Quantum information processing and communication

European Physical Journal D 36, 203-228

DOI: 10.1140/epjd/e2005-00251-1

Citation Report

#	Article	IF	CITATIONS
1	Direct Measurement of Decoherence for Entanglement between a Photon and Stored Atomic Excitation. Physical Review Letters, 2006, 97, 113603.	2.9	76
2	Conditional control of the quantum states of remote atomic memories for quantum networking. Nature Physics, 2006, 2, 844-848.	6.5	85
3	Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 2006, 442, 766-771.	13.7	1,207
4	Influence of inter-dot Coulomb repulsion and exchange interactions on conductance through double quantum dot. European Physical Journal B, 2006, 52, 411-419.	0.6	8
5	Non-classicality of photon added coherent and thermal radiations. European Physical Journal D, 2006, 40, 133-138.	0.6	35
6	Driven harmonic oscillator as a quantum simulator for open systems. Physical Review A, 2006, 74, .	1.0	25
7	Towards experimental entanglement connection with atomic ensembles in the single excitation regime. New Journal of Physics, 2007, 9, 207-207.	1.2	31
8	Optically controlled single-qubit rotations in self-assembled InAs quantum dots. Journal of Physics Condensed Matter, 2007, 19, 056203.	0.7	28
9	Autoresonant control of the many-electron dynamics in nonparabolic quantum wells. Applied Physics Letters, 2007, 91, .	1.5	134
10	Nonlinear optics with two trapped atoms. Physical Review A, 2007, 76, .	1.0	23
11	Keeping a Quantum Bit Alive by Optimizedπ-Pulse Sequences. Physical Review Letters, 2007, 98, 100504.	2.9	548
12	Single-Ion Two-Photon Source. Physical Review Letters, 2007, 99, 183001.	2.9	9
13	Optical pumping via incoherent Raman transitions. Physical Review A, 2007, 76, . Separability of a family of one-parameter complement.	1.0	16
14	xmins:mmi="http://www.w3.org/1998/Math/Math/Miat	1.0	6
15	Reversible State Transfer between Light and a Single Trapped Atom. Physical Review Letters, 2007, 98, 193601.	2.9	250
16	Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Advances in Physics, 2007, 56, 243-379.	35.9	1,712
17	Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling. Physical Review Letters, 2007, 99, 180504.	2.9	317

#	Article	IF	Citations
19	Interfacing Collective Atomic Excitations and Single Photons. Physical Review Letters, 2007, 98, 183601.	2.9	133
20	Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks. Science, 2007, 316, 1316-1320.	6.0	293
21	Tools for Multimode Quantum Information: Modulation, Detection, and Spatial Quantum Correlations. Physical Review Letters, 2007, 98, 083602.	2.9	89
22	Constraints on the uncertainties of entangled symmetric qubits. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 364, 203-207.	0.9	22
23	Entanglement of single-atom quantum bits at a distance. Nature, 2007, 449, 68-71.	13.7	635
24	Robust Population Transfer by Stimulated Raman Adiabatic Passage in aPr3+:Y2SiO5Crystal. Physical Review Letters, 2007, 99, 113003.	2.9	101
25	Computation in finitary stochastic and quantum processes. Physica D: Nonlinear Phenomena, 2008, 237, 1173-1195.	1.3	19
26	Intrinsic quantum computation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 375-380.	0.9	16
27	Generation of maximally entangled atom pairs in driven dissipative cavity QED systems. European Physical Journal D, 2008, 46, 165-172.	0.6	6
28	Exact results on decoherence and entanglement in a system of N driven atoms and a dissipative cavity mode. European Physical Journal D, 2008, 49, 257-264.	0.6	19
29	Dynamics of entanglement transfer from radiation modes to localized qubits. European Physical Journal: Special Topics, 2008, 160, 71-81.	1.2	7
30	Quantum Memory with Optically Trapped Atoms. Physical Review Letters, 2008, 101, 120501.	2.9	23
31	Mapping photonic entanglement into and out of a quantum memory. Nature, 2008, 452, 67-71.	13.7	467
32	The quantum internet. Nature, 2008, 453, 1023-1030.	13.7	4,200
33	Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps. Science, 2008, 320, 1734-1738.	6.0	343
34	Coherent manipulations of atoms using laser light. Acta Physica Slovaca, 2008, 58, . Spectral hole-burning spectroscopy in <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.4</td><td>61</td></mml:math>	1.4	61
35	display="inline"> <mml:mrow><mml:msup><mml:mi mathvariant="normal">Nd<mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow> mathvariant="normal">Y<mml:mi mathvariant="normal">V</mml:mi><mml:msub></mml:msub></mml:mi mathvariant="normal">O<mml:mn>4</mml:mn></mml:msup></mml:mrow> .	<td>up><mml:mo:< td=""></mml:mo:<></td>	up> <mml:mo:< td=""></mml:mo:<>
36	Physical Review B, 2008, 77, . Experimental demonstration of frequency-degenerate bright EPR beams with a self-phase-locked OPO. Optics Express, 2008, 16, 9351.	1.7	33

