecular junctions modulated with different transition metal atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3126-3130.	0.9	13
568	Exchange Interaction of Strongly Anisotropic Tripodal Erbium Single-Ion Magnets with Metallic Surfaces. ACS Nano, 2014, 8, 4662-4671.	7.3	37
569	Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Advances, 2014, 4, 18522-18528.	1.7	24
570	Substituent and Solvent Effects on the Absorption Spectra of Cationâ~Ï€ Complexes of Benzene and Borazine: A Theoretical Study. Journal of Physical Chemistry A, 2014, 118, 3760-3774.	1.1	22
571	Closely-Related Zn ^{II} ₂ Ln ^{III} ₂ Complexes (Ln ^{III} = Gd, Yb) with Either Magnetic Refrigerant or Luminescent Single-Molecule Magnet Properties. Inorganic Chemistry, 2014, 53, 3586-3594.	1.9	93

#	Article	IF	CITATIONS
572	A new metal organic framework constructed of Co(II) ions six and seven-coordinated: Synthesis, structure and magnetism. Polyhedron, 2014, 81, 210-215.	1.0	12
573	Effects of the magnetic anchoring groups on spin-dependent transport properties of Ni(dmit)2 device. Chemical Physics Letters, 2014, 608, 28-34.	1.2	10
574	Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt. Beilstein Journal of Nanotechnology, 2014, 5, 2070-2078.	1.5	11
575	Thermopower of benzenedithiol molecular junctions with nickel electrodes. Materials Research Innovations, 2014, 18, S6-405-S6-407.	1.0	0
576	Understanding Magnetic Exchange in Molecule-Based Magnets from an Electronic Structure Point of View., 2015,, 203-246.		0
577	Capacitive DNA Detection Driven by Electronic Charge Fluctuations in a Graphene Nanopore. Physical Review Applied, 2015, 3, .	1.5	60
578	Transmission through correlated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>Cu</mml:mtext>Physical Review B, 2015, 92, .</mml:msub></mml:mrow></mml:math>	· <mimil:mi:< td=""><td>>n<⊉snml:mi>·</td></mimil:mi:<>	>n<⊉snml:mi>·
579	Spatially extended underscreened Kondo state from collective molecular spin. Physical Review B, 2015, 92, .	1.1	22
580	Effect of gate voltage on spin transport along <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>\hat{l} </mml:mi></mml:math> -helical protein. Physical Review B, 2015, 92, .	1.1	42
581	Ferromagnetism and perfect spin filtering in transition-metal-doped graphyne nanoribbons. Physical Review B, 2015, 92, .	1.1	39
582	Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene. Scientific Reports, 2015, 5, 17560.	1.6	45
583	Shapiro like steps reveals molecular nanomagnets' spin dynamics. AIP Advances, 2015, 5, 097156.	0.6	3
584	Spin-polarization inversion at small organic molecule/Fe4N interfaces: A first-principles study. Journal of Applied Physics, 2015, 118, 115301.	1.1	9
585	Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface. Journal of Chemical Physics, 2015, 143, 234709.	1.2	4
586	Negative differential conductance in two-dimensional C-functionalized boronitrene. New Journal of Physics, 2015, 17, 093012.	1.2	11
587	Analysis of the Role of Peripheral Ligands Coordinated to Zn ^{II} in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Znâ€Dyâ€Zn Singleâ€Molecule Magnets. Chemistry - A European Journal, 2015, 21, 15785-15796.	1.7	80
588	Simple and efficient way of speeding up transmission calculations with <i>k</i> point sampling. Beilstein Journal of Nanotechnology, 2015, 6, 1603-1608.	1.5	10
589	An experimental and theoretical magneto-structural study of polynuclear Ni ^{II} complexes assembled from a versatile bis(salicylaldehyde)diamine polytopic ligand. Dalton Transactions, 2015, 44, 6825-6838.	1.6	31

#	Article	IF	Citations
590	Transient EPR Reveals Triplet State Delocalization in a Series of Cyclic and Linear π-Conjugated Porphyrin Oligomers. Journal of the American Chemical Society, 2015, 137, 8284-8293.	6.6	62
591	Steering Metallofullerene Electron Spin in Porous Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 15055-15060.	6.6	53
592	Dinuclear manganese, iron, chromium, and cobalt complexes derived from aroylhydrazone ligands: Synthetic strategies, crystal structures, and magnetic properties. Comptes Rendus Chimie, 2015, 18, 1370-1384.	0.2	5
593	Selective recovery of rare earth elements using chelating ligands grafted on mesoporous surfaces. RSC Advances, 2015, 5, 103782-103789.	1.7	47
594	Transport engineering design of AND and NOR gates with a 1,4-2-phenyl-dithiolate molecule. Journal of Molecular Modeling, 2015, 21, 29.	0.8	4
595	Reduction of Mn ₁₉ Coordination Clusters on a Gold Surface. Journal of Physical Chemistry C, 2015, 119, 3550-3555.	1.5	15
596	Magnetoresistance of Mn-decorated topological line defects in graphene. Physical Review B, 2015, 91, .	1.1	7
597	Exploiting the extended π-system of perylene bisimide for label-free single-molecule sensing. Journal of Materials Chemistry C, 2015, 3, 2101-2106.	2.7	16
598	Towards single molecule switches. Chemical Society Reviews, 2015, 44, 2998-3022.	18.7	306
599	Correlation of breaking forces, conductances and geometries of molecular junctions. Scientific Reports, 2015, 5, 9002.	1.6	48
600	Tetranuclear and Pentanuclear Compounds of the Rare-Earth Metals: Synthesis and Magnetism. Inorganic Chemistry, 2015, 54, 7846-7856.	1.9	54
601	Proximity-induced magnetism in transition-metal substituted graphene. Scientific Reports, 2015, 5, 12322.	1.6	30
602	Ideal Spintronics in Molecule-Based Novel Organometallic Nanowires. Scientific Reports, 2015, 5, 12772.	1.6	11
603	Electronic Transport as a Driver for Self-Interaction-Corrected Methods. Advances in Atomic, Molecular and Optical Physics, 2015, 64, 29-86.	2.3	7
604	Modulation of the molecular spintronic properties of adsorbed copper corroles. Nature Communications, 2015, 6, 7547.	5.8	40
605	Advantages of Prefabricated Tunnel Junction-Based Molecular Spintronics Devices. Nano, 2015, 10, 1530002.	0.5	16
606	Stability of conductance oscillations in carbon atomic chains. Chinese Physics B, 2015, 24, 067307.	0.7	8
607	Looking Inside the Perchlorinated Trityl Radical/Metal Spinterface through Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 2101-2106.	2.1	29

#	Article	IF	CITATIONS
608	Magnetic transport properties of DBTAA-based nanodevices with graphene nanoribbon electrodes. Organic Electronics, 2015, 25, 308-316.	1.4	25
609	Spin-Valve Effect in NiFe/MoS ₂ /NiFe Junctions. Nano Letters, 2015, 15, 5261-5267.	4.5	135
610	Electronic and magnetic properties of silicon supported organometallic molecular wires: a density functional theory (DFT) study. Nanoscale, 2015, 7, 13734-13746.	2.8	8
611	Unusual Gd–nitronyl nitroxide antiferromagnetic coupling and slow magnetic relaxation in the corresponding Tb analogue. Dalton Transactions, 2015, 44, 13890-13896.	1.6	17
612	Spin-Dependent Conductance in Co/C ₆₀ /Co/Ni Single-Molecule Junctions in the Contact Regime. Journal of Physical Chemistry C, 2015, 119, 11975-11981.	1.5	24
613	Inelastic effect of electron–phonon interactions in tunnelling magnetoresistance of a single metallofullerene. Molecular Physics, 2015, 113, 3606-3614.	0.8	1
614	Placing a crown on Dy ^{III} – a dual property Ln ^{III} crown ether complex displaying optical properties and SMM behaviour. Journal of Materials Chemistry C, 2015, 3, 7738-7747.	2.7	40
615	Fast photo-driven electron spin coherence transfer: the effect of electron-nuclear hyperfine coupling on coherence dephasing. Journal of Materials Chemistry C, 2015, 3, 7962-7967.	2.7	22
616	Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface. Scientific Reports, 2015, 5, 10602.	1.6	21
617	Room temperature memory device using single-molecule magnets. RSC Advances, 2015, 5, 54667-54671.	1.7	15
618	First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups. Journal of Chemical Physics, 2015, 142, 164701.	1.2	8
619	Single atom anisotropic magnetoresistance on a topological insulator surface. New Journal of Physics, 2015, 17, 033021.	1.2	7
620	Increasing the effective energy barrier promoted by the change of a counteranion in a Zn–Dy–Zn SMM: slow relaxation via the second excited state. Chemical Communications, 2015, 51, 12353-12356.	2.2	59
621	Thiolate-Bonded Self-Assembled Monolayers on Ni(111): Bonding Strength, Structure, and Stability. Journal of Physical Chemistry C, 2015, 119, 15455-15468.	1.5	21
622	Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction. Nano Letters, 2015, 15, 3109-3114.	4.5	117
623	Giant Single-Molecule Anisotropic Magnetoresistance at Room Temperature. Journal of the American Chemical Society, 2015, 137, 5923-5929.	6.6	31
624	Molecular lanthanide single-ion magnets: from bulk to submonolayers. Journal of Physics Condensed Matter, 2015, 27, 183203.	0.7	79
625	Symmetry-Derived Half-Metallicity in Atomic and Molecular Junctions. Nano Letters, 2015, 15, 3552-3556.	4.5	45

#	ARTICLE	IF	CITATIONS
626	Amending the Anisotropy Barrier and Luminescence Behavior of Heterometallic Trinuclear Linear [M ^{II} Ln ^{III} M ^{II}] (Ln ^{III} =Gd, Tb, Dy;) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50,742 Td
	Chemistry - A European Journal, 2015, 21, 6449-6464.		
627	Steering Power of Perfluoroalkyl Substituents in Crystal Engineering: Tuning the π–π Distance While Maintaining the Lamellar Packing Motif for Aromatics with Various Sizes of Ĭ€-Conjugation. Crystal Growth and Design, 2015, 15, 2235-2242.	1.4	17
628	Electric Field Control of Spin-Dependent Dissipative Electron Transfer Dynamics in Mixed-Valence Molecules. Journal of Physical Chemistry C, 2015, 119, 7911-7921.	1.5	10
629	Density functional theory based direct comparison of coherent tunneling and electron hopping in redox-active single-molecule junctions. Physical Review B, 2015, 91, .	1.1	19
630	Indication of Complete Spin Filtering in Atomic-Scale Nickel Oxide. Nano Letters, 2015, 15, 3894-3898.	4.5	41
631	Magnetic Interaction Between a Radical Spin and a Single-Molecule Magnet in a Molecular Spin-Valve. ACS Nano, 2015, 9, 4458-4464.	7.3	97
632	Single-Atom Based Coherent Quantum Interference Device Structure. Nano Letters, 2015, 15, 2881-2886.	4. 5	10
634	Coordination complexes of 15-membered pentadentate aza, oxoaza and thiaaza Schiff base macrocycles "Old Complexes Offer New Attractions― Coordination Chemistry Reviews, 2015, 296, 125-152.	9.5	97
635	Electron Hopping through Double-Exchange Coupling in a Mixed-Valence Diiminobenzoquinone-Bridged Fe ₂ Complex. Journal of the American Chemical Society, 2015, 137, 12617-12626.	6.6	52
636	Antiferromagnetic Order at The First Fe ₄ N Atomic Layer in Benzene Adsorbed Fe ₄ N Structures. Journal of Physical Chemistry C, 2015, 119, 23619-23626.	1.5	10
637	Mechanism of H ₂ O-Induced Conductance Changes in AuCl ₄ -Functionalized CNTs. Journal of Physical Chemistry C, 2015, 119, 9568-9573.	1.5	5
638	Computational Design of Intrinsic Molecular Rectifiers Based on Asymmetric Functionalization of <i>N</i> -Phenylbenzamide. Journal of Chemical Theory and Computation, 2015, 11, 5888-5896.	2.3	34
639	Dynamical quenching of tunneling in molecular magnets. Journal of Magnetism and Magnetic Materials, 2015, 396, 176-180.	1.0	0
640	Generation of fully spin-polarized currents in three-terminal graphene-based transistors. RSC Advances, 2015, 5, 87411-87415.	1.7	12
641	A high-spin organic diradical as a spin filter. Physical Chemistry Chemical Physics, 2015, 17, 23378-23383.	1.3	44
642	Interaction Between Optically-Generated Charge-Transfer States and Magnetized Charge-Transfer States toward Magneto-Electric Coupling. Journal of Physical Chemistry Letters, 2015, 6, 4319-4325.	2.1	6
643	Pentanuclear [2.2] spirocyclic lanthanide(<scp>iii</scp>) complexes: slow magnetic relaxation of the Dy ^{Ill} analogue. Dalton Transactions, 2015, 44, 19282-19293.	1.6	16
644	Partial Nitrogen Atom Transfer: A New Synthetic Tool to Design Single-Molecule Magnets. Inorganic Chemistry, 2015, 54, 9075-9080.	1.9	20

