Energy-Efficient Deployment of Intelligent Mobile Sens

IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems, 78-92

DOI: 10.1109/tsmca.2004.838486

Citation Report

#	Article	IF	CITATIONS
1	Actuation scheduling in mobile actuator networks for spatial-temporal feedback control of a diffusion process with dynamic obstacle avoidance. , 0 , , .		8
2	NCS Testbed for Ambient Intelligence. , 0, , .		14
3	Optimal Dynamic Actuator Location in Distributed Feedback Control of A Diffusion Process., 2005,,.		15
4	Energy Balancing in the Self-configuring Sensor Networks. , 2005, , .		1
5	Auto-Deployment of Mobile Nodes in Wireless Sensor Networks Using Grid Method., 0,,.		11
6	A Dual Approach for The Worst-Case-Coverage Deployment Problem in Ad-Hoc Wireless Sensor Networks. , 2006, , .		12
7	Energy-Efficient Deployment of Mobile Sensor Networks by PSO. Lecture Notes in Computer Science, 2006, , 373-382.	1.3	23
8	A Triangular Selection Path Planning Method with Dead Reckoning System for Wireless Mobile Sensor Mote. , 2006, , .		7
9	ZONER: A ZONE-based Sensor Relocation Protocol for Mobile Sensor Networks. Local Computer Networks (LCN), Proceedings of the IEEE Conference on, 2006, , .	0.0	24
10	Coverage-Driven Self-Deployment for Cluster Based Mobile Sensor Networks. , 2006, , .		8
11	A BER-Based Partitioned Model for a 2.4GHz Vehicle-to-Vehicle Expressway Channel. Wireless Personal Communications, 2006, 37, 421-443.	2.7	31
12	Algorithm for the placement of nodes for effective coverage. Frontiers of Electrical and Electronic Engineering in China: Selected Publications From Chinese Universities, 2006, 1, 297-300.	0.6	O
13	A Study of Grouping Effect On Mobile Actuator Sensor Networks for Distributed Feedback Control of Diffusion Process Using Central Voronoi Tessellations. , 2006, , .		20
14	Inner Supervision in Multi-Sensor Data Fusion Using the Concepts of Stackelberg Games. , 2006, , .		3
15	Potential Field Based Hierarchical Structure for Mobile Sensor Network Deployment. Proceedings of the American Control Conference, 2007, , .	0.0	22
16	PALM: A Partition Avoidance Lazy Movement Protocol for Mobile Sensor Networks., 2007,,.		11
17	Energy-balancing cooperative strategies for sensor deployment. , 2007, , .		44
18	Artificial Ecological System of Sensor Network Based on Ecological Balancing Environment., 2007,,.		O

#	Article	IF	CITATIONS
19	Prediction approaches for improving energy efficiency of virtual force algorithms to the mobile sensor deployment problem. , 2007 , , .		2
20	Mobile Node Deployment in Hybrid Sensor Networks. , 2007, , .		1
21	Self managed system of sensor network & mp; #x2014; an artificial ecological system., 2007,,.		1
22	A novel self-maintenance ecological system of sensor network based on ecological balance environment. , 2007, , .		0
23	Differentiated Surveillance for Static and Random Mobile Sensor Networks., 2007,,.		4
24	Optimal dynamic actuator location in distributed feedback control of a diffusion process. International Journal of Sensor Networks, 2007, 2, 169.	0.4	21
25	Self-Healing Wireless Sensor Networks: Results That May Surprise. , 2007, , .		12
26	Convex Optimization Strategies for Coordinating Large-Scale Robot Formations. , 2007, 23, 1252-1259.		77
27	A Distributed Sensor Relocation Scheme for Environmental Control., 2007,,.		43
28	Exploring Load-Balance to Dispatch Mobile Sensors in Wireless Sensor Networks. , 2007, , .		29
29	iMouse: An Integrated Mobile Surveillance and Wireless Sensor System. Computer, 2007, 40, 60-66.	1,1	121
30	Distributed Sensor Networks Deployment Using Fuzzy Logic Systems. International Journal of Wireless Information Networks, 2007, 14, 163-173.	2.7	11
31	On the efficient and fast response for sensor deployment in sparse wireless sensor networks. Computer Communications, 2007, 30, 3892-3903.	5.1	8
32	Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 2008, 6, 621-655.	5.5	912
33	Self-deployment of mobile sensors on a ring. Theoretical Computer Science, 2008, 402, 67-80.	0.9	78
34	Sensor Deployment and Relocation: A Unified Scheme. Journal of Computer Science and Technology, 2008, 23, 400-412.	1.5	8
35	UEEDA: Uniform and energy-efficient deployment algorithm for wireless sensor networks. International Journal of Communication Systems, 2008, 21, 453-467.	2.5	4
36	Deployment of a team of biomimetic searching agents based on limited communication quantity. Asian Journal of Control, 2008, 10, 439-448.	3.0	6

#	Article	IF	CITATIONS
37	A Localized Self-Healing Algorithm for Networks of Moveable Sensor Nodes., 2008,,.		62
38	Distributed Deployment Schemes for Mobile Wireless Sensor Networks to Ensure Multilevel Coverage. IEEE Transactions on Parallel and Distributed Systems, 2008, 19, 1280-1294.	5.6	164
39	A Geometric Transversal Approach to Analyzing Track Coverage in Sensor Networks. IEEE Transactions on Computers, 2008, 57, 1113-1128.	3.4	32
40	Connectivity-Guaranteed and Obstacle-Adaptive Deployment Schemes for Mobile Sensor Networks. , 2008, , .		31
41	Efficient Placement and Dispatch of Sensors in a Wireless Sensor Network. IEEE Transactions on Mobile Computing, 2008, 7, 262-274.	5.8	179
42	Efficient Distributed Sensor Dispatch in Mobile Sensor Network. , 2008, , .		4
43	Managing the Mobility of a Mobile Sensor Network Using Network Dynamics. IEEE Transactions on Parallel and Distributed Systems, 2008, 19, 106-120.	5.6	54
44	A moving algorithm for non-uniform deployment in mobile sensor networks. , 2008, , .		8
45	Deployment algorithms for a power-constrained mobile sensor network. , 2008, , .		20
46	Distributed Adaptability and Mobility in Space Based Wireless Pico-Satellite Sensor Networks. , 2008, , .		1
47	Deployment of sensors in a network-like environment. , 2008, , .		2
48	Distributed sensing and communications in tactical robotic networks. , 2008, , .		4
49	An Enhanced Precise Self-deployment Algorithm in Mobile Sensor Network. , 2008, , .		1
50	Multi-Hop Path Routing for Multiple Base Stationed Sensor Network using MTC Algorithm. , 2008, , .		0
51	An Enhanced Self-deployment Algorithm in Mobile Sensor Network. , 2008, , .		4
52	Differentiated Surveillance for Static and Random Mobile Sensor Networks. IEEE Transactions on Wireless Communications, 2008, 7, 4411-4423.	9.2	20
53	Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks. Sensors, 2008, 8, 2792-2817.	3.8	24
54	Deployment of Mobile Sensor Networks with Discontinuous Dynamics. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 10409-10414.	0.4	3

