CITATION REPORT List of articles citing

A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends

DOI: 10.1002/adma.200402103 Advanced Materials, 2005, 17, 2380-2384.

Source: https://exaly.com/paper-pdf/38138134/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
283	Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance.		
282	Nanotubes Based Composites for Energy Storage in Supercapacitors. 2006 , 51, 145-155		1
281	Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes. 2006 , 89, 053127		75
280	Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. <i>Carbon</i> , 2006 , 44, 2368-2375	10.4	103
279	PAN/SAN/SWNT ternary composite: Pore size control and electrochemical supercapacitor behavior. 2006 , 47, 5831-5837		31
278	A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2 B Nanowire Anode. <i>Advanced Functional Materials</i> , 2006 , 16, 2141-2146	15.6	520
277	Electrosorption of NaCl Solutions with Carbon Nanotubes and Nanofibers Composite Film Electrodes. 2006 , 9, E23		45
276	ELECTROSORPTION OF FeCl3 SOLUTIONS WITH CARBON NANOTUBES AND NANOFIBERS FILM ELECTRODES GROWN ON GRAPHITE SUBSTRATES. 2007 , 14, 1033-1037		16
275	Carbon/nanostructured Ru composites as electrodes for supercapacitors. 2007 , 22, 302-306		14
274	Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes. 2007 , 111, 7727-7734		270
273	Nanotubes and Nanowires: Recent Developments. 45-118		1
272	. 2007,		84
271	The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. <i>Advanced Functional Materials</i> , 2007 , 17, 1828-1836	15.6	462
270	High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support. <i>Advanced Functional Materials</i> , 2007 , 17, 3083-3087	15.6	389
269	A novel approach towards carbon-Ru electrodes with mesoporosity for supercapacitors. 2007 , 8, 1013-5	5	14
268	High performance supercapacitor from chromium oxide-nanotubes based electrodes. 2007 , 434, 73-77		38
267	Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. <i>Carbon</i> , 2007 , 45, 1757-1763	10.4	302

(2009-2007)

266	Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. <i>Carbon</i> , 2007 , 45, 2365-2373	10.4	343
265	Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. 2007 , 9, 569-573		241
264	Nanotubes based composites rich in nitrogen for supercapacitor application. 2007 , 9, 1828-1832		214
263	Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. <i>Journal of Power Sources</i> , 2007 , 172, 991-998	8.9	49
262	Carbon materials for supercapacitor application. 2007 , 9, 1774-85		1539
261	New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. <i>Advanced Materials</i> , 2008 , 20, 815-819	24	151
260	Structure and electrochemical properties of activated polyacrylonitrile based carbon fibers containing carbon nanotubes. <i>Journal of Power Sources</i> , 2008 , 185, 676-684	8.9	32
259	The effect of electro-degradation processing on microstructure of polyaniline/single-wall carbon nanotube composite films. <i>Carbon</i> , 2008 , 46, 1145-1151	10.4	15
258	The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal. 2008 , 10, 1809-1811		96
257	Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. <i>Electrochimica Acta</i> , 2008 , 53, 5469-5475	6.7	115
256	The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers. 2008 , 19, 165603		92
255	Electrosorption of cupric ions from solutions by carbon nanotubes and nanofibres film electrodes grown on graphite substrates. 2008 ,		3
254	Charge Storage Mechanism of Binderless Nanocomposite Electrodes Formed by Dispersion of CNTs and Carbon Aerogels. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A115	3.9	12
253	Controlled TiO[sub 2] Nanotube Arrays as an Active Material for High Power Energy-Storage Devices. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A584	3.9	57
252	Nitrogen-Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. <i>Advanced Functional Materials</i> , 2009 , 19, 1800-1809	15.6	664
251	Chemical Adsorption onto an ITO Substrate of Single-Wall Carbon Nanotube Functionalized by Carboxylic Groups as an Efficient Support for Electrocatalyst. 2009 , 21, 144-149		2
250	A non-aqueous electrolyte-based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes. 2009 , 11, 725-729		44
249	Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte. 2009 , 19, 295-299		3