#	Article	IF	Citations
645	New salen-type dysprosium(III) double-decker and triple-decker complexes. Polyhedron, 2015, 102, 8-15.	1.0	14
646	Electrical Control of Spin States of Ferrocene on Cu(111). Journal of Physical Chemistry C, 2015, 119, 21681-21687.	1.5	15
647	Rhodamine-based field-induced single molecule magnets in Yb(<scp>iii</scp>) and Dy(<scp>iii</scp>) series. New Journal of Chemistry, 2015, 39, 8650-8657.	1.4	26
648	Sensing single molecules with carbon–boron-nitride nanotubes. Journal of Materials Chemistry C, 2015, 3, 10273-10276.	2.7	13
649	Structural specifics of light-induced metastable states in copper(<scp>ii</scp>)â€"nitroxide molecular magnets. Dalton Transactions, 2015, 44, 20883-20888.	1.6	15
650	A First Principle Study of the Massive TMR in Magnetic Tunnel Junction Using Fe ₃ Al Heusler Alloy Electrodes and MgO Barrier. Advanced Materials Research, 0, 1101, 192-197.	0.3	1
651	Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface. Nano Letters, 2015, 15, 275-280.	4.5	73
652	Systematic pseudopotentials from reference eigenvalue sets for DFT calculations. Computational Materials Science, 2015, 98, 372-389.	1.4	57
653	Nearly Perfect Spin Filter, Spin Valve and Negative Differential Resistance Effects in a Fe4-based Single-molecule Junction. Scientific Reports, 2014, 4, 4838.	1.6	31
654	Basic concepts of quantum interference and electron transport in single-molecule electronics. Chemical Society Reviews, 2015, 44, 875-888.	18.7	350
655	First-principles calculations on spin-polarized transport properties of Mn4O4 cluster. Rare Metals, 2015, 34, 45-50.	3.6	0
656	Phenalenyl-based mononuclear dysprosium complexes. Beilstein Journal of Nanotechnology, 2016, 7, 995-1009.	1.5	4
657	The Role of Anisotropic Exchange in Single Molecule Magnets: A CASSCF/NEVPT2 Study of the Fe4 SMM Building Block [Fe2(OCH3)2(dbm)4] Dimer. Inorganics, 2016, 4, 28.	1.2	15
658	Organic Spintronics., 2016,,.		2
659	Hydrazoneâ€Ligandâ€Based Homodinuclear Lanthanide Complexes: Synthesis, Structure, and Magnetism. European Journal of Inorganic Chemistry, 2016, 2016, 3322-3329.	1.0	24
660	Spin Switching in Molecular Quantum Cellular Automata Based on Mixed-Valence Tetrameric Units. Journal of Physical Chemistry C, 2016, 120, 16994-17005.	1.5	25
661	Quantitative Interpretation of the Lowâ€Bias Conductance of Au–Mesitylene–Au Molecular Junctions Formed from Mesitylene Monolayers. ChemPhysChem, 2016, 17, 2272-2277.	1.0	3
662	Buckybowls as adsorbents for <scp>CO₂, CH₄, and C₂H₂/sub>3/sub>33/sub>3/sub>33443443444<td>1.5</td><td>34</td></scp>	1.5	34

#	Article	IF	CITATIONS
663	Experimental and Computational Study of Unique Tetranuclear µ3-Chloride and µ-Phenoxo/Chloro-Bridged Defective Dicubane Cobalt(II) Clusters. European Journal of Inorganic Chemistry, 2016, 2016, 1192-1199.	1.0	5
664	Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d–4f} Singleâ€Molecule Magnets: A Theoretical Perspective. Chemistry - A European Journal, 2016, 22, 672-680.	1.7	55
665	Stepwise Reduction of an αâ€Phosphonio–Carbocation to a Crystalline Phosphorus Radical Cation and an Acridinyl–Phosphorus Ylide. Chemistry - A European Journal, 2016, 22, 2882-2886.	1.7	12
666	Giant Rashbaâ€Type Spin Splitting in Ferroelectric GeTe(111). Advanced Materials, 2016, 28, 560-565.	11.1	155
667	Electronic transport properties of (fluorinated) metal phthalocyanine. New Journal of Physics, 2016, 18, 013003.	1.2	9
668	Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling. Scientific Reports, 2016, 6, 23452.	1.6	20
669	A new method to induce molecular low bias negative differential resistance with multi-peaks. Journal of Chemical Physics, 2016, 144, 064308.	1.2	18
670	Effects of the molecule-electrode interface on the low-bias conductance of Cu–H2–Cu single-molecule junctions. Journal of Chemical Physics, 2016, 145, 044701.	1.2	5
671	Cu-metalated carbyne acting as a promising molecular wire. Journal of Chemical Physics, 2016, 145, 244702.	1.2	5
672	Molecular spin on surface: From strong correlation to dispersion interactions. Journal of Chemical Physics, 2016, 145, 124704.	1.2	9
673	Manipulating the Topological Interface by Molecular Adsorbates: Adsorption of Co-Phthalocyanine on Bi ₂ Se ₃ . Nano Letters, 2016, 16, 3409-3414.	4.5	44
674	Single-Molecule Electronics. , 2016, , .		14
675	Effect of Ligand Substitution around the Dy ^{III} on the SMM Properties of Dual-Luminescent Znâ€"Dy and Znâ€"Dyô€"Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study. Inorganic Chemistry, 2016, 55, 4428-4440.	1.9	83
676	STM Study of Au(111) Surface-Grafted Paramagnetic Macrocyclic Complexes [Ni ₂ L(Hmba)] ⁺ via Ambidentate Coligands. Langmuir, 2016, 32, 4464-4471.	1.6	9
677	Current-induced changes of migration energy barriers in graphene and carbon nanotubes. Nanoscale, 2016, 8, 10310-10315.	2.8	3
678	A family of acetato-diphenoxo triply bridged dimetallic Zn ^{ll} Ln ^{lll} complexes: SMM behavior and luminescent properties. Dalton Transactions, 2016, 45, 9712-9726.	1.6	51
679	Tuning the conductance of benzene-based single-molecule junctions. Organic Electronics, 2016, 34, 254-261.	1.4	4
680	Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions. Nano Letters, 2016, 16, 6534-6540.	4.5	44

#	Article	IF	CITATIONS
681	Single Electron Gating of Topological Insulators. Advanced Materials, 2016, 28, 10073-10078.	11.1	7
683	The effect of phenyl groups on the transport properties of tetracene molecule. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 466-473.	1.3	4
684	Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization. Inorganic Chemistry, 2016, 55, 8502-8513.	1.9	72
685	Diffusion Monte Carlo Perspective on the Spin-State Energetics of [Fe(NCH) < sub > 6 < /sub >] < sup > 2 + < /sup > . Journal of Chemical Theory and Computation, 2016, 12, 4233-4241.	2.3	26
686	Charging single Co atoms on ultrathin NaCl films. Dalton Transactions, 2016, 45, 16566-16569.	1.6	1
687	A multifunctional material of two-dimensional g-C ₄ N ₃ /graphene bilayer. Physical Chemistry Chemical Physics, 2016, 18, 25388-25393.	1.3	20
688	Single ion magnets based on lanthanoid polyoxomolybdate complexes. Dalton Transactions, 2016, 45, 16653-16660.	1.6	40
689	Tetranuclear Lanthanide(III) Complexes Containing a Squareâ€Grid Core: Synthesis, Structure, and Magnetism. European Journal of Inorganic Chemistry, 2016, 2016, 4683-4692.	1.0	23
690	A scanning tunneling microscopy study of the electronic and spin states of bis(phthalocyaninato)terbium($\langle scp \rangle iii\langle scp \rangle$) (TbPc $\langle sub \rangle$ 2 $\langle sub \rangle$) molecules on Ag(111). Dalton Transactions, 2016, 45, 16644-16652.	1.6	19
691	Spin-Polarized Electron Transfers in Organic/Inorganic Hybrid (Rectifying) Junctions. Journal of Physical Chemistry C, 2016, 120, 19011-19017.	1.5	2
692	Charge Transport and Conductance Switching of Redoxâ€Active Azulene Derivatives. Angewandte Chemie - International Edition, 2016, 55, 11781-11786.	7.2	67
693	Current-induced phonon renormalization in molecular junctions. Physical Review B, 2016, 94, .	1.1	10
694	Large Magnetoresistance in Single-Radical Molecular Junctions. Nano Letters, 2016, 16, 4960-4967.	4.5	75
695	Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents. Physical Chemistry Chemical Physics, 2016, 18, 22606-22616.	1.3	13
696	Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics. Physical Review B, 2016, 94, .	1.1	19
697	Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds. Physical Review B, 2016, 93, .	1.1	5
698	Perfect spin filtering by symmetry in molecular junctions. Physical Review B, 2016, 93, .	1.1	17
699	Spin Manipulation by Creation of Single-Molecule Radical Cations. Physical Review Letters, 2016, 116, 027201.	2.9	53

#	Article	IF	Citations
700	Lanthanide Tetrazolate Complexes Combining Singleâ€Molecule Magnet and Luminescence Properties: The Effect of the Replacement of Tetrazolate N ₃ by βâ€Diketonate Ligands on the Anisotropy Energy Barrier. Chemistry - A European Journal, 2016, 22, 14548-14559.	1.7	48
701	The transport properties of silicon and carbon nanotubes at the atomic scale: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 23643-23650.	1.3	9
702	Pauli spin blockade in double molecular magnets. Physical Review B, 2016, 94, .	1.1	5
703	Spin-dependent transport properties in covalent–organic molecular device with graphene nanoribbon electrodes. Computational and Theoretical Chemistry, 2016, 1091, 85-91.	1.1	9
704	Toward interfacing organic semiconductors with ferromagnetic transition metal substrates: enhanced stability via carboxylate anchoring. Chemical Communications, 2016, 52, 9805-9808.	2.2	13
706	Direct Atomic-Orbital-Based Relativistic Two-Component Linear Response Method for Calculating Excited-State Fine Structures. Journal of Chemical Theory and Computation, 2016, 12, 3711-3718.	2.3	51
707	Origin of the periodic structure in the conductance curve of gold nanojunctions in hydrogen environment. Physical Review B, 2016, 93, .	1.1	1
708	Cu–Ln compounds based on nitronyl nitroxide radicals: synthesis, structure, and magnetic and fluorescence properties. CrystEngComm, 2016, 18, 9345-9356.	1.3	24
709	Oxygen-modulated quantum conductance for ultrathin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">HfO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> -based memristive switching devices. Physical Review B, 2016, 94, .	1.1	11
710	Spin filtering and switching action in a diamond network with magnetic-nonmagnetic atomic distribution. Scientific Reports, 2016, 6, 32543.	1.6	4
711	Two 3D Isostructural Ln(III)-MOFs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection of Nitrobenzene and Cr ₂ O ₇ ^{2–} . Inorganic Chemistry, 2016, 55, 11323-11330.	1.9	142
712	Charge and spin transport in single and packed ruthenium-terpyridine molecular devices: Insight from first-principles calculations. Scientific Reports, 2016, 6, 31856.	1.6	5
713	Spin Caloritronic Transport of 1,3,5-Triphenylverdazyl Radical. Chinese Physics Letters, 2016, 33, 037303.	1.3	1
714	Tunneling magnetoresistance in Si nanowires. New Journal of Physics, 2016, 18, 113024.	1.2	4
715	Ladungstransport und LeitfÄ ¤ igkeitsschalten von redoxaktiven Azulenâ€Derivaten. Angewandte Chemie, 2016, 128, 11956-11961.	1.6	10
716	Defect engineering of the electronic transport through cuprous oxide interlayers. Scientific Reports, 2016, 6, 27049.	1.6	7
717	Metallic, magnetic and molecular nanocontacts. Nature Nanotechnology, 2016, 11, 499-508.	15.6	48
718	Two 3d–4f double helical chains including [Dy ₂ M ₂] _n (M =) Tj ETQq1 12016, 45, 10830-10835.	. 0.784314 1.6	l rgBT /Overlo 8