#	Article	IF	Citations
37	A Photon Turnstile Dynamically Regulated by One Atom. Science, 2008, 319, 1062-1065.	6.0	568
38	Nondestructive Probing of Rabi Oscillations on the Cesium Clock Transition near the Standard Quantum Limit. Physical Review Letters, 2008, 100, 103601.	2.9	56
39	Reflectivity tuning in coupled cavities considering dipole induced transparency and electromagnetic induced transparency. , 2008, , .		0
40	Exact results on dynamical decoupling by π pulses in quantum information processes. New Journal of Physics, 2008, 10, 083024.	1.2	128
41	Spectrum of a pulsed driven qubit. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 145503.	0.6	10
42	Entanglement of distant atoms by projective measurement: the role of detection efficiency. New Journal of Physics, 2008, 10, 103003.	1.2	16
43	Nonclassical phenomena in cavity polariton systems. , 2008, , .		0
44	Temporal Coherence of Photons Emitted by Single Nitrogen-Vacancy Defect Centers in Diamond Using Optical Rabi-Oscillations. Physical Review Letters, 2008, 100, 077401.	2.9	148
45	Ramsey interferometry with a spin embedded in a Coulomb chain. Physical Review A, 2008, 78, .	1.0	26
46	Entanglement generation via a completely mixed nuclear spin bath. Physical Review B, 2008, 78, .	1.1	16
47	Separability bounds on multiqubit moments due to positivity under partial transpose. Physical Review A, 2008, 78, .	1.0	1
48	Photon-mediated interaction between two distant atoms. Physical Review A, 2008, 78, .	1.0	33
49	Quantum memory for images: A quantum hologram. Physical Review A, 2008, 77, .	1.0	52
50	Generalized Information Theoretic Measure to Discern the Quantumness of Correlations. Physical Review Letters, 2008, 100, 140502.	2.9	44
51	Noise Correlation Spectroscopy of the Broken Order of a Mott Insulating Phase. Physical Review Letters, 2008, 100, 250403.	2.9	36
52	Fast Excitation and Photon Emission of a Single-Atom-Cavity System. Physical Review Letters, 2008, 101, 223601.	2.9	50
53	Reversible Quantum Interface for Tunable Single-Sideband Modulation. Physical Review Letters, 2008, 101, 133601.	2.9	43
54	Generalization of short coherent control pulses: extension to arbitrary rotations. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 312005.	0.7	18

#	Article	IF	Citations
55	Generation of entangled photon pairs from a single quantum dot embedded in a planar photonic-crystal cavity. Physical Review B, 2009, 79, .	1.1	32
56	Concatenated Control Sequences Based on Optimized Dynamic Decoupling. Physical Review Letters, 2009, 102, 120502.	2.9	79
57	Cavity-assisted fast generation of entangled photon pairs through the biexciton-exciton cascade. Physical Review B, 2009, 80, .	1.1	18
58	Robust quantum repeater with atomic ensembles and single-photon sources. Physical Review A, 2009, 79, .	1.0	6
59	Tripartite entanglement transfer from flying modes to localized qubits. Physical Review A, 2009, 79, .	1.0	23
60	Atomic-ensemble-based quantum memory for sideband modulations. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 114010.	0.6	4
61	Loschmidt echo for the many-electron dynamics in nonparabolic quantum wells. New Journal of Physics, 2009, 11, 013050.	1.2	5
62	Deterministic single-photon source from a single ion. New Journal of Physics, 2009, 11, 103004.	1.2	110
63	Characterization of Multipartite Entanglement for One Photon Shared Among Four Optical Modes. Science, 2009, 324, 764-768.	6.0	108
64	Virtual Synthesis of Electronic Nanomaterials: Fundamentals and Prospects. , 2009, , 423-474.		8
65	Quantum Logic Circuits and Optical Signal Generation for a Three-Qubit, Optically Controlled, Solid-State Quantum Computer. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1694-1703.	1.9	1
66	Towards measurable bounds on entanglement measures. Quantum Information Processing, 2009, 8, 493-521.	1.0	17
67	Raman spectroscopy of a single ion coupled to a high-finesse cavity. Applied Physics B: Lasers and Optics, 2009, 95, 205-212.	1.1	35
68	Optimized dynamical decoupling in a model quantum memory. Nature, 2009, 458, 996-1000.	13.7	468
69	Coherent optical pulse sequencer for quantum applications. Nature, 2009, 461, 241-245.	13.7	160
70	Single-photon detectors for optical quantum information applications. Nature Photonics, 2009, 3, 696-705.	15.6	1,302
71	Quantum memory for images with feedback. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0	0 8.12BT /	Overlock 10
72	Coupled cavity polaritons for switching and slow light applications. Photonics and Nanostructures - Fundamentals and Applications, 2009, 7, 39-46.	1.0	6

