Poorly crystalline mineral phases protect organic matter

European Journal of Soil Science 56, 050912034650054 DOI: 10.1111/j.1365-2389.2005.00706.x

Citation Report

#	Article	IF	CITATIONS
1	Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry, 2005, 36, 1567-1575.	0.9	162
2	Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance?. Biogeochemistry, 2006, 77, 25-56.	1.7	681
3	'Black' soils in the southern Alps: clay mineral formation and transformation, X-ray amorphous Al phases and Fe forms. Clays and Clay Minerals, 2006, 54, 703-720.	0.6	14
4	EFFECT OF CLIMATE AND VEGETATION ON SOIL ORGANIC CARBON, HUMUS FRACTIONS, ALLOPHANES, IMOGOLITE, KAOLINITE, AND OXYHYDROXIDES IN VOLCANIC SOILS OF ETNA (SICILY). Soil Science, 2007, 172, 673-691.	0.9	46
5	Lignin is preserved in the fine silt fraction of an arable Luvisol. Organic Geochemistry, 2007, 38, 2001-2011.	0.9	40
6	Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: Applications of STXM and NEXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 2007, 71, 5439-5449.	1.6	109
7	Modelling the transformations and sequestration of soil organic matter in two contrasting ecosystems of the Andes. European Journal of Soil Science, 2007, 58, 775-785.	1.8	21
8	Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. European Journal of Soil Science, 2007, 58, 1316-1329.	1.8	154
9	Longâ€ŧerm effects of crop rotation and fertilization on soil organic matter composition. European Journal of Soil Science, 2007, 58, 1460-1470.	1.8	55
10	In search of stable soil organic carbon fractions: a comparison of methods applied to soils labelled with14C for 40 days or 40 years. European Journal of Soil Science, 2008, 59, 247-256.	1.8	44
11	Soil organic matter stabilization in acidic forest soils is preferential and soil typeâ€specific. European Journal of Soil Science, 2008, 59, 674-692.	1.8	145
12	Organoâ€mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171, 61-82.	1.1	892
13	Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. Journal of Plant Nutrition and Soil Science, 2008, 171, 111-124.	1.1	367
14	Science Results from a Mars Drilling Simulation (RÃo Tinto, Spain) and Ground Truth for Remote Science Observations. Astrobiology, 2008, 8, 967-985.	1.5	21
15	Physical carbonâ€sequestration mechanisms under special consideration of soil wettability. Journal of Plant Nutrition and Soil Science, 2008, 171, 14-26.	1.1	144
16	Cation Exchange Capacity and Composition of Soluble Soil Organic Matter Fractions. Soil Science Society of America Journal, 2008, 72, 1278-1285.	1.2	60
17	Controls on the Sorption, Desorption and Mineralization of Lowâ€Molecularâ€Weight Organic Acids in Variableâ€Charge Soils. Soil Science Society of America Journal, 2008, 72, 1653-1664.	1.2	26
18	Soil Properties Controlling the Adsorption of Dissolved Organic Carbon to Mineral Soils. Soil Science Society of America Journal, 2009, 73, 1831-1842.	1.2	79

