Porosity of 3D biomaterial scaffolds and osteogenesis

Biomaterials 26, 5474-5491 DOI: 10.1016/j.biomaterials.2005.02.002

Citation Report

#	Article	IF	CITATIONS
1	Development of materials for regenerative medicine: from clinical need to clinical application. , 2013, , 155-176.		1
2	Porous PLGA microparticles: Al-700, an intravenously administered ultrasound contrast agent for use in echocardiography. Journal of Controlled Release, 2005, 108, 21-32.	4.8	106
3	Alginate/calcium phosphate scaffolds with oriented, tube-like pores. Materialwissenschaft Und Werkstofftechnik, 2005, 36, 761-767.	0.5	38
4	Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine, 2005, 16, 1121-1124.	1.7	418
5	Processing Windows for Forming Silk Fibroin Biomaterials into a 3D Porous Matrix. Australian Journal of Chemistry, 2005, 58, 716.	0.5	47
6	Requirements for the Manufacturing of Scaffold Biomaterial With Features at Multiple Scales. , 2005, , 217.		0
7	Bone Graft Substitutes: Osteobiologics. Clinics in Podiatric Medicine and Surgery, 2005, 22, 619-630.	0.2	33
8	Effect of Scaffold Design on Bone MorphologyIn Vitro. Tissue Engineering, 2006, 12, 3417-3429.	4.9	126
9	Chapter 1 Scope of Tissue Engineering. Interface Science and Technology, 2006, , 1-89.	1.6	3
10	Fabrication and Characterization of Poly(Propylene Fumarate) Scaffolds with Controlled Pore Structures Using 3-Dimensional Printing and Injection Molding. Tissue Engineering, 2006, 12, 2801-2811.	4.9	127
11	Mineralized Scaffolds for Hard Tissue Engineering by Ionotropic Gelation of Alginate. Advances in Science and Technology, 2006, 49, 159-164.	0.2	15
12	Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules, 2006, 7, 2796-2805.	2.6	855
13	Bioceramics for Tissue Engineering Applications ââ,¬â€œ A Review. American Journal of Biochemistry and Biotechnology, 2006, 2, 49-56.	0.1	117
14	A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Biomedical Materials (Bristol), 2006, 1, 188-192.	1.7	27
15	Effects of Sintering Temperature Over 1,300.DEG.C. on the Physical and Compositional Properties of Porous Hydroxyapatite Foam. Dental Materials Journal, 2006, 25, 51-58.	0.8	53
16	Enhanced extracellular matrix production and differentiation of human embryonic germ cell derivatives in biodegradable poly(Îμ-caprolactone-co-ethyl ethylene phosphate) scaffold. Acta Biomaterialia, 2006, 2, 365-376.	4.1	5
17	Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27, 1728-1734.	5.7	3,782
18	Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue	5.7	3,317

#	Article	IF	Citations
19	In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials, 2006, 27, 5186-5198.	5.7	252
20	Fabrication of hydroxyapatite ultra-thin layer on gold surface and its application for quartz crystal microbalance technique. Biomaterials, 2006, 27, 5748-5754.	5.7	86
21	Controlled synthesis and properties of degradable 3D porous lactic acid-based poly(ester–amide). Polymer, 2006, 47, 474-479.	1.8	4
22	Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Medical Image Analysis, 2006, 10, 693-712.	7.0	255
23	Influence of scaffold meso-scale features on bone tissue response. Journal of Materials Science, 2006, 41, 5113-5121.	1.7	6
24	Electrospraying: an in-situ polymerisation route for fabricating high macroporous scaffolds. Journal of Sol-Gel Science and Technology, 2006, 38, 293-302.	1.1	16
25	Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges. Annals of Biomedical Engineering, 2006, 34, 1799-1819.	1.3	273
26	Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 2006, 27, 2651-2670.	5.7	1,195
27	Enhancement of tissue engineered bone formation by a low pressure system improving cell seeding and medium perfusion into a porous scaffold. Biomaterials, 2006, 27, 2738-2746.	5.7	51
28	Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials, 2006, 27, 3230-3237.	5.7	451
29	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	5.7	411
30	Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Medical and Biological Engineering and Computing, 2006, 44, 517-525.	1.6	72
31	To engineer is to create: the link between engineering and regeneration. Trends in Biotechnology, 2006, 24, 4-8.	4.9	119
32	Osteoinduction by biomaterials—Physicochemical and structural influences. Journal of Biomedical Materials Research - Part A, 2006, 77A, 747-762.	2.1	264
33	Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 388-397.	1.6	41
34	Polyester Scaffolds with Bimodal Pore Size Distribution for Tissue Engineering. Macromolecular Bioscience, 2006, 6, 425-434.	2.1	50
35	Coupling Mechanical Competence and Bioresorbability in Bioglass®-Derived Tissue Engineering Scaffolds. Advanced Engineering Materials, 2006, 8, 285-289.	1.6	31
36	Effects of material morphology and processing conditions on the characteristics of hydroxyapatite and high-density polyethylene biocomposites by selective laser sintering. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2006, 220, 125-137.	0.7	10

		ATION REPORT	
#	Article	IF	Citations
37	Chapter 4 Challenges in Tissue Engineering. Interface Science and Technology, 2006, 8, 423-462.	1.6	2
38	Fabrication and evaluation of calcium phosphate cement scaffold with controlled internal channel architecture and complex shape. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2007, 221, 951-958.	1.0	9
40	Porous Thermoresponsive-co-Biodegradable Hydrogels as Tissue-Engineering Scaffolds for 3-Dimensional In Vitro Culture of Chondrocytes. Tissue Engineering, 2007, 13, 2645-2652.	4.9	38
41	Three-Dimensional Scaffolds. , 2007, , 359-373.		16
42	Myocardial Restoration and Tissue Engineering of Heart Structures. Methods in Molecular Medicine, 2007, 140, 273-290.	0.8	5
43	Stochastic Modeling of Tissue Engineering Scaffolds with Varying Porosity Levels. Computer-Aided Design and Applications, 2007, 4, 661-670.	0.4	18
44	Evaluation of Bone Ingrowth in Free Form Fabricated Scaffolds. Key Engineering Materials, 2007, 361-363, 919-922.	0.4	0
45	Repair of osteochondral defects with a new porous synthetic polymer scaffold. Journal of Bone and Joint Surgery: British Volume, 2007, 89-B, 258-264.	3.4	42
46	Apatite Foam Fabrication Based on Hydrothermal Reaction of α-Tricalcium Phosphate Foam. Key Engineering Materials, 2007, 361-363, 319-322.	0.4	6
47	Development of In Situ-Formed Interconnected Porous Scaffolds with Low Porosity. Key Engineering Materials, 2008, 361-363, 415-418.	0.4	0
48	Elastic Ceramic-Polymer Scaffold with Interconnected Pore Structure: Preparation and In Vitro Reactivity. Key Engineering Materials, 2007, 361-363, 395-398.	0.4	3
49	Distribution of Seeded Mesenchymal Stem Cells on Hydroxyapatite Porous Ceramics. Key Engineering Materials, 2007, 330-332, 1141-1144.	0.4	1
50	Development of a Bioactive Inorganic/Organic Composite for Bone Formation Active Drug Carrier. Key Engineering Materials, 2007, 330-332, 1049-1052.	0.4	0
51	Fabrication of porous bioactive structures using the selective laser sintering technique. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2007, 221, 873-886.	1.0	41
52	Control of β-Tricalcium Phosphate Formation in Macroporous Phosphate Glass-Ceramic Composites. Materials Transactions, 2007, 48, 313-316.	0.4	4
53	Porous Biodegradable Polymeric Scaffolds for Tissue Engineering. Kobunshi, 2007, 56, 83-83.	0.0	0
54	Bone Graft Substitutes in Sports Medicine. Sports Medicine and Arthroscopy Review, 2007, 15, 158-16	56. 1.0	5
55	Porous biphasic scaffolds and coatings for biomedical applications via morphology transition of nanorods. Nanotechnology, 2007, 18, 475604.	1.3	12

	Cr	CITATION REPORT	
# 56	ARTICLE Evolution of Tibial Fixation in Total Knee Arthroplasty. Journal of Arthroplasty, 2007, 22, 25-29.	IF 1.5	Citations 94
58	Preparation and Characterization of Biodegradable β-TCP-Based Composite Microspheres as Bone Tis Engineering Scaffolds. Key Engineering Materials, 2007, 336-338, 1646-1649.	sue 0.4	2
59	Green synthesis of a temperature sensitive hydrogel. Green Chemistry, 2007, 9, 75-79.	4.6	50
60	Fabrication of PDMS Scaffold with Controlled Configurations. , 2007, , .		0
61	Functional scaffolds of bicontinuous, thermoresponsive L3-phase silica/hydroxyapatite nanocomposites. Journal of Materials Chemistry, 2007, 17, 238-242.	6.7	12
62	Biodegradable Fumarate-Based PolyHIPEs as Tissue Engineering Scaffolds. Biomacromolecules, 2007, 3806-3814.	8, 2.6	142
63	Systematic Investigation of Porogen Size and Content on Scaffold Morphometric Parameters and Properties. Biomacromolecules, 2007, 8, 1511-1518.	2.6	45
64	Phase Behavior and Rheological Properties of Polyamine-Rich Complexes for Direct-Write Assembly. Langmuir, 2007, 23, 12752-12759.	1.6	18
65	Three-Dimensional Mesoporousâ^Giantporous Inorganic/Organic Composite Scaffolds for Tissue Engineering. Chemistry of Materials, 2007, 19, 6363-6366.	3.2	69
66	Poly(propylene fumarate) Bone Tissue Engineering Scaffold Fabrication Using Stereolithography: Effects of Resin Formulations and Laser Parameters. Biomacromolecules, 2007, 8, 1077-1084.	2.6	261
67	X-ray computed micro tomography as complementary method for the characterization of activated porous ceramic preforms. Journal of Materials Research, 2007, 22, 1414-1424.	1.2	12
68	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	1.5	969
69	Characterization of selective laser-sintered hydroxyapatite-based biocomposite structures for bone replacement. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463, 1857-1869.	1.0	20
71	Influência do tempo de indução nas propriedades de hidroxiapatita porosa obtida por gelcasting c espumas. Ceramica, 2007, 53, 429-435.	le 0.3	4
72	Preparation of hybrid biomaterials for bone tissue engineering. Materials Research, 2007, 10, 21-26.	0.6	41
74	Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-β1 delivery for cartilage tissue engineering. Chinese Medical Journal, 2007, 120, 197-29	93. 0.9	25
75	Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions. Biotechnology and Bioengineering, 2007, 97, 952-961.	1.7	37
76	The effect of fabrication methods on the mechanical and thermal properties of poly(lactide-co-glycolide) scaffolds. Journal of Applied Polymer Science, 2007, 104, 944-949.	1.3	7

#	Article	IF	CITATIONS
77	Design and preparation of μâ€bimodal porous scaffold for tissue engineering. Journal of Applied Polymer Science, 2007, 106, 3335-3342.	1.3	33
78	Electrospun threeâ€dimensional silk fibroin nanofibrous scaffold. Journal of Applied Polymer Science, 2007, 106, 3922-3928.	1.3	119
79	Direct Printing of Bioceramic Implants with Spatially Localized Angiogenic Factors. Advanced Materials, 2007, 19, 795-800.	11.1	132
80	Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. Journal of Biomedical Materials Research - Part A, 2007, 81A, 888-899.	2.1	172
81	Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. Journal of Biomedical Materials Research - Part A, 2007, 83A, 80-87.	2.1	64
82	Enhanced osteoblast-like cell adhesion and proliferation using sulfonate-bearing polymeric scaffolds. Journal of Biomedical Materials Research - Part A, 2007, 83A, 990-998.	2.1	18
83	Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 448-455.	1.6	49
84	Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 260-266.	1.6	60
85	Preparation of porous collagen/hyaluronic acid hybrid scaffolds for biomimetic functionalization through biochemical binding affinity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 506-518.	1.6	23
86	Investigation as to the osteoinductivity of macroporous calcium phosphate cement in goats. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 161-168.	1.6	42
87	Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia, 2007, 3, 997-1006.	4.1	384
88	Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. Acta Biomaterialia, 2007, 3, 785-793.	4.1	63
89	Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: A longitudinal study in a segmental bone defect model of rabbit. Acta Biomaterialia, 2007, 3, 985-996.	4.1	57
90	Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomaterialia, 2007, 3, 1007-1018.	4.1	411
91	Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials, 2007, 28, 1152-1162.	5.7	335
92	Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices. Biomaterials, 2007, 28, 984-993.	5.7	98
93	Analysis of progenitor cell–scaffold combinations by in vivo non-invasive photonic imaging. Biomaterials, 2007, 28, 2718-2728.	5.7	28
94	The performance of a bone-derived scaffold material in the repair of critical bone defects in a rhesus monkey model. Biomaterials, 2007, 28, 3314-3324.	5.7	42

#	Article	IF	CITATIONS
95	Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials, 2007, 28, 4078-4090.	5.7	287
96	A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue. Biomaterials, 2007, 28, 5093-5099.	5.7	232
97	Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials, 2007, 28, 5544-5554.	5.7	313
98	Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials, 2007, 28, 814-824.	5.7	193
99	State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 245-260.	1.3	835
100	Osteochondral defects: present situation and tissue engineering approaches. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 261-273.	1.3	209
101	Computed tomographyâ€based tissueâ€engineered scaffolds in craniomaxillofacial surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2007, 3, 207-216.	1.2	105
102	Scaffolds for Hard Tissue Engineering by Ionotropic Gelation of Alginate?Influence of Selected Preparation Parameters. Journal of the American Ceramic Society, 2007, 90, 1703-1708.	1.9	51
103	Unidirectionally oriented hydroxyapatite/collagen composite fabricated by using a high magnetic field. Materials Letters, 2007, 61, 1567-1571.	1.3	23
104	Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine, 2007, 2, 861-874.	1.7	103
105	Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59, 234-248.	6.6	505
106	Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 2007, 18, 1263-1277.	1.7	447
107	Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2007, 18, 201-209.	1.7	143
108	Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. Journal of Materials Science: Materials in Medicine, 2007, 18, 2319-2329.	1.7	38
109	Development of glass–ceramic scaffolds for bone tissue engineering: Characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia, 2007, 3, 199-208.	4.1	203
110	Apatite coating on anionic and native collagen films by an alternate soaking process. Acta Biomaterialia, 2007, 3, 773-778.	4.1	53
111	Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials, 2007, 28, 1036-1047.	5.7	337
112	Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials, 2007, 28, 2491-2504.	5.7	370

#	Article	IF	CITATIONS
113	In vivo biocompatibility and mechanical properties of porous zein scaffolds. Biomaterials, 2007, 28, 3952-3964.	5.7	106
114	A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomaterialia, 2008, 4, 173-181.	4.1	67
115	Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(Îμ-caprolactone) fabricated via co-extrusion and gas foaming. Acta Biomaterialia, 2008, 4, 1187-1197.	4.1	51
116	Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 2008, 29, 3625-3635.	5.7	310
117	The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials, 2008, 29, 3799-3806.	5.7	190
118	Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials, 2008, 29, 4091-4099.	5.7	157
119	Biocompatible glass–ceramic materials for bone substitution. Journal of Materials Science: Materials in Medicine, 2008, 19, 471-478.	1.7	81
120	Biocompatibility of highly macroporous ceramic scaffolds: cell adhesion and morphology studies. Journal of Materials Science: Materials in Medicine, 2008, 19, 855-859.	1.7	50
121	Effect of thin carbonate-containing apatite (CA) coating of titanium fiber mesh on trabecular bone response. Journal of Materials Science: Materials in Medicine, 2008, 19, 2087-2096.	1.7	25
122	Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells. Journal of Materials Science: Materials in Medicine, 2008, 19, 965-974.	1.7	25
123	InÂvivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs. Journal of Materials Science: Materials in Medicine, 2008, 19, 1565-1573.	1.7	41
124	Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA. Journal of Materials Science, 2008, 43, 510-524.	1.7	35
125	Implantable photonic crystal for reflection-based optical sensing of biodegradation. Journal of Materials Science, 2008, 43, 1890-1896.	1.7	11
126	Supercritical CO2 processing of polymers for the production of materials with applications in tissue engineering and drug delivery. Journal of Materials Science, 2008, 43, 1939-1947.	1.7	38
127	Simple methods to fabricate Bioglass®-derived glass–ceramic scaffolds exhibiting porosity gradient. Journal of Materials Science, 2008, 43, 4127-4134.	1.7	71
128	Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. Jom, 2008, 60, 38-45.	0.9	104
129	Porous ceramic scaffolds with complex architectures. Jom, 2008, 60, 54-58.	0.9	55
130	Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Bulletin of Materials Science, 2008, 31, 343-351.	0.8	94

#	Article	IF	CITATIONS
131	A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomechanics and Modeling in Mechanobiology, 2008, 7, 355-366.	1.4	84
132	Porous 3â€D scaffolds from regenerated <i>Antheraea pernyi</i> silk fibroin. Polymers for Advanced Technologies, 2008, 19, 207-212.	1.6	40
133	Comparative in vivo study of six hydroxyapatiteâ€based bone graft substitutes. Journal of Orthopaedic Research, 2008, 26, 1363-1370.	1.2	196
134	Openâ€Pore Biodegradable Foams Prepared via Gas Foaming and Microparticulate Templating. Macromolecular Bioscience, 2008, 8, 655-664.	2.1	73
135	Surface Functionalization of Porous Resorbable Scaffolds by Covalent Grafting. Macromolecular Bioscience, 2008, 8, 645-654.	2.1	16
136	Bone growth in rapid prototyped porous titanium implants. Journal of Biomedical Materials Research - Part A, 2008, 85A, 664-673.	2.1	101
137	Rapidâ€prototyped and saltâ€leached PLGA scaffolds condition cell morphoâ€functional behavior. Journal of Biomedical Materials Research - Part A, 2008, 85A, 466-476.	2.1	39
138	Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2008, 85A, 777-786.	2.1	189
139	Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. Journal of Biomedical Materials Research - Part A, 2008, 85A, 218-227.	2.1	246
140	Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatiteâ€filled polymeric composites. Journal of Biomedical Materials Research - Part A, 2008, 86A, 607-616.	2.1	44
141	Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds. Journal of Biomedical Materials Research - Part A, 2008, 86A, 1002-1011.	2.1	60
142	Effect of dynamic 3â€D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2009, 89A, 96-107.	2.1	138
143	New objective measurement to characterize the porosity of textile implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 176-183.	1.6	66
144	A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 573-582.	1.6	261
145	Solvent/nonâ€solvent sintering: A novel route to create porous microsphere scaffolds for tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 396-406.	1.6	80
146	Mechanical and flow characterization of Sponceram® carriers: Evaluation by homogenization theory and experimental validation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 42-48.	1.6	32
147	Customizing the degradation and loadâ€bearing profile of 3D polycaprolactoneâ€tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 562-569.	1.6	29
148	Investigation of particleâ€functionalized tissue engineering scaffolds using Xâ€ray tomographic microscopy. Biotechnology and Bioengineering, 2008, 100, 820-829.	1.7	6

#	Article	IF	CITATIONS
149	Progress and Challenge for Magnesium Alloys as Biomaterials. Advanced Engineering Materials, 2008, 10, B3.	1.6	564
150	A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions. Journal of Biomechanics, 2008, 41, 1436-1449.	0.9	40
151	Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Materials Science and Engineering C, 2008, 28, 1462-1466.	3.8	158
152	Biomaterials in cardiac tissue engineering: Ten years of research survey. Materials Science and Engineering Reports, 2008, 59, 1-37.	14.8	315
153	Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Materials Science and Engineering Reports, 2008, 59, 38-71.	14.8	220
154	Engineering functionally graded tissue engineering scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 140-152.	1.5	290
155	Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. Journal of the European Ceramic Society, 2008, 28, 159-167.	2.8	48
156	Preparation of bioactive porous HA/PCL composite scaffolds. Applied Surface Science, 2008, 255, 2942-2946.	3.1	96
157	Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials, 2008, 29, 2907-2914.	5.7	408
158	Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 2008, 29, 3105-3116.	5.7	100
159	Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials, 2008, 29, 4195-4204.	5.7	190
160	Micro–macro numerical modelling of bone regeneration in tissue engineering. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3092-3107.	3.4	60
161	A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement. CAD Computer Aided Design, 2008, 40, 1040-1050.	1.4	67
162	Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties. Acta Biomaterialia, 2008, 4, 17-25.	4.1	104
163	Controlling poly(β-amino ester) network properties through macromer branching. Acta Biomaterialia, 2008, 4, 207-217.	4.1	41
164	Characterization of mineralized collagen–glycosaminoglycan scaffolds for bone regeneration. Acta Biomaterialia, 2008, 4, 490-503.	4.1	73
165	Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4, 1297-1306.	4.1	148
166	Porosity and pore size of Î ² -tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: An in vitro and in vivo study. Acta Biomaterialia, 2008, 4, 1904-1915.	4.1	291

# 167	ARTICLE Sintering behaviour of 45S5 bioactive glass. Acta Biomaterialia, 2008, 4, 1894-1903.	lF 4.1	Citations 139
168	Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomaterialia, 2008, 4, 1715-1724.	4.1	72
169	Supercritical CO2 antisolvent precipitation of polymer networks of I-PLA, PMMA and PMMA/PCL blends for biomedical applications. European Polymer Journal, 2008, 44, 1081-1094.	2.6	37
170	3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chemical Engineering Journal, 2008, 137, 129-136.	6.6	113
171	Development of composite tissue scaffolds containing naturally sourced mircoporous hydroxyapatite. Chemical Engineering Journal, 2008, 139, 398-407.	6.6	40
172	β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials, 2008, 29, 266-271.	5.7	176
173	Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008, 29, 944-953.	5.7	311
174	Effect of hydrogel porosity on marrow stromal cell phenotypic expression. Biomaterials, 2008, 29, 2193-2202.	5.7	91
175	Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions. Carbohydrate Polymers, 2008, 74, 99-105.	5.1	70
176	Trabecular scaffolds created using micro CT guided fused deposition modeling. Materials Science and Engineering C, 2008, 28, 171-178.	3.8	107
177	Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. Materials Science and Engineering C, 2008, 28, 141-149.	3.8	38
178	Multilayer micromolding of degradable polymer tissue engineering scaffolds. Materials Science and Engineering C, 2008, 28, 353-358.	3.8	42
179	An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. International Journal of Pharmaceutics, 2008, 353, 74-87.	2.6	59
180	Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science, 2008, 308, 1-34.	4.1	401
181	Preparation, Characterization and Biocompatibility Study of the Scaffold Prototype Derived from Cross-Linked Poly[(Îμ-caprolactone)-co-lactide] for Tissue Engineering Materials. Polymer Journal, 2008, 40, 806-812.	1.3	11
182	Biodegradation and Cytocompatibility Studies of a Triphasic Ceramicâ€Coated Porous Hydroxyapatite for Bone Substitute Applications. International Journal of Applied Ceramic Technology, 2008, 5, 11-19.	1.1	12
183	Microhydrogelâ€Mediated Synthesis of Sintered Hydroxyapatite Granules. International Journal of Applied Ceramic Technology, 2008, 5, 458-463.	1.1	2
184	Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontology 2000, 2008, 47, 172-192.	6.3	157

	CITATIO	CITATION REPORT	
# 185	ARTICLE Hierarchical Trimodal Porous Hydroxyapatite Fabricated by Colloidal Crystal Templating Using Singleâ€Size Latex Particles, Journal of the American Ceramic Society, 2008, 91, 3749-3752	IF 1.9	CITATIONS
186	Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement. Materials Letters, 2008, 62, 3428-3430.	1.3	51
187	Preparation of 3D cubic ordered mesoporous bioactive glasses. Solid State Sciences, 2008, 10, 1083-1092.	1.5	30
188	Vascularization in tissue engineering. Trends in Biotechnology, 2008, 26, 434-441.	4.9	1,032
189	Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel. Chemical Reviews, 2008, 108, 4754-4783.	23.0	934
190	Engineered Scaffold Architecture Influences Soft Tissue Regeneration. , 2008, , 67-78.		0
191	Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chemistry, 2008, 10, 965.	4.6	153
192	Biomechanics and mechanobiology in osteochondral tissues. Regenerative Medicine, 2008, 3, 743-759.	0.8	49
194	Poly(lactic-co-glycolic acid) Bone Scaffolds with Inverted Colloidal Crystal Geometry. Tissue Engineering - Part A, 2008, 14, 1639-1649.	1.6	45
195	<i>Bombyx mori</i> Silk Fibroin Membranes as Potential Substrata for Epithelial Constructs Used in the Management of Ocular Surface Disorders. Tissue Engineering - Part A, 2008, 14, 1203-1211.	1.6	130
196	Bridging the regeneration gap: Stem cells, biomaterials and clinical translation in bone tissue engineering. Archives of Biochemistry and Biophysics, 2008, 473, 124-131.	1.4	161
197	Experimental confirmation of potential swept source optical coherence tomography performance limitations. Applied Optics, 2008, 47, 6151.	2.1	22
198	Bilayered Scaffolds for Osteochondral Tissue Engineering. Tissue Engineering - Part B: Reviews, 2008, 14, 447-464.	2.5	116
199	Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Engineering - Part B: Reviews, 2008, 14, 61-86.	2.5	895
200	Coating Electrospun Poly(ε-caprolactone) Fibers with Gelatin and Calcium Phosphate and Their Use as Biomimetic Scaffolds for Bone Tissue Engineering. Langmuir, 2008, 24, 14145-14150.	1.6	226
201	Collagen I Gel Can Facilitate Homogenous Bone Formation of Adipose-Derived Stem Cells in PLGA-β-TCP Scaffold. Cells Tissues Organs, 2008, 187, 89-102.	1.3	50
202	Templating Route for Mesostructured Calcium Phosphates with Carboxylic Acid- and Amine-Type Surfactants. Langmuir, 2008, 24, 13113-13120.	1.6	19
203	Colloid-Templated Multisectional Porous Polymeric Fibers. Langmuir, 2008, 24, 10616-10620.	1.6	10

ARTICLE IF CITATIONS # Manufacture of degradable polymeric scaffolds for bone regeneration. Biomedical Materials 204 1.7 67 (Bristol), 2008, 3, 022001. Bone Regeneration at Cortical Bone Defect with Unidirectional Porous Hydroxyapatite <i>In Vivo</i>. 0.4 Key Engineering Materials, 2008, 396-398, 11-14. Image-based characterization of foamed polymeric tissue scaffolds. Biomedical Materials (Bristol), 206 1.7 35 2008, 3, 015011. Vascularization strategies in tissue engineering., 2008, , 761-780. Influence of Scaffold Stiffness on Subchondral Bone and Subsequent Cartilage Regeneration in an Ovine Model of Osteochondral Defect Healing. American Journal of Sports Medicine, 2008, 36, 208 1.9 78 2379-2391. Bone Formation on the Apatite-coated Zirconia Porous Scaffolds within a Rabbit Calvarial Defect. 209 1.2 Journal of Biomaterials Applications, 2008, 22, 485-504. 210 Bioresorbable ceramics., 2008, , 95-114. 10 Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy. Tissue 1.6 Engineering - Part A, 2008, 14, 1037-1048. Accurately Shaped Tooth Bud Cell–Derived Mineralized Tissue Formation on Silk Scaffolds. Tissue 213 1.6 74 Engineering - Part A, 2008, 14, 549-557. Improved Biomaterials for Tissue Engineering Applications: Surface Modification of Polymers. Current 214 1.0 184 Topics in Medicinal Chemistry, 2008, 8, 341-353 Chitosan-based scaffolds in orthopedic applications., 2008, , 357-373. 215 10 <i>In Vitro</i> and <i>In Vivo </i>Behaviour of a Ceramic with Interconnected 0.4 Macroporosity. Key Engineering Materials, 0, 396-398, 19-22. Preparation of Porous Glass Scaffolds by Salt Sintering Technique. Materials Science Forum, 2008, 217 0.3 1 587-588, 52-56. Construction of Exterior Features for Tissue Engineering Scaffold with Defect Bone. Key Engineering 0.4 Materials, 0, 392-394, 289-293. A Layered Ultra-Porous Scaffold for Tissue Engineering, Created via a Hydrospinning Method. Tissue 219 1.1 74 Engineering - Part C: Methods, 2008, 14, 281-288. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 87-98. Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue 221 170 2.5Engineering. Tissue Engineering - Part B: Reviews, 2008, 14, 341-366. Bioactive Materials and Scaffolds for Tissue Engineering., 2008, , 142-151.

#	Article	IF	CITATIONS
224	Fabrication of Si-substituted hydroxyapatite foam using calcium silicates. Journal of the Ceramic Society of Japan, 2008, 116, 88-91.	0.5	8
226	Histomorphometric evaluation of bone healing with fully interconnected microporous biphasic calcium phosphate ceramics in rabbit calvarial defects. The Journal of the Korean Academy of Periodontology, 2008, 38, 117.	0.1	2
227	Direct laser deposited titanium with controlled porosity for bone tissue engineering. , 2008, , .		1
228	Scaffold Stiffness Influences Cell Behavior: Opportunities for Skeletal Tissue Engineering. The Open Orthopaedics Journal, 2008, 2, 103-109.	0.1	170
229	Histogenesis in Three-Dimensional Scaffolds. , 2008, , 686-703.		4
231	A method and model for deposition of Ti-6Al-4V with controlled porosity. , 2009, , .		4
232	Biodegradable Polymers in Bone Tissue Engineering. Materials, 2009, 2, 833-856.	1.3	98
233	Controlling sol-gel polymerization by solvent selection to create tissue engineering scaffolds. , 2009, , .		0
234	A Comparative Study of Shear Stresses in Collagen-Glycosaminoglycan and Calcium Phosphate Scaffolds in Bone Tissue-Engineering Bioreactors. Tissue Engineering - Part A, 2009, 15, 1141-1149.	1.6	77
235	The Influence of Hydroxyapatite Particles on In Vitro Degradation Behavior of Poly É≻-Caprolactone–Based Composite Scaffolds. Tissue Engineering - Part A, 2009, 15, 3655-3668.	1.6	45
236	The Osteochondral Junction and Its Repair via Bi-Phasic Tissue Engineering Scaffolds. Tissue Engineering - Part B: Reviews, 2009, 15, 55-73.	2.5	102
237	Dose Effect of Dual Delivery of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein-2 on Bone Regeneration in a Rat Critical-Size Defect Model. Tissue Engineering - Part A, 2009, 15, 2347-2362.	1.6	231
238	Proliferation and Differentiation of Human Osteoblasts within 3D printed Poly-Lactic-co-Glycolic Acid Scaffolds. Journal of Biomaterials Applications, 2009, 23, 533-547.	1.2	62
239	Strategies in Regenerative Medicine. , 2009, , .		14
240	Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications. International Journal of Biomaterials, 2009, 2009, 1-9.	1.1	87
241	Multi-Channelled Collagen–Calcium Phosphate Scaffolds: Their Physical Properties and Human Cell Response. Tissue Engineering - Part C: Methods, 2009, 15, 265-273.	1.1	17
242	Bioceramics. , 2008, , .		52
243	Natural Bone Collagen Scaffold Combined with Autologous Enriched Bone Marrow Cells for Induction of Osteogenesis in an Ovine Spinal Fusion Model. Tissue Engineering - Part A, 2009, 15, 3547-3558.	1.6	19

#	Article	IF	CITATIONS
244	The Effect of Microstructure of Octacalcium Phosphate on the Bone Regenerative Property. Tissue Engineering - Part A, 2009, 15, 1965-1973.	1.6	73
245	High-solid-content hydroxyapatite slurry for the production of bone substitute scaffolds. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009, 223, 727-737.	1.0	15
246	Advanced computer-aided design for bone tissue-engineering scaffolds. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009, 223, 289-301.	1.0	13
247	Microassembly of Artificial Crystals by Inter-Particle Laser Welding and Optical Characterization. Materials Science Forum, 0, 631-632, 525-530.	0.3	0
248	Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/ <i>β</i> -tricalcium phosphate ratios. Advances in Applied Ceramics, 2009, 108, 494-500.	0.6	26
249	Preparation and characterisation of porous calcium phosphate bone cement as antibiotic carrier. Advances in Applied Ceramics, 2009, 108, 231-240.	0.6	21
250	Preparation and Characteristics of Gradient Silk Fibroin/Hydroxyapatite Porous Composites. Materials Science Forum, 0, 610-613, 1231-1236.	0.3	1
251	Preparation of Porous Titanium by a Novel Foaming Process and MG63 Cell Behavior <i>In Vitro</i> . Materials Science Forum, 0, 610-613, 1155-1159.	0.3	1
252	Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering. Materials Research Bulletin, 2009, 44, 1275-1279.	2.7	35
253	Fabrication of highly porous titanium (Ti) scaffolds with two interlaced periodic pores. Materials Letters, 2009, 63, 1341-1343.	1.3	5
254	Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template. Materials Letters, 2009, 63, 1702-1704.	1.3	61
255	Fabrication of porous titanium implants with biomechanical compatibility. Materials Letters, 2009, 63, 2659-2661.	1.3	85
256	Different Calcium Phosphate Granules for 3â€D Printing of Bone Tissue Engineering Scaffolds. Advanced Engineering Materials, 2009, 11, B41.	1.6	69
257	In vivo Performance of Osteoactivated Celluloseâ€Based Scaffolds in Bony Critical‣ize Defects. Advanced Engineering Materials, 2009, 11, B89.	1.6	4
258	Interaction of Osteoblasts with Macroporous Scaffolds Made of PLLA/PCL Blends Modified with Collagen and Hydroxyapatite. Advanced Engineering Materials, 2009, 11, B83.	1.6	17
259	Imaging of Cellâ€ŧoâ€Material Interfaces by SEM after in situ Focused Ion Beam Milling on Flat Surfaces and Complex 3Dâ€Fibrous Structures. Advanced Engineering Materials, 2009, 11, B182.	1.6	13
260	Chitosanâ€Based Inverse Opals: Threeâ€Dimensional Scaffolds with Uniform Pore Structures for Cell Culture. Advanced Materials, 2009, 21, 2997-3001.	11.1	168
261	Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic―electroless coprecipitation route. Journal of Biomedical Materials Research - Part A, 2009, 88A, 470-480.	2.1	45

#	Article	IF	CITATIONS
262	Fabrication of lowâ€crystallinity hydroxyapatite foam based on the setting reaction of αâ€tricalcium phosphate foam. Journal of Biomedical Materials Research - Part A, 2009, 88A, 628-633.	2.1	36
263	The boneâ€derived collagen containing mineralized matrix for the loading of collagenâ€binding bone morphogenetic proteinâ€2. Journal of Biomedical Materials Research - Part A, 2009, 88A, 725-734.	2.1	21
264	Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblastâ€like MG 63 cells. Journal of Biomedical Materials Research - Part A, 2009, 89A, 432-443.	2.1	57
265	Osteoblast response to continuous phase macroporous scaffolds under static and dynamic culture conditions. Journal of Biomedical Materials Research - Part A, 2009, 89A, 317-325.	2.1	17
266	<i>In vivo</i> study on hydroxyapatite scaffolds with trabecular architecture for bone repair. Journal of Biomedical Materials Research - Part A, 2009, 89A, 1019-1027.	2.1	68
267	Human osteoclast formation and activity on a xenogenous bone mineral. Journal of Biomedical Materials Research - Part A, 2009, 90A, 238-246.	2.1	38
268	Surface functionalization of bioactive glasses. Journal of Biomedical Materials Research - Part A, 2009, 90A, 981-992.	2.1	85
269	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	2.1	73
270	Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramicâ€coated hydroxyapatite scaffold. Journal of Biomedical Materials Research - Part A, 2009, 91A, 855-865.	2.1	27
271	<i>In vitro</i> biocompatibility of hydroxyapatiteâ€reinforced polymeric composites manufactured by selective laser sintering. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1018-1027.	2.1	55
272	Biofunctionalization of dispenseâ€plotted hydroxyapatite scaffolds with peptides: Quantification and cellular response. Journal of Biomedical Materials Research - Part A, 2010, 92A, 493-503.	2.1	8
273	A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering <i>in vivo</i> . I. Preparation and characterization of scaffold. Journal of Biomedical Materials Research - Part A, 2010, 93A, 920-929.	2.1	15
274	Functionally graded βâ€TCP/PCL nanocomposite scaffolds: <i>In vitro</i> evaluation with human fetal osteoblast cells for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1007-1018.	2.1	27
275	Novel templateâ€casting technique for fabricating βâ€ŧricalcium phosphate scaffolds with high interconnectivity and mechanical strength and <i>in vitro</i> cell responses. Journal of Biomedical Materials Research - Part A, 2010, 92A, 997-1006.	2.1	39
276	Development of tissueâ€engineered substitutes of the ear ossicles: PORPâ€shaped poly(propylene) Tj ETQq0 0 0 Materials Research - Part A, 2010, 92A, 1343-1356.	rgBT /Ove 2.1	rlock 10 Tf 5 22
277	Macroporous photocrosslinked elastomer scaffolds containing microposity: Preparation and <i>in vitro</i> degradation properties. Journal of Biomedical Materials Research - Part A, 2010, 93A, 211-218.	2.1	11
278	Spiralâ€structured, nanofibrous, 3D scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 753-762.	2.1	65
279	Cephalexinâ€loaded injectable macroporous calcium phosphate bone cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 342-352.	1.6	37

#	Article	IF	CITATIONS
280	Development of a biomimetic collagenâ€hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 584-591.	1.6	173
281	Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 886-893.	1.6	19
282	Porcine gelatin microsphere/calcium phosphate cement composites: An <i>in vitro</i> degradation study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 555-561.	1.6	35
283	Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 831-838.	1.6	69
284	Targeted mechanical properties for optimal fluid motion inside artificial bone substitutes. Journal of Orthopaedic Research, 2009, 27, 1082-1087.	1.2	9
285	From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. Journal of Pharmaceutical Sciences, 2009, 98, 1317-1375.	1.6	151
286	A novel method for the determination of cell infiltration into nanofiber scaffolds using image analysis for tissue engineering applications. Journal of Applied Polymer Science, 2009, 111, 317-322.	1.3	15
287	Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta Biomaterialia, 2009, 5, 636-643.	4.1	73
288	The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials, 2009, 30, 1440-1451.	5.7	297
289	The engineering of patient-specific, anatomically shaped, digits. Biomaterials, 2009, 30, 2735-2740.	5.7	45
290	Optimization of a natural collagen scaffold to aid cell–matrix penetration for urologic tissue engineering. Biomaterials, 2009, 30, 3865-3873.	5.7	107
291	Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials, 2009, 30, 5086-5093.	5.7	101
292	Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Colloids and Surfaces B: Biointerfaces, 2009, 74, 159-166.	2.5	61
293	TiO2 foams with poly-(d,l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds. Journal of Materials Science, 2009, 44, 1442-1448.	1.7	24
294	Effect of polyurethane composition and the fabrication process on scaffold properties. Journal of Materials Science, 2009, 44, 1469-1476.	1.7	26
295	Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study. Journal of Materials Science: Materials in Medicine, 2009, 20, 235-247.	1.7	154
296	Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 529-535.	1.7	20
297	A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone–tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 2009, 20, 1273-1280.	1.7	50

#	Article	IF	CITATIONS
298	Design of porous polymeric scaffolds by gas foaming of heterogeneous blends. Journal of Materials Science: Materials in Medicine, 2009, 20, 2043-2051.	1.7	112
299	Bioglass®-based scaffolds with carbon nanotube coating for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2009, 20, 2139-2144.	1.7	38
300	Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2009, 20, 2189-2195.	1.7	40
301	Preparation of porous chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles via mineralization. Science Bulletin, 2009, 54, 3127-3136.	1.7	2
303	The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. International Orthopaedics, 2009, 33, 821-828.	0.9	58
304	<i>In vitro</i> biocompatibility of 45S5 Bioglass [®] -derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 139-148.	1.3	76
305	Comparative chondrogenesis of human cell sources in 3D scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 348-360.	1.3	116
306	Improving pore interconnectivity in polymeric scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 470-476.	1.3	41
307	Chitosan-based hydrogels do not induce angiogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 309-315.	1.3	22
308	In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives. Head & Face Medicine, 2009, 5, 23.	0.8	11
309	Pore characteristics of bone substitute materials assessed by microcomputed tomography. Clinical Oral Implants Research, 2009, 20, 67-74.	1.9	36
310	Bone repair and augmentation using block of sintered bovineâ€derived anorganic bone graft in cranial bone defect model. Clinical Oral Implants Research, 2009, 20, 340-350.	1.9	34
311	Pasteâ€like inorganic bone matrix: preclinical testing of a prototype preparation in the porcine calvaria. Clinical Oral Implants Research, 2009, 20, 1099-1104.	1.9	9
312	In Vivo Osteogenic Capability of Human Mesenchymal Cells Cultured on Hydroxyapatite and on βâ€Tricalcium Phosphate. Artificial Organs, 2009, 33, 474-481.	1.0	64
313	A novel method for producing tissue engineering scaffolds from chitin, chitin–hydroxyapatite, and cellulose. Materials Science and Engineering C, 2009, 29, 159-164.	3.8	41
314	Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Materials Science and Engineering C, 2009, 29, 1510-1514.	3.8	109
315	Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Materials Science and Engineering C, 2009, 29, 1635-1642.	3.8	188
316	Development of macroporous calcium phosphate scaffold processed via microwave rapid drying. Materials Science and Engineering C, 2009, 29, 1732-1740.	3.8	8

		CITATION REPORT		
#	Article		IF	CITATIONS
317	Chitin and carbon aerogels from chitin alcogels. Carbohydrate Polymers, 2009, 76, 535	-540.	5.1	67
318	Loadable TiO2 scaffolds—A correlation study between processing parameters, micro mechanical strength. Journal of the European Ceramic Society, 2009, 29, 2773-2781.	CT analysis and	2.8	45
319	Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectronic Engineering, 2009, 86, 1465-1467.		1.1	100
320	Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering Biomechanics, 2009, 42, 257-260.	g. Journal of	0.9	117
321	Influence of a novel calcium-phosphate coating on the mechanical properties of highly collagen scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Ma 2, 138-146.	porous terials, 2009,	1.5	65
322	Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone co scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 627-635	mposite 5.	1.5	69
323	Establishment of a three-dimensional culture and mechanical loading system for skelet Cell Biology International, 2009, 33, 192-198.	al myoblasts.	1.4	12
324	In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-g hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials, 2009, 30, 58-70.	ycolide) and	5.7	245
325	The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanopart Biomaterials, 2009, 30, 804-813.	cles.	5.7	131
326	Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growtl delivery in tissue engineering. Biomaterials, 2009, 30, 2571-2581.	n factor	5.7	100
327	The effect of dual frequency cyclic compression on matrix deposition by osteoblast-like in 3D scaffolds and on modulation of VEGF variant expression. Biomaterials, 2009, 30,	cells grown 3279-3288.	5.7	46
328	Multifunctional protein-encapsulated polycaprolactone scaffolds: Fabrication and in vit assessment for tissue engineering. Biomaterials, 2009, 30, 4336-4347.	ro	5.7	45
329	Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for engineering. Biomaterials, 2009, 30, 4513-4521.	bone tissue	5.7	117
330	Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue en Biomaterials, 2009, 30, 5068-5076.	gineering.	5.7	133
331	On scaffold designing for bone regeneration: A computational multiscale approach. Ac Biomaterialia, 2009, 5, 219-229.	ta	4.1	183
332	Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds phosphate cement for bone tissue engineering. Acta Biomaterialia, 2009, 5, 268-278.	from calcium	4.1	159
333	Quantitative analysis of the effect of porosity on the fatigue strength of bone cement. Biomaterialia, 2009, 5, 719-726.	Acta	4.1	50
334	Gradient collagen/nanohydroxyapatite composite scaffold: Development and character Biomaterialia, 2009, 5, 661-669.	ization. Acta	4.1	104

#	Article	IF	CITATIONS
335	Engineered μ-bimodal poly(ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation. Acta Biomaterialia, 2009, 5, 1082-1093.	4.1	49
336	Micro-CT studies on 3-D bioactive glass–ceramic scaffolds for bone regeneration. Acta Biomaterialia, 2009, 5, 1328-1337.	4.1	79
337	Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process. Acta Biomaterialia, 2009, 5, 1094-1103.	4.1	34
338	Density–property relationships in mineralized collagen–glycosaminoglycan scaffolds. Acta Biomaterialia, 2009, 5, 1006-1018.	4.1	20
339	In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomaterialia, 2009, 5, 1775-1784.	4.1	115
340	Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma. Acta Biomaterialia, 2009, 5, 1742-1755.	4.1	63
341	Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomaterialia, 2009, 5, 2579-2590.	4.1	48
342	The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair. Acta Biomaterialia, 2009, 5, 2680-2692.	4.1	157
343	Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Acta Biomaterialia, 2009, 5, 2847-2859.	4.1	56
344	Cells and biomaterials in cartilage tissue engineering. Regenerative Medicine, 2009, 4, 81-98.	0.8	115
345	Fourier X-ray Scattering Radiography Yields Bone Structural Information. Radiology, 2009, 251, 910-918.	3.6	119
346	Degradation of synthetic polymeric scaffolds for bone and cartilage tissue repairs. Soft Matter, 2009, 5, 938.	1.2	78
347	Assessing Surface Area Evolution during Biomimetic Growth of Hydroxyapatite Coatings. Langmuir, 2009, 25, 1292-1295.	1.6	30
348	Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone, 2009, 44, 822-829.	1.4	87
349	Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Seminars in Cell and Developmental Biology, 2009, 20, 646-655.	2.3	247
350	Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters, 2009, 63, 1995-1998.	1.3	51
351	Defining Design Targets for Tissue Engineering Scaffolds. , 2009, , 521-537.		10

#	Article	IF	CITATIONS
353	Stem cell bioprocessing: fundamentals and principles. Journal of the Royal Society Interface, 2009, 6, 209-232.	1.5	160
354	Three-Dimensional Porous Biodegradable Polymeric Scaffolds Fabricated with Biodegradable Hydrogel Porogens. Tissue Engineering - Part C: Methods, 2009, 15, 583-594.	1.1	75
355	Rapid Prototyping: Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering. Tissue Engineering - Part C: Methods, 2009, 15, 115-124.	1.1	248
357	Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells. Science and Technology of Advanced Materials, 2009, 10, 025003.	2.8	51
358	Construction of 3D biological matrices using rapid prototyping technology. Rapid Prototyping Journal, 2009, 15, 204-210.	1.6	71
359	Biomaterials for Tissue Engineering of Hard Tissues. , 2009, , 1-42.		4
360	Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine, 2009, 4, 65-82.	1.7	86
361	Robotics and Automation in Regenerative Medicine for Musculoskeletal Applications. , 2009, , .		0
362	Amino acid containing amorphous calcium phosphates and the rapid transformation into apatite. Journal of Materials Chemistry, 2009, 19, 4906.	6.7	51
363	Opportunities for nanotechnology-enabled bioactive bone implants. Journal of Materials Chemistry, 2009, 19, 2653.	6.7	79
364	Properties of a porous Ti—6Al—4V implant with a low stiffness for biomedical application. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009, 223, 173-178.	1.0	35
365	Design of Bone Scaffolds Structures for Rapid Prototyping with Increased Strength and Osteoconductivity. Advanced Materials Research, 0, 83-86, 914-922.	0.3	12
366	A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. Journal of Materials Chemistry, 2009, 19, 8817.	6.7	94
367	POLYMERIC NANOMATERIALS IN BIOMINERALIZATION. International Journal of Nanoscience, 2009, 08, 473-481.	0.4	0
368	Hydroxyapatite-Coated Polycaprolacton Wide Mesh as a Model of Open Structure for Bone Regeneration. Tissue Engineering - Part A, 2009, 15, 155-163.	1.6	18
369	Bone Graft Substitutes in the Treatment of Distal Radius and Upper Limb Injuries. Operative Techniques in Orthopaedics, 2009, 19, 77-87.	0.2	3
370	Porous titanium implants fabricated by metal injection molding. Transactions of Nonferrous Metals Society of China, 2009, 19, 1174-1179.	1.7	89
371	Octacalcium Phosphate–Precipitated Alginate Scaffold for Bone Regeneration. Tissue Engineering - Part A, 2009, 15, 3525-3535.	1.6	68

#	Article	IF	CITATIONS
372	Fullerene C60 films of continuous and micropatterned morphology as substrates for adhesion and growth of bone cells. Diamond and Related Materials, 2009, 18, 578-586.	1.8	30
373	Osteoinductive gel in cementless hip joint replacement: a randomized prospective study. Current Orthopaedic Practice, 2009, 20, 655-659.	0.1	2
374	SiO2-CaO-P2O5 sol-gel-derived glass coating on porous .BETAtricalcium phosphate ceramics. Journal of the Ceramic Society of Japan, 2009, 117, 1120-1125.	0.5	2
375	Stem cells and tissue scaffolds for bone repair. , 2009, , 291-312.		0
376	A mathematical approach to bone tissue engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 2055-2078.	1.6	40
377	Measurement of Flow Characteristics and Oxygen Metabolism of Plate Type Bioreactor for in vitro High-Density Cell Culture(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 864-870.	0.2	0
378	Design and preparation of chitosan/HA composite scaffolds for tissue engineering with long-bone-like structure. International Journal of Materials and Product Technology, 2010, 37, 271.	0.1	2
379	Development of bone substitute materials: from â€~biocompatible' to â€~instructive'. Journal of Materials Chemistry, 2010, 20, 8747.	6.7	116
380	Polymeric Membranes from Colloidal Templates with Tunable Morphology. Macromolecular Reaction Engineering, 2010, 4, 445-452.	0.9	5
381	Pore distribution and material properties of bone cement cured at different temperatures. Acta Biomaterialia, 2010, 6, 886-891.	4.1	22
382	Aqueous impregnation of porous β-tricalcium phosphate scaffolds. Acta Biomaterialia, 2010, 6, 2760-2772.	4.1	46
383	Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Acta Biomaterialia, 2010, 6, 3004-3012.	4.1	50
384	Light-sensitive intelligent drug delivery systems of coumarin-modified mesoporous bioactive glass. Acta Biomaterialia, 2010, 6, 3256-3263.	4.1	86
385	Towards ultraporous poly(l-lactide) scaffolds from quaternary immiscible polymer blends. Biomaterials, 2010, 31, 5719-5728.	5.7	41
386	Synthesis of silicate glass/poly(l-lactide) composite scaffolds by freeze-extraction technique: Characterization and in vitro bioactivity evaluation. Ceramics International, 2010, 36, 995-1009.	2.3	42
387	Potassium based bioactive glass for bone tissue engineering. Ceramics International, 2010, 36, 2449-2453.	2.3	49
388	Highly porous polycaprolactone-45S5 BioglassÂ $^{\odot}$ scaffolds for bone tissue engineering. Composites Science and Technology, 2010, 70, 1869-1878.	3.8	90
389	Hybrid composite scaffolds prepared by sol–gel method for bone regeneration. Composites Science and Technology, 2010, 70, 1861-1868.	3.8	70

#	Article	IF	CITATIONS
391	Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses. Jom, 2010, 62, 71-75.	0.9	31
392	Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. Journal of Materials Science: Materials in Medicine, 2010, 21, 207-214.	1.7	49
393	Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang). Journal of Materials Science: Materials in Medicine, 2010, 21, 131-137.	1.7	26
394	Spray-spinning: a novel method for making alginate/chitosan fibrous scaffold. Journal of Materials Science: Materials in Medicine, 2010, 21, 497-506.	1.7	8
395	Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results. Journal of Materials Science: Materials in Medicine, 2010, 21, 1005-1011.	1.7	28
396	Hydroxyapatite bone substitutes developed via replication of natural marine sponges. Journal of Materials Science: Materials in Medicine, 2010, 21, 2255-2261.	1.7	56
397	Design of novel 3D gene activated PEG scaffolds with ordered pore structure. Journal of Materials Science: Materials in Medicine, 2010, 21, 1013-1020.	1.7	16
398	Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods. Journal of Materials Science: Materials in Medicine, 2010, 21, 1109-1120.	1.7	62
399	Bioglass as a carrier for reindeer bone protein extract in the healing of rat femur defect. Journal of Materials Science: Materials in Medicine, 2010, 21, 1677-1684.	1.7	10
400	Thermal preparation of highly porous calcium phosphate bone filler derived from marine algae. Journal of Materials Science: Materials in Medicine, 2010, 21, 2281-2286.	1.7	12
401	Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 2371-2383.	1.7	43
402	Determination of antibacterial properties and cytocompatibility of silver-loaded coral hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2010, 21, 2453-2462.	1.7	29
403	Ultra-porous titanium oxide scaffold with high compressive strength. Journal of Materials Science: Materials in Medicine, 2010, 21, 2783-2792.	1.7	69
404	Scaffold percolative efficiency: in vitro evaluation of the structural criterion for electrospun mats. Journal of Materials Science: Materials in Medicine, 2010, 21, 2989-2998.	1.7	15
405	Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. Journal of Materials Science: Materials in Medicine, 2010, 21, 3039-3048.	1.7	48
406	Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique. Journal of Materials Science: Materials in Medicine, 2010, 21, 3103-3107.	1.7	25
407	Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. Journal of Materials Science: Materials in Medicine, 2010, 21, 3119-3127.	1.7	81
408	Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. Journal of Materials Science: Materials in Medicine, 2010, 21, 3195-3205.	1.7	77

#	Article	IF	CITATIONS
409	Permeability of porous gelcast scaffolds for bone tissue engineering. Journal of Porous Materials, 2010, 17, 615-627.	1.3	58
410	Shell Scaffolds: A new approach towards high strength bioceramic scaffolds for bone regeneration. Materials Letters, 2010, 64, 203-206.	1.3	35
411	Role of macropore size in the mechanical properties and in vitro degradation of porous calcium phosphate cements. Materials Letters, 2010, 64, 2028-2031.	1.3	18
412	Improving the strength and biocompatibility of porous titanium scaffolds by creating elongated pores coated with a bioactive, nanoporous TiO2 layer. Materials Letters, 2010, 64, 2526-2529.	1.3	26
413	<i>In vivo</i> performance of selective electron beamâ€melted Tiâ€6Alâ€4V structures. Journal of Biomedical Materials Research - Part A, 2010, 92A, 56-62.	2.1	154
414	The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an <i>in vivo</i> model. Journal of Biomedical Materials Research - Part A, 2010, 92A, 359-368.	2.1	212
415	Novel poly(<scp>L</scp> â€lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	2.1	35
416	Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1312-1320.	2.1	96
417	Identification of osteoconductive and biodegradable polymers from a combinatorial polymer library. Journal of Biomedical Materials Research - Part A, 2010, 93A, 807-816.	2.1	12
418	Topographical analyses of proliferation and differentiation of osteoblasts in micro―and macropores of apatiteâ€fiber scaffold. Journal of Biomedical Materials Research - Part A, 2010, 94A, 937-944.	2.1	15
419	Fabrication and <i>in vitro</i> and <i>in vivo</i> cell infiltration study of a bilayered cryogenic electrospun poly(<scp>D,L</scp> â€lactide) scaffold. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1141-1149.	2.1	36
420	Primary human osteoblast culture on 3D porous collagenâ€hydroxyapatite scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1244-1250.	2.1	14
421	Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.	2.1	41
422	Bone marrow stromal cells cultured on poly (lactideâ€ <i>co</i> â€glycolide)/nanoâ€hydroxyapatite composites with chemical immobilization of Argâ€Glyâ€Asp peptide and preliminary bone regeneration of mandibular defect thereof. Journal of Biomedical Materials Research - Part A, 2010, 95A, 993-1003.	2.1	35
423	Enhancement of bone formation by BMPâ€7 transduced MSCs on biomimetic nanoâ€hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. Journal of Biomedical Materials Research - Part A, 2010, 95A, 973-981.	2.1	64
424	Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes—Comparison with human bone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 409-419.	1.6	109
425	Ceramic scaffolds produced by computerâ€assisted 3D printing and sintering: Characterization and biocompatibility investigations. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 212-217.	1.6	96
426	Bone repair by cellâ€seeded 3Dâ€bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphateâ€chitosanâ€collagen hydrogel or PLGA in ovine criticalâ€sized calvarial defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 520	1.6	64