#	Article	IF	Citations
55	Mobility-Assisted QoS Topology Control in Wireless Mobile Ad Hoc Networks. , 2009, , .		3
56	Sensor Deployment for Collaborative Target Detection in the Presence of Obstacles. , 2009, , .		6
57	Distributed cooperative coverage and connectivity maintenance for mobile sensing devices. , 2009, , .		7
58	P&P protocol., 2009, , .		1
59	Optimal placement of distributed sensors against moving targets. ACM Transactions on Sensor Networks, 2009, 5, 1-25.	3.6	25
60	Obstacle-Resistant Deployment Algorithms for Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2009, 58, 2925-2941.	6.3	116
61	A multi-sensor network for direction finding of moving ferromagnetic objects inside water by magnetic anomaly. Measurement: Journal of the International Measurement Confederation, 2009, 42, 1402-1416.	5.0	14
62	Optimal movement of mobile sensors for barrier coverage of a planar region. Theoretical Computer Science, 2009, 410, 5515-5528.	0.9	90
63	A survey of movement strategies for improving network coverage in wireless sensor networks. Computer Communications, 2009, 32, 1427-1436.	5.1	155
64	Coverage Optimization in Wireless Mobile Sensor Networks. , 2009, , .		5
65	Autonomous deployment of heterogeneous mobile sensors., 2009,,.		8
66	Connectivity-Guaranteed and Obstacle-Adaptive Deployment Schemes for Mobile Sensor Networks. IEEE Transactions on Mobile Computing, 2009, 8, 836-848.	5.8	95
67	Energy Efficient Layout for a Wireless Sensor Network using Multi-Objective Particle Swarm Optimization. , 2009, , .		13
68	Uniform scattering of autonomous mobile robots in a grid. , 2009, , .		22
69	Energy-Efficient Deployment of Distributed Mobile Sensor Networks Using Fuzzy Logic Systems., 2009,		7
70	Non-location-based Mobile Sensor Relocation in a Hybrid Static-Mobile Wireless Sensor Network. , 2009, , .		7
71	A Heuristic Algorithm for Broker Deployment in RFID Applications. , 2009, , .		1
72	Centroid-Based Movement Assisted Sensor Deployment Schemes in Wireless Sensor Networks., 2009,,.		33

#	Article	IF	CITATIONS
73	Robust Deployment of Dynamic Sensor Networks for Cooperative Track Detection. IEEE Sensors Journal, 2009, 9, 1029-1048.	4.7	31
74	Coverage-Aware Connectivity Restoration in Mobile Sensor Networks. , 2009, , .		31
75	Focused-coverage by mobile sensor networks. , 2009, , .		34
76	Optimal Control of an Underwater Sensor Network for Cooperative Target Tracking. IEEE Journal of Oceanic Engineering, 2009, 34, 678-697.	3.8	46
78	Energy-efficient indoor search by swarms of simulated flying robots without global information. Swarm Intelligence, 2010, 4, 117-143.	2.2	55
79	Push & Pull: autonomous deployment of mobile sensors for a complete coverage. Wireless Networks, 2010, 16, 607-625.	3.0	42
80	Hybrid Genetic Algorithm Using a Forward Encoding Scheme for Lifetime Maximization of Wireless Sensor Networks. IEEE Transactions on Evolutionary Computation, 2010, 14, 766-781.	10.0	113
81	Coverage-aware connectivity restoration in mobile sensor networks. Journal of Network and Computer Applications, 2010, 33, 363-374.	9.1	82
82	Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking. International Journal of Antennas and Propagation, 2010, 2010, 1-18.	1.2	13
83	Improving anti-jamming capability and increasing jamming impact with mobility control. , 2010, , .		15
84	Diffusion Based Self-Deployment Algorithm for Mobile Sensor Networks. , 2010, , .		4
85	Density Control-Based Algorithms for Dynamic Maintenance in Sensor Networks with Limited Mobility. , 2010, , .		0
86	Mobile sensor network deployment using cellular learning automata approach., 2010,,.		4
87	Distributed connected coverage control for groups of mobile agents. International Journal of Control, 2010, 83, 1347-1363.	1.9	12
88	Distributed strategy for sensing deployment in wireless sensor networks. , 2010, , .		4
89	Mobile Sensor Deployment Optimization for <i>k</i> -Coverage in Wireless Sensor Networks with a Limited Mobility Model. IETE Technical Review (Institution of Electronics and Telecommunication) Tj ETQq1 1 0.7	7848124 rgl	BT ⊉ 0verlock
90	Actor Deployment Strategies in WSANs. , 2010, , .		2
91	A multi-center self-deployment algorithm of mobile sensor network. , 2010, , .		1