ARTICLE IF CITATIONS # Assessing soil carbon lability by near infrared spectroscopy and NaOCl oxidation. Soil Biology and 19 4.2 19 Biochemistry, 2009, 41, 2170-2177. Soil-organic-matter stability in sandy cropland soils is related to land-use history. Journal of Plant 1.1 Nutrition and Soil Science, 2010, 173, 19-29. 22 Determination of soil carbon stocks and changes., 2010, , 49-75. 10 Soil Organic Matter Stability in Intensively Managed Ponderosa Pine Stands in California. Soil Science Society of America Journal, 2010, 74, 979-992. Measuring and modeling continuous quality distributions of soil organic matter. Biogeosciences, 24 1.3 31 2010, 7, 27-41. Application of Î'<sup&gt;13&lt;/sup&gt;C and Î'<sup&gt;15&lt;/sup&gt;N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms. Biogeosciences. 2011. 8. 2895-2906. 1.3 Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. 26 1.3 289 Biogeosciences, 2011, 8, 3457-3489. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for 4.2 318 modeling concepts and temperature sensitivity. Global Change Biology, 2011, 17, 1097-1107. Extractable Al and Soil Solution Ionic Concentrations in Strongly Leached Soils from Northwest 28 0.8 9 Iberia: Effects of Liming. ISRN Soil Science, 2012, 2012, 1-15. Seasonal dynamics of Alâ€and Feâ€bearing secondary minerals in an acid forest soil: influence of Norway 1.8 24 spruce roots (<i>Picea abies</i> (L.) Karst.). European Journal of Soil Science, 2012, 63, 592-602. Organic matter content and features related to associated mineral fractions in an acid, loamy soil. 30 1.8 15 European Journal of Soil Science, 2012, 63, 625-636. The influence of mineral characteristics on organic matter content, composition, and stability of 3.3 topsoils under longâ€term arable and forest land use. Journal of Geophysical Research, 2012, 117, . Climateâ€sensitive ecosystem carbon dynamics along the soil chronosequence of the <scp>D</scp>amma 32 4.2 38 glacier forefield, <scp>S</scp>witzerland. Global Change Biology, 2012, 18, 1941-1955. Variation in soil carbon stocks and their determinants across a precipitation gradient in 4.2 114 <scp>W</scp>est <scp>A</scp>frica. Global Change Biology, 2012, 18, 1670-1683. Reproducibility of a soil organic carbon fractionation method to derive <scp>RothC</scp> carbon 34 1.8 51 pools. European Journal of Soil Science, 2013, 64, 735-746. The role of nonâ€crystalline <scp>Fe</scp> in the increase of <scp>SOC</scp> after longâ€term organic manure application to the red soil of <scp>s</scp>outhern <scp>C</scp>hina. European Journal of 1.8 Soil Science, 2013, 64, 797-804. The fate of soyabean photosynthetic carbon varies in Mollisols differing in organic carbon. European 36 1.8 11 Journal of Soil Science, 2013, 64, 500-507. Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geoscientific Model 1.3 Development, 2014, 7, 1335-1355.

CITATION REPORT

#	Article	IF	CITATIONS
38	Soil Carbon Sequestration Resulting from Biosolids Application. Applied and Environmental Soil Science, 2014, 2014, 1-9.	0.8	32
39	Micropore characteristics of organic matter pools in cemented and non emented podzolic horizons. European Journal of Soil Science, 2014, 65, 763-773.	1.8	7
40	Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Global Change Biology, 2014, 20, 653-665.	4.2	170
41	Longâ€Term Fertilization Practices Alter Aluminum Fractions and Coordinate State in Soil Colloids. Soil Science Society of America Journal, 2014, 78, 2083-2089.	1.2	40
42	Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry, 2015, 125, 149-165.	1.7	80
43	Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired ¹⁴ C analysis. Biogeosciences, 2015, 12, 2471-2487.	1.3	33
44	Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape. Biogeosciences, 2015, 12, 1357-1371.	1.3	36
45	Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil. Biogeosciences, 2015, 12, 6443-6452.	1.3	68
46	Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides. Environmental Science & Technology, 2015, 49, 10357-10365.	4.6	23
47	Characterization of citric acid induced transformation of short-range-order minerals in Alfisol, Inceptisol and Vertisol of India. European Journal of Mineralogy, 2015, 27, 551-557.	0.4	12
48	Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating. Biogeosciences, 2016, 13, 1537-1552.	1.3	34
49	Structural damage and recovery determined by the colloidal constituents in two forest soils compacted by heavy traffic. European Journal of Soil Science, 2016, 67, 160-172.	1.8	9
50	A Multiâ€Element Mineral Conditioner: A Supplement of Essential Cations for Red Soil and Crops Growth. Clean - Soil, Air, Water, 2016, 44, 1690-1699.	0.7	5
51	Deep ploughing increases agricultural soil organic matter stocks. Global Change Biology, 2016, 22, 2939-2956.	4.2	118
52	Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 2016, 50, 2328-2336.	4.6	344
53	Natural ¹³ C abundance and soil carbon dynamics under longâ€ŧerm residue retention in a noâ€ŧill maize system. Soil Use and Management, 2017, 33, 90-97.	2.6	5
54	Short organic carbon turnover time and narrow ¹⁴ C age spectra in early Holocene wetland paleosols. Geochemistry, Geophysics, Geosystems, 2017, 18, 142-155.	1.0	9
55	Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems. Global Change Biology, 2017, 23, 4002-4018.	4.2	77