#	Article	IF	Citations
73	Experimental Uhrig dynamical decoupling using trapped ions. Physical Review A, 2009, 79, .	1.0	102
74	Generation of Ising interaction and cluster states in a one-dimensional coupled resonator waveguide. European Physical Journal D, 2009, 55, 205-209.	0.6	8
75	Vacuum squeezed light for atomic memories at the D2 cesium line. Optics Express, 2009, 17, 3777.	1.7	27
76	Photonic spectrum of bichromatic optical lattices. Physical Review A, 2009, 79, .	1.0	11
77	Tripartite Entanglement versus Tripartite Nonlocality in Three-Qubit Greenberger-Horne-Zeilinger-Class States. Physical Review Letters, 2009, 102, 250404.	2.9	83
78	Realization of the Quantum Toffoli Gate with Trapped Ions. Physical Review Letters, 2009, 102, 040501.	2.9	270
79	Hybrid quantum devices and quantum engineering. Physica Scripta, 2009, T137, 014001.	1.2	243
80	Breather mode in the many-electron dynamics of semiconductor quantum wells. Physical Review B, 2009, 80, .	1.1	71
81	Quantum memories. European Physical Journal D, 2010, 58, 1-22.	0.6	420
82	Scalable network of quadrangle entanglements via multiple phase-dependent electromagnetically induced transparency. Physical Review A, 2010, 82, .	1.0	8
83	Entanglement detection from interference fringes in atom-photon systems. Physical Review A, 2010, 81,	1.0	4
84	Robust scheme to generate N-atom W state in two distant cavities. Optics Communications, 2010, 283, 2978-2981.	1.0	5
85	Ion-induced density bubble in a strongly correlated one-dimensional gas. Physical Review A, 2010, 81, .	1.0	30
86	Two-photon lasing by a single quantum dot in a high- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> microcavity. Physical Review B, 2010, 81, .	1.1	71
87	Photonic Phase Gate via an Exchange of Fermionic Spin Waves in a Spin Chain. Physical Review Letters, 2010, 105, 060502.	2.9	36
88	Efficient coherent control by sequences of pulses of finite duration. New Journal of Physics, 2010, 12, 045001.	1.2	34
89	Multiqubit nonlocality in families of 3- and 4-qubit entangled states. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 445301.	0.7	9
90	Single-photon opto-mechanics in the strong coupling regime. New Journal of Physics, 2010, 12, 083030.	1.2	102

#	Article	IF	Citations
91	Spin alignment in, and electronic and magnetic properties of small Co–O molecules. Journal of Applied Physics, 2010, 107, 09D708.	1.1	2
92	Interfacing nuclear spins in quantum dots to a cavity or traveling-wave fields. New Journal of Physics, 2010, 12, 043026.	1.2	11
93	Quantum optomechanicsâ€"throwing a glance [Invited]. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A189.	0.9	247
94	Polarization-correlated photon pairs from a single ion. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A81.	0.9	2
95	Dissipatively driven entanglement of two macroscopic atomic ensembles. Physical Review A, 2011, 83, .	1.0	130
96	Optically levitating dielectrics in the quantum regime: Theory and protocols. Physical Review A, 2011, 83, .	1.0	187
97	Fano-Doppler Laser Cooling of Hybrid Nanostructures. ACS Nano, 2011, 5, 7354-7361.	7.3	27
98	Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage. Physical Review B, 2011, 83, .	1.1	16
99	Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nature Physics, 2011, 7, 399-405.	6.5	145
100	Atoms, Photons and Entanglement for Quantum Information Technologies. Procedia Computer Science, 2011, 7, 52-55.	1.2	2
101	Efficient long-distance quantum communication using microtoroidal resonators. European Physical Journal D, 2011, 62, 261-264.	0.6	0
102	Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems. European Physical Journal D, 2011, 61, 737-744.	0.6	28
103	Prospects for fast Rydberg gates on an atom chip. Quantum Information Processing, 2011, 10, 771-792.	1.0	28
104	Feedback control of a single atom in an optical cavity. Applied Physics B: Lasers and Optics, 2011, 102, 433-442.	1.1	10
105	Distributed qutrit–qutrit entanglement via quantum Zeno dynamics. Optics Communications, 2011, 284, 2245-2249.	1.0	6
106	Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Physical Review A, 2011, 83, .	1.0	50
107	Enhancement-mode buried strained silicon channel quantum dot with tunable lateral geometry. Applied Physics Letters, 2011, 99, .	1.5	24
108	Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field. Review of Scientific Instruments, 2011, 82, 043105.	0.6	8

