Progressive-Failure Analysis of Buildings Subjected to A

Computer-Aided Civil and Infrastructure Engineering 20, 155-171 DOI: 10.1111/j.1467-8667.2005.00384.x

Citation Report

#	Article	IF	CITATIONS
1	Simplified Methods for Progressive-Collapse Analysis of Buildings. , 2005, , 1.		11
2	Progressive Collapse simulation in RC Structures. , 2006, , 786-786.		0
4	Compound-element modeling accounting for semi-rigid connections and member plasticity. Engineering Structures, 2008, 30, 1292-1307.	2.6	23
5	Macromodel-Based Simulation of Progressive Collapse: RC Frame Structures. Journal of Structural Engineering, 2008, 134, 1079-1091.	1.7	194
6	SUSTAINABLE DEVELOPMENT AND MAJOR INDUSTRIAL ACCIDENTS: THE BENEFICIAL ROLE OF RISKâ€ORIENTED STRUCTURAL ENGINEERING / RIZIKA GRINDŽIAMOS KONSTRUKCIJŲ INŽINERIJOS ĮTAKA MAŽINANT SUN PRAMONIŲ AVARIJŲ POVEIKĮ DARNIAM VYSTYMUISI. Technological and Economic Development of Economy, 2008, 14, 612-627.	KIÅ ² 2.3	22
7	Recent developments in robustness and relation with risk. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2008, 161, 183-188.	0.4	22
8	Seismic Risk Assessment and Retrofitting. Geotechnical, Geological and Earthquake Engineering, 2009, , .	0.1	8
9	Abnormal Loads and Disproportionate Collapse: Risk Mitigation Strategies. , 2009, , .		1
10	Disproportionate Collapse Research Needs. , 2009, , .		3
11	Modeling progressive collapse in reinforced concrete buildings using direct element removal. Earthquake Engineering and Structural Dynamics, 2009, 38, 609-634.	2.5	58
12	Hybrid-member stiffness matrix accounting for geometrical nonlinearity and member inelasticity in semi-rigid frameworks. Engineering Structures, 2009, 31, 2880-2895.	2.6	11
13	Comparison and Study of Different Progressive Collapse Simulation Techniques for RC Structures. Journal of Structural Engineering, 2009, 135, 685-697.	1.7	18
14	Combined MVP failure criterion for steel cross-sections. Journal of Constructional Steel Research, 2009, 65, 116-124.	1.7	12
15	Simplified progressive collapse simulation of RC frame–wall structures. Engineering Structures, 2010, 32, 3153-3162.	2.6	53
16	Influence of Semiâ€Rigid Connections and Local Joint Damage on Progressive Collapse of Steel Frameworks. Computer-Aided Civil and Infrastructure Engineering, 2010, 25, 184-204.	6.3	20
17	Progressive Collapse Mechanisms of Brittle and Ductile Framed Structures. Journal of Engineering Mechanics - ASCE, 2010, 136, 987-995.	1.6	45
18	Investigation of the influence of design and material parameters in the progressive collapse analysis of RC structures. Engineering Structures, 2011, 33, 2805-2820.	2.6	53
19	An efficient compound-element for potential progressive collapse analysis of steel frames with semi-rigid connections. Finite Elements in Analysis and Design, 2012, 60, 35-48.	1.7	21

CITATION REPORT

#	Article	IF	CITATIONS
20	Energy flow in progressive collapse of steel framed buildings. Engineering Structures, 2012, 42, 142-153.	2.6	68
21	Nonlinear elasto-dynamic analysis of bi-material composite members subjected to explosion. Journal of Constructional Steel Research, 2012, 68, 97-106.	1.7	1
22	Comparison of various procedures for progressive collapse analysis of cable-stayed bridges. Journal of Zhejiang University: Science A, 2012, 13, 323-334.	1.3	40
23	New Computational Model Based on Finite Element Method to Quantify Damage Evolution Due to External Sulfate Attack on Self ompacting Concretes. Computer-Aided Civil and Infrastructure Engineering, 2013, 28, 260-272.	6.3	20
24	Probabilistic Analysis of Vulnerability of Reinforced Concrete Buildings Against Progressive Collapse. , 2013, , .		3
25	Numerical analysis with joint model on RC assemblages subjected to progressive collapse. Magazine of Concrete Research, 2014, 66, 1201-1218.	0.9	26
26	Computational Simulation of Gravity-Induced Progressive Collapse of Steel-Frame Buildings: Current Trends and Future Research Needs. Journal of Structural Engineering, 2014, 140, .	1.7	62
27	Probabilistic analysis of reinforced concrete frame structures against progressive collapse. Engineering Structures, 2014, 76, 313-323.	2.6	48
28	Protesting the Decline While Predicting the Demise of Clinical Psychology: Can We Avoid a Total Collapse?. Journal of Contemporary Psychotherapy, 2014, 44, 273-281.	0.7	6
29	A two-scale computational model for thermomechanical analysis of reinforced concrete frames. Engineering Structures, 2015, 105, 137-151.	2.6	9
30	Strain rate behaviour in tension of S355 steel: Base for progressive collapse analysis. Engineering Structures, 2016, 119, 164-173.	2.6	102
31	Dynamic increase factor for pushdown analysis of seismically designed steel moment-resisting frames. International Journal of Steel Structures, 2016, 16, 857-875.	0.6	19
32	Multi-hazard Approaches to Civil Infrastructure Engineering. , 2016, , .		27
33	Progressive Collapse Simulation of Vulnerable Reinforced Concrete Buildings. , 2016, , 107-124.		0
34	Stochastic Computational Model for Progressive Collapse of Reinforced Concrete Buildings. Journal of Structural Engineering, 2016, 142, .	1.7	14
35	Progressive Collapse of Three-Dimensional Semi-Rigid Jointed Steel Frames. Journal of Performance of Constructed Facilities, 2016, 30, 04015051.	1.0	10
36	Experimental investigation of progressive collapse potential of ordinary and special moment-resisting reinforced concrete frames. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	18
37	Effects of axial-shear-flexure interaction in static and dynamic responses of steel beams. Journal of Constructional Steel Research, 2017, 131, 83-93.	1.7	3