#	Article	IF	CITATIONS
427	Novel threeâ€dimensional scaffolds of poly(<scp>L</scp> â€lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 150-160.	1.6	78
428	Characterization and cytocompatibility of biphasic calcium phosphate/polyamide 6 scaffolds for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 330-338.	1.6	21
429	In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptideâ€Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering. Advanced Functional Materials, 2010, 20, 2794-2806.	7.8	55
430	Porous Structures: In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering (Adv. Funct. Mater. 17/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	7.8	27
431	A rotating bed system bioreactor enables cultivation of primary osteoblasts on well haracterized sponceram® regarding structural and flow properties. Biotechnology Progress, 2010, 26, 671-678.	1.3	11
432	Preparation, characterization, and <i>in vitro</i> application of composite films based on gelatin and collagen from natural resources. Journal of Applied Polymer Science, 2010, 116, 2083-2094.	1.3	2
433	Preparation and properties of αâ€chitinâ€whiskerâ€reinforced hyaluronan–gelatin nanocomposite scaffolds. Journal of Applied Polymer Science, 2010, 117, 3406-3418.	1.3	27
434	Plateletâ€rich plasma on calcium phosphate granules promotes metaphyseal bone healing in miniâ€pigs. Journal of Orthopaedic Research, 2010, 28, 1448-1455.	1.2	44
435	Vascularization in Bone Tissue Engineering: Physiology, Current Strategies, Major Hurdles and Future Challenges. Macromolecular Bioscience, 2010, 10, 12-27.	2.1	370
436	Reinforcing Silk Scaffolds with Silk Particles. Macromolecular Bioscience, 2010, 10, 599-611.	2.1	109
437	Improved mechanical properties of hydroxyapatite/poly(É›-caprolactone) scaffolds by surface modification of hydroxyapatite. Applied Surface Science, 2010, 256, 6107-6112.	3.1	70
438	Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35, 403-440.	11.8	788
439	Osteogenesis of human stem cells in silk biomaterial for regenerative therapy. Progress in Polymer Science, 2010, 35, 1116-1127.	11.8	41
440	Mechanical interaction between cells and fluid for bone tissue engineering scaffold: Modulation of the interfacial shear stress. Journal of Biomechanics, 2010, 43, 933-937.	0.9	16
441	Fabrication of bioceramic scaffolds with ordered pore structure by inverse replication of assembled particles. Journal of the European Ceramic Society, 2010, 30, 2049-2055.	2.8	19
442	In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Medical Engineering and Physics, 2010, 32, 645-652.	0.8	62
443	Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 2010, 95, 2126-2146.	2.7	823
444	Titanium foams produced by solid-state replication of NaCl powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 691-697.	2.6	93

#	Article	IF	CITATIONS
445	Maxillary sinus floor augmentation on humans: Packing simulations and 8months histomorphometric comparative study of anorganic bone matrix and β-tricalcium phosphate particles as grafting materials. Materials Science and Engineering C, 2010, 30, 763-769.	3.8	20
446	The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 2010, 31, 461-466.	5.7	1,635
447	Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(É>-caprolactone) fibrous mats. Biomaterials, 2010, 31, 491-504.	5.7	394
448	The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials, 2010, 31, 1171-1179.	5.7	156
449	Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials, 2010, 31, 3552-3563.	5.7	190
450	The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials, 2010, 31, 3543-3551.	5.7	128
451	In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials, 2010, 31, 5953-5965.	5.7	134
452	Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds. Acta Biomaterialia, 2010, 6, 856-863.	4.1	107
453	Geometric analysis of porous bone substitutes using micro-computed tomography and fuzzy distance transform. Acta Biomaterialia, 2010, 6, 864-875.	4.1	26
454	Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomaterialia, 2010, 6, 1238-1247.	4.1	114
455	Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomaterialia, 2010, 6, 1640-1648.	4.1	361
456	Controlled release properties and final macroporosity of a pectin microspheres–calcium phosphate composite bone cement. Acta Biomaterialia, 2010, 6, 2294-2300.	4.1	61
457	Comparison of two carbonated apatite ceramics in vivo. Acta Biomaterialia, 2010, 6, 2219-2226.	4.1	53
458	In vivo degradation of calcium phosphate cement incorporated into biodegradable microspheres. Acta Biomaterialia, 2010, 6, 2200-2211.	4.1	71
459	Assessment of biocompatibility and initial evaluation of genipin cross-linked elastin-like polypeptides in the treatment of an osteochondral knee defect in rabbits. Acta Biomaterialia, 2010, 6, 2108-2115.	4.1	52
460	Multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineering. Acta Biomaterialia, 2010, 6, 2773-2786.	4.1	82
461	Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomaterialia, 2010, 6, 2540-2547.	4.1	332
462	Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomaterialia, 2010, 6, 3349-3359.	4.1	394

#	Article	IF	CITATIONS
463	Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 2010, 6, 2467-2476.	4.1	419
464	Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 2010, 6, 2874-2888.	4.1	495
465	Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomaterialia, 2010, 6, 3448-3456.	4.1	20
466	Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomaterialia, 2010, 6, 4495-4505.	4.1	366
467	The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds. Applied Surface Science, 2010, 256, 4586-4590.	3.1	33
468	Bioceramics of calcium orthophosphates. Biomaterials, 2010, 31, 1465-1485.	5.7	1,012
469	The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials, 2010, 31, 5498-5509.	5.7	304
470	A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31, 6121-6130.	5.7	1,874
471	Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials, 2010, 31, 6909-6916.	5.7	437
472	Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical Engineering Journal, 2010, 158, 353-361.	6.6	354
473	Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceramics International, 2010, 36, 2421-2426.	2.3	57
474	Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics International, 2010, 36, 2383-2393.	2.3	288
475	Novel 3D porous multi-phase composite scaffolds based on PCL, thermoplastic zein and ha prepared via supercritical CO2 foaming for bone regeneration. Composites Science and Technology, 2010, 70, 1838-1846.	3.8	75
476	Production of Bioglass® 45S5 – Polycaprolactone composite scaffolds via salt-leaching. Composite Structures, 2010, 92, 1823-1832.	3.1	100
477	Preparation and characterization of caffeic acid grafted chitosan/CPTMS hybrid scaffolds. Carbohydrate Polymers, 2010, 79, 724-730.	5.1	30
478	Resorbable biomaterials as bone graft substitutes. Materials Today, 2010, 13, 24-30.	8.3	326
479	Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 524-531.	1.3	85
480	Glutaraldehyde crosslinked gelatin/hydroxyapatite nanocomposite scaffold, engineered via compound techniques. Polymer Composites, 2010, 31, 2112-2120.	2.3	61

ARTICLE IF CITATIONS Addition of oils to polylactide casting solutions as a tool to tune film morphology and mechanical 481 1.5 15 properties. Polymer Engineering and Science, 2010, 50, 513-519. Investigation of the Bone Tissue and Implant Surface Interactions. Strain, 2010, 46, 518-525. 482 1.4 Monolithic Glass Scaffolds with Dual Porosity Prepared by Polymerâ€Induced Phase Separation and 483 1.9 8 Sol–Gel. Journal of the American Ceramic Society, 2010, 93, 1945-1949. High Surface Area Nanomacroporous Bioactive Glass Scaffold for Hard Tissue Engineering. Journal of 484 1.9 the American Ceramic Society, 2010, 93, 3002-3005. Role of the porous structure of the bioceramic scaffolds in bone tissue engineering. Nature 485 0.1 8 Precedings, 0, , . Desenvolvimento de biocerâmicas porosas de hidroxiapatita para utilização como scaffolds para regeneração óssea. Revista Materia, 2010, 15, 392-399. 0.1 Synthesis and Characterization of a Laminated Hydroxyapatite/Gelatin Nanocomposite Scaffold with 487 Controlled Pore Structure for Bone Tissue Engineering. International Journal of Artificial Organs, 0.7 63 2010, 33, 86-95. Organic Solvent Traces in Fibrillar Scaffolds for Tissue Engineering. Journal of Biomimetics, 488 Biomaterials, and Tissue Engineering, 2010, 7, 1-6. Functional nanoporous structures by partial sintering of nanorod assemblies. Journal Physics D: 489 1.3 8 Applied Physics, 2010, 43, 455301. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue 1.7 34 engineering. Biomedical Materials (Bristol), 2010, 5, 055005. <i>In Vitro</i> and <i>In Vivo</i> Evaluation Of Calcium Phosphate Bone Graft Substitutes. Materials 491 0.3 0 Science Forum, 2010, 654-656, 2065-2070. Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. Journal of the Royal Society Interface, 1.5 131 2010, 7, S615-29. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated 493 1.7 36 with bioactive molecular icaritin. Biomedical Materials (Bristol), 2010, 5, 054109. Preparation and Properties on Silk Fibers Reinforced Hydroxyapatite/Chitosan Composites. Advanced Materials Research, 2010, 105-106, 557-560. 494 0.3 Multilevel Posterior Lumbar Interlaminar Fusion in Rabbits Using Bovine Bone Protein Extract Delivered by a RP-synthesized 3D Biopolymer Construct. Journal of Bioactive and Compatible Polymers, 495 0.8 5 2010, 25, 513-526. A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation. 43 Journal of Micromechanics and Microengineering, 2010, 20, 065015. Stem Cells Grown in Osteogenic Medium on PLGA, PLGA/HA, and Titanium Scaffolds for Surgical 497 1.8 29 Applications. Bioinorganic Chemistry and Applications, 2010, 2010, 1-12. Application of Low Cost Polyurethane (PU) Foam for Fabricating Porous Tri-Calcium Phosphate (TCP). 498 Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 8, 1-7.

#	Article	IF	CITATIONS
499	Repair of a Calvarial Defect With Biofactor and Stem Cell–Embedded Polyethylene Glycol Scaffold. Archives of Facial Plastic Surgery, 2010, 12, 166-71.	0.8	36
500	Preparation of Porous HA _W /ß-TCP Ceramics with <i>In Situ</i> Synthesis of HA Whiskers. Key Engineering Materials, 0, 434-435, 617-619.	0.4	1
501	Comparison of Porosity Measurement Techniques for Porous Titanium Scaffolds Evaluation. Materials Science Forum, 0, 660-661, 100-105.	0.3	4
502	Osteogenic Differentiation by Rat Bone Marrow Stromal Cells on Customized Biodegradable Polymer Scaffolds. Journal of Bioactive and Compatible Polymers, 2010, 25, 207-223.	0.8	53
503	Treatment of Goat Femur Segmental Defects with Silica-Coated Hydroxyapatite—One-Year Follow-Up. Tissue Engineering - Part A, 2010, 16, 385-391.	1.6	17
504	Electrospun Silk Fibroin Scaffolds with Macropores for Bone Regeneration: An <i>In Vitro</i> and <i>In Vivo</i> Study. Tissue Engineering - Part A, 2010, 16, 1271-1279.	1.6	106
505	Layer manufacturing of magnesium and its alloy structures for future applications. Virtual and Physical Prototyping, 2010, 5, 13-19.	5.3	102
506	Characterization of Poly(ε-caprolactone)/Polyfumarate Blends as Scaffolds for Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1297-1312.	1.9	27
507	Fabrication and Repair of Cartilage Defects with a Novel Acellular Cartilage Matrix Scaffold. Tissue Engineering - Part C: Methods, 2010, 16, 865-876.	1.1	110
508	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>In Vivo</i> : A Quantitative Study. Tissue Engineering - Part A, 2010, 16, 3791-3803.	1.6	159
508 510	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>In Vivo</i> : A Quantitative Study. Tissue Engineering - Part A, 2010, 16, 3791-3803. New-generation metallic biomaterials. , 2010, , 355-378.	1.6	159 11
508 510 511	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>In Vivo</i> : A Quantitative Study. Tissue Engineering - Part A, 2010, 16, 3791-3803. New-generation metallic biomaterials. , 2010, , 355-378. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381.	1.6	159 11 453
508 510 511 512	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>In Vivo</i> : A Quantitative Study. Tissue Engineering - Part A, 2010, 16, 3791-3803.New-generation metallic biomaterials. , 2010, , 355-378.Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381.Stereolithographic Bone Scaffold Design Parameters: Osteogenic Differentiation and Signal Expression. Tissue Engineering - Part B: Reviews, 2010, 16, 523-539.	1.6 1.1 2.5	159 11 453 209
508 510 511 512	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>> In Vivo</i> A Quantitative Study. Tissue Engineering - Part A, 2010, 16, 3791-3803.New-generation metallic biomaterials., 2010, , 355-378.Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381.Stereolithographic Bone Scaffold Design Parameters: Osteogenic Differentiation and Signal Expression. Tissue Engineering - Part B: Reviews, 2010, 16, 523-539.Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties. Advances in Materials Science, 2010, 10, .	1.6 1.1 2.5 0.4	159 11 453 209 3
 508 510 511 512 513 514 	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>> In Vivo</i> A Quantitative Study. Tissue Engineering - Part A, 2010, 16, 3791-3803.New-generation metallic biomaterials., 2010, , 355-378.Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381.Stereolithographic Bone Scaffold Design Parameters: Osteogenic Differentiation and Signal Expression. Tissue Engineering - Part B: Reviews, 2010, 16, 523-539.Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties. Advances in Materials Science, 2010, 10, .Biomimetic coatings for bone tissue engineering of critical-sized defects. Journal of the Royal Society Interface, 2010, 7, S631-47.	1.6 1.1 2.5 0.4 1.5	 159 11 453 209 3 114
 508 510 511 512 513 514 515 	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>In Vivo</i> New-generation metallic biomaterials., 2010,, 355-378. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381. Stereolithographic Bone Scaffold Design Parameters: Osteogenic Differentiation and Signal Expression. Tissue Engineering - Part B: Reviews, 2010, 16, 523-539. Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties. Advances in Materials Science, 2010, 10,. Biomimetic coatings for bone tissue engineering of critical-sized defects. Journal of the Royal Society Interface, 2010, 7, S631-47. Composite materials for bone repair., 2010, , 101-126.	1.6 1.1 2.5 0.4 1.5	 159 11 453 209 3 114 0
 508 510 511 512 513 514 515 516 	The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials <i>In Vivo</i> A Quantitative Study. Tissue Engineering - Part A, 2010, 16, 3791-3803.New-generation metallic biomaterials., 2010, , 355-378.Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381.Stereolithographic Bone Scaffold Design Parameters: Osteogenic Differentiation and Signal Expression. Tissue Engineering - Part B: Reviews, 2010, 16, 523-539.Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties. Advances in Materials Science, 2010, 10, .Biomimetic coatings for bone tissue engineering of critical-sized defects. Journal of the Royal Society Interface, 2010, 7, S631-47.Composite materials for bone repair., 2010, 101-126.A New Generation of Scaffolds for Bone Tissue Engineering. Advances in Science and Technology, 2010, 76, 48-53.	1.6 1.1 2.5 0.4 1.5	 159 11 453 209 3 114 0 3

#	Article	IF	Citations
518	Nanostructured biocomposites for tissue engineering scaffolds. , 2010, , 509-546.		1
520	<i>In vitro</i> cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold. Biomedical Materials (Bristol), 2010, 5, 045003.	1.7	20
521	Investigation on Microstructure, Composition, and Cytocompatibility of Natural Pumice for Potential Biomedical Application. Tissue Engineering - Part C: Methods, 2010, 16, 427-434.	1.1	12
522	Study of the Mechanical Properties of a Novel Unidirectional Porous Hydroxyapatite Implanted in the Femoral Marrow of a Rabbit. IFMBE Proceedings, 2010, , 1189-1190.	0.2	1
523	The Use of Schwartz Geometries for Scaffold Design in Tissue Engineering Applications. , 2010, , .		0
524	Modified Approach to Construct a Vascularized Coral Bone in Rabbit Using an Arteriovenous Loop. Journal of Reconstructive Microsurgery, 2010, 26, 095-102.	1.0	6
525	Bioactive Agent Delivery in Bone Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 193-223.	0.7	2
526	Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials, 2010, 3, 3867-3910.	1.3	875
527	Long Bone Defect Models for Tissue Engineering Applications: Criteria for Choice. Tissue Engineering - Part B: Reviews, 2010, 16, 263-271.	2.5	106
528	Fundamental Biomechanics in Bone Tissue Engineering. Synthesis Lectures on Tissue Engineering, 2010, 2, 1-225.	0.3	48
529	Enhanced Cell Ingrowth and Proliferation through Three-Dimensional Nanocomposite Scaffolds with Controlled Pore Structures. Biomacromolecules, 2010, 11, 682-689.	2.6	88
530	Osteogenesis of the construct combined BMSCs with β-TCP in rat. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2010, 63, 227-232.	0.5	21
531	Titanium foams for biomedical applications: a review. Materials Technology, 2010, 25, 127-136.	1.5	131
532	Scaffold Vascularization: A Challenge for Three-Dimensional Tissue Engineering. Current Medicinal Chemistry, 2010, 17, 3944-3967.	1.2	107
533	Macroporous Hydrogels Upregulate Osteogenic Signal Expression and Promote Bone Regeneration. Biomacromolecules, 2010, 11, 1160-1168.	2.6	71
534	Highly porous metals and ceramics. Materials Science and Technology, 2010, 26, 1145-1158.	0.8	50
535	Surface Functionalization of Titanium with Chitosan/Gelatin via Electrophoretic Deposition: Characterization and Cell Behavior. Biomacromolecules, 2010, 11, 1254-1260.	2.6	138
536	Generating Porous Ceramic Scaffolds: Processing and Properties. Key Engineering Materials, 2010, 441, 155-179.	0.4	19

#	Article	IF	CITATIONS
537	Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. International Journal of Biological Macromolecules, 2010, 46, 310-316.	3.6	31
538	Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. Journal of Alloys and Compounds, 2010, 494, 323-329.	2.8	32
539	A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone, 2010, 46, 386-395.	1.4	344
540	Beta-tricalcium phosphate exerts osteoconductivity through α2β1 integrin and down-stream MAPK/ERK signaling pathway. Biochemical and Biophysical Research Communications, 2010, 394, 323-329.	1.0	55
541	In VitroEnhancement of SAOS-2 Cell Calcified Matrix Deposition onto Radio Frequency Magnetron Sputtered Bioglass-Coated Titanium Scaffolds. Tissue Engineering - Part A, 2010, 16, 995-1008.	1.6	40
542	Electrospun Synthetic Polymer Scaffold for Cartilage Repair Without Cultured Cells in an Animal Model. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2010, 26, 375-383.	1.3	41
543	Adipose Tissue Formation in Collagen Scaffolds with Different Biodegradabilities. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 463-476.	1.9	21
544	Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. Journal of Cranio-Maxillo-Facial Surgery, 2010, 38, 423-430.	0.7	79
545	Controlling the architecture of nanofiberâ€coated microfibers using electrospinning. Journal of Applied Polymer Science, 2010, 118, 511-517.	1.3	9
546	Porous metals in orthopedic applications - A review. Materialwissenschaft Und Werkstofftechnik, 2010, 41, 1001-1010.	0.5	28
547	Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 2010, 7, 209-227.	1.5	445
548	Preparation of porous Ti35Nb alloy and its mechanical properties under monotonic and cyclic loading. Transactions of Nonferrous Metals Society of China, 2010, 20, 390-394.	1.7	22
549	Electrophoretic deposition of biomaterials. Journal of the Royal Society Interface, 2010, 7, S581-613.	1.5	551
550	Biomaterials by freeze casting. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2099-2121.	1.6	288
551	Advances in Porous Biomaterials for Dental and Orthopaedic Applications. Materials, 2010, 3, 2947-2974.	1.3	167
552	Calcium Orthophosphates as Bioceramics: State of the Art. Journal of Functional Biomaterials, 2010, 1, 22-107.	1.8	197
553	Designing Poly[(<i>R</i>)-3-hydroxybutyrate]-Based Polyurethane Block Copolymers for Electrospun Nanofiber Scaffolds with Improved Mechanical Properties and Enhanced Mineralization Capability. Journal of Physical Chemistry B, 2010, 114, 7489-7498.	1.2	40
555	Design of Hierarchically Porous Materials for Bone Tissue Regeneration. Key Engineering Materials, 2010, 441, 139-153.	0.4	3

#	Article	IF	CITATIONS
556	Carbon Nanotube Composite Scaffolds and Coatings for Tissue Engineering Applications. Key Engineering Materials, 2010, 441, 31-52.	0.4	30
557	Osteoblast adhesion, proliferation and growth on polyelectrolyte complex–hydroxyapatite nanocomposites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2083-2097.	1.6	49
558	Integrated system for 3D assembly of bio-scaffolds and cells. , 2010, , .		7
559	Low temperature electrophoretic deposition of porous chitosan/silk fibroin composite coating for titanium biofunctionalization. Journal of Materials Chemistry, 2011, 21, 7705.	6.7	77
560	Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. Journal of Materials Chemistry, 2011, 21, 6165.	6.7	111
561	Osteogenic Differentiation of Pre-Osteoblasts on Biomimetic Tyrosine-Derived Polycarbonate Scaffolds. Biomacromolecules, 2011, 12, 3520-3527.	2.6	41
562	Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. Journal of Materials Chemistry, 2011, 21, 17710.	6.7	57
563	Collagen-templated sol–gel fabrication, microstructure, in vitro apatite deposition, and osteoblastic cell MC3T3-E1 compatibility of novel silica nanotube compacts. Journal of Materials Chemistry, 2011, 21, 4332.	6.7	36
564	Increasing the Pore Size of Electrospun Scaffolds. Tissue Engineering - Part B: Reviews, 2011, 17, 365-372.	2.5	227
565	A Novel Ultra-porous Titanium Dioxide Ceramic with Excellent Biocompatibility. Journal of Biomaterials Applications, 2011, 25, 559-580.	1.2	67
566	Hierarchical Porous Materials Made by Drying Complex Suspensions. Langmuir, 2011, 27, 955-964.	1.6	55
567	Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomedical Materials (Bristol), 2011, 6, 045008.	1.7	41
568	An Abiotic Analogue of the Nuclear Pore Complex Hydrogel. Biomacromolecules, 2011, 12, 3119-3123.	2.6	7
569	Electrochemically assisted deposition on TiO2scaffold for Tissue Engineering: an apatite bio-inspired crystallization pathway. Journal of Materials Chemistry, 2011, 21, 400-407.	6.7	13
570	Three-Dimensional Molding Based on Microstereolithography Using Beta-Tricalcium Phosphate Slurry for the Production of Bioceramic Scaffolds. Japanese Journal of Applied Physics, 2011, 50, 06GL15.	0.8	7
571	Osteoblast-like cell response to macro- and micro-patterned carbon scaffolds obtained from the sea rush <i>Juncus maritimus</i> . Biomedical Materials (Bristol), 2011, 6, 045012.	1.7	11
572	Three-Dimensional Hierarchical Composite Scaffolds Consisting of Polycaprolactone, Î ² -Tricalcium Phosphate, and Collagen Nanofibers: Fabrication, Physical Properties, and In Vitro Cell Activity for Bone Tissue Regeneration. Biomacromolecules, 2011, 12, 502-510.	2.6	103
573	Hydroxyapatite Needle-Shaped Particles/Poly(<scp>l</scp> -lactic acid) Electrospun Scaffolds with Perfect Particle-along-Nanofiber Orientation and Significantly Enhanced Mechanical Properties. Journal of Physical Chemistry C, 2011, 115, 15743-15751.	1.5	36

#	Article	IF	CITATIONS
574	Osteogenic Differentiation of Embryonic Stem Cells in 2D and 3D Culture. Methods in Molecular Biology, 2011, 695, 281-308.	0.4	10
575	New Approach to Bone Tissue Engineering: Simultaneous Application of Hydroxyapatite and Bioactive Glass Coated on a Poly(<scp>l</scp> -lactic acid) Scaffold. ACS Applied Materials & Interfaces, 2011, 3, 4518-4524.	4.0	106
576	Bioactive Ceramics and Bioactive Ceramic Composite-Based Scaffolds. , 2011, , 255-268.		0
577	Biologic Foundations for Skeletal Tissue Engineering. Synthesis Lectures on Tissue Engineering, 2011, 3, 1-220.	0.3	10
578	A New Highly Bioactive Composite for Scaffold Applications: A Feasibility Study. Materials, 2011, 4, 339-354.	1.3	33
579	Engineered Tissue Scaffolds With Variational Porous Architecture. Journal of Biomechanical Engineering, 2011, 133, 011001.	0.6	73
580	Nanocomposite Scaffolds for Bone Tissue Engineering: Design, Fabrication, Surface Modification and Sustained Release of Growth Factor. Materials Research Society Symposia Proceedings, 2011, 1301, 99.	0.1	4
581	Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing. Journal of Functional Biomaterials, 2011, 2, 119-154.	1.8	187
582	Multifunctional Polymer Based Structures for Human Tissues Reconstruction. , 2011, , 91-112.		1
583	Ordered Mesoporous Silica Materials. , 2011, , 497-514.		5
583 584	Ordered Mesoporous Silica Materials. , 2011, , 497-514. Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577.	2.6	5 213
583 584 585	Ordered Mesoporous Silica Materials. , 2011, , 497-514. Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol), 2011, 6, 015009.	2.6	5 213 30
583 584 585 586	Ordered Mesoporous Silica Materials. , 2011, , 497-514. Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol), 2011, 6, 015009. Synthesis and manufacture of photocrosslinkable poly(caprolactone)-based three-dimensional scaffolds for tissue engineering applications. Advances in Bioscience and Biotechnology (Print), 2011, 02, 167-173.	2.6 1.7 0.3	5 213 30 6
583 584 585 586	Ordered Mesoporous Silica Materials., 2011,, 497-514. Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol), 2011, 6, 015009. Synthesis and manufacture of photocrosslinkable poly(caprolactone)-based three-dimensional scaffolds for tissue engineering applications. Advances in Bioscience and Biotechnology (Print), 2011, 02, 167-173. Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011,,.	2.6 1.7 0.3 0.7	5 213 30 6 15
583 584 585 586 587	Ordered Mesoporous Silica Materials., 2011,, 497-514. Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol), 2011, 6, 015009. Synthesis and manufacture of photocrosslinkable poly(caprolactone)-based three-dimensional scaffolds for tissue engineering applications. Advances in Bioscience and Biotechnology (Print), 2011, 02, 167-173. Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, 3D Cell Culture. Methods in Molecular Biology, 2011,	2.6 1.7 0.3 0.7 0.4	 5 213 30 6 15 60
 583 584 585 586 587 588 588 	Ordered Mesoporous Silica Materials., 2011,, 497-514. Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol), 2011, 6, 015009. Synthesis and manufacture of photocrosslinkable poly(caprolactone)-based three-dimensional scaffolds for tissue engineering applications. Advances in Bioscience and Biotechnology (Print), 2011, 02, 167-173. Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, 3D Cell Culture. Methods in Molecular Biology, 2011, A functionally gradient variational porosity architecture for hollowed scaffolds fabrication. Biofabrication, 2011, 3, 034106.	2.6 1.7 0.3 0.7 0.4 3.7	 5 213 30 6 15 60 28
 583 584 585 586 587 588 589 590 	Ordered Mesoporous Silica Materials., 2011, , 497-514. Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol), 2011, 6, 015009. Synthesis and manufacture of photocrosslinkable poly(caprolactone)-based three-dimensional scaffolds for tissue engineering applications. Advances in Bioscience and Biotechnology (Print), 2011, 02, 167-173. Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, 3D Cell Culture. Methods in Molecular Biology, 2011, Afunctionally gradient variational porosity architecture for hollowed scaffolds fabrication. Biofabrication, 2011, 3, 034106. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture (s) in vioc (l)>. Biomedical Materials (Bristol), 2011, 6, 015007.	2.6 1.7 0.3 0.7 0.4 3.7 1.7	5 213 30 6 15 60 28 185

		CITATION REPORT	
#	Article	IF	CITATIONS
594	Multiscale Fibrous Scaffolds in Regenerative Medicine. Advances in Polymer Science, 2011, , 1	-20. 0.4	15
595	Bisphosphonate-Derivatized Liposomes to Control Drug Release from Collagen/Hydroxyapatite Scaffolds. Molecular Pharmaceutics, 2011, 8, 1025-1034.	2 2.3	59
597	Polymers of Biological Origin. , 2011, , 187-205.		2
598	Effects of increased collagen-matrix density on the mechanical properties and <i>in vivo</i> absorbability of hydroxyapatite–collagen composites as artificial bone materials. Biomedical Materials (Bristol), 2011, 6, 015012.	1.7	23
599	Fully Biodegradable Self-Rolled Polymer Tubes: A Candidate for Tissue Engineering Scaffolds. Biomacromolecules, 2011, 12, 2211-2215.	2.6	106
600	Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomedical Materials (Bristol), 2011, 6, 015002.	1.7	126
601	Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engin Journal of Materials Chemistry, 2011, 21, 12015.	eering. 6.7	37
602	Osteoconduction of different sizes of anorganic bone particles in a model of guided bone regeneration. British Journal of Oral and Maxillofacial Surgery, 2011, 49, 37-41.	0.4	13
603	Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress. Bone, 171-181.	2011, 48, 1.4	249
604	Bioactive Glass-Based Scaffolds for Bone Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 195-226.	0.6	33
605	Polycaprolactone Scaffolds Fabricated with an Advanced Electrohydrodynamic Direct-Printing Method for Bone Tissue Regeneration. Biomacromolecules, 2011, 12, 4256-4263.	2.6	73
606	Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. International Journal of Biological Macromolecules, 2011, 49, 700-706.	3.6	105
607	Stem Cell Differentiation Depending on Different Surfaces. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 263-283.	0.6	17
608	Injectable PolyHIPEs as High-Porosity Bone Grafts. Biomacromolecules, 2011, 12, 3621-3628.	2.6	128
609	Controlled and sustained gene delivery from injectable, porous PLGA scaffolds. Journal of Bion Materials Research - Part A, 2011, 98A, 72-79.	redical 2.1	27
610	HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. International Journal of Nanomedicine, 2011, o	6, 1651.	52
611	Formation of concentric multi-layer chitosan hydrogel loaded with isoniazid. Journal of Contro Release, 2011, 152, e45-e47.	lled 4.8	6
612	Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials, 2011, 32, 9719-9729.	5.7	147

# 613	ARTICLE Enhanced mechanical performance and biological evaluation of a PLGA coated Î ² -TCP composite scaffold for load-bearing applications. European Polymer Journal, 2011, 47, 1569-1577.	IF 2.6	Citations
614	Cartilage Regeneration in Reconstructive Surgery. , 2011, , 501-507.		2
615	Cell-Biomaterial Interactions Reproducing a Niche. , 0, , .		1
616	Synchrotron Radiation and Nanotechnology for Stem Cell Research. , 0, , .		3
617	Development and Applications of Varieties of Bioactive Glass Compositions in Dental Surgery, Third Generation Tissue Engineering, Orthopaedic Surgery and as Drug Delivery System. , 0, , .		3
618	Simple and Novel Three Dimensional Neuronal Cell Culture Using a Micro Mesh Scaffold. Experimental Neurobiology, 2011, 20, 110-115.	0.7	11
619	Designing Bio-Inspired Composite Materials for Medical Applications. , 2011, , .		4
620	Short-Term and Long-Term Effects of Orthopedic Biodegradable Implants. Journal of Long-Term Effects of Medical Implants, 2011, 21, 93-122.	0.2	134
621	Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. , 0, , .		189
622	Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. International Journal of Nanomedicine, 2011, 6, 2521.	3.3	34
623	Is Macroporosity Absolutely Required for Preliminary in Vitro Bone Biomaterial Study? A Comparison Between Porous Materials and Flat Materials. Journal of Functional Biomaterials, 2011, 2, 308-337.	1.8	7
624	Osteoinductivity Assessment of BMP-2 Loaded Composite Chitosan-Nano-Hydroxyapatite Scaffolds in a Rat Muscle Pouch. Materials, 2011, 4, 1360-1374.	1.3	19
625	Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering. International Journal of Biological Sciences, 2011, 7, 112-132.	2.6	128
626	Marine-Based Carbon and Silicon Carbide Scaffolds with Patterned Surface for Tissue Engineering Applications. , 0, , .		3
627	Engineering Scaffold Mechanical and Mass Transport Properties. , 2011, , 13-33.		3
628	Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects. PLoS ONE, 2011, 6, e25462.	1.1	120
629	Cell Lysis Techniques in Lab-on-a-Chip Technology. , 2011, , 942-965.		0
630	The Biomimetic Approach to Design Apatites for Nanobiotechnological Applications. , 0, , .		1

#	Article	IF	CITATIONS
631	Ectopic study of tissue-engineered bone complex with enamel matrix proteins, bone marrow stromal cells in porous calcium phosphate cement scaffolds, in nude mice. Cell Proliferation, 2011, 44, 274-282.	2.4	14
632	Lateral bone augmentation with newly developed β-tricalcium phosphate block: an experimental study in the rabbit mandible. Clinical Oral Implants Research, 2011, 22, 1366-1371.	1.9	21
633	Porous Biphasic Calcium Phosphate Scaffolds from Cuttlefish Bone. Journal of the American Ceramic Society, 2011, 94, 2362-2370.	1.9	50
634	Effect of the Mass Ratio of CaCO3 to CaHPO4·2H2O on in Situ Synthesis of Hydroxyapatite Coating by Laser Cladding. Rare Metal Materials and Engineering, 2011, 40, 22-27.	0.8	11
635	Organ printing: the future of bone regeneration?. Trends in Biotechnology, 2011, 29, 601-606.	4.9	195
636	Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Materials Science and Engineering C, 2011, 31, 1245-1256.	3.8	546
637	Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique. Materials Science and Engineering C, 2011, 31, 1482-1489.	3.8	91
638	Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: Polysorbate 80 versus gelatine. Materials Science and Engineering C, 2011, 31, 1498-1504.	3.8	44
639	Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds. Journal of Controlled Release, 2011, 156, 239-245.	4.8	58
640	Bone fibrillogenesis and mineralization: Quantitative analysis and implications for tissue elasticity. Journal of Theoretical Biology, 2011, 287, 115-130.	0.8	55
641	Study on the microstructure of human articular cartilage/bone interface. Journal of Bionic Engineering, 2011, 8, 251-262.	2.7	23
642	Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration?. Injury, 2011, 42, S22-S25.	0.7	332
643	Fabrication and characterization of poly-d-l-lactide/nano-hydroxyapatite composite scaffolds with poly (ethylene glycol) coating and dexamethasone releasing. Composites Science and Technology, 2011, 71, 1842-1849.	3.8	27
644	Construction of the recellularized corneal stroma using porous acellular corneal scaffold. Biomaterials, 2011, 32, 6962-6971.	5.7	59
645	Prediction of spatio-temporal bone formation in scaffold by diffusion equation. Biomaterials, 2011, 32, 7006-7012.	5.7	11
646	Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based 14CT. Biomaterials, 2011, 32, 8506-8517.	5.7	97
647	Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 2011, 32, 9622-9629.	5.7	579
648	The effect of fluorine content on the mechanical properties of poly (É›-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone-tissue engineering. Ceramics International, 2011, 37, 3247-3251.	2.3	23
		15	2
-----	---	------	-----------
#	ARTICLE	IF	CITATIONS
649	Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chemical Society Reviews, 2011, 40, 596-607.	18.7	352
650	RGD-Conjugated Copolymer Incorporated into Composite of Poly(lactide-co-glycotide) and Poly(l-lactide)-Grafted Nanohydroxyapatite for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 2667-2680.	2.6	108
651	Tissue-engineered triphasic ceramic coated hydroxyapatite induced bone formation and vascularization at an extraskeletal site in a rat model. Bulletin of Materials Science, 2011, 34, 1721-1731.	0.8	4
652	Magnesium substitution effect on porous scaffolds for bone repair. Open Life Sciences, 2011, 6, 301-311.	0.6	8
653	Scaffolds for Tissue Engineering and 3D Cell Culture. Methods in Molecular Biology, 2011, 695, 17-39.	0.4	296
654	Human endothelial colony forming cells undergo vasculogenesis within biphasic calcium phosphate bone tissue engineering constructs. Acta Biomaterialia, 2011, 7, 4222-4228.	4.1	27
655	Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. Journal of Materials Science: Materials in Medicine, 2011, 22, 97-105.	1.7	42
656	Drug-loaded porous spherical hydroxyapatite granules for bone regeneration. Journal of Materials Science: Materials in Medicine, 2011, 22, 349-355.	1.7	42
657	In vivo performance of bilayer hydroxyapatite scaffolds for bone tissue regeneration in the rabbit radius. Journal of Materials Science: Materials in Medicine, 2011, 22, 647-656.	1.7	32
658	Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures. Journal of Materials Science: Materials in Medicine, 2011, 22, 917-925.	1.7	34
659	Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures. Journal of Materials Science: Materials in Medicine, 2011, 22, 839-844.	1.7	25
660	Development and characterization of reinforced poly(l-lactide) scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1171-1182.	1.7	32
661	Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. Journal of Materials Science: Materials in Medicine, 2011, 22, 1111-1118.	1.7	26
662	Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1195-1203.	1.7	41
663	An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 2565-2571.	1.7	22
664	Preparation and properties of calcium phosphate cements incorporated gelatin microspheres and calcium sulfate dihydrate as controlled local drug delivery system. Journal of Materials Science: Materials in Medicine, 2011, 22, 2487-2496.	1.7	17
665	Automated quantitative characterization of alginate/hydroxyapatite bone tissue engineering scaffolds by means of micro-CT image analysis. Journal of Materials Science: Materials in Medicine, 2011, 22, 2617-2629.	1.7	28
666	Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology. Archives of Orthopaedic and Trauma Surgery, 2011, 131, 711-718.	1.3	79

#	Αρτιςι ε	IF	CITATIONS
T 667	Healing of acute alveolar bone dehiscence following treatment with porous biphasic calcium	14	11
007	phosphate in beagle dogs. Clinical Oral Investigations, 2011, 15, 983-991.	1.7	11
668	The use of interconnected β-tricalcium phosphate as bone substitute after curettage of benign bone tumours. European Journal of Orthopaedic Surgery and Traumatology, 2011, 21, 235-241.	0.6	8
669	A hybrid scaffold of poly(lactide-co-glycolide) sponge filled with fibrin gel for cartilage tissue engineering. Chinese Journal of Polymer Science (English Edition), 2011, 29, 233-240.	2.0	19
670	Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation. Journal of Materials Processing Technology, 2011, 211, 602-609.	3.1	56
671	Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review. Acta Biomaterialia, 2011, 7, 31-56.	4.1	184
672	Commentary: Deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomaterialia, 2011, 7, 478-484.	4.1	128
673	Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response. Acta Biomaterialia, 2011, 7, 1780-1787.	4.1	38
674	Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomaterialia, 2011, 7, 2327-2336.	4.1	279
675	Initial cell pre-cultivation can maximize ECM mineralization by human mesenchymal stem cells on silk fibroin scaffolds. Acta Biomaterialia, 2011, 7, 2218-2228.	4.1	32
676	Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials, 2011, 32, 2294-2304.	5.7	135
677	The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials, 2011, 32, 3750-3763.	5.7	133
678	Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceramics International, 2011, 37, 167-173.	2.3	116
679	Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceramics International, 2011, 37, 1575-1585.	2.3	77
680	Preparation of the reticulated hydroxyapatite ceramics using carbon-coated polymeric sponge with elongated pores as a novel template. Ceramics International, 2011, 37, 2591-2596.	2.3	15
681	Bone Physiology, Biomaterial and the Effect of Mechanical/Physical Microenvironment on Mesenchymal Stem Cell Osteogenesis. Cellular and Molecular Bioengineering, 2011, 4, 579-590.	1.0	22
682	Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation. Frontiers of Materials Science, 2011, 5, 57-68.	1.1	21
683	Calcium phosphate ceramics in drug delivery. Jom, 2011, 63, 93-98.	0.9	35
684	Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskeletal Disorders, 2011, 12, 34.	0.8	60

#	Article	IF	CITATIONS
685	Porous composites of hydroxyapatiteâ€filled poly[ethyleneâ€ <i>co</i> â€(vinyl acetate)] for tissue engineering. Polymer International, 2011, 60, 51-58.	1.6	10
686	Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in β-tricalcium phosphate ceramics with large interconnected channels. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 444-453.	1.3	23
687	Microfabrication of PDLLA scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 569-577.	1.3	16
688	Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly(urethane urea) scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 578-588.	1.3	55
689	The Use of Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€eaprolactone) as a Scaffold for Adipose Stem Cells in Bone Tissue Engineering: Application in a Spinal Fusion Model. Macromolecular Bioscience, 2011, 11, 722-730.	2.1	43
690	Surface modification by glow discharge gasplasma treatment improves vascularization of allogenic bone implants. Journal of Orthopaedic Research, 2011, 29, 1237-1244.	1.2	14
691	Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits. Microsurgery, 2011, 31, 130-137.	0.6	25
692	How Degradation of Calcium Phosphate Bone Substitute Materials is influenced by Phase Composition and Porosity. Advanced Engineering Materials, 2011, 13, 342-350.	1.6	44
693	Microstructure and Mechanical Properties of Reticulated Titanium Scrolls. Advanced Engineering Materials, 2011, 13, 1122-1127.	1.6	34
694	A Three‣ayered Osteochondral Plug: Structural, Mechanical, and in vitro Biocompatibility Analysis. Advanced Engineering Materials, 2011, 13, B511.	1.6	28
695	Biomimetic Structures: Biological Implications of Dipeptideâ€6ubstituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Loadâ€Bearing Bone Regeneration. Advanced Functional Materials, 2011, 21, 2641-2651.	7.8	129
696	Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic proteinâ€2 in ovine lumbar interbody fusion. Journal of Biomedical Materials Research - Part A, 2011, 97A, 177-185.	2.1	30
697	Threeâ€dimensional glassâ€derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research - Part A, 2011, 97A, 514-535.	2.1	221
698	Influence of processing parameters on pore structure of 3D porous chitosan–alginate polyelectrolyte complex scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 98A, 614-620.	2.1	87
699	Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. Journal of Biomedical Materials Research - Part A, 2011, 99A, 307-315.	2.1	33
700	<i>In vitro</i> analysis and mechanical properties of twin screw extruded singleâ€layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 99A, 354-366.	2.1	23
701	Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagenâ€nanofibers for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 263-270.	1.6	82
702	Pentapeptideâ€modified poly(<i>N</i> , <i>N</i> â€diethylacrylamide) hydrogel scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 54-67.	1.6	10

#	Article	IF	CITATIONS
703	Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 150-157.	1.6	31
704	Surfaceâ€engineered hydroxyapatite nanocrystal/ poly(εâ€caprolactone) hybrid scaffolds for bone tissue engineering. Journal of Applied Polymer Science, 2011, 121, 1921-1929.	1.3	6
705	Processing/structure/property relationship of multiâ€scaled PCL and PCL–HA composite scaffolds prepared via gas foaming and NaCl reverse templating. Biotechnology and Bioengineering, 2011, 108, 963-976.	1.7	70
706	Biodegradable polymeric microcapsules: Preparation and properties. Chemical Engineering Journal, 2011, 169, 1-10.	6.6	56
707	A new potassium-based bioactive glass: Sintering behaviour and possible applications for bioceramic scaffolds. Ceramics International, 2011, 37, 145-157.	2.3	36
708	Influence of hydrochloric acid concentration on the demineralization of cortical bone. Chemical Engineering Research and Design, 2011, 89, 116-124.	2.7	37
709	Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 2011, 59, 146-158.	3.8	114
710	Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomaterialia, 2011, 7, 530-537.	4.1	191
711	Mathematical modeling of degradation for bulk-erosive polymers: Applications in tissue engineering scaffolds and drug delivery systems. Acta Biomaterialia, 2011, 7, 1140-1149.	4.1	133
712	Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomaterialia, 2011, 7, 907-920.	4.1	396
713	Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.	4.1	114
714	Hydrogen release from titanium hydride in foaming of orthopedic NiTi scaffolds. Acta Biomaterialia, 2011, 7, 1387-1397.	4.1	31
715	Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomaterialia, 2011, 7, 1307-1318.	4.1	140
716	Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomaterialia, 2011, 7, 1009-1018.	4.1	487
717	Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds. Acta Biomaterialia, 2011, 7, 1760-1771.	4.1	95
718	Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomaterialia, 2011, 7, 1999-2006.	4.1	120
719	Mesoporous bioactive glasses: Mechanical reinforcement by means of a biomimetic process. Acta Biomaterialia, 2011, 7, 2952-2959.	4.1	43
720	Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials, 2011, 32, 330-338.	5.7	103

#	Article	IF	CITATIONS
721	Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials, 2011, 32, 1583-1590.	5.7	320
722	A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011, 32, 2757-2774.	5.7	2,131
723	The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials, 2011, 32, 4096-4108.	5.7	176
724	Flow-through 3D biofuel cell anode for NAD+-dependent enzymes. Electrochimica Acta, 2011, 56, 2503-2509.	2.6	37
725	Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials, 2011, 32, 5003-5014.	5.7	134
726	Simulation of the inÂvivo resorption rate of β-tricalcium phosphate bone graft substitutes implanted in a sheep model. Biomaterials, 2011, 32, 6362-6373.	5.7	31
727	Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydrate Polymers, 2011, 85, 817-823.	5.1	40
728	The influence of fiber thickness, wall thickness and gap distance on the spiral nanofibrous scaffolds for bone tissue engineering. Materials Science and Engineering C, 2011, 31, 50-56.	3.8	11
729	Utilizing NaCl to increase the porosity of electrospun materials. Materials Science and Engineering C, 2011, 31, 30-36.	3.8	78
730	Bioactive glass–poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Materials Science and Engineering C, 2011, 31, 198-205.	3.8	68
731	Poly(lactic acid) porous scaffold with calcium phosphate mineralized surface and bone marrow mesenchymal stem cell growth and differentiation. Materials Science and Engineering C, 2011, 31, 612-619.	3.8	19
732	Preparation of highly interconnected porous hydroxyapatite scaffolds by chitin gel-casting. Materials Science and Engineering C, 2011, 31, 697-701.	3.8	20
733	Biomimetic material strategies for cardiac tissue engineering. Materials Science and Engineering C, 2011, 31, 503-513.	3.8	72
734	A numerical investigation of porous titanium as orthopedic implant material. Mechanics of Materials, 2011, 43, 420-430.	1.7	30
735	Investigation of cancer cell behavior on nanofibrous scaffolds. Materials Science and Engineering C, 2011, 31, 37-42.	3.8	44
736	Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. Journal of the European Ceramic Society, 2011, 31, 13-18.	2.8	58
737	Synthesis of functional gradient BCP/ZrO2 bone substitutes using ZrO2 and BCP nanopowders. Journal of the European Ceramic Society, 2011, 31, 1541-1548.	2.8	32
738	Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science, 2011, 36, 238-268.	11.8	257

.,		15	<u></u>
#	ARTICLE	IF	CITATIONS
739	copolymer brushes at the interface. Polymer, 2011, 52, 1483-1489.	1.8	8
740	Effect of Geometric Challenges on Cell Migration. Tissue Engineering - Part C: Methods, 2011, 17, 999-1010.	1.1	18
741	Regulatory Influence of Scaffolds on Cell Behavior: How Cells Decode Biomaterials. Current Pharmaceutical Biotechnology, 2011, 12, 151-159.	0.9	37
742	Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. , 2011, , 107-128.		10
743	Preparation of Threeâ€Dimensional Scaffolds from Degradable Poly(ether)esterurethane by Thermallyâ€Induced Phase Separation. Macromolecular Symposia, 2011, 309-310, 76-83.	0.4	3
744	Development of novel hybrid poly(l-lactide)/chitosan scaffolds using the rapid freeze prototyping technique. Biofabrication, 2011, 3, 034105.	3.7	37
745	Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication, 2011, 3, 025004.	3.7	122
746	Effect of Polycaprolactone Scaffold Permeability on Bone Regeneration <i>In Vivo</i> . Tissue Engineering - Part A, 2011, 17, 1831-1839.	1.6	142
747	Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 67-72.	3.3	630
748	Optimal scaffold design and effective progenitor cell identification for the regeneration of vascularized bone. , 2011, 2011, 2464-7.		13
749	Biologically derived scaffolds. , 2011, , 524-551.		16
750	Preparation of Mesoporous Bioglass Coated Zirconia Scaffold for Bone Tissue Engineering. Advanced Materials Research, 0, 365, 209-215.	0.3	6
751	Bioactive materials and tissue engineering. , 2011, , 70-93.		1
752	Molecular design of bioactive materials with controlled bioactivity. , 2011, , 17-49.		0
753	Structural Optimization of Macroporous Magnesium Phosphate Scaffolds and their Cytocompatibility. Key Engineering Materials, 0, 493-494, 813-819.	0.4	4
754	An Experimental Research of Repairing Osteochondral Defect in a Rabbit Model with Tissue-Engineered Nanohydroxyapatite/Chitosan Graft. Applied Mechanics and Materials, 0, 140, 17-23.	0.2	1
755	Scaffolding for Three-Dimensional Embryonic Vasculogenesis. Biological and Medical Physics Series, 2011, , 49-67.	0.3	1
756	Human Dental Pulp Stem Cells Hook into Biocoral Scaffold Forming an Engineered Biocomplex. PLoS ONE, 2011, 6, e18721.	1.1	51

#	Article	IF	CITATIONS
757	Bone Remodeling, Biomaterials And Technological Applications: Revisiting Basic Concepts. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 318-328.	1.0	22
759	Biocompatibility and Antibacterial Effect of Silver Doped 3D-Glass-Ceramic Scaffolds for Bone Grafting. Journal of Biomaterials Applications, 2011, 25, 595-617.	1.2	18
760	In Vitro Cytotoxic Evaluation of Processed Natural Coral in Human Osteoblasts. International Journal of Toxicology, 2011, 30, 443-451.	0.6	1
761	Dense Fibrillar Collagen Matrices Sustain Osteoblast Phenotype <i>In Vitro</i> and Promote Bone Formation in Rat Calvaria Defect. Tissue Engineering - Part A, 2011, 17, 889-898.	1.6	14
762	Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography. Tissue Engineering - Part C: Methods, 2011, 17, 101-112.	1.1	55
763	Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds. Science and Technology of Advanced Materials, 2011, 12, 045003.	2.8	36
764	Medical Application of Calcium Orthophosphate Bioceramics. Bio, 2011, 1, 1-51.	0.6	85
765	Thermal Processing of Tissue Engineering Scaffolds. Journal of Heat Transfer, 2011, 133, .	1.2	18
766	Formation of Concentric Multilayers in a Chitosan Hydrogel Inspired by Liesegang Ring Phenomena. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2295-2304.	1.9	17
767	Bioactive Ceramic/Polyamide 6 Scaffold for Bone Regeneration: <i>In vitro</i> and <i>in vitro</i> evaluation. Polymer-Plastics Technology and Engineering, 2011, 50, 1367-1374.	1.9	4
768	Fabrication of Hydroxyapatite/Ethylene-Vinyl Acetate/Polyamide 66 Composite Scaffolds by the Injection-Molding Method. Polymer-Plastics Technology and Engineering, 2011, 50, 1047-1054.	1.9	18
769	<i>In vitro</i> -Osteoclastic Activity Studies on Surfaces of 3D Printed Calcium Phosphate Scaffolds. Journal of Biomaterials Applications, 2011, 26, 359-380.	1.2	128
770	Fabrication of Porous Scaffolds with a Controllable Microstructure and Mechanical Properties by Porogen Fusion Technique. International Journal of Molecular Sciences, 2011, 12, 890-904.	1.8	66
771	Assessment of scaffold porosity: the new route of micro-CT. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 165-175.	0.4	27
772	A Computational and Cellular Solids Approach to the Stiffness-Based Design of Bone Scaffolds. Journal of Biomechanical Engineering, 2011, 133, 091003.	0.6	24
773	Histogenesis in Three-dimensional Scaffolds. , 2011, , 675-691.		1
774	3D Elastomeric Scaffolds Fabricated by Casting in Micro End Milled Moulds. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2011, 9, 17-23.	0.7	1
775	Mechanical Performance and <i>In Vitro</i> Studies of Hydroxyapatite/Wollastonite Scaffold for Bone Tissue Engineering. Key Engineering Materials, 0, 493-494, 855-860.	0.4	1