248	Formation and electrochemical properties of composites of the C60Pd polymer and multi-wall carbon nanotubes. <i>Electrochimica Acta</i> , 2009 , 54, 5621-5628	6.7	30
247	Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. 2009 , 517, 1616-1619		119
246	Electrochemically synthesized large area network of CoxNiyAlz layered triple hydroxides nanosheets: A high performance supercapacitor. <i>Journal of Power Sources</i> , 2009 , 189, 1292-1295	8.9	54
245	An activated carbon with high capacitance from carbonization of a resorcinol f ormaldehyde resin. 2009 , 11, 715-718		106
244	Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. <i>Carbon</i> , 2009 , 47, 1576-1584	10.4	107
243	High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. <i>Carbon</i> , 2009 , 47, 2984-2992	10.4	310
242	Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. 2009 , 25, 11961-8		177
241	Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. 2009 , 3, 1745-52		1355
240	Facile flame synthesis and electrochemical properties of carbon nanocoils. <i>Journal of Alloys and Compounds</i> , 2009 , 473, 351-355	5.7	27
239	Preparation and Selected Properties of an Improved Composite of the Electrophoretically Deposited Single-Wall Carbon Nanotubes, Electrochemically Coated with a C60-Pd and Polybithiophene Mixed Polymer Film. 2009 , 113, 14046-14058		12
238	Highly stable performance of supercapacitors from phosphorus-enriched carbons. 2009 , 131, 5026-7		514
237	Various Treated Conditions to Prepare Porous Activated Carbon Fiber for Application in Supercapacitor Electrodes. 2009 , 23, 4668-4677		29
236	PPO15-PEO22-PPO15block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. 2009 , 19, 1236		76
235	Synthesis of Carbon/Carbon Core/Shell Nanotubes with a High Specific Surface Area. 2009 , 113, 61-68		36
234	Electrochemical supercapacitors based on carbon aerogels/Ni(OH)2 composites and activated carbon. 2009 , 38, 230-235		5
233	Paper-like 3-dimensional carbon nanotubes (CNTs)Thicrofiber hybrid: A promising macroscopic structure of CNTs. 2009 , 19, 3632		14
232	Polyolefin Clay Nanocomposites. 2009 , 129-164		
231	Electrical Double-Layer Capacitors and Pseudocapacitors. 2009 , 329-375		10

230	Carbon nanotubes for supercapacitor. 2010 , 5, 654-68		515
229	Preparation and electrochemical characteristics of mesoporous carbon spheres for supercapacitors. 2010 , 45, 10-14		23
228	Pseudocapacitance Effects for Enhancement of Capacitor Performance. 2010 , 10, 848-855		25
227	Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. 2010 , 3, 136-68		563
226	Synthesis and Electrical Capacitance of Carbon Nanoplates. 2010 , 2010, 4314-4320		10
225	Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. <i>Advanced Materials</i> , 2010 , 22, 5202-6		789
224	Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites. 2010 , 167, 65-69		20
223	Comparative study of electrochemical capacitance of multi-walled carbon nanotubes before and after chopping. <i>Applied Surface Science</i> , 2010 , 257, 440-445	7	13
222	Preparation and electrochemical properties of polyaniline doped with benzenesulfonic functionalized multi-walled carbon nanotubes. <i>Electrochimica Acta</i> , 2010 , 55, 2311-2318	,	42
221	Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. <i>Electrochimica Acta</i> , 2010 , 55, 6812-6817	,	215
220	Carbonization of electrospun poly(acrylonitrile) nanofibers containing multiwalled carbon nanotubes observed by transmission electron microscope with in situ heating. 2010 , 48, 2121-2128		32
219	Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B1665)	110
218	Nanoporous carbon produced from a styrene-acrylonitrile random copolymer/carbon nanotube composite. 2010 , 5, 105		8
217	Energy storage in electrochemical capacitors: designing functional materials to improve performance. 2010 , 3, 1238		914
216	Nitrogen-Enriched Nanocarbons with a 3-D Continuous Mesopore Structure from Polyacrylonitrile for Supercapacitor Application. 2010 , 114, 8581-8586		221
215	Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. 2010 , 20, 773-780		107
214	Mesoporous carbon nanospheres with an excellent electrocapacitive performance. 2011 , 21, 2274-2281		153
213	Supercapacitors: Electrode Materials Aspects. 2011 ,		3