#	Article	IF	Citations
719	Electronic and magnetic properties of single 3d-transition metals adsorbed on anthracene: a relativistic density functional theory study. Molecular Physics, 2016, 114, 2187-2194.	0.8	1
720	Spin-polarized transport properties of Fe-oligoporphyrin dimer-based molecular device. Organic Electronics, 2016, 36, 160-165.	1.4	10
721	Toward Mesoscale Properties of Self-Assembled Monolayers of SMM on Au(111): An Integrated Ad Hoc FF and DFT Study. Journal of Physical Chemistry C, 2016, 120, 14774-14781.	1.5	8
722	Electrical manipulation of spins in a nanowire with Rashba interaction. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 253-258.	1.3	8
723	Theoretical Aspects of Quantum Transport and Computational Modeling of Molecular Electronic Device., 2016,, 191-216.		0
724	The Frontier of Molecular Spintronics Based on Multiple-Decker Phthalocyaninato Tb ^{III} Single-Molecule Magnets. Chemical Record, 2016, 16, 987-1016.	2.9	37
725	Influence of soliton distributions on the spin-dependent electronic transport through polyacetylene molecule. Pramana - Journal of Physics, 2016, 86, 669-680.	0.9	2
726	Out-of-Plane Alignment of Er(trensal) Easy Magnetization Axes Using Graphene. ACS Nano, 2016, 10, 2887-2892.	7.3	27
727	On-Surface Engineering of a Magnetic Organometallic Nanowire. Nano Letters, 2016, 16, 588-593.	4.5	34
728	Employing Schiff-base macrocycles to probe the effect of ligand field on the relaxation dynamics of a family of Dylll SMMs. Polyhedron, 2016, 108, 122-130.	1.0	8
729	Coherent transport through spin-crossover magnet Fe ₂ complexes. Nanoscale, 2016, 8, 609-616.	2.8	37
730	Molecular-Scale Electronics: From Concept to Function. Chemical Reviews, 2016, 116, 4318-4440.	23.0	1,014
731	Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule. Nano Letters, 2016, 16, 2066-2071.	4.5	60
732	The effect of a Ta oxygen scavenger layer on HfO ₂ -based resistive switching behavior: thermodynamic stability, electronic structure, and low-bias transport. Physical Chemistry Chemical Physics, 2016, 18, 7502-7510.	1.3	31
733	Conductance saturation in a series of highly transmitting molecular junctions. Nature Materials, 2016, 15, 444-449.	13.3	76
734	The origin of the transition voltage of gold–alkanedithiol–gold molecular junctions. Chemical Physics, 2016, 465-466, 40-45.	0.9	13
735	Magnetism and spin transport of carbon chain between armchair graphene nanoribbon electrodes. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83, 414-419.	1.3	6
736	Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 12-15.	1.3	10

#	ARTICLE	IF	Citations
737	Spin-dependent transport properties in a pyrene–graphene nanoribbon device. RSC Advances, 2016, 6, 16634-16639.	1.7	13
738	Enhanced Magnetoresistance in Molecular Junctions by Geometrical Optimization of Spin-Selective Orbital Hybridization. Nano Letters, 2016, 16, 1741-1745.	4.5	35
739	Excitation wavelength-dependent EPR study on the influence of the conformation of multiporphyrin arrays on triplet state delocalization. Physical Chemistry Chemical Physics, 2016, 18, 5275-5280.	1.3	17
740	Strain-Enhanced Spin Injection in Amine-Ended Single-Molecule Magnetic Junctions. Journal of Physical Chemistry C, 2016, 120, 692-696.	1.5	10
741	Giant tunnel magneto-resistance in graphene based molecular tunneling junction. Nanoscale, 2016, 8, 3432-3438.	2.8	30
742	Tuning the thermoelectric properties of metallo-porphyrins. Nanoscale, 2016, 8, 2428-2433.	2.8	33
743	Selective Wrapping of Few-Walled Carbon Nanotubes by a Serpent-Like Heterobimetallic Coordination Polymer. Journal of Physical Chemistry C, 2016, 120, 1245-1251.	1.5	9
744	Axisymmetric All-Carbon Devices with High-Spin Filter Efficiency, Large-Spin Rectifying, and Strong-Spin Negative Differential Resistance Properties. Journal of Physical Chemistry C, 2016, 120, 668-676.	1.5	21
745	Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nature Nanotechnology, 2016, 11, 170-176.	15.6	155
746	An S = 12 semiquinoid radical-bridged Mn ₆ wheel complex assembled from an asymmetric redox-active bridging ligand. Chemical Communications, 2016, 52, 1006-1008.	2.2	10
747	Carbene-derived \hat{l}_{\pm} -acyl formamidinium cations: organic molecules with readily tunable multiple redox processes. Chemical Communications, 2016, 52, 9024-9027.	2.2	33
748	Low Dimensional Molecular Magnets and Spintronics. , 2016, , 617-680.		1
749	Molecular Spintronics. Springer Theses, 2016, , .	0.0	2
750	Spin Interactions in Molecular Nanomagnets Mn12Acetate Shell-Core. Journal of Superconductivity and Novel Magnetism, 2016, 29, 193-198.	0.8	5
751	DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosensors and Bioelectronics, 2017, 89, 280-292.	5.3	35
752	Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors. Journal of Materials Chemistry C, 2017, 5, 1409-1413.	2.7	7
753	The magnetoresistance effect in a conducting molecular crystal consisting of dicyano(phthalocyaninato)manganese(<scp>iii</scp>). Dalton Transactions, 2017, 46, 1892-1897.	1.6	6
754	Bias induced spin transitions of spin crossover molecules: the role of charging effect. Physical Chemistry Chemical Physics, 2017, 19, 7652-7658.	1.3	6

#	Article	IF	Citations
755	Magneto-structural and theoretical study of the weak interactions in a Mn(II) complex with a very unusual N,O-chelating coordination mode of 2-aminoterephthalate. Inorganica Chimica Acta, 2017, 461, 183-191.	1.2	3
756	Gate control of spin-polarized conductance in alloyed transitional metal nanocontacts. Physical Review B, 2017, 95, .	1.1	1
757	Spin filtering effect in colorimetric chemosensor L-based molecular devices modulated with different transition metal ions. Physica B: Condensed Matter, 2017, 513, 10-14.	1.3	3
758	Quantum interference effects in molecular spin hybrids. Physical Review B, 2017, 95, .	1.1	11
759	The effect of the disposition of coordinated oxygen atoms on the magnitude of the energy barrier for magnetization reversal in a family of linear trinuclear Zn–Dy–Zn complexes with a square-antiprism DyO ₈ coordination sphere. Dalton Transactions, 2017, 46, 4278-4286.	1.6	13
760	Spintronic detection of interfacial magnetic switching in a paramagnetic thin film of tris(8-hydroxyquinoline)iron(III). Physical Review B, 2017, 95, .	1.1	9
761	Quantum transport simulation scheme including strong correlations and its application to organic radicals adsorbed on gold. Physical Review B, 2017, 95, .	1.1	31
762	Spin Frustration in the Triradical Trianion of a Naphthalenediimide Molecular Triangle. Journal of the American Chemical Society, 2017, 139, 2948-2951.	6.6	60
763	Prediction of huge magnetic anisotropy in organometallic molecules. Computational Materials Science, 2017, 135, 18-21.	1.4	1
764	Electrical Read-Out of a Single Spin Using an Exchange-Coupled Quantum Dot. ACS Nano, 2017, 11, 3984-3989.	7.3	50
765	Perspectives for Polyoxometalates in Single-Molecule Electronics and Spintronics. Advances in Inorganic Chemistry, 2017, , 251-286.	0.4	33
766	Switching Effects in Molecular Electronic Devices. Topics in Current Chemistry, 2017, 375, 56.	3.0	33
767	Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective. Journal of Chemical Physics, 2017, 146, .	1.2	45
768	Anisotropy and Damping of Molecules/Cobalt Hybrid Thin Films. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	4
769	Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations. Journal of Chemical Theory and Computation, 2017, 13, 2591-2603.	2.3	66
770	Inverse Magnetoresistance in Polymer Spin Valves. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15644-15651.	4.0	35
771	Tunnel magnetoresistance of a molecular chain homo-catenated by group IV elements. Journal of Applied Physics, 2017, 121, 165501.	1.1	0
772	Design of Magnetic Polyoxometalates for Molecular Spintronics and as Spin Qubits. Advances in Inorganic Chemistry, 2017, 69, 213-249.	0.4	22

#	Article	IF	Citations
773	Theoretical Evaluation of [VIV(α-C3S5)3]2–as Nuclear-Spin-Sensitive Single-Molecule Spin Transistor. Journal of Physical Chemistry Letters, 2017, 8, 3056-3060.	2.1	14
774	The influence of correlation effects on the electronic structure of double-decker bis(phthalocyaninato)-Dy, Tb complexes. Computational and Theoretical Chemistry, 2017, 1112, 104-110.	1.1	0
775	Giant Magnetoresistance in Carbon Nanotubes with Single-Molecule Magnets TbPc ₂ . ACS Nano, 2017, 11, 6868-6880.	7.3	58
776	The Jahn-Teller and pseudo Jahn-Teller effect in materials science. Journal of Physics: Conference Series, 2017, 833, 012001.	0.3	32
777	Quantifying the exchange coupling in linear copper porphyrin oligomers. Physical Chemistry Chemical Physics, 2017, 19, 16057-16061.	1.3	17
778	Three-dimensional simulation of nonlinear dynamics of domain walls in films with perpendicular anisotropy. Physics of the Solid State, 2017, 59, 520-531.	0.2	7
779	Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications. Journal of Materials Chemistry C, 2017, 5, 5365-5371.	2.7	23
780	Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide. ACS Nano, 2017, 11, 6389-6395.	7.3	53
781	Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts. Science Advances, 2017, 3, e1602297.	4.7	23
782	Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Singleâ€Molecule Magnet (SMM) Behavior in a Family of Co ^{II} Y ^{III} Dinuclear Complexes with Easyâ€Plane Anisotropy. Chemistry - A European Journal, 2017, 23, 11649-11661.	1.7	51
783	Effect of amino on spin-dependent transport through a junction of fused oligothiophenes between graphene electrodes. Chemical Physics, 2017, 488-489, 17-21.	0.9	3
784	Radical based molecular transport system as good molecular spintronics device predicted by first-principles study. Computational Materials Science, 2017, 133, 93-98.	1.4	5
785	Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces. Surface Science Reports, 2017, 72, 105-145.	3.8	161
786	Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 2017, 346, 176-205.	9.5	612
787	Rational design of triple-bridged dinuclear Zn ^{II} Ln ^{III} -based complexes: a structural, magnetic and luminescence study. CrystEngComm, 2017, 19, 256-264.	1.3	26
788	The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions. Journal Physics D: Applied Physics, 2017, 50, 075103.	1.3	5
789	Superior Gas Sensing Properties of Monolayer PtSe ₂ . Advanced Materials Interfaces, 2017, 4, 1600911.	1.9	110
790	Spin-Selective Photoreduction of a Stable Radical within a Covalent Donor–Acceptor–Radical Triad. Journal of the American Chemical Society, 2017, 139, 15660-15663.	6.6	33

