A Source‧ink Hypothesis for Abyssal Biodiversity

American Naturalist 165, 163-178 DOI: 10.1086/427226

Citation Report

#	Article	IF	CITATIONS
1	Patterns of bathymetric zonation of bivalves in the Porcupine Seabight and adjacent Abyssal plain, NE Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 15-31.	0.6	47
2	POPULATION DIFFERENTIATION DECREASES WITH DEPTH IN DEEP-SEA BIVALVES. Evolution; International Journal of Organic Evolution, 2005, 59, 1479-1491.	1.1	102
3	POPULATION DIFFERENTIATION DECREASES WITH DEPTH IN DEEP-SEA BIVALVES. Evolution; International Journal of Organic Evolution, 2005, 59, 1479.	1.1	6
4	LARGE-SCALE BIOGEOGRAPHIC PATTERNS IN MARINE MOLLUSKS: A CONFLUENCE OF HISTORY AND PRODUCTIVITY?. Ecology, 2005, 86, 2288-2297.	1.5	127
5	Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology, 2006, 46, 282-297.	0.9	601
7	Faunal change and bathymetric diversity gradient in deep-sea prosobranchs from Northeastern Atlantic. , 2006, , 317-334.		0
8	Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology - Progress Series, 2006, 317, 1-8.	0.9	409
9	The island rule and the evolution of body size in the deep sea. Journal of Biogeography, 2006, 33, 1578-1584.	1.4	65
10	Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Molecular Ecology, 2006, 15, 639-651.	2.0	113
11	Faunal change and bathymetric diversity gradient in deep-sea prosobranchs from Northeastern Atlantic. Biodiversity and Conservation, 2006, 15, 3685-3702.	1.2	28
12	Spatial and bathymetric trends in Harpacticoida (Copepoda) community structure in the Northern Gulf of Mexico deep-sea. Journal of Experimental Marine Biology and Ecology, 2006, 330, 327-341.	0.7	63
13	Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth?. , 2007, , .		88
14	The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1350-1360.	0.6	79
15	Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1776-1789.	0.6	63
16	Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1820-1830.	0.6	103
17	Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean—Results from the ANDEEP I–III expeditions. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1760-1775.	0.6	97
18	The biodiversity of the deep Southern Ocean benthos. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 39-66.	1.8	151
19	Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarctic Science, 2007, 19, 165-182.	0.5	83

#	Article	IF	CITATIONS
20	The impact of neutrality, niche differentiation and species input on diversity and abundance distributions. Oikos, 2007, 116, 931-940.	1.2	85
21	Seamounts: identity crisis or split personality?. Journal of Biogeography, 2007, 34, 2001-2008.	1.4	113
22	Diversity and species distribution of polychaetes, isopods and bivalves in the Atlantic sector of the deep Southern Ocean. Polar Biology, 2007, 30, 1265-1273.	0.5	36
23	Do Rapoport's rule, the midâ€domain effect or the source–sink hypotheses predict bathymetric patterns of polychaete richness on the Pacific coast of South America?. Global Ecology and Biogeography, 2008, 17, 415-423.	2.7	37
24	Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology and Evolution, 2008, 23, 518-528.	4.2	511
25	Bathymetric zonation and diversity gradient of gastropods and bivalves in West Antarctica from the South Shetland Islands to the Bellingshausen Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 350-368.	0.6	40
26	Epibenthic megacrustaceans from the continental margin, slope and abyssal plain of the Southwestern Gulf of Mexico: Factors responsible for variability in species composition and diversity. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2667-2678.	0.6	22
27	Bivalvia Of The Deep Atlantic. Malacologia, 2008, 50, 57-173.	0.2	59
28	CLIMATIC INFLUENCES ON DEEP EA OSTRACODE (CRUSTACEA) DIVERSITY FOR THE LAST THREE MILLION YEARS. Ecology, 2008, 89, S53-65.	1.5	60
29	Macrostylis cerritus sp. nov., a new species of Macrostylidae (Isopoda: Asellota) from the Weddell Sea, Southern Ocean. Zootaxa, 2009, 2096, 356-370.	0.2	1
30	Exploring Benthic Biodiversity Patterns and Hot Spots on European Margin Slopes. Oceanography, 2009, 22, 16-25.	0.5	46
31	The Future of Integrated Deep-Sea Research in Europe: The HERMIONE Project. Oceanography, 2009, 22, 178-191.	0.5	16
32	Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount. PLoS ONE, 2009, 4, e4141.	1.1	97
33	Bathyal polychaete assemblages in the region of the Subtropical Front, Chatham Rise, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2009, 43, 1121-1135.	0.8	14
34	Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21717-21720.	3.3	88
35	Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography, 2009, 36, 1111-1128.	1.4	264
36	A new species of <i>Aurospio</i> (Polychaeta, Spionidae) from the Antarctic shelf, with analysis of its ecology, reproductive biology and evolutionary history. Marine Ecology, 2009, 30, 181-197.	0.4	27
37	Bathymetric patterns of deepâ€sea gastropod species diversity in 10 basins of the Atlantic Ocean and Norwegian Sea. Marine Ecology, 2009, 30, 164-180.	0.4	38