#	Article	IF	CITATIONS
56	Soil Carbon and Nitrogen Responses to Nitrogen Fertilizer and Harvesting Rates in Switchgrass Cropping Systems. Bioenergy Research, 2017, 10, 456-464.	2.2	25
57	Preservation of organic matter in soils of a climo-biosequence in the Main Range of Peninsular Malaysia. Journal of Mountain Science, 2017, 14, 1763-1775.	0.8	2
58	Dissolved organic matter retention in volcanic soils with contrasting mineralogy: a column sorption experiment. Biogeochemistry, 2017, 135, 293-306.	1.7	4
59	Carbon Sequestration Potential Promoted by Oxalate Extractable Iron Oxides through Organic Fertilization. Soil Science Society of America Journal, 2017, 81, 1359-1370.	1.2	21
60	Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere. Soils, 2017, 1, 4.	1.0	12
61	Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment. Frontiers in Microbiology, 2017, 8, 1741.	1.5	26
62	Carbon Sink Strength of Subsurface Horizons in Brazilian Oxisols. Soil Science Society of America Journal, 2018, 82, 76-86.	1.2	1
63	Incorporation of shoot versus root-derived 13C and 15N into mineral-associated organic matter fractions: results of a soil slurry incubation with dual-labelled plant material. Biogeochemistry, 2018, 137, 379-393.	1.7	57
64	Adsorption and Molecular Fractionation of Dissolved Organic Matter on Iron-Bearing Mineral Matrices of Varying Crystallinity. Environmental Science & Technology, 2018, 52, 1036-1044.	4.6	145
65	The pesticide chlordecone is trapped in the tortuous mesoporosity of allophane clays. Environmental Science and Pollution Research, 2018, 25, 21350-21361.	2.7	8
66	Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 104-136.	1.1	567
67	Facet-Mediated Adsorption and Molecular Fractionation of Humic Substances on Hematite Surfaces. Environmental Science & Technology, 2018, 52, 11660-11669.	4.6	27
68	Soil Microbial Populations Shift as Processes Protecting Organic Matter Change During Podzolization. Frontiers in Environmental Science, 2018, 6, .	1.5	6
69	Kaolinite Enhances the Stability of the Dissolvable and Undissolvable Fractions of Biochar via Different Mechanisms. Environmental Science & Technology, 2018, 52, 8321-8329.	4.6	84
70	Mineralogy and chemical composition of Cryosols and Andosols in Antarctica. Soil and Water Research, 2018, 13, 61-73.	0.7	3
71	Explaining soil organic matter composition based on associations between OM and polyvalent cations. Journal of Plant Nutrition and Soil Science, 2018, 181, 721-736.	1.1	11
72	Abundance of lipids in differently sized aggregates depends on their chemical composition. Biogeochemistry, 2018, 140, 111-125.	1.7	14
73	Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 2018, 139, 103-122.	1.7	203

