Effect of pore size distribution of coal-based activated capacitance

Electrochimica Acta 50, 1197-1206 DOI: 10.1016/j.electacta.2004.07.045

Citation Report

#	Article	IF	CITATIONS
1	Templated mesoporous carbons for supercapacitor application. Electrochimica Acta, 2005, 50, 2799-2805.	5.2	399
2	Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon, 2005, 43, 2677-2684.	10.3	372
3	Effect of nitrogen in carbon electrode on the supercapacitor performance. Chemical Physics Letters, 2005, 404, 53-58.	2.6	334
4	Chapter 6 Application of nanotextured carbons for supercapacitors and hydrogen storage. Interface Science and Technology, 2006, 7, 293-343.	3.3	9
5	Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon, 2006, 44, 2360-2367.	10.3	213
6	The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin. Carbon, 2006, 44, 3218-3225.	10.3	75
7	Relationship between pore surface areas and electric double layer capacitance in non-aqueous electrolytes for air-oxidized carbon spheres. Electrochimica Acta, 2006, 51, 4096-4102.	5.2	46
8	On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties. Journal of Power Sources, 2006, 154, 314-320.	7.8	79
9	Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material. Journal of Power Sources, 2006, 156, 725-740.	7.8	143
10	Electrosorption capacitance of nanostructured carbon-based materials. Journal of Colloid and Interface Science, 2006, 302, 54-61.	9.4	149
11	Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochimica Acta, 2006, 51, 4412-4419.	5.2	156
12	Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 2006, 52, 1721-1726.	5.2	380
13	Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors. Electrochimica Acta, 2006, 51, 5715-5720.	5.2	104
14	The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons. Electrochimica Acta, 2006, 52, 560-566.	5.2	139
15	A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials, 2006, 18, 1877-1882.	21.0	786
16	Structural Feature and Double-Layer Capacitive Performance of Porous Carbon Powder Derived from Polyacrylonitrile-Based Carbon Fiber. Journal of the Electrochemical Society, 2007, 154, A993.	2.9	103
17	Supercapacitive Characteristics of Potentiodynamically-Deposited Nano-Structured Cobalt-Nickel Oxide. Electrochemistry, 2007, 75, 582-585.	1.4	1
18	Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation. New Carbon Materials, 2007, 22, 307-314.	6.1	95

#	Article	IF	CITATIONS
19	Nanoporous carbons from cypress II. Application to electric double layer capacitors. New Carbon Materials, 2007, 22, 321-326.	6.1	26
20	Electrochemical Study of High Electrochemical Double Layer Capacitance of Ordered Porous Carbons with Both Meso/Macropores and Micropores. Journal of Physical Chemistry C, 2007, 111, 227-233.	3.1	169
21	Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions. Electrochimica Acta, 2007, 53, 882-886.	5.2	56
22	Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. Journal of Colloid and Interface Science, 2007, 314, 32-37.	9.4	89
23	Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 2007, 9, 1774.	2.8	1,772
24	On the hierarchy of the influences of porous and electronic structures of carbonaceous materials on parameters of molecular storage devices. Electrochimica Acta, 2007, 52, 6604-6610.	5.2	14
25	Impedance analysis on electric double layer capacitor with transmission line model. Journal of Power Sources, 2007, 164, 415-424.	7.8	119
26	Morphological reason for enhancement of electrochemical double layer capacitances of various acetylene blacks by electrochemical polarization. Electrochimica Acta, 2008, 53, 5789-5795.	5.2	11
27	Preparation and electrochemical performance of activated carbon thin films with polyethylene oxide-salt addition for electrochemical capacitor applications. Journal of Solid State Electrochemistry, 2008, 12, 1349-1355.	2.5	50
28	A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry - A European Journal, 2008, 14, 6614-6626.	3.3	545
29	Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst. Journal of Colloid and Interface Science, 2008, 327, 115-119.	9.4	36
30	On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2596-2605.	2.7	375
31	Understanding RuO2·xH2O/carbon nanofibre composites as supercapacitor electrodes. Journal of Power Sources, 2008, 176, 417-425.	7.8	82
32	Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor. Journal of Power Sources, 2008, 185, 1580-1584.	7.8	28
33	Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity. Electrochimica Acta, 2008, 53, 7730-7735.	5.2	132
34	Investigations on carbonization processes of plain tobacco stems and H3PO4-impregnated tobacco stems used for the preparation of activated carbons with H3PO4 activation. Industrial Crops and Products, 2008, 28, 73-80.	5.2	29
36	Surface Modification and Performance of Activated Carbon Electrode Material. Acta Physico-chimica Sinica, 2008, 24, 1143-1148.	0.6	47
37	Performance of Electric Double-Layer Capacitor with Vertically Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology. Journal of the Electrochemical Society, 2008, 155, A930.	2.9	26