#	Article	IF	CITATIONS
776	Incorporation of salmon calcitonin-loaded poly(lactide-co-glycolide) (PLGA) microspheres into calcium phosphate bone cement and the biocompatibility evaluation in vitro. Journal of Bioactive and Compatible Polymers, 2012, 27, 133-147.	0.8	11
777	Improving Bioactivity of Porous \hat{l}^2 -TCP Ceramics by Forming Bone-Like Apatite Layer on the Surfaces of Pore Walls. Key Engineering Materials, 0, 512-515, 1815-1820.	0.4	2
778	Radiological and Histological Evaluation of Regenos® which Implanted in Human Radial Fracture: A Clinical Case Report. Key Engineering Materials, 0, 529-530, 313-316.	0.4	2
779	Design of Porous Three-Dimensional PDLLA/nano-hap Composite Scaffolds Using Stereolithography. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 249-258.	0.7	46
780	Modelling and Tissue Engineering of Three Layers of Calvarial Bone as a Biomimetic Scaffold. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2012, 15, 37-53.	0.7	4
781	The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds. Materials, 2012, 5, 1336-1347.	1.3	107
782	Assessing the Effect of Nano Biphasic Calcium Phosphate on Acute Alveolar Bone Defects in Beagle Dogs Using Micro-Computed Tomography Imaging. Advanced Materials Research, 2012, 465, 132-135.	0.3	2
783	Customized Three Dimensional Printed Porous Polyethylene for Calvarial Reconstruction. Advanced Materials Research, 2012, 506, 477-480.	0.3	1
784	Multiscale Photoacoustic Microscopy of Single-Walled Carbon Nanotube-Incorporated Tissue Engineering Scaffolds. Tissue Engineering - Part C: Methods, 2012, 18, 310-317.	1.1	48
785	Preparation and Properties of Biphasic Calcium Phosphate Scaffolds Multiply Coated with HA/PLLA Nanocomposites for Bone Tissue Engineering Applications. Journal of Nanomaterials, 2012, 2012, 1-11.	1.5	26
786	Is the Stryker Revolution Mixing System Fit for Purpose? Reliability and a Micro-Ct Assessment of Cement Porosity. HIP International, 2012, 22, 90-95.	0.9	0
787	Physical Properties and Biocompatibility of a Core-Sheath Structure Composite Scaffold for Bone Tissue Engineering In Vitro. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-9.	3.0	27
788	Thin-Layer Hydroxyapatite Deposition on a Nanofiber Surface Stimulates Mesenchymal Stem Cell Proliferation and Their Differentiation into Osteoblasts. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	27
789	Evaluation of Bioactive Class (13-93) Scaffolds with an Oriented Microstructure for Regenerating Load-bearing Bones. Materials Research Society Symposia Proceedings, 2012, 1465, 13.	0.1	0
790	Evaluating Initial Content of the Slurry and Cooling Rate on the Microstructural and Mechanical Characteristics of Freeze Casted Hydroxyapatite Macroporous Scaffolds. Key Engineering Materials, 0, 529-530, 147-152.	0.4	7
791	Biofabrication of Biopolymer and Biocomposite Scaffolds for Bone Tissue Engineering. Key Engineering Materials, 0, 523-524, 374-379.	0.4	1
792	Fabrication of Spherical Carbonate Apatite Using Calcium Sulfate as a Precursor by W/O Emulsion Method. Key Engineering Materials, 0, 529-530, 78-81.	0.4	1
793	3D polylactide-based scaffolds for studying human hepatocarcinoma processes <i>in vitro</i> . Science and Technology of Advanced Materials, 2012, 13, 045003.	2.8	25

#	Article	IF	CITATIONS
794	In Vivo Assessment of Bone Ingrowth Potential of Three-Dimensional E-Beam Produced Implant Surfaces and the Effect of Additional Treatment by Acid Etching and Hydroxyapatite Coating. Journal of Biomaterials Applications, 2012, 26, 861-875.	1.2	10
795	Development of Bio-Compatible Metallic Structures Using Direct Metal Deposition Process. Advanced Materials Research, 0, 576, 141-145.	0.3	0
796	PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and <i>in vitro</i> biological evaluation. Biofabrication, 2012, 4, 015003.	3.7	110
797	Bone Regeneration in a Rabbit Critical-Sized Calvarial Model Using Tyrosine-Derived Polycarbonate Scaffolds. Tissue Engineering - Part A, 2012, 18, 1132-1139.	1.6	47
798	Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication, 2012, 4, 015002.	3.7	17
799	Studies on a Novel Gelatin Sponge: Preparation and Characterization of Cross-Linked Gelatin Scaffolds Using 2-Chloro-1-Methylpyridinium Iodide as a Zero-Length Cross-Linker. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 973-990.	1.9	6
800	Three Different Strategies to Obtain Porous Calcium Phosphate Cements: Comparison of Performance in a Rat Skull Bone Augmentation Model. Tissue Engineering - Part A, 2012, 18, 1171-1182.	1.6	41
801	POLYMER SCAFFOLDS FOR REGENERATIVE THERAPIES — DESIGN OF HIERARCHICALLY ORGANIZED STRUCTURES AND THEIR MORPHOLOGICAL CHARACTERIZATION. Nano LIFE, 2012, 02, 1230005.	0.6	3
802	Order versus Disorder: in vivo bone formation within osteoconductive scaffolds. Scientific Reports, 2012, 2, 274.	1.6	67
803	Surface characterization of silicate bioceramics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1281-1312.	1.6	22
804	Embroidered and surface coated polycaprolactone-co-lactide scaffolds. Biomatter, 2012, 2, 158-165.	2.6	27
805	Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses. Journal of Materials Research, 2012, 27, 2561-2567.	1.2	9
806	Low-Pressure Foaming: A Novel Method for the Fabrication of Porous Scaffolds for Tissue Engineering. Tissue Engineering - Part C: Methods, 2012, 18, 113-121.	1.1	28
808	Methods and interpretation of performance studies for bone implants. , 2012, , 271-312e.		2
809	Highly porous drug-eluting structures. Biomatter, 2012, 2, 239-270.	2.6	28
810	Macroporous/mesoporous bioglasses doped with Ag/TiO2 for dual drug action property and bone repair. IET Nanobiotechnology, 2012, 6, 93.	1.9	12
811	Cell Encapsulating Biomaterial Regulates Mesenchymal Stromal/Stem Cell Differentiation and Macrophage Immunophenotype. Stem Cells Translational Medicine, 2012, 1, 740-749.	1.6	43
812	Preparation and Characterization of New Nano-Composite Scaffolds Loaded With Vascular Stents. International Journal of Molecular Sciences, 2012, 13, 3366-3381.	1.8	14

#	Article	IF	Citations
813	Controlled Porosity of Ceramic Scaffold by Directional Freeze Casting and Scaffold Printing. , 2012, , .		0
814	Designing Controllable Porosity for Multifunctional Deformable Tissue Scaffolds. Journal of Medical Devices, Transactions of the ASME, 2012, 6, .	0.4	9
815	Micro Computed Tomography Based Quantification of Pore Size in Electron Beam Melted Titanium Biomaterials. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 403-407.	0.4	0
816	The Combined Use of Mesenchymal Stromal Cells and Scaffolds for Bone Repair. Current Pharmaceutical Design, 2012, 18, 1796-1820.	0.9	59
817	Biodegradable Bone Regeneration Synthetic Scaffolds: in Tissue Engineering. Current Stem Cell Research and Therapy, 2012, 7, 134-142.	0.6	27
818	Histological Analysis of Bone Bonding and Ingrowth into Connected Porous Hydroxyapatite Spacers in Spinal Surgery. Key Engineering Materials, 0, 529-530, 309-312.	0.4	4
820	Chondrogenesis of Adipose Stem Cells in a Porous Polymer Scaffold: Influence of the Pore Size. Cell Transplantation, 2012, 21, 2397-2405.	1.2	56
821	Bone Tissue Engineering: Recent Advances and Challenges. Critical Reviews in Biomedical Engineering, 2012, 40, 363-408.	0.5	1,758
822	Cell Proliferation, Corrosion Resistance and Mechanical Properties of Novel Titanium Foam with Sheet Shape. Materials Transactions, 2012, 53, 724-732.	0.4	11
823	The application of VP-ESEM in microstructure analysis of ceramic macroporous scaffolds for bone tissue engineering. IOP Conference Series: Materials Science and Engineering, 2012, 32, 012011.	0.3	0
824	Fuzzy reasoning system design and assessment of load-bearing endoprostheses and their fabrication processes. Archives of Metallurgy and Materials, 2012, 57, 759-766.	0.6	0
825	Bioceramic Scaffold—Bone Tissue Engineering. , 2012, , 83-95.		0
826	Self-Setting Calcium Orthophosphate Formulations. , 2012, , 459-578.		3
827	Biological Implications of Polymeric Scaffolds for Bone Tissue Engineering Developed via Solid Freeform Fabrication. , 2012, , 483-507.		0
828	Production of tubular porous hydroxyapatite using electrophoretic deposition. Journal of the Ceramic Society of Japan, 2012, 120, 569-573.	0.5	23
829	Mechanical Properties of Porous Ti-Mo and Ti-Nb Alloys for Biomedical Application by Gelcasting. Procedia Engineering, 2012, 36, 160-167.	1.2	45
830	Magnesiumâ€Containing Bioactive Glasses for Biomedical Applications. International Journal of Applied Glass Science, 2012, 3, 221-253.	1.0	158
831	Characterization of controlled highly porous hyaluronan/gelatin cross-linking sponges for tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14, 227-238.	1.5	23

ARTICLE IF CITATIONS Multi-layer porous fiber-reinforced composites for implants: In vitro calcium phosphate formation in 832 38 1.6 the presence of bioactive glass. Dental Materials, 2012, 28, 1134-1145. Revisiting bioceramics: Bone regenerative and local drug delivery systems. Progress in Solid State Chemistry, 2012, 40, 17-30. Layer-by-Layer Tissue Microfabrication Supports Cell Proliferation <i>In Vitro </i> and <i>In Vivo </i>. 834 1.1 98 Tissue Engineering - Part C: Methods, 2012, 18, 62-70. Preparation of foam-like carbon nanotubes/hydroxyapatite composite scaffolds with 3.1 superparamagnetic properties. Applied Surface Science, 2012, 262, 227-230. Controlling the structural organization of regenerated bone by tailoring tissue engineering scaffold 836 6.7 32 architecture. Journal of Materials Chemistry, 2012, 22, 9721. Multi-layered polycaprolactone–alginate–fucoidan biocomposites supplemented with controlled release of fucoidan for bone tissue regeneration: fabrication, physical properties, and cellular 1.2 activities. Soft Matter, 2012, 8, 6264 Cryogenically direct-plotted alginate scaffolds consisting of micro/nano-architecture for bone 838 1.7 16 tissue regeneration. RSC Advances, 2012, 2, 7578. Cell Instructive Microporous Scaffolds through Interface Engineering. Journal of the American 6.6 66 Chemical Society, 2012, 134, 20103-20109. Structural and Vascular Analysis of Tissue Engineering Scaffolds, Part 1: Numerical Fluid Analysis. 840 0.4 8 Methods in Molecular Biology, 2012, 868, 183-207. The effects and interactions of fabrication parameters on the properties of selective laser sintered 841 1.6 hydroxyapatite polyamide composite biomaterials. Rapid Prototyping Journal, 2012, 18, 16-27. Bone Regeneration Using Self-Assembled Nanoparticle-Based Scaffolds., 2012, , 225-237. 842 2 A new combined approach to metal-ceramic implants with controllable surface topography 843 2.2 30 chemistry, blind porosity, and wettability. Surface and Coatings Technology, 2012, 208, 14-23. Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone 844 regeneration in rabbit calvaria. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 1.6 30 2012, 100B, 2044-2052. Effect of the internal microstructure in rapid-prototyped polycaprolactone scaffolds on physical and cellular properties for bone tissue regeneration. Applied Physics A: Materials Science and Processing, 845 1.1 2012, 108, 901-909. Functionally graded PCL/Î²-TCP biocomposites in a multilayered structure for bone tissue regeneration. 846 10 1.1 Applied Physics A: Materials Science and Processing, 2012, 108, 949-959. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. Journal 847 of Sol-Gel Science and Technology, 2012, 64, 704-710. In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin 848 0.8 23 nanocomposite scaffold along with DBM. Journal of Nanoparticle Research, 2012, 14, 1. Osteoconductive effectiveness of bone graft derived from antler cancellous bone: an experimental 849 study in the rabbit mandible defect model. International Journal of Oral and Maxillofacial Surgery, 34 2012, 41, 1330-1337.

#	Article	IF	CITATIONS
850	Tuning polycaprolactone–carbon nanotube composites for bone tissue engineering scaffolds. Materials Science and Engineering C, 2012, 32, 152-159.	3.8	82
851	Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomaterialia, 2012, 8, 4162-4172.	4.1	101
852	Implantation of Orthobiologic, Biodegradable Scaffolds in Osteochondral Repair. Orthopedic Clinics of North America, 2012, 43, 255-261.	0.5	20
853	A new hybrid scaffold constructed of solid freeform-fabricated PCL struts and collagen struts for bone tissue regeneration: fabrication, mechanical properties, and cellular activity. Journal of Materials Chemistry, 2012, 22, 15901.	6.7	43
854	The effect of microsized roughness in nano/microsized hierarchical surfaces replicated from a lotus leaf on the activities of osteoblast-like cells (MG63). Journal of Materials Chemistry, 2012, 22, 7584.	6.7	20
856	Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. Journal of Biomaterials Applications, 2012, 27, 277-289.	1.2	37
857	Generation of a biomimetic 3D microporous nano-fibrous scaffold on titanium surfaces for better osteointegration of orthopedic implants. Journal of Materials Chemistry, 2012, 22, 1904-1915.	6.7	21
858	Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomedical Microdevices, 2012, 14, 1115-1127.	1.4	118
859	Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication, 2012, 4, 025003.	3.7	124
860	Cells (MC3T3-E1)-Laden Alginate Scaffolds Fabricated by a Modified Solid-Freeform Fabrication Process Supplemented with an Aerosol Spraying. Biomacromolecules, 2012, 13, 2997-3003.	2.6	101
861	Tailor-Made Fibrous Nanohydroxyapatite/Polydimethylsiloxane Composites: Excavating the Role of Nanofiller Aspect Ratio, Amorphicity, and Noncovalent Surface Interaction. Journal of Physical Chemistry C, 2012, 116, 8763-8772.	1.5	20
862	Effects of micro-patterns in three-dimensional scaffolds for tissue engineering applications. Journal of Micromechanics and Microengineering, 2012, 22, 125002.	1.5	22
863	Gradient biomaterials and their influences on cell migration. Interface Focus, 2012, 2, 337-355.	1.5	126
864	The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomaterialia, 2012, 8, 2824-2834.	4.1	594
865	Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Applied Surface Science, 2012, 258, 7589-7595.	3.1	67
866	Mechanical and dielectric properties of silicon nitride ceramics with high and hierarchical porosity. Materials & Design, 2012, 40, 562-566.	5.1	38
867	Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Materials Letters, 2012, 85, 124-127.	1.3	61
868	Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds. Materials Science and Engineering C, 2012, 32, 1386-1393.	3.8	21

#	Article	IF	CITATIONS
869	Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model. Materials Science and Engineering C, 2012, 32, 1536-1541.	3.8	19
870	Permeability analysis of scaffolds for bone tissue engineering. Journal of Biomechanics, 2012, 45, 938-944.	0.9	178
871	A paradigm for the development and evaluation of novel implant topologies for bone fixation: In vivo evaluation. Journal of Biomechanics, 2012, 45, 2651-2657.	0.9	11
872	Application of computational fluid dynamics in tissue engineering. Journal of Bioscience and Bioengineering, 2012, 114, 123-132.	1.1	34
873	Experimental Formation of Dentin-like Structure in the Root Canal Implant Model Using Cryopreserved Swine Dental Pulp Progenitor Cells. Journal of Endodontics, 2012, 38, 913-919.	1.4	51
874	Tailoring elastic properties of PLGA/TiO2 biomaterials. Computational Materials Science, 2012, 61, 283-286.	1.4	10
875	Modeling porous scaffold microstructure by a reaction–diffusion system and its degradation by hydrolysis. Computers in Biology and Medicine, 2012, 42, 147-155.	3.9	10
876	Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 1-13.	2.0	241
877	Thermoresponsive Macroporous Scaffolds Prepared by Emulsion Templating. Macromolecular Rapid Communications, 2012, 33, 1833-1839.	2.0	22
878	Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA. Journal of Materials Science: Materials in Medicine, 2012, 23, 2671-2678.	1.7	100
879	Biomimetic Polymers (for Biomedical Applications). , 2012, , 339-361.		1
880	Osteoinduction and survival of osteoblasts and boneâ€marrow stromal cells in 3 <scp>D</scp> biphasic calcium phosphate scaffolds under static and dynamic culture conditions. Journal of Cellular and Molecular Medicine, 2012, 16, 2350-2361.	1.6	84
883	Combined Effect of Osteopontin and BMP-2 Derived Peptides Grafted to an Adhesive Hydrogel on Osteogenic and Vasculogenic Differentiation of Marrow Stromal Cells. Langmuir, 2012, 28, 5387-5397.	1.6	53
884	High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers. Biofabrication, 2012, 4, 025009.	3.7	26
885	Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds. Transactions of Nonferrous Metals Society of China, 2012, 22, 2554-2561.	1.7	53
886	Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Advanced Drug Delivery Reviews, 2012, 64, 1129-1141.	6.6	145
887	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	5.7	88
888	Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012, 30, 546-554.	4.9	1,763

#	Article	IF	CITATIONS
889	Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 14-24.	1.5	84
890	Dentin as a suitable bone substitute comparable to ß-TCP—an experimental study in mice. Microvascular Research, 2012, 84, 116-122.	1.1	25
892	Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2273-2286.	1.9	7
893	Progress of three-dimensional macroporous bioactive glass for bone regeneration. Frontiers of Chemical Science and Engineering, 2012, 6, 470-483.	2.3	7
894	Repair of rabbit ulna segmental bone defect using freshly isolated adipose-derived stromal vascular fraction. Cytotherapy, 2012, 14, 296-305.	0.3	30
895	Optimally Porous and Biomechanically Compatible Scaffolds for Large-Area Bone Regeneration. Tissue Engineering - Part A, 2012, 18, 1376-1388.	1.6	108
896	APPLICATIONS OF CALCIUM PHOSPHATE NANOPARTICLES IN POROUS HARD TISSUE ENGINEERING SCAFFOLDS. Nano, 2012, 07, 1230004.	0.5	27
897	Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1400-1421.	1.6	156
898	Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of moulds. Biofabrication, 2012, 4, 045002.	3.7	22
899	Tissue Engineering III: Cell - Surface Interactions for Tissue Culture. Advances in Biochemical Engineering/Biotechnology, 2012, , .	0.6	8
900	Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials, 2012, 1, 2.	1.8	175
901	Mineralized and osteoid tissue from dental pulp stem cells on micro-arc oxidation titanium in vitro. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 620-625.	1.0	3
902	Biofabrication of Osteochondral Tissue Equivalents by Printing Topologically Defined, Cell-Laden Hydrogel Scaffolds. Tissue Engineering - Part C: Methods, 2012, 18, 33-44.	1.1	353
903	Ultrasonication and Genipin Cross-Linking to Prepare Novel Silk Fibroin–Gelatin Composite Hydrogel. Journal of Bioactive and Compatible Polymers, 2012, 27, 327-341.	0.8	52
904	Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. Journal of Materials Science: Materials in Medicine, 2012, 23, 2993-3002.	1.7	91
905	The influence of plasma technology coupled to chemical grafting on the cell growth compliance of 3D hydroxyapatite scaffolds. Journal of Materials Science: Materials in Medicine, 2012, 23, 2727-2738.	1.7	7
906	Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. Journal of Materials Science: Materials in Medicine, 2012, 23, 2369-2380.	1.7	57
907	Porous calcium sulfate ceramics with tunable degradation rate. Journal of Materials Science: Materials in Medicine, 2012, 23, 2437-2443.	1.7	17

#	Article	IF	CITATIONS
908	Effect of heat treatment on the properties of SiO2–CaO–MgO–P2O5 bioactive glasses. Journal of Materials Science: Materials in Medicine, 2012, 23, 2101-2108.	1.7	18
909	Fabrication of Large Pores in Electrospun Nanofibrous Scaffolds for Cellular Infiltration: A Review. Tissue Engineering - Part B: Reviews, 2012, 18, 77-87.	2.5	190
911	Three-Dimensional Collagen/Alginate Hybrid Scaffolds Functionalized with a Drug Delivery System (DDS) for Bone Tissue Regeneration. Chemistry of Materials, 2012, 24, 881-891.	3.2	86
912	Fabrication of solid and hollow carbonate apatite microspheres as bone substitutes using calcite microspheres as a precursor. Dental Materials Journal, 2012, 31, 549-557.	0.8	32
913	Porous Titanium by Powder Metallurgy for Biomedical Application: Characterization, Cell Citotoxity and in vivo Tests of Osseointegration. , 0, , .		11
914	Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering. Biologics: Targets and Therapy, 2012, 6, 47.	3.0	28
915	Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold. International Journal of Nanomedicine, 2012, 7, 5881.	3.3	66
916	Preparation and Functional Assessment of Composite Chitosan-Nano-Hydroxyapatite Scaffolds for Bone Regeneration. Journal of Functional Biomaterials, 2012, 3, 114-130.	1.8	25
917	A biodegradable porous composite scaffold of PCL/BCP containing Ang-(1-7) for bone tissue engineering. Ceramica, 2012, 58, 481-488.	0.3	18
918	Drug Delivery Properties of Macroporous Polystyrene Solid Foams. Journal of Pharmacy and Pharmaceutical Sciences, 2012, 15, 197.	0.9	11
919	Periodontal repair following implantation of beta-tricalcium phosphate with different pore structures in class III furcation defects in dogs. Dental Materials Journal, 2012, 31, 681-688.	0.8	24
920	Accelerated Bone Regeneration by Chitosan/Nanometer Hydroxyapatite/Collagen Composite Incorporating BMP-7 Mimetic Peptide. Journal of Hard Tissue Biology, 2012, 21, 481-488.	0.2	5
921	Vascularization in the Bone Repair. , 2012, , .		5
922	Effect of Porosity of Titanium Web on Cortical Bone Response. Journal of Hard Tissue Biology, 2012, 21, 103-108.	0.2	3
923	Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 155-162.	1.3	115
924	Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 272-279.	1.3	14
925	Feasibility of ceramic-polymer composite cryogels as scaffolds for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 421-433.	1.3	17
926	Co-culturing mesenchymal stem cells from bone marrow and periosteum enhances osteogenesis and neovascularization of tissue-engineered bone. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 822-832.	1.3	22

#	Article	IF	CITATIONS
927	Morphology, wettability, and mechanical properties of polycaprolactone/hydroxyapatite composite scaffolds with interconnected pore structures fabricated by a miniâ€deposition system. Polymer Engineering and Science, 2012, 52, 2396-2402.	1.5	45
928	Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication, 2012, 4, 025007.	3.7	119
929	The Structure, Functions, and Mechanical Properties of Keratin. Jom, 2012, 64, 449-468.	0.9	266
930	In vivo degradation and new bone formation of calcium phosphate cement–gelatin powder composite related to macroporosity after in situ gelatin degradation. Journal of Orthopaedic Research, 2012, 30, 1103-1111.	1.2	31
931	Oxidized Dextran as Crosslinker for Chitosan Cryogel Scaffolds and Formation of Polyelectrolyte Complexes between Chitosan and Gelatin. Macromolecular Bioscience, 2012, 12, 1090-1099.	2.1	49
932	Fabrication of poly(lactideâ€coâ€glycolide) scaffold embedded spatially with hydroxyapatite particles on pore walls for bone tissue engineering. Polymers for Advanced Technologies, 2012, 23, 1446-1453.	1.6	19
933	Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1673-1679.	2.1	41
934	Fabrication and characterization of novel nano hydroxyapatite/βâ€tricalcium phosphate scaffolds in three different composition ratios. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2260-2268.	2.1	36
935	The controlled release of vancomycin in gelatin/βâ€TCP composite scaffolds. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2295-2301.	2.1	25
936	Nanophase bone substitute <i>in vivo</i> response to subcutaneous implantation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2462-2473.	2.1	10
937	Tubular perfusion system culture of human mesenchymal stem cells on polyâ€ <scp>Lâ€</scp> lactic acid scaffolds produced using a supercritical carbon dioxideâ€assisted process. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2563-2572.	2.1	42
938	Threeâ€dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2948-2959.	2.1	23
939	<i>In vitro</i> degradation, biocompatibility, and <i>in vivo</i> osteogenesis of poly(lacticâ€ <i>co</i> â€glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3239-3250.	2.1	45
940	Biomimetic coating on bioactive glassâ€derived scaffolds mimicking bone tissue. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3259-3266.	2.1	44
941	Poly (εâ€caprolactone) coating delays vancomycin delivery from porous chitosan/βâ€tricalcium phosphate composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1803-1811.	1.6	24
942	Potential bioactivity of coatings formed on AZ91D magnesium alloy by plasma electrolytic anodizing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1846-1853.	1.6	9
943	Directâ€Write Assembly of 3D Silk/Hydroxyapatite Scaffolds for Bone Coâ€Cultures. Advanced Healthcare Materials, 2012, 1, 729-735.	3.9	136
944	Fabrication of graded macroporous poly(lactic acid) scaffold by a progressive solvent casting/porogen leaching approach. Journal of Applied Polymer Science, 2012, 125, 571-577.	1.3	17

#	Article	IF	CITATIONS
945	Characterization and bioactivity evaluation of (starch/ <i>N</i> â€vinylpyrrolidone)—hydroxyapatite nanocomposite hydrogels for bone tissue regeneration. Journal of Applied Polymer Science, 2013, 128, 1697-1705.	1.3	7
946	Vascularized Bone Tissue Engineering: Approaches for Potential Improvement. Tissue Engineering - Part B: Reviews, 2012, 18, 363-382.	2.5	259
947	The effect of indentation-induced microcracks on the elastic modulus of hydroxyapatite. Journal of Materials Science, 2012, 47, 6333-6345.	1.7	13
948	Sol–gel method to fabricate CaP scaffolds by robocasting for tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 921-930.	1.7	33
949	Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility. Journal of Materials Science: Materials in Medicine, 2012, 23, 1271-1279.	1.7	30
950	Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 1371-1385.	1.7	35
951	Processing and characterization of innovative scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 1397-1409.	1.7	36
952	Osseointegration of hollow porous titanium prostheses loaded with cancellous bone matrix in rabbits. Science Bulletin, 2012, 57, 2615-2623.	1.7	4
953	Biomimetic hydrogels gate transport of calcium ions across cell culture inserts. Biomedical Microdevices, 2012, 14, 549-558.	1.4	17
954	Coupling of osteogenesis and angiogenesis in bone substitute healing – A brief overview. Annals of Anatomy, 2012, 194, 171-173.	1.0	52
955	Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds. Acta Materialia, 2012, 60, 2778-2789.	3.8	45
956	Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement. Acta Biomaterialia, 2012, 8, 404-414.	4.1	58
957	Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomaterialia, 2012, 8, 373-385.	4.1	193
958	Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomaterialia, 2012, 8, 570-578.	4.1	100
959	Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomaterialia, 2012, 8, 289-301.	4.1	276
960	Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomaterialia, 2012, 8, 1401-1421.	4.1	787
961	Open porous microscaffolds for cellular and tissue engineering by lipid templating. Acta Biomaterialia, 2012, 8, 1303-1315.	4.1	20
962	Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomaterialia, 2012, 8, 2384-2391.	4.1	56

#	Article	IF	CITATIONS
963	Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4. Acta Biomaterialia, 2012, 8, 2331-2339.	4.1	46
964	Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomaterialia, 2012, 8, 2401-2410.	4.1	86
965	<i>Retracted: </i> Histomorphometric and mineral degradation study of Ossceram [®] : a novel biphasic Bâ€tricalcium phosphate, in critical size defects in rabbits. Clinical Oral Implants Research, 2012, 23, 667-675.	1.9	34
966	Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydrate Polymers, 2012, 87, 274-283.	5.1	233
967	Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Composites Part B: Engineering, 2012, 43, 2192-2197.	5.9	67
968	Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials, 2012, 33, 524-534.	5.7	249
969	Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials. Biomaterials, 2012, 33, 999-1006.	5.7	78
970	Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials, 2012, 33, 2848-2857.	5.7	162
971	InÂvivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials, 2012, 33, 4309-4318.	5.7	217
972	Enhancing the biological performance of synthetic polymeric materials byÂdecoration with engineered, decellularized extracellular matrix. Biomaterials, 2012, 33, 5085-5093.	5.7	112
973	Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials, 2012, 33, 6698-6708.	5.7	164
974	Placenta―versus boneâ€marrowâ€derived mesenchymal cells for the repair of segmental bone defects in a rabbit model. FEBS Journal, 2012, 279, 2455-2465.	2.2	28
975	A New Highly Bioactive Composite for Bone Tissue Repair. International Journal of Applied Ceramic Technology, 2012, 9, 455-467.	1.1	12
976	Porous Silicon Carbide Scaffolds with Patterned Surfaces Obtained from the Sea Rush <i>Juncus maritimus</i> for Tissue Engineering Applications. International Journal of Applied Ceramic Technology, 2012, 9, 486-496.	1.1	5
977	Highâ€Performance Hydroxyapatite Scaffolds for Bone Tissue Engineering Applications. International Journal of Applied Ceramic Technology, 2012, 9, 507-516.	1.1	49
978	Preparation and characterization of porous Ti6Al4V/alginate hybrid implant by combination of electron beam melting and freeze-drying. Materials Letters, 2012, 81, 23-26.	1.3	9
979	Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions. Medical Engineering and Physics, 2012, 34, 625-639.	0.8	72
980	Chitosan-based polyelectrolyte complex scaffolds with antibacterial properties for treating dental bone defects. Materials Science and Engineering C, 2012, 32, 207-214.	3.8	22

#	Article	IF	CITATIONS
981	In vitro biocompatibility study of calcium phosphate glass ceramic scaffolds with different trace element doping. Materials Science and Engineering C, 2012, 32, 356-363.	3.8	23
982	Radiation synthesis of gelatin/CM-chitosan∫î²-tricalcium phosphate composite scaffold for bone tissue engineering. Materials Science and Engineering C, 2012, 32, 994-1000.	3.8	44
983	PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. Journal of Supercritical Fluids, 2012, 65, 32-38.	1.6	66
984	Repair of calvarial defects in rabbits with platelet-rich plasma as the scaffold for carrying bone marrow stromal cells. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2012, 113, 327-333.	0.2	26
985	Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2012, 113, 348-355.	0.2	44
986	Bioactive hydrogels demonstrate mediated release of a chromophore by chymotrypsin. Journal of Controlled Release, 2012, 160, 41-47.	4.8	15
987	Calcium phosphate bone graft substitutes: Failures and hopes. Journal of the European Ceramic Society, 2012, 32, 2663-2671.	2.8	212
988	Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7, 41-49.	1.5	99
989	Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 137-152.	1.5	42
990	Tuning Elasticity of Openâ€Cell Solid Foams and Bone Scaffolds via Randomized Vertex Connectivity. Advanced Engineering Materials, 2012, 14, 120-124.	1.6	10
991	Fabrication and evaluation of poly(epsilonâ€caprolactone)/silk fibroin blend nanofibrous scaffold. Biopolymers, 2012, 97, 265-275.	1.2	51
992	Esophageal tissue engineering: An inâ€depth review on scaffold design. Biotechnology and Bioengineering, 2012, 109, 1-15.	1.7	59
993	Restoration of rat calvarial defects by poly(lactide-co-glycolide)/hydroxyapatite scaffolds loaded with bone mesenchymal stem cells and DNA complexes. Science Bulletin, 2012, 57, 435-444.	1.7	8
994	Fabrication and in vivo evaluation of Ti6Al4V implants with controlled porous structure and complex shape. Frontiers of Mechanical Engineering, 2012, 7, 66-71.	2.5	7
995	Engineering stem cells for treatment of osteochondral defects. Skeletal Radiology, 2012, 41, 1-4.	1.2	7
996	Bioactive ceramics: processing, structures and properties. Journal of Materials Science, 2012, 47, 610-624.	1.7	101
997	In vivo lamellar bone formation in fibre coated MgCHA–PCL-composite scaffolds. Journal of Materials Science: Materials in Medicine, 2012, 23, 117-128.	1.7	17
998	Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. Journal of Porous Materials, 2012, 19, 181-188.	1.3	86

#	Article	IF	CITATIONS
999	Mesh biocompatibility: effects of cellular inflammation and tissue remodelling. Langenbeck's Archives of Surgery, 2012, 397, 255-270.	0.8	112
1000	Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study. Lasers in Medical Science, 2012, 27, 181-189.	1.0	40
1001	Evaluation of moldable, <i>in situ</i> hardening calcium phosphate bone graft substitutes. Clinical Oral Implants Research, 2013, 24, 149-157.	1.9	52
1002	Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. Journal of Biomedical Materials Research - Part A, 2013, 101A, 13-22.	2.1	34
1003	Discâ€electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. Journal of Biomedical Materials Research - Part A, 2013, 101A, 115-122.	2.1	23
1004	Fabrication and characterization of natural origin chitosan―gelatinâ€elginate composite scaffold by foaming method without using surfactant. Journal of Applied Polymer Science, 2013, 127, 3228-3241.	1.3	39
1005	Pressureâ€activated microsyringe composite scaffold of poly(<scp>L</scp> â€lactic acid) and carbon nanotubes for bone tissue engineering. Journal of Applied Polymer Science, 2013, 129, 528-536.	1.3	32
1006	An <i>in vivo</i> study on the effect of scaffold geometry and growth factor release on the healing of bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 687-696.	1.3	32
1007	Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 708-719.	1.3	16
1008	Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation <i>in vivo</i> . Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 99-111.	1.3	46
1009	Functional role of scaffold geometries as a template for physiological ECM formation: evaluation of collagen 3D assembly. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 161-168.	1.3	14
1010	"Smart―microspheres for self-renewal of embryonic stem cells. Macromolecular Research, 2013, 21, 134-136.	1.0	3
1011	Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem Cell Research and Therapy, 2013, 4, 53.	2.4	77
1012	Characterization of a hybrid bone substitute composed of polylactic acid tetrapod chips and hydroxyapatite powder. Tissue Engineering and Regenerative Medicine, 2013, 10, 71-76.	1.6	6
1013	Bone Morphogenetic Protein-2 Release from Composite Hydrogels of Oligo(poly(ethylene glycol)) Tj ETQq0 0 0 r	gBT_/Over 1.7	lock 10 Tf 50
1014	Tailoring Silk-Based Matrices for Tissue Regeneration. ACS Symposium Series, 2013, , 281-299.	0.5	1
1015	In Vitro Mesenchymal Trilineage Differentiation and Extracellular Matrix Production by Adipose and Bone Marrow Derived Adult Equine Multipotent Stromal Cells on a Collagen Scaffold. Stem Cell Reviews and Reports, 2013, 9, 858-872.	5.6	57
1016	Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Materials Science and Engineering C, 2013, 33, 1710-1719.	3.8	20

ARTICLE IF CITATIONS Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion 1017 2.9 79 templating. Journal of Materials Chemistry B, 2013, 1, 4736. A new t-PA releasing concept based on protein–protein displacement. Soft Matter, 2013, 9, 2321. 1.2 Three dimensional melt-deposition of polycaprolactone/bio-derived hydroxyapatite composite into 1019 1.9 23 scaffold for bone repair. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 539-550. Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds/biological medium interface. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 153-157. Integrated Bi‣ayered Scaffold for Osteochondral Tissue Engineering. Advanced Healthcare Materials, 1021 3.9 83 2013, 2, 872-883. Fabrication and in vitro evaluations with osteoblast-like MG-63 cells of porous hyaluronic acid-gelatin blend scaffold for bone tissue engineering applications. Journal of Materials Science, 1.7 2013, 48, 4233-4242. Improved angiogenic cell penetration in vitro and in vivo in collagen scaffolds with internal 1023 1.7 8 channels. Journal of Materials Science: Materials in Medicine, 2013, 24, 1571-1580. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating. Journal of Materials Science: Materials in 1.7 70 Medicine, 2013, 24, 745-753. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a 1025 1.7 40 comparative study in rabbits. Journal of Materials Science: Materials in Medicine, 2013, 24, 417-436. Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Frontiers of 1.1 54 Materials Science, 2013, 7, 103-117. Scaffolds made of nanostructured phosphates, collagen and chitosan for cell culture. Powder 1029 2.1 33 Technology, 2013, 238, 99-107. Green and safe in situ templating of bioactive glass scaffolds for bone tissue engineering. Journal of 2.9 Materials Chemistry B, 2013, 1, 1782. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing 1031 bone morphogenic protein and bone formation peptide for bone tissue regeneration. Bioprocess and 1.7 29 Biosystems Engineering, 2013, 36, 1725-1734. Design maps for scaffold constructs in bone regeneration. Biomedical Microdevices, 2013, 15, 1005-1013. 1.4 Nanoporosity Significantly Enhances the Biological Performance of Engineered Glass Tissue 1033 1.6 35 Scaffolds. Tissue Engineering - Part A, 2013, 19, 1632-1640. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head 1034 1.9 54 defects in rats. Magnetic Resonance in Medicine, 2013, 70, 925-935. Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward †scaffold on 1035 3.7 44 scaffold' hard tissue engineering. Biofabrication, 2013, 5, 045002. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and 3.8 94 characterisation. Materials Science and Engineering C, 2013, 33, 4203-4212.

#	Article	IF	CITATIONS
1037	Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration. Materials Science and Engineering C, 2013, 33, 4460-4469.	3.8	64
1038	Textured and Porous Materials. , 2013, , 321-331.		6
1039	Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach. Materials Science and Engineering C, 2013, 33, 4188-4196.	3.8	24
1040	Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds. Ceramics International, 2013, 39, 4839-4846.	2.3	70
1041	Surface Nanoarchitecture for Bioâ€Applications: Selfâ€Regulating Intelligent Interfaces. Advanced Functional Materials, 2013, 23, 4483-4506.	7.8	79
1042	Microengineered PEG Hydrogels: 3D Scaffolds for Guided Cell Growth. Macromolecular Bioscience, 2013, 13, 562-572.	2.1	13
1043	Open cellular magnesium alloys for biodegradable orthopaedic implants. Journal of Magnesium and Alloys, 2013, 1, 303-311.	5.5	31
1044	Nanosized fibers' effect on adult human articular chondrocytes behavior. Materials Science and Engineering C, 2013, 33, 1539-1545.	3.8	9
1045	Fabrication and Characterization of Porous Sintered Ti–Ag Compacts forÂBiomedical Application Purpose. Journal of Materials Science and Technology, 2013, 29, 330-338.	5.6	15
1046	The influence of scaffold material on chondrocytes under inflammatory conditions. Acta Biomaterialia, 2013, 9, 6563-6575.	4.1	38
1047	Preparation of Microfibrillated Cellulose Composites for Sustained Release of H ₂ O ₂ or O ₂ for Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2013, 1, 1129-1134.	3.2	44
1048	Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(<scp>L</scp> -lactic acid) fibers. Journal of Biomaterials Applications, 2013, 27, 641-649.	1.2	12
1049	Combinatorial On hip Study of Miniaturized 3D Porous Scaffolds Using a Patterned Superhydrophobic Platform. Small, 2013, 9, 768-778.	5.2	41
1050	An innovative method to fabricate honeycomb-like poly(Îμ-caprolactone)/nano-hydroxyapatite scaffolds. Materials Letters, 2013, 93, 72-76.	1.3	16
1051	Preparation of polycaprolactone microspheresâ€aggregated scaffold with ultra big pores and fuzzy sphere surface by a oneâ€step phase separation method. Journal of Biomedical Materials Research - Part A, 2013, 101, 3219-3227.	2.1	10
1052	Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation. Thin Solid Films, 2013, 547, 235-240.	0.8	32
1053	Mesenchymal stem cell proliferation and differentiation on load-bearing trabecular Nitinol scaffolds. Acta Biomaterialia, 2013, 9, 8440-8448.	4.1	34
1054	De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. Journal of Bioactive and Compatible Polymers, 2013, 28, 439-452.	0.8	29

ARTICLE IF CITATIONS Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication, 1055 3.7 90 2013, 5, 035012. Designing heterogeneous porous tissue scaffolds for additive manufacturing processes. CAD Computer Aided Design, 2013, 45, 1507-1523. 1.4 Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured 1057 5.7 302 network on polyetheretherketone. Biomaterials, 2013, 34, 9264-9277. Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering. Journal of Biomechanical Engineering, 2013, 1058 135, 101013-8. Porous Copolymers of ε-Caprolactone as Scaffolds for Tissue Engineering. Macromolecules, 2013, 46, 1059 2.2 35 8136-8143. Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer. Materials Science and Engineering C, 2013, 33, 2808-2815. 3.8 Tunable cellular interactions and physical properties of nanofibrous PCL-forsterite:gelatin scaffold 1061 3.8 33 through sequential electrospinning. Composites Science and Technology, 2013, 87, 182-188. Simple Synthesis of Mesostructured Bioactive Glass Foams and Their Bioactivity Study by Micro-PIXE 1062 1.5 Method. Journal of Physical Chemistry C, 2013, 117, 23066-23071. Simultaneous Electrospinning and Electrospraying: A Straightforward Approach for Fabricating 1063 Hierarchically Structured Composite Membranes. ACS Applied Materials & amp; Interfaces, 2013, 5, 4.0 56 10090-10097. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with 1064 5.7 84 growth factors. Biomaterials, 2013, 34, 4971-4981 Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications. Materials 1065 3.8 30 Science and Engineering C, 2013, 33, 3780-3785. The first systematic analysis of 3D rapid prototyped poly(lµ-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and <i>in vitro</i>hMSC viability. Biofabrication, 2013, 5, 045004. 3.7 116 Biomimetic Spiral-Cylindrical Scaffold Based on Hybrid Chitosan/Cellulose/Nano-Hydroxyapatite 1067 4.0 88 Membrane for Bone Regeneration. ACS Applied Materials & amp; Interfaces, 2013, 5, 12036-12044. Structural changes to resorbable calcium phosphate bioceramic aged in vitro. Colloids and Surfaces 1068 2.5 B: Biointerfaces, 2013, 111, 469-478. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and 1069 113 4.1 hydroxyapatite conversion in a rat calvarial defect model. Acta Biomaterialia, 2013, 9, 8015-8026. Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydrate Polymers, 1070 5.1 2013, 97, 587-596. Photoacoustic microscopy in tissue engineering. Materials Today, 2013, 16, 67-77. 1071 8.3 48 Physical and Chemical Characterization of Biomaterials., 2013, , 11-47.

# 1073	ARTICLE Calcium Orthophosphate-Based Bioceramics. Materials, 2013, 6, 3840-3942.	lF 1.3	CITATIONS 219
1074	Fe–Pd based ferromagnetic shape memory actuators for medical applications: Biocompatibility, effect of surface roughness and protein coatings. Acta Biomaterialia, 2013, 9, 5845-5853.	4.1	45
1075	Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Materials Science and Engineering C, 2013, 33, 3858-3864.	3.8	44
1076	Bone tissue engineering using 3D printing. Materials Today, 2013, 16, 496-504.	8.3	1,490
1077	Formation of bioactive highly porous polymer matrixes for tissue engineering. Inorganic Materials: Applied Research, 2013, 4, 448-456.	0.1	8
1078	Characterization of porous glass fiber-reinforced composite (FRC) implant structures: porosity and mechanical properties. Journal of Materials Science: Materials in Medicine, 2013, 24, 2683-2693.	1.7	10
1079	Improvement of biofouling resistance on bacterial cellulose membranes. Biochemical Engineering Journal, 2013, 78, 138-145.	1.8	15
1080	Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies. Acta Biomaterialia, 2013, 9, 9012-9026.	4.1	133
1081	Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 107-118.	2.0	50
1082	PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits. Acta Biomaterialia, 2013, 9, 6711-6722.	4.1	84
1083	Diffusion–reaction model to describe osteogenesis within a titanium scaffold. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 266-267.	0.9	1
1084	Mechanical properties of porous titanium with different distributions of pore size. Transactions of Nonferrous Metals Society of China, 2013, 23, 2317-2322.	1.7	57
1085	Biomimetic Collagen–Hydroxyapatite Composite Fabricated via a Novel Perfusion-Flow Mineralization Technique. Tissue Engineering - Part C: Methods, 2013, 19, 487-496.	1.1	66
1086	Histogenesis in Three-Dimensional Scaffolds. , 2013, , 951-963.		0
1087	Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Materials Chemistry and Physics, 2013, 143, 373-379.	2.0	78
1088	Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. Journal of Materials Chemistry B, 2013, 1, 4764.	2.9	86
1089	Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceramics International, 2013, 39, 619-627.	2.3	93
1090	Numerical simulations of bioextruded polymer scaffolds for tissue engineering applications. Polymer International, 2013, 62, 1544-1552.	1.6	16

#	Article	IF	CITATIONS
1091	One-pot synthesis of magnetic, macro/mesoporous bioactive glasses for bone tissue engineering. Science and Technology of Advanced Materials, 2013, 14, 025004.	2.8	23
1092	Improvement of the compressive strength of a cuttlefish boneâ€derived porous hydroxyapatite scaffold via polycaprolactone coating. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1302-1309.	1.6	32
1093	Crystal structures of CaSiO3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces. Biomaterials Science, 2013, 1, 1101.	2.6	31
1094	Evaluation of macroporous blood and plasma scaffolds for skeletal muscle tissue engineering. Biomaterials Science, 2013, 1, 402.	2.6	13
1095	<i>Inâ€vivo</i> behavior of Siâ€hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2038-2048.	2.1	46
1096	Citrate-based biodegradable injectable hydrogel composites for orthopedic applications. Biomaterials Science, 2013, 1, 52-64.	2.6	57
1097	Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. Journal of Materials Chemistry B, 2013, 1, 6147.	2.9	31
1098	Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures. Chemical Communications, 2013, 49, 1431.	2.2	33
1099	Simulation of bone ingrowth in non-resorbable substitutes. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 251-252.	0.9	1
1100	High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomaterialia, 2013, 9, 5521-5530.	4.1	398
1101	Bioresponsive Hydrogels. Advanced Healthcare Materials, 2013, 2, 520-532.	3.9	45
1102	Evaluation of bone regeneration in implants composed of hollow HA microspheres loaded with transforming growth factor β1 in a rat calvarial defect model. Acta Biomaterialia, 2013, 9, 5718-5727.	4.1	45
1103	How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews, 2013, 65, 581-603.	6.6	429
1104	Numerical Approach of the Permeability of a Macroporous Bioceramic with Interconnected Spherical Pores. Transport in Porous Media, 2013, 96, 255-270.	1.2	1
1105	Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2661-2666.	2.1	34
1106	Macroporous Silk Fibroin Cryogels. Biomacromolecules, 2013, 14, 719-727.	2.6	129
1107	Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix. Langmuir, 2013, 29, 7393-7400.	1.6	106
1108	Cell(MC3T3â€E1)â€Printed Poly(<i>ïµ</i> â€caprolactone)/Alginate Hybrid Scaffolds for Tissue Regeneration. Macromolecular Rapid Communications, 2013, 34, 142-149.	2.0	88

#	Article	IF	CITATIONS
1109	The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on inÃvitro mineralisation and inÁvivo bone tissue integration. Biomaterials, 2013, 34, 7048-7063.	5.7	72
1110	Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. Colloids and Surfaces B: Biointerfaces, 2013, 103, 209-216.	2.5	44
1111	Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation. Materials Science and Engineering C, 2013, 33, 2987-2994.	3.8	88
1112	Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials, 2013, 34, 5538-5551.	5.7	138
1113	In vitro human periodontal ligament-like tissue formation with porous poly-l-lactide matrix. Materials Science and Engineering C, 2013, 33, 3273-3280.	3.8	11
1114	Osteogenic effect of local, long versus short term BMP-2 delivery from a novel SPU–PLGA–βTCP concentric system in a critical size defect in rats. European Journal of Pharmaceutical Sciences, 2013, 49, 873-884.	1.9	45
1115	Novel multilayer Ti foam with cortical bone strength and cytocompatibility. Acta Biomaterialia, 2013, 9, 5802-5809.	4.1	29
1116	Bone marrow absorption and retention properties of engineered scaffolds with micro-channels and nano-pores for tissue engineering: A proof of concept. Ceramics International, 2013, 39, 8401-8410.	2.3	23
1117	Icariin delivery porous PHBV scaffolds for promoting osteoblast expansion in vitro. Materials Science and Engineering C, 2013, 33, 3545-3552.	3.8	37
1118	Design and characterization of highly porous titanium foams with bioactive surface sintering in air. Journal of Alloys and Compounds, 2013, 575, 326-332.	2.8	29
1119	Additive manufacturing of star poly(ε-caprolactone) wet-spun scaffolds for bone tissue engineering applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 320-340.	0.8	66
1120	Mixed Nano/Microâ€Sized Calcium Phosphate Composite and EDTA Root Surface Etching Improve Availability of Graft Material in Intrabony Defects: An In Vivo Scanning Electron Microscopy Evaluation. Journal of Periodontology, 2013, 84, 1730-1739.	1.7	11
1121	The in vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions. Acta Biomaterialia, 2013, 9, 7518-7526.	4.1	29
1122	Tendon-to-bone healing using an injectable calcium phosphate cement combined with bone xenograft/BMP composite. Biomaterials, 2013, 34, 9926-9936.	5.7	32
1123	Axial compression of a hollow cylinder filled with foam: A study of porcupine quills. Acta Biomaterialia, 2013, 9, 5297-5304.	4.1	46
1124	Morphology and performance control of PLLA-based porous membranes by phase separation. Polymer, 2013, 54, 5965-5973.	1.8	54
1125	Cytocompatibility and mechanical properties of novel porous 316L stainless steel. Materials Science and Engineering C, 2013, 33, 2736-2743.	3.8	35
1126	Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomaterialia, 2013, 9, 5390-5399.	4.1	76

#	Article	IF	CITATIONS
1127	Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone, 2013, 56, 110-118.	1.4	48
1128	The collagen component of biological bone graft substitutes promotes ectopic bone formation by human mesenchymal stem cells. Acta Biomaterialia, 2013, 9, 7298-7307.	4.1	19
1129	New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomaterialia, 2013, 9, 9149-9158.	4.1	90
1130	Bio-inspired Ceramics: Promising Scaffolds for Bone Tissue Engineering. Procedia Engineering, 2013, 59, 51-58.	1.2	28
1131	Remodeling of tissue-engineered bone structures in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 119-129.	2.0	52
1132	Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds. Acta Biomaterialia, 2013, 9, 7506-7517.	4.1	54
1133	Ceramic nanocarriers: versatile nanosystem for protein and peptide delivery. Expert Opinion on Drug Delivery, 2013, 10, 241-259.	2.4	35
1134	Structural Interfaces and Attachments in Biology. , 2013, , .		20
1135	Elastic threeâ€dimensional poly (εâ€caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Proliferation, 2013, 46, 23-37.	2.4	73
1136	Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials, 2013, 34, 2875-2887.	5.7	114
1137	Electrospun fibers for tissue engineering, drug delivery, and wound dressing. Journal of Materials Science, 2013, 48, 3027-3054.	1.7	256
1138	Adult Multipotent Stromal Cell Technology for Bone Regeneration: A Review. Veterinary Surgery, 2013, 42, 1-11.	0.5	11
1139	The Bone–Cartilage Interface. , 2013, , 91-118.		2
1140	Biomimetic Engineering of Nanofibrous Gelatin Scaffolds with Noncollagenous Proteins for Enhanced Bone Regeneration. Tissue Engineering - Part A, 2013, 19, 1754-1763.	1.6	43
1141	Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2392-2404.	2.1	77
1142	Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science, 2013, 58, 636-704.	16.0	467
1143	Nanostructured scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2424-2435.	2.1	269
1144	Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomaterialia, 2013, 9, 5369-5378.	4.1	73

#	Article	IF	CITATIONS
1145	The effect of PCLâ€TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: A preliminary report. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 848-854.	1.6	70
1146	Morphological differences in BMP-2-induced ectopic bone between solid and crushed hyaluronan hydrogel templates. Journal of Materials Science: Materials in Medicine, 2013, 24, 1201-1209.	1.7	11
1147	Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.	1.7	60
1148	Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair. Lecture Notes in Computational Vision and Biomechanics, 2013, , 1-44.	0.5	8
1149	Coelectrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces. Carbohydrate Polymers, 2013, 95, 716-727.	5.1	55
1150	Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnology Advances, 2013, 31, 688-705.	6.0	354
1151	Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 773-782.	1.7	76
1152	Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomaterialia, 2013, 9, 4889-4898.	4.1	117
1153	Nanoporous microspheres: from controllable synthesis to healthcare applications. Journal of Materials Chemistry B, 2013, 1, 2222.	2.9	82
1154	Pore Geometry Regulates Early Stage Human Bone Marrow Cell Tissue Formation and Organisation. Annals of Biomedical Engineering, 2013, 41, 917-930.	1.3	107
1155	Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Advances, 2013, 3, 11073.	1.7	93
1156	Bioactive ceramics: from bone grafts to tissue engineering. RSC Advances, 2013, 3, 11116.	1.7	147
1157	Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering. Materials Science and Engineering C, 2013, 33, 2094-2103.	3.8	41
1158	PLGA/PEGâ€hydrogel composite scaffolds with controllable mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 648-655.	1.6	49
1159	Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomaterialia, 2013, 9, 7308-7319.	4.1	149
1160	Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. Journal of the European Ceramic Society, 2013, 33, 1553-1565.	2.8	47
1161	In vitro mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)–poly(ethylene) Tj ETQq0 0 0 rgB Surfaces B: Biointerfaces, 2013, 107, 167-173.	T /Overloc 2.5	k 10 Tf 50 1 24
1162	Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-d-l-lactide/nano-hydroxyapatite composite scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 22, 41-50.	1.5	19

# 1163	ARTICLE Drug delivery and tissue engineering applications of biocompatible pectin–chitin/nano CaCO3 composite scaffolds. Colloids and Surfaces B: Biointerfaces, 2013, 106, 109-116.	IF 2.5	CITATIONS
1164	Electrospun Acetalated Dextran Scaffolds for Temporal Release of Therapeutics. Langmuir, 2013, 29, 7957-7965.	1.6	29
1165	Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. Advanced Functional Materials, 2013, 23, 5461-5476.	7.8	183
1166	Size-dependent degradation and bioactivity of borate bioactive glass. Ceramics International, 2013, 39, 8087-8095.	2.3	28
1167	Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering - Part B: Reviews, 2013, 19, 485-502.	2.5	1,880
1168	Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Materials Science and Engineering C, 2013, 33, 3802-3810.	3.8	41
1169	Nanoceramics for Bone Regeneration in the Oral and Craniomaxillofacial Complex. , 2013, , 389-409.		1
1170	Carbon Nanotube–Poly(lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications. Annals of Biomedical Engineering, 2013, 41, 904-916.	1.3	91
1171	Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. Journal of Materials Chemistry B, 2013, 1, 3107.	2.9	63
1172	Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 2013, 39, 6035-6040.	2.3	10
1173	In-situ grown hydroxyapatite whiskers reinforced porous HA bioceramic. Ceramics International, 2013, 39, 8847-8852.	2.3	28
1174	Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whiskerâ€reinforced polyetheretherketone scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 576-583.	1.6	31
1175	Development and in vitro assays of porous calcium polyphosphate granules. Ceramics International, 2013, 39, 4991-4997.	2.3	5
1176	Polymeric Membranes for the Biofabrication of Tissues and Organs. , 2013, , 81-94.		2
1177	Surface functionalization of 3D glass–ceramic porous scaffolds for enhanced mineralization in vitro. Applied Surface Science, 2013, 271, 412-420.	3.1	16
1178	Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(Îμ-caprolactone) by stereolithography. Composites Science and Technology, 2013, 74, 99-106.	3.8	85
1179	Bone Tissue Engineering. , 2013, , 1194-1214.		7
1180	Tissue Engineering Scaffolds. , 2013, , 1138-1159.		9