#	Article	IF	CITATIONS
74	Soil Organic Carbon Stabilization in the Three Subtropical Forests: Importance of Clay and Metal Oxides. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2976-2990.	1.3	29
75	Effects of Organic Amendments on the Transformation of Fe (Oxyhydr)Oxides and Soil Organic Carbon Storage. Frontiers in Earth Science, 2019, 7, .	0.8	18
76	Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic Matter in Terrestrial and Aquatic Ecosystems. Journal of Environmental Quality, 2019, 48, 207-216.	1.0	124
77	lron minerals inhibit the growth of <i>Pseudomonas brassicacearum</i> J12 via a free-radical mechanism: implications for soil carbon storage. Biogeosciences, 2019, 16, 1433-1445.	1.3	22
78	Mineral Surfaces as Agents of Environmental Proteolysis: Mechanisms and Controls. Environmental Science & Technology, 2019, 53, 3018-3026.	4.6	11
79	Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: the case of a coffee agroforestry plantation on Andosols in Costa Rica. Soil, 2019, 5, 315-332.	2.2	7
80	Enrichments of Cadmium and Arsenic and Their Effects on the Karst Forest Area. International Journal of Environmental Research and Public Health, 2019, 16, 4665.	1.2	10
81	Humus composition and humification degree of humic acids of alpine meadow soils in the northeastern part of the Qinghai–Tibet Plateau. Soil Science and Plant Nutrition, 2019, 65, 11-19.	0.8	8
82	Direct Evidence for Temporal Molecular Fractionation of Dissolved Organic Matter at the Iron Oxyhydroxide Interface. Environmental Science & Technology, 2019, 53, 642-650.	4.6	103
83	Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time. Land Degradation and Development, 2020, 31, 632-645.	1.8	21
84	Influence of biodiversity and iron availability on soil peroxide: Implications for soil carbon stabilization and storage. Land Degradation and Development, 2020, 31, 463-472.	1.8	15
85	Soil Organic Carbon Stabilization: Influence of Tillage on Mineralogical and Chemical Parameters. Soil Systems, 2020, 4, 58.	1.0	6
86	Organic Matter Preservation in Ancient Soils of Earth and Mars. Life, 2020, 10, 113.	1.1	23
87	Mineralogical associations with soil carbon in managed wetland soils. Global Change Biology, 2020, 26, 6555-6567.	4.2	20
88	Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy. Environmental Science & Technology, 2020, 54, 11990-12000.	4.6	27
89	Carbon Isotope Measurements to Determine the Turnover of Soil Organic Matter Fractions in a Temperate Forest Soil. Agronomy, 2020, 10, 1944.	1.3	5
90	Organo–organic and organo–mineral interfaces in soil at the nanometer scale. Nature Communications, 2020, 11, 6103.	5.8	95
91	Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications, 2020, 11, 6329.	5.8	96

#	Article	IF	CITATIONS
93	Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, 2020, 6, 53-88.	2.2	36
94	Soil organic matter in major pedogenic soil groups. Geoderma, 2021, 384, 114785.	2.3	89
95	The legacy of acidic deposition controls soil organic carbon pools in temperate forests across the <scp>C</scp> zech <scp>R</scp> epublic. European Journal of Soil Science, 2021, 72, 1780-1801.	1.8	11
96	Evaluation of pre-processing and variable selection on energy dispersive X-ray fluorescence spectral data with partial least square regression: A case of study for soil organic carbon prediction. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 175, 106016.	1.5	17
97	Heteroaggregation of humic acid with montmorillonite in divalent electrolytes: effects of humic acid content and ionic concentration. Journal of Soils and Sediments, 2021, 21, 1317-1328.	1.5	6
98	Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils. Biogeosciences, 2021, 18, 1241-1257.	1.3	9
99	Reduced Organic Carbon Content during the Evolvement of Calcareous Soils in Karst Region. Forests, 2021, 12, 221.	0.9	8
101	The undetected loss of aged carbon from boreal mineral soils. Scientific Reports, 2021, 11, 6202.	1.6	5
103	Dissolved and gaseous nitrogen losses in forests controlled by soil nutrient stoichiometry. Environmental Research Letters, 2021, 16, 064025.	2.2	9
104	Development of soil radiocarbon profiles in a reactive transport framework. Geochimica Et Cosmochimica Acta, 2021, 306, 63-83.	1.6	3
105	A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. Biogeochemistry, 2021, 154, 211-229.	1.7	63
106	Lower microbial carbon use efficiency reduces cellulose-derived carbon retention in soils amended with compost versus mineral fertilizers. Soil Biology and Biochemistry, 2021, 156, 108227.	4.2	13
107	Quantitative relationship between organic carbon and geochemical properties in tropical surface and subsurface soils. Biogeochemistry, 2021, 155, 77-95.	1.7	7
108	Effects of long-term fertilization on calcium-associated soil organic carbon: Implications for C sequestration in agricultural soils. Science of the Total Environment, 2021, 772, 145037.	3.9	30
109	Mean residence times of active and slow soil organic carbon pools in croplands across China. Catena, 2021, 202, 105271.	2.2	3
110	Accounting for soil architecture and microbial dynamics in microscale models: Current practices in soil science and the path ahead. European Journal of Soil Science, 2022, 73, .	1.8	22
111	Ionic Strength and Species Drive Iron–Carbon Adsorption Dynamics: Implications for Carbon Cycling in Future Coastal Environments. Environmental Science and Technology Letters, 2021, 8, 719-724.	3.9	7
112	Soil development and mineral transformations along a oneâ€millionâ€year chronosequence on the Galápagos Islands. Soil Science Society of America Journal, 2021, 85, 2077-2099.	1.2	13