#	Article	IF	CITATIONS
38	Capacitance Limits of Activated Carbon Fiber Electrodes in Aqueous Electrolyte. Journal of the Electrochemical Society, 2008, 155, F1.	2.9	43
39	Some Effects of Textural Properties of Carbon Fibers from Phenolic Resins on Double-Layer Capacitance in Aprotic Electrolyte. Journal of the Electrochemical Society, 2008, 155, F124.	2.9	3
40	Glass-Like Carbon Spheres — Activation, Porosity and Application Possibilities. Adsorption Science and Technology, 2008, 26, 735-787.	3.2	16
41	Effect of MWCNT Bundle Structure on Electric Double-Layer Capacitor Performance. Electrochemical and Solid-State Letters, 2009, 12, A45.	2.2	21
42	Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Materials Research Bulletin, 2009, 44, 1871-1878.	5.2	61
43	Quantitative assessment of hysteresis in voltammetric curves ofÂelectrochemical capacitors. Adsorption, 2009, 15, 172-180.	3.0	10
44	Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 164, 106-111.	3.5	65
45	Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films, 2009, 517, 1616-1619.	1.8	128
46	Effect of mesoporosity on specific capacitance of carbons. Carbon, 2009, 47, 1598-1604.	10.3	65
47	Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels. Langmuir, 2009, 25, 11961-11968.	3.5	195
48	Empirical Analysis of the Contributions of Mesopores and Micropores to the Double-Layer Capacitance of Carbons. Journal of Physical Chemistry C, 2009, 113, 19335-19343.	3.1	70
49	Electrospun Activated Carbon Nanofibers Electrodes Based on Polymer Blends. Journal of the Electrochemical Society, 2009, 156, A489.	2.9	33
50	Electrochemical Study on Aqueous Magnesium Nitrate Electrolyte System for EDLC Applications. Electrochemistry, 2009, 77, 51-55.	1.4	16
51	Contributions of micropores and mesopores in electrode carbon to electric double layer capacitance. Tanso, 2009, 2009, 230-238.	0.1	11
52	Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochimica Acta, 2010, 55, 6830-6835.	5.2	146
53	Highly mesoporous carbonaceous material of activated carbon beads for electric double layer capacitor. Electrochimica Acta, 2010, 55, 7334-7340.	5.2	44
54	Carbon materials for electrochemical capacitors. Journal of Power Sources, 2010, 195, 7880-7903.	7.8	1,271
55	Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization. Electroanalysis, 2010, 22, 2834-2841.	2.9	94

#	Article	IF	CITATIONS
π 56	Electrochemical cell studies based on non-aqueous magnesium electrolyte for electric double layer capacitor applications. Journal of Power Sources, 2010, 195, 662-666.	7.8	24
57	Effects of carbonization temperature on microstructure and electrochemical performances of phenolic resin-based carbon spheres. Journal of Physics and Chemistry of Solids, 2010, 71, 214-218.	4.0	27
58	Activation of mesocarbon microbeads with different textures and their application for supercapacitor. Fuel Processing Technology, 2010, 91, 17-24.	7.2	42
59	Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous and Mesoporous Materials, 2010, 131, 303-309.	4.4	140
60	Carbon-coated mesoporous silica as an electrode material. Microporous and Mesoporous Materials, 2010, 132, 421-427.	4.4	28
61	Characterization of monolithic porous carbon prepared from resorcinol/formaldehyde gels with cationic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358, 13-20.	4.7	37
62	Effect of nanosize titanium oxide on electrochemical characteristics of activated carbon electrodes. Current Applied Physics, 2010, 10, 391-394.	2.4	31
64	The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT. Carbon, 2010, 48, 2478-2486.	10.3	100
65	Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochimica Acta, 2010, 55, 8539-8544.	5.2	61
66	Adsorption of K+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode. Mining Science and Technology, 2010, 20, 551-556.	0.3	3
67	A Porous Carbon Prepared by Using a Mordenite Mineral as Template and its Cyclic Voltammetry Study in H ₂ SO ₄ . Advanced Materials Research, 2010, 143-144, 749-752.	0.3	0
68	Electric Double-Layer Capacitors from Activated Carbon Derived from Black Liquor. Energy & Fuels, 2010, 24, 1889-1893.	5.1	27
69	Effect of the surface chemistry of activated carbon on its electrochemical properties in electric double layer capacitors. New Carbon Materials, 2010, 25, 248-254.	6.1	32
70	Morphology control of ordered mesoporous carbons by changing HCl concentration. Journal of Materials Chemistry, 2011, 21, 5345.	6.7	24
71	Electrosorption of different cations and anions with membrane capacitive deionization based on carbon nanotube/nanofiber electrodes and ion-exchange membranes. Desalination and Water Treatment, 2011, 30, 266-271.	1.0	22
72	Direct synthesis of flat cake-type ordered mesoporous carbon in a double surfactant system of P123/CTAB. Journal of Materials Chemistry, 2011, 21, 5576.	6.7	19
73	Preparation of mesoporous carbon microsphere/activated carbon composite for electric double-layer capacitors. New Carbon Materials, 2011, 26, 237-240.	6.1	9
74	Electrosorption Behavior of Carbon Nanotube and Carbon Nanofiber Film Electrodes. Current Physical Chemistry, 2011, 1, 16-26.	0.2	6