212	What is the choice for supercapacitors: graphene or graphene oxide?. 2011 , 4, 2826	568
211	Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. 2011 , 3, 212-6	254
210	Supercapacitors: Electrode Materials Aspects. 2011 ,	2
209	Functionalized Graphene-Based Nanocomposites for Supercapacitor Application. 2011 , 115, 14006-14013	321
208	In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 7778-7783	134
207	Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors. 2011 , 3, 3058-63	161
206	Carbon nanotubes and their composites in electrochemical applications. 2011 , 4, 1592	476
205	Chapter 1:Carbon Nanotubes. <i>RSC Nanoscience and Nanotechnology</i> , 2011 , 1-242	2
204	A hierarchical porous MnO2-based electrode for electrochemical capacitor. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 485-491	13
203	Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. 2011 , 4, 870-88	1 154
203	Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. 2011 , 4, 870-88 Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. 2011 , 30, 661-665	1 154 2
202	Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. 2011 , 30, 661-665 Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature	2
202	Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. 2011 , 30, 661-665 Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature miniemulsion. 2011 , 32, 1798-803	2 55
202 201 200	Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. 2011 , 30, 661-665 Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature miniemulsion. 2011 , 32, 1798-803 Carbon materials for chemical capacitive energy storage. <i>Advanced Materials</i> , 2011 , 23, 4828-50 24 Facile preparation of high-quality graphene scrolls from graphite oxide by a microexplosion	2 55 2273
202 201 200	Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. 2011, 30, 661-665 Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature miniemulsion. 2011, 32, 1798-803 Carbon materials for chemical capacitive energy storage. Advanced Materials, 2011, 23, 4828-50 24 Facile preparation of high-quality graphene scrolls from graphite oxide by a microexplosion method. Advanced Materials, 2011, 23, 4929-32	2 55 2273 87
202 201 200 199	Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. 2011, 30, 661-665 Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature miniemulsion. 2011, 32, 1798-803 Carbon materials for chemical capacitive energy storage. Advanced Materials, 2011, 23, 4828-50 24 Facile preparation of high-quality graphene scrolls from graphite oxide by a microexplosion method. Advanced Materials, 2011, 23, 4929-32 Graphenel Cellulose Paper Flexible Supercapacitors. 2011, 1, 917-922 Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed	2 55 2273 87 745

194	Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors. <i>Electrochimica Acta</i> , 2011 , 56, 5369-5375	6.7	23
193	Synthesis of Ru(0.58)In(0.42)O(y)?nH(2)O nanoparticles dispersed onto poly(sodium-4-styrene sulfonate)-functionalized multi-walled carbon nanotubes and their application for electrochemical capacitors. <i>Journal of Colloid and Interface Science</i> , 2011 , 354, 804-9	9.3	6
192	Different Characterization Techniques to Evaluate Graphene and Its Properties. 2012, 118-161		
191	Perspectives on supercapacitors, pseudocapacitors and batteries. 2012 , 1, 136-158		35
190	Unusual energy enhancement in carbon-based electrochemical capacitors. 2012 , 22, 24213		105
189	Enhancement of the electrocapacitive performance of manganese dioxide by introducing a microporous carbon spheres network. 2012 , 14, 5966-72		27
188	Free-standing Ni-microfiber-supported carbon nanotube aerogel hybrid electrodes in 3D for high-performance supercapacitors. <i>RSC Advances</i> , 2012 , 2, 6562	3.7	16
187	A new hybrid architecture consisting of highly mesoporous CNT/carbon nanofibers from starch. 2012 , 22, 20554		24
186	A review of electrode materials for electrochemical supercapacitors. 2012, 41, 797-828		6816
185	Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. 2012 , 134, 14846-57		327
184	Nitrogen modification of highly porous carbon for improved supercapacitor performance. 2012 , 22, 988	34	190
183	Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. 2012 , 8, 630-46		335
182	Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. 2012 , 6, 7092-102		1422
181	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. 2012 , 213, 1078-1090		66
180	Templated nanocarbons for energy storage. Advanced Materials, 2012, 24, 4473-98	24	588
179	Carbonized Chicken Eggshell Membranes with 3D Architectures as High-Performance Electrode Materials for Supercapacitors. 2012 , 2, 431-437		510
178	Phosphate-functionalized carbon monoliths from deep eutectic solvents and their use as monolithic electrodes in supercapacitors. 2012 , 5, 1405-9		81
177	Electrochemistry serving people and nature: high-energy ecocapacitors based on redox-active electrolytes. 2012 , 5, 1181-5		126