#	Article	IF	CITATIONS
113	Soil organic carbon stabilization in permafrost peatlands. Saudi Journal of Biological Sciences, 2021, 28, 7037-7045.	1.8	12
114	Quantifying the Importance of Soilâ€Forming Factors Using Multivariate Soil Data at Landscape Scale. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006198.	1.0	4
115	The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils. Soil, 2021, 7, 453-475.	2.2	22
116	Root Carbon Interaction with Soil Minerals Is Dynamic, Leaving a Legacy of Microbially Derived Residues. Environmental Science & Technology, 2021, 55, 13345-13355.	4.6	13
117	Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils. Soil, 2021, 7, 639-659.	2.2	6
118	Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils. Science of the Total Environment, 2022, 806, 150514.	3.9	9
120	Poorly crystalline iron and aluminium oxides contribute to the carbon saturation and sorption of dissolved organic carbon in the soil. Soil Use and Management, 2021, 37, 120-125.	2.6	7
121	Clay-Size Organo-Mineral Complexes in Temperate Soils. , 0, , 119-135.		3
122	Kohlenstoffspeicherung in Grünlandökosystemen - eine Fallstudie aus dem österreichischen Berggebiet / Carbon storage in grassland ecosystems – A case study from a mountainous region of Austria. Bodenkultur, 2016, 67, 225-237.	0.1	3
131	Interactions between biochar and clay minerals in changing biochar carbon stability. Science of the Total Environment, 2022, 809, 151124.	3.9	33
132	What do relationships between extractable metals and soil organic carbon concentrations mean?. Soil Science Society of America Journal, 2022, 86, 195-208.	1.2	18
133	Organic matter mineralisation in contrasting agricultural soils amended with sewage sludge Spanish Journal of Soil Science, 0, 4, .	0.0	0
135	Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	6
136	NMR Characterization of Natural Organic Matter and Clay-Humic Complexes. , 0, , 77-94.		0
137	Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia. Geoderma, 2022, 409, 115601.	2.3	11
138	Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry. Environmental Science & Technology, 2021, 55, 16224-16235.	4.6	9
139	Temperature effects on sorption of dissolved organic matter on ferrihydrite under dynamic flow and batch conditions. Soil Science Society of America Journal, 0, , .	1.2	3
140	Effect of Clay Mineralogy and Soil Organic Carbon in Aggregates under Straw Incorporation. Agronomy, 2022, 12, 534.	1.3	23