#	Article	IF	CITATIONS
38	Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Diversity and Distributions, 2009, 15, 523-532.	1.9	90
39	Bathymetric distribution patterns of Southern Ocean macrofaunal taxa: Bivalvia, Gastropoda, Isopoda and Polychaeta. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 2013-2025.	0.6	45
40	Colonization patterns along the equatorial West African margin: Implications for functioning and diversity maintenance of bathyal and abyssal communities. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 2313-2325.	0.6	14
41	A census of abyssal polychaetes. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1739-1746.	0.6	42
42	An inordinate fondness for turrids. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1724-1731.	0.6	50
43	Ecological theory and continental margins: where shallow meets deep. Trends in Ecology and Evolution, 2009, 24, 606-617.	4.2	175
44	Spatial patterns of benthic diversity in molluscs from West Antarctica. Antarctic Science, 2009, 21, 341.	0.5	7
45	An R 0 theory for source–sink dynamics with application to Dreissena competition. Theoretical Ecology, 2010, 3, 25-43.	0.4	25
47	Hawaiian hotspots: enhanced megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii. Marine Ecology, 2010, 31, 183-199.	0.4	153
48	The contribution of deepâ€sea macrohabitat heterogeneity to global nematode diversity. Marine Ecology, 2010, 31, 6-20.	0.4	208
49	Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences, 2010, 7, 2851-2899.	1.3	619
50	Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proceedings of the United States of America, 2010, 107, 115-120.	3.3	104
51	The shell-bearing, benthic gastropods on the southern part of the continental slope off Norway. Journal of Molluscan Studies, 2010, 76, 234-244.	0.4	17
52	Reappraisal ofCerithiella danielsseni(Gastropoda: Caenogastropoda: Cerithiopsidae): a taxon confined to negative temperatures in the Norwegian Sea. Journal of the Marine Biological Association of the United Kingdom, 2010, 90, 819-826.	0.4	2
53	Chromosomes of Pacific hydrothermal vent invertebrates: towards a greater understanding of the relationship between chromosome and molecular evolution. Journal of the Marine Biological Association of the United Kingdom, 2010, 90, 15-31.	0.4	5
54	The dynamics of biogeographic ranges in the deep sea. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3533-3546.	1.2	185
55	Biodiversity of a Unique Environment: The Southern Ocean Benthos Shaped and Threatened by Climate Change. , 2011, , 503-526.		12
56	Bait-attending fauna of the Kermadec Trench, SW Pacific Ocean: Evidence for an ecotone across the abyssal–hadal transition zone. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 49-62.	0.6	96