#	Article	IF	Citations
791	Spin transport through a junction entirely consisting of molecules from first principles. Applied Physics Letters, $2017,111,111$	1.5	18
792	Light-Induced Spin State Switching in Copper(II)-Nitroxide-Based Molecular Magnet at Room Temperature. Journal of Physical Chemistry Letters, 2017, 8, 5587-5592.	2.1	19
793	Spin-resolved dynamical conductance of a correlated large-spin magnetic molecule. Physical Review B, 2017, 95, .	1.1	8
794	Neutron scattering of advanced magnetic materials. Applied Physics Reviews, 2017, 4, 031303.	5 . 5	15
795	Isomeric ligands enhance the anisotropy barrier within nine-coordinated {Dy ₂ } compounds. Journal of Materials Chemistry C, 2017, 5, 9488-9495.	2.7	29
796	Quantum interference in coherent tunneling through branched molecular junctions containing ferrocene centers. Physical Review B, 2017, 96, .	1.1	15
797	A spin current rectifier. International Journal of Modern Physics B, 2017, 31, 1750230.	1.0	0
798	Single-molecule spin orientation control by an electric field. Journal of Chemical Physics, 2017, 146, 194705.	1.2	4
799	Electric-field-induced spin switch of endohedral dodecahedrane heterodimers H@C20Hn–C20Hn@M (M= Cu, Ag and Au, n = 15, 18, and 19): a theoretical study. Journal of Molecular Modeling, 2017, 23, 242.	0.8	2
800	Giant magnetoresistance and perfect spin filter effects in manganese phthalocyanine based molecular junctions. Nanoscale, 2017, 9, 12684-12689.	2.8	41
801	The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes. Journal of Chemical Physics, 2017, 147, 054702.	1.2	10
802	Spin-polarized transport properties of 1,3-dimethylpropynylidene-based molecular devices. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 92-95.	1.3	4
803	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie - International Edition, 2017, 56, 13061-13065.	7.2	66
804	Quantum Transport Through Tunable Molecular Diodes. Scientific Reports, 2017, 7, 7324.	1.6	6
805	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie, 2017, 129, 13241-13245.	1.6	18
806	Quantum interference in multi-branched molecules: The exact transfer matrix solutions. Journal of Chemical Physics, 2017, 147, 214115.	1.2	3
807	Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures. Physical Review B, 2017, 96, .	1,1	6
808	Quantum-interference effect on the spin polarization driven by protein-like single-helical molecules. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	0

#	Article	IF	CITATIONS
809	Enhanced Magnetic Hybridization of a Spinterface through Insertion of a Two-Dimensional Magnetic Oxide Layer. Nano Letters, 2017, 17, 7440-7446.	4.5	17
810	Tailoring the Polarity of Charge Carriers in Graphene–Porphine–Graphene Molecular Junctions through Linkage Motifs. Journal of Physical Chemistry C, 2017, 121, 27344-27350.	1.5	14
811	Magnetization-induced dynamics of a Josephson junction coupled to a nanomagnet. Physical Review B, 2017, 96, .	1.1	14
812	Realizing bias-induced spin transition with high-spin Mn ^{II} complexes at room temperature. Journal of Materials Chemistry C, 2017, 5, 11598-11604.	2.7	1
813	Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction. Journal of Chemical Physics, 2017, 146, 224701.	1.2	5
814	Voltage-dependent spin flip in magnetically substituted graphene nanoribbons: Towards the realization of graphene-based spintronic devices. Physical Review B, 2017, 95, .	1.1	9
815	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>HfO</mml:mi><mml:mn>2<mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mn></mml:msub></mml:math></pre>	1.1	8
816	as barriers in magnetic tunneling junctions. Physical Review B, 2017, 95, . Improvements on non-equilibrium and transport Green function techniques: The next-generation transiesta. Computer Physics Communications, 2017, 212, 8-24.	3.0	256
817	Ab initio modeling of transport and thermodynamic stability for hafnia memristive devices. Journal of Computational Electronics, 2017, 16, 1066-1076.	1.3	1
818	Ï€-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface. Chinese Journal of Chemical Physics, 2017, 30, 161-165.	0.6	1
819	Slow Magnetic Relaxation in Chiral Helicene-Based Coordination Complex of Dysprosium. Magnetochemistry, 2017, 3, 2.	1.0	19
820	Formation of ferromagnetic molecular thin films from blends by annealing. Beilstein Journal of Nanotechnology, 2017, 8, 1469-1475.	1.5	2
821	Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands. Beilstein Journal of Nanotechnology, 2017, 8, 1375-1387.	1.5	3
822	Electronic structure, transport, and collective effects in molecular layered systems. Beilstein Journal of Nanotechnology, 2017, 8, 2094-2105.	1.5	3
823	Nanomechanical control of spin current flip using monovacancy graphene. Carbon, 2018, 133, 218-223.	5.4	10
824	Topological Line Defects Around Graphene Nanopores for DNA Sequencing. Journal of Physical Chemistry C, 2018, 122, 7094-7099.	1.5	24
825	Edge defect switched dual spin filter in zigzag hexagonal boron nitride nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 9241-9247.	1.3	11
826	A new type of magnetism-controllable Mn-based single-molecule magnet. Journal of Magnetism and Magnetic Materials, 2018, 458, 90-94.	1.0	1

#	Article	IF	Citations
827	Detection and Manipulation of Charge States for Double-Decker DyPc ₂ Molecules on Ultrathin CuO Films. ACS Nano, 2018, 12, 2991-2997.	7.3	16
828	Highly Sensitive Sensing of NO and NO ₂ Gases by Monolayer C ₃ N. Advanced Theory and Simulations, 2018, 1, 1700008.	1.3	43
829	Engineering giant magnetic anisotropy in single-molecule magnets by dimerizing heavy transition-metal atoms. Applied Physics Express, 2018, 11, 055201.	1.1	5
831	Driving spin transition at interface: Role of adsorption configurations. Journal of Chemical Physics, 2018, 148, 044706.	1.2	6
832	Study on spin filtering and switching action in a double-triangular network chain. International Journal of Modern Physics B, 2018, 32, 1850115.	1.0	1
833	The disclosure of mesoscale behaviour of a 3d-SMM monolayer on Au(111) through a multilevel approach. Nanoscale, 2018, 10, 4096-4104.	2.8	8
834	Single Ion Magnets from 3d to 5f: Developments and Strategies. Chemistry - A European Journal, 2018, 24, 7574-7594.	1.7	264
835	Molecular Rectification Enhancement Based On Conformational and Chemical Modifications. Journal of Physical Chemistry C, 2018, 122, 2053-2063.	1.5	15
837	Spintronics Detection of Interfacial Magnetic Switching in a Paramagnetic Tris(8-hydroxyquinoline)iron(III) Thin Film. Materials and Energy, 2018, , 167-199.	2.5	2
838	Organic Radical-Based Single-Molecule and Single-Chain Magnets. Materials and Energy, 2018, , 271-344.	2.5	2
839	Mannich Base Ligands as Versatile Platforms for SMMs. Topics in Organometallic Chemistry, 2018, , 101-161.	0.7	3
840	Computational investigation of single-wall carbon nanotube functionalized with palladium nanoclusters as hydrogen sulfide gas sensor. International Nano Letters, 2018, 8, 9-15.	2.3	7
842	Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 99, 43-50.	1.3	8
843	Spin-dependent transport in a multifunctional spintronic device with graphene nanoribbon electrodes. Journal of Computational Electronics, 2018, 17, 604-612.	1.3	4
844	Magneto-Structural Properties and Theoretical Studies of a Family of Simple Heterodinuclear Phenoxide/Alkoxide Bridged Mn ^{III} Ln ^{III} Complexes: On the Nature of the Magnetic Exchange and Magnetic Anisotropy. Inorganic Chemistry, 2018, 57, 3683-3698.	1.9	37
845	Spin-polarized transport properties of a pyridinium-based molecular spintronics device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1226-1230.	0.9	4
846	Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach. Journal of Physical Chemistry B, 2018, 122, 485-492.	1.2	21
847	Bias-dependent local structure of water molecules at a metallic interface. Chemical Science, 2018, 9, 62-69.	3.7	19

#	Article	IF	Citations
848	Computational investigation of label free detection of biomolecules based on armchair graphene nanoribbon. Sensors and Actuators B: Chemical, 2018, 255, 1276-1284.	4.0	9
849	Silicene nanoribbon as a new DNA sequencing device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 595-600.	0.9	17
850	Ultraâ∈High Vacuum Deposition of Pyrene Molecules on Metal Surfaces. Physica Status Solidi (B): Basic Research, 2018, 255, 1800235.	0.7	7
851	Electronic Transport Properties of Spin-Crossover Magnet Fe(II)-N4S2 Complexes. Chinese Journal of Chemical Physics, 2018, 31, 33-38.	0.6	7
852	A Chiral Bipyrimidine-Bridged Dy2 SMM: A Comparative Experimental and Theoretical Study of the Correlation Between the Distortion of the DyO6N2 Coordination Sphere and the Anisotropy Barrier. Frontiers in Chemistry, 2018, 6, 537.	1.8	22
853	Adducts of transition metal complexes with redox-active ligands: the structure and spin-state-switching rearrangements. Russian Chemical Reviews, 2018, 87, 1049-1079.	2.5	44
854	Bottom-Up Nanointegration Technique for Novel Functionalized Carbon Nanotube and Multi-layer Graphene Device Fabrication. , 2018, , .		1
855	Non-equilibrium Green's Function Methods for Spin Transport and Dynamics. , 2018, , 1-27.		2
856	Influence of Energy Barriers in Triangular Dysprosium Single-Molecule Magnets through Different Substitutions on a Nitrophenolate-Type Coligand. Inorganic Chemistry, 2018, 57, 12448-12451.	1.9	21
857	Slow Magnetic Relaxation in Cobalt(II) Field-Induced Single-Ion Magnets with Positive Large Anisotropy. Inorganic Chemistry, 2018, 57, 12740-12755.	1.9	41
858	Spin-polarized and thermospin-polarized transport properties of phthalocyanine dimer based molecular junction with different transition metal atoms. Journal of Chemical Physics, 2018, 149, 134305.	1.2	7
859	A pure red luminescent \hat{l}^2 -carboline-substituted biphenylmethyl radical: photophysics, stability and OLEDs. Journal of Materials Chemistry C, 2018, 6, 11248-11254.	2.7	31
860	Magnetic-State Controlled Molecular Vibrational Dynamics at Buried Molecular–Metal Interfaces. Journal of Physical Chemistry C, 2018, 122, 26499-26505.	1.5	2
861	Theoretical Insights into Vinyl Derivatives Adsorption on a Cu(100) Surface. Journal of Physical Chemistry C, 2018, 122, 27301-27313.	1.5	6
862	Synthesis and characterization of two new mixed-valent Mn6 complexes derived from a well-explored 2â€'hydroxymethyl pyridine along with the use of newly employed carboxylate ions. Inorganic Chemistry Communication, 2018, 97, 139-143.	1.8	2
863	The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis. Journal of Molecular Modeling, 2018, 24, 278.	0.8	3
864	Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction. Physical Chemistry Chemical Physics, 2018, 20, 15736-15745.	1.3	16
865	Designing a Dy ₂ Single-Molecule Magnet with Two Well-Differentiated Relaxation Processes by Using a Nonsymmetric Bis-bidentate Bipyrimidine- <i>N</i> -Oxide Ligand: A Comparison with Mononuclear Counterparts. Inorganic Chemistry, 2018, 57, 6362-6375.	1.9	54