#	Article	IF	CITATIONS
109	Spin and orbital angular momentum propagation in anisotropic media: theory. Journal of Optics (United Kingdom), 2011, 13, 064019.	1.0	13
110	Quantum processing through a manifold of dark states. , 2012, , .		0
111	A nanodiamond-tapered fiber system with high single-mode coupling efficiency. Optics Express, 2012, 20, 10490.	1.7	90
112	THE CONCENTRATION PROTOCOL OF A TWO-PARTICLE NON-MAXIMALLY ENTANGLED STATE AMONG THREE CAVITIES. Modern Physics Letters B, 2012, 26, 1250158.	1.0	0
113	SPECTRUM OF SPIN-Â $\frac{1}{2}$ SYSTEM DRIVEN BY RESONANT EXPONENTIAL PULSE. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250025.	1.1	5
114	Preparation of four-dimensional entangled states in separate cavities via adiabatic passage. Physica Scripta, 2012, 86, 065002.	1.2	1
115	Deterministic production of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi></mml:math> -photon states from a single atom-cavity system. Physical Review A, 2012, 86, .	1.0	8
116	A quantum relay chip based on telecommunication integrated optics technology. New Journal of Physics, 2012, 14, 025002.	1.2	45
117	Quantum memories and error correction. Journal of Modern Optics, 2012, 59, 1717-1738.	0.6	26
118	Creating multimode squeezed states and Greenberger-Horne-Zeilinger entangled states using atomic coherent effects. Physical Review A, 2012, 85, .	1.0	17
119	Quadripartite cluster and Greenberger–Horne–Zeilinger entangled light via cascade interactions with separated atomic ensembles. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 135503.	0.6	3
120	Observation of eight-photon entanglement. Nature Photonics, 2012, 6, 225-228.	15.6	355
121	Pre-selection of optical transitions in rare-earth ions in crystals perspective for quantum information processing. Journal of Modern Optics, 2012, 59, 166-178.	0.6	8
122	Efficient fluorescence detection of a single neutral atom with low background in a microscopic optical dipole trap. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1523-1528.	2.0	9
123	The mechanism of producing energy-polarization entangled photon pairs in the cavity-quantum electrodynamics scheme. Chinese Physics B, 2012, 21, 044208.	0.7	3
124	Ultracold Atoms and Molecules in Optical Lattices. Contemporary Concepts of Condensed Matter Science, 2012, 5, 121-156.	0.5	1
125	Quantum simulations with trapped ions. Nature Physics, 2012, 8, 277-284.	6.5	1,135
126	Can one trust quantum simulators?. Reports on Progress in Physics, 2012, 75, 082401.	8.1	219

#	Article	IF	CITATIONS
127	Quantum processing by adiabatic transfer through a manifold of dark states. Physical Review A, 2012, 85, .	1.0	7
128	Ultracold collisions between two light indistinguishable diatomic molecules: Elastic and rotational energy transfer in HD+HD. Physical Review A, 2012, 85, .	1.0	1
129	Entanglement generation and transfer between remote atomic qubits interacting with squeezed field. European Physical Journal D, 2013, 67, 1.	0.6	2
130	Quantum ion-acoustic solitary waves: The effect of exchange correlation. Physical Review E, 2013, 88, 045101.	0.8	44
131	Investigation of the Performance of an Ultralow-Dark-Count Superconducting Nanowire Single-Photon Detector. Japanese Journal of Applied Physics, 2013, 52, 102801.	0.8	9
132	Steering photon statistics in single quantum dots: From one- to two-photon emission. Physical Review B, 2013, 87, .	1.1	41
133	Density Operator in Terms of Coherent States Representation with the Applications in the Quantum Information. International Journal of Theoretical Physics, 2013, 52, 2275-2283.	0.5	4
134	Basics of Quantum Information Processing. Lecture Notes in Physics, 2013, , 187-205.	0.3	0
135	Temperature-driven nonclassical light. Physical Review E, 2013, 87, 064101.	0.8	0
136	Reversible storage of photon entanglement in thermal atomic ensembles. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 687.	0.9	3
137	Photon entanglement detection by a single atom. New Journal of Physics, 2013, 15, 025033.	1.2	16
138	Quantum beats and wave mixing interactions in Raman systems: multimode squeezed and entangled states. Laser Physics Letters, 2013, 10, 075202.	0.6	4
139	Dispersive probing of driven pseudospin dynamics in a gradient field. Physical Review A, 2013, 88, .	1.0	11
140	Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity. Applied Physics Letters, 2013, 103, 083117.	1.5	12
141	Integrated fiber-mirror ion trap for strong ion-cavity coupling. Review of Scientific Instruments, 2013, 84, 123104.	0.6	72
142	Stabilization of photon collapse and revival dynamics by a non-Markovian phonon bath. New Journal of Physics, 2013, 15, 105024.	1.2	13
143	Quantum positron acoustic waves. Physics of Plasmas, 2014, 21, 122117.	0.7	17
144	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	16.4	4,064