176	Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites. <i>Journal of Colloid and Interface Science</i> , 2012 , 377, 307-12	9.3	12
175	Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. <i>Electrochimica Acta</i> , 2012 , 64, 130-139	6.7	101
174	Nitrogen-doped hollow carbon spheres with enhanced electrochemical capacitive properties. 2012 , 47, 1625-1629		12
173	Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. <i>Journal of Power Sources</i> , 2012 , 199, 373-378	8.9	140
172	Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping. 2012 , 147, 86-93		48
171	Polyacrylonitrile-based nanofibers A state-of-the-art review. 2012, 37, 487-513		431
170	Folded structured graphene paper for high performance electrode materials. <i>Advanced Materials</i> , 2012 , 24, 1089-94	24	576
169	Multifunctional nitrogen-rich Brick-and-mortar Larbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11061	13	32
168	MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 1311-1320	2.6	18
167	Nanocarbons for Supercapacitors. 2013 , 393-421		4
166	Effects of pore structure in nitrogen functionalized mesoporous carbon on oxygen reduction reaction activity of platinum nanoparticles. <i>Carbon</i> , 2013 , 60, 28-40	10.4	13
165	Excellent electrochemical performance of nitrogen-enriched hierarchical porous carbon electrodes prepared using nano-CaCO3 as template. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 2651-2660	2.6	34
164	Active carbon wrapped carbon nanotube buckypaper for the electrode of electrochemical supercapacitors. <i>Journal of Power Sources</i> , 2013 , 237, 325-331	8.9	46
163	Nanostructured materials for supercapacitors. 2013 , 31, 050803		34
162	Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. 2013 , 5, 9983-90		152
161	Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. Journal of Materials Chemistry A, 2013 , 1, 13949	13	211
160	Nitrogen-enriched carbon electrodes in electrochemical capacitors: investigating accessible porosity using CM-SANS. 2013 , 15, 16774-8		17
159	Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. <i>Carbon</i> , 2013 , 55, 221-232	10.4	119

158	Electrode Materials with Pseudocapacitive Properties. 2013, 207-237		18
157	Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. 2013 , 5, 2241-8		282
156	Facile synthesis of nitrogen-doped porous carbon for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4565	13	195
155	A facile approach for tailoring carbon frameworks from microporous to nonporous for nanocarbons. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5001	13	27
154	Carbon/carbon supercapacitors. 2013 , 22, 226-240		220
153	Carbon-Based Nanomaterials for Electrochemical Energy Storage. 2013 , 299-326		
152	Nitrogen-containing porous carbons: synthesis and application. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 999-1013	13	527
151	Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. Journal of Materials Chemistry A, 2013 , 1, 8299	13	99
150	Nanostructured Materials for Energy-Related Applications. 2013, 1013-1038		
149	Carbon Nanotubes for Energy Applications. 2013 ,		11
148	Pseudocapacity of N-doped and polymer modified carbon nanomaterials in non-aqueous media. 2014 , 29, A98-A106		2
147	Carbons and electrolytes for advanced supercapacitors. <i>Advanced Materials</i> , 2014 , 26, 2219-51, 2283	24	1808
146	Sulfurized activated carbon for high energy density supercapacitors. <i>Journal of Power Sources</i> , 2014 , 252, 90-97	8.9	114
145			
15	Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites. <i>Carbon</i> , 2014 , 75, 307-313	10.4	38
144		10.4	38
	, 2014 , 75, 307-313	10.4	38 81
144	, 2014 , 75, 307-313 CHAPTER 5:Nanotubes for Energy Storage. <i>RSC Nanoscience and Nanotechnology</i> , 2014 , 121-198 Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. <i>Journal</i>		

140	Recovering energy from dye wastewater for a new kind of superior supercapacitor material. <i>RSC Advances</i> , 2014 , 4, 21419	3.7	5
139	Monodispersed N-doped carbon nanospheres for supercapacitor application. 2014 , 6, 13968-76		179
138	Biomass-derived carbon materials for high-performance supercapacitor electrodes. <i>RSC Advances</i> , 2014 , 4, 30887	3.7	81
137	Colossal pseudocapacitance in a high functionalityligh surface area carbon anode doubles the energy of an asymmetric supercapacitor. 2014 , 7, 1708-1718		320
136	Surface Modification of CNTs with N-Doped Carbon: An Effective Way of Enhancing Their Performance in Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1049-1055	8.3	94
135	Multifunctional g-C(3)N(4) nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. 2014 , 6, 1258-65		300
134	Improving the specific capacitance of carbon nanotubes-based supercapacitors by combining introducing functional groups on carbon nanotubes with using redox-active electrolyte. <i>Electrochimica Acta</i> , 2014 , 115, 183-188	6.7	66
133	In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. 2014 , 6, 7214-22		262
132	Effect of surface chemistry on the double layer capacitance of polypyrrole-derived ordered mesoporous carbon. <i>RSC Advances</i> , 2014 , 4, 47039-47046	3.7	10
131	Supercapacitors based on freeze dried MnO2 embedded PEDOT: PSS hybrid sponges. 2014 , 186, 30-36		32
130	Flexible patterned micro-electrochemical capacitors based on PEDOT. 2014 , 50, 6789-92		30
129	Chemical Routes to Graphene-Based Flexible Electrodes for Electrochemical Energy Storage. 2014 , 425	-455	1
128	High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8859	13	85
127	N- and O-doped carbonaceous nanotubes from polypyrrole for potential application in high-performance capacitance. <i>Journal of Power Sources</i> , 2014 , 247, 660-666	8.9	90
126	Carbon Nanotubes for Energy Storage Application. 2014 , 249-280		
125	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 50063-50069	3.7	24
124	Albumen-Derived Hierarchical Porous N- and O-Enriched Carbon towards High-Performance Electrochemical Capacitors. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A781-A786	3.9	22
123	Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A5158-A5178	3.9	80