#	Article	IF	CITATIONS
57	Is there a distinct continental slope fauna in the Antarctic?. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 91-104.	0.6	33
58	Abundance, diversity, and latitudinal gradients of southeastern Atlantic and Antarctic abyssal gastropods. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 49-57.	0.6	16
59	Exonâ€primed, intronâ€crossing (EPIC) loci for five nuclear genes in deepâ€sea protobranch bivalves: primer design, PCR protocols and locus utility. Molecular Ecology Resources, 2011, 11, 1102-1112.	2.2	9
60	Evidence of source–sink dynamics in marine and estuarine species. , 2011, , 361-381.		13
61	Larval Transport Modeling of Deep-Sea Invertebrates Can Aid the Search for Undiscovered Populations. PLoS ONE, 2011, 6, e23063.	1.1	30
62	Increasing variation in taxonomic distinctness reveals clusters of specialists in the deep sea. Ecography, 2011, 34, 306-317.	2.1	36
63	Elevated species diversity in abyssal gastropods off Newfoundland: the potential role of food supply. Marine Biodiversity, 2011, 41, 537-544.	0.3	0
64	Small-Scale Heterogeneity in Deep-Sea Nematode Communities around Biogenic Structures. PLoS ONE, 2011, 6, e29152.	1.1	43
65	COMMUNITY STRUCTURE: GLOBAL EVALUATION AND THE ROLE OF WITHIN COMMUNITY BETA-DIVERSITY. Journal of Foraminiferal Research, 2011, 41, 138-154.	0.1	10
66	Mesoscale Î ² diversity and spatial nestedness of crustacean larvae in the coastal zone off central southern Chile: population and community implications. ICES Journal of Marine Science, 2012, 69, 429-438.	1.2	6
67	Patterns and controlling factors of species diversity in the Arctic Ocean. Journal of Biogeography, 2012, 39, 2081-2088.	1.4	41
69	Predicting Total Global Species Richness Using Rates of Species Description and Estimates of Taxonomic Effort. Systematic Biology, 2012, 61, 871.	2.7	204
70	Descending into the abyss: Bathymetric patterns of diversity in decapod crustaceans shift with taxonomic level and life strategies. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 64, 9-21.	0.6	12
71	Energetics of life on the deep seafloor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15366-15371.	3.3	133
72	Thirty Years of Forest Census at Barro Colorado and the Importance of Immigration in Maintaining Diversity. PLoS ONE, 2012, 7, e49826.	1.1	53
73	Population structure and connectivity of the European conger eel (Conger conger) across the north-eastern Atlantic and western Mediterranean: integrating molecular and otolith elemental approaches. Marine Biology, 2012, 159, 1509-1525.	0.7	36
74	Contrasting patterns of α- and β-diversity in deep-sea bivalves of the eastern and western North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 157-164.	0.6	33
75	Distribution and habitat association of benthic fish on the Condor seamount (NE Atlantic, Azores) from in situ observations. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 114-128.	0.6	35

	CITATION REF	PORT	
#	Article	IF	Citations
76	A molecular sequence proxy for Muusoctopus januarii and calibration of recent divergence among a group of mesobenthic octopuses. Journal of Experimental Marine Biology and Ecology, 2013, 447, 106-122.	0.7	18
77	A proposed biogeography of the deep ocean floor. Progress in Oceanography, 2013, 111, 91-112.	1.5	278
78	Geographic evidence for source–sink dynamics in deepâ€sea neogastropods of the eastern <scp>N</scp> orth <scp>A</scp> tlantic: an approach using nested analysis. Global Ecology and Biogeography, 2013, 22, 433-439.	2.7	20
79	Geological history of bathyal echinoid faunas, with a new genus from the late Cretaceous of Italy. Geological Magazine, 2013, 150, 177-182.	0.9	7
80	Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems. Biogeosciences, 2013, 10, 4861-4878.	1.3	29
81	Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics, 2014, 28, 32.	0.5	198
82	A glimpse into the deep of the Antarctic Polar Front – Diversity and abundance of abyssal molluscs. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 108, 93-100.	0.6	13
83	Molecular differentiation in sympatry despite morphological stasis: deep-sea <i>Atlantoserolis</i> â€WÄgele, 1994 and <i>Glabroserolis</i> â€Menzies, 1962 from the south-west Atlantic (Crustacea: Isopoda: Serolidae). Zoological Journal of the Linnean Society, 2014, 172, 318-359.	1.0	17
84	Marine Environment Around Iceland: Hydrography, Sediments and First Predictive Models of Icelandic Deep-sea Sediment Characteristics. Polish Polar Research, 2014, 35, 151-176.	0.9	24
85	Ecological and evolutionary consequences of benthic community stasis in the very deep sea (>1500) Tj ETQq1	$1_{1.3}^{0.78431}$	4 rgBT /Ov€
86	Diversity and abundance of deep-sea Isopoda along the Southern Polar Front: Results from the SYSTCO I and II expeditions. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 108, 76-84.	0.6	15
87	Does energy availability predict gastropod reproductive strategies?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140400.	1.2	8
88	Urstylidae - a new family of abyssal isopods (Crustacea: Asellota) and its phylogenetic implications. Zoological Journal of the Linnean Society, 2014, 170, 245-296.	1.0	25
89	Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biological Reviews, 2014, 89, 406-426.	4.7	119
90	Bathymetric patterns of polychaete (Annelida) species richness in the continental shelf of the Gulf of California, Eastern Pacific. Journal of Sea Research, 2014, 91, 79-87.	0.6	7
91	Molecular differentiation in sympatry despite morphological stasis: deep-sea <italic>Atlantoserolis</italic> WÃgele, 1994 and <italic>Clabroserolis</italic> Menzies, 1962 from the south-west Atlantic (Crustacea: Isopoda: Serolidae). Zoological Journal of the Linnean Society. 0	1.0	0
92	Occurrence of Benthonella Dall 1889 in the Cenozoic (Paleogene) of France: a present-day abyssal and bathyal mollusc (Gastropoda: Caenogastropoda: Rissoidae). Archiv Fur Molluskenkunde, 2014, 143, 21-32.	0.0	2
94	On some hypotheses of diversity of animal life at great depths on the sea floor. Marine Ecology, 2015, 36, 849-872.	0.4	84