#	Article	IF	Citations
866	A family of lanthanide compounds with reduced nitronyl nitroxide diradical: syntheses, structures and magnetic properties. Dalton Transactions, 2018, 47, 7925-7933.	1.6	20
867	Electrically switchable magnetic exchange in the vibronic model of linear mixed valence triferrocenium complex. Dalton Transactions, 2018, 47, 11788-11805.	1.6	5
868	Efficient Fabrication of Stable Grapheneâ€Moleculeâ€Graphene Singleâ€Molecule Junctions at Room Temperature. ChemPhysChem, 2018, 19, 2258-2265.	1.0	10
869	Observation of strong Kondo like features and co-tunnelling in superparamagnetic GdCl3 filled 1D nanomagnets. Journal of Applied Physics, 2018, 123, .	1.1	6
870	Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions. Journal of Chemical Physics, 2018, 148, 184703.	1.2	5
871	Element-Selective Molecular Charge Transport Characteristics of Binuclear Copper(II)-Lanthanide(III) Complexes. Inorganic Chemistry, 2018, 57, 9274-9285.	1.9	8
872	Greatly enhanced spin filtering of single ferrocene devices: An ab initio study. Organic Electronics, 2018, 62, 227-233.	1.4	1
873	Molecular Engineering of High Energy Barrier in Single-Molecule Magnets Based on [MolII(CN)7]4 \hat{a} and V(II) Complexes. Inorganics, 2018, 6, 58.	1.2	9
874	Theoretical Studies of the Spin-Dependent Electronic Transport Properties in Ethynyl-Terminated Ferrocene Molecular Junctions. Micromachines, 2018, 9, 95.	1.4	5
875	Modulating spin-dependent electron transport in benzene-dithiolate magnetic junctions by hybrid interface states. Journal Physics D: Applied Physics, 2018, 51, 345302.	1.3	16
876	Characterization of the isolated [Co3Ni(EtOH)]+ cluster by IR spectroscopy and spin-dynamics calculations. Physical Review B, 2018, 97, .	1.1	14
877	Planar polycubane single-molecule magnet [Ni6(pymeid)6Ni12(OH)6(µ3OH)16Cl2 (H2O)2]·38H2O: Experiment and theory. Inorganica Chimica Acta, 2018, 483, 480-487.	1.2	5
878	Tunneling electronic currents simulated with localized basis sets. Surface Science, 2018, 678, 201-205.	0.8	1
879	Series of Single-Ion and 1D Chain Complexes Based on Quinolinic Derivative: Synthesis, Crystal Structures, HF-EPR, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 7757-7762.	1.9	17
880	Adsorption of the Gas Molecules NH ₃ , NO, NO ₂ , and CO on Borophene. Journal of Physical Chemistry C, 2018, 122, 14665-14670.	1.5	91
881	Switching the Spin on a Ni Trimer within a Metal–Organic Motif by Controlling the On-Top Bromine Atom. ACS Nano, 2019, 13, 9936-9943.	7.3	14
882	Chiral Erbium(III) Complexes: Single-Molecule Magnet Behavior, Chirality, and Nuclearity Control. Inorganic Chemistry, 2019, 58, 10694-10703.	1.9	29
883	Exact muffin tin orbital based first-principles method for electronic-structure and electron-transport simulation of device materials. Physical Review B, 2019, 100, .	1.1	12

#	Article	IF	CITATIONS
884	Outstanding Energy Exchange between Organic Molecules and Metal Surfaces: Decomposition Kinetics of Excited Vinyl Derivatives Driven by the Interaction with a $Cu(111)$ Surface. Journal of Physical Chemistry C, 2019, 123, 19625-19636.	1.5	6
885	Principles of Computational Simulations Devices and Characterization of Nanoelectronic Materials. Advanced Structured Materials, 2019, , 49-89.	0.3	2
886	Tuning spin filtering by anchoring groups in benzene derivative molecular junctions. Journal of Physics Condensed Matter, 2019, 31, 405301.	0.7	5
887	Ligand ratio/solvent-influenced syntheses, crystal structures, and magnetic properties of polydentate Schiff base ligand-Dy($<$ scp $>$ iii $<$ /scp $>$) compounds with \hat{l}^2 -diketonate ligands as co-ligands. Dalton Transactions, 2019, 48, 12466-12481.	1.6	26
888	Ab initio study of electronic and transport anisotropy of two square and rectangle phosphorene nanoflakes. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2
889	Modulating hybrid interface states in magnetic molecular junctions by molecular geometrical torsion. Journal of Magnetism and Magnetic Materials, 2019, 489, 165465.	1.0	7
890	Transmission mechanism and quantum interference in fused thienoacenes coupling to Au electrodes through the thiophene rings. Physical Chemistry Chemical Physics, 2019, 21, 16293-16301.	1.3	3
891	Photochemically Tuned Magnetic Properties in an Erbium(III)-Based Easy-Plane Single-Molecule Magnet. Inorganic Chemistry, 2019, 58, 14440-14448.	1.9	21
892	Emergent electronically-controllable local-field-inducer based on a molecular break-junction with magnetic radical. Physical Chemistry Chemical Physics, 2019, 21, 21693-21697.	1.3	2
893	Density Functional Theory Analysis of Gas Adsorption on Monolayer and Few Layer Transition Metal Dichalcogenides: Implications for Sensing. ACS Applied Nano Materials, 2019, 2, 6076-6080.	2.4	49
894	Scenarios of local spectral property and multifunctional spin selecting for a triple quantum dot molecule: How do the bonding and antibonding orbitals contribute to the spin currents?. Results in Physics, 2019, 15, 102601.	2.0	3
895	Dinuclear Co ^{II} Y ^{III} <i>Vs.</i> i>tetranuclear CoII2YIII2 complexes: the effect of increasing molecular size on magnetic anisotropy and relaxation dynamics. Dalton Transactions, 2019, 48, 14873-14884.	1.6	6
896	Effect of the change of the ancillary carboxylate bridging ligand on the SMM and luminescence properties of a series of carboxylate-diphenoxido triply bridged dinuclear ZnLn and tetranuclear Zn2Ln2 complexes (Ln = Dy, Er). Dalton Transactions, 2019, 48, 190-201.	1.6	13
897	Molecular multifunctionality preservation upon surface deposition for a chiral single-molecule magnet. Chemical Science, 2019, 10, 3065-3073.	3.7	22
898	Performance analysis of a pairwise method for partial inversion of complex block tridiagonal matrices. Concurrency Computation Practice and Experience, 2019, 31, e4918.	1.4	2
899	DFT-based study of electron transport through ferrocene compounds with different anchor groups in different adsorption configurations of an STM setup. Physical Review B, 2019, 99, .	1.1	8
900	Tetranuclear dysprosium single-molecule magnets: tunable magnetic interactions and magnetization dynamics through modifying coordination number. Dalton Transactions, 2019, 48, 2135-2141.	1.6	18
901	Exploring the transport properties of equatorially low-coordinated erbium single ion magnets. Journal of Magnetism and Magnetic Materials, 2019, 489, 165455.	1.0	1

#	Article	IF	CITATIONS
902	Light-Induced Electron Paramagnetic Resonance Spectroscopy of Spin-Assisted Charge Transfer in Narrow-Bandgap Copolymer:Methanofullerene Composites. Journal of Physical Chemistry C, 2019, 123, 16533-16545.	1.5	6
903	Majorana zero modes in regular B-form single-stranded DNA proximity-coupled to an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi></mml:math> -wave superconductor. Physical Review B, 2019, 99, .	1.1	12
904	Molecular spintronics. Journal of Applied Physics, 2019, 125, .	1.1	26
905	Light-driven molecular switch for reconfigurable spin filters. Nature Communications, 2019, 10, 2455.	5.8	109
906	An order N numerical method to efficiently calculate the transport properties of large systems: An algorithm optimized for sparse linear solvers. Journal of Computational Physics, 2019, 394, 440-455.	1.9	10
907	Electronic transport of SiC molecular chains in parallel via first-principles calculations. Journal of Applied Physics, 2019, 125, .	1.1	7
908	Two-Pathway Viewpoint to Interpret Quantum Interference in Molecules Containing Five-Membered Heterocycles: Thienoacenes as Examples. Journal of Physical Chemistry C, 2019, 123, 15977-15984.	1.5	4
909	Magnetically tunable organic semiconductors with superparamagnetic nanoparticles. Materials Horizons, 2019, 6, 1913-1922.	6.4	5
910	Unveiling the emergence of functional materials with STM: metal phthalocyanine on surface architectures. Molecular Systems Design and Engineering, 2019, 4, 471-483.	1.7	14
911	New Paradigm for Gas Sensing by Two-Dimensional Materials. Journal of Physical Chemistry C, 2019, 123, 13104-13109.	1.5	24
912	A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism. Nature Communications, 2019, 10, 2207.	5.8	67
913	Organic electronic memory devices. , 2019, , 843-874.		0
914	Theoretical insights on the importance of anchoring vs molecular geometry in magnetic molecules acting as junctions. Journal of Magnetism and Magnetic Materials, 2019, 485, 212-216.	1.0	4
915	Tunnel magnetoresistance of a supramolecular spin valve. Europhysics Letters, 2019, 125, 18004.	0.7	2
916	Epitaxial and contamination-free Co(0001) electrodes on insulating substrates for molecular spintronic devices. Thin Solid Films, 2019, 680, 67-74.	0.8	1
917	Exchange-dependent spin polarized transport and phase transition in a triple monomer molecule. Physical Chemistry Chemical Physics, 2019, 21, 11158-11167.	1.3	6
918	Theoretical study of laser-induced ultrafast spin dynamics in small iron-benzene clusters and of related laser and magnetic-field effects. Physical Review B, 2019, 99, .	1.1	7
919	Highâ€Performance Fieldâ€Effect Transistors Based on αP and βP. Advanced Materials, 2019, 31, 1807810.	11.1	9

#	Article	IF	CITATIONS
920	Magnetic field-driven spintronic logic gates in one-dimensional manganese phthalocyanine nanoribbons based molecular spintronic devices. Organic Electronics, 2019, 69, 120-127.	1.4	9
921	Spintronics and magnetic field effects in organic semiconductors and devices. , 2019, , 385-427.		1
922	Density functional theory based electron transport study of coherent tunneling through cyclic molecules containing Ru and Os as redox active centers. Physical Review B, 2019, 99, .	1.1	0
923	Large dual spin-rectifying and high-efficiency dual spin-filtering in cyclooligomeric Mn-phthalocyanine dimer molecular junction. Chemical Physics Letters, 2019, 724, 73-79.	1.2	6
924	Symmetry aspects of spin filtering in molecular junctions: Hybridization and quantum interference effects. Physical Review B, 2019, 99, .	1.1	26
925	Simulating DNA Chip Design Using All-Electronic Graphene-Based Substrates. Molecules, 2019, 24, 951.	1.7	6
926	The effect of thermal magnonic excitations on the electronic conductance of a magnetic nanowire. Journal of Magnetism and Magnetic Materials, 2019, 484, 367-372.	1.0	4
927	Plasmon-enhanced magneto-optical detection of single-molecule magnets. Materials Horizons, 2019, 6, 1148-1155.	6.4	16
928	An eight-coordinate ytterbium complex with a hexagonal bipyramid geometry exhibiting field-induced single-ion magnet behaviour. Dalton Transactions, 2019, 48, 5621-5626.	1.6	25
929	Controlling the magnetic exchange coupling in hybrid heterojunctions via spacer layers of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ï€</mml:mi></mml:math> -conjugated molecules. Physical Review B, 2019, 99, .	1.1	4
930	Dramatic impact of auxiliary ligands on the two-step magnetic relaxation process in Dy ₄ (<scp>iii</scp>) single-molecule magnets. Dalton Transactions, 2019, 48, 5793-5799.	1.6	18
931	Recent advance in heterometallic nanomagnets based on TMxLn4â^'x cubane subunits. Coordination Chemistry Reviews, 2019, 387, 129-153.	9.5	60
932	Magnetoresistive properties of a double magnetic molecule spin valve in different geometrical arrangements. Journal of Magnetism and Magnetic Materials, 2019, 480, 11-21.	1.0	1
933	Out-of-plane magnetic anisotropy energy in the Ni ₃ Bz ₃ molecule. Physical Chemistry Chemical Physics, 2019, 21, 5305-5311.	1.3	0
934	Controlling spins with surface magnon polaritons. Physical Review B, 2019, 100, .	1.1	19
935	Perfect Spin Filtering in Homobimetallic Ni Complex with High Tolerance to Structural Changes. Journal of Physical Chemistry Letters, 2019, 10, 7842-7849.	2.1	8
936	Role of charge transfer in hybridization-induced spin transition in metal-organic molecules. Physical Review B, 2019, 100, .	1.1	5
937	Half-metallic behavior in ruthenium-cyclopentadienyl organometallic sandwich molecules. Physical Chemistry Chemical Physics, 2019, 21, 22475-22481.	1.3	5