122	supercapacitors. 2015 , 58, 521-533	23
121	Increased working voltage of hexamine-coated porous carbon for supercapacitors. 2015 , 60, 1587-1597	26
120	Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries. <i>Electrochimica Acta</i> , 2015 , 180, 1068-1074	33
119	The large electrochemical capacitance of nitrogen-doped mesoporous carbon derived from egg white by using a ZnO template. <i>RSC Advances</i> , 2015 , 5, 98177-98183	16
118	Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. 2015 , 17, 2373-2382	215
117	Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. 2015 , 7, 1132-9	219
116	N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2914-2923	175
115	Using common salt to impart pseudocapacitive functionalities to carbon nanofibers. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 377-385	40
114	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. 2016 , 1-19	
113	Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. <i>Journal of Power Sources</i> , 2016 , 317, 133-142 ^{8.9}	69
112	Boron-doped ordered mesoporous carbons for the application of supercapacitors. <i>Electrochimica Acta</i> , 2016 , 207, 266-274	71
111	Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors. <i>Journal of Power Sources</i> , 2016 , 321, 143-154	64
110	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. <i>Nano Energy</i> , 2016 , 26, 1-6	23
109	Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. <i>Journal of Power Sources</i> , 2016 , 329, 516-524	38
108	Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high performance electrode material for advanced supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13899-13906 ¹³	64
107	Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors. 2016 , 32, 8934-41	52
106	Pristine Graphene Aerogels by Room-Temperature Freeze Gelation. <i>Advanced Materials</i> , 2016 , 28, 7993-8400	100
105	Asymmetric Supercapacitor Based on Porous N-doped Carbon Derived from Pomelo Peel and NiO Arrays. 2016 , 8, 20822-30	93

104	Activated Carbon from Biomass Transfer for High-Energy Density Lithium-Ion Supercapacitors. 2016 , 6, 1600802		189
103	High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. 2016 , 6, 12883		65
102	Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance. 2016 , 50, 12421-12428		38
101	Effect of Heteroatoms in Ordered Microporous Carbons on Their Electrochemical Capacitance. 2016 , 32, 11997-12004		31
100	A facile method to fabricate carbon nanostructures via the self-assembly of polyacrylonitrile/poly(methyl methacrylate-b-polyacrylonitrile) AB/B? type block copolymer/homopolymer blends. <i>RSC Advances</i> , 2016 , 6, 55792-55799	3.7	10
99	Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. <i>Carbon</i> , 2016 , 107, 638-645	10.4	79
98	Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2016 , 314, 39-4	8 ^{8.9}	123
97	Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4180-4187	13	170
96	Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles. <i>RSC Advances</i> , 2016 , 6, 14720-14729	3.7	20
95	Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors. <i>Electrochimica Acta</i> , 2016 , 194, 143-150	6.7	19
94	Lignite-derived mesoporous N- and O-enriched carbon sheet: a low-cost promising electrode for high-performance electrochemical capacitors. <i>Journal of Solid State Electrochemistry</i> , 2016 , 20, 713-723	2.6	12
93	Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. 2016 , 9, 102-106		746
92	Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. 2017 , 7, 40259		51
91	Graphene/polyaniline@carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. <i>RSC Advances</i> , 2017 , 7, 7688-7	<i>169</i> 3	56
90	Three-dimensional nitrogen-doped graphene derived from poly- o -phenylenediamine for high-performance supercapacitors. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 787, 103-109	4.1	30
89	Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors. 2017 , 116, 7-15		77
88	Nitrogen-Enriched Porous Carbon Nanofiber Mat as Efficient Flexible Electrode Material for Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2109-2118	8.3	49
87	Synthesis of Nitrogen-Doped Two-Dimensional Ti3C2with Enhanced Electrochemical Performance. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A923-A929	3.9	48

(2018-2017)