#	Article	IF	CITATIONS
75	Combining fluidized activated carbon with weak alternating electric fields for disinfection. Carbon, 2011, 49, 5321-5328.	10.3	12
76	The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors. Journal of Solid State Electrochemistry, 2011, 15, 787-794.	2.5	22
77	Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene. Canadian Journal of Chemical Engineering, 2011, 89, 1342-1357.	1.7	154
78	Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors. Electrochimica Acta, 2011, 56, 5369-5375.	5.2	25
79	Carbon materials with tailored porosity by self-assembly method: Influence of the synthesis conditions. Microporous and Mesoporous Materials, 2011, 143, 30-36.	4.4	8
80	A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry, 2011, 653, 40-44.	3.8	220
81	Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. Journal of Industrial and Engineering Chemistry, 2011, 17, 450-454.	5.8	64
82	Impedance response of carbon nanotube–titania electrodes dried under modified gravity. Thin Solid Films, 2011, 519, 5403-5407.	1.8	3
83	A Templated Carbon Prepared by Using a Clinoptilolite-Ca Mineral as Template and Furfuralcohol as Carbon Source: Pore Structure and Electrochemical Performance in H ₂ SO ₄ . Applied Mechanics and Materials, 0, 66-68, 764-767.	0.2	0
84	Solid-Liquid Interface. Interface Science and Technology, 2011, , 147-252.	3.3	17
85	Unusual energy enhancement in carbon-based electrochemical capacitors. Journal of Materials Chemistry, 2012, 22, 24213.	6.7	115
86	New Insights into the Relationship between Micropore Properties, Ionic Sizes, and Electric Double-Layer Capacitance in Monolithic Carbon Electrodes. Journal of Physical Chemistry C, 2012, 116, 26197-26203.	3.1	45
88	Characteristics of electric double layer in different aqueous electrolyte solutions for supercapacitors. Wuhan University Journal of Natural Sciences, 2012, 17, 200-204.	0.4	8
89	Carbonâ€Based Electrochemical Capacitors. ChemSusChem, 2012, 5, 480-499.	6.8	491
90	Improved capacitance characteristics of activated carbon-based electrodes by physicochemical base-tuning. Journal of Industrial and Engineering Chemistry, 2012, 18, 642-647.	5.8	15
91	Effects of transition metal oxides on the formation of meso-porous structures in micro-spherical activated carbon for use in electric double layer capacitors. Journal of Industrial and Engineering Chemistry, 2012, 18, 433-437.	5.8	15
92	Carbon Nanocages as Supercapacitor Electrode Materials. Advanced Materials, 2012, 24, 347-352.	21.0	508
93	Electrochemical synthesis and performance of PANI electrode material for electrochemical capacitor.	2.4	21

#	Article	IF	CITATIONS
94	Fabrication and characterization of electrochemical double layer capacitors using ionic liquid-based gel polymer electrolyte with chemically treated activated charcoal electrodes. Journal of Solid State Electrochemistry, 2013, 17, 713-726.	2.5	11
95	Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochimica Acta, 2013, 114, 617-626.	5.2	108
96	Influence of wet oxidation of herringbone carbon nanofibers on the pseudocapacitance effect. Carbon, 2013, 64, 324-333.	10.3	45
97	Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. Journal of Materials Chemistry A, 2013, 1, 12962.	10.3	42
98	Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013, 5, 72-88.	5.6	1,853
99	Electrochemical performance of supercapacitors with KOH activated mesophase carbon microbead electrodes. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 611-616.	5.3	19
101	Determination of surface area of carbon-black by simple cyclic-voltammetry measurements in aqueous H2SO4. Journal of Industrial and Engineering Chemistry, 2013, 19, 1730-1734.	5.8	10
102	Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm, 2013, 15, 5950.	2.6	60
103	Carbon Nanofibers Grafted on Activated Carbon as an Electrode in Highâ€Power Supercapacitors. ChemSusChem, 2013, 6, 1516-1522.	6.8	28
104	Preparation and characterization of high surface area activated carbons from co-pyrolysis product of coal-tar pitch and rosin. Journal of Analytical and Applied Pyrolysis, 2013, 104, 372-377.	5.5	31
105	Hierarchical mesoporous carbon materials: preparation by direct tri-constituent co-assembly and the electrochemical performance. Journal of Solid State Electrochemistry, 2013, 17, 927-935.	2.5	17
106	Composite Carbon Nano-Tubes (CNT)/Activated Carbon Electrodes for Non-Aqueous Super Capacitors Using Organic Electrolyte Solutions. Journal of the Electrochemical Society, 2013, 160, A1282-A1285.	2.9	39
107	Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: Deterministic and stochastic morphologies. Physical Review E, 2013, 88, 052303.	2.1	39
108	Optimization of Mesoporous Activated Carbon from Coconut Shells by Chemical Activation with Phosphoric Acid. BioResources, 2013, 8, .	1.0	21
109	Electrochemical role of oxygen containing functional groups on activated carbon electrode. RSC Advances, 2014, 4, 62678-62683.	3.6	17
110	New nanoporous biocarbons with iron and silicon impurities: Synthesis, properties, and application to supercapacitors. Physics of the Solid State, 2014, 56, 2021-2027.	0.6	9
111	Effect of Pore Structure of Activated Carbon on its Electrochemical Performance in Non-Aqueous Electrolyte. Advanced Materials Research, 2014, 1004-1005, 596-601.	0.3	0
112	Electro-thermal modelling of a supercapacitor and experimental validation. Journal of Power Sources, 2014, 259, 154-165.	7.8	51