#	ARTICLE	IF	CITATIONS
92	Cooperative Sensing and Distributed Control of a Diffusion Process Using Centroidal Voronoi Tessellations. Numerical Mathematics, 2010, 3, 162-177.	1.3	9
93	A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3thin film array electrically connected in series. Smart Materials and Structures, 2010, 19, 105030.	3 . 5	39
94	Mobile Sensor Deployment in Unknown Fields. , 2010, , .		6
95	Deployment algorithms for a powerâ€constrained mobile sensor network. International Journal of Robust and Nonlinear Control, 2010, 20, 745-763.	3.7	55
96	A Localized Algorithm for Restoring Internode Connectivity in Networks of Moveable Sensors. IEEE Transactions on Computers, 2010, 59, 1669-1682.	3.4	76
97	Probabilistic Track Coverage in Cooperative Sensor Networks. IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40, 1492-1504.	5.0	22
98	Mission-Oriented k-Coverage in Mobile Wireless Sensor Networks. Lecture Notes in Computer Science, 2010, , 92-103.	1.3	10
99	Sensor Deployment for Network-Like Environments. IEEE Transactions on Automatic Control, 2010, 55, 2580-2585.	5.7	8
100	A Grid-Based Self-Deployment Schemes in Mobile Sensor Networks. , 2010, , .		8
101	An Energy-Efficient Self-Deployment Scheme in Intelligent Mobile Sensor Networks. , 2010, , .		8
102	UREA: Uncovered Region Exploration Algorithm for reorganization of mobile sensor nodes to maximize coverage. , 2010 , , .		5
103	Self-deployment by distance and orientation control for mobile sensor networks. , 2010, , .		8
104	Energy-Balanced Dispatch of Mobile Sensors in a Hybrid Wireless Sensor Network. IEEE Transactions on Parallel and Distributed Systems, 2010, 21, 1836-1850.	5.6	83
105	Dynamic Wireless Sensor Network parameters optimization adapting different node mobility. , 2010, , .		2
106	Autonomous Deployment of Heterogeneous Mobile Sensors. IEEE Transactions on Mobile Computing, 2011, 10, 753-766.	5 . 8	72
107	Strictly Localized Sensor Self-Deployment for Optimal Focused Coverage. IEEE Transactions on Mobile Computing, 2011, 10, 1520-1533.	5 . 8	91
108	Network supporting multilayered quality of service routing in Wireless Sensor Networks. , 2011, , .		3
109	TOM: Topology oriented maintenance in sparse Wireless Sensor Networks. , 2011, , .		5

#	Article	IF	Citations
110	Node Architectures and Its Deployment in Wireless Sensor Networks: A Survey. Communications in Computer and Information Science, 2011, , 515-526.	0.5	13
111	Efficient Algorithm for Constructing Minimum Size Wireless Sensor Networks to Fully Cover Critical Square Grids. IEEE Transactions on Wireless Communications, 2011, 10, 1154-1164.	9.2	28
112	From wireless sensor networks towards cyber physical systems. Pervasive and Mobile Computing, 2011, 7, 397-413.	3.3	291
113	Hierarchical Deployment Optimization for Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2011, 10, 1028-1041.	5.8	67
114	Energy-Efficient Deployment of Airships for High Altitude Platforms: A Deterministic Annealing Approach. , $2011, \ldots$		5
115	Adaptive Distance Constrained Deployment algorithm for mobile sensor networks. IET Signal Processing, 2011, 5, 27.	1.5	2
116	A moving algorithm for non-uniform deployment in mobile sensor networks. International Journal of Autonomous and Adaptive Communications Systems, 2011, 4, 271.	0.3	5
117	Energyâ€conserving data gathering by mobile mules in a spatially separated wireless sensor network. Wireless Communications and Mobile Computing, 2013, 13, 1369-1385.	1.2	8
118	Heuristic algorithms for effective broker deployment. Information Technology and Management, 2011, 12, 55-66.	2.4	13
119	On Adaptive Density Deployment to Mitigate the Sink-Hole Problem in Mobile Sensor Networks. Mobile Networks and Applications, 2011, 16, 134-145.	3.3	15
120	On coverage issues in directional sensor networks: A survey. Ad Hoc Networks, 2011, 9, 1238-1255.	5 . 5	228
121	The critical-square-grid coverage problem in wireless sensor networks is NP-Complete. Computer Networks, 2011, 55, 2209-2220.	5.1	54
122	A cellular learning automata-based deployment strategy for mobile wireless sensor networks. Journal of Parallel and Distributed Computing, 2011, 71, 988-1001.	4.1	47
123	A Multi-hop Dynamic Connectivity and Maintenance Algorithm for Wireless Sensor Networks. , 2011, , .		2
124	Mobile sensor network node deployment via Central Voronoi Tessellation., 2011,,.		2
125	On demand k-coverage with purposeful mobility in wireless sensor networks. , 2011, , .		3
126	UNIFORM SCATTERING OF AUTONOMOUS MOBILE ROBOTS IN A GRID. International Journal of Foundations of Computer Science, 2011, 22, 679-697.	1.1	37
127	Mobile Sensing and Actuating with Ubiquitous Computing. International Journal of Distributed Sensor Networks, 2012, 8, 296396.	2.2	0

#	ARTICLE	IF	CITATIONS
128	An Extended Virtual Force-Based Approach to Distributed Self-Deployment in Mobile Sensor Networks. International Journal of Distributed Sensor Networks, 2012, 8, 417307.	2.2	40
129	A Delaunay-Based Coordinate-Free Mechanism for Full Coverage in Wireless Sensor Networks. , 2012, , .		2
130	On the Feasibility of Mass-Spring-Relaxation for Simple Self-Deployment. , 2012, , .		3
131	Wireless Sensor Network Redeployment under the Target Coverage Constraint. , 2012, , .		12
132	UREA: an algorithm for maximisation of coverage in stochastic deployment of wireless sensor networks. International Journal of Parallel, Emergent and Distributed Systems, 2012, 27, 249-274.	1.0	12
133	An energy-efficient self-deployment with the centroid-directed virtual force in mobile sensor networks. Simulation, 2012, 88, 1152-1165.	1.8	18
134	Robotic Ecologies for Deep Space Outposts. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 455-460.	0.4	2
135	Enabling Cyber Physical Systems with Wireless Sensor Networking Technologies. International Journal of Distributed Sensor Networks, 2012, 8, 489794.	2.2	33
136	Mobile Sensor Node Deployment and Asynchronous Power Management for Wireless Sensor Networks. IEEE Transactions on Industrial Electronics, 2012, 59, 2377-2385.	7.9	108
137	Distributed Computing by Mobile Robots: Gathering. SIAM Journal on Computing, 2012, 41, 829-879.	1.0	166
138	Wireless sensor network simulation by artificial intelligent. , 2012, , .		1
139	Using an Improved Hormone Secreting Mechanism to Realize Persistent Object Tracking in WSN. , 2012, , .		1
141	Exploiting sensor redistribution for eliminating the energy hole problem in mobile sensor networks. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	2.4	24
142	Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory, 2012, 3, 1-185.	0.2	116
143	Dynamic load-based multi-node repositioning for mobile sensor network. , 2012, , .		1
144	Determination of QoS metrics in wireless sensor networks by using queuing theory. , 2012, , .		0
145	Hierarchical modeling of redundancy and paths in wireless sensor networks. , 2012, , .		3
146	Mobility management algorithms and applications for mobile sensor networks. Wireless Communications and Mobile Computing, 2012, 12, 7-21.	1.2	80