86	Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors. Journal of Colloid and Interface Science, 2017, 501, 1-10	9.3	26
85	Nitrogen-doped multiwalled carbon nanotubes decorated with copper(I) oxide nanoparticles with enhanced capacitive properties. <i>Journal of Materials Science</i> , 2017 , 52, 6280-6290	4.3	20
84	The synergistic effect achieved by combining different nitrogen-doped carbon shells for high performance capacitance. 2017 , 53, 857-860		15
83	Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. <i>Chemical Engineering Journal</i> , 2017 , 330, 1166-1173	14.7	80
82	Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor. Journal of Power Sources, 2017, 364, 374-382	8.9	43
81	Activated Carbon Monolith Derived from Amygdalus Pedunculata Shell and Polyacrylonitrile for Supercapacitors. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 1333-1336	5.1	8
80	An electrochemical omeprazole sensor based on shortened multi-walled carbon nanotubes-Fe3O4 nanoparticles and poly(2, 6-pyridinedicarboxylic acid). <i>Sensors and Actuators B: Chemical</i> , 2017 , 253, 1-9	8.5	30
79	Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors. <i>Electrochimica Acta</i> , 2018 , 270, 339-351	6.7	56
78	Reduced graphene oxide-silver nanoparticles/nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitor application. <i>Journal of Alloys and Compounds</i> , 2018 , 742, 769-779	5.7	35
77	Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors. <i>Applied Surface Science</i> , 2018 , 439, 712-723	6.7	56
76	Benign synthesis of robust nickel thin films as stretchable electrodes for electrochemical hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 7397-7404	6.7	6
75	Materials Development for Active/Passive Components of a Supercapacitor. <i>SpringerBriefs in Materials</i> , 2018 ,	0.5	14
74	Electrochemical capacitive energy storage in PolyHIPE derived nitrogen enriched hierarchical porous carbon nanosheets. <i>Carbon</i> , 2018 , 128, 287-295	10.4	37
73	N-doped graphdiyne for high-performance electrochemical electrodes. <i>Nano Energy</i> , 2018 , 44, 144-154	17.1	129
7 ²	All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 2120-2130	2.1	8
71	An Active Anode Material Based on Titania and Zinc Oxide Hybrids Fabricated via a Hydrothermal Route: Comprehensive Physicochemical and Electrochemical Evaluations. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3056-A3066	3.9	2
70	A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. <i>Carbon</i> , 2018 , 140, 404-412	10.4	67
69	Elastic sandwich-type GaN/MnO2/MnON composites for flexible supercapacitors with high energy density. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13215-13224	13	30

68	In-situ activation for optimizing meso-/microporous structure of hollow carbon shells for supercapacitors. <i>Functional Materials Letters</i> , 2018 , 11, 1850049	1.2	3
67	Amino functionalization optimizes potential distribution: A facile pathway towards high-energy carbon-based aqueous supercapacitors. <i>Nano Energy</i> , 2019 , 65, 103987	17.1	39
66	High specific capacitance and high energy density supercapacitor electrodes enabled by porous carbon with multilevel pores and self-doped heteroatoms derived from Chinese date. <i>Diamond and Related Materials</i> , 2019 , 97, 107455	3.5	33
65	Sustainable synthesis of N/S-doped porous carbon sheets derived from waste newspaper for high-performance asymmetric supercapacitor. <i>Materials Research Express</i> , 2019 , 6, 095605	1.7	1
64	Characterization of Hierarchical Porous Carbons Made from Bean Curd via K2CO3 Activation as a Supercapacitor Electrode. <i>ChemElectroChem</i> , 2019 , 6, 4022-4030	4.3	13
63	Effect of alkali and halide ion doping on the energy storage characteristics of ionic liquid based supercapacitors. <i>Electrochimica Acta</i> , 2019 , 319, 82-87	6.7	6
62	Facile SILAR Processed Bi2S3:PbS Solid Solution on MWCNTs for High-performance Electrochemical Supercapacitor. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 1279-1286	4.9	20
61	A strategy of making waste profitable: Nitrogen doped cigarette butt derived carbon for high performance supercapacitors. <i>Energy</i> , 2019 , 189, 116241	7.9	24
60	Polyacrylonitrile nanocomposite with carbon nanostructures: a review. <i>Polymer-Plastics Technology and Materials</i> , 2019 , 58, 707-731	1.5	4
59	Capacitive storage at nitrogen doped amorphous carbon electrodes: structural and chemical effects of nitrogen incorporation <i>RSC Advances</i> , 2019 , 9, 4063-4071	3.7	9
58	Electrocatalysts for oxygen reduction reaction based on electrospun polyacrylonitrile, styrene\(\text{Ecrylonitrile copolymer and carbon nanotube composite fibres. \(\text{Journal of Materials Science}\), \(\text{2019}\), 54, 11618-11634	4.3	18
57	Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a water-in-saltigel electrolyte. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15801-15811	13	102
56	Facile synthesis of metal @ carbon sphere/graphene film electrodes with enhanced energy density for flexible asymmetric all-solid-state supercapacitors. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 847, 113199	4.1	5
55	A bio-based multi-functional composite film based on graphene and lotus fiber. <i>Cellulose</i> , 2019 , 26, 18	11 5 .1 5 82:	3 4
54	Core-shell nanomaterials: Applications in energy storage and conversion. <i>Advances in Colloid and Interface Science</i> , 2019 , 267, 26-46	14.3	73
53	Recent advance in new-generation integrated devices for energy harvesting and storage. <i>Nano Energy</i> , 2019 , 60, 600-619	17.1	126
52	Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm ¹ 2 with single-atom nickel electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10651-10661	13	97
51	Understanding the supercapacitor properties of electrospun carbon nanofibers from Powder River Basin coal. <i>Fuel</i> , 2019 , 245, 148-159	7.1	34