#	Article	IF	CITATIONS
1181	Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering. Biomacromolecules, 2013, 14, 38-47.	2.6	103
1182	Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications. Materials Science and Engineering C, 2013, 33, 1530-1538.	3.8	36
1183	Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures. Acta Biomaterialia, 2013, 9, 8413-8421.	4.1	85
1184	Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 2013, 38, 1487-1503.	11.8	411
1185	Discovery and Evaluation of a Functional Ternary Polymer Blend for Bone Repair: Translation from a Microarray to a Clinical Model. Advanced Functional Materials, 2013, 23, 2850-2862.	7.8	22
1186	Multiple Silk Coatings on Biphasic Calcium Phosphate Scaffolds: Effect on Physical and Mechanical Properties and In Vitro Osteogenic Response of Human Mesenchymal Stem Cells. Biomacromolecules, 2013, 14, 2179-2188.	2.6	53
1187	Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels. Applied Surface Science, 2013, 279, 293-299.	3.1	64
1188	Geometry–Force Control of Stem Cell Fate. BioNanoScience, 2013, 3, 43-51.	1.5	23
1189	Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Acta Biomaterialia, 2013, 9, 7490-7505.	4.1	71
1190	On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. , 2013, 101, 1233-1242.		89
1191	Cell-Laden Poly(É›-caprolactone)/Alginate Hybrid Scaffolds Fabricated by an Aerosol Cross-Linking Process for Obtaining Homogeneous Cell Distribution: Fabrication, Seeding Efficiency, and Cell Proliferation and Distribution. Tissue Engineering - Part C: Methods, 2013, 19, 784-793.	1.1	42
1192	Structural characterization and electrochemical behavior of a laser-sintered porous Ti–10Mo alloy. Corrosion Science, 2013, 67, 217-224.	3.0	64
1193	Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 2013, 29, 103-115.	1.6	123
1194	Properties and modification of porous 3-D collagen/hydroxyapatite composites. International Journal of Biological Macromolecules, 2013, 52, 250-259.	3.6	125
1195	Processing of highly porous TiO2 bone scaffolds with improved compressive strength. Journal of the European Ceramic Society, 2013, 33, 15-24.	2.8	47
1196	Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 2013, 34, 331-339.	5.7	311
1197	Design and optimization of the oriented groove on the hip implant surface to promote bone microstructure integrity. Bone, 2013, 52, 659-667.	1.4	78
1198	Preparation of high strength macroporous hydroxyapatite scaffold. Materials Science and Engineering C, 2013, 33, 67-71.	3.8	23

#	Article	IF	CITATIONS
1199	Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Materials Science and Engineering C, 2013, 33, 274-281.	3.8	50
1200	The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering C, 2013, 33, 453-460.	3.8	64
1201	Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity. Materials Science and Engineering C, 2013, 33, 490-498.	3.8	56
1202	Biofabrication and in vitro study of hydroxyapatite/mPEG–PCL–mPEG scaffolds for bone tissue engineering using air pressure-aided deposition technology. Materials Science and Engineering C, 2013, 33, 680-690.	3.8	21
1203	Influence of Glass Scaffolds Macroporosity on the Bioactive Process. Journal of Physical Chemistry B, 2013, 117, 510-517.	1.2	7
1204	Quantitative characterization of porous commercial and experimental bone graft substitutes with microcomputed tomography. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1538-1548.	1.6	10
1205	Particle-collision and porogen-leaching technique to fabricate polymeric porous scaffolds with microscale roughness of interior surfaces. Chinese Journal of Polymer Science (English Edition), 2013, 31, 737-747.	2.0	17
1206	Preliminary report with the Regenerexâ,,¢ revision shell: clinical, functional, and radiologic evaluations with a mean follow-up of 25Âmonths. European Orthopaedics and Traumatology, 2013, 4, 9-14.	0.1	3
1207	Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Biomedical Microdevices, 2013, 15, 369-379.	1.4	14
1208	Characterization of Orthopaedic Devices. , 2013, , 323-354.		1
1209			
	Porous Titaniumâ€6 Aluminumâ€4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Polyâ€Etherâ€Etherâ€Ketone Cage in Sheep Vertebral Fusion. Artificial Organs, 2013, 37, E191-201.	1.0	140
1210	Porous Titaniumâ€6 Aluminumâ€4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Polyâ€Etherâ€Etherâ€Ketone Cage in Sheep Vertebral Fusion. Artificial Organs, 2013, 37, E191-201. Synthetic biopolymer/layered silicate nanocomposites for tissue engineering scaffolds. , 2013, , 548-581.	1.0	140 3
1210 1211	Porous Titaniumâ€6 Aluminumâ€4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Polyâ€Etherâ€Etherâ€Ketone Cage in Sheep Vertebral Fusion. Artificial Organs, 2013, 37, E191-201. Synthetic biopolymer/layered silicate nanocomposites for tissue engineering scaffolds. , 2013, , 548-581. Structural and Biological Characterization of Scaffolds. , 2013, , 299-310.	1.0	140 3 5
1210 1211 1212	Porous Titaniumâ€6 Aluminumâ€4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Polyâ€Etherâ€Etherâ€Ketone Cage in Sheep Vertebral Fusion. Artificial Organs, 2013, 37, E191-201. Synthetic biopolymer/layered silicate nanocomposites for tissue engineering scaffolds., 2013, 548-581. Structural and Biological Characterization of Scaffolds., 2013, 299-310. A new hydroxyapatite-based biocomposite for bone replacement. Materials Science and Engineering C, 2013, 33, 1091-1101.	1.0	140 3 5 66
1210 1211 1212 1213	Porous Titaniumâ€6 Aluminumâ€4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Polyâ€Etherâ€Etherâ€Ketone Cage in Sheep Vertebral Fusion. Artificial Organs, 2013, 37, E191-201. Synthetic biopolymer/layered silicate nanocomposites for tissue engineering scaffolds. , 2013, , 548-581. Structural and Biological Characterization of Scaffolds. , 2013, , 299-310. A new hydroxyapatite-based biocomposite for bone replacement. Materials Science and Engineering C, 2013, 33, 1091-1101. In vitro degradation and mechanical properties of polyporous CaHPO4-coated Mg–Nd–Zn–Zr alloy as potential tissue engineering scaffold. Materials Letters, 2013, 100, 306-308.	1.0 3.8 1.3	140 3 5 66 18
1210 1211 1212 1213 1214	Porous Titaniumâ€6 Aluminumâ€4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Polyâ€Etherâ€Etherâ€Ketone Cage in Sheep Vertebral Fusion. Artificial Organs, 2013, 37, E191-201.Synthetic biopolymer/layered silicate nanocomposites for tissue engineering scaffolds. , 2013, , 548-581.Structural and Biological Characterization of Scaffolds. , 2013, , 299-310.A new hydroxyapatite-based biocomposite for bone replacement. Materials Science and Engineering C, 2013, 33, 1091-1101.In vitro degradation and mechanical properties of polyporous CaHPO4-coated Mg–Nd–Zn–Zr alloy as potential tissue engineering scaffold. Materials Letters, 2013, 100, 306-308.Effect of solvent on ionic liquid dissolved regenerated <i>antheraea assamensis</i> silk fibroin. Journal of Applied Polymer Science, 2013, 128, 4411-4416.	1.0 3.8 1.3	140 3 5 66 18
1210 1211 1212 1213 1214 1215	Porous Titaniumâ€6 Aluminumâ€4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Polyâ€Etherâ€Etherâ€Ketone Cage in Sheep Vertebral Fusion. Artificial Organs, 2013, 37, E191-201. Synthetic biopolymer/layered silicate nanocomposites for tissue engineering scaffolds. , 2013, , 548-581. Structural and Biological Characterization of Scaffolds. , 2013, , 299-310. A new hydroxyapatite-based biocomposite for bone replacement. Materials Science and Engineering C, 2013, 33, 1091-1101. In vitro degradation and mechanical properties of polyporous CaHPO4-coated Mg–Nd–Zn–Zr alloy as potential tissue engineering scaffold. Materials Letters, 2013, 100, 306-308. Effect of solvent on ionic liquid dissolved regenerated <i>antheraea assamensis</i> silk fibroin. Journal of Applied Polymer Science, 2013, 128, 4411-4416. Fabrication and Characterization of Macroporous Poly(Ethylene Glycol) Hydrogels Generated by Several Types of Porogens. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 502-508.	1.0 3.8 1.3 1.3	140 3 5 66 18 33

#	Article	IF	CITATIONS
1217	Strontium calcium phosphate for the repair of leporine (<i>Oryctolagus cuniculus</i>) ulna segmental defect. Journal of Biomedical Materials Research - Part A, 2013, 101A, 261-271.	2.1	19
1218	A novel composite porous coating approach for bioactive titaniumâ€based orthopedic implants. Journal of Biomedical Materials Research - Part A, 2013, 101A, 862-872.	2.1	20
1219	Compact Saloplastic Poly(Acrylic Acid)/Poly(Allylamine) Complexes: Kinetic Control Over Composition, Microstructure, and Mechanical Properties. Advanced Functional Materials, 2013, 23, 673-682.	7.8	60
1220	Fabrication and characterisation of gelatin-hyaluronic acid/nanobioactive glass hybrid scaffolds for tissue engineering. Materials Research Innovations, 2013, 17, 532-536.	1.0	12
1221	Facile method to prepare PLGA/hydroxyapatite composite scaffold for bone tissue engineering. Materials Technology, 2013, 28, 316-323.	1.5	7
1222	Application of self-learning evolutionary algorithm for optimal design of a porous polymethylmethacrylate scaffold fabricated by laser drilling process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2013, 227, 211-224.	1.4	8
1223	Two Bone Substitutes Analyzedin Vitroby Porcine and Human Adipose-Derived Stromal Cells. International Journal of Immunopathology and Pharmacology, 2013, 26, 51-59.	1.0	3
1224	Infiltration of 3D printed tricalciumphosphate scaffolds with biodegradable polymers and biomolecules for local drug delivery. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.9	7
1225	Fabrication of HA/βâ€TCP scaffolds based on microâ€syringe extrusion system. Rapid Prototyping Journal, 2013, 19, 319-326.	1.6	25
1226	Multi-Scale Modification of Metallic Implants With Pore Gradients, Polyelectrolytes and Their Indirect Monitoring In vivo . Journal of Visualized Experiments, 2013, , e50533.	0.2	1
1227	Advanced Strategies for Articular Cartilage Defect Repair. Materials, 2013, 6, 637-668.	1.3	92
1228	Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration. International Journal of Molecular Sciences, 2013, 14, 12714-12728.	1.8	71
1229	Design and fabrication of scaffold-based tissue engineering. BioNanoMaterials, 2013, 14, .	1.4	24
1230	Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. Microwave and Optical Technology Letters, 2013, 55, 2587-2594.	0.9	2
1231	Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma. Materials, 2013, 6, 4911-4929.	1.3	16
1232	Influence of porosity on corrosion behaviour of Ti-39Nb alloy for dental applications. Bio-Medical Materials and Engineering, 2013, 23, 183-195.	0.4	7
1233	In VitroandIn VivoInvestigation of the Potential of Amorphous Microporous Silica as a Protein Delivery Vehicle. BioMed Research International, 2013, 2013, 1-10.	0.9	7
1234	Ensuring defined porosity and pore size using ammonium hydrogen carbonate as porosification agent for calcium phosphate scaffolds. BioNanoMaterials, 2013, 14, .	1.4	1

	Ci	tation Report	
#	Article	IF	CITATIONS
1235	Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting. Materials, 2013, 6, 5398-5409). 1.3	27
1236	Fabrication and Characterization of Porous F-75 for Potential Application in Tissue Engineering. Advanced Materials Research, 2013, 795, 78-81.	0.3	0
1237	Porosity of β-Tricalcium Phosphate Affects the Results of Lumbar Posterolateral Fusion. Journal of Spinal Disorders and Techniques, 2013, 26, E40-E45.	1.8	19
1238	Microfluidic devices for developing tissue scaffolds. , 2013, , 363-387.		1
1239	Vascularisation of tissue-engineered constructs. , 2013, , 77-103a.		0
1240	An assessment of biopolymer―and synthetic polymerâ€based scaffolds for bone and vascular tissue engineering. Polymer International, 2013, 62, 523-533.	1.6	85
1241	Hydrophilic Gelatin and Hyaluronic Acid-Treated PLGA Scaffolds for Cartilage Tissue Engineering. Journal of Applied Biomaterials and Functional Materials, 2013, 11, 45-52.	0.7	25
1242	Modern Porous Coatings in Orthopaedic Applications. Biological and Medical Physics Series, 2013, , 69-103.	0.3	7
1243	Influence of scaffold pore size on collagen I development: A new in vitro evaluation perspective. Journal of Bioactive and Compatible Polymers, 2013, 28, 16-32.	0.8	48
1244	3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomaterials Science, 2013, 1, 1250.	2.6	149
1245	Development of a Coaxial Melt Extrusion Printing process for specialised composite bioscaffold fabrication. , 2013, , .		5
1246	Biocompatibility <i>In-vitro</i> of Gel/HA Composite Scaffolds Containing Nano-Bioactive Glass for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 1048-1053.	1.2	7
1247	Mastoid Obliteration Using Threeâ€Dimensional Composite Scaffolds Consisting of Polycaprolactone/βâ€Tricalcium Phosphate/Collagen Nanofibers: An In Vitro and In Vivo Study. Macromolecular Bioscience, 2013, 13, 660-668.	2.1	15
1248	Characterizing inorganic crystals grown on organic self-assembled bilayers with scanning probe and electron microscopies. Microscopy Research and Technique, 2013, 76, 1278-1283.	1.2	0
1249	Fabrication of crosslinked carboxymethylchitosan microspheres and their incorporation into composite scaffolds for enhanced bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 630-639.	1.6	18
1250	Clickable Poly(ethylene glycol)â€Microsphereâ€Based Cell Scaffolds. Macromolecular Chemistry and Physics, 2013, 214, 948-956.	1.1	17
1251	An integrated approach of topology optimized design and selective laser melting process for titanium implants materials. Bio-Medical Materials and Engineering, 2013, 23, 433-445.	0.4	38
1252	Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Journal of Biomaterials Applications, 2013, 27, 872-890.	1.2	86

#	Article	IF	CITATIONS
1253	Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis, 2013, 9, 280-286.	0.4	49
1254	EXPERIMENTAL METHODS AND IN VITRO CYTOXICITY AND GENOTOXICITY OF NANOMATERIALS. Nano LIFE, 2013, 03, 1340008.	0.6	4
1255	C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer. Applied Physics Express, 2013, 6, 115501.	1.1	6
1256	The optimization of a scaffold for cartilage regeneration. Organogenesis, 2013, 9, 19-21.	0.4	4
1257	3D interconnected porous biomimetic scaffolds: <i>In vitro</i> cell response. Journal of Biomedical Materials Research - Part A, 2013, 101, 3560-3570.	2.1	44
1258	Laser-Perforated Porous Nonwoven Chitosan Nerve Conduit. Journal of Biomechanical Science and Engineering, 2013, 8, 139-151.	0.1	0
1259	3D Plotting of Bioceramic Scaffolds under Physiological Conditions for Bone Tissue Engineering. , 2013, , 83-116.		1
1260	Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Research, 2013, 1, 216-248.	5.4	625
1261	Orthopedic bioactive implants: Hydrogel enrichment of macroporous titanium for the delivery of mesenchymal stem cells and strontium. Journal of Biomedical Materials Research - Part A, 2013, 101, 3396-3403.	2.1	31
1262	Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Research and Therapy, 2013, 4, 106.	2.4	24
1263	Experimental study on the osseointegration of foam TiC/Ti composites. Biomedical Materials (Bristol), 2013, 8, 045001.	1.7	7
1264	Effect of TiO ₂ scaffolds coated with alginate hydrogel containing a prolineâ€rich peptide on osteoblast growth and differentiation <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2013, 101A, 1768-1777.	2.1	12
1265	Hydroxyapatite and Calcium Phosphates from Marine Sources. , 2013, , 29-44.		2
1267	Single and double stage sintering of mechanically alloyed powder for nanostructured Ti6Al4V foams usable in cancellous scaffolds. International Heat Treatment and Surface Engineering, 2013, 7, 43-48.	0.2	1
1268	Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2586-2601.	2.1	22
1269	Evaluation of the capacity of mosaicâ€like porous ceramics with designed pores to support osteoconduction. Journal of Biomedical Materials Research - Part A, 2013, 101, 3571-3579.	2.1	6
1270	Gelatin crosslinked with dehydroascorbic acid as a novel scaffold for tissue regeneration with simultaneous antitumor activity. Biomedical Materials (Bristol), 2013, 8, 035011.	1.7	7
1271	Ultraporous poly(lactic acid) scaffolds with improved mechanical performance using highâ€pressure molding and salt leaching. Journal of Applied Polymer Science, 2013, 130, 3509-3520.	1.3	9

#	Article	IF	CITATIONS
1272	Processing and characterization of supercritical CO ₂ batch foamed poly(lactic) Tj ETQq0 0 0 rgBT /C Science, 2013, 130, 3066-3073.	verlock 1 1.3	0 Tf 50 747 ⁻ 47
1273	Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. International Journal of Nanomedicine, 2014, 9, 183.	3.3	64
1274	Methods of Porous Biomedical Material Fabrication. Advanced Materials Research, 2013, 750-752, 1468-1471.	0.3	0
1275	Current State-of-the-Art of Engineered Collagen Based Bone Biomimetics. Current Tissue Engineering, 2013, 2, 51-77.	0.2	0
1276	In Vivo Ultrasonic Detection of Polyurea Crosslinked Silica Aerogel Implants. PLoS ONE, 2013, 8, e66348.	1.1	45
1277	Sustained Release of BMP-2 in Bioprinted Alginate for Osteogenicity in Mice and Rats. PLoS ONE, 2013, 8, e72610.	1.1	169
1278	Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. Journal of Periodontal and Implant Science, 2013, 43, 251.	0.9	96
1279	Gelatin-Modified Polyurethanes for Soft Tissue Scaffold. Scientific World Journal, The, 2013, 2013, 1-12.	0.8	28
1280	Organ printing. , 2014, , 332-374.		1
1281	Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. International Journal of Nanomedicine, 2014, 9, 3363.	3.3	67
1282	Polymer-Ceramic Spiral Structured Scaffolds for Bone Tissue Engineering: Effect of Hydroxyapatite Composition on Human Fetal Osteoblasts. PLoS ONE, 2014, 9, e85871.	1.1	77
1283	Natural and Synthetic Biodegradable Polymers: Different Scaffolds for Cell Expansion and Tissue Formation. International Journal of Artificial Organs, 2014, 37, 187-205.	0.7	238
1284	Novel Scaffolds Fabricated Using Oleuropein for Bone Tissue Engineering. BioMed Research International, 2014, 2014, 1-11.	0.9	13
1285	Fabrication and Mechanical Characterisation of Titanium Lattices with Graded Porosity. Metals, 2014, 4, 401-409.	1.0	121
1286	Tissue Response of Surface-Modified Three-Dimensional Titanium Fiber Structure. Journal of Hard Tissue Biology, 2014, 23, 137-148.	0.2	8
1287	Paired evaluation of calvarial reconstruction with prototyped titanium implants with and without ceramic coating. Acta Cirurgica Brasileira, 2014, 29, 579-587.	0.3	6
1288	Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering. Materials Research, 2014, 17, 33-38.	0.6	23
1289	MR Imaging of Stem Cell Transplants in Arthritic Joints. Journal of Stem Cell Research & Therapy, 2014, 04, 165.	0.3	9

#	Article	IF	CITATIONS
1293	<i>In vivo</i> performance of combinations of autograft, demineralized bone matrix, and tricalcium phosphate in a rabbit femoral defect model. Biomedical Materials (Bristol), 2014, 9, 035010.	1.7	14
1294	In Vivo Regenerative Properties of Corallineâ€Derived (Biocoral) Scaffold Grafts in Human Maxillary Defects: Demonstrative and Comparative Study with Betaâ€Tricalcium Phosphate and Biphasic Calcium Phosphate by Synchrotron Radiation Xâ€Ray Microtomography. Clinical Implant Dentistry and Related Research, 2014, 16, 736-750.	1.6	36
1295	Native Polymer-based 3D Substitutes for Bone Repair. , 2014, , 145-183.		1
1296	Fabrication and Characterization of 45S5 Bioglass [®] Composite Scaffolds. Advanced Materials Research, 0, 925, 442-449.	0.3	1
1297	Fabrication and Properties of Porous Collagen/Hyaluronic Composite Scaffolds Containing Nano-Bioactive Glass for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 891-897.	1.2	5
1298	Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication, 2014, 6, 045002.	3.7	29
1299	Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study. Biomedical Materials (Bristol), 2014, 9, 065007.	1.7	29
1300	Enhanced Differentiation of Human Embryonic Stem Cells on Extracellular Matrix-Containing Osteomimetic Scaffolds for Bone Tissue Engineering. Tissue Engineering - Part C: Methods, 2014, 20, 865-874.	1.1	33
1301	BIOINSPIRED FABRICATION OF NANOSTRUCTURES FROM TISSUE SLICES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 1-16.	0.1	5
1302	Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication, 2014, 6, 045007.	3.7	197
1303	Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Japanese Journal of Applied Physics, 2014, 53, 06JD04.	0.8	59
1305	Polyethylene terephthalate/chitosan tubular knits made by using a freeze-drying method. Textile Reseach Journal, 2014, 84, 1881-1890.	1.1	4
1306	A Combination of Biphasic Calcium Phosphate Scaffold with Hyaluronic Acid-Gelatin Hydrogel as a New Tool for Bone Regeneration. Tissue Engineering - Part A, 2014, 20, 1993-2004.	1.6	83
1307	Magnesium-Containing Nanostructured Hybrid Scaffolds for Enhanced Dentin Regeneration. Tissue Engineering - Part A, 2014, 20, 2422-2433.	1.6	71
1308	Prediction of Fluid Flow in Artificial Cancellous Bone. Applied Mechanics and Materials, 0, 695, 393-397.	0.2	0
1309	Preparation and Characterization of a Collagen-Liposome-Chondroitin Sulfate Matrix with Potential Application for Inflammatory Disorders Treatment. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	23
1310	A single topical dose of erythropoietin applied on a collagen carrier enhances calvarial bone healing in pigs. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 85, 201-209.	1.2	28
1311	Bio-Hybrid Scaffolds for Bone Tissue Engineering: Nano-Hydroxyapatite/Chitosan Composites. Key Engineering Materials, 2014, 631, 300-305.	0.4	6
#	Article	IF	CITATIONS
------	--	-----	-----------
1312	The Osteogenesis of Bone Marrow Stem Cells on mPEG-PCL-mPEG/Hydroxyapatite Composite Scaffold via Solid Freeform Fabrication. BioMed Research International, 2014, 2014, 1-13.	0.9	28
1313	Effect of Polymer Infiltration on the Flexural Behavior of β-Tricalcium Phosphate Robocast Scaffolds. Materials, 2014, 7, 4001-4018.	1.3	51
1314	BMP-Functionalised Coatings to Promote Osteogenesis for Orthopaedic Implants. International Journal of Molecular Sciences, 2014, 15, 10150-10168.	1.8	46
1315	Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review. Materials, 2014, 7, 3588-3622.	1.3	131
1316	Bioceramic Scaffolds Manufacturing by Laser 3D Printing. Applied Mechanics and Materials, 2014, 628, 64-67.	0.2	0
1317	Protein Adsorption on Titanium Surface Functionalized with Bioactive Gelatin Methacrylate Hydrogel Coating. Advanced Materials Research, 0, 936, 663-668.	0.3	1
1318	Nanofibrous Chitosan-Polyethylene Oxide Engineered Scaffolds: A Comparative Study between Simulated Structural Characteristics and Cells Viability. BioMed Research International, 2014, 2014, 1-9.	0.9	14
1319	Bioeutectic® Ceramics for Biomedical Application Obtained by Laser Floating Zone Method. In vivo Evaluation. Materials, 2014, 7, 2395-2410.	1.3	17
1320	Alginate gel electro-deposition for cell writing. , 2014, , .		0
1321	The Porous Structure and Mechanical Properties of Injection Molded HA/PA66 Scaffolds. International Polymer Processing, 2014, 29, 454-460.	0.3	4
1322	Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1986-2008.	1.9	27
1323	Functionalized alginate/chitosan biocomposites consisted of cylindrical struts and biologically designed for chitosan release. Current Applied Physics, 2014, 14, 1105-1115.	1.1	4
1324	Recent trends and challenges in computer-aided design of additive manufacturing-based biomimetic scaffolds and bioartificial organs. International Journal of Precision Engineering and Manufacturing, 2014, 15, 2205-2217.	1.1	44
1325	Fabrication of Porous Poly(ε-caprolactone) Scaffolds Containing Chitosan Nanofibers by Combining Extrusion Foaming, Leaching, and Freeze-Drying Methods. Industrial & Engineering Chemistry Research, 2014, 53, 17909-17918.	1.8	46
1326	Composite biomedical foams for engineering bone tissue. , 2014, , 249-280.		8
1327	Surfaceâ€modified functionalized polycaprolactone scaffolds for bone repair: <i>In vitro</i> and <i>in vivo</i> experiments. Journal of Biomedical Materials Research - Part A, 2014, 102, 2993-3003.	2.1	56
1328	Plasma electrolytic oxidation coatings on γTiAl alloy for potential biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 988-1001.	1.6	36
1329	Advanced bioactive and biodegradable ceramic biomaterials. , 2014, , 187-219.		2

	CITATION	Report	
#	Article	IF	CITATIONS
1330	Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 3379-3392.	2.1	138
1331	Polymers for medical and tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2014, 89, 1793-1810.	1.6	118
1332	Evaluation of a biomimetic poly(<i>ε</i> -caprolactone)/ <i>β</i> -tricalcium phosphate multispiral scaffold for bone tissue engineering: <i>In vitro</i> and <i>in vivo</i> studies. Biointerphases, 2014, 9, 029011.	0.6	51
1333	Threeâ€dimensional cellular distribution in polymeric scaffolds for bone regeneration: a microCT analysis compared to SEM, CLSM and DNA content. Journal of Microscopy, 2014, 255, 20-29.	0.8	10
1334	Tissue Engineering in the Trachea. Anatomical Record, 2014, 297, 44-50.	0.8	74
1335	Characterization of polysuccinate and hydroxyapatite-based nanocomposites containing poly(ester-anhydride) microspheres. Polymers for Advanced Technologies, 2014, 25, 1145-1154.	1.6	2
1336	Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds. Materials Science and Engineering C, 2014, 42, 816-824.	3.8	30
1337	Introduction to biomedical foams. , 2014, , 3-39.		12
1338	Laser-Assisted Additive Manufacturing for Metallic Biomedical Scaffolds. , 2014, , 285-301.		9
1339	Comparison of the Stress-Strain Behaviour of Cast TiAl6V4, Porous TiAl6V4 and Cortical Bone during the Mechanical Load Caused by Common Daily Activities. Advanced Materials Research, 0, 980, 127-131.	0.3	0
1340	Characterization of Porous Ti-35Nb Alloy Sintered at Different Temperatures for Implant Applications. Materials Science Forum, 0, 802, 496-500.	0.3	1
1341	Bone Integration Behavior of Hydroxyapatite/β-Tricalcium Phosphate Graft Implanted in Dental Alveoli. Implant Dentistry, 2014, Publish Ahead of Print, 710-5.	1.7	9
1342	Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. Journal of Biomedical Materials Research - Part A, 2014, 102, 215-224.	2.1	95
1343	The Structure Design and Fabrication of Drug Releasing Porous Material. Advanced Materials Research, 0, 887-888, 524-528.	0.3	0
1344	Degradation and inÂvitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds. Journal of Orthopaedic Translation, 2014, 2, 177-184.	1.9	40
1345	New Developments of Ti-Based Alloys for Biomedical Applications. Materials, 2014, 7, 1709-1800.	1.3	756
1346	Preparation and in vitro evaluation of polyurethane composite scaffolds based on glycerol esterified castor oil and hydroxyapatite. Materials Research Innovations, 2014, 18, 160-168.	1.0	5
1347	Quantitative Analysis of Titanium Samples by Means of the Pore-Throat Network Code Application. Materials Science Forum, 2014, 802, 501-506.	0.3	0

#	Article	IF	CITATIONS
1348	Failure Variability in Porous Glasses: Stress Interactions, Crack Orientation, and Crack Size Distributions. Journal of the American Ceramic Society, 2014, 97, 3967-3972.	1.9	10
1349	Macroporous and nanometre scale fibrous PLA and PLA–HA composite scaffolds fabricated by a bio safe strategy. RSC Advances, 2014, 4, 61491-61502.	1.7	21
1350	Physical properties and biocompatibility of acemannan scaffold for biomedical applications. , 2014, , .		0
1351	Novel resorbable glass-ceramic scaffolds for hard tissue engineering: From the parent phosphate glass to its bone-like macroporous derivatives. Journal of Biomaterials Applications, 2014, 28, 1287-1303.	1.2	29
1352	Effects of hydroxyapatite/collagen composite on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells. Journal of Composite Materials, 2014, 48, 1971-1980.	1.2	16
1353	Nanostructured Ceramic and Ceramic-Polymer Composites as Dual Functional Interface for Bioresorbable Metallic Implants. Materials Research Society Symposia Proceedings, 2014, 1621, 39-45.	0.1	3
1354	Direct laser writing of microstructures on optically opaque and reflective surfaces. Optics and Lasers in Engineering, 2014, 53, 90-97.	2.0	38
1355	Poly(d, l-lactic)-reinforced akermanite bioceramic scaffolds: Preparation and characterization. Ceramics International, 2014, 40, 12765-12775.	2.3	18
1356	In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly É›-caprolactone: Effect of bio-functionalization for bone tissue engineering. Applied Surface Science, 2014, 301, 307-314.	3.1	14
1357	Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. Materials Science and Engineering C, 2014, 36, 294-300.	3.8	47
1358	NiTi with 3D-interconnected microchannels produced by liquid phase sintering and electrochemical dissolution of steel tubes. Journal of Materials Processing Technology, 2014, 214, 1895-1899.	3.1	13
1359	In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid. Journal of Asian Ceramic Societies, 2014, 2, 210-214.	1.0	11
1360	A novel technique for scaffold fabrication: SLUP (salt leaching using powder). Current Applied Physics, 2014, 14, 371-377.	1.1	36
1361	Role of porosity and pore architecture in the <i>in vivo</i> bone regeneration capacity of biodegradable glass scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, 1767-1773.	2.1	38
1362	Bone Marrow-Derived Cell Concentrates Have Limited Effects on Osteochondral Reconstructions in the Mini Pig. Tissue Engineering - Part C: Methods, 2014, 20, 215-226.	1.1	13
1363	Femtoâ€Second Laserâ€Based Free Writing of 3D Protein Microstructures and Micropatterns with Subâ€Micrometer Features: A Study on Voxels, Porosity, and Cytocompatibility. Advanced Functional Materials, 2014, 24, 277-294.	7.8	31
1364	Injection-molded porous hydroxyapatite/polyamide-66 scaffold for bone repair and investigations on the experimental conditions. Polymer Engineering and Science, 2014, 54, 1003-1012.	1.5	7
1365	Electrospun nanofibrous cellulose scaffolds with controlled microarchitecture. Carbohydrate Polymers, 2014, 100, 143-149.	5.1	45

#	Article	IF	CITATIONS
1366	Immobilization of collagen on hydroxyapatite discs by covalent bonding and physical adsorption and their interaction with MC3T3-E1 osteoblasts. Tissue Engineering and Regenerative Medicine, 2014, 11, 99-105.	1.6	3
1367	Tissue engineering scaffold for sequential release of vancomycin and rhBMP2 to treat bone infections. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	17
1368	Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 2014, 10, 613-622.	4.1	235
1369	Green synthesis of a new gelatin-based antimicrobial scaffold for tissue engineering. Materials Science and Engineering C, 2014, 39, 235-244.	3.8	46
1370	Biomaterials for orbital implants and ocular prostheses: Overview and future prospects. Acta Biomaterialia, 2014, 10, 1064-1087.	4.1	87
1371	NO, carboxymethyl chitosan enhanced scaffold porosity and biocompatibility under e-beam irradiation at 50kGy. International Journal of Biological Macromolecules, 2014, 64, 115-122.	3.6	10
1372	Solubleâ€eggshellâ€membraneâ€proteinâ€modified porous silk fibroin scaffolds with enhanced cell adhesion and proliferation properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	26
1373	Novel Microhydroxyapatite Particles in a Collagen Scaffold: A Bioactive Bone Void Filler?. Clinical Orthopaedics and Related Research, 2014, 472, 1318-1328.	0.7	76
1374	Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model. European Spine Journal, 2014, 23, 650-657.	1.0	30
1375	Oxygen-Tension Controlled Matrices for Enhanced Osteogenic Cell Survival and Performance. Annals of Biomedical Engineering, 2014, 42, 1261-1270.	1.3	31
1376	Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty. Journal of Materials Science: Materials in Medicine, 2014, 25, 1553-1562.	1.7	14
1377	Differentiation of Rabbit Bone Mesenchymal Stem Cells into Endothelial Cells In Vitro and Promotion of Defective Bone Regeneration In Vivo. Cell Biochemistry and Biophysics, 2014, 68, 479-487.	0.9	14
1378	A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials, 2014, 35, 3766-3776.	5.7	124
1379	Scaffold Design for Bone Regeneration. Journal of Nanoscience and Nanotechnology, 2014, 14, 15-56.	0.9	696
1380	3D Scaffolds. , 2014, , 475-494.		7
1381	Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1304-1315.	1.6	154
1382	Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 2014, 43, 3453.	18.7	262
1383	Production of novel ceramic porous surfaces tailored for bone tissue engineering. CIRP Annals - Manufacturing Technology, 2014, 63, 557-560.	1.7	10

#	Article	IF	CITATIONS
1384	Mechanical properties and reliability of glass–ceramic foam scaffolds for bone repair. Materials Letters, 2014, 118, 27-30.	1.3	67
1385	Preparation and application of highly porous aerogel-based bioactive materials in dentistry. Frontiers of Materials Science, 2014, 8, 46-52.	1.1	21
1386	Plasma Modification of PCL Porous Scaffolds Fabricated by Solventâ€Casting/Particulateâ€Leaching for Tissue Engineering. Plasma Processes and Polymers, 2014, 11, 184-195.	1.6	70
1387	Fabrication and Physical Properties of Gelatin/Sodium Alginate/Hyaluronic Acid Composite Wound Dressing Hydrogel. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 318-325.	1.2	43
1388	The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle. Biomaterials, 2014, 35, 5129-5137.	5.7	75
1389	Influence of grain size and grain-size distribution on workability of granules with 3D printing. International Journal of Advanced Manufacturing Technology, 2014, 70, 135-144.	1.5	36
1390	Peri- and intra-implant bone response to microporous Ti coatings with surface modification. Acta Biomaterialia, 2014, 10, 986-995.	4.1	63
1391	A Novel Poly(amido amine)â€Đendrimerâ€Based Hydrogel as a Mimic for the Extracellular Matrix. Advanced Materials, 2014, 26, 4163-4167.	11.1	51
1392	Preparation of 3D interconnected macroporous hydroxyapatite scaffolds by PVA assisted foaming method. Ceramics International, 2014, 40, 1789-1796.	2.3	14
1393	Osteoblast attachment to hydroxyapatite micro-tube scaffolds. Journal of Materials Science: Materials in Medicine, 2014, 25, 1801-1817.	1.7	5
1394	Parametric Characterization of Porous 3D Bioscaffolds Fabricated by an Adaptive Foam Reticulation Technique. Jom, 2014, 66, 590-597.	0.9	1
1395	Advanced Ceramics. , 2014, , 103-122.		11
1396	Polylactic acid (PLA) biomedical foams for tissue engineering. , 2014, , 313-334.		32
1397	Synthesis and characterization of CaP/Col composite scaffolds for load-bearing bone tissue engineering. Composites Part B: Engineering, 2014, 62, 242-248.	5.9	22
1398	Titanium Microbeadâ€Based Porous Implants: Bead Size Controls Cell Response and Host Integration. Advanced Healthcare Materials, 2014, 3, 79-87.	3.9	14
1399	Low elastic modulus titanium–nickel scaffolds for bone implants. Materials Science and Engineering C, 2014, 34, 110-114.	3.8	29
1400	Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta–Nb alloy for bone tissue engineering. Materials Science and Engineering C, 2014, 40, 71-75.	3.8	25
1401	Novel porous scaffolds of pH responsive chitosan/carrageenan-based polyelectrolyte complexes for tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	33

#	Article	IF	CITATIONS
1403	Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications. Journal of Biomedical Materials Research - Part A, 2014, 102, 2089-2095.	2.1	63
1404	Poly (lactic acid) foaming. Progress in Polymer Science, 2014, 39, 1721-1741.	11.8	401
1405	Modelling of the strength–porosity relationship in glass-ceramic foam scaffolds for bone repair. Journal of the European Ceramic Society, 2014, 34, 2663-2673.	2.8	62
1406	Bone-Implant Interface in Orthopedic Surgery. , 2014, , .		7
1407	Synthesis and characterization of nanostructured forsterite scaffolds using two step sintering method. Journal of Alloys and Compounds, 2014, 610, 399-401.	2.8	18
1408	Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration. Journal of Bioscience and Bioengineering, 2014, 118, 469-475.	1.1	24
1409	Bioactivated Materials for Cell and Tissue Guidance. , 2014, , 137-150.		3
1410	Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia, 2014, 10, 1035-1049.	4.1	535
1411	Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 61-74.	1.9	67
1412	Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review. Materials & Design, 2014, 55, 165-175.	5.1	275
1413	Achieving Interconnected Pore Architecture in Injectable PolyHIPEs for Bone Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 1103-1112.	1.6	72
1414	Electrospun nanofibrous scaffolds of poly (l-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Materials Science and Engineering C, 2014, 35, 426-433.	3.8	39
1415	Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry, 2014, 86, 3240-3253.	3.2	1,380
1416	The behavior of neuronal cells on tendon-derived collagen sheets as potential substrates for nerve regeneration. Biomaterials, 2014, 35, 3551-3557.	5.7	29
1417	Melt electrospinning of poly ($\hat{l}\mu$ -caprolactone) scaffolds: Phenomenological observations associated with collection and direct writing. Materials Science and Engineering C, 2014, 45, 698-708.	3.8	139
1418	45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering. RSC Advances, 2014, 4, 56156-56164.	1.7	39
1419	Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomaterialia, 2014, 10, 5090-5098.	4.1	94
1420	Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering. Journal of Materials Research, 2014, 29, 2682-2693.	1.2	43

#	Article	IF	CITATIONS
1421	Calcium phosphate scaffolds mimicking the gradient architecture of native long bones. Journal of Biomedical Materials Research - Part A, 2014, 102, 3677-3684.	2.1	27
1422	Enhanced hydration stability of <i>Bombyx mori</i> silk fibroin/PEG 600 composite scaffolds for tissue engineering. Polymers for Advanced Technologies, 2014, 25, 532-538.	1.6	8
1424	Nanomaterials: the next step in injectable bone cements. Nanomedicine, 2014, 9, 1745-1764.	1.7	41
1425	Porosity characterization of biomedical magnesium foams produced by Spark Plasma Sintering. , 2014, ,		0
1426	Influence of Process Variables on the Physical Properties of Gelatin/SA/HYA Composite Hydrogels. Polymer-Plastics Technology and Engineering, 2014, 53, 935-940.	1.9	5
1427	Concise Review: Mesenchymal Stromal Cells Used for Periodontal Regeneration: A Systematic Review. Stem Cells Translational Medicine, 2014, 3, 768-774.	1.6	46
1428	Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: InÂvitro and inÂvivo studies. Journal of Biomaterials Applications, 2014, 29, 748-760.	1.2	38
1429	Biomimetic mineralization of zein/calcium phosphate nanocomposite nanofibrous mats for bone tissue scaffolds. CrystEngComm, 2014, 16, 9513-9519.	1.3	23
1430	Titanium and NiTi foams for bone replacement. , 2014, , 142-179.		3
1431	Bioactive glass and glass–ceramic foam scaffolds for bone tissue restoration. , 2014, , 213-248.		6
1432	Influence of diethylene glycol as a porogen in a glyoxal crosslinked polyvinyl alcohol hydrogel. RSC Advances, 2014, 4, 42260-42270.	1.7	9
1433	Scaffold-based regeneration of skeletal tissues to meet clinical challenges. Journal of Materials Chemistry B, 2014, 2, 7272-7306.	2.9	98
1434	Three dimensionally printed mesoporous bioactive glass and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. Journal of Materials Chemistry B, 2014, 2, 6106.	2.9	91
1435	Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomedical Materials (Bristol), 2014, 9, 065001.	1.7	49
1436	Microwave-Assisted Fabrication of Titanium Implants with Controlled Surface Topography for Rapid Bone Healing. ACS Applied Materials & Interfaces, 2014, 6, 13587-13593.	4.0	19
1437	Scaffold pore size modulates <i>in vitro</i> osteogenesis of human adipose-derived stem/stromal cells. Biomedical Materials (Bristol), 2014, 9, 045003.	1.7	56
1438	Implant Materials and Structures. , 2014, , 1-25.		0
1439	Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, 2014, 6, 015006.	3.7	180

#	Article	IF	CITATIONS
1440	A novel scaffold geometry for chondral applications: Theoretical model and in vivo validation. Biotechnology and Bioengineering, 2014, 111, 2107-2119.	1.7	16
1441	Evolution of a Mesoporous Bioactive Glass Scaffold Implanted in Rat Femur Evaluated by ⁴⁵ Ca Labeling, Tracing, and Histological Analysis. ACS Applied Materials & Interfaces, 2014, 6, 3528-3535.	4.0	17
1442	Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydrate Polymers, 2014, 114, 213-221.	5.1	127
1443	Cobalt-Releasing 1393 Bioactive Glass-Derived Scaffolds for Bone Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2014, 6, 2865-2877.	4.0	99
1444	Bioinspired Scaffolds for Osteochondral Regeneration. Tissue Engineering - Part A, 2014, 20, 2052-2076.	1.6	94
1445	Properties of Polylactide Inks for Solvent-Cast Printing of Three-Dimensional Freeform Microstructures. Langmuir, 2014, 30, 1142-1150.	1.6	86
1446	Surface Modification of Silica-Based Marine Sponge Bioceramics Induce Hydroxyapatite Formation. Crystal Growth and Design, 2014, 14, 4545-4552.	1.4	12
1447	Fabrication, modification, and biomedical applications of anodized TiO ₂ nanotube arrays. RSC Advances, 2014, 4, 17300-17324.	1.7	124
1448	Tailoring hierarchical meso–macroporous 3D scaffolds: from nano to macro. Journal of Materials Chemistry B, 2014, 2, 49-58.	2.9	35
1449	A three-dimensional cell-laden microfluidic chip for <i>in vitro</i> drug metabolism detection. Biofabrication, 2014, 6, 025008.	3.7	21
1450	Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery. Ceramics International, 2014, 40, 14793-14799.	2.3	10
1451	Structure and mechanical properties of \hat{l}^2 -TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomaterialia, 2014, 10, 5148-5155.	4.1	42
1452	Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Biofabrication, 2014, 6, 035013.	3.7	78
1453	3D bioceramic foams for bone tissue engineering. , 2014, , 118-141.		4
1454	Porous gelatin–siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1528-1536.	1.6	25
1455	Finite element modelling of bone tissue scaffolds. , 2014, , 485-511.		3
1456	Surfaceâ€modified pliable PDLLA/PCL/βâ€TCP scaffolds as a promising delivery system for bone regeneration. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
1457	Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels. Reactive and Functional Polymers, 2014, 82, 81-88.	2.0	39

#	Article	IF	CITATIONS
1458	Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. CAD Computer Aided Design, 2014, 56, 11-21.	1.4	133
1459	Towards the Development of Smart 3D "Gated Scaffolds―for Onâ€Command Delivery. Small, 2014, 10, 4859-4864.	5.2	28
1460	Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology. Materials Science and Engineering C, 2014, 43, 182-188.	3.8	44
1461	A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications. Materials Science and Engineering C, 2014, 43, 317-320.	3.8	57
1462	Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold. Applied Surface Science, 2014, 313, 947-953.	3.1	21
1463	Inorganic polymer composites for bone regeneration and repair. , 2014, , 261-293.		3
1464	3-dimensional (3D) fabricated polymer based drug delivery systems. Journal of Controlled Release, 2014, 193, 27-34.	4.8	116
1465	Influence of phase separation on the devitrification of 45S5 bioglass. Acta Biomaterialia, 2014, 10, 4878-4886.	4.1	24
1466	Modelling Stochastic Foam Geometries for FE Simulations Using 3D Voronoi Cells. , 2014, 4, 221-226.		15
1467	Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine, 2014, 9, 1083-1094.	1.7	77
1468	Influence of Nano-Bioactive Glass (NBG) Content on Properties of Gelatin-Hyaluronic Acid/NBG Composite Scaffolds. Journal of Macromolecular Science - Physics, 2014, 53, 1145-1155.	0.4	18
1469	Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration. Journal of Biomaterials Applications, 2014, 28, 1151-1163.	1.2	47
1470	Study of in vitro degradation of brushite cements scaffolds. Journal of Materials Science: Materials in Medicine, 2014, 25, 2297-2303.	1.7	12
1471	Synthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitin nanocrystals composite scaffolds for tissue engineering. Chinese Chemical Letters, 2014, 25, 1635-1638.	4.8	22
1472	Photopolymerization-based additive manufacturing for the development of 3D porous scaffolds. , 2014, , 149-201.		16
1473	Biofabrication of hybrid bone scaffolds using a dual-nozzle bioplotter and in-vitro study of osteoblast cell. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1947-1953.	1.1	6
1474	Effect of topology of poly(L-lactide- <i>co</i> - <i>ε</i> -caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1028-1044.	1.9	9
1475	Multifunctional scaffolds for bone tissue engineering and in situ drug delivery. , 2014, , 648-675.		4

#	Article	IF	CITATIONS
1476	A magneto-active scaffold for stimulation of bone growth. Materials Science and Technology, 2014, 30, 1590-1598.	0.8	8
1477	Injectable Polymerized High Internal Phase Emulsions with Rapid in Situ Curing. Biomacromolecules, 2014, 15, 2870-2878.	2.6	53
1478	Fabrication of cellulose-based scaffold with microarchitecture using a leaching technique for biomedical applications. Cellulose, 2014, 21, 3515-3525.	2.4	37
1479	Poly(ε-caprolactone) scaffolds of highly controlled porosity and interconnectivity derived from co-continuous polymer blends: model bead and cell infiltration behavior. Journal of Materials Science: Materials in Medicine, 2014, 25, 2083-2093.	1.7	38
1480	Ultrasonic elasticity determination of 45S5 Bioglass ® -based scaffolds: Influence of polymer coating and crosslinking treatment. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 85-94.	1.5	22
1481	Nanoscale design in biomineralization for developing new biomaterials for bone tissue engineering (BTE). , 2014, , 153-195.		2
1482	Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Science and Biotechnology, 2014, 23, 327-335.	1.2	10
1483	Capillary action: enrichment of retention and habitation of cells via micro-channeled scaffolds for massive bone defect regeneration. Journal of Materials Science: Materials in Medicine, 2014, 25, 1991-2001.	1.7	8
1484	Fabrication of asymmetric membranes from polyhydroxybutyrate and biphasic calcium phosphate/chitosan for guided bone regeneration. Journal of Polymer Research, 2014, 21, 1.	1.2	18
1485	Elastic biodegradable starch/ethyleneâ€ <i>co</i> â€vinyl alcohol fibreâ€mesh scaffolds for tissue engineering applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	10
1486	Bioactive ceramics and glasses for tissue engineering. , 2014, , 67-114.		17
1487	<i>InÂvivo</i> testing of a bioabsorbable magnesium alloy serving as total ossicular replacement prostheses. Journal of Biomaterials Applications, 2014, 28, 688-696.	1.2	10
1488	Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces. Applied Surface Science, 2014, 308, 1-9.	3.1	20
1490	Electron Tomography Analysis of Reaction Path during Formation of Nanoporous NiO by Solid State Decomposition. Crystal Growth and Design, 2014, 14, 2453-2459.	1.4	8
1491	Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 79-86.	1.5	44
1492	Gelatin-bioactive glass composites scaffolds with controlled macroporosity. Chemical Engineering Journal, 2014, 256, 9-13.	6.6	30
1493	Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model. Journal of Biomaterials Applications, 2014, 28, 643-653.	1.2	26
1494	Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering. Journal of Biomaterials Applications, 2014, 29, 728-736.	1.2	18

#	Article	IF	CITATIONS
1495	State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering. Rapid Prototyping Journal, 2014, 20, 13-26.	1.6	60
1496	Rapid prototyping technologies for tissue regeneration. , 2014, , 97-155.		14
1497	Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends. Progress in Surface Science, 2014, 89, 239-277.	3.8	86
1498	Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering. Journal of Materials Engineering and Performance, 2014, 23, 3762-3769.	1.2	23
1499	Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid. Materials Science and Engineering C, 2014, 45, 64-71.	3.8	18
1500	Processing and properties of advanced porous ceramics: An application based review. Ceramics International, 2014, 40, 15351-15370.	2.3	415
1501	Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment. Biofabrication, 2014, 6, 015007.	3.7	11
1502	Synergistic effect of Wnt modulatory small molecules and an osteoinductive ceramic on C2C12 cell osteogenic differentiation. Bone, 2014, 67, 109-121.	1.4	9
1503	Marine organisms for bone repair and regeneration. , 2014, , 294-318.		6
1504	Fast Contact of Solid–Liquid Interface Created High Strength Multi-Layered Cellulose Hydrogels with Controllable Size. ACS Applied Materials & Interfaces, 2014, 6, 1872-1878.	4.0	87
1505	Physical and bioactive properties of multi-layered PCL/silica composite scaffolds for bone tissue regeneration. Chemical Engineering Journal, 2014, 250, 399-408.	6.6	35
1506	Cryotemplation for the rapid fabrication of porous, patternable photopolymerized hydrogels. Journal of Materials Chemistry B, 2014, 2, 4521-4530.	2.9	12
1507	Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 56-68.	1.5	178
1508	Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 347-357.	1.5	20
1509	Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering Reports, 2014, 80, 1-36.	14.8	854
1510	Fabrication and characterization of porous 3D whisker-covered calcium phosphate scaffolds. Materials Letters, 2014, 128, 179-182.	1.3	29
1511	Highly porous gelatin–silica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique. Materials Chemistry and Physics, 2014, 145, 397-402.	2.0	18
1512	Evaluation of microstructure effect of the porous spherical β-tricalcium phosphate granules on cellular responses. Ceramics International, 2014, 40, 6095-6102.	2.3	15

#	Article	IF	CITATIONS
1513	Indentation-triggered pattern transformation in hyperelastic soft cellular solids. Comptes Rendus - Mecanique, 2014, 342, 292-298.	2.1	4
1514	Fabrication and characterization of silk/forsterite composites for tissue engineering applications. Ceramics International, 2014, 40, 6405-6411.	2.3	25
1515	Facilely fabricating PCL nanofibrous scaffolds with hierarchical pore structure for tissue engineering. Materials Letters, 2014, 122, 62-65.	1.3	29
1516	Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering. International Journal of Surgery, 2014, 12, 404-407.	1.1	22
1517	Fabrication of nanofibrous macroporous scaffolds of poly(lactic acid) incorporating bioactive glass nanoparticles by camphene-assisted phase separation. Materials Chemistry and Physics, 2014, 143, 1092-1101.	2.0	19
1518	Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer, 2014, 55, 435-444.	1.8	56
1519	Effects of scaffold architecture on cranial bone healing. International Journal of Oral and Maxillofacial Surgery, 2014, 43, 506-513.	0.7	72
1520	Fabrication and evaluation of (PVA/HAp/PCL) bilayer composites as potential scaffolds for bone tissue regeneration application. Ceramics International, 2014, 40, 8469-8477.	2.3	97
1521	Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. Journal of Materials Chemistry B, 2014, 2, 5378-5386.	2.9	92
1522	The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules, 2014, 15, 2327-2346.	2.6	417
1523	Establishment and Characterization of an Open Mini-Thoracotomy Surgical Approach to an Ovine Thoracic Spine Fusion Model. Tissue Engineering - Part C: Methods, 2014, 20, 19-27.	1.1	10
1524	A biomimetic collagen–apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2014, 2, 1998.	2.9	74
1525	Comparative study of poly (lactic-co-glycolic acid)/tricalcium phosphate scaffolds incorporated or coated with osteogenic growth factors for enhancement of bone regeneration. Journal of Orthopaedic Translation, 2014, 2, 91-104.	1.9	28
1526	Bioceramics in ophthalmology. Acta Biomaterialia, 2014, 10, 3372-3397.	4.1	42
1527	Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Materials Science and Engineering C, 2014, 42, 362-367.	3.8	81
1528	Hydroxyapatite scaffold pore architecture effects in large bone defects inÂvivo. Journal of Biomaterials Applications, 2014, 28, 1016-1027.	1.2	35
1529	Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds. Biomaterials, 2014, 35, 6941-6953.	5.7	57
1530	Effects of Nb addition on microstructure and mechanical properties of TiNiNb alloys fabricated by elemental powder sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 235-240.	2.6	22

#	Article	IF	CITATIONS
1531	Ectopic bone formation in and softâ€ŧissue response to <scp>P</scp> (<scp>CL</scp> / <scp>DLLA</scp>)/bioactive glass composite scaffolds. Clinical Oral Implants Research, 2014, 25, 159-164.	1.9	19
1532	The effects of pore size in bilayered poly(lactide- <i>co</i> -glycolide) scaffolds on restoring osteochondral defects in rabbits. Journal of Biomedical Materials Research - Part A, 2014, 102, 180-192.	2.1	103
1533	Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research - Part A, 2014, 102, 818-827.	2.1	20
1534	A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. Journal of Biomedical Materials Research - Part A, 2014, 102, 254-274.	2.1	440
1535	The effect of gelatin and hydroxyapatite ratios on the scaffolds' porosity and mechanical properties. , 2014, , .		7
1536	Chapter 8: Nano-Bioceramics as Coatings for Orthopedic Implants and Scaffolds for Bone Regeneration. Frontiers in Nanobiomedical Research, 2014, , 343-391.	0.1	1
1537	Poly-É>-caprolactone composite scaffolds for bone repair. International Journal of Molecular Medicine, 2014, 34, 1537-1546.	1.8	14
1538	Implantation of Tetrapod-Shaped Granular Artificial Bones or β-Tricalcium Phosphate Granules in a Canine Large Bone-Defect Model. Journal of Veterinary Medical Science, 2014, 76, 229-235.	0.3	8
1540	Biomineralization of marine-patterned C-scaffolds. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 106-114.	0.7	2
1541	Strategies for osteochondral repair: Focus on scaffolds. Journal of Tissue Engineering, 2014, 5, 204173141454185.	2.3	89
1543	Design and 3D Printing of Scaffolds and Tissues. Engineering, 2015, 1, 261-268.	3.2	344
1544	Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Communications, 2015, 5, 631-639.	0.8	41
1545	Materials by design: Using architecture in material design to reach new property spaces. MRS Bulletin, 2015, 40, 1122-1129.	1.7	45
1546	Sintered Titanium-Hydroxyapatite Composites as Artificial Bones. Key Engineering Materials, 2015, 659, 35-39.	0.4	5
1549	A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator. Scientific Reports, 2015, 5, 18266.	1.6	33
1550	Porous hydroxyapatite bioceramics in bone tissue engineering: current uses and perspectives. Journal of the Ceramic Society of Japan, 2015, 123, 17-20.	0.5	27
1551	Porous 3D bioscaffolds by adaptive foam reticulation. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 4-14.	0.7	2
1552	Global Engineering and Additive Manufacturing. , 2015, , 14-31.		6