#	Article	IF	Citations
147	P&P: an asynchronous and distributed protocol for mobile sensor deployment. Wireless Networks, 2012, 18, 381-399.	3.0	1
148	Connectivity constrained wireless sensor deployment using multiobjective evolutionary algorithms and fuzzy decision making. Ad Hoc Networks, 2012, 10, 1134-1145.	5.5	44
149	On the problem of k-coverage in mission-oriented mobile wireless sensor networks. Computer Networks, 2012, 56, 1935-1950.	5.1	32
150	Analyzing the redeployment problem of mobile wireless sensor networks <i>via</i> geographic models. Wireless Communications and Mobile Computing, 2013, 13, 111-129.	1.2	8
151	Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 2013, 52, 2489-2502.	2.5	60
152	An analysis of lifetime-extended algorithm for wireless sensor networks. Computers and Electrical Engineering, 2013, 39, 1736-1745.	4.8	2
153	Cooperative Robotic Structure Mapping Using Wireless Measurementsâ€"A Comparison of Random and Coordinated Sampling Patterns. IEEE Sensors Journal, 2013, 13, 2571-2580.	4.7	26
154	Heuristic clustering with secured routing in Heterogeneous Sensor Networks. , 2013, , .		4
155	Heuristic clustering with secured routing in Heterogeneous Sensor Networks. , 2013, , .		2
156	A fuzzy based method for developing fault tolerance in mobile sensor network. , 2013, , .		0
157	Hybrid movement strategy in self-orienting directional sensor networks. Ad Hoc Networks, 2013, 11, 1075-1090.	5.5	16
158	EMS: Efficient mobile sink scheduling in wireless sensor networks. Ad Hoc Networks, 2013, 11, 1556-1570.	5.5	20
159	Deployment of a mobile wireless sensor network with k-coverage constraint: a cellular learning automata approach. Wireless Networks, 2013, 19, 945-968.	3.0	40
160	A complete classification of spatial relations using the Voronoi-based nine-intersection model. International Journal of Geographical Information Science, 2013, 27, 2006-2025.	4.8	15
161	Cooperative coverage of mobile robots with distributed estimation and control of connectivity., 2013,,.		1
162	An Energy-Efficient Motion Strategy for Mobile Sensors in Mixed Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2013, 9, 813182.	2.2	9
163	Uncertainty-Aware Sensor Deployment Strategy in Mixed Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2013, 9, 834704.	2.2	2
164	A Vector Algebraic Algorithm for Coverage Compensation in Hybrid Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2013, 9, 928528.	2.2	3

#	Article	IF	CITATIONS
165	Joint <i>k</i> -coverage and data gathering in sparsely deployed sensor networks Impact of purposeful mobility and heterogeneity. ACM Transactions on Sensor Networks, 2013, 10, 1-33.	3.6	8
166	Adaptive <i>k</i> -coverage contour evaluation and deployment in wireless sensor networks. ACM Transactions on Sensor Networks, 2013, 9, 1-31.	3.6	7
167	Swarm robotics reviewed. Robotica, 2013, 31, 345-359.	1.9	141
168	Coverage control with information aggregation. , 2013, , .		5
169	On the security vulnerabilities of the virtual force approach to mobile sensor deployment. , $2013, \ldots$		2
170	A hybrid optimisation algorithm for coverage enhancement in 3D directional sensor networks. International Journal of Sensor Networks, 2013, 14, 187.	0.4	0
171	3D genetic algorithms for underwater sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 2013, 13, 10.	0.5	11
172	Towards an Optimal Energy Consumption for Unattended Mobile Sensor Networks through Autonomous Sensor Redeployment. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	1
173	An Energy Efficient Simultaneous-Node Repositioning Algorithm for Mobile Sensor Networks. Scientific World Journal, The, 2014, 2014, 1-14.	2.1	6
174	Extended virtual force-based coverage scheme for heterogeneous Wireless Sensor Networks. , 2014, , .		1
175	Mobile Traffic Sensor Routing in Dynamic Transportation Systems. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 2273-2285.	8.0	42
176	An Efficient Deployment Heuristic to Support Temporal Coverage of Heterogeneous Objects in Rotatable and Directional (R&D) Sensor Networks. , 2014, , .		2
177	An improved PSO-based method in hybrid WSNs using nodes density., 2014, , .		0
178	Endâ€toâ€end delay and packet drop rate performance for a wireless sensor network with a clusterâ€tree topology. Wireless Communications and Mobile Computing, 2014, 14, 729-744.	1.2	27
179	Coverage enhancement by using the mobility of mobile sensor nodes. Multimedia Tools and Applications, 2014, 69, 819-842.	3.9	2
180	Enhanced algorithms for deploying the minimum sensors to construct a wireless sensor network having full coverage of critical square grids. Wireless Networks, 2014, 20, 331-343.	3.0	7
181	Biologically inspired probabilistic coverage for mobile sensor networks. Soft Computing, 2014, 18, 2313-2322.	3.6	6
182	Connectivity-Preserved and Force-Based Deployment Scheme for Mobile Sensor Network. Wireless Personal Communications, 2014, 77, 463-475.	2.7	4