#	Article	IF	CITATIONS
145	Cryogenic surface ion trap based on intrinsic silicon. New Journal of Physics, 2014, 16, 113068.	1.2	37
146	Quantum Information Processing with Photons. , 2014, , .		0
147	Diamond-based single-photon sources and their application in quantum key distribution. , 2014, , 127-159.		6
148	Exponential rise of dynamical complexity in quantum computing through projections. Nature Communications, 2014, 5, 5173.	5.8	38
149	Spectral diffusion in nitride quantum dots: Emission energy dependent linewidths broadening via giant builtâ€in dipole moments. Physica Status Solidi - Rapid Research Letters, 2014, 8, 408-413.	1.2	31
150	Nuclear spin dynamics in double quantum dots: Multistability, dynamical polarization, criticality, and entanglement. Physical Review B, 2014, 89, .	1.1	15
151	Effect of exchange–correlation on quantum ion-acoustic soliton energy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3523-3525.	0.9	17
152	The Effects of Electric Field on a Triangular Bound Potential Quantum Dot Qubit. Journal of Low Temperature Physics, 2014, 177, 72-79.	0.6	3
153	Transient spectrum of sin ² -pulsed driven harmonic oscillator. Journal of Nonlinear Optical Physics and Materials, 2014, 23, 1450052.	1.1	2
154	Method for generating all uniformï€-pulse sequences used in deterministic dynamical decoupling. Physical Review A, 2015, 92, .	1.0	2
155	Analytical study of quantum-feedback-enhanced Rabi oscillations. Physical Review A, 2015, 92, .	1.0	24
156	Hamiltonian purification. Journal of Mathematical Physics, 2015, 56, .	0.5	6
157	Desorption induced GaN quantum dots on (0001) AlN by MOVPE. Physica Status Solidi - Rapid Research Letters, 2015, 9, 526-529.	1.2	9
158	Towards polarisation-encoded quantum key distribution in optical fibre networks. South African Journal of Science, 2015, 111, 6.	0.3	1
159	Influence of Virtual Photon Process on the Generation of Squeezed Light from Atoms in an Optical Cavity. Atoms, 2015, 3, 339-347.	0.7	2
160	Solid state plasmas. Plasma Physics and Controlled Fusion, 2015, 57, 054004.	0.9	18
161	Pseudorelativistic effects on solitons in quantum semiconductor plasma. Physical Review E, 2015, 91, 043108.	0.8	7
162	A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics. Chinese Physics B, 2015, 24, 064207.	0.7	2