#	Article	IF	Citations
1553	Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects. Scientific Reports, 2015, 5, 17134.	1.6	27
1554	In Vitro Study of Surface Modified Poly(ethylene glycol)-Impregnated Sintered Bovine Bone Scaffolds on Human Fibroblast Cells. Scientific Reports, 2015, 5, 9806.	1.6	47
1555	Advances in techniques and technologies for bone implants. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 26-36.	0.7	6
1557	Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic. Biomedical Glasses, 2015, 1, .	2.4	7
1558	Construction and <i>in vitro</i> characterization of three-dimensional silk fibroinchitosan scaffolds. Dental Materials Journal, 2015, 34, 475-484.	0.8	12
1559	High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties. AIP Conference Proceedings, 2015, , .	0.3	8
1560	The Mineralogy, Geology and Main Occurrences of Chrysotile. , 2015, , 157-164.		1
1561	Heidelberg-mCT-Analyzer: a novel method for standardized microcomputed-tomography-guided evaluation of scaffold properties in bone and tissue research. Royal Society Open Science, 2015, 2, 150496.	1.1	11
1562	Distinctive Capillary Action by Micro-channels in Bone-like Templates can Enhance Recruitment of Cells for Restoration of Large Bony Defect. Journal of Visualized Experiments, 2015, , .	0.2	3
1563	Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering. Regenerative Engineering and Translational Medicine, 2015, 1, 32-41.	1.6	12
1564	Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass [®] â€based scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 1029-1037.	2.1	32
1565	Proliferation and osteogenic response of <scp>MC</scp> 3 <scp>T</scp> 3â€E1 preâ€osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria. Journal of Biomedical Materials Research - Part A, 2015, 103, 3612-3624.	2.1	36
1567	Treatment of Circumferential Defects with Osseoconductive Xenografts of Different Porosities: A Histological, Histometric, Resonance Frequency Analysis, and Microâ€ <scp>CT</scp> Study in Dogs. Clinical Implant Dentistry and Related Research, 2015, 17, e202-20.	1.6	8
1568	Angiogenin-loaded fibrin/bone powder composite scaffold for vascularized bone regeneration. Biomaterials Research, 2015, 19, 18.	3.2	30
1569	Electron Beam Melting Fabrication of Porous Ti6Al4V Scaffolds: Cytocompatibility and Osteogenesis. Advanced Engineering Materials, 2015, 17, 1391-1398.	1.6	61
1570	Fabrication of quaternary composite scaffold from silk fibroin, chitosan, gelatin, and alginate for skin regeneration. Journal of Applied Polymer Science, 2015, 132, .	1.3	22
1571	Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Nanofibers Enhances their Differentiation toward Osteogenic Outcomes. Macromolecular Rapid Communications, 2015, 36, 1884-1890.	2.0	50
1572	Effect of a tunnelâ€structured βâ€tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine oneâ€wall intrabony defect model. Journal of Periodontal Research, 2015, 50, 347-355.	1.4	16

#	Article	IF	CITATIONS
1573	A novel pHâ€sensitive ceramicâ€hydrogel for biomedical applications. Polymers for Advanced Technologies, 2015, 26, 1439-1446.	1.6	26
1574	Radiodensity Study of Hydroxyapatite Coated Porous Tantalum Implant Material of Rat Animal Model. Advanced Materials Research, 2015, 1112, 470-473.	0.3	1
1575	Instructive Conductive 3D Silk Foamâ€Based Bone Tissue Scaffolds Enable Electrical Stimulation of Stem Cells for Enhanced Osteogenic Differentiation. Macromolecular Bioscience, 2015, 15, 1490-1496.	2.1	46
1576	Orthotopic Osteogenecity Enhanced by a Porous Gelatin Sponge in a Criticalâ€6ized Rat Calvaria Defect. Macromolecular Bioscience, 2015, 15, 1647-1655.	2.1	19
1577	Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 1485-1497.	2.1	10
1578	Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycin. Journal of Biomedical Materials Research - Part A, 2015, 103, 3128-3138.	2.1	24
1579	A novel additive manufacturing-based technique for developing bio-structures with conformal channels and encapsulated voids. Biomedical Physics and Engineering Express, 2015, 1, 045007.	0.6	2
1580	Bone Regeneration of Macropore Octacalcium Phosphate–Coated Deproteinized Bovine Bone Materials in Sinus Augmentation. Implant Dentistry, 2015, Publish Ahead of Print, 275-80.	1.7	5
1581	Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 961-972.	1.3	34
1582	Evaluation of Highly Porous Dental Implants in Postablative Oral and Maxillofacial Cancer Patients. Implant Dentistry, 2015, 24, 631-637.	1.7	22
1583	Engineered microstructure granules for tailored drug release rate. Biotechnology and Bioengineering, 2015, 112, 1936-1947.	1.7	7
1584	Fabrication of 3D Scaffolds with Precisely Controlled Substrate Modulus and Pore Size by Templatedâ€Fused Deposition Modeling to Direct Osteogenic Differentiation. Advanced Healthcare Materials, 2015, 4, 1826-1832.	3.9	31
1585	Bioactive Glass for Large Bone Repair. Advanced Healthcare Materials, 2015, 4, 2842-2848.	3.9	49
1586	Interplay between cellular activity and threeâ€dimensional scaffoldâ€cell constructs with different foam structure processed by electron beam melting. Journal of Biomedical Materials Research - Part A, 2015, 103, 1677-1692.	2.1	56
1587	Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1182-1192.	1.3	33
1588	Effect of Macroscopic Grooves on Bone Formation and Osteoblastic Differentiation. Implant Dentistry, 2015, Publish Ahead of Print, 370-6.	1.7	2
1589	A Human Clinical, Histological, Histomorphometrical, and Radiographical Study on Biphasic <scp>HA</scp> â€Betaâ€ <scp>TCP</scp> 30/70 in Maxillary Sinus Augmentation. Clinical Implant Dentistry and Related Research, 2015, 17, 610-618.	1.6	44
1590	3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy. Theranostics, 2015, 5, 643-655.	4.6	81

ARTICLE #

1591

IF CITATIONS

POLYHYDROXYALKANOATES (PHAs) FOR TISSUE ENGINEERING APPLICATIONS: BIOTRANSFORMATION OF PALM OIL MILL EFFLUENT (POME) TO VALUE-ADDED POLYMERS. Jurnal Teknologi (Sciences and) Tj ETQqO	0 0 rgBTo/®ver	loc ls 10 Tf 50
Drug Delivery Systems in Bone Regeneration and Implant Dentistry. , 2015, , .		2
Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified	0.0	

1593	extrusion method in rabbit calvarial defects. Journal of Periodontal and Implant Science, 2015, 45, 46.	0.9	8
1594	Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes. Research on Biomedical Engineering, 2015, 31, 334-342.	1.5	10
1595	Novel Nanostructured Zn-substituted Monetite Based Biomaterial for Bone Regeneration. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	4
1597	Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean Journal of Internal Medicine, 2015, 30, 279.	0.7	61
1598	Effect of Ceramic Scaffold Architectural Parameters on Biological Response. Frontiers in Bioengineering and Biotechnology, 2015, 3, 151.	2.0	83
1599	Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response. Frontiers in Bioengineering and Biotechnology, 2015, 3, 175.	2.0	32
1600	Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 202.	2.0	261
1601	Hydrogels for Engineering of Perfusable Vascular Networks. International Journal of Molecular Sciences, 2015, 16, 15997-16016.	1.8	204
1602	Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review. Journal of Functional Biomaterials, 2015, 6, 1099-1140.	1.8	188
1603	Bone Regeneration and Remodeling within a Unidirectional Porous Hydroxyapatite Bone Substitute at a Cortical Bone Defect Site: Histological Analysis at One and Two Years after Implantation. Materials, 2015, 8, 4884-4894.	1.3	24
1604	Preclinical in vivo Performance of Novel Biodegradable, Electrospun Poly(lactic acid) and Poly(lactic-co-glycolic acid) Nanocomposites: A Review. Materials, 2015, 8, 4912-4931.	1.3	22
1605	Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human Osteoblasts Behavior in Static and Dynamic Cell Investigations. Materials, 2015, 8, 5490-5507.	1.3	83
1606	Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials, 2015, 8, 5744-5794.	1.3	544
1607	Effect of Different Manufacturing Methods on the Conflict between Porosity and Mechanical Properties of Spiral and Porous Polyethylene Terephthalate/Sodium Alginate Bone Scaffolds. Materials, 2015, 8, 8768-8779.	1.3	7
1608	3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study. Frontiers in Endocrinology, 2015, 6, 161.	1.5	15
1609	Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo. International Journal of Nanomedicine, 2015, 10. 2555.	3.3	51

#	ARTICLE	IF	CITATIONS
1610	Investigating Breast Cancer Cell Behavior Using Tissue Engineering Scaffolds. PLoS ONE, 2015, 10, e0118724.	1.1	46
1611	Geometrical versus Random β-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior. PLoS ONE, 2015, 10, e0139820.	1.1	16
1612	Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration. Materials, 2015, 8, 7461-7471.	1.3	20
1613	3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration. International Journal of Molecular Sciences, 2015, 16, 15118-15135.	1.8	257
1614	Physical Characteristics of Medical Textile Prostheses Designed for Hernia Repair: A Comprehensive Analysis of Select Commercial Devices. Materials, 2015, 8, 8148-8168.	1.3	23
1615	Nanocellulosic Materials in Tissue Engineering Applications. , 0, , .		4
1616	Influence of Poly-L-Lactic Acid Scaffold's Pore Size on the Proliferation and Differentiation of Dental Pulp Stem Cells. Brazilian Dental Journal, 2015, 26, 93-98.	0.5	29
1617	3D Nanoprinting Technologies for Tissue Engineering Applications. Journal of Nanomaterials, 2015, 2015, 1-14.	1.5	16
1618	A Comparison of the Process of Remodeling of Hydroxyapatite/Poly-D/L-Lactide and Beta-Tricalcium Phosphate in a Loading Site. BioMed Research International, 2015, 2015, 1-14.	0.9	19
1619	Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. BioMed Research International, 2015, 2015, 1-9.	0.9	9
1620	Enhanced Vascularization in Hybrid PCL/Gelatin Fibrous Scaffolds with Sustained Release of VEGF. BioMed Research International, 2015, 2015, 1-10.	0.9	39
1621	Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants. BioMed Research International, 2015, 2015, 1-8.	0.9	128
1622	Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering. BioMed Research International, 2015, 2015, 1-21.	0.9	280
1623	Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering. Chinese Medical Journal, 2015, 128, 1121-1127.	0.9	40
1624	Preparation and In-Vitro Biocompatibility of Gelatin/Sa/Hya Composite Scaffold for Tissue Engineering. Polymers and Polymer Composites, 2015, 23, 503-508.	1.0	3
1625	A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 5361-5376.	2.9	51
1626	3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder. Biofabrication, 2015, 7, 025008.	3.7	69
1627	Phase separation induced shell thickness variations in electrospun hollow Bioglass 45S5 fiber mats for drug delivery applications. Physical Chemistry Chemical Physics, 2015, 17, 15316-15323.	1.3	19

#	ARTICLE	IF	CITATIONS
1628	Study of the porous Ti35Nb alloy processing parameters for implant applications. Powder Technology,	2.1	25
1(00	A novel squid pen chitosan/hydroxyapatite/l²-tricalcium phosphate composite for bone tissue		50
1629	engineering. Materials Science and Engineering C, 2015, 55, 373-383.	3.8	50
1630	In Vivo X-Ray Imaging of Phosphor-Doped PDMS and Phosphor-Doped Aerogel Biomaterials. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 823-830.	1.8	22
1631	Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnology Advances, 2015, 33, 842-855.	6.0	49
1632	Polymer-Based Matrix Composites. , 2015, , 3-27.		1
1633	Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. International Journal of Energy Production and Management, 2015, 2, 9-19.	1.9	85
1634	Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Advances, 2015, 5, 43480-43488.	1.7	79
1635	Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture. Bulletin of Materials Science, 2015, 38, 811-816.	0.8	2
1636	Biomimetic scaffolds based on hydroxyapatite nanorod/poly(d,l) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 128, 506-514.	2.5	47
1637	High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation. Materials Science and Engineering C, 2015, 49, 623-631.	3.8	16
1638	Production and characterization of chitosan/gelatin/ \hat{l}^2 -TCP scaffolds for improved bone tissue regeneration. Materials Science and Engineering C, 2015, 55, 592-604.	3.8	128
1639	A facile method to determine pore size distribution in porous scaffold by using image processing. Micron, 2015, 76, 37-45.	1.1	51
1640	Mechanisms of tetraneedlelike ZnO whiskers reinforced forsterite/bioglass scaffolds. Journal of Alloys and Compounds, 2015, 636, 341-347.	2.8	17
1641	Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and <i>in vitro</i> biological response. Biomedical Materials (Bristol), 2015, 10, 025012.	1.7	46
1642	Importance of Poly(lactic-co-glycolic acid) in Scaffolds for Guided Bone Regeneration: A Focused Review. Journal of Oral Implantology, 2015, 41, e152-e157.	0.4	23
1643	Electrohydrodynamic direct printing of PCL/collagen fibrous scaffolds with a core/shell structure for tissue engineering applications. Chemical Engineering Journal, 2015, 279, 317-326.	6.6	32
1644	Overview on Cell-Biomaterial Interactions. , 2015, , 91-128.		2
1645	Preparation of macroporous alginate-based aerogels for biomedical applications. Journal of Supercritical Fluids, 2015, 106, 152-159.	1.6	129

#	Article	IF	CITATIONS
1646	Influence of Cross-Linking on the Physical Properties and Cytotoxicity of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 567-576.	2.6	39
1647	Structure optimisation and biological evaluation of bone scaffolds prepared by co-sintering of silicate and phosphate glasses. Advances in Applied Ceramics, 2015, 114, S48-S55.	0.6	11
1648	Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects. Molecular Medicine Reports, 2015, 11, 1111-1119.	1.1	12
1649	Prospective, Multicenter Evaluation of Trabecular Metalâ€Enhanced Titanium Dental Implants Placed in Routine Dental Practices: 1â€Year Interim Report From the Development Period (2010 to 2011). Clinical Implant Dentistry and Related Research, 2015, 17, 1141-1153.	1.6	26
1650	Preparation and Reinforcement of Dualâ€Porous Biocompatible Cellulose Scaffolds for Tissue Engineering. Macromolecular Materials and Engineering, 2015, 300, 911-924.	1.7	52
1651	Alginate gel electro-writing for 3D cell printing. , 2015, , .		1
1652	<i>In vitro</i> cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomedical Materials (Bristol), 2015, 10, 055009.	1.7	51
1653	Inosculation potential of angiopoietin-4-immobilized pHEMA-based bone scaffolds. Journal of Bioactive and Compatible Polymers, 2015, 30, 649-666.	0.8	1
1654	Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings. International Journal of Energy Production and Management, 2015, 2, 1-8.	1.9	14
1655	Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-β tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. European Polymer Journal, 2015, 73, 308-323.	2.6	27
1656	Facile method for fabricating uniformly patterned and porous nanofibrous scaffolds for tissue engineering. Macromolecular Research, 2015, 23, 1152-1158.	1.0	6
1657	Pore size regulates mesenchymal stem cell response to Bioglass-loaded composite scaffolds. Journal of Materials Chemistry B, 2015, 3, 8650-8658.	2.9	46
1658	Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Biofabrication, 2015, 7, 035010.	3.7	61
1659	Melt Electrospinning and Its Technologization in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2015, 21, 187-202.	2.5	180
1660	High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomaterialia, 2015, 13, 159-167.	4.1	158
1661	On glucose diffusivity of tissue engineering membranes and scaffolds. Chemical Engineering Science, 2015, 126, 244-256.	1.9	26
1662	Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds. Materials Science and Engineering C, 2015, 49, 174-182.	3.8	31
1663	Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomaterialia, 2015, 17, 16-25.	4.1	158

	Сіта	tion Report	
# 1664	ARTICLE Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5346.	IF 1.7	Citations
1665	Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomaterialia, 2015, 18, 9-20.	4.1	77
1666	Evaluating Changes in Structure and Cytotoxicity During <i>In Vitro</i> Degradation of Three-Dimensional Printed Scaffolds. Tissue Engineering - Part A, 2015, 21, 1642-1653.	1.6	49
1667	Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres. Frontiers of Materials Science, 2015, 9, 51-65.	1.1	15
1668	Additive Manufacturing for Bone Load Bearing Applications. , 2015, , 231-263.		5
1669	Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells. Journal of Materials Science: Materials in Medicine, 2015, 26, 116.	1.7	24
1670	Bioinspired Synthesis of Large-Pore, Mesoporous Hydroxyapatite Nanocrystals for the Controlled Release of Large Pharmaceutics. Crystal Growth and Design, 2015, 15, 723-731.	1.4	32
1671	Radiopaque, Iodine Functionalized, Phenylalanine-Based Poly(ester urea)s. Biomacromolecules, 2015, 16 615-624.	, 2.6	20
1672	Porous β-Ca2SiO4 ceramic scaffolds for bone tissue engineering: In vitro and in vivo characterization. Ceramics International, 2015, 41, 5894-5902.	2.3	29
1675	In vitro co-culture strategies to prevascularization for bone regeneration: A brief update. Tissue Engineering and Regenerative Medicine, 2015, 12, 69-79.	1.6	12
1676	Effect of structural stiffness of composite bone plate–scaffold assembly on tibial fracture with large fracture gap. Composite Structures, 2015, 124, 327-336.	3.1	23
1677	Nanoparticle Biphasic Calcium Phosphate Loading on Gelatin-Pectin Scaffold for Improved Bone Regeneration. Tissue Engineering - Part A, 2015, 21, 1376-1387.	1.6	33
1678	In vitroevaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds. , 2015, 103, 888-898.		25
1679	Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth. Applied Surface Science, 2015, 332, 287-294.	3.1	30
1680	Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and <i>in vivo</i> osteogenesis in a rabbit femur model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1549-1559.	1.6	31
1681	How can bioactive glasses be useful in ocular surgery?. Journal of Biomedical Materials Research - Part A, 2015, 103, 1259-1275.	2,1	32
1682	Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 135-143.	2.0	48
1683	The combination of meltblown and electrospinning for bone tissue engineering. Materials Letters, 2015, 143, 172-176.	1.3	35

#	Article	IF	CITATIONS
1684	The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 1732-1745.	2.1	41
1685	Evaluation of Antibacterial Activity and Cytocompatibility of Ciprofloxacin Loaded Gelatin–Hydroxyapatite Scaffolds as a Local Drug Delivery System for Osteomyelitis Treatment. Tissue Engineering - Part A, 2015, 21, 1422-1431.	1.6	23
1686	β-Tricalcium phosphate for bone replacement: Stability and integration in sheep. Journal of Biomechanics, 2015, 48, 1023-1031.	0.9	17
1687	The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs. Journal of Materials Science, 2015, 50, 2138-2147.	1.7	15
1688	Pore structure properties of scaffolds constituted by aggregated microparticles of PCL and PCL-HA processed by phase separation. Journal of Porous Materials, 2015, 22, 425-435.	1.3	25
1689	Computational Design and Simulation. , 2015, , 207-254.		1
1690	The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering. Applied Microbiology and Biotechnology, 2015, 99, 4785-4794.	1.7	21
1691	Additive manufacturing of Trabecular Titanium orthopedic implants. MRS Bulletin, 2015, 40, 137-144.	1.7	49
1692	Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability. Materials, 2015, 8, 1612-1625.	1.3	30
1693	PEGylated Poly(3-hydroxybutyrate) Scaffold for Hydration-Driven Cell Infiltration, Neo-Tissue Ingrowth, and Osteogenic Potential. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 865-878.	1.8	2
1695	3D-printed alginate/phenamil composite scaffolds constituted with microsized core–shell struts for hard tissue regeneration. RSC Advances, 2015, 5, 29335-29345.	1.7	9
1696	Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures. Colloids and Surfaces B: Biointerfaces, 2015, 133, 304-313.	2.5	21
1697	Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale, 2015, 7, 14010-14022.	2.8	172
1698	A Computational Based Design and Optimization Study of Scaffold Architectures. Advanced Structured Materials, 2015, , 1-17.	0.3	0
1699	Design of biocomposite materials for bone tissue regeneration. Materials Science and Engineering C, 2015, 57, 452-463.	3.8	239
1700	Directed osteogenic differentiation of mesenchymal stem cell in three-dimensional biodegradable methylcellulose-based scaffolds. Colloids and Surfaces B: Biointerfaces, 2015, 135, 332-338.	2.5	14
1701	In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. International Journal of Biological Macromolecules, 2015, 81, 1-10.	3.6	58
1702	Osteogenic differentiation of stem cells on mesoporous silica nanofibers. RSC Advances, 2015, 5, 69205-69214.	1.7	19

C 17			DE		пт
	IAI	ION	IKE!	PO	κı

#	Article	IF	CITATIONS
1703	Mechanical properties and pore structure deformation behaviour of biomedical porous titanium. Transactions of Nonferrous Metals Society of China, 2015, 25, 1543-1550.	1.7	35
1704	Status and headway of the clinical application of artificial ligaments. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 2015, 2, 15-26.	0.4	13
1705	Highly porous and light-weight flax/PLA composites. Industrial Crops and Products, 2015, 74, 132-138.	2.5	21
1706	Coating of ß-tricalcium phosphate scaffolds—a comparison between graphene oxide and poly-lactic-co-glycolic acid. Biomedical Materials (Bristol), 2015, 10, 045018.	1.7	19
1707	Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 56, 457-466.	3.8	27
1708	When 1 + 1 > 2: Nanostructured composites for hard tissue engineering applications. Materials Science and Engineering C, 2015, 57, 434-451.	3.8	39
1709	A novel multiple soaking temperature (MST) method to prepare polylactic acid foams with bi-modal open-pore structure and their potential in tissue engineering applications. Journal of Supercritical Fluids, 2015, 103, 28-37.	1.6	18
1710	Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration. Colloids and Surfaces B: Biointerfaces, 2015, 130, 149-156.	2.5	32
1711	Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opinion on Biological Therapy, 2015, 15, 1583-1599.	1.4	38
1712	Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids and Surfaces B: Biointerfaces, 2015, 135, 81-89.	2.5	74
1713	Microfabrication of Custom Collagen Structures Capable of Guiding Cell Morphology and Alignment. Biomacromolecules, 2015, 16, 1761-1770.	2.6	15
1714	Understanding cell homing-based tissue regeneration from the perspective of materials. Journal of Materials Chemistry B, 2015, 3, 7319-7333.	2.9	15
1715	Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Biomedical Materials (Bristol), 2015, 10, 035006.	1.7	13
1716	3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Biomedical Materials (Bristol), 2015, 10, 045019.	1.7	46
1717	Simple method to generate and fabricate stochastic porous scaffolds. Materials Science and Engineering C, 2015, 56, 444-450.	3.8	37
1718	Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81, 112-121.	1.4	469
1719	Constructing a novel three-dimensional scaffold with mesoporous TiO ₂ nanotubes for potential bone tissue engineering. Journal of Materials Chemistry B, 2015, 3, 5595-5602.	2.9	29
1720	Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti ₆ Al ₄ V scaffolds incorporating growth factor-doped fibrin glue. Biomedical Materials (Bristol), 2015, 10, 035013	1.7	104

#	Article	IF	CITATIONS
1721	Adhesion of human mesenchymal stem cells can be controlled by electron beam-microstructured titanium alloy surfaces during osteogenic differentiation. Biomedizinische Technik, 2015, 60, 215-23.	0.9	4
1722	Fabrication and characterization of novel porous titanium microspheres for biomedical applications. Materials Characterization, 2015, 106, 317-323.	1.9	7
1723	Fabrication and Compressive Properties of Porous Ti6Al4V Alloy with Elongated Pores for Biomedical Application. Materials Science Forum, 0, 815, 354-358.	0.3	0
1724	Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. International Journal of Biological Macromolecules, 2015, 80, 445-454.	3.6	39
1725	Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Materials Science and Engineering C, 2015, 56, 481-493.	3.8	46
1726	Preparation and characterization of hydroxyapatite–sodium alginate scaffolds by extrusion freeforming. Ceramics International, 2015, 41, 14029-14034.	2.3	17
1727	Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release. Materials Science and Engineering C, 2015, 56, 473-480.	3.8	45
1728	Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Advances, 2015, 5, 60188-60198.	1.7	20
1729	Development of tantalum scaffold for orthopedic applications produced by space-holder method. Materials and Design, 2015, 83, 112-119.	3.3	25
1730	Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites. Industrial & Engineering Chemistry Research, 2015, 54, 7122-7130.	1.8	34
1731	Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 796-811.	1.9	9
1732	Preparation of a sponge-like biocomposite agarose–chitosan scaffold with primary hepatocytes for establishing an in vitro 3D liver tissue model. RSC Advances, 2015, 5, 30701-30710.	1.7	65
1734	Composite ECM–alginate microfibers produced by microfluidics as scaffolds with biomineralization potential. Materials Science and Engineering C, 2015, 56, 141-153.	3.8	35
1735	Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin–Biotin Binding System. Annals of Biomedical Engineering, 2015, 43, 3004-3014.	1.3	13
1736	Water–Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation. Biomacromolecules, 2015, 16, 2255-2264.	2.6	20
1737	Biomaterials and scaffolds for musculoskeletal tissue engineering. , 2015, , 3-23.		21
1738	Graphene oxide nanoflakes incorporated gelatin–hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology, 2015, 26, 161001.	1.3	156
1739	Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2015, 54, 20-25.	3.8	198

#	Article	IF	CITATIONS
1740	Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior. Materials Science and Engineering C, 2015, 53, 50-59.	3.8	39
1741	A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response. Applied Surface Science, 2015, 344, 79-88.	3.1	48
1742	Collagen immobilization of multi-layered BCP-ZrO 2 bone substitutes to enhance bone formation. Applied Surface Science, 2015, 345, 238-248.	3.1	10
1743	Selective laser sintered porous Ti–(4–10)Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour. Corrosion Science, 2015, 95, 117-124.	3.0	64
1744	Osteoblast response to porous titanium and biomimetic surface: In vitro analysis. Materials Science and Engineering C, 2015, 52, 194-203.	3.8	27
1745	Water vapor-induced formation of poly(ε-caprolactone) membranes for guided bone regeneration. Journal of Materials Science, 2015, 50, 4122-4131.	1.7	7
1746	Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats. Journal of Materials Science: Materials in Medicine, 2015, 26, 74.	1.7	12
1747	Chitosan and composite microsphere-based scaffold for bone tissue engineering: evaluation of tricalcium phosphate content influence on physical and biological properties. Journal of Materials Science: Materials in Medicine, 2015, 26, 143.	1.7	30
1748	Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions. Ceramics International, 2015, 41, 8425-8432.	2.3	175
1749	Effect of Gray Scale Binder Levels on Additive Manufacturing of Porous Scaffolds with Heterogeneous Properties. International Journal of Applied Ceramic Technology, 2015, 12, 62-70.	1.1	20
1750	Osseointegration of acellular and cellularized osteoconductive scaffolds: Is tissue engineering using mesenchymal stem cells necessary for implant fixation?. Journal of Biomedical Materials Research - Part A, 2015, 103, 1067-1076.	2.1	19
1751	Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Journal of Translational Medicine, 2015, 13, 152.	1.8	61
1752	Hybrid amphiphilic bimodal hydrogels having mechanical and biological recognition characteristics for cardiac tissue engineering. RSC Advances, 2015, 5, 38183-38201.	1.7	27
1753	Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. International Journal of Advanced Manufacturing Technology, 2015, 81, 15-25.	1.5	57
1754	Control of structural and mechanical properties in bioceramic bone substitutes via additive manufacturing layer stacking orientation. Additive Manufacturing, 2015, 6, 30-38.	1.7	35
1755	Synthetic hydroxyapatite for tissue engineering applications. , 2015, , 235-267.		5
1756	Scaffold Architecture and Properties for Osteoblasts Cell Culture: An Optimization Model and Application by Genetic Algorithm. Materials Research Society Symposia Proceedings, 2015, 1753, 72.	0.1	1
1757	Hybrid nanostructured hydroxyapatite–chitosan composite scaffold: bioinspired fabrication, mechanical properties and biological properties. Journal of Materials Chemistry B, 2015, 3, 4679-4689.	2.9	77

ARTICLE IF CITATIONS Bone Substitute Materials in Implant Dentistry., 0,,. 2 1758 Osteointegration in Custom-made Porous Hydroxyapatite Cranial Implants: From Reconstructive 28 Surgery to Regenerative Medicine. World Néurosúrgery, 2015, 84, 591.e11-591.e16. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone 1760 2.9 57 tissue engineering. Journal of Materials Chemistry B, 2015, 3, 3367-3378. The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the 1761 micromechanical local cell environment. Interface Focus, 2015, 5, 20140097. Effect of Local Sustainable Release of BMP2-VEGF from Nano-Cellulose Loaded in Sponge Biphasic 1762 1.6 67 Calcium Phosphate on Bone Regeneration. Tissue Engineering - Part A, 2015, 21, 1822-1836. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Scientific Reports, 1.6 2015, 5, 9409. Self-Assembled Peptide Amphiphile Nanofibers and PEG Composite Hydrogels as Tunable ECM Mimetic 1764 2.6 69 Microenvironment. Biomacromolecules, 2015, 16, 1247-1258. Delivery of demineralized bone matrix powder using a salt-leached silk fibroin carrier for bone 2.9 regeneration. Journal of Materials Chemistry B, 2015, 3, 3177-3188. Biomaterials for Bone Regenerative Engineering. Advanced Healthcare Materials, 2015, 4, 1268-1285. 3.9 280 1766 Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human 1767 trabecular bone implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 1.5 2015, 46, 104-114. Novel fabrication of hierarchically porous hydroxyapatite scaffolds with refined porosity and 1768 0.6 19 suitable strength. Advances in Applied Cerámics, 2015, 114, 183-187. HAp granules encapsulated oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone regeneration. International Journal of Biological Macromolecules, 2015, 81, 898-911. 3.6 Fabrication and Osteogenesis of a Porous Nanohydroxyapatite/Polyamide Scaffold with an 1770 2.6 25 Anisotropic Architecture. ACS Biomaterials Science and Engineering, 2015, 1, 825-833. Cellulosic Biomaterials., 2015, , 289-328. 1771 A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with 1772 2.2 14 DOPA. Chemical Communications, 2015, 51, 16786-16789. Fabrication of NiTi Shape Memory Alloys with Graded Porosity to Imitate Human Long-bone Structure. 1773 Journal of Bionic Engineering, 2015, 12, 575-582. A Review of Synthesis Methods, Properties and Use of Hydroxyapatite as a Substitute of Bone. Journal 1774 0.5 22 of Biomimetics, Biomaterials and Biomedical Engineering, 0, 25, 98-117.

1775	Cell-Laden 3D Printed Scaffolds for Bone Tissue Engineering. Clinical Reviews in Bone and Mineral Metabolism, 2015, 13, 245-255.	1.3	24
------	--	-----	----

#	Article	IF	Citations
1776	Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. ACS Applied Materials & Interfaces, 2015, 7, 24377-24383.	4.0	101
1777	Evaluation of the Osteoinductive Capacity of Polydopamine-Coated Poly(ε-caprolactone) Diacrylate Shape Memory Foams. ACS Biomaterials Science and Engineering, 2015, 1, 1220-1230.	2.6	44
1778	3D Printing and Biofabrication for Load Bearing Tissue Engineering. Advances in Experimental Medicine and Biology, 2015, 881, 3-14.	0.8	26
1779	Engineering Pre-vascularized Scaffolds for Bone Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 79-94.	0.8	90
1780	Single posterior approach for circumferential decompression and anterior reconstruction using cervical trabecular metal mesh cage in patients with metastatic spinal tumour. World Journal of Surgical Oncology, 2015, 13, 256.	0.8	7
1781	Indirect Rapid Prototyping for Tissue Engineering. , 2015, , 153-164.		3
1782	Calcium orthophosphate bioceramics. Ceramics International, 2015, 41, 13913-13966.	2.3	201
1783	A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Scientific Reports, 2015, 5, 12721.	1.6	54
1784	Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications. Materials Characterization, 2015, 107, 419-425.	1.9	51
1785	Immediate Loading of Trabecular Metalâ€Enhanced Titanium Dental Implants: Interim Results from an International Proofâ€ofâ€Principle Study. Clinical Implant Dentistry and Related Research, 2015, 17, e308-20.	1.6	29
1786	Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing. Nanoscale, 2015, 7, 18446-18452.	2.8	99
1787	N ₂ /H ₂ o Plasma Assisted Functionalization of Poly(εâ€caprolactone) Porous Scaffolds: Acidic/Basic Character versus Cell Behavior. Plasma Processes and Polymers, 2015, 12, 786-798.	1.6	14
1788	Engineered regenerated bacterial cellulose scaffolds for application in in vitro tissue regeneration. RSC Advances, 2015, 5, 84565-84573.	1.7	45
1789	Influence of hydroxyapatite on thermoplastic foaming performance of water-plasticized poly(vinyl) Tj ETQq1 1 0.	784314 rg 1.7	BT/Overlock
1790	Highly adjustable biomaterial networks from three-armed biodegradable macromers. Acta Biomaterialia, 2015, 26, 82-96.	4.1	12
1791	Ultraporous nanofeatured PCL–PEO microfibrous scaffolds enhance cell infiltration, colonization and myofibroblastic differentiation. Nanoscale, 2015, 7, 14989-14995.	2.8	25
1792	Review: unraveling the less explored flocking technology for tissue engineering scaffolds. RSC Advances, 2015, 5, 73225-73240.	1.7	11
1793	Comparison of two proanthocyanidin cross-linked recombinant human collagen-peptide (RHC) – chitosan scaffolds. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 585-599.	1.9	6

	СІТА	CITATION REPORT	
# 1794	ARTICLE Setting reaction of α-TCP spheres and an acidic calcium phosphate solution for the fabrication of fully interconnected macroporous calcium phosphate. Ceramics International, 2015, 41, 13525-13531.	IF 2.3	Citations
1795	Preparation and characterization of fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration. Journal of Materials Science: Materials in Medicine, 2015, 26, 224.	1.7	8
1796	Three dimensional <i>de novo</i> micro bone marrow and its versatile application in drug screening and regenerative medicine. Experimental Biology and Medicine, 2015, 240, 1029-1038.	1.1	5
1797	Hydrogels that allow and facilitate bone repair, remodeling, and regeneration. Journal of Materials Chemistry B, 2015, 3, 7818-7830.	2.9	69
1798	Physical properties of continuous matrix of porous natural hydroxyapatite related to the pyrolysis temperature of animal bones precursors. Journal of Analytical and Applied Pyrolysis, 2015, 116, 202-214	2.6	22
1799	Polyurethane composite foams with β-tricalcium phosphate for biomedical applications. Journal of Reinforced Plastics and Composites, 2015, 34, 1856-1870.	1.6	8
1800	Biomimetically Ornamented Rapid Prototyping Fabrication of an Apatite–Collagen–Polycaprolacton Composite Construct with Nano–Micro–Macro Hierarchical Structure for Large Bone Defect Treatment. ACS Applied Materials & Interfaces, 2015, 7, 26244-26256.	e 4.0	60
1802	Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V implants generated by electron beam melting. Surface and Coatings Technology, 2015, 283, 80-88.	2.2	28
1803	Enhanced biological behavior of bacterial cellulose scaffold by creation of macropores and surface immobilization of collagen. Macromolecular Research, 2015, 23, 734-740.	1.0	33
1804	Fuzzy Inference System Applied to Mechanical Design of Bone Tissue Engineering Scaffolds. , 2015, , .		1
1805	Ceramics for oculo-orbital surgery. Ceramics International, 2015, 41, 5213-5231.	2.3	12
1806	Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 32-41.	1.9	21
1807	Fabrication of threeâ€dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1455-146	54.	38
1808	Analysis of solvent induced porous PMMA–Bioglass monoliths by the phase separation method – mechanical and in vitro biocompatible studies. Physical Chemistry Chemical Physics, 2015, 17, 1247-125	56. ^{1.3}	20
1809	SrO―and MgOâ€doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and <i>in vivo</i> osteogenesis in a rabbit model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 679-690.	1.6	98
1810	Designing biomaterials for tissue engineering based on the deconstruction of the native cellular environment. Materials Letters, 2015, 141, 198-202.	1.3	29
1811	Synthesis and physicochemical,in vitroandin vivoevaluation of an anisotropic, nanocrystalline hydroxyapatite bisque scaffold with parallel-aligned pores mimicking the microstructure of cortical bone. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E152-E166.	1.3	17
1812	Injectable, Interconnected, Highâ€Porosity Macroporous Biocompatible Gelatin Scaffolds Made by Surfactantâ€Free Emulsion Templating. Macromolecular Rapid Communications, 2015, 36, 364-372.	2.0	53

#	Article	IF	CITATIONS
1813	Porous ovalbumin scaffolds with tunable properties: A resource-efficient biodegradable material for tissue engineering applications. Journal of Biomaterials Applications, 2015, 29, 903-911.	1.2	17
1814	Thick electrospun honeycomb scaffolds with controlled pore size. Materials Letters, 2015, 142, 180-183.	1.3	42
1815	Bone augmentation using a highly porous <scp>PLGA</scp> /βâ€ <scp>TCP</scp> scaffold containing fibroblast growth factorâ€2. Journal of Periodontal Research, 2015, 50, 265-273.	1.4	32
1816	Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cellâ€based bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 2077-2101.	2.1	71
1817	Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair. Materials Science and Engineering C, 2015, 48, 301-309.	3.8	45
1818	Advanced Polymers in Medicine. , 2015, , .		24
1819	Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomaterialia, 2015, 12, 227-241.	4.1	140
1821	Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: In vitro and in vivo evidence. Acta Biomaterialia, 2015, 11, 435-448.	4.1	106
1822	Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. Journal of Biomedical Materials Research - Part A, 2015, 103, 1919-1929.	2.1	46
1823	Implant Materials and Structures. , 2015, , 569-596.		0
1824	Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration. Bone, 2015, 70, 19-27.	1.4	337
1825	In Vitro and In Vivo Characterization of Pentaerythritol Triacrylate-co-Trimethylolpropane Nanocomposite Scaffolds as Potential Bone Augments and Grafts. Tissue Engineering - Part A, 2015, 21, 320-331.	1.6	22
1826	Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Journal of Anatomy, 2015, 227, 732-745.	0.9	46
1827	In Vivo Behavior of a Custom-Made 3D Synthetic Bone Substitute in Sinus Augmentation Procedures in Sheep. Journal of Oral Implantology, 2015, 41, 240-250.	0.4	26
1828	Morphology effect of bioglassâ€reinforced hydroxyapatite (<scp>Bonelike[®]</scp>) on osteoregeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 292-304.	1.6	19
1829	Additive manufacturing techniques for the production of tissue engineering constructs. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 174-190.	1.3	287
1830	The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds. Applied Surface Science, 2015, 336, 2-10.	3.1	88
1831	Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 8-15.	2.1	29

#	Article	IF	Citations
1832	Rapid Prototyping Amphiphilic Polymer/Hydroxyapatite Composite Scaffolds with Hydration-Induced Self-Fixation Behavior. Tissue Engineering - Part C: Methods, 2015, 21, 229-241.	1.1	40
1833	Evaluating 3Dâ€Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering. Advanced Materials, 2015, 27, 138-144.	11.1	241
1834	A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications. Scientific Reports, 2014, 4, 5600.	1.6	45
1835	Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomaterialia, 2015, 12, 129-138.	4.1	87
1836	Fatigue behavior of Ti–6Al–4V foams processed by magnesium space holder technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 621, 157-165.	2.6	49
1837	Microfabrication and Nanofabrication Techniques. , 2015, , 207-219.		1
1838	InÂvitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering. Journal of Biomaterials Applications, 2015, 29, 1075-1085.	1.2	6
1839	Impact of Pore Connectivity on the Design of Longâ€Lived Zeolite Catalysts. Angewandte Chemie - International Edition, 2015, 54, 1591-1594.	7.2	84
1840	Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chemical Society Reviews, 2015, 44, 790-814.	18.7	438
1841	<i>In vivo</i> implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion. , 2015, 103, 151-158.		73
1842	Fabrication of cancellous biomimetic chitosanâ€based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 1882-1892.	2.1	40
1843	Bone tissue regeneration: the role of scaffold geometry. Biomaterials Science, 2015, 3, 231-245.	2.6	390
1844	Biological Strategies for Improved Osseointegration and Osteoinduction of Porous Metal Orthopedic Implants. Tissue Engineering - Part B: Reviews, 2015, 21, 218-230.	2.5	135
1845	Extracellular-Matrix-Based and Arg-Gly-Asp–Modified Photopolymerizing Hydrogels for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2015, 21, 757-766.	1.6	46
1846	Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: In silico design of bone biomaterials. Materials Science and Engineering C, 2015, 46, 207-217.	3.8	28
1847	Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 136-148.	1.5	18
1848	Physical and mechanical properties of the fully interconnected chitosan iceâ€ŧemplated scaffolds. Journal of Applied Polymer Science, 2015, 132, .	1.3	19
1849	Direct laser writing: Principles and materials for scaffold 3D printing. Microelectronic Engineering, 2015, 132, 83-89.	1.1	272

#	Article	IF	CITATIONS
1850	Physical and Biological Characterization of Ferromagnetic Fiber Networks: Effect of Fibrin Deposition on Short-Term <i>In Vitro</i> Responses of Human Osteoblasts. Tissue Engineering - Part A, 2015, 21, 463-474.	1.6	9
1851	Greater scaffold permeability promotes growth of osteoblastic cells in a perfused bioreactor. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E210-E218.	1.3	24
1852	Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyteâ€rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. Journal of Biomedical Materials Research - Part A, 2015, 103, 671-682.	2.1	49
1853	Polyhydroxyalkanoates – what are the uses? Current challenges and perspectives. Critical Reviews in Biotechnology, 2015, 35, 514-521.	5.1	54
1854	Osteogenesis of adipose-derived stem cells on polycaprolactone- <i>β</i> -tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E337-E353.	1.3	93
1855	Bone Structural Similarity Score: A Multiparametric Tool to Match Properties of Biomimetic Bone Substitutes with their Target Tissues. Journal of Applied Biomaterials and Functional Materials, 2016, 14, e277-e289.	0.7	10
1856	Development and Characterization of a Bioinspired Bone Matrix with Aligned Nanocrystalline Hydroxyapatite on Collagen Nanofibers. Materials, 2016, 9, 198.	1.3	20
1857	Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. International Journal of Nanomedicine, 2016, Volume 11, 6181-6194.	3.3	31
1858	Machine design for multimaterial processing. , 2016, , 111-140.		3
1859	Rapid Prototyping Assisted Scaffold Fabrication for Bone Tissue Regeneration. Journal of Materials Science Research, 2016, 5, 79.	0.1	2
1860	Present Strategies for Critical Bone Defects Regeneration. Oral Health Case Reports, 2016, 02, .	0.0	8
1861	Doped Bioactive Glass Materials in Bone Regeneration. , 0, , .		23
1862	Emerging trends of nanobiomaterials in hard tissue engineering. , 2016, , 63-101.		3
1863	Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds. Stem Cells International, 2016, 2016, 1-16.	1.2	12
1864	3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up. International Journal of Dentistry, 2016, 2016, 1-9.	0.5	103
1865	New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review. BioMed Research International, 2016, 2016, 1-21.	0.9	168
1866	3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications. International Journal of Dentistry, 2016, 2016, 1-15.	0.5	90
1867	The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying. Materials Research, 2016, 19, 839-845.	0.6	27

#	Article	IF	CITATIONS
1868	Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area. International Journal of Medical Sciences, 2016, 13, 466-476.	1.1	13
1869	Maxillary Sinus Elevation Surgery with ChronOS and Autogenous Bone Graft: Analysis of Histometric and Volumetric Changes. International Journal of Periodontics and Restorative Dentistry, 2016, 36, 885-892.	0.4	8
1870	Ceramic–polymer nanocomposites for bone-tissue regeneration. , 2016, , 331-367.		11
1871	Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket. International Journal of Nanomedicine, 2016, 11, 2265.	3.3	63
1872	In Vitro Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation. Frontiers in Bioengineering and Biotechnology, 2016, 4, 87.	2.0	202
1873	Bone Ingrowth to Ti Fibre Knit Block with High Deformability. Journal of Oral & Maxillofacial Research, 2016, 7, e2.	0.3	3
1874	Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2016, 17, 575.	1.8	17
1875	Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering. Materials, 2016, 9, 197.	1.3	73
1876	Poly(ε-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering. Materials, 2016, 9, 232.	1.3	55
1877	Microstructure and Characteristics of Calcium Phosphate Layers on Bioactive Oxide Surfaces of Air-Sintered Titanium Foams after Immersion in Simulated Body Fluid. Materials, 2016, 9, 956.	1.3	12
1878	Assessment of Effects of Si-Ca-P Biphasic Ceramic on the Osteogenic Differentiation of a Population of Multipotent Adult Human Stem Cells. Materials, 2016, 9, 969.	1.3	9
1879	Thermogel-Coated Poly(ε-Caprolactone) Composite Scaffold for Enhanced Cartilage Tissue Engineering. Polymers, 2016, 8, 200.	2.0	42
1880	Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells. Polymers, 2016, 8, 320.	2.0	15
1881	Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach. PLoS ONE, 2016, 11, e0146935.	1.1	96
1882	Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis. PLoS ONE, 2016, 11, e0148173.	1.1	99
1883	A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds. International Journal of Biological Sciences, 2016, 12, 1-17.	2.6	91
1884	Three-Dimensional Sustainable Printing of Functional Ceramics. , 2016, , 309-329.		0
1885	Increased Osteoid Formation in BMP-2–Loaded Silk-Based Screws. Plastic and Reconstructive Surgery, 2016, 137, 808e-817e.	0.7	6

#	Article	IF	CITATIONS
1886	Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction <i>inÂvivo</i> . Part A: synthesis, characterization of the materials, and <scp>SEM</scp> analysis. Clinical Oral Implants Research, 2016, 27, 1331-1338.	1.9	46
1887	Threeâ€Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery. Journal of Prosthodontics, 2016, 25, 310-318.	1.7	51
1888	New method for the fabrication of highly osteoconductive βâ€1,3â€glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization. Journal of Biomedical Materials Research - Part A, 2016, 104, 2528-2536.	2.1	11
1889	Biological functionality and mechanistic contribution of extracellular matrixâ€ornamented three dimensional Tiâ€6Alâ€4V mesh scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 2751-2763.	2.1	37
1890	Mechanical Properties and <i>In Vitro</i> Physicoâ€chemical Reactivity of Gelâ€derived SiO ₂ –Na ₂ O–CaO–P ₂ O ₅ Glass from Sand. Journal of the Chinese Chemical Society, 2016, 63, 618-626.	0.8	5
1891	High Internal Phase Emulsion Ringâ€Opening Polymerization of Pentadecanolide: Strategy to Obtain Porous Scaffolds in a Single Step. Macromolecular Chemistry and Physics, 2016, 217, 1752-1758.	1.1	11
1892	A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction. Advanced Healthcare Materials, 2016, 5, 1203-1212.	3.9	18
1893	Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication. Biotechnology and Bioengineering, 2016, 113, 2286-2297.	1.7	14
1894	Hierarchic micro-patterned porous scaffolds via electrochemical replica-deposition enhance neo-vascularization. Biomedical Materials (Bristol), 2016, 11, 025018.	1.7	27
1895	Toward accelerated bone regeneration by altering poly(<scp>d</scp> , <scp>l</scp> â€lacticâ€ <i>co</i> â€glycolic) acid porogen content in calcium phosphate cement. Journal of Biomedical Materials Research - Part A, 2016, 104, 483-492.	2.1	12
1896	Bioactive composites fabricated by freezing-thawing method for bone regeneration applications. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 761-773.	2.4	20
1897	Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomaterialia, 2016, 42, 341-350.	4.1	321
1898	Bottomâ€up topography assembly into 3 <scp>D</scp> porous scaffold to mediate cell activities. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1056-1063.	1.6	8
1899	Antibacterial Bioglassâ€Derived Scaffolds: Innovative Synthesis Approach and Characterization. International Journal of Applied Class Science, 2016, 7, 238-247.	1.0	30
1900	Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration. Advanced Healthcare Materials, 2016, 5, 1753-1763.	3.9	62
1901	Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μ <scp>CT</scp> , <scp>SEM</scp> , and <scp>XRD</scp> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 546-553.	1.6	5
1902	Hydrogels in Bone Tissue Engineering. , 2016, , 295-322.		1
1903	Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation. Journal of Biomedical Materials Research - Part A, 2016, 104, 2049-2059	2.1	17

	CITATION REPORT		
			2
ARTICLE		IF	CITATIONS
Bioactive and biocompatible copper containing glass-ceramics with remarkable antiba properties and high cell viability designed for future in vivo trials. Biomaterials Science 1252-1265.	cterial , 2016, 4,	2.6	42
Modified poly(caprolactone trifumarate) with embedded gelatin microparticles as a fu scaffold for bone tissue engineering. Journal of Applied Polymer Science, 2016, 133, .	nctional	1.3	5
Mathematical modelling of the spatial network of bone implants obtained by 3D-proto Conference Proceedings, 2016, , .	otyping. AIP	0.3	0
Experimental studies on 3D printing of barium titanate ceramics for medical applicatic Directions in Biomedical Engineering, 2016, 2, 95-99.	ns. Current	0.2	21
The improved biological response of shark tooth bioapatites in a comparative <i>in vit with synthetic and bovine bone grafts. Biomedical Materials (Bristol), 2016, 11, 03502</i>	ro study 11.	1.7	21
Oxidatively degradable poly(thioketal urethane)/ceramic composite bone cements wit strength. RSC Advances, 2016, 6, 109414-109424.	h bone-like	1.7	29
Dopamine Modified Organic–Inorganic Hybrid Coating for Antimicrobial and Osteog Applied Materials & Interfaces, 2016, 8, 33972-33981.	genesis. ACS	4.0	141
Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering. International Processing, 2016, 31, 587-597.	Polymer	0.3	6
Modification of a commercial thromboelastography instrument to measure coagulatic with three-dimensional biomaterials. Biointerphases, 2016, 11, 029602.	n dynamics	0.6	3
The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Reports, 2016, 6, 23300.	entific	1.6	23

1912	Modification of a commercial thromboelastography instrument to measure coagulation dynamics with three-dimensional biomaterials. Biointerphases, 2016, 11, 029602.	0.6	3
1914	The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Scientific Reports, 2016, 6, 23300.	1.6	23
1915	Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds. Biomedical Materials (Bristol), 2016, 11, 055014.	1.7	11
1916	Cementless total knee arthroplasty. Bone and Joint Journal, 2016, 98-B, 867-873.	1.9	108
1917	Total shoulder arthroplasty with a second-generation tantalum trabecular metal-backed glenoid component. Bone and Joint Journal, 2016, 98-B, 75-80.	1.9	33
1918	A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration. Biomedical Physics and Engineering Express, 2016, 2, 035014.	0.6	34
1919	Engineering Biomaterials for Enhanced Tissue Regeneration. Current Stem Cell Reports, 2016, 2, 140-146.	0.7	34
1920	Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomaterialia, 2016, 36, 296-309.	4.1	120
1921	A novel method to fabricate porous tricalcium phosphate composite scaffolds for bone tissue engineering applications. Materials Technology, 2016, 31, 595-602.	1.5	2
1922	Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair. ACS Applied Materials & Interfaces, 2016, 8, 8728-8736.	4.0	18

#

1904

1906

1907

1908

1910

1911

#	Article	IF	CITATIONS
1923	Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells. Materials Science and Engineering C, 2016, 68, 117-127.	3.8	23
1924	Advances in Bioprinting Technologies for Craniofacial Reconstruction. Trends in Biotechnology, 2016, 34, 700-710.	4.9	80
1925	Hybrid scaffolding strategy for dermal tissue reconstruction: a bioactive glass/chitosan/silk fibroin composite. RSC Advances, 2016, 6, 19887-19896.	1.7	21
1926	Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Materials Science and Engineering C, 2016, 67, 440-452.	3.8	74
1927	Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity. Biofabrication, 2016, 8, 025012.	3.7	35
1928	Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2016, 122, 392-402.	0.2	58
1929	Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?. Clinical Orthopaedics and Related Research, 2016, 474, 2373-2383.	0.7	66
1930	Chemically Functionalized Silk for Human Bone Marrow-Derived Mesenchymal Stem Cells Proliferation and Differentiation. ACS Applied Materials & Interfaces, 2016, 8, 14406-14413.	4.0	35
1931	Processing and Properties of Bioactive Surface-Porous PEKK. ACS Biomaterials Science and Engineering, 2016, 2, 977-986.	2.6	44
1932	A composited PEG-silk hydrogel combining with polymeric particles delivering rhBMP-2 for bone regeneration. Materials Science and Engineering C, 2016, 65, 221-231.	3.8	35
1933	Low-cycle fatigue behavior of 3d-printed PLA-based porous scaffolds. Composites Part B: Engineering, 2016, 97, 193-200.	5.9	123
1934	2D and 3D Mechanobiology in Human and Nonhuman Systems. ACS Applied Materials & Interfaces, 2016, 8, 21869-21882.	4.0	10
1935	Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 6905-6916.	4.0	136
1936	Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm. International Materials Reviews, 2016, 61, 20-45.	9.4	90
1937	Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomaterialia, 2016, 32, 309-323.	4.1	202
1938	Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: The impact of hydroxyapatite. Ceramics International, 2016, 42, 11055-11062.	2.3	39
1939	Creep-resistant dextran-based polyurethane foam as a candidate scaffold for bone tissue engineering: Synthesis, chemico-physical characterization, and <i>in vitro</i> and <i>in vivo</i> biocompatibility. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 729-740.	1.8	8
1940	Enhancement of posterolateral lumbar spine fusion using recombinant human bone morphogenetic protein-2 and mesenchymal stem cells delivered in fibrin glue. Journal of Biomaterials Applications, 2016, 31, 477-487.	1.2	11