#	Article	IF	CITATIONS
95	Multiple Processes Generate Productivity-Diversity Relationships in Experimental Wood-Fall Communities. Ecology, 2015, 97, 885-98.	1.5	26
96	The community of deep-sea decapod crustaceans between 175 and 2600m in submarine canyons of a volcanic oceanic island (central-eastern Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 105, 83-95.	0.6	10
97	Toward a Conceptual Understanding of β-Diversity in the Deep-Sea Benthos. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 623-642.	3.8	45
98	Modeling the Population-Level Processes of Biodiversity Gain and Loss at Geological Timescales. American Naturalist, 2015, 186, 742-754.	1.0	8
99	Abyssal macrofauna of the Kuril–Kamchatka Trench area (Northwest Pacific) collected by means of a camera–epibenthic sledge. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 111, 175-187.	0.6	61
100	Diversity and composition of the copepod communities associated with megafauna around a cold seep in the Gulf of Mexico with remarks on species biogeography. Marine Biodiversity, 2015, 45, 419-432.	0.3	21
101	Speciation in the dark: diversification and biogeography of the deepâ€sea gastropod genus Scaphander in the Atlantic Ocean. Journal of Biogeography, 2015, 42, 843-855.	1.4	28
102	Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150193.	1.2	17
103	Assemblage structure is related to slope and depth on a deep offshore <scp>P</scp> acific seamount chain. Marine Ecology, 2015, 36, 210-220.	0.4	35
104	Composition and distribution of bivalves of the abyssal plain adjacent to the Kuril–Kamchatka Trench (Pacific Ocean). Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 111, 188-197.	0.6	25
105	Cutting the Umbilical: New Technological Perspectives in Benthic Deep-Sea Research. Journal of Marine Science and Engineering, 2016, 4, 36.	1.2	39
106	An End-to-End DNA Taxonomy Methodology for Benthic Biodiversity Survey in the Clarion-Clipperton Zone, Central Pacific Abyss. Journal of Marine Science and Engineering, 2016, 4, 2.	1.2	81
107	Depth-related gradients in community structure and relatedness of bivalves and isopods in the Southern Ocean. Progress in Oceanography, 2016, 144, 25-38.	1.5	8
108	Deep-sea diversity patterns are shaped by energy availability. Nature, 2016, 533, 393-396.	13.7	202
109	Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Molecular Phylogenetics and Evolution, 2016, 104, 73-82.	1.2	26
110	Assemblages of deep-sea fishes on the middle slope off Northwest Africa (26°–33° N, eastern Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 118, 66-83.	0.6	8
111	Bathymetric and regional changes in benthic macrofaunal assemblages on the deep Eastern Brazilian margin, SW Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 111, 110-120.	0.6	27
112	Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation. Current Biology, 2017, 27, R511-R527.	1.8	243