#	Article	IF	CITATIONS
163	Electrical and optical control of entanglement entropy in a coupled triple quantum dot system. Journal of Modern Optics, 2015, 62, 1391-1399.	0.6	3
164	Strong coupling of a Rydberg superatom to a moving membrane. , 2015, , .		1
165	High speed parametric processing controlled by few photons. Progress in Quantum Electronics, 2015, 44, 1-13.	3.5	0
166	A controllable single photon beam-splitter as a node of a quantum network. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 065502.	0.6	1
167	Ultrafast coherent control of spinor Bose-Einstein condensates using stimulated Raman adiabatic passage. Physical Review A, 2016, 94, .	1.0	2
168	Nonlocality of three-qubit Greenberger-Horne-Zeilinger–symmetric states. Physical Review A, 2016, 94,	1.0	13
169	Unraveling coherent quantum feedback for Pyragas control. Journal of the Optical Society of America B: Optical Physics, 2016, 33, C10.	0.9	19
170	High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well. Physical Review B, 2016, 93, .	1.1	25
171	Experimental Ten-Photon Entanglement. Physical Review Letters, 2016, 117, 210502.	2.9	403
172	Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving. Scientific Reports, 2016, 6, 30929.	1.6	12
173	Nonlinear Isothermal Acoustic Wave Propagation in Quantum Degenerate Electron–Positron–Ion Plasmas. IEEE Transactions on Plasma Science, 2016, 44, 2901-2906.	0.6	13
174	Temperature effects on fidelity of reflection from absorbing Bragg mirrors. Journal of Physics: Conference Series, 2016, 672, 012003.	0.3	0
175	Implication of the Electron Exchange-Correlation on Fully Nonlinear Quantum Dust Ion-Acoustic Solitons. Communications in Theoretical Physics, 2016, 65, 73-77.	1.1	4
176	Implementation of a two-state quantum bit commitment protocol in optical fibers. Journal of Optics (United Kingdom), 2016, 18, 015202.	1.0	10
177	Dzyaloshinskii–Moriya interaction effects on the entanglement dynamics of a two qubit XXZ spin system in non-Markovian environment. Journal of Magnetism and Magnetic Materials, 2016, 407, 358-364.	1.0	7
178	Virtual-Excitation Induced High-Dimensional State Transfer in a Quantum Network. International Journal of Theoretical Physics, 2016, 55, 1361-1369.	0.5	0
179	Theoretical and experimental investigation on superconducting nanowire single-photon detectors. Proceedings of SPIE, 2017, , .	0.8	0
180	The European quantum technologies flagship programme. Quantum Science and Technology, 2017, 2, 030501.	2.6	50

#	ARTICLE	IF	CITATIONS
181	Entangled Photon Excited Fluorescence in Organic Materials: An Ultrafast Coincidence Detector. Journal of Physical Chemistry Letters, 2017, 8, 388-393.	2.1	61
182	Quantum optics and frontiers of physics: the third quantum revolution. Physica Scripta, 2017, 92, 013003.	1.2	13
183	Parametric instabilities in a quantum magnetoplasma with electron exchange-correlations. Physics of Plasmas, $2017, 24, .$	0.7	8
184	Intensified antibunching via feedback-induced quantum interference. Physical Review A, 2017, 95, .	1.0	15
185	Correlated Photon Dynamics in Dissipative Rydberg Media. Physical Review Letters, 2017, 119, 043602.	2.9	28
186	Using quantum emulation for advanced computation. , 2017, , .		3
187	Quantum cascade driving: Dissipatively mediated coherences. Physical Review A, 2017, 96, .	1.0	4
188	Surface-plasmon-enhanced quantum field entanglement through anisotropic Purcell factors. Physical Review A, 2017, 96, .	1.0	3
189	Cascaded cold atomic ensembles in a diamond configuration as a spectrally entangled multiphoton source. Physical Review A, 2017, 95, .	1.0	10
190	Responsible research and innovation (RRI) in quantum technology. Ethics and Information Technology, 2017, 19, 277-294.	2.3	23
191	Picturing stimulated Raman adiabatic passage: a STIRAP tutorial. Advances in Optics and Photonics, 2017, 9, 563.	12.1	50
192	On-demand generation of background-free single photons from a solid-state source. Applied Physics Letters, 2018, 112, .	1.5	204
193	Storage and Retrieval of Surface Polaritons. ACS Photonics, 2018, 5, 2496-2502.	3.2	5
194	Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments. Chinese Physics B, 2018, 27, 120302.	0.7	5
195	Consequences of EPR–Proton Qubits Populating DNA. Advances in Quantum Chemistry, 2018, , 19-120.	0.4	0
196	High-dielectric constant enhanced photon–exciton coupling in an evanescent vacuum. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1475.	0.9	7
197	Quantum receiver for large alphabet communication. Optica, 2018, 5, 227.	4.8	24
198	Quantum interference enables constant-time quantum information processing. Science Advances, 2019, 5, eaau9674.	4.7	19