# 1941	ARTICLE Tailored star poly (Îμ-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects. Journal of Bioactive and Compatible Polymers, 2016, 31, 15-30.	IF 0.8	CITATIONS
1942	Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae. Biomedical Materials (Bristol), 2016, 11, 015016.	1.7	30
1943	Rapid fabrication of poly(DL-lactide) nanofiber scaffolds with tunable degradation for tissue engineering applications by air-brushing. Biomedical Materials (Bristol), 2016, 11, 035001.	1.7	21
1944	Osteogenic signaling on silk-based matrices. Biomaterials, 2016, 97, 133-153.	5.7	102
1945	Fabrication and characterization of Mg-doped chitosan–gelatin nanocompound coatings for titanium surface functionalization. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 954-971.	1.9	21
1946	High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds. Materials Chemistry and Physics, 2016, 177, 56-66.	2.0	12
1947	Engineering Approaches for Understanding Osteogenesis: Hydrogels as Synthetic Bone Microenvironments. Hormone and Metabolic Research, 2016, 48, 726-736.	0.7	7
1948	A Novel Nanosilver/Nanosilica Hydrogel for Bone Regeneration in Infected Bone Defects. ACS Applied Materials & Interfaces, 2016, 8, 13242-13250.	4.0	59
1949	The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. Journal of Materials Chemistry B, 2016, 4, 3945-3958.	2.9	47
1950	Magnesium Phosphate Cement Systems for Hard Tissue Applications: A Review. ACS Biomaterials Science and Engineering, 2016, 2, 1067-1083.	2.6	155
1951	Targeting the hypoxic response in bone tissue engineering: A balance between supply and consumption to improve bone regeneration. Molecular and Cellular Endocrinology, 2016, 432, 96-105.	1.6	25
1952	Coral Scaffolds in Bone Tissue Engineering and Bone Regeneration. , 2016, , 691-714.		4
1953	Development and Differentiation of Mesenchymal Bone Marrow Cells in Porous Permeable Titanium Nickelide Implants In Vitro and In Vivo. Bulletin of Experimental Biology and Medicine, 2016, 161, 587-592.	0.3	1
1954	Bone formation of human mesenchymal stem cells harvested from reaming debris is stimulated by low-dose bone morphogenetic protein-7 application in vivo. Journal of Orthopaedics, 2016, 13, 404-408.	0.6	19
1955	Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Journal of Biomaterials Applications, 2016, 31, 650-660.	1.2	36
1956	Novel linear intercept method for characterizing micropores and grains in calcium phosphate bone substitutes. Materials Characterization, 2016, 119, 216-224.	1.9	6
1957	3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology, 2016, 27, 414001.	1.3	62
1958	Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors. Materials Science and Engineering C, 2016, 69, 640-652.	3.8	16

	CITATION	CITATION REPORT		
#	ARTICLE Characterization of the porous structures of the green body and sintered biomedical titanium	IF	CITATIONS	
1959	scaffolds with micro-computed tomography. Materials Characterization, 2016, 121, 48-60.	1.9	16	
1960	Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP, 2016, 49, 33-38.	1.0	58	
1961	Gradient Biomaterials and Their Impact on Cell Migration. , 2016, , 151-185.		0	
1962	Engineered porous scaffolds for periprosthetic infection prevention. Materials Science and Engineering C, 2016, 68, 701-715.	3.8	29	
1963	Biomaterialâ€Based Approaches to Address Vein Graft and Hemodialysis Access Failures. Macromolecular Rapid Communications, 2016, 37, 1860-1880.	2.0	9	
1964	Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.	5.7	287	
1965	3-D Modelling of Biological Systems for Biomimetics. , 2016, , 325-392.		0	
1966	Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass. ACS Biomaterials Science and Engineering, 2016, 2, 2240-2254.	2.6	100	
1967	Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo. International Journal of Energy Production and Management, 2016, 3, 285-297.	1.9	51	
1968	Fibrinogen scaffolds with immunomodulatory properties promote inÂvivo bone regeneration. Biomaterials, 2016, 111, 163-178.	5.7	54	
1969	Polymeric Biomaterials for Tissue Regeneration. , 2016, , .		4	
1970	Study of selective laser melting process for cubic models with various porosities. , 2016, , .		0	
1971	Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration. Biomedical Materials (Bristol), 2016, 11, 055002.	1.7	8	
1972	Shape memory effect of thermal-responsive nano-hydroxyapatite reinforced poly-d-l-lactide composites with porous structure. Composites Part B: Engineering, 2016, 107, 67-74.	5.9	30	
1973	Induction of Biological Apatite Orientation as a Bone Quality Parameter in Bone Regeneration Using Hydroxyapatite/Poly É>-Caprolactone Composite Scaffolds. Tissue Engineering - Part C: Methods, 2016, 22, 856-863.	1.1	5	
1974	Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on <i>in vitro</i> cement degradation. Biomedical Materials (Bristol), 2016, 11, 045005.	1.7	13	
1975	Single-Step Nanoporation of Water-Immersed Polystyrene Film by Gaseous Nanobubbles. Langmuir, 2016, 32, 11221-11229.	1.6	5	
1976	Mechanical properties, biological behaviour and drug release capability of nano TiO2-HAp-Alginate composite scaffolds for potential application as bone implant material. Journal of Biomaterials Applications, 2016, 31, 387-399.	1.2	19	
IF

CITATIONS

1977	Working with Stem Cells. , 2016, , .		2
1978	On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures. Journal of Materials Processing Technology, 2016, 238, 341-351.	3.1	32
1979	Processing and surface modification of polymer nanofibers for biological scaffolds: a review. Journal of Materials Chemistry B, 2016, 4, 5958-5974.	2.9	61
1980	Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro. Calcified Tissue International, 2016, 99, 625-637.	1.5	29
1981	Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering C, 2016, 69, 1004-1009.	3.8	15
1982	Scaffolds for Embryonic Stem Cell Growth and Differentiation. , 2016, , 347-365.		2
1983	Characterization and investigation of the deformation behavior of porous magnesium scaffolds with entangled architectured pore channels. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 139-150.	1.5	20
1984	Corrosion behavior of plasma electrolytically oxidized gamma titanium aluminide alloy in simulated body fluid. Materials Chemistry and Physics, 2016, 181, 67-77.	2.0	13
1985	Effect of <i>in situ</i> apatite on performance of collagen fiber film for food packaging applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	23
1986	Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles. Differentiation, 2016, 92, 148-158.	1.0	58
1987	3D plotting of highly uniform Sr ₅ (PO ₄) ₂ SiO ₄ bioceramic scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2016, 4, 6200-6212.	2.9	40
1988	Individual pore and interconnection size analysis of macroporous ceramic scaffolds using high-resolution X-ray tomography. Materials Characterization, 2016, 118, 454-467.	1.9	8
1989	Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Materials Science and Engineering C, 2016, 69, 1103-1115.	3.8	71
1990	Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomaterialia, 2016, 45, 375-386.	4.1	166
1991	Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Journal of Materials Science: Materials in Medicine, 2016, 27, 143.	1.7	18
1992	Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomaterialia, 2016, 44, 144-154.	4.1	80
1993	Two different techniques used in the production of foam structures: 3D printing and glass foaming. Ciência & Tecnologia Dos Materiais, 2016, 28, 29-33.	0.5	0
1994	Influence of biomechanical and biochemical stimulation on the proliferation and differentiation of bone marrow stromal cells seeded on polyurethane scaffolds. Experimental and Therapeutic Medicine, 2016, 11, 2086-2094.	0.8	9

ARTICLE

#

#	Article	IF	CITATIONS
1995	Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Acta Biomaterialia, 2016, 44, 97-109.	4.1	60
1996	In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells. Acta Biomaterialia, 2016, 44, 73-84.	4.1	20
1997	A facile method for the preparation of chitosan-based scaffolds with anisotropic pores for tissue engineering applications. Carbohydrate Polymers, 2016, 152, 615-623.	5.1	13
1998	Structure and Properties of Permeable Highly Porous Glass-Ceramics for Orthopedics and Traumatic Surgery. Powder Metallurgy and Metal Ceramics, 2016, 55, 319-327.	0.4	4
2001	Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/l²-catenin signaling-associated mechanism. Scientific Reports, 2016, 6, 32045.	1.6	52
2002	Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Materials Science and Engineering C, 2016, 69, 496-504.	3.8	50
2003	Sustainable production of titanium foams for biomedical applications by Concentrated Solar Energy sintering. Materials Letters, 2016, 185, 420-423.	1.3	22
2004	Bioactive macroporous titanium implants highly interconnected. Journal of Materials Science: Materials in Medicine, 2016, 27, 151.	1.7	38
2005	Silk Fibroin-Based Scaffolds with Controlled Delivery Order of VEGF and BDNF for Cavernous Nerve Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 2018-2025.	2.6	37
2006	Room-temperature fabrication of a three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering. RSC Advances, 2016, 6, 92804-92812.	1.7	33
2007	Effect of Spray Distance on Microstructure and Tribological Performance of Suspension Plasma-Sprayed Hydroxyapatite–Titania Composite Coatings. Journal of Thermal Spray Technology, 2016, 25, 1255-1263.	1.6	21
2008	Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. International Journal of Biological Macromolecules, 2016, 93, 1069-1078.	3.6	49
2009	Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Materials Science and Engineering C, 2016, 69, 631-639.	3.8	148
2010	Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Research and Therapy, 2016, 7, 70.	2.4	23
2012	Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Materials and Design, 2016, 109, 415-424.	3.3	91
2013	Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications. Materials Science and Engineering C, 2016, 68, 872-879.	3.8	51
2014	Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage. Biomaterials, 2016, 104, 223-237.	5.7	90
2015	Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Dental Materials, 2016, 32, e221-e237.	1.6	44

#	Article	IF	CITATIONS
2016	Preparation of gelatin/Fe ₃ O ₄ composite scaffolds for enhanced and repeatable cancer cell ablation. Journal of Materials Chemistry B, 2016, 4, 5664-5672.	2.9	31
2017	In Vitro and In Vivo Evaluation of Composite Scaffolds for Bone Tissue Engineering. , 2016, , 615-636.		1
2018	Porous Silk Fibroin/Alpha Tricalcium Phosphate Composite Scaffolds for Bone Tissue Engineering: A Preliminary Study. Key Engineering Materials, 2016, 695, 164-169.	0.4	2
2019	Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system. Journal of Computational Design and Engineering, 2016, 3, 385-397.	1.5	30
2020	Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model. BioMedical Engineering OnLine, 2016, 15, 85.	1.3	33
2021	The Antibacterial Applications of Graphene and Its Derivatives. Small, 2016, 12, 4165-4184.	5.2	188
2022	Marine Biomaterials as Drug Delivery System for Osteoporosis and Bone Tissue Regeneration. , 2016, , 1309-1332.		0
2023	Biomedical titanium alloys and their additive manufacturing. Rare Metals, 2016, 35, 661-671.	3.6	175
2024	Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration Journal of Materials Science: Materials in Medicine, 2016, 27, 171.	1.7	10
2025	Challenges and Perspectives in the Use of Additive Technologies for Making Customized Implants for Traumatology and Orthopedics. Bio-Medical Engineering, 2016, 50, 285-289.	0.3	8
2026	Roll-designed 3D nanofibrous scaffold suitable for the regeneration of load bearing bone defects. Progress in Biomaterials, 2016, 5, 199-211.	1.8	13
2028	Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti ₆ Al ₄ V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication, 2016, 8, 045012.	3.7	73
2029	Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process. ACS Applied Materials & Interfaces, 2016, 8, 32230-32240.	4.0	132
2031	Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. Journal of Materials Chemistry B, 2016, 4, 7584-7595.	2.9	52
2032	Comparison of a novel porous titanium construct (Regenerex®) to a well proven porous coated tibial surface in cementless total knee arthroplasty — A prospective randomized RSA study with two-year follow-up. Knee, 2016, 23, 1002-1011.	0.8	16
2033	Reloadable Silk-Hydrogel Hybrid Scaffolds for Sustained and Targeted Delivery of Molecules. Molecular Pharmaceutics, 2016, 13, 4066-4081.	2.3	24
2034	3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Scientific Reports, 2016, 6, 21704.	1.6	91
2035	A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Scientific Reports, 2016, 6, 24134.	1.6	156

#	Article	IF	CITATIONS
2036	Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects. Scientific Reports, 2016, 6, 34029.	1.6	56
2037	Histological response of soda-lime glass-ceramic bactericidal rods implanted in the jaws of beagle dogs. Scientific Reports, 2016, 6, 31478.	1.6	8
2038	Application of the Micropolar Theory to the Strength Analysis of Bioceramic Materials for Bone Reconstruction. Strength of Materials, 2016, 48, 573-582.	0.2	23
2039	In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Scientific Reports, 2016, 6, 34072.	1.6	147
2040	Osteointegration in Cranial Bone Reconstruction: A Goal to Achieve. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 470-476.	0.7	19
2042	A Comparison of Acetabular Impaction Grafting and Trabecular Metal for Revision Arthroplasty. HIP International, 2016, 26, 350-354.	0.9	11
2043	Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction. Biomaterials Research, 2016, 20, 23.	3.2	10
2044	Biofabrication: The Future of Regenerative Medicine. Techniques in Orthopaedics, 2016, 31, 190-203.	0.1	24
2045	Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold. Journal of Craniofacial Surgery, 2016, 27, 727-732.	0.3	8
2046	Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications. Starch/Staerke, 2016, 68, 1275-1281.	1.1	11
2048	Graphene Oxideâ€Copper Nanocompositeâ€Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hifâ€1α. Advanced Healthcare Materials, 2016, 5, 1299-1309.	3.9	139
2049	Cellularized Cellular Solids via Freezeâ€Casting. Macromolecular Bioscience, 2016, 16, 182-187.	2.1	16
2050	Quantitative Kinetics Evaluation of Blocks Versus Granules of Biphasic Calcium Phosphate Scaffolds (HA/β-TCP 30/70) by Synchrotron Radiation X-ray Microtomography. Implant Dentistry, 2016, 25, 6-15.	1.7	30
2051	Porous shape-memory NiTi-Nb with microchannel arrays. Acta Materialia, 2016, 115, 83-93.	3.8	20
2052	Rapid production of bioactive hydroxyapatite fibers via electroblowing. Journal of the European Ceramic Society, 2016, 36, 3219-3224.	2.8	29
2053	Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica. Materials Science and Engineering C, 2016, 68, 350-357.	3.8	40
2054	Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action. Polymer Degradation and Stability, 2016, 130, 38-46.	2.7	5
2055	Collagen-hydroxyapatite coated unprocessed cuttlefish bone as a bone substitute. Materials Letters, 2016, 181, 156-160.	1.3	13

#	Article	IF	CITATIONS
2056	Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in Colloid and Interface Science, 2016, 236, 1-27.	7.0	270
2057	Microstructure and mechanical properties of open cellular Ti–6Al–4V prototypes fabricated by electron beam melting for biomedical applications. Materials Technology, 0, , 1-10.	1.5	6
2058	Bio-inspired calcium phosphate materials for hard-tissue repair. , 2016, , 405-442.		0
2059	Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties. Journal of Thermal Spray Technology, 2016, 25, 827-850.	1.6	117
2060	Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Materials and Design, 2016, 108, 136-144.	3.3	82
2061	Marine shells: Potential opportunities for extraction of functional and health-promoting materials. Critical Reviews in Environmental Science and Technology, 2016, 46, 1047-1116.	6.6	88
2062	Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/l2-tricalcium phosphate for bone-tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1446-1456.	3.6	24
2063	Assessment of biological properties of collagen/hyaluronic acid composite scaffolds containing nanobioactive glass. Materials Technology, 0, , 1-6.	1.5	1
2064	Simple fabrication of a photocatalyst hybridized porous chitosan-based antifouling active filter under visible light. Journal of Porous Materials, 2016, 23, 1163-1168.	1.3	2
2065	Bioactivity of quaternary glass prepared from bentonite clay. Journal of Advanced Ceramics, 2016, 5, 47-53.	8.9	8
2066	Electron Beam Melting Manufacturing Technology for Individually Manufactured Jaw Prosthesis: A Case Report. Journal of Oral and Maxillofacial Surgery, 2016, 74, 1706.e1-1706.e15.	0.5	31
2067	Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 2016, 19, 304-321.	8.3	513
2068	Photocurable high internal phase emulsions (HIPEs) containing hydroxyapatite for additive manufacture of tissue engineering scaffolds with multi-scale porosity. Materials Science and Engineering C, 2016, 67, 51-58.	3.8	55
2069	Modulation of physical and biological properties of a composite PLLA and polyaspartamide derivative obtained via thermally induced phase separation (TIPS) technique. Materials Science and Engineering C, 2016, 67, 561-569.	3.8	16
2070	Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements. Acta Biomaterialia, 2016, 36, 323-331.	4.1	29
2071	Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. Materials Science and Engineering C, 2016, 67, 570-580.	3.8	9
2072	Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells. Biomaterials Research, 2016, 20, 6.	3.2	24
2073	Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration. Materials Science and Engineering C, 2016, 68, 603-612.	3.8	41

Synthesis of macro and micro porous hydroxyapatite (HA) structure from waste kina (Evechinus) Tj ETQq0 0 0 rgBT 10 verlock 10 Tf 50

2077	Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects. Journal of Materials Chemistry B, 2016, 4, 4410-4419.	2.9	33
2078	Insight into characteristic features of cartilage growth plate as a physiological template for bone formation. Journal of Biomedical Materials Research - Part A, 2016, 104, 357-366.	2.1	11
2079	Interplay between selfâ€assembled structure of bone morphogenetic proteinâ€2 (<scp>BMP</scp> â€2) and osteoblast functions in threeâ€dimensional titanium alloy scaffolds: <scp>S</scp> timulation of osteogenic activity. Journal of Biomedical Materials Research - Part A, 2016, 104, 517-532.	2.1	57
2080	Celluloseâ€based porous scaffold for bone tissue engineering applications: Assessment of h <scp>MSC</scp> proliferation and differentiation. Journal of Biomedical Materials Research - Part A, 2016, 104, 726-733.	2.1	32
2081	Cellâ€secreted extracellular matrix formation and differentiation of adiposeâ€derived stem cells in 3D alginate scaffolds with tunable properties. Journal of Biomedical Materials Research - Part A, 2016, 104, 1090-1101.	2.1	31
2082	A Silk Fibroin and Peptide Amphiphileâ€Based Coâ€Culture Model for Osteochondral Tissue Engineering. Macromolecular Bioscience, 2016, 16, 1212-1226.	2.1	21
2083	Physico-chemical and biological studies on three-dimensional porous silk/spray-dried mesoporous bioactive glass scaffolds. Ceramics International, 2016, 42, 13761-13772.	2.3	18
2084	Characterization of 3 <scp>D</scp> elastic porous polydimethylsiloxane (<scp>PDMS</scp>) cell scaffolds fabricated by <scp>VARTM</scp> and particle leaching. Journal of Applied Polymer Science, 2016, 133, .	1.3	21
2085	Engineering Stem Cells for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 10-55.	3.9	25
2086	A 3D printed <scp>TCP</scp> / <scp>HA</scp> structure as a new osteoconductive scaffold for vertical bone augmentation. Clinical Oral Implants Research, 2016, 27, 55-62.	1.9	84
2087	Brushite foams—the effect of <scp>T</scp> ween® 80 and <scp>P</scp> luronic® <scp>F</scp> â€127 on foam porosity and mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 67-77.	1.6	19
2088	A review of key challenges of electrospun scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 715-738.	1.3	395
2089	Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1440-1447.	1.9	16
2090	Improved bone formation and ingrowth for additively manufactured porous Ti ₆ Al ₄ V bone implants with strontium laden nanotube array coating. RSC Advances, 2016, 6, 13686-13697.	1.7	17
2091	Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. Journal of Materials Science: Materials in Medicine, 2016, 27, 22.	1.7	25

#	Article	IF	CITATIONS
2092	Integrating surface topography of stripe pattern on pore surface of 3-dimensional hydroxyapatiye scaffolds. Materials Letters, 2016, 169, 148-152.	1.3	12
2093	Role of pore size and morphology in musculo-skeletal tissue regeneration. Materials Science and Engineering C, 2016, 61, 922-939.	3.8	305
2094	Net shape fabrication of calcium phosphate scaffolds with multiple material domains. Biofabrication, 2016, 8, 015005.	3.7	16
2095	Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomaterialia, 2016, 33, 311-321.	4.1	161
2096	3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. Journal of the European Ceramic Society, 2016, 36, 1495-1503.	2.8	90
2097	Functionally graded materials for orthopedic applications – an update on design and manufacturing. Biotechnology Advances, 2016, 34, 504-531.	6.0	223
2098	Melt electrospinning today: An opportune time for an emerging polymer process. Progress in Polymer Science, 2016, 56, 116-166.	11.8	381
2099	Ultrasound-guided photoacoustic imaging-directed re-endothelialization of acellular vasculature leads to improved vascular performance. Acta Biomaterialia, 2016, 32, 35-45.	4.1	9
2100	Three-dimensional laser drilling of polymethyl methacrylate (PMMA) scaffold used for bone regeneration. International Journal of Advanced Manufacturing Technology, 2016, 84, 2649-2657.	1.5	21
2101	New method of synthesis and in vitro studies of a porous biomaterial. Materials Science and Engineering C, 2016, 61, 133-142.	3.8	3
2102	Overcoming physical constraints in bone engineering: â€̃the importance of being vascularized'. Journal of Biomaterials Applications, 2016, 30, 940-951.	1.2	31
2103	Gelatin–poly(vinyl alcohol) porous biocomposites reinforced with graphene oxide as biomaterials. Journal of Materials Chemistry B, 2016, 4, 282-291.	2.9	39
2104	Shaping by microstereolithography and sintering of macro–micro-porous silicon substituted hydroxyapatite. Journal of the European Ceramic Society, 2016, 36, 1091-1101.	2.8	72
2105	Designing and modeling pore size distribution in tissue scaffolds. , 2016, , 23-43.		3
2106	Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design. ACS Biomaterials Science and Engineering, 2016, 2, 1771-1780.	2.6	85
2107	Design of calcium phosphate scaffolds with controlled simvastatin release by plasma polymerisation. Polymer, 2016, 92, 170-178.	1.8	25
2108	Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering C, 2016, 64, 416-427.	3.8	239
2109	In vitro analysis of Mg scaffolds coated with polymer/hydrogel/ceramic composite layers. Surface and Coatings Technology, 2016, 301, 126-132.	2.2	10

#	Article	IF	CITATIONS
2110	Enhanced X-ray absorption for micro-CT analysis of low density polymers. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 805-823.	1.9	18
2111	Preparation of Mg–Zn bimetallic doped Na-containing bioceramic from sodium metasilicate. Journal of Porous Materials, 2016, 23, 885-893.	1.3	2
2112	Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomaterialia, 2016, 40, 182-191.	4.1	175
2113	Biotin-avidin mediates the binding of adipose-derived stem cells to a porous β-tricalcium phosphate scaffold: Mandibular regeneration. Experimental and Therapeutic Medicine, 2016, 11, 737-746.	0.8	12
2114	Ethyl-2, 5-dihydroxybenzoate displays dual activity by promoting osteoblast differentiation and inhibiting osteoclast differentiation. Biochemical and Biophysical Research Communications, 2016, 471, 335-341.	1.0	1
2115	Construction and properties of poly(lactic-co-glycolic acid)/calcium phosphate cement composite pellets with microspheres-in-pellet structure for bone repair. Ceramics International, 2016, 42, 5587-5592.	2.3	19
2116	Enhanced osteogenic differentiation and biomineralization in mouse mesenchymal stromal cells on a β-TCP robocast scaffold modified with collagen nanofibers. RSC Advances, 2016, 6, 23588-23598.	1.7	12
2117	Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment. Materials Science and Engineering C, 2016, 62, 752-761.	3.8	19
2118	Novel full-ceramic monoblock acetabular cup with a bioactive trabecular coating: design, fabrication and characterization. Ceramics International, 2016, 42, 6833-6845.	2.3	24
2119	Effective segregation of cytocompatible chitosan molecules in a silica-surfactant nanostructure formation process. RSC Advances, 2016, 6, 14452-14456.	1.7	3
2120	Bone ingrowth of various porous titanium scaffolds produced by a moldless and space holder technique: an <i>in vivo</i> study in rabbits. Biomedical Materials (Bristol), 2016, 11, 015012.	1.7	39
2121	Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1354-1365.	3.6	301
2122	In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2016, 86, 434-442.	3.6	60
2123	Optimization of construct perfusion in radial-flow packed-bed bioreactors for tissue engineering with a 2D stationary fluid dynamic model. Biochemical Engineering Journal, 2016, 109, 197-211.	1.8	1
2124	Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for <i>In Vitro</i> Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 265-283.	2.5	19
2125	Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose, 2016, 23, 1263-1282.	2.4	65
2126	Accelerating mineralization of biomimetic surfaces. , 2016, , 267-289.		2
2127	Measurements and micro-mechanical modelling of the response of sintered titanium foams. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 365-375.	1.5	18

		CITATION R	EPORT	
#	Article		IF	Citations
2128	Design of lattice structures with controlled anisotropy. Materials and Design, 2016, 93	, 443-447.	3.3	212
2129	Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. Jour Materials Science: Materials in Medicine, 2016, 27, 69.	nal of	1.7	26
2130	Mechanical properties and biodegradability of porous polyurethanes reinforced with gr nanofibers for applications in tissue engineering. Polymer Bulletin, 2016, 73, 2039-205	een 5.	1.7	10
2131	Investigation of synergistic effects of inductive and conductive factors in gelatin-based bone tissue engineering. Journal of Materials Chemistry B, 2016, 4, 1827-1841.	cryogels for	2.9	35
2132	Biodegradable scaffolds designed to mimic fascia-like properties for the treatment of p prolapse and stress urinary incontinence. Journal of Biomaterials Applications, 2016, 30	elvic organ), 1578-1588.	1.2	25
2133	Oxygen Tension-Controlled Matrices with Osteogenic and Vasculogenic Cells for Vascu Regeneration <i>In Vivo</i> . Tissue Engineering - Part A, 2016, 22, 610-620.	larized Bone	1.6	22
2134	Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications. Porous Materials, 2016, 23, 783-790.	Journal of	1.3	9
2135	Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nar for bone tissue engineering. International Journal of Biological Macromolecules, 2016,	ocomposites 93, 1479-1487.	3.6	107
2136	Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue applications: Processing related challenges and property assessment. Materials Science Engineering Reports, 2016, 103, 1-39.	engineering and	14.8	175
2137	Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabricat 014103.	ion, 2016, 8,	3.7	231
2138	Influence of the overall stiffness of a load-bearing porous titanium implant on bone ing critical-size mandibular bone defects in sheep. Journal of the Mechanical Behavior of Bio Materials, 2016, 59, 484-496.	rowth in omedical	1.5	45
2139	Multifunctional poly(<i>l²</i> -amino ester) hydrogel microparticles in periodontal <i> forming drug delivery systems. Biomedical Materials (Bristol), 2016, 11, 025002.</i>	in situ	1.7	8
2140	Polyurethanes for bone tissue engineering. , 2016, , 481-501.			20
2141	Impact of surface porosity and topography on the mechanical behavior of high strengt polymers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 459-4	n biomedical 73.	1.5	31
2142	Bioactive glass–gelatin hybrids: building scaffolds with enhanced calcium incorporati controlled porosity for bone regeneration. Journal of Materials Chemistry B, 2016, 4, 24	on and 186-2497.	2.9	34
2143	Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation. Materiand Engineering C, 2016, 63, 512-521.	fibrous als Science	3.8	19
2144	Calcium phosphates in biomedical applications: materials for the future?. Materials Tod 69-87.	ay, 2016, 19,	8.3	642
2145	Direct modulus measurement of single composite nanofibers of silk fibroin/hydroxyapa nanoparticles. Composites Science and Technology, 2016, 122, 113-121.	tite	3.8	17

#	Article	IF	CITATIONS
2146	Osteoinductive PolyHIPE Foams as Injectable Bone Grafts. Tissue Engineering - Part A, 2016, 22, 403-414.	1.6	34
2147	Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials, 2016, 83, 363-382.	5.7	483
2148	Self-assembled porous film with interconnected 3-dimensional structure from 6sPCL-PMPC copolymer. RSC Advances, 2016, 6, 4826-4834.	1.7	5
2149	3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties. Journal of Materials Science and Technology, 2016, 32, 889-900.	5.6	150
2150	Primary and Revision Total Ankle Replacement. , 2016, , .		5
2151	Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016, 83, 127-141.	5.7	1,492
2152	Review of various treatment options and potential therapies for osteonecrosis of the femoral head. Journal of Orthopaedic Translation, 2016, 4, 57-70.	1.9	58
2153	Preparation, characterization and biocompatible properties of β-chitin/silk fibroin/nanohydroxyapatite composite scaffolds prepared using a freeze-drying method. RSC Advances, 2016, 6, 7048-7060.	1.7	20
2154	Osteoblast functions in functionally graded Ti-6Al-4 V mesh structures. Journal of Biomaterials Applications, 2016, 30, 1182-1204.	1.2	38
2155	Three-dimensional fully interconnected highly porous hydroxyapatite scaffolds derived from particle-stabilized emulsions. Ceramics International, 2016, 42, 5455-5460.	2.3	18
2156	Enhancement of entangled porous titanium by BisGMA for load-bearing biomedical applications. Materials Science and Engineering C, 2016, 61, 37-41.	3.8	21
2157	Current Strategies in Osteochondral Repair with Biomaterial Scaffold. , 2016, , 387-403.		1
2158	Development of a method to produce FGMs by controlling the reinforcement distribution. Materials and Design, 2016, 92, 233-239.	3.3	22
2159	Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomaterialia, 2016, 32, 46-56.	4.1	140
2160	Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Materials Science and Engineering C, 2016, 61, 180-189.	3.8	74
2161	Hardystonite bioceramics from preceramic polymers. Journal of the European Ceramic Society, 2016, 36, 829-835.	2.8	30
2162	Micro porosity analysis in additive manufactured NiTi parts using micro computed tomography and electron microscopy. Materials and Design, 2016, 90, 745-752.	3.3	57
2163	Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering. Journal of Biomaterials Applications, 2016, 30, 1168-1181.	1.2	29

#	Article	IF	CITATIONS
2164	High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomaterialia, 2016, 30, 345-356.	4.1	417
2165	Enhanced cellular distribution and infiltration in a wet electrospun three-dimensional fibrous scaffold using eccentric rotation-based hydrodynamic conditions. Sensors and Actuators B: Chemical, 2016, 226, 357-363.	4.0	9
2166	Fabrication and characterization of poly(É›-caprolactone) coated silicate and borate-based bioactive glass composite scaffolds. Journal of Composite Materials, 2016, 50, 917-928.	1.2	12
2167	Design, selection and characterization of novel glasses and glass-ceramics for use in prosthetic applications. Ceramics International, 2016, 42, 1482-1491.	2.3	41
2168	Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 159-172.	1.5	99
2169	Regenerated cellulose scaffolds: Preparation, characterization and toxicological evaluation. Carbohydrate Polymers, 2016, 136, 892-898.	5.1	29
2170	Microscale Approaches for Molecular Regulation of Skeletal Development. , 2016, , 167-193.		1
2171	Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A prospective randomized study. International Orthopaedics, 2016, 40, 285-294.	0.9	25
2172	Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering C, 2016, 59, 690-701.	3.8	629
2173	Virtual design of electrospun-like gelatin scaffolds: the effect of three-dimensional fibre orientation on elasticity behaviour. Soft Matter, 2016, 12, 602-613.	1.2	8
2174	Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation. Materials Science and Engineering C, 2016, 59, 754-765.	3.8	14
2175	Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system. Materials Science and Engineering C, 2016, 59, 92-101.	3.8	35
2176	An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor. Materials Science and Engineering C, 2016, 58, 960-970.	3.8	29
2177	Diffusion model to describe osteogenesis within a porous titanium scaffold. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 171-179.	0.9	16
2178	Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration. Materials Science and Engineering C, 2016, 58, 278-285.	3.8	69
2179	Preparation of alginate membrane for tissue engineering. Journal of Polymer Engineering, 2016, 36, 363-370.	0.6	37
2180	Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold. Biomaterials, 2016, 75, 223-236.	5.7	35
2181	A novel method for production of foamy core@compact shell Ti6Al4V bone-like composite. Journal of Alloys and Compounds, 2016, 656, 416-422.	2.8	16

#	Article	IF	CITATIONS
2182	In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds. Annals of Biomedical Engineering, 2016, 44, 1107-1119.	1.3	19
2183	Fabrication of interconnected pore forming α-tricalcium phosphate foam granules cement. Journal of Biomaterials Applications, 2016, 30, 838-845.	1.2	23
2184	Porous tantalum in spinal surgery: an overview. European Journal of Orthopaedic Surgery and Traumatology, 2016, 26, 1-7.	0.6	43
2185	Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology, 2016, 68, 355-369.	0.7	522
2186	Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 272-294.	1.5	81
2187	Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. Journal of Biomaterials Applications, 2016, 30, 740-749.	1.2	12
2188	Design optimization of a radial functionally graded dental implant. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 58-66.	1.6	12
2189	A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 966-976.	1.3	28
2190	Preparation and performance control of poly(lactic acid) fiber/polyurethane composite porous biomimetic-aligned scaffolds. Journal of Industrial Textiles, 2017, 46, 1297-1318.	1.1	4
2191	Porous nanoplate-like hydroxyapatite–sodium alginate nanocomposite scaffolds for potential bone tissue engineering. Materials Technology, 2017, 32, 78-84.	1.5	17
2192	Polymeric scaffolds in tissue engineering: a literature review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 431-459.	1.6	206
2193	Development and characterization of a xenograft material from New Zealand sourced bovine cancellous bone. , 2017, 105, 1054-1062.		25
2194	Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70, 68-83.	1.5	23
2195	In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants. Annals of Biomedical Engineering, 2017, 45, 249-260.	1.3	68
2196	Artificial extracellular matrices support cell growth and matrix synthesis of human dermal fibroblasts in macroporous 3D scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1390-1402.	1.3	13
2197	Novel crosslinkable polyester resin–based composites as injectable bioactive scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 1-11.	1.8	5
2198	Autogenous Bone Marrow Aspirate Coated Synthetic Hydroxyapatite for Reconstruction of Maxillo-Mandibular Osseous Defects: A Prospective Study. Journal of Maxillofacial and Oral Surgery, 2017, 16, 71-78.	0.6	4
2199	Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds. Annals of Biomedical Engineering, 2017, 45, 261-272.	1.3	107

#	Article	IF	CITATIONS
2200	Structural characterisation and mechanical behaviour of porous Ti-7.5Mo alloy fabricated by selective laser sintering for biomedical applications. Materials Technology, 2017, 32, 219-224.	1.5	8
2201	Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation. Materials Science and Engineering C, 2017, 70, 1047-1056.	3.8	31
2202	Hierarchical Micropore/Nanorod Apatite Hybrids In-Situ Grown from 3-D Printed Macroporous Ti6Al4V Implants with Improved Bioactivity and Osseointegration. Journal of Materials Science and Technology, 2017, 33, 179-186.	5.6	26
2203	New N-(2-carboxybenzyl)chitosan composite scaffolds containing nanoTiO ₂ or bioactive glass with enhanced cell proliferation for bone-tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 71-81.	1.8	18
2204	Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Materials Science and Engineering C, 2017, 70, 976-982.	3.8	50
2205	Selective laser-melted fully biodegradable scaffold composed of poly(<scp>d</scp> , <scp>l</scp>) Tj ETQq1 1 0. maxillofacial reconstruction: <i>In vitro</i> and <i>in vivo</i> results., 2017, 105, 1216-1231.	784314 rg	BT /Overlock 13
2206	Preparation and characterization of gelatin/hydroxyapatite nanocomposite for bone tissue engineering. Polymer Composites, 2017, 38, 1579-1590.	2.3	15
2207	Silk coating on a bioactive ceramic scaffold for bone regeneration: effective enhancement of mechanical and <i>in vitro</i> osteogenic properties towards load-bearing applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1741-1753.	1.3	17
2208	Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 828-835.	1.6	15
2209	Characterization and biocompatibility of a fibrous glassy scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1141-1151.	1.3	23
2210	Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1500-1513.	1.3	23
2211	Evaluation of perforated demineralized dentin scaffold on bone regeneration in criticalâ€size sheep iliac defects. Clinical Oral Implants Research, 2017, 28, e227-e235.	1.9	28
2212	Osteogenic cell functionality on 3-dimensional nano-scaffolds with varying stiffness. Extreme Mechanics Letters, 2017, 13, 1-9.	2.0	15
2213	Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics. Acta Biomaterialia, 2017, 51, 433-446.	4.1	23
2214	Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46, 855-914.	18.7	126
2215	Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion. Dental Materials, 2017, 33, 198-208.	1.6	30
2216	"Steel–Concrete―Inspired Biofunctional Layered Hybrid Cage for Spine Fusion and Segmental Bone Reconstruction. ACS Biomaterials Science and Engineering, 2017, 3, 637-647.	2.6	2
2217	Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 532-554.	1.9	101

#	Article	IF	CITATIONS
2218	Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects. Tissue Engineering - Part A, 2017, 23, 345-358.	1.6	21
2219	Alginateâ€gelatin blend with embedded voids for controlled release applications. Journal of Applied Polymer Science, 2017, 134, .	1.3	4
2220	Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydrate Polymers, 2017, 164, 200-213.	5.1	86
2221	RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties. Scientific Reports, 2017, 7, 41331.	1.6	66
2223	Individual construction of freeform-fabricated polycaprolactone scaffolds for osteogenesis. Biomedizinische Technik, 2017, 62, 467-479.	0.9	9
2224	Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials, 2017, 122, 91-104.	5.7	109
2225	Competent processing techniques for scaffolds in tissue engineering. Biotechnology Advances, 2017, 35, 240-250.	6.0	89
2226	A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration. Macromolecular Bioscience, 2017, 17, 1600427.	2.1	32
2227	Three-species biofilm model onto plasma-treated titanium implant surface. Colloids and Surfaces B: Biointerfaces, 2017, 152, 354-366.	2.5	39
2228	Characterization of the mechanical behaviors and bioactivity of tetrapod ZnO whiskers reinforced bioactive glass/gelatin composite scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 8-15.	1.5	26
2229	3D-Printed Bioactive Ca ₃ SiO ₅ Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration. ACS Applied Materials & Interfaces, 2017, 9, 5757-5767.	4.0	92
2230	Phosphonate-chitosan functionalization of a multi-channel hydroxyapatite scaffold for interfacial implant-bone tissue integration. Journal of Materials Chemistry B, 2017, 5, 1293-1301.	2.9	17
2231	Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. Journal of Materials Science: Materials in Medicine, 2017, 28, 35.	1.7	39
2232	Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials, 2017, 123, 92-106.	5.7	48
2233	The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 2017, 117, 4376-4421.	23.0	424
2234	Synthesis and Fabrication of Collagen-Coated Ostholamide Electrospun Nanofiber Scaffold for Wound Healing. ACS Applied Materials & Interfaces, 2017, 9, 8556-8568.	4.0	103
2235	Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments. Biofabrication, 2017, 9, 015023.	3.7	51
2236	Fabrication and characterization of honeycomb β-tricalcium phosphate scaffolds through an extrusion technique. Ceramics International, 2017, 43, 6778-6785.	2.3	13

#	Article	IF	CITATIONS
2237	Tuneable hydrolytic degradation of poly(l-lactide) scaffolds triggered by ZnO nanoparticles. Materials Science and Engineering C, 2017, 75, 714-720.	3.8	19
2238	Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. Materials Science and Engineering C, 2017, 75, 721-732.	3.8	71
2239	Processing and in vitro bioactivity of high-strength 45S5 glass-ceramic scaffolds for bone regeneration. Ceramics International, 2017, 43, 6868-6875.	2.3	30
2240	Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Materials Science and Engineering C, 2017, 75, 688-698.	3.8	76
2241	New 3D stratified Si-Ca-P porous scaffolds obtained by sol-gel and polymer replica method: Microstructural, mineralogical and chemical characterization. Ceramics International, 2017, 43, 6548-6553.	2.3	26
2242	Diametral compression behavior of biomedical titanium scaffolds with open, interconnected pores prepared with the space holder method. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 144-154.	1.5	19
2243	Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering C, 2017, 76, 1328-1343.	3.8	381
2244	Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomaterialia, 2017, 53, 572-584.	4.1	546
2245	<i>In vivo</i> evaluation of shark teethâ€derived bioapatites. Clinical Oral Implants Research, 2017, 28, e91-e100.	1.9	16
2246	Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia, 2017, 54, 386-398.	4.1	151
2247	An Innovative Approach for Enhancing Bone Defect Healing Using PLGA Scaffolds Seeded with Extracorporeal-shock-wave-treated Bone Marrow Mesenchymal Stem Cells (BMSCs). Scientific Reports, 2017, 7, 44130.	1.6	33
2248	Silicates in orthopedics and bone tissue engineering materials. Journal of Biomedical Materials Research - Part A, 2017, 105, 2090-2102.	2.1	50
2249	In vitro evaluation of osteoblast adhesion, proliferation and differentiation on chitosan-TiO2 nanotubes scaffolds with Ca2+ ions. Materials Science and Engineering C, 2017, 76, 144-152.	3.8	45
2250	A new method to produce macroporous Mg-phosphate bone growth substitutes. Materials Science and Engineering C, 2017, 75, 602-609.	3.8	29
2251	Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 164-177.	1.5	95
2252	BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing. Scientific Reports, 2017, 7, 41800.	1.6	36
2253	Two-Step Sintering Effects on the Microstructure and Mechanical Properties of Forsterite Scaffolds. Minerals, Metals and Materials Series, 2017, , 353-359.	0.3	0
2254	Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 2017, 140, 1-15.	5.7	170

#	Article	IF	CITATIONS
2255	Mechanically Enhanced Hierarchically Porous Scaffold Composed of Mesoporous Silica for Host Immune Cell Recruitment. Advanced Healthcare Materials, 2017, 6, 1601160.	3.9	14
2256	Biomimetic Rotated Lamellar Plywood Motifs by Additive Manufacturing of Metal Alloy Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 648-657.	2.6	17
2257	A Difunctional Regeneration Scaffold for Knee Repair based on Aptamerâ€Directed Cell Recruitment. Advanced Materials, 2017, 29, 1605235.	11.1	135
2258	A patterned nanocomposite membrane for high-efficiency healing of diabetic wound. Journal of Materials Chemistry B, 2017, 5, 1926-1934.	2.9	27
2259	Fabrication of three-dimensional micro-nanofiber structures by a novel solution blow spinning device. AIP Advances, 2017, 7, .	0.6	4
2260	Porous Structure Fabrication Using a Stereolithography-Based Sugar Foaming Method. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	31
2261	Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 1-7.	1.5	48
2262	Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/l²-tricalcium phosphate cryogel composite for alveolar ridge augmentation. Journal of the Formosan Medical Association, 2017, 116, 973-981.	0.8	29
2263	A novel nano-hydroxyapatite — PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. Materials Science and Engineering C, 2017, 75, 221-228.	3.8	36
2264	Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Scientific Reports, 2017, 7, 43519.	1.6	76
2265	Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. Materials Science and Engineering C, 2017, 75, 1281-1288.	3.8	64
2266	Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Advances, 2017, 7, 1215-1228.	1.7	35
2267	Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 590-600.	2.6	91
2268	Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: histomorphometric study and immunohistochemical assessment of RUNX2 and VEGF. International Journal of Oral and Maxillofacial Surgery, 2017, 46, 503-510.	0.7	30
2269	A laser-aided direct metal tooling technology for artificial joint surface coating. International Journal of Precision Engineering and Manufacturing, 2017, 18, 233-238.	1.1	20
2270	CoCr F75 scaffolds produced by additive manufacturing: Influence of chemical etching on powder removal and mechanical performance. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 216-223.	1.5	19
2271	Prevention of Oxygen Inhibition of PolyHIPE Radical Polymerization Using a Thiol-Based Cross-Linker. ACS Biomaterials Science and Engineering, 2017, 3, 409-419.	2.6	30
2272	The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Biomedical Materials (Bristol), 2017, 12, 025005.	1.7	29

#	Article	IF	CITATIONS
2273	Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes. Materials Today, 2017, 20, 106-115.	8.3	81
2274	Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties. Materials and Design, 2017, 126, 98-114.	3.3	195
2275	Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting, 2017, 6, 1-7.	2.9	46
2276	Hierarchical bioceramic scaffold for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 877-890.	1.8	6
2277	Formulation of silver chloride/poly(3â€hydroxybutyrate†co â€3â€hydroxyvalerate) (AgCl/PHBV) films for potential use in bone tissue engineering. Journal of Applied Polymer Science, 2017, 134, 45162.	1.3	1
2278	Multilayered membranes with tuned well arrays to be used as regenerative patches. Acta Biomaterialia, 2017, 57, 313-323.	4.1	17
2279	Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineering. Journal of Materials Chemistry B, 2017, 5, 4514-4525.	2.9	48
2280	Influence of Implants Surface Properties on Bone Tissue Formation in the Ectopic Osteogenesis Test. Bulletin of Experimental Biology and Medicine, 2017, 162, 812-814.	0.3	6
2281	Quantifying the micro-architectural similarity of bioceramic scaffolds to bone. Ceramics International, 2017, 43, 9443-9450.	2.3	18
2282	Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial. AIP Conference Proceedings, 2017, , .	0.3	3
2283	Modeling and Manufacturing Technology for Personalized Biological Fixed Implants. Journal of Medical and Biological Engineering, 2017, 37, 191-200.	1.0	4
2284	Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles. Applied Surface Science, 2017, 414, 52-62.	3.1	31
2285	Fabrication of <i>Ĵ²</i> -tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. Biofabrication, 2017, 9, 025005.	3.7	28
2286	Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting. Journal of Alloys and Compounds, 2017, 713, 248-254.	2.8	97
2287	A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Materials Science and Engineering C, 2017, 78, 362-369.	3.8	45
2288	Fabrication of a new physiological macroporous hybrid biomaterial/bioscaffold material based on polyphosphate and collagen by freeze-extraction. Journal of Materials Chemistry B, 2017, 5, 3823-3835.	2.9	16
2289	Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites. Ceramics International, 2017, 43, 10442-10449.	2.3	27
2290	Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review. Journal of Alloys and Compounds, 2017, 717, 271-285.	2.8	194

#	Article	IF	CITATIONS
2291	β-Tricalcium phosphate nanofiber scaffolds with fine unidirectional grains. Materials Letters, 2017, 208, 118-121.	1.3	5
2292	Mechanical properties of films and three-dimensional scaffolds made of fibroin and gelatin. Biophysics (Russian Federation), 2017, 62, 17-23.	0.2	7
2293	CoCr F75 scaffolds produced by additive manufacturing: Influence of chemical etching on powder removal and mechanical performance. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70, 60-67.	1.5	64
2294	Preparing diopside nanoparticle scaffolds via space holder method: Simulation of the compressive strength and porosity. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 171-181.	1.5	41
2295	3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials, 2017, 135, 85-95.	5.7	171
2296	Performance of laser sintered Ti–6Al–4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur. Biomedical Materials (Bristol), 2017, 12, 025021.	1.7	44
2297	Scaffold composed of porous vancomycin-loaded poly(lactide- co -glycolide) microspheres: A controlled-release drug delivery system with shape-memory effect. Materials Science and Engineering C, 2017, 78, 1172-1178.	3.8	39
2298	Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Materials Science and Engineering C, 2017, 78, 1246-1262.	3.8	919
2299	Bioinspired Mechano‣ensitive Macroporous Ceramic Sponge for Logical Drug and Cell Delivery. Advanced Science, 2017, 4, 1600410.	5.6	21
2300	Challenges for Cartilage Regeneration. Springer Series in Biomaterials Science and Engineering, 2017, , 389-466.	0.7	7
2301	The effect of macro/micro combination pore structure of biphasic calcium phosphate scaffold on bioactivity. Ceramics International, 2017, 43, 3540-3546.	2.3	11
2302	Preparation and characterization of calcium phosphate bone cement with rapidly-generated tubular macroporous structure by incorporation of polysaccharide-based microstrips. Ceramics International, 2017, 43, 3616-3622.	2.3	4
2304	The Immune Response to Implanted Materials and Devices. , 2017, , .		17
2306	Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment?. Journal of Tissue Engineering, 2017, 8, 204173141771207.	2.3	90
2307	<i>In vivo</i> investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits. Regenerative Medicine, 2017, 12, 353-364.	0.8	12
2308	Calcium Orthophosphate-Based Bioceramics and Its Clinical Applications. , 2017, , 123-226.		5
2309	Constructing three-dimensional nanofibrous bioglass/gelatin nanocomposite scaffold for enhanced mechanical and biological performance. Chemical Engineering Journal, 2017, 326, 210-221.	6.6	27
2310	Effects of curing and organic content on bioactivity and mechanical properties of hybrid sol–gel glass scaffolds made by indirect rapid prototyping. Journal of Sol-Gel Science and Technology, 2017, 83, 143-154.	1.1	7

#	Article	IF	CITATIONS
2311	In vitro behaviour of sol-gel interconnected porous scaffolds of doped wollastonite. Ceramics International, 2017, 43, 11034-11038.	2.3	16
2312	Deconvoluting the Bioactivity of Calcium Phosphateâ€Based Bone Graft Substitutes: Strategies to Understand the Role of Individual Material Properties. Advanced Healthcare Materials, 2017, 6, 1601478.	3.9	34
2313	Engineering Osteoinductive Biomaterials by Bioinspired Synthesis of Apatite Coatings on Collagen Hydrogels with Varied Pore Microarchitectures. Tissue Engineering - Part A, 2017, 23, 1452-1465.	1.6	11
2314	Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering. Polymer Testing, 2017, 62, 88-95.	2.3	42
2315	Innovative Biomaterials in Bone Tissue Engineering and Regenerative Medicine. Pancreatic Islet Biology, 2017, , 63-84.	0.1	3
2316	Sequential IGF-1 and BMP-6 releasing chitosan/alginate/PLGA hybrid scaffolds for periodontal regeneration. International Journal of Biological Macromolecules, 2017, 104, 232-241.	3.6	42
2317	Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects. Biomedical Materials (Bristol), 2017, 12, 035010.	1.7	7
2318	Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. Journal of Applied Polymer Science, 2017, 134, 45321.	1.3	34
2319	Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by Îμ-polycarbonate coating. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1256-1270.	1.9	19
2320	Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca2+ ions permeation. Colloids and Surfaces B: Biointerfaces, 2017, 156, 388-396.	2.5	19
2321	Efficacy of a Self-Assembling Peptide Hydrogel, SPG-178-Gel, for Bone Regeneration and Three-Dimensional Osteogenic Induction of Dental Pulp Stem Cells. Tissue Engineering - Part A, 2017, 23, 1394-1402.	1.6	47
2323	Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation. Materials Letters, 2017, 202, 9-12.	1.3	17
2324	Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Materials Science and Engineering C, 2017, 79, 917-929.	3.8	147
2325	Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers. Journal of the European Ceramic Society, 2017, 37, 4187-4195.	2.8	59
2326	Programmed Platelet-Derived Growth Factor-BB and Bone Morphogenetic Protein-2 Delivery from a Hybrid Calcium Phosphate/Alginate Scaffold. Tissue Engineering - Part A, 2017, 23, 1382-1393.	1.6	41
2327	Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 2017, 35, 530-544.	6.0	579
2328	A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study. Materials Science and Engineering C, 2017, 79, 550-562.	3.8	55
2329	Bio-inspired hydroxyapatite dual core-shell structure for bone substitutes. Journal of the European Ceramic Society, 2017, 37, 5321-5327.	2.8	14

#	Article	IF	CITATIONS
2330	Bioactive-glass ceramic with two crystalline phases (BioS-2P) for bone tissue engineering. Biomedical Materials (Bristol), 2017, 12, 045018.	1.7	11
2331	Regenerative Intervertebral Disc Endplate Based on Biomimetic Three-dimensional Scaffolds. Spine, 2017, 42, E260-E266.	1.0	8
2332	Clinical Applications of Biomaterials. , 2017, , .		9
2333	How Did Bioactive Glasses Revolutionize Medical Science? A Tribute to Larry Hench. , 2017, , 1-34.		1
2334	Novel Biocompatible Thermoresponsive Poly(<i>N</i> -vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics. ACS Applied Materials & Interfaces, 2017, 9, 21979-21990.	4.0	46
2336	Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: a proof-of-concept study. Journal of Materials Science, 2017, 52, 9115-9128.	1.7	33
2337	Evaluation of New Biphasic Calcium Phosphate Bone Substitute: Rabbit Femur Defect Model and Preliminary Clinical Results. Journal of Medical and Biological Engineering, 2017, 37, 85-93.	1.0	22
2338	Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Materials Science and Engineering C, 2017, 76, 951-958.	3.8	60
2339	Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. Journal of Materials Science, 2017, 52, 8812-8831.	1.7	114
2340	Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration. Journal of Materials Science, 2017, 52, 9103-9114.	1.7	49
2341	3D-printed cellular structures for bone biomimetic implants. Additive Manufacturing, 2017, 15, 93-101.	1.7	91
2342	3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells. International Journal of Biological Macromolecules, 2017, 104, 1966-1974.	3.6	59
2343	Modeling the Flow Behavior and Flow Rate of Medium Viscosity Alginate for Scaffold Fabrication With a Three-Dimensional Bioplotter. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	61
2344	Enhanced critical-sized bone defect repair efficiency by combining deproteinized antler cancellous bone and autologous BMSCs. Chinese Chemical Letters, 2017, 28, 845-850.	4.8	12
2345	Bioactivation of titanium dioxide scaffolds by ALP-functionalization. Bioactive Materials, 2017, 2, 108-115.	8.6	27
2346	Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives. Tissue Engineering - Part B: Reviews, 2017, 23, 421-435.	2.5	107
2347	Bone Cements Utilised for the Reconstruction of Hard Tissue: Basic Understanding and Recent Topics. , 2017, , 151-186.		1
2348	Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers. Journal of Biomedical Materials Research - Part A, 2017, 105, 2162-2170.	2.1	24