#	Article	IF	CITATIONS
113	Construction of Highâ€Energyâ€Density Supercapacitors from Pineâ€Coneâ€Derived Highâ€Surfaceâ€Area Carbons. ChemSusChem, 2014, 7, 1435-1442.	6.8	126
114	Carbon Materials for Electrochemical Capacitors. , 2014, , 237-265.		9
115	Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 183, 54-60.	3.5	63
116	Coal based activated carbon nanofibers prepared by electrospinning. Journal of Materials Chemistry A, 2014, 2, 9338-9344.	10.3	122
117	High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. Journal of Power Sources, 2014, 270, 106-112.	7.8	211
118	Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12323-12329.	10.3	122
119	Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization. Journal of Colloid and Interface Science, 2014, 430, 93-99.	9.4	121
121	Application of Activated Carbons Derived from Scrap Tires as Electrode Materials for Supercapacitors. ECS Journal of Solid State Science and Technology, 2015, 4, M35-M40.	1.8	30
122	Recent Uses of Carbon Fibers. Springer Series in Materials Science, 2015, , 237-273.	0.6	0
123	Preparation of lignite-based activated carbon with high specific capacitance for electrochemical capacitors. Functional Materials Letters, 2015, 08, 1550031.	1.2	9
124	Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes. Journal of Power Sources, 2015, 276, 176-180.	7.8	23
125	Ultrahigh Performance Supercapacitor from Lacey Reduced Graphene Oxide Nanoribbons. ACS Applied Materials & Interfaces, 2015, 7, 3110-3116.	8.0	122
126	Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5158-A5178.	2.9	105
127	Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors. Energy, 2015, 90, 1490-1496.	8.8	56
128	Facile simulation of carbon with wide pore size distribution for electric double-layer capacitance based on Helmholtz models. Journal of Materials Chemistry A, 2015, 3, 16535-16543.	10.3	37
129	Hierarchically porous carbon derived from an aqueous curable composition for supercapacitors. Electrochimica Acta, 2015, 168, 300-307.	5.2	7
130	Capacitive deionization with asymmetric electrodes: Electrode capacitance vs electrode surface area. Electrochimica Acta, 2015, 176, 420-425.	5.2	21
131	Narrow-porous pitch-based carbon fibers of superior capacitance properties in aqueous electrolytes. Electrochimica Acta, 2015, 167, 348-356.	5.2	29

ARTICLE IF CITATIONS Improvement in flexibility and volumetric performance for supercapacitor application and the effect 132 10.3 32 of Niâ€"Fe ratio on electrode behaviour. Journal of Materials Chemistry A, 2015, 3, 7607-7615. Separating Faradaic and Non-Faradaic Charge Storage Contributions in Activated Carbon Electrochemical Capacitors Using Electrochemical Methods. Journal of the Electrochemical Society, 2015, 162, A1246-A1254. Micro–mesoporous carbons from rice husk as active materials for supercapacitors. Materials for 135 3.6 22 Renewable and Sustainable Energy, 2015, 4, 1. Effect of the Porous Texture of Activated Carbons on the Electrochemical Properties of Molecule-Grafted Carbon Products in Organic Media. Journal of the Electrochemical Society, 2015, 162, A2289-A2295. Macroporous carbon from human hair: A journey towards the fabrication of high energy Li-ion 137 5.2 46 capacitors. Electrochimica Acta, 2015, 182, 474-481. Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors. RSC Advances, 2015, 5, 77130-77137. 138 3.6 High-performance super capacitors based on activated anthracite with controlled porosity. Journal 139 7.8 33 of Power Sources, 2015, 275, 668-674. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance 5.2 118 performance. Electrochimica Acta, 2016, 208, 55-63. Pore size distribution control of pitch-based activated carbon for improvement of electrochemical 141 5.8 17 property. Journal of Industrial and Engineering Chemistry, 2016, 35, 341-346. Nitrogen-doped carbon nanosheets for high-performance liquid as well as solid state supercapacitor 142 3.6 cells. RSC Advances, 2016, 6, 35014-35023. A facile method to prepare reduced graphene oxide with nano-porous structure as electrode material 143 7 3.6 for high performance capacitor. RSC Advances, 2016, 6, 42435-42442. One Pot Solvothermal Synthesis of Sandwich-like Mg Al Lavered Double Hydroxide anchored Reduced Graphene Oxide: An excellent electrode material for Supercapacitor. Electrochimica Acta, 2016, 219, 5.2 214-226. Performance of single carbon granules as perspective for larger scale capacitive bioanodes. Journal 145 7.8 66 of Power Sources, 2016, 325, 690-696. Environmentally Friendly Supercapacitors., 2016, , 351-492. 146 Electrochemical performance of rod-type ordered mesoporous carbons with different rod lengths 147 6.1 3 for electric double-layer capacitors. New Carbon Materials, 2016, 31, 328-335. New insights into the early stages of thermal oxidation of carbon/carbon composites using 148 electrochemical methods. Carbon, 2016, 108, 178-189. Effect of ion charges on the electric double layer capacitance of activated carbon in aqueous 149 7.8 19 electrolyte systems. Journal of Power Sources, 2016, 336, 360-366. A three-dimensional vertically aligned carbon nanotube/polyaniline composite as a supercapacitor electrode. RSC Advances, 2016, 6, 110592-110599.

		CITATION REPORT	
#	ARTICLE	IF	CITATIONS
151	Graphene based architectures for electrochemical capacitors. Energy Storage Materials, 2016, 5, 8-32.	18.0	71
152	Hierarchically nanostructured carbon-supported manganese oxide for high-performance pseudo-capacitors. Korean Journal of Chemical Engineering, 2016, 33, 2228-2234.	2.7	18
153	Influence of structural and textural parameters of carbon nanofibers on their capacitive behavior. Journal of Materials Science, 2016, 51, 3431-3439.	3.7	29
154	Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy. ACS Applied Materials & Interfaces, 2016, 8, 3396-3406.	8.0	175
155	Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes. Nanoscale Research Letters, 2016, 11, 18.	5.7	9
156	Sustainable Low-Cost Green Electrodes with High Volumetric Capacitance for Aqueous Symmetric Supercapacitors with High Energy Density. ACS Sustainable Chemistry and Engineering, 2016, 4, 1422-1430.	6.7	116
157	Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors. RSC Advances, 2016, 6, 5949-5956.	3.6	56
158	Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors. Journal of Applied Electrochemistry, 2016, 46, 667-677.	2.9	82
159	Coal/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity. Electrochimica Acta, 2016, 194, 239-245.	5.2	59
160	Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes. Journal of Materials Chemistry A, 2016, 4, 4763-4770.	10.3	56
161	A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chemical Communications, 2016, 52, 4764-4767.	4.1	394
162	Correlation between the pore structure and electrode density of MgO-templated carbons for electric double layer capacitor applications. Journal of Power Sources, 2016, 305, 128-133.	7.8	23
163	Grapheneâ€containing ordered mesoporous carbons synthesized by oneâ€pot aqueous route and its electrochemical performance. Polymer Composites, 2017, 38, 1438-1446.	4.6	4
164	Electrochemical Supercapacitor Design, Fabrication, and Operation. , 2017, , 203-246.		0
165	Simple synthesis of highly uniform bilayer-carbon nanocages. Carbon, 2017, 115, 617-624.	10.3	20
166	Activated carbons from KOH and H 3 PO 4 -activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 2017, 229, 219-228.	5.2	221
167	Oil tea shell derived porous carbon with an extremely large specific surface area and modification with MnO2 for high-performance supercapacitor electrodes. Applied Materials Today, 2017, 7, 47-54.	4.3	39
168	Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance. Chinese Chemical Letters, 2017, 28, 935-942.	9.0	36