#	Article	IF	CITATIONS
143	Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 2022, 3, .	2.6	11
144	Aggregation reduces the release of bioavailable silicon from allophane and phytolith. Geochimica Et Cosmochimica Acta, 2022, 325, 87-105.	1.6	17
148	Physical Protection in Aggregates and Organo-Mineral Associations Contribute to Carbon Stabilization at the Transition Zone of Seasonally Saturated Wetlands. Wetlands, 2022, 42, 1.	0.7	5
149	Carbon pathways in aggregates and density fractions in Mollisols under water and straw management: Evidence from 13C natural abundance. Soil Biology and Biochemistry, 2022, 169, 108684.	4.2	32
150	Field-scale spatial correlation between soil and Vis-NIR spectra in the Cerrado biome of Central Brazil. Geoderma Regional, 2022, 30, e00532.	0.9	3
151	Microbial community mediates hydroxyl radical production in soil slurries by iron redox transformation. Water Research, 2022, 220, 118689.	5.3	16
152	Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation. , 2022, 1, .		51
153	Detection of Organic Carbon in Marsâ€Analog Paleosols With Thermal and Evolved Gas Analysis. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
155	Insights into phenanthrene attenuation by hydroxyl radicals from reduced iron-bearing mineral oxygenation. Journal of Hazardous Materials, 2022, 439, 129658.	6.5	5
156	Retention of soil organic matter by occlusion within soil minerals. Reviews in Environmental Science and Biotechnology, 2022, 21, 727-746.	3.9	20
157	Controls on vertical distribution of organic carbon in the intermontane valley soils (Barak,) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.6	Tf
158	A Brief Introduction to Hot Desert Environments: Climate, Geomorphology, Habitats, and Soils. Ecological Studies, 2022, , 1-36.	0.4	0
159	Nano-scale investigation of organic C sequestration and distribution on Fe oxides during ferrihydrite transformation: effect of Al-substitution. Environmental Science: Nano, 2022, 9, 4007-4017.	2.2	4
160	Fe-Bound Organic Carbon and Sorption of Aromatic Dissolved Organic Carbon in Surface Soil: Comparing a Forest, a Cropland, and a Pasture Soil in the Central Appalachian Region, West Virginia, U.S.A. Environments - MDPI, 2022, 9, 113.	1.5	0
161	How does soil water status influence the fate of soil organic matter? A review of processes across scales. Earth-Science Reviews, 2022, 234, 104214.	4.0	6
162	Minerals: A missing role for enhanced biochar carbon sequestration from the thermal conversion of biomass to the application in soil. Earth-Science Reviews, 2022, 234, 104215.	4.0	10
163	Nano and sub-nano scale distribution of organic carbon species on soil particles revealed by Cs-STEM EELS. Chemical Geology, 2022, 613, 121168.	1.4	4
164	Contrasting catchment soil pH and Fe concentrations influence DOM distribution and nutrient dynamics in freshwater systems. Science of the Total Environment, 2023, 858, 159988.	3.9	1

#	Article	IF	CITATIONS
165	Distribution of Organic Carbon Fractions in Soil Aggregates and Their Contribution to Soil Aggregate Formation of Paddy Soils. Communications in Soil Science and Plant Analysis, 2023, 54, 1350-1367.	0.6	2
166	Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale. Biogeosciences, 2022, 19, 5419-5433.	1.3	1
167	Environmental and pedological factors influencing organic carbon storage in Italian forest soils. Geoderma Regional, 2023, 32, e00605.	0.9	1
168	Remediation effects and mechanisms of typical minerals combined with inorganic amendment on cadmium-contaminated soil: a field study in wheat. Environmental Science and Pollution Research, 0, , .	2.7	1
169	Effects of Hypoxia on Coupled Carbon and Iron Cycling Differ Between Weekly and Multiannual Timescales in Two Freshwater Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	2
170	Role of silt and clay fractions in organic carbon and nitrogen stabilization in soils of some old fruit orchards in the Nile floodplain, Sohag Governorate, Egypt. Journal of Soil Science and Plant Nutrition, 2023, 23, 2525-2544.	1.7	3
171	Agricultural management impacts on soil organic carbon storage. , 2023, , 229-268.		1
179	The effect of iron on the preservation of organic carbon in marine sediments and its implications for carbon sequestration. Science China Earth Sciences, 2023, 66, 1946-1959.	2.3	0
191	Methods for studying soil organic matter: nature, dynamics, spatial accessibility, and interactions with minerals. , 2024, , 369-406.		0