(2020-2019)

50	Progress, status and prospects of non-porous, heteroatom-doped carbons for supercapacitors and other electrochemical applications. <i>Applied Physics A: Materials Science and Processing</i> , 2019 , 125, 1	2.6	10
49	Nanofiber Cellulose-Incorporated Nanomesh Graphene Larbon Nanotube Buckypaper and Ionic Liquid-Based Solid Polymer Electrolyte for Flexible Supercapacitors. <i>Energy Technology</i> , 2019 , 7, 19000	14 ^{.5}	6
48	Waste Xylose Mother Liquor Derived 3 D Graphene-Like Porous Carbon with Ultrahigh Specific Capacitance and Energy Density for Supercapacitors. <i>ChemistrySelect</i> , 2019 , 4, 12435-12444	1.8	4
47	Nitrogen- and oxygen-rich dual-decorated carbon materials with porosity for high-performance supercapacitors. <i>Journal of Materials Science</i> , 2019 , 54, 5625-5640	4.3	10
46	Xanthoceras sorbifolia seed coats derived porous carbon with unique architecture for high rate performance supercapacitors. <i>Diamond and Related Materials</i> , 2019 , 91, 119-126	3.5	20
45	Template-free method for fabricating carbon nanotube combined with thin N-doped porous carbon composite for supercapacitor. <i>Journal of Materials Science</i> , 2019 , 54, 6451-6460	4.3	16
44	Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. <i>Polyhedron</i> , 2019 , 157, 232-240	2.7	47
43	High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors. <i>Journal of Materials Science</i> , 2019 , 54, 2446-2457	4.3	28
42	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. <i>Carbon</i> , 2019 , 142, 89-98	10.4	39
41	High-voltage aqueous asymmetric pseudocapacitors based on methyl blue-doped polyaniline hydrogels and the derived N/S-codoped carbon aerogels. <i>Chemical Engineering Journal</i> , 2020 , 383, 1231	5 4.7	20
40	High-Value Utilization of Lignin To Prepare Functional Carbons toward Advanced Lithium-Ion Capacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 11522-11531	8.3	14
39	NitrogenBxygen co-doped porous carbons prepared by mild potassium hydroxide activation of cicada slough for high-performance supercapacitors. <i>Journal of Energy Storage</i> , 2020 , 29, 101433	7.8	4
38	Oxygen-deficient BiFeO3-NC nanoflake anodes for flexible battery-supercapacitor hybrid devices with high voltage and long-term stability. <i>Chemical Engineering Journal</i> , 2020 , 397, 125524	14.7	16
37	Aerosol-assisted preparation of N-doped hierarchical porous carbon spheres cathodes toward high-stable lithium-ion capacitors. <i>Journal of Materials Science</i> , 2020 , 55, 13127-13140	4.3	2
36	Electrode materials for supercapacitors. 2020 , 35-204		3
35	Low-Cost Preparation of High-Surface-Area Nitrogen-Containing Activated Carbons from Biomass-Based Chars by Ammonia Activation. <i>Industrial & Discourse Chemistry Research</i> , 2020 , 59, 7527-7537	3.9	10
34	Synthesis and characterization of CNT/PVDF paper for electronic and energy storage applications. <i>Emergent Materials</i> , 2020 , 3, 181-185	3.5	4
33	Bio-based electric devices. 2020 , 311-355		O