#	Article	IF	CITATIONS
2350	Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. International Journal of Biological Macromolecules, 2017, 102, 658-666.	3.6	48
2351	Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Materials Science and Engineering C, 2017, 78, 47-58.	3.8	64
2352	Advances in metals and alloys for joint replacement. Progress in Materials Science, 2017, 88, 232-280.	16.0	227
2353	Preparation of barley and yeast β-glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release. Journal of Supercritical Fluids, 2017, 127, 158-165.	1.6	8
2354	Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 864-878.	1.9	45
2355	Surface modification of PCL-diopside fibrous membrane via gelatin immobilization for bone tissue engineering. Materials Chemistry and Physics, 2017, 194, 356-366.	2.0	28
2356	The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Materials Science and Engineering C, 2017, 77, 219-228.	3.8	132
2359	Interpenetrated Magnesium–Tricalcium Phosphate Composite: Manufacture, Characterization and In Vitro Degradation Test. Acta Metallurgica Sinica (English Letters), 2017, 30, 319-325.	1.5	3
2360	Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication, 2017, 9, 025003.	3.7	141
2361	Nanocomposites for Bone Repair. , 2017, , 239-298.		0
2362	Templated, Macroporous PEGâ€DA Hydrogels and Their Potential Utility as Tissue Engineering Scaffolds. Macromolecular Materials and Engineering, 2017, 302, 1600512.	1.7	10
2363	Osteoinduction of stem cells by collagen peptide-immobilized hydrolyzed poly(butylene) Tj ETQq1 1 0.784314 rg Applications, 2017, 31, 859-870.	BT /Overlo 1.2	ock 10 Tf 50 7
2364	Nanomaterial-based bone regeneration. Nanoscale, 2017, 9, 4862-4874.	2.8	97
2365	Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration. Biochemical and Biophysical Research Communications, 2017, 488, 671-678.	1.0	32
2366	Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials. Materials Science and Engineering C, 2017, 76, 406-416.	3.8	47
2367	Surface micromorphology of cross-linked tetrafunctional polylactide scaffolds inducing vessel growth and bone formation. Biofabrication, 2017, 9, 025009.	3.7	26
2368	3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. Journal of Materials Chemistry B, 2017, 5, 2941-2951.	2.9	58
2369	Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer. Materials Science and Engineering C, 2017, 77, 342-351.	3.8	29

#	Article	IF	CITATIONS
2370	Polymer Blends and Composites for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2017, , 195-235.	0.7	4
2371	Surrogate Outcome Measures of In Vitro Osteoclast Resorption of β Tricalcium Phosphate. Advanced Healthcare Materials, 2017, 6, 1600947.	3.9	9
2372	Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3313-3325.	1.3	88
2373	Additively Manufactured and Surface Biofunctionalized Porous Nitinol. ACS Applied Materials & Interfaces, 2017, 9, 1293-1304.	4.0	78
2374	Strategies on process engineering of chondrocyte culture for cartilage tissue regeneration. Bioprocess and Biosystems Engineering, 2017, 40, 601-610.	1.7	9
2375	High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceramics International, 2017, 43, 4794-4802.	2.3	32
2376	<i>In vivo</i> study on the biocompatibility of chitosan–hydroxyapatite film depending on degree of deacetylation. Journal of Biomedical Materials Research - Part A, 2017, 105, 1637-1645.	2.1	18
2377	A Bone Glue with Sustained Adhesion under Wet Conditions. Advanced Healthcare Materials, 2017, 6, 1600902.	3.9	23
2378	Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68, 77-105.	11.8	292
2379	Multiscale Porosity Directs Bone Regeneration in Biphasic Calcium Phosphate Scaffolds. ACS Biomaterials Science and Engineering, 2017, 3, 2768-2778.	2.6	33
2380	Morphology and cell responses of three-dimensional porous silica nanofibrous scaffold prepared by sacrificial template method. Journal of Non-Crystalline Solids, 2017, 457, 145-151.	1.5	7
2381	3D Printing of Lotus Rootâ€Like Biomimetic Materials for Cell Delivery and Tissue Regeneration. Advanced Science, 2017, 4, 1700401.	5.6	168
2382	Construction of Bio-Inspired Composites for Bone Tissue Repair. ACS Symposium Series, 2017, , 153-167.	0.5	1
2383	Calcium Phosphate–Collagen Scaffold with Aligned Pore Channels for Enhanced Osteochondral Regeneration. Advanced Healthcare Materials, 2017, 6, 1700966.	3.9	31
2384	Engineered Paperâ€Based Cell Culture Platforms. Advanced Healthcare Materials, 2017, 6, 1700619.	3.9	44
2385	Review - bioactive glass implants for potential application in structural bone repair. Biomedical Glasses, 2017, 3, .	2.4	14
2386	Bioactive glass 45S5 from diatom biosilica. Journal of Science: Advanced Materials and Devices, 2017, 2, 476-482.	1.5	16
2387	Tantalum in type IV and V Paprosky periprosthetic acetabular fractures surgery in Paprosky type IV and V periprosthetic acetabular fractures surgery. Musculoskeletal Surgery, 2018, 102, 87-92.	0.7	1

#	Article	IF	CITATIONS
2388	From Biomaterial, Biomimetic, and Polymer to Biodegradable and Biocompatible Liquid Crystal Elastomer Cell Scaffolds. ACS Symposium Series, 2017, , 3-45.	0.5	7
2389	PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration. Biofabrication, 2017, 9, 044105.	3.7	88
2390	Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication, 2017, 9, 045008.	3.7	114
2391	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
2392	Constructing an Anisotropic Triple-Pass Tubular Framework within a Lyophilized Porous Gelatin Scaffold Using Dexamethasone-Loaded Functionalized Whatman Paper To Reinforce Its Mechanical Strength and Promote Osteogenesis. Biomacromolecules, 2017, 18, 3788-3801.	2.6	6
2393	High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth. Biomacromolecules, 2017, 18, 3904-3912.	2.6	48
2394	Gelatin-based hydrogels for biomedical applications. MRS Communications, 2017, 7, 416-426.	0.8	184
2395	Core–shell-structured nonstoichiometric bioceramic spheres for improving osteogenic capability. Journal of Materials Chemistry B, 2017, 5, 8944-8956.	2.9	10
2396	BIOSENSORS AND NANOBIOSENSORS. Series on Bioengineering and Biomedical Engineering, 2017, , 391-462.	0.1	5
2397	A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid–gelatin hydrogel for bone regeneration. Journal of Biomaterials Applications, 2017, 32, 433-445.	1.2	39
2398	Silk scaffolds in bone tissue engineering: An overview. Acta Biomaterialia, 2017, 63, 1-17.	4.1	236
2399	Preparation of flexible bone tissue scaffold utilizing sea urchin test and collagen. Journal of Materials Science: Materials in Medicine, 2017, 28, 184.	1.7	4
2400	Nanoparticles in β-tricalcium phosphate substrate enhance modulation of structure and composition of an octacalcium phosphate grown layer. CrystEngComm, 2017, 19, 6660-6672.	1.3	11
2401	Electrophoretic Deposition of Gentamicin-Loaded Silk Fibroin Coatings on 3D-Printed Porous Cobalt–Chromium–Molybdenum Bone Substitutes to Prevent Orthopedic Implant Infections. Biomacromolecules, 2017, 18, 3776-3787.	2.6	66
2402	3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering. Scientific Reports, 2017, 7, 13412.	1.6	203
2403	Influence of Porosity and Pore-Size Distribution in Ti ₆ Al ₄ V Foam on Physicomechanical Properties, Osteogenesis, and Quantitative Validation of Bone Ingrowth by Micro-Computed Tomography. ACS Applied Materials & Interfaces, 2017, 9, 39235-39248.	4.0	101
2404	Tribology study of hydroxyapatite (HAp) scaffold blended single based binder via rheology and mechanical properties. Industrial Lubrication and Tribology, 2017, 69, 414-419.	0.6	1
2405	Shape-controlled fabrication of cell-laden calcium alginate-PLL hydrogel microcapsules by electrodeposition on microelectrode. Journal of Biomaterials Applications, 2017, 32, 504-510.	1.2	2

CITAT	0.01	DEDO	DT
		K F P ()	ואו
011/11		ICEI O	

#	Article	IF	CITATIONS
2406	A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomaterialia, 2017, 62, 29-41.	4.1	198
2407	Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Journal of Materials Science: Materials in Medicine, 2017, 28, 168.	1.7	14
2408	Guar gum: A novel binder for ceramic extrusion. Ceramics International, 2017, 43, 16727-16735.	2.3	12
2409	Engineering Membranes for Bone Regeneration. Tissue Engineering - Part A, 2017, 23, 1502-1533.	1.6	15
2410	Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomaterialia, 2017, 63, 294-305.	4.1	65
2412	Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Advances, 2017, 7, 43432-43444.	1.7	75
2413	Applications of Different Bioactive Glass and Glass-Ceramic Materials for Osteoconductivity and Osteoinductivity. Transactions of the Indian Ceramic Society, 2017, 76, 149-158.	0.4	9
2414	Recent advances in 3D printing of porous ceramics: A review. Current Opinion in Solid State and Materials Science, 2017, 21, 323-347.	5.6	228
2415	Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures. Polymer, 2017, 128, 47-56.	1.8	36
2416	Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering. Journal of Polymer Engineering, 2017, 37, 943-951.	0.6	7
2417	Pore Size Distribution and Blend Composition Affect In Vitro Prevascularized Bone Matrix Formation on Poly(Vinyl Alcohol)/Gelatin Sponges. Macromolecular Materials and Engineering, 2017, 302, 1700300.	1.7	14
2418	Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Acta Biomaterialia, 2017, 63, 336-349.	4.1	15
2419	Fabrication and Properties of Porous NiTi Alloy by Gel-Casting with TiH2 Powders. Journal of Materials Engineering and Performance, 2017, 26, 5118-5125.	1.2	6
2420	Getting PEEK to Stick to Bone: The Development of Porous PEEK for Interbody Fusion Devices. Techniques in Orthopaedics, 2017, 32, 158-166.	0.1	67
2421	Investigation of the effects of melt electrospinning parameters on the direct-writing fiber size using orthogonal design. Journal Physics D: Applied Physics, 2017, 50, 425601.	1.3	16
2422	The effect of HPMC and MC as pore formers on the rheology of the implant microenvironment and the drug release in vitro. Carbohydrate Polymers, 2017, 177, 433-442.	5.1	12
2423	Hierarchically Porous Calcium Carbonate Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 2457-2469.	2.6	34
2424	Progress in Hydroxyapatite–Starch Based Sustainable Biomaterials for Biomedical Bone Substitution Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 8491-8512.	3.2	136

			2
#	ARTICLE	IF	CITATIONS
2425	Effect of composition and macropore percentage on mechanical and in vitro cell proliferation and differentiation properties of 3D printed HA/ \hat{l}^2 -TCP scaffolds. RSC Advances, 2017, 7, 43186-43196.	1.7	21
2426	Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia, 2017, 60, 64-80.	4.1	62
2427	Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1797-1825.	1.9	164
2428	Preparation of a novel sodium alginate/polyvinyl formal composite with a double crosslinking interpenetrating network for multifunctional biomedical application. Composites Part B: Engineering, 2017, 121, 9-22.	5.9	40
2429	Synthesis, structural and 3-D architecture of lanthanum oxide added hydroxyapatite composites for bone implant applications: Enhanced microstructural and mechanical properties. Ceramics International, 2017, 43, 14114-14121.	2.3	25
2430	Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Advances in Colloid and Interface Science, 2017, 247, 589-609.	7.0	72
2431	Enhancing the Osteogenic Capability of Core–Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation. ACS Applied Materials & Interfaces, 2017, 9, 24497-24510.	4.0	27
2432	Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step. Journal of Materials Science: Materials in Medicine, 2017, 28, 129.	1.7	26
2433	Shape memory effect in 3D-printed scaffolds for self-fitting implants. European Polymer Journal, 2017, 93, 222-231.	2.6	91
2434	Synthesis and characterisation of β-TCP/bioglass/zirconia scaffolds. Advances in Applied Ceramics, 2017, 116, 452-461.	0.6	15
2435	A self-organising biomimetic collagen/nano-hydroxyapatite-glycosaminoglycan scaffold for spinal fusion. Journal of Materials Science, 2017, 52, 12574-12592.	1.7	12
2436	Effects of Sintering Temperature on Crystallization and Fabrication of Porous Bioactive Glass Scaffolds for Bone Regeneration. Scientific Reports, 2017, 7, 6046.	1.6	35
2437	Porous lightweight composites reinforced with fibrous structures. , 2017, , .		4
2438	Porous Li-containing biphasic calcium phosphate scaffolds fabricated by three-dimensional plotting for bone repair. RSC Advances, 2017, 7, 34508-34516.	1.7	7
2439	Poly(ε-caprolactone)-based membranes with tunable physicochemical, bioactive and osteoinductive properties. Journal of Materials Science, 2017, 52, 12960-12980.	1.7	10
2440	Biobased Composites for Medical and Industrial Applications. , 2017, , 291-339.		0
2441	Magnetic Nanoparticles Inclusion into Scaffolds Based on Calcium Phosphates and Biopolymers for Bone Regeneration. Key Engineering Materials, 0, 745, 16-25.	0.4	4
2442	Advanced Microstructural Characterizations of Some Biomaterials and Scaffolds for Regenerative Orthopaedics. Key Engineering Materials, 2017, 745, 3-15.	0.4	0

#	Article	IF	CITATIONS
2443	Influence of the electrolyte's pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy. Scientific Reports, 2017, 7, 16819.	1.6	49
2444	Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. Journal of Materials Chemistry B, 2017, 5, 9384-9394.	2.9	22
2445	Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700612.	3.9	193
2446	Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactiveÂpolymerÂscaffolds. Bio-Medical Materials and Engineering, 2017, 28, 671-685.	0.4	11
2447	Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum. ACS Applied Materials & Interfaces, 2017, 9, 41168-41180.	4.0	126
2448	Modelling of porosity of 3D printed ceramic prostheses with grid structure. Procedia Manufacturing, 2017, 13, 770-777.	1.9	13
2449	Optimally designed collagen/polycaprolactone biocomposites supplemented with controlled release of HA/TCP/rhBMP-2 and HA/TCP/PRP for hard tissue regeneration. Materials Science and Engineering C, 2017, 78, 763-772.	3.8	23
2450	Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2231-2240.	1.7	42
2451	Biomineralized Recombinant Collagen-Based Scaffold Mimicking Native Bone Enhances Mesenchymal Stem Cell Interaction and Differentiation. Tissue Engineering - Part A, 2017, 23, 1423-1435.	1.6	21
2452	Subtractive manufacturing of customized hydroxyapatite scaffolds for bone regeneration. Ceramics International, 2017, 43, 11265-11273.	2.3	22
2453	Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities. Scientific Reports, 2017, 7, 3166.	1.6	22
2454	About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys. Journal of Thermal Analysis and Calorimetry, 2017, 127, 107-113.	2.0	7
2455	6.1 Bioactive Ceramics and Bioactive Ceramic Composite Based Scaffolds \hat{a}^{+} , 2017, , 1-19.		1
2456	6.3 Engineering the Organ Bone. , 2017, , 54-74.		1
2457	Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials, 2017, 141, 176-187.	5.7	56
2458	The cells viability study on the composites of chitosan and collagen with glycosaminoglycans isolated from fish skin. Materials Letters, 2017, 206, 166-168.	1.3	12
2459	Biomedical applications of hybrid polymer composite materials. , 2017, , 343-408.		10
2460	Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering. Colloids and Surfaces B: Biointerfaces, 2017, 158, 203-212.	2.5	20

#	Article	IF	CITATIONS
2461	The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Research, 2017, 5, 17018.	5.4	127
2462	New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Annals of Anatomy, 2017, 213, 83-90.	1.0	50
2463	Chitosan centered bionanocomposites for medical specialty and curative applications: A review. International Journal of Pharmaceutics, 2017, 529, 200-217.	2.6	77
2464	An innovative cell-laden α-TCP/collagen scaffold fabricated using a two-step printing process for potential application in regenerating hard tissues. Scientific Reports, 2017, 7, 3181.	1.6	55
2465	Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. Journal of Orthopaedic Surgery and Research, 2017, 12, 102.	0.9	4
2466	Investigations of silk fiber/calcium phosphate cement biocomposite for radial bone defect repair in rabbits. Journal of Orthopaedic Surgery and Research, 2017, 12, 32.	0.9	4
2467	New porous Mg composites for bone implants. Journal of Alloys and Compounds, 2017, 724, 176-186.	2.8	16
2468	In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 149, 330-340.	2.5	77
2469	From solvent-free microspheres to bioactive gradient scaffolds. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1157-1169.	1.7	14
2470	Porous magnesium-based scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 71, 1253-1266.	3.8	212
2471	Biomaterials for Musculoskeletal Regeneration. Indian Institute of Metals Series, 2017, , .	0.2	7
2472	Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials, 2017, 115, 115-127.	5.7	430
2473	Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloids and Surfaces B: Biointerfaces, 2017, 150, 78-88.	2.5	72
2474	Stretchable Porous Carbon Nanotubeâ€Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy. Advanced Materials, 2017, 29, 1603115.	11.1	172
2475	Processing and strengthening of 58S bioactive glassâ€infiltrated titania scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 590-600.	2.1	17
2476	Microwave-induced porosity and bioactivation of chitosan-PEGDA scaffolds: morphology, mechanical properties and osteogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 86-98.	1.3	5
2477	Bringing bioresorbable polymers to market. , 2017, , 133-149.		1
2478	Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2017, 23, 128-141.	2.5	33

#	Article	IF	Citations
2479	The Synthesis, Application, and Related Neurotoxicity of Carbon Nanotubes. , 2017, , 259-284.		12
2480	Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. Journal of Industrial and Engineering Chemistry, 2017, 46, 175-181.	2.9	83
2481	A new approach for the immobilization of poly(acrylic) acid as a chemically reactive cross-linker on the surface of poly(lactic) acid-based biomaterials. Materials Science and Engineering C, 2017, 71, 862-869.	3.8	13
2482	Case Study: Hydroxyapatite Based Microporous/Macroporous Scaffolds. Indian Institute of Metals Series, 2017, , 45-72.	0.2	1
2483	Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies. Materials Science and Engineering C, 2017, 71, 1241-1252.	3.8	43
2484	Design and fabrication of novel chitin hydrogel/chitosan/nano diopside composite scaffolds for tissue engineering. Ceramics International, 2017, 43, 1657-1668.	2.3	34
2485	Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 2017, 37, 359-368.	2.8	72
2486	Silk fibroin scaffolds with inverse opal structure for bone tissue engineering. , 2017, 105, 2074-2084.		39
2487	A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Materials Science and Engineering C, 2017, 70, 913-929.	3.8	71
2488	TPMS for interactive modelling of trabecular scaffolds for Bone Tissue Engineering. Lecture Notes in Mechanical Engineering, 2017, , 425-435.	0.3	12
2489	Influence of Hydroxyl Groups on the Cell Viability of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 3064-3075.	2.6	37
2490	Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 2017, 155, 507-515.	5.1	205
2491	Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Materials Science and Engineering C, 2017, 70, 812-823.	3.8	103
2492	Additive Technology: Update on Current Materials and Applications in Dentistry. Journal of Prosthodontics, 2017, 26, 156-163.	1.7	200
2493	Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK). Materials Science and Engineering C, 2017, 70, 456-460.	3.8	49
2494	Preparation and characterization of injectable chitosan–hyaluronic acid hydrogels for nerve growth factor sustained release. Journal of Bioactive and Compatible Polymers, 2017, 32, 146-162.	0.8	37
2495	Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 657-664.	1.5	31
2496	Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration. Materials Science and Engineering C, 2017, 71, 252-259.	3.8	11

#	Article	IF	CITATIONS
2497	In situ formation of nanostructured calcium phosphate coatings on porous hydroxyapatite scaffolds using a hydrothermal method and the effect on mesenchymal stem cell behavior. Ceramics International, 2017, 43, 1588-1596.	2.3	29
2498	Fabrication and characterization of 3D complex hydroxyapatite scaffolds with hierarchical porosity of different features for optimal bioactive performance. Ceramics International, 2017, 43, 336-344.	2.3	13
2499	Effect of Porous Activated Charcoal Reinforcement on Mechanical and In-Vitro Biological Properties of Polyvinyl Alcohol Composite Scaffolds. Journal of Materials Science and Technology, 2017, 33, 734-743.	5.6	13
2500	A porous mediumâ€chainâ€length poly(3â€hydroxyalkanoates)/hydroxyapatite composite as scaffold for bone tissue engineering. Engineering in Life Sciences, 2017, 17, 420-429.	2.0	26
2501	Salicylic acid (SA)â€eluting bone regeneration scaffolds with interconnected porosity and local and sustained SA release. Journal of Biomedical Materials Research - Part A, 2017, 105, 311-318.	2.1	6
2502	Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146.	0.7	2
2503	Rapid Prototyping for the Engineering of Osteochondral Tissues. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 163-185.	0.7	2
2504	Biocompatibility of biodegradable medical polymers. , 2017, , 379-414.		8
2505	Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. Tissue Engineering - Part B: Reviews, 2017, 23, 9-26.	2.5	30
2506	Porous hydroxyapatite scaffolds containing dual microspheres based on poly(lactide-co-glycolide) and chitosan for bone regeneration. Materials Letters, 2017, 188, 387-391.	1.3	16
2507	Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Materials Science and Engineering C, 2017, 72, 341-351.	3.8	68
2508	<scp>C</scp> ellular response of osteoblasts to low modulus Tiâ€24Nbâ€4Zrâ€8Sn alloy mesh structure. Journal of Biomedical Materials Research - Part A, 2017, 105, 859-870.	2.1	50
2509	An injectable poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold for irregular bone defects: Physical and mechanical characteristics. Materials Science and Engineering C, 2017, 72, 332-340.	3.8	2
2510	Osteoblast cellular activity on low elastic modulus Ti–24Nb–4Zr–8Sn alloy. Dental Materials, 2017, 33, 152-165.	1.6	54
2511	The efficacy of poly-d,l-lactic acid- and hyaluronic acid-coated bone substitutes on implant fixation in sheep. Journal of Orthopaedic Translation, 2017, 8, 12-19.	1.9	11
2512	Topographical Control of Preosteoblast Culture by Shape Memory Foams. Advanced Engineering Materials, 2017, 19, 1600343.	1.6	10
2513	Microâ€porous composite scaffolds of photoâ€crosslinked poly(trimethylene carbonate) and nanoâ€hydroxyapatite prepared by lowâ€temperature extrusionâ€based additive manufacturing. Polymers for Advanced Technologies, 2017, 28, 1226-1232.	1.6	15
2514	Porous magnetic scaffolds for bone tissue engineering and regeneration. , 2017, , .		0

#	Article	IF	CITATIONS
2515	Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Journal of Zhejiang University: Science B, 2017, 18, 963-976.	1.3	24
2516	Types of ceramics. , 2017, , 21-82.		13
2517	Ceramic devices for bone regeneration. , 2017, , 279-311.		8
2518	Advanced processing techniques for customized ceramic medical devices. , 2017, , 433-468.		4
2519	5.2 Engineering Scaffold Mechanical and Mass Transport Properties. , 2017, , 18-40.		1
2520	PEEK Titanium Composite (PTC) for Spinal Implants. , 2017, , 427-465.		1
2521	A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. International Journal of Energy Production and Management, 2017, 4, 233-242.	1.9	26
2523	Polylactic Acid Scaffold Fabricated by Combination of Solvent Casting and Salt Leaching Techniques: Influence of β-Tricalcium Phosphate Contents. Solid State Phenomena, 0, 264, 42-45.	0.3	2
2524	Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 2017, 11, 31.	2.0	268
2525	Periacetabular Bone Densitometry after Total Hip Arthroplasty with Highly Porous Titanium Cups: A 2-Year Follow-Up Prospective Study. HIP International, 2017, 27, 551-557.	0.9	23
2526	Additive manufacturing of poly[(<i>R</i>)-3-hydroxybutyrate- <i>co</i> -(<i>R</i>)-3-hydroxyhexanoate] scaffolds for engineered bone development. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 175-186.	1.3	53
2527	Effect of Strain Rate and Relative Density on the Compressive Deformation of Open Cell Ti6Al Alloy Foam through P/M Route. Journal of Applied Mechanical Engineering, 2017, 06, .	0.0	3
2528	On the synthesis and characterization of β-tricalcium phosphate scaffolds coated with collagen or poly (D, L-lactic acid) for alveolar bone augmentation. European Journal of Dentistry, 2017, 11, 496-502.	0.8	18
2529	Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces. International Journal of Spine Surgery, 2017, 11, 15.	0.7	25
2530	In Vitro Evaluation of Laser-Induced Periodic Surface Structures on New Zirconia/Tantalum Biocermet for Hard-Tissue Replacement. , 0, , .		1
2531	Implications of Substrate Topographic Surface on Tissue Engineering. , 2017, , 287-313.		1
2532	Collagen-Fibrinogen Lyophilised Scaffolds for Soft Tissue Regeneration. Materials, 2017, 10, 568.	1.3	14
2533	Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study. Materials, 2017, 10, 1434.	1.3	26

#	Article	IF	CITATIONS
2534	Micro-Computed-Tomography-Guided Analysis of In Vitro Structural Modifications in Two Types of 45S5 Bioactive Glass Based Scaffolds. Materials, 2017, 10, 1341.	1.3	11
2535	Histomorphometric Evaluation of Two Different Bone Substitutes in Sinus Augmentation Procedures: A Randomized Controlled Trial in Humans. International Journal of Oral and Maxillofacial Implants, 2017, 32, 188-194.	0.6	30
2536	Physico-Chemical, In Vitro, and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite Scaffold for Bone Regeneration. Materials, 2017, 10, 33.	1.3	28
2537	Characterization of morphology—3D and porous structure. , 2017, , 21-53.		10
2538	Effect of the Chemical Composition of Simulated Body Fluids on Aerogel-Based Bioactive Composites. Journal of Composites Science, 2017, 1, 15.	1.4	12
2539	Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review. Materials, 2017, 10, 50.	1.3	152
2540	Fabrication of Biocompatible Potassium Sodium Niobate Piezoelectric Ceramic as an Electroactive Implant. Materials, 2017, 10, 345.	1.3	52
2541	The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials, 2017, 10, 367.	1.3	41
2542	Comparison of Two Xenograft Materials Used in Sinus Lift Procedures: Material Characterization and In Vivo Behavior. Materials, 2017, 10, 623.	1.3	19
2543	Development of Useful Biomaterial for Bone Tissue Engineering by Incorporating Nano-Copper-Zinc Alloy (nCuZn) in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/nHAp) Scaffold. Materials, 2017, 10, 1177.	1.3	58
2544	In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone) Composite Scaffolds. Materials, 2017, 10, 1274.	1.3	17
2545	Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. Materials, 2017, 10, 1302.	1.3	90
2546	Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers, 2017, 9, 387.	2.0	21
2547	Metal scaffolds processed by electron beam melting for biomedical applications. , 2017, , 83-110.		11
2548	Biocomposites in therapeutic application. , 2017, , 1-29.		2
2549	ZnO Nanostructures for Tissue Engineering Applications. Nanomaterials, 2017, 7, 374.	1.9	135
2550	Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Frontiers in Bioengineering and Biotechnology, 2017, 5, 17.	2.0	91
2551	Cranioplasty and Craniofacial Reconstruction: A Review of Implant Material, Manufacturing Method and Infection Risk. Applied Sciences (Switzerland), 2017, 7, 276.	1.3	54

#	Article	IF	CITATIONS
2552	A Si-αTCP Scaffold for Biomedical Applications: An Experimental Study Using the Rabbit Tibia Model. Applied Sciences (Switzerland), 2017, 7, 706.	1.3	15
2553	Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) Blend Scaffolds for Tissue Engineering. Bioengineering, 2017, 4, 49.	1.6	31
2554	Apatite Glass-Ceramics: A Review. Frontiers in Materials, 2017, 3, .	1.2	36
2555	New "old―polylactides for tissue engineering constructions. Inorganic Materials: Applied Research, 2017, 8, 704-712.	0.1	1
2556	Ceramics in Bone Grafts and Coated Implants. , 2017, , 265-314.		13
2557	Collagen-Based Scaffolds for Bone Tissue Engineering Applications. , 2017, , 187-224.		4
2558	Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants: A Review. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.0	32
2559	Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering. International Journal of Biomaterials, 2017, 2017, 1-11.	1.1	54
2560	Mechanical and biological effects of infiltration with biopolymers on 3D printed tricalciumphosphate scaffolds. Dental Materials Journal, 2017, 36, 553-559.	0.8	4
2561	Vascularization. , 2017, , 367-383.		1
2562	6.8 Cartilage Regeneration in Reconstructive Surgery. , 2017, , 135-141.		2
2563	Effects of <i>Escherichia Coli</i> -derived Recombinant Human Bone Morphogenetic Protein-2 Loaded Porous Hydroxyaptite-based Ceramics on Calvarial Defect in Rabbits. Journal of Bone Metabolism, 2017, 24, 23.	0.5	7
2564	5.18 Endogenous Strategies in Tissue Engineering. , 2017, , 329-342.		0
2565	Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. International Journal of Nanomedicine, 2017, Volume 12, 2673-2687.	3.3	69
2566	Composite materials for bone repair. , 2017, , 83-110.		3
2567	Engineering Niches for Bone Tissue Regeneration. , 2017, , 499-516.		1
2568	Characterization of biomaterials. , 2017, , 97-115.		25
2569	Influence of lyophilization factors and gelatin concentration on pore structures of atelocollagen/gelatin sponge biomaterial. Dental Materials Journal, 2017, 36, 429-437.	0.8	11

#	Article	IF	CITATIONS
2570	Autologous platelet-rich plasma induces bone formation of tissue-engineered bone with bone marrow mesenchymal stem cells on beta-tricalcium phosphate ceramics. Journal of Orthopaedic Surgery and Research, 2017, 12, 178.	0.9	19
2571	Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. Journal of Biological Engineering, 2017, 11, 49.	2.0	68
2572	4.35 Ordered Mesoporous Silica Materials â~†. , 2017, , 644-685.		9
2573	Desenvolvimento de arcabouços de óxido de titânio e Biosilicato® para regeneração óssea. Ceramica, 2017, 63, 263-270.	0.3	1
2574	Bioceramic Scaffolds. , 0, , .		5
2575	Glass and Glass-Ceramic Scaffolds: Manufacturing Methods and the Impact of Crystallization on In-Vitro Dissolution. , 2017, , .		0
2576	Analysis of bone response to dental bone grafts by advanced physical techniques. , 2017, , 229-246.		1
2577	Fabrication Methodologies of Biomimetic and Bioactive Scaffolds for Tissue Engineering Applications. , 0, , .		5
2578	Multiscale Biomechanical Characterization of Bioceramic Bone Scaffolds. , 2017, , 201-216.		0
2579	Production methods and characterization of porous Mg and Mg alloys for biomedical applications. , 2017, , 25-82.		16
2580	Graded Cellular Bone Scaffolds. , 2017, , .		2
2581	The biocompatibility of bone cements: progress in methodological approach. European Journal of Histochemistry, 2017, 61, 2673.	0.6	10
2582	Fabrication and Mechanical Properties of Porous CP-TiUsing Selective Laser Melting (SLM). IOP Conference Series: Materials Science and Engineering, 2017, 212, 012006.	0.3	1
2583	Preparation, Characterization and Biological Studies of Î'-TCP and Î'-TCP/Al2O3 Scaffolds Obtained by Gel-Casting of Foams. Materials Research, 2017, 20, 973-983.	0.6	9
2584	Biomimetic Polymers (for Biomedical Applications). , 2017, , .		0
2585	Titanium foam for bone tissue engineering. , 2017, , 111-130.		7
2586	Porous Heat-Treated Polyacrylonitrile Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2018, 10, 8496-8506.	4.0	20
2587	In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2018, 165, 207-218.	2.5	59

#	Article	IF	CITATIONS
2588	Construction of highly biocompatible hydroxyethyl cellulose/soy protein isolate composite sponges for tissue engineering. Chemical Engineering Journal, 2018, 341, 402-413.	6.6	35
2589	Effect of HF/HNO3-treatment on the porous structure and cell penetrability of titanium (Ti) scaffold. Materials and Design, 2018, 145, 65-73.	3.3	20
2590	Singlet-assisted diffusion-NMR (SAD-NMR): redefining the limits when measuring tortuosity in porous media. Physical Chemistry Chemical Physics, 2018, 20, 13705-13713.	1.3	23
2591	Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Materialia, 2018, 150, 1-15.	3.8	166
2592	Tissue and Organ 3D Bioprinting. SLAS Technology, 2018, 23, 301-314.	1.0	77
2593	Microstructure and fracture properties of open-cell porous Ti-6Al-4V with high porosity fabricated by electron beam melting. Materials Characterization, 2018, 138, 255-262.	1.9	36
2594	Effect of microporosity on scaffolds for bone tissue engineering. International Journal of Energy Production and Management, 2018, 5, 115-124.	1.9	243
2595	Epoxyâ€based gelcasting of machinable hydroxyapatite foams for medical applications. Journal of the American Ceramic Society, 2018, 101, 3317-3327.	1.9	12
2596	In vitro mineralization kinetics of poly(l-lactic acid)/hydroxyapatite nanocomposite material by attenuated total reflection Fourier transform infrared mapping coupled with principal component analysis. Journal of Materials Science, 2018, 53, 8009-8019.	1.7	10
2597	Poly(organo)phosphazenes: recent progress in the synthesis and applications in tissue engineering and drug delivery. Russian Chemical Reviews, 2018, 87, 109-150.	2.5	16
2598	Porous hydroxyapatiteâ€bioactive glass hybrid scaffolds fabricated via ceramic honeycomb extrusion. Journal of the American Ceramic Society, 2018, 101, 3541-3556.	1.9	14
2599	In vitro evaluation of a bone morphogenetic protein‑2 nanometer hydroxyapatite collagen scaffold for bone regeneration. Molecular Medicine Reports, 2018, 17, 5830-5836.	1.1	16
2600	Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: <i>In vitro</i> and <i>in vivo</i> study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1195-1208.	1.3	44
2601	Incorporation of Cu-Containing Bioactive Glass Nanoparticles in Gelatin-Coated Scaffolds Enhances Bioactivity and Osteogenic Activity. ACS Biomaterials Science and Engineering, 2018, 4, 1546-1557.	2.6	40
2602	Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 1-11.	1.5	218
2603	Characterization of scaffolds based on chitosan and collagen with glycosaminoglycans and sodium alginate addition. Polymer Testing, 2018, 68, 229-232.	2.3	16
2604	A graphene oxide-Ag co-dispersing nanosystem: Dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds. Chemical Engineering Journal, 2018, 347, 322-333.	6.6	209
2605	Formation of osteonâ€ŀike structures in unidirectional porous hydroxyapatite substitute. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2665-2672.	1.6	12

#	Article	IF	CITATIONS
2606	Micro/Nano Scaffolds for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 125-139.	0.8	11
2607	Study on influencing factors of Pickering emulsions stabilized by hydroxyapatite nanoparticles with nonionic surfactants. Soft Matter, 2018, 14, 3889-3901.	1.2	26
2608	Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting. Journal of Materials Engineering and Performance, 2018, 27, 2271-2280.	1.2	4
2609	Porous calcium phosphate composite bioceramic beads. Ceramics International, 2018, 44, 13430-13433.	2.3	11
2610	Bone regeneration strategy by different sized multichanneled biphasic calcium phosphate granules: In vivo evaluation in rabbit model. Journal of Biomaterials Applications, 2018, 32, 1406-1420.	1.2	12
2611	Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Materials and Design, 2018, 151, 102-112.	3.3	82
2612	Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Materials Science and Engineering C, 2018, 89, 265-273.	3.8	76
2613	3D bone models to study the complex physical and cellular interactions between tumor and the bone microenvironment. Journal of Cellular Biochemistry, 2018, 119, 5053-5059.	1.2	17
2614	Additive manufactured metallic implants for orthopaedic applications. Science China Materials, 2018, 61, 440-454.	3.5	31
2615	Nanohydroxyapatite/Graphene Nanoribbons Nanocomposites Induce in Vitro Osteogenesis and Promote in Vivo Bone Neoformation. ACS Biomaterials Science and Engineering, 2018, 4, 1580-1590.	2.6	23
2616	Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. Journal of Materials Chemistry B, 2018, 6, 2650-2676.	2.9	135
2617	Finite element analysis of porous commercially pure titanium for biomedical implant application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 43-50.	2.6	41
2618	Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Science International, 2018, 15, 48-55.	0.3	203
2619	Comparison of osteointegration property between PEKK and PEEK: Effects of surface structure and chemistry. Biomaterials, 2018, 170, 116-126.	5.7	141
2620	Surface-decorated hydroxyapatite scaffold with on-demand delivery of dexamethasone and stromal cell derived factor-1 for enhanced osteogenesis. Materials Science and Engineering C, 2018, 89, 355-370.	3.8	38
2621	A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering. III: Characterization of porous structure. Materials Science and Engineering C, 2018, 89, 223-229.	3.8	17
2622	Cuttlebone as a Marine-Derived Material for Preparing Bone Grafts. Marine Biotechnology, 2018, 20, 363-374.	1.1	12
2623	Elucidating the role of 45S5 bioglass content in the density and flexural strength of robocast β-TCP/45S5 composites. Ceramics International, 2018, 44, 12717-12722.	2.3	10

#	Article	IF	CITATIONS
2624	Characterization and Evaluation of Nanofiber Materials. , 2018, , 1-32.		2
2625	Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Scientific Reports, 2018, 8, 2802.	1.6	40
2626	Development and characterization of zincâ€incorporated montmorillonite/poly(εâ€caprolactone) composite scaffold for osteogenic tissueâ€engineering applications. Polymer Composites, 2018, 39, E601.	2.3	4
2627	Direct-writing of 3D periodic TiO2 bio-ceramic scaffolds with a sol-gel ink for in vitro cell growth. Materials and Design, 2018, 144, 304-309.	3.3	28
2628	Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules, 2018, 111, 923-934.	3.6	179
2629	Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 2018, 187, 66-84.	5.1	454
2630	Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. International Journal of Biological Macromolecules, 2018, 112, 448-460.	3.6	97
2631	Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids and Surfaces B: Biointerfaces, 2018, 164, 58-69.	2.5	147
2632	About thermostability of biocompatible Ti–Zr–Ag–Pd–Sn amorphous alloys. Journal of Thermal Analysis and Calorimetry, 2018, 133, 189-197.	2.0	6
2633	Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 936-945.	1.1	62
2635	Functionally graded ceramics for biomedical application: Concept, manufacturing, and properties. International Journal of Applied Ceramic Technology, 2018, 15, 820-840.	1.1	55
2636	Osteogenic Nanofibrous Coated Titanium Implant Results in Enhanced Osseointegration: In Vivo Preliminary Study in a Rabbit Model. Tissue Engineering and Regenerative Medicine, 2018, 15, 231-247.	1.6	24
2637	Bioactive solâ€gel glasses: Processing, properties, and applications. International Journal of Applied Ceramic Technology, 2018, 15, 841-860.	1.1	124
2638	Preparation and characterization of mesoporous calciumâ€doped silicaâ€coated TiO ₂ scaffolds and their drug releasing behavior. International Journal of Applied Ceramic Technology, 2018, 15, 892-902.	1.1	6
2639	Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. Nanoscale Research Letters, 2018, 13, 15.	3.1	52
2640	Fabrication and characterization of strontium-doped borate-based bioactive glass scaffolds for bone tissue engineering. Journal of Alloys and Compounds, 2018, 743, 564-569.	2.8	36
2641	Design and evaluation of chitosan/poly(l-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. International Journal of Biological Macromolecules, 2018, 112, 909-920.	3.6	52
2642	Bacterial cellulose-based scaffold materials for bone tissue engineering. Applied Materials Today, 2018, 11, 34-49.	2.3	208
#	Article	IF	CITATIONS
------	--	------	-----------
2643	Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone and Joint Research, 2018, 7, 46-57.	1.3	33
2644	Recent advances in 3D bioprinting for the regeneration of functional cartilage. Regenerative Medicine, 2018, 13, 73-87.	0.8	30
2645	Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects. Science China Materials, 2018, 61, 455-474.	3.5	26
2646	Design, fabrication and characterization of tailored poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyexanoate] scaffolds by computer-aided wet-spinning. Rapid Prototyping Journal, 2018, 24, 1-8.	1.6	17
2647	Design and Structure–Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Advanced Healthcare Materials, 2018, 7, e1701095.	3.9	111
2648	Damage mechanisms in bioactive glass matrix composites under uniaxial compression. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 264-272.	1.5	4
2649	A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Materials Science and Engineering C, 2018, 86, 18-27.	3.8	79
2650	Sustained releasing sponge-like 3D scaffolds for bone tissue engineering applications. Biomedical Materials (Bristol), 2018, 13, 015019.	1.7	10
2651	Hydoxyapatite/betaâ€ŧricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2493-2512.	1.6	112
2652	Biodegradable composite porous poly(<scp>dl</scp> -lactide- <i>co</i> -glycolide) scaffold supports mesenchymal stem cell differentiation and calcium phosphate deposition. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 219-229.	1.9	17
2653	A 3D bioprinted <i>in situ</i> conjugatedâ€ <i>co</i> â€fabricated scaffold for potential bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1311-1321.	2.1	36
2654	Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties. Journal of Controlled Release, 2018, 272, 83-96.	4.8	58
2655	2Dâ€Blackâ€Phosphorusâ€Reinforced 3Dâ€Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Advanced Materials, 2018, 30, 1705611.	11.1	284
2656	Coagulated concentrated anatase slurry leads to improved strength of ceramic TiO2 bone scaffolds. Ceramics International, 2018, 44, 6265-6271.	2.3	10
2657	Silk fibroin porous scaffolds by N ₂ O foaming. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 491-506.	1.9	39
2658	New collagenâ€coated calcium phosphate synthetic bone filler (Synergoss [®]): A comparative surface analysis. International Journal of Applied Ceramic Technology, 2018, 15, 910-920.	1.1	11
2659	Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Research and Therapy, 2018, 9, 104.	2.4	196
2660	Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds. Journal of the Iranian Chemical Society, 2018, 15, 1663-1671.	1.2	8

#	Article	IF	CITATIONS
2661	Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Research and Therapy, 2018, 9, 112.	2.4	62
2662	Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering C, 2018, 90, 280-288.	3.8	54
2663	Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 305-325.	0.8	27
2664	Osteochondral Tissue Engineering: Translational Research and Turning Research into Products. Advances in Experimental Medicine and Biology, 2018, 1058, 373-390.	0.8	13
2665	Commercial Products for Osteochondral Tissue Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 415-428.	0.8	13
2666	Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 143-170.	0.8	7
2667	Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, , .	0.8	2
2668	Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Biomaterials Science, 2018, 6, 1569-1579.	2.6	23
2669	3D-printing porosity: A new approach to creating elevated porosity materials and structures. Acta Biomaterialia, 2018, 72, 94-109.	4.1	79
2670	Processing and properties of highly porous Ti6Al4V mimicking human bones. Journal of Materials Research, 2018, 33, 650-661.	1.2	18
2671	A Metallographic Review of 3D Printing/Additive Manufacturing of Metal and Alloy Products and Components. Metallography, Microstructure, and Analysis, 2018, 7, 103-132.	0.5	89
2672	Graphene Oxide-Based Biocompatible 3D Mesh with a Tunable Porosity and Tensility for Cell Culture. ACS Biomaterials Science and Engineering, 2018, 4, 1505-1517.	2.6	3
2673	Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. European Polymer Journal, 2018, 103, 40-50.	2.6	27
2674	Improvements in phase stability and densification of β-tricalcium phosphate bioceramics by strontium-containing phosphate-based glass additive. Ceramics International, 2018, 44, 11622-11627.	2.3	9
2675	Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Bio-Design and Manufacturing, 2018, 1, 69-75.	3.9	22
2676	Polymer and Photonic Materials Towards Biomedical Breakthroughs. , 2018, , .		4
2677	LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds. RSC Advances, 2018, 8, 10794-10805.	1.7	21
2678	Polymer Processing Through Multiphoton Absorption. , 2018, , 49-69.		1

#	Article	IF	CITATIONS
2679	Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants. Acta Biomaterialia, 2018, 72, 352-361.	4.1	19
2680	Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using Xâ€ray microtomography. Microscopy Research and Technique, 2018, 81, 551-568.	1.2	23
2681	Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits. Osteoporosis International, 2018, 29, 1177-1191.	1.3	35
2682	Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reactioninÂvivo. Part B: a comparative study with biphasic synthetic biomaterials. Clinical Oral Implants Research, 2018, 29, 1077-1084.	1.9	14
2683	Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells . Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e473-e485.	1.3	46
2684	Synthesis and characterization of divinyl-fumarate poly-ε-caprolactone for scaffolds with controlled architectures. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e523-e531.	1.3	15
2685	Bi-/multi-modal pore formation of PLGA/hydroxyapatite composite scaffolds by heterogeneous nucleation in supercritical CO 2 foaming. Chinese Journal of Chemical Engineering, 2018, 26, 207-212.	1.7	21
2686	Preparation and characterization of novel chitosan/zeolite scaffolds for bone tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 110-118.	1.8	25
2687	Effects of substitute coated with hyaluronic acid or polyâ€lactic acid on implant fixation: Experimental study in ovariectomized and glucocorticoidâ€treated sheep. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1122-e1130.	1.3	6
2688	Silicone rubber membrane with specific pore size enhances wound regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e905-e917.	1.3	15
2689	Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion. ACS Biomaterials Science and Engineering, 2018, 4, 347-356.	2.6	30
2690	Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 291-299.	1.6	14
2691	Physical structure and mechanical properties of knitted hernia mesh materials: A review. Journal of Industrial Textiles, 2018, 48, 333-360.	1.1	34
2692	Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 1115-1127.	2.6	105
2693	Different Porosities of Chitosan Can Influence the Osteogenic Differentiation Potential of Stem Cells. Journal of Cellular Biochemistry, 2018, 119, 625-633.	1.2	17
2694	Strength, toughness, and reliability of a porous glass/biopolymer composite scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1209-1217.	1.6	18
2695	Calcium phosphate substrates with emulsion-derived roughness: Processing, characterisation and interaction with human mesenchymal stem cells. Journal of the European Ceramic Society, 2018, 38, 949-961.	2.8	11
2696	A kind of injectable Angelica sinensis polysaccharide(ASP)/hydroxyapatite (HAp) material for bone tissue engineering promoting vascularization, hematopoiesis, and osteogenesis in mice. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 205-211.	1.8	4

#	Article	IF	CITATIONS
2697	Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dental Materials, 2018, 34, 209-220.	1.6	26
2698	Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. International Journal of Biological Macromolecules, 2018, 110, 504-513.	3.6	14
2699	Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Materials and Design, 2018, 137, 345-354.	3.3	257
2700	Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials, 2018, 153, 1-13.	5.7	199
2701	Porous scaffold prepared from α′L-Dicalcium silicate doped with phosphorus for bone grafts. Ceramics International, 2018, 44, 537-545.	2.3	28
2702	Bioactivation of Calcium Phosphate Cement by Growth Factors and Their Applications. Springer Series in Biomaterials Science and Engineering, 2018, , 257-298.	0.7	1
2703	Enhanced formation of hydroxyapatites in gelatin/imogolite macroporous hydrogels. Journal of Colloid and Interface Science, 2018, 511, 145-154.	5.0	24
2704	Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 600-608.	1.5	33
2705	Computational design of curvilinear bone scaffolds fabricated via direct ink writing. CAD Computer Aided Design, 2018, 95, 1-13.	1.4	20
2706	Synthesis of NiTi microtubes via the Kirkendall effect during interdiffusion of Ti-coated Ni wires. Intermetallics, 2018, 92, 42-48.	1.8	25
2707	Gellan gumâ€hydroxyapatite composite spongyâ€ŀike hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 479-490.	2.1	50
2708	Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone, 2018, 106, 11-21.	1.4	20
2709	Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications. Journal of Alloys and Compounds, 2018, 731, 189-199.	2.8	38
2710	Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds. Materials Chemistry and Physics, 2018, 203, 249-258.	2.0	46
2711	Supercritical <scp>CO</scp> ₂ deposition and foaming process for fabrication of biopolyester– <scp>Z</scp> n <scp>O</scp> bone scaffolds. Journal of Applied Polymer Science, 2018, 135, 45824.	1.3	10
2712	Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. Journal of Biomedical Materials Research - Part A, 2018, 106, 663-672.	2.1	32
2713	Intranasal drug delivery devices and interventions associated with post-operative endoscopic sinus surgery. Pharmaceutical Development and Technology, 2018, 23, 282-294.	1.1	10
2714	Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds. Journal of Dental Research, 2018, 97, 68-76.	2.5	98

#	Article	IF	CITATIONS
2715	A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold. Journal of Medical and Biological Engineering, 2018, 38, 359-369.	1.0	2
2716	Robocast zirconia-toughened alumina scaffolds: Processing, structural characterisation and interaction with human primary osteoblasts. Journal of the European Ceramic Society, 2018, 38, 845-853.	2.8	43
2717	Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomedical Materials (Bristol), 2018, 13, 015008.	1.7	25
2718	Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin. Materials Science and Engineering C, 2018, 82, 217-224.	3.8	25
2719	Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Science China Materials, 2018, 61, 525-536.	3.5	46
2720	Study of nanofiber scaffolds of PAA, PAA/CS, and PAA/ALG for its potential use in biotechnological applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 800-807.	1.8	12
2721	The cross-disciplinary emergence of 3D printed bioceramic scaffolds in orthopedic bioengineering. Ceramics International, 2018, 44, 1-9.	2.3	52
2722	The application of chitosan/collagen/hyaluronic acid sponge cross-linked by dialdehyde starch addition as a matrix for calcium phosphate in situ precipitation. International Journal of Biological Macromolecules, 2018, 107, 470-477.	3.6	29
2723	Imaging stem cell distribution, growth, migration, and differentiation in 3â€D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography. Biotechnology and Bioengineering, 2018, 115, 257-265.	1.7	9
2724	Silicon bioceramic loaded with vancomycin stimulates bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2307-2315.	1.6	5
2725	Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Materials Science and Engineering C, 2018, 84, 140-147.	3.8	107
2726	Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. ACS Biomaterials Science and Engineering, 2018, 4, 1-39.	2.6	130
2727	3D–printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival. Materials Science and Engineering C, 2018, 84, 236-242.	3.8	77
2728	Scaffolds based on chitosan and collagen with glycosaminoglycans cross-linked by tannic acid. Polymer Testing, 2018, 65, 163-168.	2.3	33
2729	Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 110, 65-73.	3.6	38
2730	Evaluation of osteoblast differentiation and function when cultured on mesoporous bioactive glass adsorbed with testosterone. Journal of Cellular Biochemistry, 2018, 119, 5222-5232.	1.2	8
2731	A versatile three-dimensional foam fabrication strategy for soft and hard tissue engineering. Biomedical Materials (Bristol), 2018, 13, 025018.	1.7	15
2732	Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 195-216.	1.9	11

		CITATION REP	PORT	
#	Article		IF	CITATIONS
2733	3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018, 3, 278-31	.4.	8.6	866
2734	Calcium-Deficient Hydroxyapatite/Collagen/Platelet-Rich Plasma Scaffold with Controlled Release Function for Hard Tissue Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 278-25	89.	2.6	22
2735	Macroporous scaffolds: Molecular brushes based on oligo(lactic acid)–amino acid–indometha conjugated poly(norbornene)s. European Polymer Journal, 2018, 98, 162-171.	cin	2.6	7
2736	Porous Metals in Orthopedics. , 2018, , 281-301.			3
2737	Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapati prepared by freeze-drying method for bone tissue engineering. International Journal of Biological Macromolecules, 2018, 108, 1017-1027.	te	3.6	77
2738	Chitosan/collagen blends with inorganic and organic additive—A review. Advances in Polymer Technology, 2018, 37, 2367-2376.		0.8	22
2739	Particle-size-dependent octacalcium phosphate overgrowth on β-tricalcium phosphate substrate in calcium phosphate solution. Ceramics International, 2018, 44, 2146-2157.	١	2.3	7
2740	Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bo regeneration. Biomedical Materials (Bristol), 2018, 13, 015014.	ne	1.7	42
2741	Study of dynamic degradation behaviour of porous magnesium under physiological environment o human cancellous bone. Corrosion Science, 2018, 131, 45-56.	f	3.0	27
2742	A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materi 2018, 25, 537-554.	als,	1.3	85
2743	Construction and biocompatibility of a thin type I/II collagen composite scaffold. Cell and Tissue Banking, 2018, 19, 47-59.		0.5	22
2744	The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. International Journal of Biological Macromolecules, 2018, 106, 481-488.		3.6	36
2745	Mechanical Properties of Functionally Graded Biomaterials in Bone Replacement; Analytical and Numerical Solution. , 2018, , .			2
2746	The Study of Brown Rice Starch Effect On Hydroxyapatite Composites. International Journal of Engineering and Technology(UAE), 2018, 7, 69.		0.2	3
2747	Architectural Properties of Chitosan and Chitosan-RGD Scaffolds of Crab Shells Using SEM and Swelling Test. Journal of Physics: Conference Series, 2018, 1073, 022002.		0.3	0
2748	Effects of the Geometrical Structure of a Honeycomb TCP on Relationship between Bone / Cartilag Formation and Angiogenesis. International Journal of Medical Sciences, 2018, 15, 1582-1590.	e	1.1	8
2749	Polycaprolactone / bioactive glass hybrid scaffolds for bone regeneration. Biomedical Glasses, 201 108-122.	8, 4,	2.4	27
2750	Preparation of anti-decay self-setting pastes of hydroxyapatite/collagen utilizing (3-glycidoxypropyl)trimethoxysilane. Journal of Asian Ceramic Societies, 2018, 6, 322-331.		1.0	1

#	Article	IF	CITATIONS
2751	The enhanced osteogenesis and osteointegration of 3-DP PCL scaffolds <i>via</i> structural and functional optimization using collagen networks. RSC Advances, 2018, 8, 32304-32316.	1.7	6
2752	Characterization and osteogenic evaluation of mesoporous magnesium–calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping. RSC Advances, 2018, 8, 33882-33892.	1.7	9
2753	Introductory Chapter: Multi-Aspect Bibliographic Analysis of the Synergy of Technical, Biological and Medical Sciences Concerning Materials and Technologies Used for Medical and Dental Implantable Devices. , 0, , .		4
2754	Magnesium-Based Foam Biomaterials and their Related Properties. Materials Science Forum, 2018, 933, 282-290.	0.3	Ο
2755	Preparation of porous Ta-10%Nb alloy scaffold and its in vitro biocompatibility evaluation using MC3T3-E1 cells. Transactions of Nonferrous Metals Society of China, 2018, 28, 2053-2061.	1.7	6
2756	Role of HA and BG in engineering poly(ε â€caprolactone) porous scaffolds for accelerating cranial bone regeneration. Journal of Biomedical Materials Research - Part A, 2018, 107, 654-662.	2.1	15
2757	Scaffolds of bioactive glass-ceramic (Biosilicate®) and bone healing: A biological evaluation in an experimental model of tibial bone defect in rats. Bio-Medical Materials and Engineering, 2018, 29, 665-683.	0.4	3
2758	Evaluation of a Porous Bioabsorbable Interbody Mg-Zn Alloy Cage in a Goat Cervical Spine Model. BioMed Research International, 2018, 2018, 1-10.	0.9	12
2759	Localisation of mineralised tissue in a complex spinner flask environment correlates with predicted wall shear stress level localisation. , 2018, 36, 57-68.		44
2760	Mechanobiology of framework material used for manufacture of bone tissue implants. Review of mathematical models. AIP Conference Proceedings, 2018, , .	0.3	0
2761	Calcium Phosphate Bone Cements. , 0, , .		8
2762	Gelatinâ€coating increases inâ€vivo bone formation capacity of threeâ€dimensional 45S5â€bioactive glassâ€based crystalline scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 13, 179-190.	1.3	7
2763	The Effect of Sintering Temperature on Silica Derived from Rice Husk Ash - Nickel Oxide (SiO2-NiO) Foam Fabrication via Slurry Technique. Journal of Physics: Conference Series, 2018, 1082, 012020.	0.3	0
2764	Transcriptomic profiling of tantalum metal implant osseointegration in osteopenic patients. BDJ Open, 2018, 4, 17042.	0.8	8
2765	Adhesion and Proliferation of Osteoblast-Like Cells on Porous Polyetherimide Scaffolds. BioMed Research International, 2018, 2018, 1-7.	0.9	13
2766	Mechanism of Bonding in Seashell Powder Based Ceramic Composites Used for Binder-Jet 3D Printing. Bioceramics Development and Applications, 2018, 08, .	0.3	3
2767	3D cellulose nanofiber scaffold with homogeneous cell population and long-term proliferation. Cellulose, 2018, 25, 7299-7314.	2.4	19
2768	4.18 Metal Fiber Network Materials for Magnetically-Induced Bioactivation. , 2018, , 425-438.		0