#	Article	IF	CITATIONS
199	A simple approach to fiber-based tunable microcavity with high coupling efficiency. Applied Physics Letters, $2019,114,\ldots$	1.5	18
200	Single-step multipartite entangled states generation from coupled circuit cavities. Frontiers of Physics, 2019, 14, 1.	2.4	12
201	Sharing of tripartite nonlocality by multiple observers measuring sequentially at one side. Quantum Information Processing, 2019, 18, 1.	1.0	28
202	Stabilizing quantum coherence against pure dephasing in the presence of time-delayed coherent feedback at finite temperature. Physical Review A, 2019, 99, .	1.0	8
203	Effects of time delay in no-knowledge quantum feedback control. Journal of Physics: Conference Series, 2019, 1380, 012113.	0.3	3
204	Tunable quantum switch realized with a single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ</mml:mi></mml:math> -level atom coupled to the microtoroidal cavity. Physical Review A. 2019. 100	1.0	5
205	Revisiting Quantum Feedback Control: Disentangling the Feedbackâ€Induced Phase from the Corresponding Amplitude. Advanced Quantum Technologies, 2020, 3, 1900078.	1.8	14
206	Short Codes for Quantum Channels With One Prevalent Pauli Error Type. IEEE Journal on Selected Areas in Information Theory, 2020, 1, 480-486.	1.9	10
207	lon-acoustic dipolar vortex in degenerate magnetoplasma with ions/electrons thermal corrections. Chaos, 2020, 30, 073142.	1.0	2
208	Piggybacking on quantum streams. Physical Review A, 2020, 102, .	1.0	10
209	Statistical correlations of currents flowing through a proximized quantum dot. Physical Review B, 2020, 101, .	1.1	5
210	Microresonators enhancing long-distance dynamical entanglement generation in chiral quantum networks. Physical Review A, 2020, 101, .	1.0	11
211	Defect-induced controllable quantum state transfer via a topologically protected channel in a flux qubit chain. Physical Review A, 2020, 102, .	1.0	11
212	Kinetic Alfvén soliton structure with exchange-correlation potential in quantum plasma. Plasma Research Express, 2020, 2, 015007.	0.4	2
213	Quantum inertial Alfvén solitary waves: the effect of exchange-correlation and spin magnetization. Waves in Random and Complex Media, 2021, 31, 2058-2073.	1.6	4
214	Detection of genuine tripartite entanglement by multiple sequential observers. Physical Review A, 2020, 101, .	1.0	30
215	Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. Journal of Materials Science, 2020, 55, 8769-8792.	1.7	22
216	Cooperative emission spectra as an efficient key probe of qubits pair entanglement along with field state tomography: an effective response to nonlinearity and classical drive power. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 145001.	0.6	2

#	Article	IF	Citations
217	Variational functionals for the driven quantum harmonic oscillator. Complex Variables and Elliptic Equations, 2021, 66, 312-335.	0.4	0
218	Dynamical current correlations in Cooper pair splitters based on proximized quantum dots. New Journal of Physics, 2021, 23, 023009.	1.2	2
219	Sharing quantum nonlocality and genuine nonlocality with independent observables. Physical Review A, 2021, 103, .	1.0	30
220	Quantum computer based on color centers in diamond. Applied Physics Reviews, 2021, 8, .	5.5	141
221	Strongly entangled system-reservoir dynamics with multiphoton pulses beyond the two-excitation limit: Exciting the atom-photon bound state. Physical Review A, 2021, 103, .	1.0	5
222	Quantum broadcast channels with cooperating decoders: An information-theoretic perspective on quantum repeaters. Journal of Mathematical Physics, 2021, 62, .	0.5	7
223	Time-bin entanglement built in room-temperature quantum memory. Physical Review A, 2021, 103, .	1.0	2
224	Improved non-linear devices for quantum applications. New Journal of Physics, 2021, 23, 063082.	1.2	4
225	Heralding quantum entanglement between two room-temperature atomic ensembles. Optica, 2021, 8, 925.	4.8	16
226	A complete characterization of the optimal unitary attacks in quantum cryptography with a refined optimality criteria involving the attacker's Hilbert space only. European Physical Journal D, 2021, 75, 1.	0.6	0
227	Interactive Quantum Classifier Inspired by Quantum Open System Theory., 2021,,.		2
228	Shaping Temporal Correlation of Biphotons in a Hot Atomic Ensemble. Advanced Photonics Research, 2021, 2, 2100073.	1.7	2
229	Quantifying Quantum Correlation of Quasiâ€Werner State and Probing Its Suitability for Quantum Teleportation. Annalen Der Physik, 2021, 533, 2100201.	0.9	4
230	Optimal parent Hamiltonians for time-dependent states. Physical Review A, 2021, 104, .	1.0	3
231	Multi-party bidirectional teleportation. Optik, 2021, 247, 167784.	1.4	9
232	Design of Short Codes for Quantum Channels with Asymmetric Pauli Errors. Lecture Notes in Computer Science, 2020, , 638-649.	1.0	2
233	Efficient test to demonstrate genuine three particle nonlocality. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 465302.	0.7	12
234	Quantum computation with trapped ions and atoms. , 2011, , 218-252.		3