#	Article	IF	CITATIONS
183	Topology Management Techniques for Tolerating Node Failure. Signals and Communication Technology, 2014, , 273-311.	0.5	10
184	Classification of Wireless Sensor Networks Deployment Techniques. IEEE Communications Surveys and Tutorials, 2014, 16, 834-855.	39.4	166
185	A Delaunay-Based Coordinate-Free Mechanism for Full Coverage in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 2014, 25, 828-839.	5.6	40
186	Voronoi-based deployment of mobile sensors in the face of adversaries. , 2014, , .		4
187	An FPGA-based multiprocessor-architecture for intelligent environments. Microprocessors and Microsystems, 2014, 38, 730-740.	2.8	12
188	Energy Efficient Wireless Sensor Network. , 2014, , .		3
189	Distributed cooperative coverage of mobile robots with consensus-based connectivity estimation. Journal of Shanghai Jiaotong University (Science), 2014, 19, 279-286.	0.9	0
190	Mobile Sensor Networks. ACM Computing Surveys, 2014, 47, 1-36.	23.0	36
191	Coverage maximization in mobile Wireless Sensor Networks utilizing immune node deployment algorithm. , 2014, , .		21
192	On the Vulnerabilities of the Virtual Force Approach to Mobile Sensor Deployment. IEEE Transactions on Mobile Computing, 2014, 13, 2592-2605.	5.8	12
193	Distributed Algorithms for Energy-Efficient Even Self-Deployment in Mobile Sensor Networks. IEEE Transactions on Mobile Computing, 2014, 13, 1035-1047.	5.8	43
194	A Deployment Method Based on Spring Force in Wireless Robot Sensor Networks. International Journal of Advanced Robotic Systems, 2014, 11, 79.	2.1	9
195	Minimal Patching Barrier Healing Strategy for barrier coverage in hybrid WSNs., 2014,,.		4
196	Load-Balanced and Energy-Efficient Coverage of Dispersed Events Using Mobile Sensor/Actuator Nodes. , 2014, , .		0
197	Energy Balanced Virtual Force-Based Approach for Mobile WSNs. , 2014, , .		4
198	A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems. , 2014, , .		0
199	Distributed Adaptive Control of Diffusion System Based on Multi-agents. , 2015, , .		0
200	A comparative study on performances of sensor deployment algorithms in WSN. , 2015, , .		3

#	Article	IF	Citations
201	Load-Balanced and Energy-Efficient Coverage of Dispersed Events Using Mobile Sensor/Actuator Nodes. , 2015, , .		2
202	Energy Balanced Redeployment Algorithm for Heterogeneous Wireless Sensor Networks. Mathematical Problems in Engineering, 2015, 2015, 1-11.	1.1	5
203	Rangeâ€only distributed navigation protocol for uniform coverage in wireless sensor networks. IET Wireless Sensor Systems, 2015, 5, 20-30.	1.7	10
204	A meta user interface for interaction with mixed reality environments. , 2015, , .		1
205	An energy balanced-virtual force algorithm for Mobile-WSNs. , 2015, , .		4
206	Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks. Soft Computing, 2015, 19, 2983-2995.	3.6	25
207	Distributed formation of degree constrained minimum routing cost tree in wireless ad-hoc networks. Journal of Parallel and Distributed Computing, 2015, 83, 143-158.	4.1	4
208	Guaranteed cost control of mobile sensor networks with Markov switching topologies. ISA Transactions, 2015, 58, 206-213.	5.7	31
209	Reliability analysis of smart grid communication network by simulation. Integrated Computer-Aided Engineering, 2015, 22, 119-133.	4.6	3
210	Consensus of Euler–Lagrange Systems Networked by Sampled-Data Information with Probabilistic Time Delays. IEEE Transactions on Cybernetics, 2015, 45, 1126-1133.	9.5	59
211	Rearrangement of mobile wireless sensor nodes for coverage maximization based on immune node deployment algorithm. Computers and Electrical Engineering, 2015, 43, 76-89.	4.8	29
212	Utilisation of multiâ€objective immune deployment algorithm for coverage area maximisation with limit mobility in wireless sensors networks. IET Wireless Sensor Systems, 2015, 5, 250-261.	1.7	8
213	Event-triggered average consensus for mobile sensor networks under a given energy budget. Journal of the Franklin Institute, 2015, 352, 5646-5660.	3.4	14
214	Consensus Control of mobile sensor networks with Markov switching topology under a given energy budget., 2015,,.		0
215	Metaheuristics for the deployment problem of WSN: A review. Microprocessors and Microsystems, 2015, 39, 1305-1317.	2.8	59
216	An endocrine-based intelligent distributed cooperative algorithm for target tracking in wireless sensor networks. Soft Computing, 2015, 19, 1427-1441.	3.6	18
217	A modified differential evolution-based combined routing and sleep scheduling scheme for lifetime maximization of wireless sensor networks. Soft Computing, 2015, 19, 637-659.	3.6	22
218	A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks. Sensors, 2016, 16, 1087.	3.8	15

#	Article	IF	Citations
219	Distributed area coverage in mobile directional sensor networks., 2016,,.		10
220	Comparative review of coverage algorithms in wireless mobile sensor networks. , 2016, , .		1
221	Placement of Smart Mobile Access Points in Wireless Sensor Networks and Cyber-Physical Systems Using Fog Computing. , 2016, , .		9
222	Constrained node-weighted Steiner tree based algorithms for constructing a wireless sensor network to cover maximum weighted critical square grids. Computer Communications, 2016, 81, 52-60.	5.1	27
223	Accurate, Dynamic, and Distributed Localization of Phenomena for Mobile Sensor Networks. ACM Transactions on Sensor Networks, 2016, 12, 1-59.	3.6	14
224	Dynamic Deployment of Wireless Sensor Network using PBB-BC Algorithm. , 2016, , .		0
225	Optimal periphery deployment of wireless base stations in swine facilities for 1-coverage. Computers and Electronics in Agriculture, 2016, 125, 173-183.	7.7	1
226	Self-Deployment of Mobile Sensors to Achieve Target Coverage in the Presence of Obstacles. IEEE Sensors Journal, 2016, 16, 5837-5842.	4.7	17
227	Investigation of the Shielding Length on Yukawa System Crystallization in Mobile Sensor Network Applications. IEEE Transactions on Plasma Science, 2016, 44, 1025-1031.	1.3	7
228	On the Vulnerabilities of Voronoi-Based Approaches to Mobile Sensor Deployment. IEEE Transactions on Mobile Computing, 2016, 15, 3114-3128.	5.8	11
229	Optimal wireless sensor network information coverage using particle swarm optimisation method. International Journal of Electronics Letters, 2017, 5, 491-499.	1.2	13
230	A compendium of optimization techniques for green radio resource management. Telecommunication Systems, 2017, 66, 447-468.	2.5	1
231	Multi-Objective WSN Deployment Using Genetic Algorithms Under Cost, Coverage, and Connectivity Constraints. Wireless Personal Communications, 2017, 94, 2739-2768.	2.7	54
232	Hierarchal Placement of Smart Mobile Access Points in Wireless Sensor Networks Using Fog Computing. , 2017, , .		8
233	Autonomous Mobile Sensor Placement in Complex Environments. ACM Transactions on Autonomous and Adaptive Systems, 2017, 12, 1-28.	0.8	8
234	Two Stage Grid Classification Based Algorithm for the Identification of Fields Under a Wireless Sensor Network Monitored Area. Wireless Personal Communications, 2017, 95, 1055-1074.	2.7	5
235	Minimizing maximum cost in task coverage problem with multiple mobile sensors: A heuristic approach based on all-pairs shortest path. International Journal of Distributed Sensor Networks, 2017, 13, 155014771774126.	2.2	0
236	A Survey of Clustering Techniques in WSNs and Consideration of the Challenges of Applying Such to 5G IoT Scenarios. IEEE Internet of Things Journal, 2017, 4, 1229-1249.	8.7	253