#	Article	IF	CITATIONS
938	Interfacial Spin Manipulation of Nickel-Quinonoid Complex Adsorbed on Co(001) Substrate. Magnetochemistry, 2019, 5, 2.	1.0	3
939	A first principles study on spin resolved electronic properties of X@C70 (X = N, B) endohedral fullerene based molecular devices. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 83-89.	1.3	6
940	Electric Field Control of Spin States in Trigonal Two-Electron Quantum Dot Arrays and Mixed-Valence Molecules: I. Electronic Problem. Journal of Physical Chemistry C, 2019, 123, 2451-2459.	1.5	11
941	Nontrivial spatial dependence of the spin torques in L10 FePt-based tunneling junctions. Physical Review B, 2019, 99, .	1.1	3
942	Mechanical Tuning of Giant Magnetoresistance and Spin Filtering in Manganese Diporphyrinâ€Based Molecular Junction. ChemElectroChem, 2019, 6, 421-429.	1.7	1
943	Surface-Mediated Recrystallization for Highly Conducting Organic Radical Crystal. Crystal Growth and Design, 2019, 19, 551-555.	1.4	11
944	Tetrathiafulvalene-Based Helicene Ligand in the Design of a Dysprosium Field-Induced Single-Molecule Magnet. Inorganic Chemistry, 2019, 58, 52-56.	1.9	30
945	Single-molecule tunnel magnetoresistance of azulene. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 105, 219-223.	1.3	3
946	Structural, electronic and transport properties of a single 1,4-benzenediamine molecule attached to metal contacts of Au, Ag and Cu. Computational Materials Science, 2020, 171, 109212.	1.4	3
947	Computational modelling of an amide functionalized single-walled carbon nanotube based H2S gas sensor. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113691.	1.3	7
948	Determination of magnetic properties of Co(0 0 0 1) using MCDAD. Journal of Magnetism and Magnetic Materials, 2020, 497, 165989.	1.0	1
949	Spatial-induced antiferromagnetic-like interaction of gadofullerene incarcerated in metal-organic-framework matrix. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 353-360.	1.0	2
950	The role of water on the electronic transport in graphene nanogap devices designed for DNA sequencing. Carbon, 2020, 158, 314-319.	5.4	17
951	<i>Ab Initio</i> Simulations and Materials Chemistry in the Age of Big Data. Journal of Chemical Information and Modeling, 2020, 60, 452-459.	2.5	28
953	Introduction to Carbon-Based Nanostructures. , 2020, , 1-10.		0
954	The New Family of Two-Dimensional Materials and van der Waals Heterostructures. , 2020, , 70-91.		0
955	Quantum Transport: General Concepts. , 2020, , 92-119.		0
956	Klein Tunneling and Ballistic Transport in Graphene and Related Materials. , 2020, , 120-144.		0

#	Article	IF	CITATIONS
957	Quantum Transport in Disordered Graphene-Based Materials. , 2020, , 145-209.		0
958	Strong intramolecular Dy ^{III} –Dy ^{III} magnetic couplings up to 15.00 cm ^{â°1} in phenoxyl-bridged dinuclear 4f complexes. New Journal of Chemistry, 2020, 44, 2083-2090.	1.4	14
961	Electronic Properties of Carbon-Based Nanostructures. , 2020, , 11-69.		0
962	Quantum Hall Effects in Graphene. , 2020, , 210-236.		0
963	Spin-Related Phenomena., 2020,, 237-277.		0
964	Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials., 2020,, 293-353.		0
968	Synchronously voltage-manipulable spin reversing and selecting assisted by exchange coupling in a monomeric dimer with magnetic interface. Physical Chemistry Chemical Physics, 2020, 22, 422-429.	1.3	7
969	The effect of the electronic structure and flexibility of the counteranions on magnetization relaxation in $[Dy(L) < sub > 2 < /sub > 2 < /sub > 0) < sub > 5 < /sub >] < sup > 3 + < /sup > (L = phosphine oxide) Tj ETQ$	qB.b0.78	43224 rgBT
970	Structureâ€Independent Conductance of Thiopheneâ€Based Singleâ€Stacking Junctions. Angewandte Chemie, 2020, 132, 3306-3312.	1.6	10
971	Structureâ€Independent Conductance of Thiopheneâ€Based Singleâ€Stacking Junctions. Angewandte Chemie - International Edition, 2020, 59, 3280-3286.	7.2	58
972	Enhanced robustness of half-metallicity in VBr ₃ nanowires by strains and transition metal doping. Physical Chemistry Chemical Physics, 2020, 22, 24455-24461.	1.3	1
973	Fitting the magnetoresponses of the OLED using polaron pair model to obtain spin-pair dynamics and local hyperfine fields. Scientific Reports, 2020, 10, 16806.	1.6	13
974	Why lanthanide Er ^{III} SIMs cannot possess huge energy barriers: a theoretical investigation. Dalton Transactions, 2020, 49, 14576-14583.	1.6	50
975	Electrically precise control of the spin polarization of electronic transport at the single-molecule level. Physical Chemistry Chemical Physics, 2020, 22, 17229-17235.	1.3	11
976	Crossed Andreev reflection in a quantum dot coupled to a topological superconducting single-stranded DNA. Current Applied Physics, 2020, 20, 1299-1305.	1.1	0
977	Structure-dependent spin transport in a DNA molecule. Computational and Theoretical Chemistry, 2020, 1188, 112943.	1.1	2
978	Insights into Nature of Magnetization Plateaus of a Nickel Complex [Ni4(\hat{l} /4-CO3)2(aetpy)8](ClO4)4 from a Spin-1 Heisenberg Diamond Cluster. Magnetochemistry, 2020, 6, 59.	1.0	7
979	Negative Magnetoresistance Behavior in Polymer Spin Valves Based on Donorâ°'Acceptor Conjugated Molecules. Advanced Materials Interfaces, 2020, 7, 2000868.	1.9	7

#	Article	IF	CITATIONS
980	Interaction of ultra-thin CoTPP films on Fe(001) with oxygen: Interplay between chemistry, order, and magnetism. Journal of Applied Physics, 2020, 128 , .	1.1	7
981	Hard X-ray magnetochiral dichroism in a paramagnetic molecular 4f complex. Chemical Science, 2020, 11, 8306-8311.	3.7	16
982	Giant spin signals in chemically functionalized multiwall carbon nanotubes. Science Advances, 2020, 6, eaba5494.	4.7	4
983	Tuning of spin-polarized current in high spin organic molecules. Physica B: Condensed Matter, 2020, 595, 412396.	1.3	10
984	Pathways for charge transport through material interfaces. Journal of Chemical Physics, 2020, 153, 024104.	1.2	5
985	Chemical Reaction Rates for Systems with Spin–Orbit Coupling and an Odd Number of Electrons: Does Berry's Phase Lead to Meaningful Spin-Dependent Nuclear Dynamics for a Two State Crossing?. Journal of Physical Chemistry A, 2020, 124, 7355-7372.	1.1	20
986	Nanogap-based all-electronic DNA sequencing devices using MoS ₂ monolayers. Physical Chemistry Chemical Physics, 2020, 22, 27053-27059.	1.3	9
987	Anomalous Effect of Quantum Interference in Organic Spin Filters. Journal of Physical Chemistry C, 2020, 124, 24361-24371.	1.5	26
988	Computational modeling of transport properties of decorated SWCNT: application in H2S gas sensor. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	1
991	Nanofabrication Techniques in Large-Area Molecular Electronic Devices. Applied Sciences (Switzerland), 2020, 10, 6064.	1.3	21
992	Chemically-engineered multipurpose spin selection in a double-level molecular device with spinterface. Results in Physics, 2020, 19, 103390.	2.0	0
993	Selective Toluene Detection with Mo ₂ CT _{<i>x</i>} MXene at Room Temperature. ACS Applied Materials & ACS ACS Applied Materials & ACS	4.0	83
994	Tuning magnetic anisotropy by the π-bonding features of the axial ligands and the electronic effects of gold(i) atoms in 2D {Co(L)2[Au(CN)2]2}n metal–organic frameworks with field-induced single-ion magnet behaviour. Inorganic Chemistry Frontiers, 2020, 7, 4611-4630.	3.0	13
995	Precise Spin Manipulation of Single Molecule Positioning on Graphene by Coordination Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 9819-9827.	2.1	7
996	Manipulating Current Spin Polarization in Magnetic Single-Molecule Junctions via Destructive Quantum Interference. Journal of Physical Chemistry C, 2020, 124, 12144-12152.	1.5	18
997	Hybridized Kondo State Formed by π Radical Assemblies. Journal of Physical Chemistry C, 2020, 124, 12024-12029.	1.5	3
998	Spin-crossover in iron(II)-phenylene ethynylene-2,6-di(pyrazol-1-yl) pyridine hybrids: toward switchable molecular wire-like architectures. Journal of Physics Condensed Matter, 2020, 32, 204002.	0.7	2
999	An ab initio perspective on scanning tunneling microscopy measurements of the tunable Kondo resonance of the TbPc2 molecule on a gold substrate. Physical Review B, 2020, 101, .	1.1	1

#	ARTICLE	IF	CITATIONS
1000	Insensitivity of Magnetic Coupling to Ligand Substitution in a Series of Tetraoxolene Radical-Bridged Fe2 Complexes. Inorganic Chemistry, 2020, 59, 4634-4649.	1.9	14
1001	Effect of the linkage modes of thiolated ethynyl groups on the spin-dependent electronic transport properties in transition metal porphyrin molecular junctions. Journal of Physics Condensed Matter, 2020, 32, 055301.	0.7	O
1002	Non-equilibrium Green's Function Methods for Spin Transport and Dynamics. , 2020, , 957-983.		5
1003	Cool-Spark plasma sintering: An opportunity for the development of molecular ceramics. Solid State Sciences, 2020, 102, 106171.	1.5	8
1004	Gas Sensing Performance of Pristine and Monovacant C6BN Monolayers Evaluated by Density Functional Theory and the Nonequilibrium Green's Function Formalism. Journal of Physical Chemistry C, 2020, 124, 5853-5860.	1.5	18
1005	Effects of gas adsorption on monolayer Si ₂ BN and implications for sensing applications. Journal of Physics Condensed Matter, 2020, 32, 355602.	0.7	8
1006	Organic Spintronics: A Theoretical Investigation of a Graphene-Porphyrin Based Nanodevice. Magnetochemistry, 2020, 6, 27.	1.0	1
1007	Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes*. Chinese Physics B, 2020, 29, 113101.	0.7	8
1008	Octanuclear Ni ₄ Ln ₄ Coordination Aggregates from Schiff Base Anion Supports and Connecting of Two Ni ₂ Ln ₂ Cubes: Syntheses, Structures, and Magnetic Properties. Chemistry - an Asian Journal, 2020, 15, 2731-2741.	1.7	14
1009	$\langle i \rangle$ Ab initio $\langle i \rangle$ calculation of transport properties in 1,3-diphenylpropynylidene based molecular device. Molecular Physics, 2020, 118, .	0.8	3
1010	Metal–Organic Framework Magnets. Chemical Reviews, 2020, 120, 8716-8789.	23.0	369
1011	Regulating the single-molecule magnetic properties of phenol oxygen-bridged binuclear lanthanide complexes through the electronic and spatial effect of the substituents. Inorganic Chemistry Frontiers, 2020, 7, 1229-1238.	3.0	14
1012	<i>In Situ</i> Synthesis of Metal–Salophene Complexes on Intercalated Graphene. Journal of Physical Chemistry C, 2020, 124, 4279-4287.	1.5	4
1013	In silico design of organic p–n junction diodes using quantum chemical calculations. Journal of Computational Electronics, 2020, 19, 80-90.	1.3	4
1014	Quantum Transport beyond DC., 2020,, 278-292.		0
1016	Rare CH ₃ O ^{â^'} /CH ₃ CH ₂ O ^{â^'} -bridged nine-coordinated binuclear Dy ^{III} single-molecule magnets (SMMs) significantly regulate and enhance the effective energy barriers. CrystEngComm, 2020, 22, 1712-1724.	1.3	6
1017	First principles investigation of the spin transport properties in graphene-porphine-graphene nanojunctions. Molecular Physics, 2020, 118, e1755065.	0.8	3
1018	Bias induced spin state transition mediated by electron excitations. Journal of Chemical Physics, 2020, 152, 134301.	1.2	3