ARTICLE IF CITATIONS # A study of triphorid larvae and post-larvae at the Campos Basin deep-sea floor, southeastern Brazil 113 0.2 2 (Gastropoda: Triphoroidea). Journal of Natural History, 2017, 51, 867-881. Synopsis of the deep-sea groups of Triphoroidea (Gastropoda). Journal of Natural History, 2017, 51, 114 0.2 853-865. Invertebrate population genetics across Earth's largest habitat: The deepâ€sea floor. Molecular 115 2.0 87 Ecology, 2017, 26, 4872-4896. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the 116 Deep Sea. Environmental Science & amp; Technology, 2017, 51, 10222-10231. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians 117 1.9 27 suggests similar behavioural responses. Aquatic Toxicology, 2017, 191, 10-16. Nestedness and species replacement along bathymetric gradients in the deep sea reflect productivity: a test with polychaete assemblages in the oligotrophic northâ€west Gulf of Mexico. Journal of Biogeography, 2017, 44, 548-555. 1.4 Incorporating ecosystem services into environmental management of deep-seabed mining. Deep-Sea 119 0.6 93 Research Part II: Topical Studies in Oceanography, 2017, 137, 486-503. Distribuição da comunidade megabêntica ao longo da plataforma e talude continental da Bacia de 120 Campos., 2017,, 139-166. Abyssal Solenogastres (Mollusca, Aplacophora) from the Northwest Pacific: Scratching the Surface 121 1.2 9 of Deep-Sea Diversity Using Integrative Taxonomy. Frontiers in Marine Science, 2017, 4, . Evaluating environmental drivers of spatial variability in free-living nematode assemblages along the 1.3 Portuguese margin. Biogeosciences, 2017, 14, 651-669. Unusually diverse, abundant and endemic deep–sea sponge fauna revealed in the Sea of Okhotsk (NW) Tj ETQq0,0,0 rgBT (Qverlock] 123 Predictive models using randomForest regression for distribution patterns of meiofauna in Icelandic 124 0.3 waters. Marine Biodiversity, 2018, 48, 719-735. Biogeographic distributions of Cytheropteron species (Ostracoda) in Icelandic waters (sub-polar) Tj ETQq0 0 0 rgBT / Qverlock 10 Tf 50 2 125 Diversity of macrofaunal Mollusca of the abyssal Vema Fracture Zone and hadal Puerto Rico Trench, Tropical North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 148, 45-53. Biodiversity and distribution of polynoid and spionid polychaetes (Annelida) in the Vema Fracture Zone, tropical North Atlantic. Deep-Sea Research Part II: Topical Studies in Óceanography, 2018, 148, 127 12 0.6 54-63. The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae). Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 148, 128 0.6

	7130.		
129	Bivalve molluscs of the abyssal zone of the Sea of Okhotsk: Species composition, taxonomic remarks, and comparison with the abyssal fauna of the Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 154, 230-248.	0.6	19
130	Adding the Third Dimension to Marine Conservation. Conservation Letters, 2018, 11, e12408.	2.8	27

#	Article	IF	CITATIONS
131	First insights into the solenogaster diversity of the Sea of Okhotsk with the description of a new species of Kruppomenia (Simrothiellidae, Cavibelonia). Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 154, 214-229.	0.6	7
132	Bryozoa (Cyclostomata and Ctenostomata) from polymetallic nodules in the Russian exploration area, Clarion–Clipperton Fracture Zone, eastern Pacific Ocean—taxon novelty and implications of mining. Zootaxa, 2018, 4484, 1-91.	0.2	12
133	Four new species of the family Propeamussiidae (Mollusca: Bivalvia) from the abyssal zone of the northwestern Pacific, with notes on Catillopecten squamiformis (Bernard, 1978). Marine Biodiversity, 2018, 48, 647-676.	0.3	9
134	To what extent do mesophotic coral ecosystems and shallow reefs share species of conservation interest? A systematic review. Environmental Evidence, 2018, 7, .	1.1	36
135	Dark Ophiuroid Biodiversity in a Prospective Abyssal Mine Field. Current Biology, 2019, 29, 3909-3912.e3.	1.8	43
136	Deepest known gastropod fauna: Species composition and distribution in the Kuril–Kamchatka Trench. Progress in Oceanography, 2019, 178, 102176.	1.5	11

Of basins, plains, and trenches: Systematics and distribution of Solenogastres (Mollusca,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 502 Td