#	Article	IF	CITATIONS
237	Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks. IEEE Communications Surveys and Tutorials, 2017, 19, 33-56.	39.4	245
238	Deployment Strategies in the Wireless Sensor Networks: Systematic Literature Review, Classification, and Current Trends. Wireless Personal Communications, 2017, 95, 819-846.	2.7	89
239	Self-Organizing Mobility Control in Wireless Sensor and Actor Networks Based on Virtual Electrostatic Interactions. Wireless Personal Communications, 2017, 96, 5083-5103.	2.7	3
240	Simulating the effect of degraded wireless communications on emergent behavior. , 2017, , .		10
241	Optimal smart mobile access point placement for maximal coverage and minimal communication. , 2017,		2
242	A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks. Sensors, 2017, 17, 117.	3.8	26
243	A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks. Sensors, 2017, 17, 120.	3.8	4
244	An improved force-based deployment algorithm for wireless sensor network. , 2017, , .		1
245	An Energy-Efficient and Distributed Cooperation Mechanism for -Coverage Hole Detection and Healing in WSNs. IEEE Transactions on Mobile Computing, 2018, 17, 1247-1259.	5.8	55
246	Resilient Consensus with Mobile Detectors Against Malicious Attacks. IEEE Transactions on Signal and Information Processing Over Networks, 2018, 4, 60-69.	2.8	52
247	Sensor relocation for improved target tracking. IET Wireless Sensor Systems, 2018, 8, 76-86.	1.7	2
248	Towards interacting with smarter systems. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 187-209.	4.9	12
249	A Novel Random Transition Based PSO Algorithm to Maximize the Lifetime of Wireless Sensor Networks. Wireless Personal Communications, 2018, 98, 2261-2290.	2.7	11
250	Deploy&Forget wireless sensor networks for itinerant applications. Computer Standards and Interfaces, 2018, 56, 27-40.	5.4	14
251	Sensor Deployment Scheme Based on Social Spider Optimization Algorithm for Wireless Sensor Networks. Neural Processing Letters, 2018, 48, 71-94.	3.2	26
252	Novel efficient deployment schemes for sensor coverage in mobile wireless sensor networks. Information Fusion, 2018, 41, 25-36.	19.1	40
253	Optimal Placement for Smart Mobile Access Points., 2018,,.		0
254	Optimal Deployment of Mobile Sensors Nodes using Signal Strength Equalization. , 2018, , .		1

#	Article	IF	CITATIONS
255	Using Optimization, Learning, and Drone Reflexes to Maximize Safety of Swarms of Drones., 2018,,.		8
256	Application of Virtual Force Method for Deploying Mobile Sensor Networks. Journal of Physics: Conference Series, 2018, 1064, 012067.	0.4	0
257	Integrating Learning, Optimization, and Prediction for Efficient Navigation of Swarms of Drones. , 2018, , .		26
258	An Enhanced Virtual Force Algorithm for Diverse k-Coverage Deployment of 3D Underwater Wireless Sensor Networks. Sensors, 2019, 19, 3496.	3.8	15
259	Weighted Salp Swarm Algorithm and its applications towards optimal sensor deployment. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 1285-1295.	3.9	13
260	Distributed topology design for network coding deployed networks. Signal Processing, 2019, 165, 380-392.	3.7	3
261	Time-optimal uniform scattering in a grid. , 2019, , .		18
262	A 3D Coverage Algorithm Based on Complex Surfaces for UAVs in Wireless Multimedia Sensor Networks. Sensors, 2019, 19, 1902.	3.8	8
263	Beneficial Performance Assessment of Voronoi-based Centroidal Scheme for Area Coverage., 2019,,.		0
264	A Smart Self-Organizing Node Deployment Algorithm in Wireless Sensor Networks. , 2019, , .		3
265	On virtual-force algorithms for coverage-optimal node deployment in mobile sensor networks via the two-dimensional Yukawa crystal. International Journal of Distributed Sensor Networks, 2019, 15, 155014771986488.	2.2	5
266	Using geometric centroid of Voronoi Diagram for coverage and lifetime optimization in mobile wireless sensor networks., 2019,,.		12
267	DACYCLEM: A decentralized algorithm for maximizing coverage and lifetime in a mobile wireless sensor network. Ad Hoc Networks, 2019, 87, 174-187.	5.5	41
268	The Sensable City: A Survey on the Deployment and Management for Smart City Monitoring. IEEE Communications Surveys and Tutorials, 2019, 21, 1533-1560.	39.4	196
269	Target localization accuracy improvement via sensor mobility. International Journal of Parallel, Emergent and Distributed Systems, 2019, 34, 594-614.	1.0	4
270	Maximal coverage hybrid search algorithm for deployment in wireless sensor networks. Wireless Networks, 2019, 25, 637-652.	3.0	12
271	Distributed coverage in mobile sensor networks without location information. Autonomous Robots, 2020, 44, 627-645.	4.8	7
272	An improved cooperative team spraying control of a diffusion process with a moving or static pollution source. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 494-504.	13.1	3