#	ARTICLE	IF	CITATIONS
1019	Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes*. Chinese Physics B, 2020, 29, 067202.	0.7	7
1020	Single-Molecule Conductance through an Isoelectronic B–N Substituted Phenanthrene Junction. Journal of the American Chemical Society, 2020, 142, 8068-8073.	6.6	37
1021	Thermal magnetoresistance and spin thermopower in C60 dimers. Journal of Physics Condensed Matter, 2020, 32, 285302.	0.7	1
1022	Appraising spin-state energetics in transition metal complexes using double-hybrid models: accountability of SOS0-PBESCAN0-2(a) as a promising paradigm. Physical Chemistry Chemical Physics, 2020, 22, 9388-9404.	1.3	10
1023	Hydrazone based spin crossover complexes: Behind the extra flexibility of the hydrazone moiety to switch the spin state. Coordination Chemistry Reviews, 2021, 431, 213666.	9.5	38
1024	Next Generation Multifunctional Nano-Science of Advanced Metal Complexes with Quantum Effect and Nonlinearity. Bulletin of the Chemical Society of Japan, 2021, 94, 209-264.	2.0	67
1025	Large-scale first-principles quantum transport simulations using plane wave basis set on high performance computing platforms. Computer Physics Communications, 2021, 260, 107737.	3.0	9
1026	Jahn–Teller and Pseudo-Jahn–Teller Effects: From Particular Features to General Tools in Exploring Molecular and Solid State Properties. Chemical Reviews, 2021, 121, 1463-1512.	23.0	67
1027	Solvent responses and substituent effects upon magnetic properties of mononuclear Dy ^{III} compounds. Dalton Transactions, 2021, 50, 624-637.	1.6	13
1028	Bio-inspired wettability patterns for biomedical applications. Materials Horizons, 2021, 8, 124-144.	6.4	52
1029	Sublimierbare Spin rossoverâ€Komplexe: Vom Schalten des Spinzustands zu molekularen Bauelementen. Angewandte Chemie, 2021, 133, 7578-7598.	1.6	16
1030	Sublimable Spinâ€Crossover Complexes: From Spinâ€State Switching to Molecular Devices. Angewandte Chemie - International Edition, 2021, 60, 7502-7521.	7.2	167
1031	Electronic spin separation induced by nuclear motion near conical intersections. Nature Communications, 2021, 12, 700.	5.8	31
1032	Improving the single-molecule magnet properties of two pentagonal bipyramidal Dy ³⁺ compounds by the introduction of both electron-withdrawing and -donating groups. Dalton Transactions, 2021, 50, 12607-12618.	1.6	19
1033	Quantum interference enhances rectification behavior of molecular devices. Physical Chemistry Chemical Physics, 2021, 23, 1550-1557.	1.3	6
1034	The interaction of M-BZ, M(\$\$hbox {H}_{{2}}hbox {O}\$\$)-BZ, M-2BZ and M(\$\$hbox {H}_{{2}}hbox) Tj ETQq1 1	0.784314 0.6	ł rgBT /Ovel 1
1035	Benzobisthiadiazole-based high-spin donor–acceptor conjugated polymers with localized spin distribution. Materials Advances, 2021, 2, 2943-2955.	2.6	10
1036	A small heterocyclic molecule as a multistate transistor: a quantum many-body approach. Journal of Materials Chemistry C, 2021, 9, 10927-10934.	2.7	2

#	Article	IF	CITATIONS
1037	Molecular Devices., 2021,, 206-240.		2
1038	Modulating the relaxation dynamics <i>via</i> structural transition from a dinuclear dysprosium cluster to a nonanuclear cluster. Dalton Transactions, 2021, 50, 12814-12820.	1.6	3
1039	The effect of spin polarization on the electron transport of molecular wires with diradical character. Physical Chemistry Chemical Physics, 2021, 23, 4777-4783.	1.3	7
1040	Designing a mechanically driven spin-crossover molecular switch <i>via</i> organic embedding. Nanoscale Advances, 2021, 3, 4990-4995.	2.2	8
1041	A high-spin diradical dianion and its bridged chemically switchable single-molecule magnet. Chemical Science, 2021, 12, 9998-10004.	3.7	4
1042	Prominent nonequilibrium effects beyond the standard first-principles approach in nanoscale electronic devices. Nanoscale Horizons, 2021, 6, 801-808.	4.1	3
1043	Anomalous stepped-hysteresis and T-induced unit-cell-volume reduction in carbon nanotubes continuously filled with faceted Fe3C nanowires. Nano Express, 2021, 2, 010027.	1.2	1
1044	High-Performance Spin Filters Based on 1,2,4,5-Tetrahydroxybenzene Molecules Attached to Bulk Nickel Electrodes. Journal of Physical Chemistry C, 2021, 125, 6945-6953.	1.5	14
1045	The Formation and Conducting Mechanism of Imidazoleâ€Gold Molecular Junctions. ChemistrySelect, 2021, 6, 2959-2965.	0.7	6
1046	Hardware Security for and beyond CMOS Technology. , 2021, , .		6
1047	Multiple magnetic states of CoPc molecule on a two-dimensional layer of NbSe2. Journal of Physics Condensed Matter, 2021, 33, 205802.	0.7	0
1048	Ligand Nonâ€innocence and Single Molecular Spintronic Properties of Ag II Dibenzocorrole Radical on Ag(111). Angewandte Chemie, 2021, 133, 11808-11812.	1.6	1
1049	Magnetic anisotropy in 5d transition metal–porphyrin molecules*. Chinese Physics B, 2021, 30, 047501.	0.7	0
1050	Ligand Nonâ€innocence and Single Molecular Spintronic Properties of Ag ^{II} Dibenzocorrole Radical on Ag(111). Angewandte Chemie - International Edition, 2021, 60, 11702-11706.	7.2	9
1051	Controllable Spin Switching in a Single-Molecule Magnetic Tunneling Junction. Nanoscale Research Letters, 2021, 16, 77.	3.1	4
1052	Spinâ€Crossover Molecules on Surfaces: From Isolated Molecules to Ultrathin Films. Advanced Materials, 2021, 33, e2008141.	11.1	49
1053	Understanding and tuning of spinterface for chemisorbed Ni-dinuclear quinonoid on Co(001) substrate. Journal of Physics Condensed Matter, 2021, 33, .	0.7	0
1054	Spin Crossover and Fieldâ€Induced Singleâ€Molecule Magnet Behaviour in Co(II) Complexes Based on Terpyridine with Tetrathiafulvalene Analogues. European Journal of Inorganic Chemistry, 2021, 2021, 2374-2383.	1.0	5

#	Article	IF	CITATIONS
1055	Bias-controlled spin memory and spin injector scheme in the tunneling junction with a single-molecule magnet*. Chinese Physics B, 2021, 30, 067501.	0.7	0
1056	Electronic Lability of Quinonoidâ€Bridged Dinuclear 3 dâ€Metal Complexes with Tetradentate Nâ€Donor Bases. European Journal of Inorganic Chemistry, 2021, 2021, 2684-2695.	1.0	17
1057	Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. Chemosensors, 2021, 9, 162.	1.8	5
1058	Carboxylate-Decorated Aggregation of Octanuclear Co ₄ Ln ₄ (Ln = Dy, Ho, Yb) Complexes from Ligand-Controlled Hydrolysis: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 2021, 60, 11129-11139.	1.9	8
1059	Edge-state transport in circular quantum point contact quantum piezotronic transistors. Nano Energy, 2021, 85, 106002.	8.2	1
1060	First principle investigations of longâ€range magnetic exchange interactions via polyacene couplers. International Journal of Quantum Chemistry, 2021, 121, e26756.	1.0	6
1061	Robust Giant Magnetoresistance in 2D Van der Waals Molecular Magnetic Tunnel Junctions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36098-36105.	4.0	8
1063	Engineering of the <i>XY</i> Magnetic Layered System with Adeninium Cations: Monocrystalline Angle-Resolved Studies of Nonlinear Magnetic Susceptibility. Inorganic Chemistry, 2021, 60, 10186-10198.	1.9	2
1064	The Importance of Spin State in Chiral Supramolecular Electronics. Frontiers in Chemistry, 2021, 9, 722727.	1.8	9
1065	Real-time label-free detection of DNA hybridization using a functionalized graphene field effect transistor: a theoretical study. Journal of Nanoparticle Research, 2021, 23, 185.	0.8	7
1066	In Situ Tuning of the Charge-Carrier Polarity in Imidazole-Linked Single-Molecule Junctions. Journal of Physical Chemistry Letters, 2021, 12, 7596-7604.	2.1	6
1067	Hard–Soft Chemistry Design Principles for Predictive Assembly of Single Molecule-Metal Junctions. Journal of the American Chemical Society, 2021, 143, 16439-16447.	6.6	23
1068	Single-molecule anisotropic magnetoresistance at room temperature: Influence of molecular structure. Electrochimica Acta, 2021, 389, 138760.	2.6	10
1069	Negative differential resistance in all-benzene molecule of trefoil knot. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 410, 127539.	0.9	0
1070	First-principles nonequilibrium dynamical cluster theory for quantum transport simulations of disordered nanoelectronic devices. Physical Review B, 2021, 104, .	1.1	5
1071	Spin-sensitive charge oscillation in a single-molecule transistor. Chinese Journal of Physics, 2021, , .	2.0	1
1072	Transition state dynamics of a driven magnetic free layer. Communications in Nonlinear Science and Numerical Simulation, 2022, 105, 106054.	1.7	1
1073	Rise of silicene and its applications in gas sensing. Journal of Molecular Modeling, 2021, 27, 277.	0.8	11

#	Article	IF	CITATIONS
1074	Genomics of carbon atomic chains. Carbon, 2021, 183, 977-983.	5.4	2
1075	Modulation of hybrid interface states and magnetoresistance in quantum interference systems via functional groups. Journal of Magnetism and Magnetic Materials, 2021, 537, 168138.	1.0	4
1076	A manganese (II) dimer bearing the reduced derivatives of nitronyl nitroxides. Polyhedron, 2021, 209, 115427.	1.0	2
1077	Effect of a ferromagnetic STM cobalt tip on a single Co-phthalocyanine molecule adsorbed on a ferromagnetic substrate. Physics Open, 2021, 9, 100088.	0.7	1
1078	Temperature dependent transition of conduction mechanism from carrier injection to multistep tunneling in Fe3O4 (111)/Alq3/Co organic spin valve. Organic Electronics, 2021, 99, 106324.	1.4	2
1079	A review of oligo(arylene ethynylene) derivatives in molecular junctions. Nanoscale, 2021, 13, 10668-10711.	2.8	24
1080	Nonexponential Length Dependence of Molecular Conductance in Acene-Based Molecular Wires. ACS Sensors, 2021, 6, 477-484.	4.0	9
1081	Armchair Graphene Nanoribbon-Based Spin Caloritronics. SSRN Electronic Journal, 0, , .	0.4	0
1082	General Description. Springer Tracts in Modern Physics, 2013, , 1-38.	0.1	2
1083	Introduction to Self-Assembled Monolayers. Springer Theses, 2016, , 45-81.	0.0	2
1084	Structural, Electronic and Adsorption Characteristics of Transition Metal doped TM@C70 Endohedral Fullerenes. Journal of Cluster Science, 2021, 32, 77-84.	1.7	4
1085	Tunnel magnetoresistance of homocatenated silicon and germanium clusters. Current Applied Physics, 2017, 17, 1465-1468.	1.1	1
1087	Low-bias conductance mechanism of diarylethene isomers: A first-principle study. Chinese Journal of Chemical Physics, 2020, 33, 697-702.	0.6	6
1088	Hardware Security For and Beyond CMOS Technology. , 2020, , .		14
1089	DFT-NEGF Approach to Current-Induced Forces, Vibrational Signals and Heating in Nanoconductors. , 2010, , .		1
1090	Magnetic Field Effects in π-Conjugated Systems. , 2010, , 217-255.		5
1091	Investigation of bipartite entanglement across the magnetization process of a highly frustrated spin-1/2 Heisenberg octahedral chain as a new paradigm of the localized-magnon approach. Europhysics Letters, 2020, 132, 30004.	0.7	3
1092	Magnetic and Transport Properties of As-grown and Annealed GaMnAs Thick Layers. Journal of the Magnetics Society of Japan, 2012, 36, 49-53.	0.5	4