#	Article	IF	CITATIONS
169	Effect of carbothermal reduction on the microstructures of porous carbons from the mixture of coal-tar pitch and nano-MgO. Journal of Analytical and Applied Pyrolysis, 2017, 124, 73-78.	5.5	12
170	Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries. Materials Research Express, 2017, 4, 035501.	1.6	22
171	The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review. Journal of Materials Science: Materials in Electronics, 2017, 28, 7532-7543.	2.2	50
173	Potassium Humate-Derived Nitrogen-Doped Activated Carbons with Narrow Micropore Size Distribution for High-Performance Supercapacitors. Nano, 2017, 12, 1750040.	1.0	4
174	Facile Synthesis of Nitrogenâ€Đoped Graphene Aerogels for Electrode Materials in Supercapacitors. Chinese Journal of Chemistry, 2017, 35, 1069-1078.	4.9	8
175	An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 443-453.	4.7	68
176	Mechanically activated carbonized rayon fibers as an electrochemical supercapacitor in aqueous solutions. Electrochimica Acta, 2017, 245, 796-806.	5.2	27
177	Lignin derived activated carbon particulates as an electric supercapacitor: carbonization and activation on porous structures and microstructures. RSC Advances, 2017, 7, 30459-30468.	3.6	71
178	Charge transport in activated carbon electrodes: the behaviour of three electrolytes vis-Ã-vis their specific conductance. Ionics, 2017, 23, 2037-2044.	2.4	11
179	Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2204-2214.	10.3	183
180	In-situ growth of ultrathin Ni6MnO8 nanosheets on nickel foam as a binder-free positive electrode for asymmetric supercapacitor: Effects of alkaline aqueous and redox additive electrolytes. Journal of Molecular Liquids, 2017, 244, 269-278.	4.9	23
181	An evaluation of the reliability of the characterization of the porous structure of activated carbons based on incomplete nitrogen adsorption isotherms. Journal of Molecular Modeling, 2017, 23, 238.	1.8	6
182	Capacitance and surface of carbons in supercapacitors. Carbon, 2017, 122, 434-445.	10.3	114
183	Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Applied Catalysis B: Environmental, 2017, 203, 889-898.	20.2	172
184	Effects of Nanoporous Carbon Derived from Microalgae and Its CoO Composite on Capacitance. ACS Applied Materials & Interfaces, 2017, 9, 4362-4373.	8.0	33
185	Impedance spectroscopy of supercapacitors on the basis on modified by the ultrasound activated carbon material. , 2017, , .		1
186	Status of Biomass Derived Carbon Materials for Supercapacitor Application. International Journal of Electrochemistry, 2017, 2017, 1-14.	2.4	72
187	Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors. Electrochimica Acta, 2018, 270, 339-351.	5.2	78

#	Article	IF	CITATIONS
188	Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles. Journal of Physics and Chemistry of Solids, 2018, 117, 194-203.	4.0	56
189	An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon. Chemosphere, 2018, 206, 285-292.	8.2	100
190	A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. Journal of Alloys and Compounds, 2018, 744, 544-551.	5.5	105
191	Hierarchical graphite foil/CoNi 2 S 4 flexible electrode with superior thermal conductivity for high-performance supercapacitors. Journal of Energy Chemistry, 2018, 27, 463-471.	12.9	19
192	Porous carbon nanotube/graphene composites for high-performance supercapacitors. Chemical Physics Letters, 2018, 693, 60-65.	2.6	36
193	High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly(vinylidene fluoride) porous separator. Applied Surface Science, 2018, 443, 412-420.	6.1	33
194	Nitrogen and oxygen co-doped porous carbon for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 3340-3347.	2.2	12
195	Preparation and Characterization of Activated Carbons from Oxygen-rich Lignite for Electric Double-layer Capacitor. International Journal of Electrochemical Science, 2018, 13, 2800-2816.	1.3	19
196	Effect of biogas-slurry pyrolysis temperature on specific capacitance. Materials Today: Proceedings, 2018, 5, 10611-10620.	1.8	5
197	Textural properties dependent supercapacitive performances of mesoporous graphitic carbon nitride. Materials Today Energy, 2018, 10, 325-335.	4.7	13
198	Improving the electrochemical performance of Nano-PANI by adding manganese. Journal of Materials Science: Materials in Electronics, 2018, 29, 12366-12372.	2.2	8
199	Recent Uses of Carbon Fibers. Springer Series in Materials Science, 2018, , 241-277.	0.6	0
200	Direct electron transfer of bilirubin oxidase at a carbon flow-through electrode. Electrochimica Acta, 2018, 283, 88-96.	5.2	13
201	Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. Journal of Colloid and Interface Science, 2018, 532, 58-67.	9.4	180
202	One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors. Electrochimica Acta, 2018, 283, 655-663.	5.2	55
203	Single pot fabrication of N doped reduced GO (N-rGO) /ZnO-CuO nanocomposite as an efficient electrode material for supercapacitor application. Vacuum, 2018, 157, 145-154.	3.5	39
204	Carbon Xerogels Hydrothermally Doped with Bimetal Oxides for Oxygen Reduction Reaction. Materials, 2019, 12, 2446.	2.9	12
205	Development of low-cost technology to obtain carbon based supercapacitors. Journal of Physics: Conference Series, 2019, 1186, 012033.	0.4	Ο