138	Endemicity and community composition of marine species along the NW Pacific and the adjacent Arctic Ocean. Progress in Oceanography, 2019, 178, 102199.	1.5	10
139	High species richness of Northwest Pacific deep-sea amphipods revealed through DNA barcoding. Progress in Oceanography, 2019, 178, 102184.	1.5	19
140	Diversity and distribution of Ischnomesidae (Crustacea: Isopoda: Asellota) along the Kuril-Kamchatka Trench – A genetic perspective. Progress in Oceanography, 2019, 178, 102174.	1.5	19
141	Biodiversity patterns across taxonomic groups along a lake water-depth gradient: Effects of abiotic and biotic drivers. Science of the Total Environment, 2019, 686, 1262-1271.	3.9	22
142	Relating Depth and Diversity of Bivalvia and Gastropoda in Two Contrasting Sub-Arctic Marine Regions. Frontiers in Marine Science, 2019, 6, .	1.2	4
143	Bivalve mollusks of the Kuril-Kamchatka Trench, Northwest Pacific Ocean: Species composition, distribution and taxonomic remarks. Progress in Oceanography, 2019, 176, 102127.	1.5	15
144	North Atlantic Gateway: Test bed of deepâ€sea macroecological patterns. Journal of Biogeography, 2019, 46, 2056-2066.	1.4	22
145	Diversity and spatial patterns of foraminiferal assemblages in the eastern Clarion–Clipperton zone (abyssal eastern equatorial Pacific). Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 149, 103036.	0.6	18
146	Towards an Ecosystem Approach to Environmental Impact Assessment for Deep-Sea Mining. , 2019, , 63-94.		1
147	A new abyssal amphipod species (Crustacea) from sunken wood described using integrative taxonomy. Progress in Oceanography, 2019, 172, 1-13.	1.5	4
148	Productivity controls macrofauna diversity in the deep northern Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 143, 17-27.	0.6	16

#	Article	IF	CITATIONS
149	Micromenia amphiatlantica sp. nov.: First solenogaster (Mollusca, Aplacophora) with an amphi-Atlantic distribution and insight into abyssal solenogaster diversity. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 157, 103189.	0.6	4
150	Changes in species composition of Haploniscidae (Crustacea: Isopoda) across potential barriers to dispersal in the Northwest Pacific. Progress in Oceanography, 2020, 180, 102233.	1.5	6
151	Biodiversity of echiurans (Echiura) of the Kuril-Kamchatka Trench area. Progress in Oceanography, 2020, 180, 102216.	1.5	6
152	Diversity and composition of benthic asellote Isopoda from two different New Zealand continental margin habitats - implications of habitat heterogeneity, productivity and depth. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 165, 103368.	0.6	0
153	Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion-Clipperton Fracture Zone (equatorial Pacific). Biogeosciences, 2020, 17, 865-886.	1.3	38
154	High diversity and pan-oceanic distribution of deep-sea polychaetes: Prionospio and Aurospio (Annelida: Spionidae) in the Atlantic and Pacific Ocean. Organisms Diversity and Evolution, 2020, 20, 171-187.	0.7	16
155	Integrative taxonomy reveals new taxa of Trochidae (Gastropoda: Vetigastropoda) from seamounts in the tropical western Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 159, 103234.	0.6	1
156	Biodiversity and distribution patterns of deep-sea fauna along the temperate NW Pacific. Progress in Oceanography, 2020, 183, 102296.	1.5	14
157	Traits and depth: What do hydroids tell us about morphology and lifeâ€history strategies in the deep sea?. Global Ecology and Biogeography, 2020, 29, 908-924.	2.7	7
158	Metabolic Niches and Biodiversity: A Test Case in the Deep Sea Benthos. Frontiers in Marine Science, 2020, 7, .	1.2	12
159	Phylogenetic clustering and rarity imply risk of local species extinction in prospective deep-sea mining areas of the Clarion–Clipperton Fracture Zone. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192666.	1.2	19
160	Gradual and rapid shifts in the composition of assemblages of hydroids (Cnidaria) along depth and latitude in the deep Atlantic Ocean. Journal of Biogeography, 2020, 47, 1541-1551.	1.4	5
161	Saprotrophic and ectomycorrhizal fungi exhibit contrasting richness patterns along elevational gradients in cool-temperate montane forests. Fungal Ecology, 2021, 50, 101036.	0.7	15
162	Bathymetric gradient shapes the community composition rather than the species richness of deep-sea benthic ciliates. Science of the Total Environment, 2021, 755, 142623.	3.9	4
163	Macroecology of Southern Ocean benthic Ostracoda (Crustacea) from the continental margin and abyss. Zoological Journal of the Linnean Society, 2022, 194, 226-255.	1.0	4
164	Characterizing Community Structure of Benthic Infauna From the Continental Slope of the Southern California Bight. Frontiers in Marine Science, 2021, 8, .	1.2	3
165	The commonness of rarity in a deepâ€sea taxon. Oikos, 2021, 130, 863-878.	1.2	16
166	An approach using ddRADseq and machine learning for understanding speciation in Antarctic Antarctophilinidae gastropods. Scientific Reports, 2021, 11, 8473.	1.6	8