#	Article	IF	Citations
1093	Theoretical Investigation of Chemical Spin Doping into Single Porphyrin Junctions toward Ultrahigh-Sensitive Nitric Oxide Sensor. Japanese Journal of Applied Physics, 2012, 51, 045202.	0.8	1
1094	Ultrahigh Spin Filter Efficiency, Giant Magnetoresistance and Large Spin Seebeck Coefficient in Monolayer and Bilayer Co-/Fe-/Cu-Phthalocyanine Molecular Devices. Nanomaterials, 2021, 11, 2713.	1.9	5
1095	The Underexplored Field of Lanthanide Complexes with Helicene Ligands: Towards Chiral Lanthanide Single Molecule Magnets. Magnetochemistry, 2021, 7, 138.	1.0	5
1096	Novel Two-Dimensional MA ₂ N ₄ Materials for Photovoltaic and Spintronic Applications. Journal of Physical Chemistry Letters, 2021, 12, 10120-10127.	2.1	30
1097	Magnetoresistance and Spin Transport in Organic Semiconductor Devices., 2010,, 67-136.		1
1098	Low-Dimensional Molecular Magnets and Spintronics. , 2015, , 1-51.		0
1099	Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 198503.	0.2	1
1100	Assembly and Manipulation of Adsorbed Radical Molecules for Spin Control. Advances in Atom and Single Molecule Machines, 2017, , 219-249.	0.0	0
1101	Realization of Novel Nanoscale-Junction Devices using Magnetic Thin-Film Edges. Journal of the Institute of Electrical Engineers of Japan, 2019, 139, 730-735.	0.0	0
1102	Quantum Transport Theory of Charge Carriers. Advances in Computer and Electrical Engineering Book Series, 0, , 188-273.	0.2	0
1103	Quantum transport: general concepts. , 0, , 91-117.		1
1104	Understanding Charge Transport in Triarylmethyl-Based Spintronic Nanodevices. Journal of Physical Chemistry C, 2021, 125, 25624-25633.	1.5	5
1105	Contact spacing controls the on-current for all-carbon field effect transistors. Communications Physics, 2021, 4, .	2.0	2
1106	Engineering Chemisorption of Fe ₄ Singleâ€Molecule Magnets on Gold. Advanced Materials Interfaces, 2021, 8, 2101182.	1.9	7
1107	Magnetic relaxation in single-ion magnets formed by less-studied lanthanide ions Ce(III), Nd(III), Gd(III), Ho(III), Tm(II/III) and Yb(III). Coordination Chemistry Reviews, 2022, 453, 214288.	9.5	28
1108	Impact of ferromagnetic electrode length and thickness on Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSD). Organic Electronics, 2022, 102, 106429.	1.4	8
1109	Achieved negative differential resistance behavior of Si/B-substituted into a C6 chain sandwiched between capped carbon nanotube junctions. RSC Advances, 2022, 12, 1758-1768.	1.7	0
1110	Armchair graphene nanoribbon-based spin caloritronics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 426, 127892.	0.9	5

#	Article	IF	CITATIONS
1111	Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
1112	Current spin polarization of a platform molecule with compression effect. Chinese Physics B, 2022, 31, 077202.	0.7	2
1113	Tunable giant magnetoresistance ratio in bilayer CuPc molecular devices. RSC Advances, 2022, 12, 3386-3393.	1.7	2
1114	Large easy-axis magnetic anisotropy in a series of trigonal prismatic mononuclear cobalt(<scp>ii</scp>) complexes with zero-field hidden single-molecule magnet behaviour: the important role of the distortion of the coordination sphere and intermolecular interactions in the slow relaxation. Inorganic Chemistry Frontiers, 2022, 9, 2810-2831.	3.0	32
1115	DFT-NEGF Simulation Study of Co ₂ FeAl-MgO-Co ₂ FeAl Magnetic Tunnel Junctions Under Biaxial Strain. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	1
1116	Enhanced Magnetic Order and Reversed Magnetization Induced by Strong Antiferromagnetic Coupling at Hybrid Ferromagnetic–Organic Heterojunctions. ACS Applied Materials & Diterfaces, 2022, , .	4.0	1
1117	Organic–Inorganic Hybrid Interfaces for Spin Injection into Carbon Nanotubes and Graphene. Advanced Quantum Technologies, 2022, 5, .	1.8	1
1118	Easy axis anisotropy creating high contrast magnetic zones on magnetic tunnel junctions based molecular spintronics devices (MTJMSD). Scientific Reports, 2022, 12, 5721.	1.6	3
1119	Effect of linkage mode on the spin-polarized transport of a TPV radical-based molecular device. Chemical Physics Letters, 2022, 794, 139515.	1.2	4
1120	Half-metallic porphyrin-based molecular junctions for spintronic applications. Physical Review B, 2021, 104, .	1.1	7
1121	Tunable Spin Polarization of Zigzag–Zigzag Heterojunction Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2022, 259, 2100639.	0.7	0
1122	Trans-polyacetylene Based Organic Spin Valve for a Multifunctional Spin-Based Device: A First Principle Analysis. Journal of Science: Advanced Materials and Devices, 2022, , 100459.	1.5	1
1123	Dramatic effect of electrode type on tunnel junction based molecular spintronic devices. Organic Electronics, 2022, 106, 106526.	1.4	2
1124	Klein tunneling and ballistic transport in graphene and related materials. , 0, , 118-142.		0
1125	Quantum transport in disordered graphene-based materials., 0,, 143-218.		0
1126	Ab initio and multiscale quantum transport in graphene-based materials. , 0, , 232-299.		0
1127	Electronic structure calculations: the density functional theory (DFT)., 0,, 314-331.		0
1128	Electronic structure calculations: the many-body perturbation theory (MBPT)., 0,, 332-337.		0

#	Article	IF	CITATIONS
1129	Green's functions and ab initio quantum transport in the Landauer–BÃ1⁄4ttiker formalism. , 0, , 338-357.		0
1133	Influence of the Radicaloid Character of Polyaromatic Hydrocarbon Couplers on Magnetic Exchange Interactions. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
1134	Room temperature ferromagnetism in Fe3O4 nanoparticle-embedded polymer semiconductors. Journal of Physics and Chemistry of Solids, 2022, 167, 110750.	1.9	4
1135	Spatial influence of paramagnetic molecules on magnetic tunnel junction-based molecular spintronic devices (MTJMSD). Chemical Physics Letters, 2022, 800, 139667.	1.2	1
1136	Controllable Sensitivity Mechanism in an Energetic Compound of [FeII(Rtrz)6] as a molecular switch. Chemical Physics Letters, 2022, , 139682.	1.2	1
1137	Bipolar Magnetic Molecules for Spinâ€Polarized Electric Current in Molecular Junctions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1138	Bipolar Magnetic Molecules for Spinâ€Polarized Electric Current in Molecular Junctions. Angewandte Chemie, 2022, 134, .	1.6	2
1139	Fe- and Co-based magnetic tunnel junctions with AlN and ZnO spacers. Physical Review B, 2022, 105, .	1.1	3
1140	The Thermal Spin Molecular Logic Gates Modulated by Light. SSRN Electronic Journal, 0, , .	0.4	0
1141	Optical suppression of energy barriers in single molecule-metal binding. Science Advances, 2022, 8, .	4.7	13
1142	TPV radical-based multifunctional molecular spintronic device: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115345.	1.3	1
1143	Multifunctional molecular spintronic device based on zigzag-edged trigonal graphene: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 445, 128244.	0.9	0
1144	Local orbital formulation of the Floquet theory of projectile electronic stopping. Physical Review B, 2022, 105, .	1.1	1
1145	Giant magnetic anisotropy in single-molecule magnet with transition-metal adatom. International Journal of Modern Physics C, 0, , .	0.8	0
1146	Magnetic Moment Preservation and Emergent Kondo Resonance of Co-Phthalocyanine on Semimetallic Sb(111). Physical Review Letters, 2022, 129, .	2.9	3
1147	The thermal spin molecular logic gates modulated by light. Journal of Magnetism and Magnetic Materials, 2022, 560, 169680.	1.0	0
1148	Strong Relativistic Effects in Lanthanide-Based Single-Molecule Magnets. Journal of Physical Chemistry Letters, 2022, 13, 6749-6754.	2.1	4
1149	Robust covalent pyrazine anchors forming highly conductive and polarity-tunable molecular junctions with carbon electrodes. Physical Chemistry Chemical Physics, 2022, 24, 21337-21347.	1.3	2

#	Article	IF	Citations
1150	Calculation of exchange couplings in the electronically excited state of molecular three-spin systems. Chemical Science, 2022, 13, 12358-12366.	3.7	7
1151	A multiscale approach for electronic transport simulation of carbon nanostructures in aqueous solvent. Physical Chemistry Chemical Physics, 0, , .	1.3	1
1152	Magneto-thermal properties and slow magnetic relaxation in Mn(<scp>ii</scp>)Ln(<scp>iii</scp>) complexes: influence of magnetic coupling on the magneto-caloric effect. Dalton Transactions, 2022, 51, 12954-12967.	1.6	3
1153	Reorientation features in nanomagnet+Josephson junction system under the influence of periodic drive. AIP Conference Proceedings, 2022, , .	0.3	0
1154	Self-assembly of C ₆₀ on a ZnTPP/Fe(001)– <i>p</i> (1 × 1)O substrate: observation of a quasi-freestanding C ₆₀ monolayer. Beilstein Journal of Nanotechnology, 0, 13, 857-864.	1.5	1
1155	Bifurcation structure and chaos in dynamics of nanomagnet coupled to Josephson junction. Chaos, 2022, 32, .	1.0	7
1156	Bistable H ₂ Pc Molecular Conductance Switch on Ag(100). Journal of Physical Chemistry C, 2022, 126, 16767-16776.	1.5	1
1157	Spin–Lattice Relaxation Decoherence Suppression in Vanishing Orbital Angular Momentum Qubits. Journal of the American Chemical Society, 2022, 144, 17597-17603.	6.6	4
1158	Room-temperature magnetoresistance in Ni ₇₈ Fe ₂₂ nanojunctions fabricated from magnetic thin-film edges using a novel technique. Nanoscale Advances, 2022, 4, 4739-4747.	2.2	2
1159	Synthesis, structures and magnetic properties of four dysprosium-based complexes with a multidentate ligand with steric constraint. CrystEngComm, 2023, 25, 614-621.	1.3	1
1160	Axial Ligand as a Critical Factor for High-Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Inorganic Chemistry, 2022, 61, 19726-19734.	1.9	8
1161	Ag(II) as Spin Super-Polarizer in Molecular Spin Clusters. Journal of Physical Chemistry A, 0, , .	1.1	0
1162	Nanoscale molecular rectifiers. Nature Reviews Chemistry, 2023, 7, 106-122.	13.8	33
1163	Spin-dependent transport properties of a tetra-coordinated Fe(II) spin-crossover complex. Journal of Magnetism and Magnetic Materials, 2023, 566, 170326.	1.0	0
1164	Incomplete hetero-structure molecular layer enhancing room-temperature spin-photovoltaic performances. Nano Today, 2023, 49, 101763.	6.2	7
1165	Electron Transport Theory for Large Systems. , 2011, , 179-224.		0
1166	Dipolar-Coupled Entangled Molecular 4f Qubits. Journal of the American Chemical Society, 2023, 145, 2877-2883.	6.6	1
1167	Signatures of Room-Temperature Quantum Interference in Molecular Junctions. Accounts of Chemical Research, 2023, 56, 322-331.	7.6	6

#	Article	IF	CITATIONS
1168	High-performance spin-filtering and spin-rectifying effects in Blatter radical-based molecular spintronic device. Chinese Physics B, 2023, 32, 067202.	0.7	1
1169	Magnetoresistance and spin-dependent Seebeck effects in phthalocyanine-based molecular junctions with borophene electrodes. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 151, 115731.	1.3	4
1171	Dynamical Screening of Local Spin Moments at Metal–Molecule Interfaces. ACS Nano, 2023, 17, 5974-5983.	7.3	2
1172	Effects of Electrode Materials on Electron Transport for Single-Molecule Junctions. International Journal of Molecular Sciences, 2023, 24, 7277.	1.8	1
1173	Quasi-Free Electron States Responsible for Single-Molecule Conductance Enhancement in Stable Radical. Journal of Physical Chemistry Letters, 2023, 14, 4004-4010.	2.1	2
1182	Potential of AIP and GaN as barriers in magnetic tunnel junctions. Nanoscale, 2023, 15, 15161-15170.	2.8	0
1184	Molecular design for enhanced spin transport in molecular semiconductors. Nano Research, 0, , .	5.8	0
1188	Room-Temperature Magnetoresistance in Nanojunctions Consisting of C8-BTBT Molecules Sandwiched Between Two Magnetic Thin-Film Edges. , 2023, , .		O
1195	Single-molecule non-volatile memories: an overview and future perspectives. Journal of Materials Chemistry $C,0,\ldots$	2.7	0