#	Article	IF	CITATIONS
206	Pulverized Graphite by Ball Milling for Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2019, 166, A2471-A2476.	2.9	5
207	Micro-Mesoporous Carbon Materials Prepared from the Hogweed (Heracleum) Stalks as Electrode Materials for Supercapacitors. Russian Journal of Electrochemistry, 2019, 55, 265-271.	0.9	8
208	Hierarchical porous carbon with optimized mesopore structure and nitrogen doping for supercapacitor electrodes. Microporous and Mesoporous Materials, 2019, 288, 109576.	4.4	38
209	N/O co-enriched amorphous carbon coated graphene with a sandwiched porous architecture as supercapacitor electrodes with high volumetric specific capacitance. Journal of Materials Science: Materials in Electronics, 2019, 30, 20265-20275.	2.2	6
210	Mechanisms of the performance fading of carbon-based electrochemical capacitors operating in a LiNO3 electrolyte. Journal of Power Sources, 2019, 438, 227029.	7.8	27
211	Preparation and Activation of Corn Straw-Based Carbon and Its Application in Supercapacitors. International Journal of Electrochemical Science, 2019, 14, 7608-7622.	1.3	1
212	Characterization of Pores and Fractures in Soft Coal from the No. 5 Soft Coalbed in the Chenghe Mining Area. Processes, 2019, 7, 13.	2.8	9
213	Preparation of porous carbons by templating method using Mg hydroxide for supercapacitors. Microporous and Mesoporous Materials, 2019, 287, 101-106.	4.4	13
214	The granular capacitive moving bed reactor for the scale up of bioanodes. Journal of Chemical Technology and Biotechnology, 2019, 94, 2738-2748.	3.2	16
215	Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. Journal of Power Sources, 2019, 435, 126514.	7.8	25
216	"lon sliding―on graphene: a novel concept to boost supercapacitor performance. Nanoscale Horizons, 2019, 4, 1077-1091.	8.0	22
217	Boron Nitride based Ternary Nanocomposites with Different Carbonaceous Materials Decorated by Polyaniline for Supercapacitor Application. ChemistrySelect, 2019, 4, 3672-3680.	1.5	29
218	Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.	2.5	43
219	Void-bearing electrodes with microporous activated carbon for electric double-layer capacitors. Journal of Electroanalytical Chemistry, 2019, 833, 33-38.	3.8	9
220	Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. Journal of Power Sources, 2019, 414, 13-23.	7.8	58
221	A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019, 101, 123-145.	16.4	1,049
222	Hierarchical structure N, O-co-doped porous carbon/carbon nanotube composite derived from coal for supercapacitors and CO ₂ capture. Nanoscale Advances, 2020, 2, 878-887.	4.6	40
223	Facile fabrication of mesoporous carbon from mixed polymer precursor of PVDF and PTFE for high-power supercapacitors. Carbon, 2020, 159, 283-291.	10.3	29

#	Article	IF	CITATIONS
224	Appropriate amount of polyaniline coated Co3O4 nanofibers and their excellent electrochemical properties. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113836.	2.7	10
225	Areca nut–derived porous carbons for supercapacitor and CO2 capture applications. Ionics, 2020, 26, 1419-1429.	2.4	10
226	Manganous nitrate -assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes. Journal of Power Sources, 2020, 449, 227506.	7.8	60
227	Novel interconnected hierarchical porous carbon electrodes derived from bio-waste of corn husk for supercapacitor applications. Journal of Electroanalytical Chemistry, 2020, 878, 114674.	3.8	29
228	Ultra-high rate capability of nanoporous carbon network@V ₂ O ₅ sub-micron brick composite as a novel cathode material for asymmetric supercapacitors. Nanoscale, 2020, 12, 23213-23224.	5.6	12
229	Imidazolate Framework (Zn-Ni(MeIm)2) Nanohybrids as Electrodes for Supercapacitor Applications. International Journal of Electrochemical Science, 2020, 15, 8277-8283.	1.3	1
230	¹⁹ F <i>Ex Situ</i> Solid-State NMR Study on Structural Differences in Pores of Activated Carbon Series Derived from Chemical and Physical Activation Processes for EDLCs. Journal of Physical Chemistry C, 2020, 124, 12457-12465.	3.1	6
231	Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems. Renewable Energy, 2020, 157, 782-792.	8.9	29
232	PTFE/rGO Aerogels with Both Superhydrophobic and Superhydrophilic Properties for Electroreduction of Molecular Oxygen. Energy & amp; Fuels, 2020, 34, 7573-7581.	5.1	10
233	Synthesis of O-doped coal-based carbon electrode materials by ultrasound-assisted bimetallic activation for application in supercapacitors. Applied Surface Science, 2020, 529, 147074.	6.1	36
234	Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors. Journal of Materials Research and Technology, 2020, 9, 3261-3271.	5.8	60
235	Novel hierarchical porous carbon prepared by a one-step template route for electric double layer capacitors and Li–Se battery devices. Journal of Materials Chemistry A, 2020, 8, 4376-4385.	10.3	25
236	Multi-Scale Model for Describing the Effect of Pore Structure on Carbon-Based Electric Double Layer. Journal of Physical Chemistry C, 2020, 124, 3952-3961.	3.1	20
237	EDLC Characteristics of Carbon Materials Prepared from Coal Extract. Electrochemistry, 2020, 88, 119-126.	1.4	6
238	Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials. Carbon Letters, 2021, 31, 57-65.	5.9	20
239	Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Microporous and Mesoporous Materials, 2021, 310, 110646.	4.4	10
240	Carbon Related Materials. , 2021, , .		5
241	Building next-generation supercapacitors with battery type Ni(OH) ₂ . Journal of Materials Chemistry A, 2021, 9, 15542-15585.	10.3	74