#	Article	IF	CITATIONS
273	Detection and prevention of spoofing attacks in mobile adhoc networks using hybrid optimization algorithm. Journal of Intelligent and Fuzzy Systems, 2020, 38, 1691-1704.	1.4	4
274	Voronoi-Based Cooperative Node Deployment Algorithm in Mobile Sensor Networks. , 2020, , .		4
275	Point coverage analysis., 2020, , 15-33.		1
276	Surveillance of Uneven Surface With Self-Organizing Unmanned Aerial Vehicles. IEEE Transactions on Mobile Computing, 2022, 21, 1449-1462.	5.8	3
277	Notice of Retraction: Electromagnetic Radiation Due to Cellular, Wi-Fi and Bluetooth Technologies: How Safe Are We?. IEEE Access, 2020, 8, 42980-43000.	4.2	10
278	Design Methodology for Industrial Internet-of-Things Wireless Systems. IEEE Sensors Journal, 2021, 21, 5529-5542.	4.7	9
279	Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network. IEEE Access, 2021, 9, 47125-47135.	4.2	4
280	Mobile Cloud Computing and Wireless Sensor Networks: A review, integration architecture, and future directions. IET Networks, 2021, 10, 141-161.	1.8	8
281	Swarm Technology based Self-Deployment with ACO for Wireless Sensor Network in the Presence of Obstacles. , 2021, , .		0
282	Decentralized reactive navigation for densest sweep coverage of corridor environments by swarms of non-holonomic robots *., 2021,,.		0
284	Relay Shift Based Self-deployment for Mobility Limited Sensor Networks. Lecture Notes in Computer Science, 2006, , 556-564.	1.3	5
285	An Integrated Self-deployment and Coverage Maintenance Scheme for Mobile Sensor Networks. Lecture Notes in Computer Science, 2006, , 847-860.	1.3	14
286	A Modified Method for Constructing Minimum Size Homogeneous Wireless Sensor Networks with Relay Nodes to Fully Cover Critical Square Grids. Advances in Intelligent Systems and Computing, 2014, , 213-220.	0.6	1
287	A Meta User Interface for Understandable and Predictable Interaction in AAL. Lecture Notes in Computer Science, 2015, , 456-464.	1.3	5
288	Human–Swarm Interactions via Coverage of Time-Varying Densities. , 2017, , 357-385.		18
289	Cellular Automata and Wireless SensorÂNetworks. Emergence, Complexity and Computation, 2017, , 321-335.	0.3	7
290	Energy-Efficient Aggregation Control for Mobile Sensor Networks. , 2006, , 188-193.		5
291	Snap and Spread: A Self-deployment Algorithm for Mobile Sensor Networks. , 2008, , 451-456.		26

#	Article	IF	CITATIONS
292	Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy., 2007, , 112-123.		6
293	Self-deployment of Mobile Nodes in Hybrid Sensor Networks by AHP. Lecture Notes in Computer Science, 2007, , 663-672.	1.3	7
294	Mesh-Based Sensor Relocation for Coverage Maintenance in Mobile Sensor Networks. Lecture Notes in Computer Science, 2007, , 696-708.	1.3	31
295	Autonomous Deployment of Self-Organizing Mobile Sensors for a Complete Coverage. Lecture Notes in Computer Science, 2008, , 194-205.	1.3	15
296	Deployment of Asynchronous Robotic Sensors in Unknown Orthogonal Environments. Lecture Notes in Computer Science, 2008, , 125-140.	1.3	19
297	Localized Sensor Self-deployment with Coverage Guarantee in Complex Environment. Lecture Notes in Computer Science, 2009, , 138-151.	1.3	4
298	New Algorithms for Barrier Coverage with Mobile Sensors. Lecture Notes in Computer Science, 2010, , $327-338$.	1.3	18
299	Computing by Mobile Robotic Sensors. Monographs in Theoretical Computer Science, 2011, , 655-693.	0.6	8
300	Self Organization for Area Coverage Maximization and Energy Conservation in Mobile Ad Hoc Networks. Lecture Notes in Computer Science, 2012, , 49-73.	1.3	13
302	Data Delivery by Energy-Constrained Mobile Agents on a Line. Lecture Notes in Computer Science, 2014, , 423-434.	1.3	18
303	Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption. Neural Computing and Applications, 2019, 31, 263-286.	5 . 6	38
304	Mobility-Assisted Relocation for Self-Deployment in Wireless Sensor Networks. IEICE Transactions on Communications, 2007, E90-B, 2056-2069.	0.7	28
305	Range-Free Mobile Actor Relocation in a Two-Tiered Wireless Sensor and Actor Network. ACM Transactions on Sensor Networks, 2016, 12, 1-40.	3.6	8
306	Node Relocation Techniques for Wireless Sensor Networks: A Short Survey. International Journal of Advanced Computer Science and Applications, 2019, 10, .	0.7	6
307	Auction-Based Consensus Mechanism for Cooperative Tracking in Multi-Sensor Surveillance Systems. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2010, 14, 13-20.	0.9	6
308	A DECENTRALIZED APPROACH TO MULTIROBOT FORMATION INITIALIZATION. International Journal of Robotics and Automation, 2007, 22, .	0.1	2
309	Converged Mobile Cellular Networks and Wireless Sensor Networks for Machine-to-Machine Communications. KSII Transactions on Internet and Information Systems, 0, , .	0.3	19
310	Mobile Node Deployment based on Improved Probability Model and Dynamic Particle Swarm Algorithm. Journal of Networks, 2014, 9, .	0.4	2