#	Article	IF	CITATIONS
235	Photon propagation through dissipative Rydberg media at large input rates. Physical Review Research, 2020, 2, .	1.3	19
236	Generation of two-photon noon state and polarization-entangled state from a single quantum dot embedded inside a microcavity. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1200.	0.9	2
237	Multipartite entanglement of billions of motional atoms heralded by single photon. Npj Quantum Information, 2021, 7, .	2.8	6
238	Experimental generation of frequency-degenerate bright EPR beams with a self-locked optical parametric oscillator. , 2008, , .		0
239	Nuclear Spin Dynamics in Double Quantum Dots: Multi-stability, Dynamical Polarization, Criticality and Entanglement. Springer Theses, 2017, , 65-141.	0.0	0
240	Research progress of quantum memory. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 030307.	0.2	5
241	Multiphoton quantum technologies: multiphoton state manipulation and characterization. , 2019, , .		0
242	Review: Optoelectronic Response andÂvan der Waals Materials. Springer Theses, 2020, , 37-77.	0.0	0
243	Propagation and energy of bright and dark solitons in magnetized quantum semiconductor plasmas in the presence of Bohm potential effect. Waves in Random and Complex Media, 0, , 1-18.	1.6	6
244	Quantum Key Distribution Networks. Advances in Information Security, Privacy, and Ethics Book Series, 0, , 61-96.	0.4	1
246	Steady-state quantum correlation measurement in hybrid optomechanical systems. International Journal of Quantum Information, 2020, 18, 2050046.	0.6	2
247	Probing multipartite entanglement, coherence and quantum information preservation under classical Ornstein–Uhlenbeck noise. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 025305.	0.7	14
249	Generalized Bell-like inequality and maximum violation for multiparticle entangled SchrĶdinger cat states of spin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi></mml:math> . Physical Review A, 2022, 105, .	1.0	0
250	Evolutionary algorithm to design high-cooperativity optical cavities. New Journal of Physics, 2022, 24, 073028.	1.2	3
251	Hong–Ou–Mandel interference linking independent room-temperature quantum memories. Photonics Research, 2022, 10, 2388.	3.4	2
252	Heisenberg treatment of multiphoton pulses in waveguide QED with time-delayed feedback. Physical Review A, 2022, 106, .	1.0	3
253	Application Overview of Quantum Computing for Gas Turbine Design and Optimization., 0, 2022, 1-12.		0
254	Optimal Parent Hamiltonians for Many-Body States. Quantum Science and Technology, 2022, , 189-209.	1.5	0

#	Article	IF	CITATIONS
255	Pulsed Erbium-doped Fiber Laser for Quantum Optics Applications. , 2022, , .		0
256	Optimal control in disordered quantum systems. Physical Review Research, 2022, 4, .	1.3	5
257	Enhancing photon generation rate with broadband room-temperature quantum memory. Scientific Reports, 2022, 12 , .	1.6	1
258	Security of Bennett–Brassard 1984 Quantum-Key Distribution under a Collective-Rotation Noise Channel. Photonics, 2022, 9, 941.	0.9	4
259	Optical fiber polarization-entangled photon pair source using intermodal spontaneous four-wave mixing in the visible spectral band. Laser Physics Letters, 2023, 20, 015101.	0.6	0
260	Rare-earth quantum memories: The experimental status quo. Frontiers of Physics, 2023, 18, .	2.4	7
261	Fiber-based photon-pair generation: tutorial. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 469.	0.9	10
262	Tunable single-photon routing between two single-mode waveguides by a giant <mml:math altimg="si42.svg" display="inline" id="d1e1058" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i\rangle</mml:mi></mml:math> -type three-level atom. Optik, 2023, 274, 170568.	1.4	1
263	Decoherence-free subspace and entanglement sudden death of multi-photon polarization states in fiber channels. Communications in Theoretical Physics, 2023, 75, 045104.	1.1	1
264	Photochemical Anchoring of Singly Er ³⁺ Ion-Doped NaYF ₄ Nanoparticles for Scalable Fabrication of Single-Photon Emitting Devices: Implications for Quantum Light Sources in the Telecom Window. ACS Applied Nano Materials, 2023, 6, 4398-4405.	2.4	1
265	Quantum conditional entropies and steerability of states with maximally mixed marginals. Physical Review A, 2023, 107 , .	1.0	0
270	Surface Nano-Structuring of Semiconductors by Nanosecond Pulsed Laser Interference. , 2023, , .		0
272	Quantum computing-a revolution-current updates and challenges. AIP Conference Proceedings, 2024, , .	0.3	0