Biodegradation of phenanthrene by the indigenous mic soil

Letters in Applied Microbiology 40, 50-55 DOI: 10.1111/j.1472-765x.2004.01623.x

Citation Report

#	Article	IF	CITATIONS
1	Biodegradation of polyacyclic aromatic hydrocarbons in contaminated soil by biostimulation and bioaugmentation in the presence of copper(II) ions. World Journal of Microbiology and Biotechnology, 2006, 22, 1145-1153.	1.7	30
2	Biodegradation of PAHs by fungi in contaminated-soil containing cadmium and nickel ions. African Journal of Biotechnology, 2009, 8, 5780-5789.	0.3	36
3	Simultaneous toxic action of zinc and alachlor resulted in enhancement of zinc uptake by the filamentous fungus Paecilomyces marquandii. Science of the Total Environment, 2009, 407, 4127-4133.	3.9	22
4	Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms. Biodegradation, 2009, 20, 95-107.	1.5	20
5	Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology, 2010, 19, 317-328.	1.1	117
6	Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. Journal of Hazardous Materials, 2010, 174, 818-823.	6.5	42
7	Potential for the Use of Rhizobacteria in the Sustainable Management of Contaminated Soils. , 2010, , 313-334.		0
9	Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: Implications to bioremediation. Environment International, 2011, 37, 184-189.	4.8	78
10	Quantitative assessment of the toxic effects of heavy metals on 1,2-dichloroethane biodegradation in co-contaminated soil under aerobic condition. Chemosphere, 2011, 85, 839-847.	4.2	30
11	Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: A feasibility study in solid- and slurry-phase microcosms. International Biodeterioration and Biodegradation, 2011, 65, 191-197.	1.9	46
12	Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation, 2012, 23, 823-835.	1.5	90
13	Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DCT approaches. Marine Pollution Bulletin, 2012, 64, 353-362.	2.3	22
14	Use of enzymatic tools for biomonitoring inorganic pollution in aquatic sediments: a case study (Bor,) Tj ETQq0 (0 rgBT /C 2.6	Verlock 10 T
15	Impact of Zn and Cu on the development of phenanthrene catabolism in soil. Environmental Monitoring and Assessment, 2013, 185, 10039-10047.	1.3	9
16	Impact of Al and Fe on the development of phenanthrene catabolism in soil. Journal of Soils and Sediments, 2013, 13, 1589-1599.	1.5	8
17	Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing. Marine Pollution Bulletin, 2013, 72, 181-187.	2.3	88
18	Impact of Zn, Cu, Al and Fe on the partitioning and bioaccessibility of 14C-phenanthrene in soil. Environmental Pollution, 2013, 180, 180-189.	3.7	17

19	Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt. Journal of Basic Microbiology, 2013, 53, 917-927.	1.8	35
----	--	-----	----

#	Article	IF	CITATIONS
20	Impact of zinc-copper mixtures on the development of phenanthrene catabolism in soil. International Biodeterioration and Biodegradation, 2013, 85, 228-236.	1.9	11
21	Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation. Environmental Science and Pollution Research, 2015, 22, 8957-8968.	2.7	30
22	Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants Journal of Hazardous Materials, 2016, 307, 240-252.	6.5	24
23	Simultaneous Desorption and Desorption Kinetics of Phenanthrene, Anthracene, and Heavy Metals from Kaolinite with Different Organic Matter Content. Soil and Sediment Contamination, 2018, 27, 200-220.	1.1	7
24	Bioremediation of Contaminated Soil. , 2018, , 361-417.		3
25	Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2. Frontiers in Microbiology, 2019, 10, 408.	1.5	42
26	The extracted saponin from ginseng as an efficient renewable biosurfactant for desorption enhancement of phenanthrene and nickel. International Journal of Environmental Science and Technology, 2019, 16, 181-190.	1.8	8
27	The effect of heavy metals on thiocyanate biodegradation by an autotrophic microbial consortium enriched from mine tailings. Applied Microbiology and Biotechnology, 2021, 105, 417-427.	1.7	6
28	Can a chemical be both readily biodegradable AND very persistent (vP)? Weight-of-evidence determination demonstrates that phenanthrene is not persistent in the environment. Environmental Sciences Europe, 2020, 32, .	2.6	14
32	Ecotoxicological characterization of engineered biochars produced from different feedstock and temperatures. Science of the Total Environment, 2023, 861, 160640.	3.9	8
33	Heavy metals assessment of ecosystem polluted with wastewaters and taxonomic profiling of multi-resistant bacteria with potential for petroleum hydrocarbon catabolism in nitrogen-limiting medium. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	1

CITATION REPORT