#	Article	IF	CITATIONS
311	Grid Based Wireless Mobile Sensor Network Deployment with Obstacle Adaptability. International Journal of Wireless and Mobile Networks, 2012, 4, 21-34.	0.2	6
312	On Predicting Sensor Readings With Sequence Modeling and Reinforcement Learning for Energy-Efficient IoT Applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5140-5151.	9.3	3
313	An Adaptive Coverage Algorithm for Large-Scale Mobile Sensor Networks. Lecture Notes in Computer Science, 2006, , 468-477.	1.3	3
314	Tree-based Deployment Algorithm in Mobile Sensor Networks. Journal of Control Automation and Systems Engineering, 2006, 12, 1138-1143.	0.1	0
315	COOPERATIVE MULTI TARGET TRACKING USING MULTI SENSOR NETWORK. International Journal on Smart Sensing and Intelligent Systems, 2008, 1, 716-734.	0.7	4
316	Optimal Movement of Mobile Sensors for Barrier Coverage of a Planar Region. Lecture Notes in Computer Science, 2008, , 103-115.	1.3	14
318	Dispersion and Dispatch Movement Design for a Multi-Robot Searching Team Using Communication Density. , 0, , .		1
319	Variable Density Deployment and Topology Control for the Solution of the Sink-Hole Problem. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 167-182.	0.3	0
320	Optimal Evolutionary-Based Deployment of Mobile Sensor Networks. Lecture Notes in Computer Science, 2009, , 563-567.	1.3	1
321	A Novel Multicast Routing Protocol for Mobile Sensor Networks with Topology Control. Communications in Computer and Information Science, 2009, , 34-49.	0.5	0
322	Optimal Deployment with Self-Healing Movement Algo-rithm for Particular Region in Wireless Sensor Network, 2009, 01, 212-221.	1.3	0
323	Self-Healing Wireless Sensor Networks. Wireless Networks and Mobile Communications, 2009, , .	1.0	1
325	A Self-deployment Scheme for Mobile Sensor Network with Obstacle Avoidance. Communications in Computer and Information Science, 2010, , 345-354.	0.5	0
326	Conditional Sensor Deployment Using Evolutionary Algorithms. Journal of Convergence Information Technology, 2010, 5, 146-154.	0.1	8
327	Fuzzy Logic Based Deployment of Distributed Mobile Sensor Networks with Improved Energy-Efficiency. Journal of Communications and Information Sciences, 2011, 1, 45-53.	0.1	1
329	Uniform Dispersal of Asynchronous Finite-State Mobile Robots in Presence of Holes. Lecture Notes in Computer Science, 2014, , 228-243.	1.3	12
330	Decentralized Mobile Sensor Navigation for Hole Healing Policy in Wireless Hybrid Sensor Networks. International Journal of Future Generation Communication and Networking, 2013, 6, 143-150.	0.7	0
331	Network Optimization in WSN's. Lecture Notes in Electrical Engineering, 2014, , 233-244.	0.4	0

#	Article	IF	CITATIONS
332	A deployment strategy for coverage control in wireless sensor networks based on the blind-zone of Voronoi diagram. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 220701.	0.5	2
333	The Optimized three-Dimensional Deployment for Pipeline Systems in Wireless Sensor Networks. Journal of Computers, 2014, 9, .	0.4	0
334	Big Bang-Big Crunch Algorithm for Dynamic Deployment of Wireless Sensor Network. International Journal of Electrical and Computer Engineering, 2016, 6, 596.	0.7	1
335	Uniform Deployment of Movable Sensors Nodes Utilizing Received Signal Strength Equalization. SSRN Electronic Journal, 0, , .	0.4	0
336	Energy efficient deployment of mobile node in wireless Sensor networksÂ. International Journal of Communication and Computer Technologies, 2019, 1, .	0.2	0
337	Location-Aware QoE-Driven Wireless Relay Deployment for Energy Efficient Multimedia Communications. Lecture Notes in Computer Science, 2019, , 160-173.	1.3	1
338	Energy-Efficient Algorithm for Robot-Assisted Sensor Deployment., 2021,,.		0
339	Surveillance of Uneven Surface with Unmanned Aerial Vehicles. , 2020, , .		1
340	Fast Uniform Scattering on a Grid for Asynchronous Oblivious Robots. Lecture Notes in Computer Science, 2020, , 211-228.	1.3	9
341	A Novel Strategy for Energy Optimal Designs of IoT and WSNs. Algorithms for Intelligent Systems, 2021, , 603-610.	0.6	1
342	AnyServer: Ubiquitous Real-Time Multimedia Communication System. Lecture Notes in Computer Science, 2007, , 13-24.	1.3	0
343	A Compact Adaptive Particle Swarm Optimization Algorithm in the Application of the Mobile Sensor Localization. Wireless Communications and Mobile Computing, 2021, 2021, 1-15.	1.2	11
344	IoTaaS: Drone-Based Internet of Things as a Service Framework for Smart Cities. IEEE Internet of Things Journal, 2022, 9, 12425-12439.	8.7	16
345	Optimal Control Techniques for Heterogeneous UAV Swarms. , 2020, , .		2
346	Decentralized reactive control of robotic teams for cooperative sweep coverage of corridor-like environments., 2021,,.		0
347	Energy-Efficient Aggregation Control for Mobile Sensor Networks. , 0, , 188-193.		0
348	Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory, 2012, , .	0.2	91
349	Strategic placement of access points for message communication in a smart building environment. Innovations in Systems and Software Engineering, 0, , .	2.1	0

#	ARTICLE	IF	CITATIONS
350	An adaptive electric power management system for the transmission line intelligent gateway. , 2022, , .		О
351	Discover the Hidden Attack Path in Multiple Domain Cyberspace Based on Reinforcement Learning. Scientific Programming, 2022, 2022, 1-12.	0.7	0
352	Entropy-based coordination for maintenance tasks of an autonomous mobile robot system., 2022,,.		2
353	Heterogeneous wireless sensor networks: Deployment strategies and coverage models. , 2023, , 1-32.		1
354	Distributed Reactive Navigation of Robotic Teams for Sweep Coverage of a Corridor Environment with an Obstacle Course. , 2022, , .		0
355	A Survey of WSN Efficient Network Restoration Model Using Genetic Algorithms. Communications in Computer and Information Science, 2023, , 318-331.	0.5	0
356	Energy Efficient Node Re-positioning Algorithm for Uniform node Distribution in Wireless Sensor Networks. , 2023, , .		0
357	Dynamic Deployment Approach to Maximizing Probabilistic Area Coverage in Randomly Scattered WSNs. Lecture Notes in Electrical Engineering, 2023, , 497-508.	0.4	0
358	Distributed Node Deployment Algorithms in Mobile Wireless Sensor Networks: Survey and Challenges. ACM Transactions on Sensor Networks, 2023, 19, 1-26.	3.6	2
359	A Sampling-Based Approach for Achieving Desired Patterns of Probabilistic Coverage with Distributed Sensor Networks. Sensors, 2023, 23, 5999.	3.8	0
360	Wireless Sensor Deployment Based on Multiobjective Adaptive Fish Migration Optimization. Journal of Sensors, 2023, 2023, 1-11.	1.1	0
361	An Enhanced Food Digestion Algorithm for Mobile Sensor Localization. Sensors, 2023, 23, 7508.	3.8	0
362	Coordination and Control of Autonomous Mobile Robot Systems with Entropy as a Dualistic Performance Measure. , 2023, , .		1