32	N-doped carbon derived from the monomer of chitin for high-performance supercapacitor. <i>Applied Surface Science</i> , 2020 , 517, 146140	6.7	27
31	Laser-induced nitrogen-self-doped graphite nanofibers from cyanate ester for on-chip micro-supercapacitors. <i>Chemical Engineering Journal</i> , 2021 , 404, 126375	14.7	13
30	One-dimensional core-shell composite of AgNWs@Si@GO for high-specific capacity and high-safety anode materials of lithium-ion batteries. <i>Ceramics International</i> , 2021 , 47, 4937-4943	5.1	8
29	High-performance Bi2O3-NC anodes through constructing carbon shells and oxygen vacancies for flexible battery-supercapacitor hybrid devices. <i>Nanoscale Advances</i> , 2021 , 3, 593-603	5.1	3
28	Investigation on the Mass Distribution and Chemical Compositions of Various Ionic Liquids-Extracted Coal Fragments and Their Effects on the Electrochemical Performance of Coal-Derived Carbon Nanofibers (CCNFs). <i>Nanomaterials</i> , 2021 , 11,	5.4	O
27	Electrochemical performance study of polyaniline and polypyrrole based flexible electrodes. <i>International Journal of Polymer Analysis and Characterization</i> , 2021 , 26, 354-363	1.7	8
26	One-pot synthesis of N-doped hierarchical porous carbon for high-performance aqueous capacitors in a wide pH range. <i>Journal of Power Sources</i> , 2021 , 491, 229587	8.9	6
25	Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method. <i>Journal of Colloid and Interface Science</i> , 2021 , 594, 770-780	9.3	8
24	Components of Supercapacitor. SpringerBriefs in Materials, 2018, 11-39	0.5	6
23	Carbon aerogels with modified pore structures as electrode materials for supercapacitors. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 3545-3555	2.6	11
22	Carbon Nanotubes for Storage of Energy. 2008 , 707-721		1
21	Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties. <i>Bulletin of the Korean Chemical Society</i> , 2008 , 29, 413-416	1.2	30
20	Synthesis of 7-Methyl-3-(2'-oxo-2H-benzopyran-6'-yl)-5H-1,4-thiazolo-[3,2-a]pyrimidin-5-one and Its Derivatives. <i>Journal of the Korean Chemical Society</i> , 2010 , 54, 9-12		1
19	Surface Treatment of Multi-walled Carbon Nanotubes for Increasing Electric Double-layer Capacitance. <i>Journal of the Korean Chemical Society</i> , 2010 , 54, 93-98		4
18	Template synthesis of carbon-based uniform nanoporous materials and their applications for energy storage. <i>Tanso</i> , 2011 , 2011, 89-95	0.1	5
17	Encyclopedia of Sustainability Science and Technology. 2012 , 6769-6790		
16	PEDOT:PSS/Single Wall Carbon Nanotube Composite Nanoparticles as an Additive for Electric-double Layer Capacitor. <i>Journal of Electrochemical Science and Technology</i> , 2012 , 3, 143-148	3.2	1
15	Krajowe badania nanorurek wglowych. 2014 ,		

CITATION REPORT

Zastosowania nanorurek w@lowych. **2014**,

13	Hybrid Modeling of Membrane Processes. 2016 , 149-172		
12	CHAPTER 3:Properties and Applications of Carbon Nanotubes. <i>RSC Nanoscience and Nanotechnology</i> , 2021 , 164-239		
11	Magnetic polyindole-Ag composite for the catalytic reduction and removing of the organic pollutants. <i>Polymer Bulletin</i> , 1	2.4	O
10	Influence of ammonia treatment on the CO2 adsorption of activated carbon. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107273	6.8	1
9	Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons. <i>Carbon</i> , 2022 , 191, 581-581	10.4	1
8	Electrochemical behavior of MnO2/MWCNT nanocomposites for electrode material in supercapacitor. <i>Materials Letters</i> , 2022 , 314, 131887	3.3	2
7	Dimensional optimization enables high-performance capacitive deionization. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 6414-6441	13	6
6	Advances in Precise Structure Control and Assembly toward the Carbon Nanotube Industry. <i>Advanced Functional Materials</i> , 2022 , 32, 2109401	15.6	О
5	Macroporous nitrogen-containing carbon for electrochemical capacitors. <i>Electrochimica Acta</i> , 2022 , 418, 140370	6.7	O
4	Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode. <i>Nanomaterials</i> , 2022 , 12, 1876	5.4	О
3	Mechanosynthesis of nanocomposites based on graphite and transitional metal oxides and their electrochemical characteristics. <i>AIP Conference Proceedings</i> , 2022 ,	0	
2	Sustainable polyurethane-derived heteroatom-doped electrode materials for advanced supercapacitors.		
1	Fabrication and electrochemical performance of sodium manganese oxide composite for supercapacitor application. 2023 , 38, 1657-1668		O