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
242	Link between Alkali Metals in Salt Templates and in Electrolytes for Improved Carbon-Based Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 2584-2599.	8.0	20
243	Comparative Studies of Solutions of Homogeneous Electrochemical Capacitors Models. Journal of Energy Storage, 2021, 35, 102221.	8.1	1
244	Thermally Stabilized Soot for Supercapacitors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000617.	1.8	2
245	Oxygen-rich hierarchical porous carbon derived from biomass waste-kapok flower for supercapacitor electrode. Diamond and Related Materials, 2021, 113, 108267.	3.9	88
246	High-performance nanostructured bio-based carbon electrodes for energy storage applications. Cellulose, 2021, 28, 5169-5218.	4.9	15
247	Electrochemical Supercapacitors (a Review). Russian Journal of Electrochemistry, 2021, 57, 311-347.	0.9	40
248	Effects of FeCl ₃ Catalytic Hydrothermal Carbonization on Chemical Activation of Corn Wet Distillers' Fiber. ACS Omega, 2021, 6, 14875-14886.	3.5	15
249	Preparation of carbon electrodes from alkaline extraction of lignite for double-layer capacitors. Ionics, 2021, 27, 3605-3614.	2.4	7
250	Hierarchical flaky porous carbon derived from waste polyimide film for highâ€performance aqueous supercapacitor electrodes. International Journal of Energy Research, 2022, 46, 370-382.	4.5	27
251	Recovering renewable carbon materials from automotive shredder residue (ASR) for micro-supercapacitor electrodes. Journal of Cleaner Production, 2021, 304, 127131.	9.3	16
252	Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. ACS Nano, 2021, 15, 11724-11733.	14.6	24
253	Enhancing capacitor lifetime by alternate constant polarization. Journal of Power Sources, 2021, 506, 230131.	7.8	7
254	Carbon-based slurry electrodes for energy storage and power supply systems. Energy Storage Materials, 2021, 40, 461-489.	18.0	36
255	Nitrogen-doped hollow carbon spheres from bio-inspired dopamine: Hexamethylenetetramine-induced polymerization, morphology control and supercapacitor performance. Journal of Electroanalytical Chemistry, 2021, 900, 115735.	3.8	10
256	Synthesis of tremella-like porous carbon with oxygen-containing functional groups for high-performance supercapacitor. Diamond and Related Materials, 2020, 108, 107995.	3.9	11
257	Carbide-Derived Carbons and Templated Carbons. Advanced Materials and Technologies, 2009, , 77-113.	0.4	3
258	Bi2O3 with Reduced Graphene Oxide Composite as a Supercapacitor Electrode. International Journal of Electrochemical Science, 2018, 13, 12256-12265.	1.3	19
259	Supramolecular Design of Carbons for Energy Storage with the Reactanse-Sensor Functional Hybridity. East European Journal of Physics, 2018, , .	0.8	3

#	Article	IF	CITATIONS
260	Electrochemical Behaviors of PAN/Ag-based Carbon Nanofibers by Electrospinning. Bulletin of the Korean Chemical Society, 2008, 29, 777-781.	1.9	24
261	Correlation between the capacitor performance and pore structure. Tanso, 2006, 2006, 31-39.	0.1	7
262	Preparation of porous carbons from cypress using super-heated steam. III. Performance in electric double layer capacitor. Tanso, 2008, 2008, 8-12.	0.1	2
263	The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode. Korean Chemical Engineering Research, 2011, 49, 10-14.	0.2	4
264	Effect of Surface Area of Ultramicro-, Micro-, and Mesopores on Electric Double-Layer Capacitance of Ordered Mesoporous Carbons. Journal of Chemical Engineering of Japan, 2011, 44, 518-523.	0.6	1
265	Preparation and Capacitive Performance of Mesoporous Carbon with Short Time CO2 Activation. Electrochemistry, 2014, 82, 1067-1071.	1.4	1
266	Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors. Korean Journal of Materials Research, 2017, 27, 617-623.	0.2	3
267	The influence of ultrasonic modification on structure of activated carbon and characteristics of supercapacitors on its basis. Functional Materials, 2018, 25, 110-115.	0.1	0
268	The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors. Mathematical Modeling and Computing, 2018, 5, 147-157.	1.0	0
269	Carbon Materials as Electrodes of Electrochemical Double-Layer Capacitors: Textural and Electrochemical Characterization. , 2021, , 149-185.		0
270	Using O2 in air to modify N-doped carbon nanosheets for the generation of high-performance supercapacitor. Applied Surface Science, 2022, 575, 151787.	6.1	7
271	Synthesis and characterisation of heteroatom-doped reduced graphene oxide/bismuth oxide nanocomposites and their application as photoanodes in DSSCs. RSC Advances, 2022, 12, 2462-2472.	3.6	10
272	Porous carbons for energy storage and conversion. , 2022, , 239-540.		1
273	Al-MOF-derived spindle-like hierarchical porous activated carbon for advanced supercapacitors. Dalton Transactions, 2022, 51, 2538-2546.	3.3	7
274	Enzymatic Hydrolysis Lignin-Derived Porous Carbons through Ammonia Activation: Activation Mechanism and Charge Storage Mechanism. ACS Applied Materials & Interfaces, 2022, 14, 5425-5438.	8.0	51
275	Rational Design of Freestanding and High-Performance Thick Electrode from Carbon Foam Modified with Polypyrrole/Polydopamine for Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
276	Electrochemical and physical properties of pulverized graphite for use in electric double layer capacitors. , 2022, 1, 50-58.		0
277	High frequency response of adenine-derived carbon in aqueous electrochemical capacitor. Electrochimica Acta, 2022, 424, 140649.	5.2	1