#	Article	IF	CITATIONS
167	Bivalve Diversity on the Continental Shelf and Deep Sea of the Perdido Fold Belt, Northwest Gulf of Mexico, Mexico. Diversity, 2021, 13, 166.	0.7	5
168	Quaternary equatorial Atlantic deep-sea ostracodes: evidence for a distinct tropical fauna in the deep sea. Journal of Paleontology, 0, , 1-41.	0.5	2
169	Sustainability situations for the southern Gulf of Mexico seafloor, based on environmental, benthic, and socioeconomic indicators. Science of the Total Environment, 2021, 787, 147726.	3.9	1
170	Taxonomic, Ecological and Historical Considerations on the Deep-Water Benthic Mollusc Fauna of the Red Sea. Springer Earth System Sciences, 2015, , 511-529.	0.1	10
171	Hydrozoans from Mauritanian Deep-Waters. , 2017, , 419-444.		6
172	The Deep Sea: If We Do Not Understand the Biodiversity, Can We Assess the Threat?. Issues in Environmental Science and Technology, 2007, , 81-106.	0.4	2
173	Regionalâ€scale patterns of deep seafloor biodiversity for conservation assessment. Diversity and Distributions, 2020, 26, 479-494.	1.9	10
174	The impact of neutrality, niche differentiation and species input on diversity and abundance distributions. , 2007, 116, 931.		3
175	Micromolluscs in Japan: taxonomic composition, habitats, and future topics. Zoosymposia, 0, 1, 147-232.	0.3	41
176	Macrobenthic Biomass Relations in the Faroe-Shetland Channel: An Arctic-Atlantic Boundary Environment. PLoS ONE, 2011, 6, e18602.	1.1	4
177	Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea). PLoS ONE, 2012, 7, e31940.	1.1	217
178	Long-Term Observations of Epibenthic Fish Zonation in the Deep Northern Gulf of Mexico. PLoS ONE, 2012, 7, e46707.	1.1	10
179	Large Spatial Scale Variability in Bathyal Macrobenthos Abundance, Biomass, α- and β-Diversity along the Mediterranean Continental Margin. PLoS ONE, 2014, 9, e107261.	1.1	28
180	Effects of oceanographic retention on decapod and gastropod community diversity on seamounts. Marine Ecology - Progress Series, 2009, 383, 225-237.	0.9	18
181	Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. Marine Ecology - Progress Series, 2010, 399, 1-14.	0.9	116
182	Local-scale faunal turnover on the deep Pacific seafloor. Marine Ecology - Progress Series, 2011, 422, 193-200.	0.9	30
183	Polychaete species diversity on the West Antarctic Peninsula deep continental shelf. Marine Ecology - Progress Series, 2011, 428, 119-134.	0.9	15
184	β-diversity of deep-sea holothurians and asteroids along a bathymetric gradient (NE Atlantic). Marine Ecology - Progress Series, 2014, 508, 177-185.	0.9	21