#	Article	IF	CITATIONS
38	Failure progression resistance of a generic steel moment-resisting frame under beam-removal scenarios. International Journal of Structural Integrity, 2017, 8, 308-325.	1.8	4
39	Collapse Resistance of RC Moment-Resisting Frame and Shear Wall Structural Systems Exposed to Blast. Journal of Performance of Constructed Facilities, 2017, 31, 04016099.	1.0	4
40	On a linear programming approach to the optimal seeding of cascading failures. , 2017, , .		3
41	Refined dynamic progressive collapse analysis of RC structures. Bulletin of Earthquake Engineering, 2018, 16, 1293-1322.	2.3	12
42	Advances in Computational Simulation of Gravity-Induced Disproportionate Collapse of RC Frame Buildings. Journal of Structural Engineering, 2018, 144, .	1.7	42
43	Risk-based robustness assessment of steel frame structures to unforeseen events. Civil Engineering and Environmental Systems, 2018, 35, 117-138.	0.4	5
44	Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities. International Journal of Steel Structures, 2018, 18, 1684-1698.	0.6	12
45	Wind-induced collapse analysis of long-span transmission tower–line system considering the member buckling effect. Advances in Structural Engineering, 2019, 22, 30-41.	1.2	13
46	Generalized Finite Element Formulation of Fiber Beam Elements for Distributed Plasticity in Multiple Regions. Computer-Aided Civil and Infrastructure Engineering, 2019, 34, 146-163.	6.3	6
47	Progressive Collapse Analysis of Cable-Stayed Bridges. Journal of Failure Analysis and Prevention, 2019, 19, 698-708.	0.5	7
48	Vulnerability of Three-Dimensional Semirigid Composite Frame Subjected to Progressive Collapse. Journal of Performance of Constructed Facilities, 2019, 33, .	1.0	12
49	Progressive collapse of 2D reinforced concrete structures under sudden column removal. Frontiers of Structural and Civil Engineering, 2020, 14, 1387-1402.	1.2	5
50	Numerical Modeling of Delayed Progressive Collapse of Reinforced Concrete Structures. Journal of Engineering Mechanics - ASCE, 2020, 146, .	1.6	5
51	CASCO: a simulator of load paths in 2D frames during progressive collapse. SN Applied Sciences, 2020, 2, 1.	1.5	1
52	A simplified approach for collapse assessment of multi-Storey steel framed-structures with one column loss. Journal of Constructional Steel Research, 2021, 176, 106391.	1.7	14
53	Stochastic uncertainty quantification of seismic performance of complex large-scale structures using response spectrum method. Engineering Structures, 2021, 235, 112096.	2.6	5
54	Analytical investigation on behavior of three-dimensional reinforced concrete frames under thermal effect. Materials Today: Proceedings, 2022, 50, 248-252.	0.9	1
55	How to Simulate Column Collapse and Removal in As-built and Retrofitted Building Structures?. Geotechnical, Geological and Earthquake Engineering, 2009, , 427-452.	0.1	1

CITATION REPORT

#	Article	IF	CITATIONS
56	Identification of progressive collapse pushover based on a kinetic energy criterion. Structural Engineering and Mechanics, 2011, 39, 427-447.	1.0	3
57	ASSESSING EXTERNAL THREATS TO STRUCTURES USING LIMITED STATISTICAL DATA: AN APPROACH BASED ON DATA RESAMPLING. Technological and Economic Development of Economy, 2007, 13, 170-175.	2.3	15
58	Reinforced Concrete Beam under Support Removal—Parametric Analysis. Materials, 2021, 14, 5917.	1.3	5
59	Vertical Incremental Dynamics for Assessing Progressive Collapse Resistance and Failure Modes are Structures. , 2010, , .		0
60	Probabilistic analysis of progressive collapse of reinforced concrete buildings. , 2014, , 5047-5051.		0
62	Seismic performance assessment of buildings with cold-formed steel shear wall panels. , 2015, , .		0
64	Benchmark Numerical Model for Progressive Collapse Analysis of RC Beam-Column Sub-Assemblages. Buildings, 2022, 12, 122.	1.4	5
65	A systematic study on composite materials in civil engineering. Ain Shams Engineering Journal, 2023, 14, 102251	3.5	5