#	Article	IF	CITATIONS
278	Fibrous asymmetric supercapacitor based on wet spun MXene/PAN Fiber-derived multichannel porous MXene/CF negatrode and NiCo2S4 electrodeposited MXene/CF positrode. Chemical Engineering Journal, 2022, 449, 137732.	12.7	44
279	Electrochemical performance of Palmyra palm shell activated carbon prepared by carbonization followed by microwave reflux treatment. Materials Research Express, 2022, 9, 065603.	1.6	4
280	Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chemical Engineering Journal, 2022, 447, 137562.	12.7	28
281	Ultrafast supercapacitors based on boron-doped Ketjen black and aqueous electrolytes. Applied Surface Science, 2022, 600, 154181.	6.1	5
282	Enhanced supercapacitor performance of Camellia oleifera shell derived hierarchical porous carbon by carbon quantum dots. Journal of Energy Storage, 2022, 55, 105573.	8.1	21
283	Molten Salt Self-Template Synthesis Strategy of Oxygen-Rich Porous Carbon Cathodes for Zinc Ion Hybrid Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 43431-43441.	8.0	21
284	A review on the advances in electrochemical capacitive charge storage in transition metal oxide electrodes for pseudocapacitors. International Journal of Energy Research, 2022, 46, 21757-21796.	4.5	14
285	Effect of the Porous Structure on the Electrochemical Characteristics of Supercapacitor with Nanocomposite Electrodes Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel. Russian Journal of Electrochemistry, 2022, 58, 730-740.	0.9	3
286	Black phosphorous/palladium functionalized carbon aerogel nanocomposite for highly efficient ethanol electrooxidation. RSC Advances, 2022, 12, 31225-31234.	3.6	3
287	Controlled synthesis of highly active bifunctional electrocatalysts for overall water splitting using coal-based activated carbons. Journal of Materials Chemistry A, 0, , .	10.3	10
288	Green synthesis of flower shape ZnO-GO nanocomposite through optimized discharge parameter and its efficiency in energy storage device. Environmental Research, 2023, 218, 115021.	7.5	4
289	Optimizing the Micro/Mesoporous Structure of Hierarchical Porous Carbon Synthesized from Petroleum Pitch Using the Solvent-Free Method for Ultra-Fast Capacitive Deionization. ACS Omega, 2022, 7, 47610-47618.	3.5	3
290	Dual-functionally modified N/S doped hierarchical porous carbon and glycerol-engineered polyacrylonitrile carbon nanofibers combine for high-performance lithium-ion capacitors. Journal of Power Sources, 2023, 558, 232624.	7.8	4
291	Supercapacitive microbial fuel cells. , 2023, , 213-223.		0
292	Insights into the Charge Storage Mechanism of Binder-Free Electrochemical Capacitors in Ionic Liquid Electrolytes. Industrial & Engineering Chemistry Research, 2023, 62, 4388-4398.	3.7	2
293	The Effect of Structure of Porous Components of Electrochemical Devices on Their Characteristics (A Review). Russian Journal of Electrochemistry, 2023, 59, 347-418.	0.9	1
294	Synthesized sea urchin morphology of copper incorporated hollandite manganese dioxide for energy storage applications. Journal of Alloys and Compounds, 2023, 962, 171036.	5.5	0
295	Influence of cavitational and non-cavitational ultrasonic treatment on the structure and electrochemical properties of nanoporous wood activated carbon. Applied Nanoscience (Switzerland), 0, , .	3.1	0

#	Article	IF	CITATIONS
296	Carbon Nanostructures with the Ultra-High Surface Area and Porosity Derived from Biomass. Green Energy and Technology, 2023, , 99-125.	0.6	0
297	High Specific Surface Area Rice Hull Based Porous Carbon Prepared for EDLCs. International Journal of Electrochemical Science, 2012, 7, 4889-4897.	1.3	34
298	Transforming Chimney Soot via Stochastic Polymerization for Active Electrode Coating. Coatings, 2023, 13, 1354.	2.6	1
299	Graphene/Metal Oxide-Based Nanocomposite for Electrochemical Sensors. Progress in Optical Science and Photonics, 2023, , 331-370.	0.5	0
300	Investigations of Activated Carbon from Different Natural Sources for Preparation of Binder-Free Few-Walled CNTs/Activated Carbon Electrodes. Journal of Composites Science, 2023, 7, 452.	3.0	0