#	Article	IF	CITATIONS
185	Deconstructing bathymetric body size patterns in deep-sea gastropods. Marine Ecology - Progress Series, 2005, 297, 181-187.	0.9	36
186	Influence of ecological role on bathymetric patterns of deep-sea species: size clines in parasitic gastropods. Marine Ecology - Progress Series, 2006, 320, 161-167.	0.9	2
187	Body size response of abyssal polychaetes to different nutrient regimes. Scientia Marina, 2006, 70, 319-330.	0.3	8
191	Patterns in Deep-Sea Macroecology. , 2009, , 65-100.		26
192	The unique deep sea—land connection: interactive 3D visualization and molecular phylogeny ofBathyhedyle bouchetin. sp. (Bathyhedylidae n. fam.)—the first panpulmonate slug from bathyal zones. PeerJ, 2016, 4, e2738.	0.9	10
193	A new predator connecting the abyssal with the hadal in the Kuril-Kamchatka Trench, NW Pacific. PeerJ, 2018, 6, e4887.	0.9	17
194	Macrofaunal and Megafaunal Diversity. , 2009, , .		0
195	Megafaunal Abundance. , 2009, , .		0
196	Southern Ocean Deep-Sea Isopod Biodiversity Research: From Census to Ecosystem Functioning. , 2012, , 21-34.		0
197	Meiobenthos of the Sub-equatorial North-Eastern Pacific Abyssal Seafloor: A Synopsis. SpringerBriefs in Earth System Sciences, 2014, , 29-65.	0.0	1
198	Ecosystem Goods and Services. , 2019, , 307-332.		0
199	Continental Slope and Submarine Canyons: Benthic Biodiversity and Human Impacts. Brazilian Marine Biodiversity, 2020, , 37-72.	0.4	8
200	Three new deep-sea species of Thyasiridae (Mollusca: Bivalvia) from the abyssal plain of the northwestern Pacific Ocean and hadal depths of the Kuril-Kamchatka Trench. PeerJ, 2020, 8, e10405.	0.9	4
202	Depth-range distribution and diversity patterns of a polychaete (Annelida) community in the continental shelf of the Southern Gulf of Mexico. Estuarine, Coastal and Shelf Science, 2022, 265, 107739.	0.9	4
203	Diversity and distribution patterns of macrofauna polychaetes (Annelida) in deep waters of the Southwestern Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 181, 103699.	0.6	3
204	Macrofauna and Nematode Abundance in the Abyssal and Hadal Zones of Interconnected Deep-Sea Ecosystems in the Kuril Basin (Sea of Okhotsk) and the Kuril-Kamchatka Trench (Pacific Ocean). Frontiers in Marine Science, 2022, 9, .	1.2	9
205	Pandora's Box in the Deep Sea –Intraspecific Diversity Patterns and Distribution of Two Congeneric Scavenging Amphipods. Frontiers in Marine Science, 2021, 8, .	1.2	11
206	Depth and latitudinal gradients of diversity in seamount benthic communities. Journal of Biogeography, 2022, 49, 904-915.	1.4	10

0

#	Article	IF	CITATIONS
207	The Environmental Drivers of Benthic Fauna Diversity and Community Composition. Frontiers in Marine Science, 2022, 9, .	1.2	12
210	<scp>4D</scp> marine conservation networks: Combining <scp>3D</scp> prioritization of present and future biodiversity with climatic refugia. Global Change Biology, 2022, 28, 4577-4588.	4.2	11
211	Comparison of structure and diversity of benthic communities in the Okinawa Trough and Mariana Trench by environmental DNA metabarcoding. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 185, 103806.	0.6	2
212	Evolutionary time and species diversity in aquatic ecosystems worldwide. Biological Reviews, 0, , .	4.7	3
213	Dispersals from the West Tethys as the source of the Indo-West Pacific diversity hotspot in comatulid crinoids. Paleobiology, 0, , 1-14.	1.3	1
214	Evolution and biogeography of the <i>Haploniscus belyaevi</i> species complex (Isopoda:) Tj ETQq1 1 0.784314	rgBT /Ovei 0.5	rlgck 10 Tf
215	Functional space expansion driven by transitions between energetically advantageous traits in the deep sea. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	1
216	Deep-Sea Meiofauna—A World on Its Own or Deeply Connected?. , 2023, , 257-283.		0
217	Marine Meiofauna Diversity and Biogeography—Paradigms and Challenges. , 2023, , 121-151.		0
218	Biodiversity, biogeography, and connectivity of polychaetes in the world's largest marine minerals exploration frontier. Diversity and Distributions, 2023, 29, 727-747.	1.9	5
224	Biodiversity of the Clarion-Clipperton Fracture Zone: a worm perspective. Marine Biodiversity, 2024, 54, .	0.3	0
226	Diversity hotspots on the benthos—Case studies highlight hidden treasures. , 2024, , 131-168.		0

227 The seabed $\widehat{a} \in$ "Where life began and still evolves. , 2024, , 1-74.