#	ARTICLE Synthesis and Characterization of Poly(Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A	IF	CITATIONS
2709	Promising Alternative for Bone Tissue Regeneration. Molecules, 2018, 23, 2414. Engineered Biomaterials for Chronic Wound Healing. Recent Clinical Techniques, Results, and Research in Wounds, 2018, 51-74.	0.1	3
2771	Bone regeneration in critically sized rat mandible defects through the endochondral pathway using hydroxyapatite-coated 3D-printed Ti ₆ Al ₄ V scaffolds. RSC Advances, 2018, 8, 31745-31754.	1.7	11
2772	Micro-CT – a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomaterials Research, 2018, 22, 26.	3.2	70
2773	Response of mouse bone marrow mesenchymal stem cells to graphene-containing grid-like bioactive glass scaffolds produced by robocasting. Journal of Biomaterials Applications, 2018, 33, 488-500.	1.2	8
2774	The Cocktail Effect of BMP-2 and TGF-β1 Loaded in Visible Light-Cured Glycol Chitosan Hydrogels for the Enhancement of Bone Formation in a Rat Tibial Defect Model. Marine Drugs, 2018, 16, 351.	2.2	43
2775	Fabrication of polydopamine nanoparticles knotted alginate scaffolds and their properties. Journal of Biomedical Materials Research - Part A, 2018, 106, 3255-3266.	2.1	29
2776	Statistical degradation modelling of Poly(D,L-lactide-co-glycolide) copolymers for bioscaffold applications. PLoS ONE, 2018, 13, e0204004.	1.1	8
2777	Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect. Journal of Materials Science: Materials in Medicine, 2018, 29, 156.	1.7	11
2778	Calcium-orthophosphate-based bioactive ceramics. , 2018, , 297-405.		4
2779	Bioactivity, Degradation, and Mechanical Properties of Poly(vinylpyrrolidone-co-triethoxyvinylsilane)/Tertiary Bioactive Glass Hybrids. ACS Applied Bio Materials, 2018, 1, 1369-1381.	2.3	5
2780	Cell Culture Technology. Learning Materials in Biosciences, 2018, , .	0.2	6
2781	Additive Manufacturing for Guided Bone Regeneration: A Perspective for Alveolar Ridge Augmentation. International Journal of Molecular Sciences, 2018, 19, 3308.	1.8	65
2782	Epigallocatechin Gallate-Modified Gelatins with Different Compositions Alter the Quality of Regenerated Bones. International Journal of Molecular Sciences, 2018, 19, 3232.	1.8	11
2783	Impact of setup orientation on blend electrospinning of poly-ε-caprolactone-gelatin scaffolds for vascular tissue engineering. International Journal of Artificial Organs, 2018, 41, 801-810.	0.7	19
2786	Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomaterialia, 2018, 82, 1-11.	4.1	150
2787	Biomineralization. , 2018, , .		13
2788	A method to improve the cured bonding strength at the weak juncture of the porous hydrogel scaffold. Rapid Prototyping Journal, 2018, 24, 1049-1058.	1.6	0

#	Article	IF	CITATIONS
2789	Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. Journal of Biomaterials Applications, 2018, 33, 501-513.	1.2	32
2790	Increased Internal Porosity and Surface Area of Hydroxyapatite Accelerates Healing and Compensates for Low Bone Marrow Mesenchymal Stem Cell Concentrations in Critically-Sized Bone Defects. Applied Sciences (Switzerland), 2018, 8, 1366.	1.3	12
2791	Formation Mechanism and Tuning for Bimodal Open-Celled Structure of Cellulose Acetate Foams Prepared by Supercritical CO ₂ Foaming and Poly(ethylene glycol) Leaching. Industrial & Engineering Chemistry Research, 2018, 57, 15690-15696.	1.8	11
2792	Physiochemical characterization and biological effect of anorganic bovine bone matrix and organic-containing bovine bone matrix in comparison with Bio-Oss in rabbits. Journal of Biomaterials Applications, 2018, 33, 566-575.	1.2	6
2793	The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: A biomechanical evaluation. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 488-496.	1.5	93
2794	Injectable 3D Porous Microâ€Scaffolds with a Bioâ€Engine for Cell Transplantation and Tissue Regeneration. Advanced Functional Materials, 2018, 28, 1804335.	7.8	33
2795	Flexible Porous Polydimethylsiloxane/Lead Zirconate Titanate-Based Nanogenerator Enabled by the Dual Effect of Ferroelectricity and Piezoelectricity. ACS Applied Materials & Interfaces, 2018, 10, 33105-33111.	4.0	38
2796	Ionic Liquid-Assisted Synthesis of Mesoporous Silk Fibroin/Silica Hybrids for Biomedical Applications. ACS Omega, 2018, 3, 10811-10822.	1.6	23
2797	Combinatorial Screening of Nanoclay-Reinforced Hydrogels: A Climpse of the "Holy Grail―in Orthopedic Stem Cell Therapy?. ACS Applied Materials & Interfaces, 2018, 10, 34924-34941.	4.0	54
2798	Preparation and characterization of porous hydroxyapatite/Ĵ²-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering. Journal of Biomaterials Applications, 2018, 33, 402-409.	1.2	15
2799	Comparative Study between Bone Tissue Engineering Scaffolds with Bull and Rat Cancellous Microarchitectures on Tissue Differentiations of Bone Marrow Stromal Cells: A Numerical Investigation. Journal of Bionic Engineering, 2018, 15, 924-938.	2.7	0
2800	Morphological and mechanical characterization of topologically ordered open cell porous iron foam fabricated using 3D printing and pressureless microwave sintering. Materials and Design, 2018, 160, 442-454.	3.3	48
2801	Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. ACS Applied Materials & Interfaces, 2018, 10, 32955-32964.	4.0	53
2802	3D Printing of Porous Scaffolds with Controlled Porosity and Pore Size Values. Materials, 2018, 11, 1532.	1.3	72
2803	Tailoring Bioengineered Scaffolds for Regenerative Medicine. , 2018, , .		4
2804	Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption. International Journal of Molecular Sciences, 2018, 19, 2574.	1.8	21
2805	Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 478-487.	1.5	80
2806	3D porous poly(ε-caprolactone)/58S bioactive glass–sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering. Materials and Design, 2018, 160, 1-8.	3.3	46

#	Article	IF	CITATIONS
2807	Effect of heat-transfer capability on micropore structure of freeze-drying alginate scaffold. Materials Science and Engineering C, 2018, 93, 944-949.	3.8	11
2808	Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. International Journal of Biological Macromolecules, 2018, 120, 876-885.	3.6	47
2809	Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry. International Journal of Medical Sciences, 2018, 15, 16-22.	1.1	21
2810	Synthesis of porous Ti–50Ta alloy by powder metallurgy. Materials Characterization, 2018, 142, 124-136.	1.9	41
2811	Subcritical carbon dioxide foaming of polycaprolactone for bone tissue regeneration. Journal of Supercritical Fluids, 2018, 140, 1-10.	1.6	20
2812	Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 2018, 91, 274-291.	3.8	51
2813	Mechanical and Biological Properties of a Biodegradable Mgâ€Zn a Porous Alloy. Orthopaedic Surgery, 2018, 10, 160-168.	0.7	19
2814	Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications. , 2018, , 277-301.		5
2815	Fabrication of 3D Printed PCL/PEG Polyblend Scaffold Using Rapid Prototyping System for Bone Tissue Engineering Application. Journal of Bionic Engineering, 2018, 15, 435-442.	2.7	57
2816	Tissue Engineered Skin Substitutes. Advances in Experimental Medicine and Biology, 2018, 1107, 143-188.	0.8	69
2817	3D Liquid Bioprinting of the PCL/ \hat{l}^2 -TCP Scaffolds. Materials Science Forum, 0, 923, 79-83.	0.3	2
2818	Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology. Composites Part B: Engineering, 2018, 152, 151-159.	5.9	99
2819	Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in�vitro. Molecular Medicine Reports, 2018, 18, 1335-1344.	1.1	22
2820	Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydrate Polymers, 2018, 199, 244-255.	5.1	69
2821	Functional self-assembled neocartilage as part of a biphasic osteochondral construct. PLoS ONE, 2018, 13, e0195261.	1.1	13
2822	NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering. Acta Biomaterialia, 2018, 76, 359-370.	4.1	36
2823	Fabrication and characterization of hydroxypropyl guar-poly (vinyl alcohol)-nano hydroxyapatite composite hydrogels for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2083-2105.	1.9	12
2824	Additive manufacturing of titanium and titanium alloys for biomedical applications. , 2018, , 325-343.		14

#	Article	IF	CITATIONS
2825	Shape-memory characterization of NiTi microtubes fabricated through interdiffusion of Ti-Coated Ni wires. Acta Materialia, 2018, 156, 1-10.	3.8	10
2826	<i>In situ</i> gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: <i>in vitro</i> and <i>in vivo</i> studies. Nanoscale, 2018, 10, 15447-15453.	2.8	72
2827	Effect of porosity variation strategy on the performance of functionally graded Ti-6Al-4V scaffolds for bone tissue engineering. Materials and Design, 2018, 157, 523-538.	3.3	100
2828	In Vitro and In Vivo Biocompatibility Of ReOss® in Powder and Putty Configurations. Brazilian Dental Journal, 2018, 29, 117-127.	0.5	1
2829	Direct ink writing of silica-carbon-calcite composite scaffolds from a silicone resin and fillers. Journal of the European Ceramic Society, 2018, 38, 5200-5207.	2.8	17
2830	Application of Ti6Al7Nb Alloy for the Manufacture of Biomechanical Functional Structures (BFS) for Custom-Made Bone Implants. Materials, 2018, 11, 971.	1.3	22
2831	Bioceramics—An introductory overview. , 2018, , 1-46.		17
2832	Additive Manufacturing of Poly(Methyl Methacrylate) Biomedical Implants with Dual cale Porosity. Macromolecular Materials and Engineering, 2018, 303, 1800247.	1.7	20
2833	Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. , 2018, , 201-233.		9
2834	Bioactive glass composites for bone and musculoskeletal tissue engineering. , 2018, , 285-336.		6
2835	Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Advances, 2018, 8, 26218-26229.	1.7	36
2836	3D-printed Î ² -TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model. Journal of Materials Research, 2018, 33, 1939-1947.	1.2	47
2837	Bioactive metallic surfaces for bone tissue engineering. , 2018, , 79-110.		5
2838	Platelet-Rich Plasma, Hydroxyapatite, and Chitosan in the Bone and Cartilaginous Regeneration of Femoral Trochlea in Rabbits: Clinical, Radiographic, and Histomorphometric Evaluations. Journal of Healthcare Engineering, 2018, 2018, 1-6.	1.1	5
2839	3Dâ€Plotted Betaâ€Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Criticalâ€Sized Calvarial Defect Rat Model. Advanced Healthcare Materials, 2018, 7, e1800441.	3.9	74
2840	Form and functional repair of long bone using 3Dâ€printed bioactive scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1986-1999.	1.3	49
2841	Hydrogels for Directed Stem Cell Differentiation and Tissue Repair. Springer Series in Biomaterials Science and Engineering, 2018, , 73-93.	0.7	0
2842	A novel parameterized digital-mask generation method for projection stereolithography in tissue engineering. Rapid Prototyping Journal, 2018, 24, 935-944.	1.6	4

#	Article	IF	CITATIONS
2843	Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers, 2018, 10, 753.	2.0	61
2844	Wicking Property of Graft Material Enhanced Bone Regeneration in the Ovariectomized Rat Model. Tissue Engineering and Regenerative Medicine, 2018, 15, 503-510.	1.6	7
2845	Bioinspired foam with large 3D macropores for efficient solar steam generation. Journal of Materials Chemistry A, 2018, 6, 16220-16227.	5.2	81
2846	Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. International Journal of Nanomedicine, 2018, Volume 13, 505-523.	3.3	55
2847	Functional Hydrogels as Biomaterials. Springer Series in Biomaterials Science and Engineering, 2018, , .	0.7	8
2848	Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. International Journal of Nanomedicine, 2018, Volume 13, 1107-1117.	3.3	21
2849	Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Materialia, 2018, 158, 354-368.	3.8	259
2850	A Decellularized Porcine Xenograft-Derived Bone Scaffold for Clinical Use as a Bone Graft Substitute: A Critical Evaluation of Processing and Structure. Journal of Functional Biomaterials, 2018, 9, 45.	1.8	47
2851	Physicochemical properties of scaffolds based on mixtures of chitosan, collagen and glycosaminoglycans with nano-hydroxyapatite addition. International Journal of Biological Macromolecules, 2018, 118, 1880-1883.	3.6	13
2852	Fabrication of hierarchical meso/macroporous TiO2 scaffolds by evaporation-induced self-assembly technique for bone tissue engineering applications. Materials Characterization, 2018, 144, 35-41.	1.9	8
2853	Alveolar Ridge Augmentation with Three-Dimensional Printed Hydroxyapatite Devices: A Preclinical Study. International Journal of Periodontics and Restorative Dentistry, 2018, 38, 389-394.	0.4	3
2854	Unfocused shockwaves for osteoinduction in bone substitutes in rat cortical bone defects. PLoS ONE, 2018, 13, e0200020.	1.1	6
2855	Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: Effect on pores size, porosity and compressive strength. Ceramics International, 2018, 44, 18400-18407.	2.3	28
2856	Application of quality by design for 3D printed bone prostheses and scaffolds. PLoS ONE, 2018, 13, e0195291.	1.1	53
2857	The "Magnesium Sacrifice―Strategy Enables PMMA Bone Cement Partial Biodegradability and Osseointegration Potential. International Journal of Molecular Sciences, 2018, 19, 1746.	1.8	18
2858	Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. Journal of Functional Biomaterials, 2018, 9, 24.	1.8	202
2859	3D Powder Printed Bioglass and \hat{l}^2 -Tricalcium Phosphate Bone Scaffolds. Materials, 2018, 11, 13.	1.3	71
2860	Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting. Materials, 2018, 11, 374.	1.3	95

	CITATION	CITATION REPORT	
#	Article	IF	Citations
2861	Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process. Materials, 2018, 11, 494.	1.3	5
2862	3D Printed, PVA–PAA Hydrogel Loaded-Polycaprolactone Scaffold for the Delivery of Hydrophilic In-Situ Formed Sodium Indomethacin. Materials, 2018, 11, 1006.	1.3	11
2863	Mechanical Properties and In Vitro Behavior of Additively Manufactured and Functionally Graded Ti6Al4V Porous Scaffolds. Metals, 2018, 8, 200.	1.0	110
2864	ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration. Polymers, 2018, 10, 272.	2.0	37
2865	Preparation of Compositional Gradient Polymeric Films Based on Gradient Mesh Template. Polymers, 2018, 10, 677.	2.0	3
2866	Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. Burns and Trauma, 2018, 6, 19.	2.3	101
2867	Designing Smart Biomaterials for Tissue Engineering. International Journal of Molecular Sciences, 2018, 19, 17.	1.8	188
2868	New Three-Dimensional Poly(decanediol-co-tricarballylate) Elastomeric Fibrous Mesh Fabricated by Photoreactive Electrospinning for Cardiac Tissue Engineering Applications. Polymers, 2018, 10, 455.	2.0	18
2869	Preparation of Icariin and Deferoxamine Functionalized Poly(<scp>l</scp> -lactide)/chitosan Micro/Nanofibrous Membranes with Synergistic Enhanced Osteogenesis and Angiogenesis. ACS Applied Bio Materials, 2018, 1, 389-402.	2.3	16
2870	Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation. Journal of Industrial and Engineering Chemistry, 2018, 67, 388-395.	2.9	50
2871	Silk Fibroin Porous Scaffolds Loaded with a Slow-Releasing Hydrogen Sulfide Agent (GYY4137) for Applications of Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 2956-2966.	2.6	25
2872	Osteogenic Differentiation of Human Mesenchymal Stem cells in a 3D Woven Scaffold. Scientific Reports, 2018, 8, 10457.	1.6	83
2873	Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium. Tissue Engineering - Part A, 2018, 24, 1554-1561.	1.6	20
2874	Chitosan microparticles based polyelectrolyte complex scaffolds for bone tissue engineering in vitro and effect of calcium phosphate. Carbohydrate Polymers, 2018, 199, 426-436.	5.1	20
2875	BSA Adsorption on Porous Scaffolds Prepared from BioPEGylated Poly(3-Hydroxybutyrate). Applied Biochemistry and Microbiology, 2018, 54, 379-386.	0.3	4
2876	Fabrication and properties of biodegradable ZnO nano-rods/porous Zn scaffolds. Materials Characterization, 2018, 144, 227-238.	1.9	15
2877	Fabrication and properties of Si3N4 bioscaffolds with orderly–interconnected big pore channels and well–distributed small pores. Ceramics International, 2018, 44, 11730-11736.	2.3	6
2878	Comparative analysis of osseointegration in various types of acetabular implant materials. HIP International, 2018, 28, 622-628.	0.9	16

#	Article	IF	CITATIONS
2879	Grapheneâ€Oxideâ€Đecorated Microporous Polyetheretherketone with Superior Antibacterial Capability and In Vitro Osteogenesis for Orthopedic Implant. Macromolecular Bioscience, 2018, 18, e1800036.	2.1	97
2880	Enhanced In Vivo Bone and Blood Vessel Formation by IronÂOxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds. Annals of Biomedical Engineering, 2018, 46, 1241-1253.	1.3	58
2881	Molecular Investigation of the Initial Nucleation of Calcium Phosphate on TiO ₂ Substrate: The Effects of Surface Nanotopographies. Crystal Growth and Design, 2018, 18, 3283-3290.	1.4	10
2882	Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects. Journal of Materials Chemistry B, 2018, 6, 4197-4204.	2.9	14
2883	High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. Materials Science and Engineering C, 2018, 90, 602-609.	3.8	46
2884	Enhanced osteogenic commitment of murine mesenchymal stem cells on graphene oxide substrate. Biomaterials Research, 2018, 22, 1.	3.2	116
2885	3D fiber deposited polymeric scaffolds for external auditory canal wall. Journal of Materials Science: Materials in Medicine, 2018, 29, 63.	1.7	8
2886	Textile-based biomaterials for surgical applications. , 2018, , 179-215.		3
2887	Progress of Bioceramic and Bioglass Bone Scaffolds for Load-Bearing Applications. , 2018, , 453-486.		2
2888	Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials. Materials Chemistry and Physics, 2018, 219, 433-443.	2.0	47
2889	Influence of magnesium particles and Pluronic F127 on compressive strength and cytocompatibility of nanocomposite injectable and moldable beads for bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 453-462.	1.5	17
2890	Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Advances, 2018, 8, 25210-25227.	1.7	51
2891	The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone and Joint Research, 2018, 7, 357-361.	1.3	2
2892	Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited. Frontiers in Physiology, 2018, 9, 960.	1.3	81
2893	Application of osteoinductive calcium phosphate ceramics in children's endoscopic neurosurgery: report of five cases. International Journal of Energy Production and Management, 2018, 5, 221-227.	1.9	5
2894	Deriving Principles of the Freeze-Foaming Process by Nondestructive CT Macrostructure Analyses on Hydroxyapatite Foams. Ceramics, 2018, 1, 65-82.	1.0	4
2895	Enhancement of osteogenesis using a novel porous hydroxyapatite scaffold in vivo and vitro. Ceramics International, 2018, 44, 21656-21665.	2.3	26
2896	Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. Advances in Experimental Medicine and Biology, 2018, 1107, 91-112.	0.8	9

#	Article	IF	CITATIONS
2897	Differential and Interactive Effects of Substrate Topography and Chemistry on Human Mesenchymal Stem Cell Gene Expression. International Journal of Molecular Sciences, 2018, 19, 2344.	1.8	26
2898	Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity. Applied Surface Science, 2018, 462, 118-126.	3.1	57
2899	Fabrication and characterization of a starch-based nanocomposite scaffold with highly porous and gradient structure for bone tissue engineering. Biomedical Physics and Engineering Express, 2018, 4, 055021.	0.6	37
2900	Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: what do we measure?. BioMedical Engineering OnLine, 2018, 17, 110.	1.3	46
2901	Biodegradable spirulina extract/polycaprolactone porous scaffolds. New Journal of Chemistry, 2018, 42, 15830-15838.	1.4	1
2902	Strontium‧ubstituted Hydroxyapatiteâ€Gelatin Biomimetic Scaffolds Modulate Bone Cell Response. Macromolecular Bioscience, 2018, 18, e1800096.	2.1	36
2903	Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications. Annals of Biomedical Engineering, 2018, 46, 1229-1240.	1.3	25
2904	Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering, 2018, 9, 204173141877681.	2.3	497
2905	Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. International Journal of Energy Production and Management, 2018, 5, 197-211.	1.9	368
2906	Fabrication of βâ€tricalcium phosphate composite ceramic scaffolds based on spheres prepared by extrusionâ€spheronization. Journal of the American Ceramic Society, 2018, 101, 5811-5826.	1.9	7
2907	Tetracycline hydrochloride-containing poly (Îμ-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: <i>in vitro</i> and <i>in vivo</i> study. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 472-479.	1.8	29
2908	3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Connective Tissue Research, 2019, 60, 274-282.	1.1	52
2909	Biomaterials Evaluation: Conceptual Refinements and Practical Reforms. Therapeutic Innovation and Regulatory Science, 2019, 53, 120-127.	0.8	20
2910	Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. Journal of Orthopaedic Translation, 2019, 16, 62-70.	1.9	36
2911	Comparison of Decellularized Cow and Human Bone for Engineering Bone Grafts with Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2019, 25, 288-301.	1.6	24
2912	Histogenesis in Three-Dimensional Scaffolds. , 2019, , 661-674.		3
2913	Evaluation of a new tricalcium phosphate for guided bone regeneration: an experimental study in the beagle dog. Odontology / the Society of the Nippon Dental University, 2019, 107, 209-218.	0.9	6
2914	Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 14-29.	2.5	166

#	Article	IF	CITATIONS
2915	Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Medical and Biological Engineering and Computing, 2019, 57, 311-324.	1.6	18
2916	Synthesis, characterization and <i>in-vitro</i> behavior of natural chitosan-hydroxyapatite-diopside nanocomposite scaffold for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 516-526.	1.8	20
2917	Osteoconductive Lattice Microarchitecture for Optimized Bone Regeneration. 3D Printing and Additive Manufacturing, 2019, 6, 40-49.	1.4	28
2918	Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomedical Materials (Bristol), 2019, 14, 065009.	1.7	53
2919	Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties. Biomedical Materials (Bristol), 2019, 14, 065002.	1.7	18
2920	Effect of Crossâ€Linked Hyaluronate Scaffold on Cartilage Repair: An In Vivo Study. Orthopaedic Surgery, 2019, 11, 679-689.	0.7	5
2921	3D Printing of Hot Dogâ€Like Biomaterials with Hierarchical Architecture and Distinct Bioactivity. Advanced Science, 2019, 6, 1901146.	5.6	54
2922	Effect of surface chemical modifications on the bioactivity of carbon fibers reinforced epoxy composites. Surface and Coatings Technology, 2019, 377, 124889.	2.2	11
2923	Bone Regeneration Using a Three-Dimensional Hexahedron Channeled BCP Block Combined with Bone Morphogenic Protein-2 in Rat Calvarial Defects. Materials, 2019, 12, 2435.	1.3	6
2924	Finite element analysis of mechanical behavior, permeability of irregular porous scaffolds and lattice-based porous scaffolds. Materials Research Express, 2019, 6, 105407.	0.8	34
2925	Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Materials Science and Engineering C, 2019, 105, 110078.	3.8	60
2926	Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2019, 107, 2726-2735.	2.1	2
2927	A Fluctuation Model of a Hf02 RRAM Cell for Memory Circuit Designs. , 2019, , .		2
2928	Bread-Derived Bioactive Porous Scaffolds: An Innovative and Sustainable Approach to Bone Tissue Engineering. Molecules, 2019, 24, 2954.	1.7	34
2929	Drug‣oaded Elastin‣ike Polypeptide–Collagen Hydrogels with High Modulus for Bone Tissue Engineering. Macromolecular Bioscience, 2019, 19, e1900142.	2.1	33
2930	Effects of micro-porosity and local BMP-2 administration on bioresorption of Î ² -TCP and new bone formation. Biomaterials Research, 2019, 23, 12.	3.2	19
2931	Synthetic bone: Design by additive manufacturing. Acta Biomaterialia, 2019, 97, 637-656.	4.1	169
2932	A comparative study on agarose acetate and PDLLA scaffold for rabbit femur defect regeneration. Biomedical Materials (Bristol), 2019, 14, 065007.	1.7	3

#	Article	IF	CITATIONS
2933	In Vitro and in Vivo Characterization of a Foam-Like Polyurethane Bone Adhesive for Promoting Bone Tissue Growth. ACS Biomaterials Science and Engineering, 2019, 5, 5489-5497.	2.6	30
2934	Tailoring and investigation of defined porosity properties in thin-walled 316L structures using laser-based powder bed fusion. Progress in Additive Manufacturing, 2019, 4, 451-463.	2.5	5
2935	In Vitro and In Vivo Evaluation of Starfish Bone-Derived β-Tricalcium Phosphate as a Bone Substitute Material. Materials, 2019, 12, 1881.	1.3	7
2936	Enhanced Osteogenesis by Molybdenum Disulfide Nanosheet Reinforced Hydroxyapatite Nanocomposite Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 4511-4521.	2.6	31
2937	Facile Surface Modification Method for Synergistically Enhancing the Biocompatibility and Bioactivity of Poly(ether ether ketone) That Induced Osteodifferentiation. ACS Applied Materials & Interfaces, 2019, 11, 27503-27511.	4.0	59
2938	Modeling, Assessment, and Design of Porous Cells Based on Schwartz Primitive Surface for Bone Scaffolds. Scientific World Journal, The, 2019, 2019, 1-16.	0.8	23
2939	Quantitative assessment of rat bone regeneration using complex master-slave optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2019, 9, 782-798.	1.1	12
2940	3D Printed Acetabular Cups for Total Hip Arthroplasty: A Review Article. Metals, 2019, 9, 729.	1.0	61
2941	Development by robocasting and mechanical characterization of hybrid HA/PCL coaxial scaffolds for biomedical applications. Journal of the European Ceramic Society, 2019, 39, 4375-4383.	2.8	33
2942	Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Materials Science and Engineering C, 2019, 104, 109908.	3.8	111
2943	Polysaccharide-based scaffold for tissue-regeneration. , 2019, , 189-212.		3
2944	Eutectoid dicalcium silicate-Nurse's A ceramic scaffold: Processing and in vitro bioactivity. Ceramics International, 2019, 45, 21716-21724.	2.3	4
2945	Optimization of Bone Scaffold Porosity Distributions. Scientific Reports, 2019, 9, 9170.	1.6	51
2946	Auxeticity and stiffness of random networks: Lessons for the rational design of 3D printed mechanical metamaterials. Applied Physics Letters, 2019, 115, .	1.5	30
2947	Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration. Springer Series in Biomaterials Science and Engineering, 2019, , 413-442.	0.7	4
2948	Scaffolds' production based on calcium aluminate blends and their biological properties. Research on Biomedical Engineering, 2019, 35, 131-141.	1.5	2
2949	Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. Materials, 2019, 12, 2296.	1.3	24
2950	Molecular Massâ€Dependent Resorption and Bone Regeneration of 3D Printed PPF Scaffolds in a Criticalâ€Sized Rat Cranial Defect Model. Advanced Healthcare Materials, 2019, 8, e1900646.	3.9	28

#	Article	IF	CITATIONS
2951	Non-Cytotoxic Agarose/Hydroxyapatite Composite Scaffolds for Drug Release. International Journal of Molecular Sciences, 2019, 20, 3565.	1.8	29
2952	Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents. Science Translational Medicine, 2019, 11, .	5.8	41
2953	Structure and properties of a personalized bio-fixed implant prepared with selective laser melting. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 1034-1042.	0.9	2
2954	3D Printing of Salt as a Template for Magnesium with Structured Porosity. Advanced Materials, 2019, 31, e1903783.	11.1	52
2955	Design of a Custom-Made Cranial Implant in Patients Suffering from Apert Syndrome. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 709-718.	0.6	2
2956	Polymer-Based Instructive Scaffolds for Endodontic Regeneration. Materials, 2019, 12, 2347.	1.3	36
2957	A review of materials for managing bone loss in revision total knee arthroplasty. Materials Science and Engineering C, 2019, 104, 109941.	3.8	16
2958	Fabrication of interconnected strontium-containing magnesium phosphate bioceramic scaffolds based on free microspheres accumulation. Ceramics International, 2019, 45, 22409-22412.	2.3	3
2959	Biocompatibility and Clinical Application of Porous TiNi Alloys Made by Self-Propagating High-Temperature Synthesis (SHS). Materials, 2019, 12, 2405.	1.3	39
2960	Application of nanomaterials in threeâ€dimensional stem cell culture. Journal of Cellular Biochemistry, 2019, 120, 18550-18558.	1.2	2
2961	Characterization of Bone Substitute β-TCP Block for Maxillofacial Reconstruction. International Journal of Morphology, 2019, 37, 82-86.	0.1	3
2962	Mechanical and biocorrosive properties of magnesium-aluminum alloy scaffold for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 213-224.	1.5	30
2963	Comparative Study between Laser Light Stereo-Lithography 3D-Printed and Traditionally Sintered Biphasic Calcium Phosphate Scaffolds by an Integrated Morphological, Morphometric and Mechanical Analysis. International Journal of Molecular Sciences, 2019, 20, 3118.	1.8	10
2964	Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. European Polymer Journal, 2019, 119, 155-168.	2.6	68
2965	Nurse's A-Phase–Silicocarnotite Ceramic–Bone Tissue Interaction in a Rabbit Tibia Defect Model. Journal of Clinical Medicine, 2019, 8, 1714.	1.0	6
2966	Superelastic Ti-18Zr-12.5Nb-2Sn (at.%) alloy scaffolds with high porosity fabricated by fiber metallurgy for biomedical applications. Intermetallics, 2019, 115, 106631.	1.8	12
2967	Preparation of Decellularized Triphasic Hierarchical Boneâ€Fibrocartilageâ€Tendon Composite Extracellular Matrix for Enthesis Regeneration. Advanced Healthcare Materials, 2019, 8, e1900831.	3.9	32
2968	Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cellâ€Free, One‣tep Surgery. Advanced Materials, 2019, 31, e1904341.	11.1	134

#	Article	IF	Citations
2969	Elastic Mechanical Properties of 45S5-Based Bioactive Glass–Ceramic Scaffolds. Materials, 2019, 12, 3244.	1.3	30
2970	Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth. Materials and Design, 2019, 183, 108151.	3.3	92
2971	Chocolate-based Ink Three-dimensional Printing (Ci3DP). Scientific Reports, 2019, 9, 14178.	1.6	70
2972	A facile green approach for fabricating bacterial cellulose scaffold with macroporous structure and cell affinity. Journal of Bioactive and Compatible Polymers, 2019, 34, 442-452.	0.8	7
2973	Bioprinting for Liver Transplantation. Bioengineering, 2019, 6, 95.	1.6	45
2974	The microstructure, mechanical properties and in-vitro biological compatibility of porous Ti-40Nb alloy fabricated by spark plasma sintering. Materials Research Express, 2019, 6, 1065f3.	0.8	5
2975	Direct Laser Interference Patterning of Bioceramics: A Short Review. Ceramics, 2019, 2, 578-586.	1.0	21
2976	Study of Making Implant Plate and Screen of Femur Bone Internal Fictation From Hydroxyapatit Bovine And Polymer Biodegradation Material Using 3D Printers On Mechanical Strength. IOP Conference Series: Materials Science and Engineering, 2019, 494, 012070.	0.3	1
2977	Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Materials, 2019, 11,	3.8	92
2978	Comparative analysis of current 3D printed acetabular titanium implants. 3D Printing in Medicine, 2019, 5, 15.	1.7	20
2979	Bone regeneration on implants of titanium alloys produced by laser powder bed fusion: A review. , 2019, , 197-233.		23
2980	The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold. Bio-Design and Manufacturing, 2019, 2, 242-255.	3.9	48
2981	Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. , 2019, 38, 168-187.		54
2982	3D Printed Composite Scaffolds Incorporating Ruthenium Complex–Loaded Liposomes as a Delivery System to Prevent the Proliferation of MGâ€63 Cells. Macromolecular Materials and Engineering, 2019, 304, 1900295.	1.7	12
2983	Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications. Progress in Biomaterials, 2019, 8, 211-221.	1.8	34
2984	Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials, 2019, 197, 207-219.	5.7	348
2985	Augmentation of DMLS Biomimetic Dental Implants with Weight-Bearing Strut to Balance of Biologic and Mechanical Demands: From Bench to Animal. Materials, 2019, 12, 164.	1.3	23
2986	Calcium Phosphate Bone Graft Substitutes with High Mechanical Load Capacity and High Degree of Interconnecting Porosity. Materials, 2019, 12, 3471.	1.3	15

#	Article	IF	CITATIONS
2987	Robocasting of SiO2-Based Bioactive Glass Scaffolds with Porosity Gradient for Bone Regeneration and Potential Load-Bearing Applications. Materials, 2019, 12, 2691.	1.3	39
2988	Biofabrication of Gelatin Tissue Scaffolds with Uniform Pore Size via Microbubble Assembly. Macromolecular Materials and Engineering, 2019, 304, 1900394.	1.7	7
2989	Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. International Journal of Biological Sciences, 2019, 15, 2156-2169.	2.6	44
2990	A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability. Chemical Research in Chinese Universities, 2019, 35, 908-915.	1.3	8
2991	3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials, 2019, 222, 119423.	5.7	71
2992	Eutectoid scaffold as a potential tissue engineer guide. Journal of the American Ceramic Society, 2019, 102, 7168-7177.	1.9	3
2993	Osteogenic differentiation of bone marrow-derived mesenchymal stem cells on anodized niobium surface. Journal of Materials Science: Materials in Medicine, 2019, 30, 104.	1.7	6
2994	A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomaterialia, 2019, 97, 587-596.	4.1	71
2995	Mechanical behavior of TPMS-based scaffolds: a comparison between minimal surfaces and their lattice structures. SN Applied Sciences, 2019, 1, 1.	1.5	30
2996	Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2019, 20, 4221.	1.8	32
2997	Development and Optimization of the Novel Fabrication Method of Highly Macroporous Chitosan/Agarose/Nanohydroxyapatite Bone Scaffold for Potential Regenerative Medicine Applications. Biomolecules, 2019, 9, 434.	1.8	27
2998	3D-Printed Î ² -Tricalcium Phosphate Scaffold Combined with a Pulse Electromagnetic Field Promotes the Repair of Skull Defects in Rats. ACS Biomaterials Science and Engineering, 2019, 5, 5359-5367.	2.6	14
2999	Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect. Journal of Materials Science: Materials in Medicine, 2019, 30, 105.	1.7	6
3001	Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties. PLoS ONE, 2019, 14, e0221198.	1.1	33
3002	Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Acta Biomaterialia, 2019, 99, 100-109.	4.1	24
3003	Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. Journal of Materials Chemistry B, 2019, 7, 7439-7459.	2.9	33
3004	The Positive Effect of Hydrogen Alloying on the Phase Tailoring and Mechanical Properties of Sintered Ti-13Nb SMAs. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5525-5532.	1.1	0
3005	Chitosan-Gelatin Scaffolds Incorporating Decellularized Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 5305-5315.	2.6	14

#	Article	IF	CITATIONS
3006	Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. Metals, 2019, 9, 1004.	1.0	103
3007	Hydroxyapatite Block Produced by Sponge Replica Method: Mechanical, Clinical and Histologic Observations. Materials, 2019, 12, 3079.	1.3	9
3008	Production of hydroxyapatite–bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications. Cellulose, 2019, 26, 9803-9817.	2.4	34
3009	Honeycomb blocks composed of carbonate apatite, β-tricalcium phosphate, and hydroxyapatite for bone regeneration: effects of composition on biological responses. Materials Today Bio, 2019, 4, 100031.	2.6	60
3010	3D printing of HA / PCL composite tissue engineering scaffolds. Advanced Industrial and Engineering Polymer Research, 2019, 2, 196-202.	2.7	68
3011	Comparison of degradation behaviour and osseointegration of the two magnesium scaffolds, LAE442 and La2, in vivo. Materialia, 2019, 8, 100436.	1.3	15
3012	Fabrication of a novel hierarchical fibrous scaffold for breast cancer cell culture. Polymer Testing, 2019, 80, 106107.	2.3	15
3013	Stereolithographic 3D Printing of Bioceramic Scaffolds of a Given Shape and Architecture for Bone Tissue Regeneration. Inorganic Materials: Applied Research, 2019, 10, 1101-1108.	0.1	8
3014	Microstructure and Properties of Nano-Hydroxyapatite Reinforced WE43 Alloy Fabricated by Friction Stir Processing. Materials, 2019, 12, 2994.	1.3	19
3015	Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)–based 3D printing. Additive Manufacturing, 2019, 30, 100883.	1.7	44
3016	3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior. European Polymer Journal, 2019, 119, 426-437.	2.6	50
3017	3D-bioprinted tracheal reconstruction: an overview. Bioelectronic Medicine, 2019, 5, 15.	1.0	15
3018	Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale, 2019, 11, 2779-2786.	2.8	72
3019	Novel fabrication of porous titanium by a resin-impregnated titanium substitution technique for bone reconstruction. RSC Advances, 2019, 9, 1625-1631.	1.7	10
3020	Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. Journal of Materials Science and Technology, 2019, 35, 1284-1297.	5.6	149
3021	Osteogenic differentiation of BMSCs in collagen-based 3D scaffolds. New Journal of Chemistry, 2019, 43, 1980-1986.	1.4	1
3022	Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Biomaterials Science, 2019, 7, 560-570.	2.6	22
3023	Fabrication of dense and porous biphasic calcium phosphates: Effect of dispersion on sinterability and microstructural development. International Journal of Applied Ceramic Technology, 2019, 16, 1797-1806.	1.1	6

#	Article	IF	CITATIONS
3024	Bone regeneration using threeâ€dimensional hexahedron channel structured BCP block in rabbit calvarial defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2254-2262.	1.6	8
3025	Nanocomposite materials in orthopedic applications. Frontiers of Chemical Science and Engineering, 2019, 13, 1-13.	2.3	23
3026	Porous PolyHIPE microspheres for protein delivery from an injectable bone graft. Acta Biomaterialia, 2019, 93, 169-179.	4.1	33
3027	Effect of titanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 290-299.	1.9	22
3028	Generating Antibacterial Microporous Structures Using Microfluidic Processing. ACS Omega, 2019, 4, 2225-2233.	1.6	6
3029	CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2343-2353.	1.6	35
3030	Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. Materials Science and Engineering C, 2019, 98, 1241-1251.	3.8	61
3031	Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria. Journal of Biomaterials Applications, 2019, 33, 1168-1177.	1.2	19
3032	Modeling and Characterization of Porous Tantalum Scaffolds. Transactions of the Indian Institute of Metals, 2019, 72, 935-949.	0.7	11
3033	Robocasting of Cu2+ & La3+ doped sol–gel glass scaffolds with greatly enhanced mechanical properties: Compressive strength up to 14†MPa. Acta Biomaterialia, 2019, 87, 265-272.	4.1	18
3034	Amorphous and Semicrystalline Thermoplastic Polymer Nanocomposites Applied in Biomedical Engineering. Lecture Notes in Bioengineering, 2019, , 57-84.	0.3	1
3035	Comparison Study of Three Hydroxyapatite-Based Bone Substitutes in a Calvarial Defect Model in Rabbits. International Journal of Oral and Maxillofacial Implants, 2019, 34, 434-442.	0.6	6
3036	Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bioengineering, 2019, , .	0.3	17
3037	Electrospun Filaments Embedding Bioactive Class Particles with Ion Release and Enhanced Mineralization. Nanomaterials, 2019, 9, 182.	1.9	17
3038	Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. International Journal of Molecular Sciences, 2019, 20, 326.	1.8	30
3039	Comparative evaluation of morphology and osteogenic behavior of human Wharton's jelly mesenchymal stem cells on 2D culture plate and 3D biomimetic scaffold. Journal of Cellular Physiology, 2019, 234, 23123-23134.	2.0	12
3040	New-generation metallic biomaterials. , 2019, , 495-521.		5
3041	Dual-functional melatonin releasing device loaded with PLGA microparticles and cyclodextrin inclusion complex for osteosarcoma therapy. Journal of Drug Delivery Science and Technology, 2019, 52, 586-596.	1.4	17

		ATION REPOR	1	
#	Article	IF	(Citations
3042	Systematically Designed Periodic Electrophoretic Deposition for Decorating 3D Carbon-Based Scaffolds with Bioactive Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5, 4393-440	4. 2.6	i	10
3043	Hypoxia-Mimicking Cobalt-Doped Borosilicate Bioactive Glass Scaffolds with Enhanced Angiogenic and Osteogenic Capacity for Bone Regeneration. International Journal of Biological Sciences, 2019, 15, 1113-1124.	1 2.6	5 6	58
3044	The role of scaffolds in tissue engineering. , 2019, , 23-49.		I	10
3045	Tissue engineering scaffolds. , 2019, , 165-185.		0	6
3046	Scaffold for bone tissue engineering. , 2019, , 189-209.		1	14
3047	Osseointegration of Permanent and Temporary Orthopedic Implants. , 2019, , 257-269.			4
3048	A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method. International Journal of Biological Macromolecules, 2019, 137, 45-53.	3.6	5 5	31
3049	Acute total hip arthroplasty in acetabular fractures using modern porous metal cup. Journal of Orthopaedic Surgery, 2019, 27, 230949901985543.	0.4	4 1	16
3050	Functionalized polymers for tissue engineering and regenerative medicines. , 2019, , 323-357.		I	10
3051	A biomimetic tarso-conjunctival biphasic scaffold for eyelid reconstruction in vivo. Biomaterials Science, 2019, 7, 3373-3385.	2.6		3
3052	Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study. BioMed Research International, 2019, 2019, 1-11.	0.9) {	5
3053	>Minimally invasive lateral transiliac sacroiliac joint fusion using 3D-printed triangular titanium implants. Medical Devices: Evidence and Research, 2019, Volume 12, 203-214.	0.4	4 7	7
3054	Fabrication and multiscale characterization of 3D silver containing bioactive glass-ceramic scaffolds. Bioactive Materials, 2019, 4, 215-223.	8.6	5 1	19
3055	Properties of an alginate-gelatin-based bioink and its potential impact on cell migration, proliferation, and differentiation. International Journal of Biological Macromolecules, 2019, 135, 1107-1113.	3.6	5 8	56
3056	Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomedical Materials (Bristol), 2019, 14, 045018.	1.7	, ;	78
3057	Additive manufacturing of composite structures for the restoration of bone tissue. Multifunctional Materials, 2019, 2, 024003.	2.4	1 9	9
3058	Diagonal-symmetrical and Midline-symmetrical Unit Cells with Same Porosity for Bone Implant: Mechanical Properties Evaluation. Journal of Bionic Engineering, 2019, 16, 468-479.	2.7	/]	11
3059	Preparation of model starch complex hydrogels. Food Hydrocolloids, 2019, 96, 365-372.	5.6	5 2	21

# 3060	ARTICLE Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process. Journal of Colloid and Interface Science, 2019, 552, 613-621.	IF 5.0	CITATIONS
3061	Enhancement of mechanical properties of 3D-plotted tricalcium phosphate scaffolds by rapid sintering. Journal of the European Ceramic Society, 2019, 39, 4366-4374.	2.8	13
3062	Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydrate Polymers, 2019, 219, 210-218.	5.1	59
3063	Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydrate Polymers, 2019, 221, 146-156.	5.1	113
3064	The effect of amino-functionalized mesoporous bioactive glass on MC3T3-E1 cells in vitro stimulation. Composites Part B: Engineering, 2019, 172, 397-405.	5.9	28
3065	3D bioprinting in orthopedics translational research. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1172-1187.	1.9	22
3066	The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam. Journal of Materials Research and Technology, 2019, 8, 3149-3157.	2.6	12
3067	Challenges in Three-Dimensional Printing of Bone Substitutes. Tissue Engineering - Part B: Reviews, 2019, 25, 387-397.	2.5	18
3068	Bioactive glasses—structure and applications. , 2019, , 453-476.		3
3069	Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial. Bone and Joint Journal, 2019, 101-B, 62-67.	1.9	20
3070	Immobilization via polydopamine of dual growth factors on polyetheretherketone: improvement of cell adhesion, proliferation, and osteo-differentiation. Journal of Materials Science, 2019, 54, 11179-11196.	1.7	27
3071	Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Materials Science and Engineering C, 2019, 103, 109794.	3.8	50
3072	Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Advanced Materials Interfaces, 2019, 6, 1900572.	1.9	276
3073	Biomaterial-based endochondral bone regeneration: a shift from traditional tissue engineering paradigms to developmentally inspired strategies. Materials Today Bio, 2019, 3, 100009.	2.6	60
3074	Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 2019, 12, 1824.	1.3	309
3075	Controlled release of BMP-2 from titanium with electrodeposition modification enhancing critical size bone formation. Materials Science and Engineering C, 2019, 105, 109879.	3.8	41
3076	Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Materials Science and Engineering C, 2019, 104, 109895.	3.8	185
3077	From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds. Materials Science and Engineering C, 2019, 103, 109760.	3.8	10

#	Addicie	IF	CITATIONS
π	Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model.		CHAHONS
3078	Journal of Biomedical Materials Research - Part A, 2019, 107, 2174-2182.	2.1	30
3079	Glyoxal crossâ€linking of solubilized extracellular matrix to produce highly porous, elastic, and chondroâ€permissive scaffolds for orthopedic tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 2222-2234.	2.1	39
3080	3D Hybrid Scaffolds Based on PEDOT:PSS/MWCNT Composites. Frontiers in Chemistry, 2019, 7, 363.	1.8	39
3081	Modulation of Cellular Colonization of Porous Polyurethane Scaffolds via the Control of Pore Interconnection Size and Nanoscale Surface Modifications. ACS Applied Materials & Interfaces, 2019, 11, 19819-19829.	4.0	29
3082	Evolution of surface modification trends in bone related biomaterials: A review. Materials Chemistry and Physics, 2019, 233, 68-78.	2.0	79
3083	Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA. Medical Engineering and Physics, 2019, 69, 92-99.	0.8	14
3084	Effect of pore size in bone regeneration using polydopamineâ€laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mould printing technology. Orthodontics and Craniofacial Research, 2019, 22, 127-133.	1.2	56
3085	Additively manufactured porous metallic biomaterials. Journal of Materials Chemistry B, 2019, 7, 4088-4117.	2.9	137
3086	Bone Defect Model Dependent Optimal Pore Sizes of 3Dâ€Plotted Betaâ€Tricalcium Phosphate Scaffolds for Bone Regeneration. Small Methods, 2019, 3, 1900237.	4.6	29
3087	Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2019, 11, 20437-20452.	4.0	46
3088	Biomedical applications of polyethylene. European Polymer Journal, 2019, 118, 412-428.	2.6	107
3089	<i>In vitro</i> evaluation of functionalized decellularized muscle scaffold for <i>in situ</i> skeletal muscle regeneration. Biomedical Materials (Bristol), 2019, 14, 045015.	1.7	16
3090	Investigation of Ti64 sheathed cellular anatomical structure as a tibia implant. Biomedical Physics and Engineering Express, 2019, 5, 035008.	0.6	34
3091	Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 17256-17269.	4.0	115
3092	Modelling the relationship between tensile strength and porosity in bioceramic scaffolds. International Journal of Applied Ceramic Technology, 2019, 16, 1823-1829.	1.1	3
3093	Robocasting of Bioactive SiO ₂ -P ₂ O ₅ -CaO-MgO-Na ₂ O-K ₂ O Glass Scaffolds. Journal of Healthcare Engineering, 2019, 2019, 1-12.	1.1	32
3094	Development, Characterization and In Vitro Biological Properties of Scaffolds Fabricated From Calcium Phosphate Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 1790.	1.8	34
3095	Template-assisted, Sol-gel Fabrication of Biocompatible, Hierarchically Porous Hydroxyapatite Scaffolds. Materials, 2019, 12, 1274.	1.3	7

<u> </u>			<u> </u>	
(17	ΓΔΤΙ	10N	KEDUB	Г
\sim				

#	Article	IF	CITATIONS
3096	Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 133, 592-602.	3.6	153
3097	Current status and applications of additive manufacturing in dentistry: A literature-based review. Journal of Oral Biology and Craniofacial Research, 2019, 9, 179-185.	0.8	181
3098	Reconsidering Osteoconduction in the Era of Additive Manufacturing. Tissue Engineering - Part B: Reviews, 2019, 25, 375-386.	2.5	64
3099	Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect. Molecules, 2019, 24, 1669.	1.7	55
3100	Novel design of low modulus high strength zirconia scaffolds for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 375-384.	1.5	18
3101	Thermally-controlled extrusion-based bioprinting of collagen. Journal of Materials Science: Materials in Medicine, 2019, 30, 55.	1.7	86
3102	In Vitro Bioactivity and Cell Biocompatibility of a Hypereutectic Bioceramic. Symmetry, 2019, 11, 355.	1.1	2
3103	Geometry Modelling of Regular Scaffolds for Bone Tissue Engineering: A Computational Mechanobiological Approach. Lecture Notes in Mechanical Engineering, 2019, , 517-526.	0.3	2
3104	<p>Delivery vehicle of muscle-derived irisin based on silk/calcium silicate/sodium alginate composite scaffold for bone regeneration</p> . International Journal of Nanomedicine, 2019, Volume 14, 1451-1467.	3.3	25
3105	Polymer-based calcium phosphate scaffolds for tissue engineering applications. , 2019, , 585-618.		7
3106	Porous Phosphate-Based Glass Microspheres Show Biocompatibility, Tissue Infiltration, and Osteogenic Onset in an Ovine Bone Defect Model. ACS Applied Materials & Interfaces, 2019, 11, 15436-15446.	4.0	31
3107	Polymeric Materials for 3D Bioprinting. , 2019, , 63-81.		8
3108	Resorbable biomaterials: role of chitosan as a graft in bone tissue engineering. , 2019, , 23-44.		3
3109	Collagenâ€alginateâ€nanoâ€silica microspheres improved the osteogenic potential of human osteoblastâ€ike MGâ€63 cells. Journal of Cellular Biochemistry, 2019, 120, 15069-15082.	1.2	36
3110	3D printing of bioglass-reinforced β-TCP porous bioceramic scaffolds. Journal of Materials Science, 2019, 54, 10437-10446.	1.7	36
3111	Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 1-8.	1.5	14
3112	Nanoceramics for bone regeneration in the oral and craniomaxillofacial complex. , 2019, , 469-494.		1
3113	Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Materials Science and Engineering C, 2019, 102, 341-361.	3.8	47

#	Article	IF	CITATIONS
3114	Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Applied Physics Reviews, 2019, 6, .	5.5	163
3115	Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lacticâ€ <i>co</i> â€glycolic acid) Network and Bioactive Wollastonite. Advanced Healthcare Materials, 2019, 8, e1801325.	3.9	26
3116	Polylactic acid/sodium alginate/hydroxyapatite composite scaffolds with trabecular tissue morphology designed by a bone remodeling model using 3D printing. Journal of Materials Science, 2019, 54, 9478-9496.	1.7	34
3117	Semi-solid Sintering of Ti6Al4V/CoCrMo Composites for Biomedical Applications. Materials Research, 2019, 22, .	0.6	7
3118	Akermanite reinforced PHBV scaffolds manufactured using selective laser sintering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2596-2610.	1.6	18
3119	Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. Journal of Bioactive and Compatible Polymers, 2019, 34, 115-130.	0.8	19
3120	Tuning Myoblast and Preosteoblast Cell Adhesion Site, Orientation, and Elongation through Electroactive Micropatterned Scaffolds. ACS Applied Bio Materials, 2019, 2, 1591-1602.	2.3	14
3121	State of the Art Technology for Bone Tissue Engineering and Drug Delivery. Irbm, 2019, 40, 133-144.	3.7	30
3122	Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Materials Science and Engineering C, 2019, 101, 15-26.	3.8	127
3123	A randomized controlled clinical trial evaluating efficacy and adverse events of different types of recombinant human bone morphogenetic proteinâ€2 delivery systems for alveolar ridge preservation. Clinical Oral Implants Research, 2019, 30, 396-409.	1.9	22
3124	Engineering biological gradients. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001982902.	0.7	19
3125	Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Materials Science and Engineering C, 2019, 100, 341-353.	3.8	82
3126	Fabrication and Characterization of Novel Water-Insoluble Protein Porous Materials Derived from Pickering High Internal-Phase Emulsions Stabilized by Gliadin–Chitosan-Complex Particles. Journal of Agricultural and Food Chemistry, 2019, 67, 3423-3431.	2.4	95
3127	Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceramics International, 2019, 45, 11079-11086.	2.3	110
3128	Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models. International Journal of Mechanical Sciences, 2019, 155, 248-266.	3.6	80
3129	Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing. Materials and Design, 2019, 169, 107683.	3.3	62
3130	Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds. Journal of Cellular Physiology, 2019, 234, 17854-17862.	2.0	26
3131	Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented Î ² -TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS ONE, 2019, 14, e0212799.	1.1	48

#	Article	IF	CITATIONS
3132	Application of a Bioactive/Bioresorbable Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/Poly-D/L-lactide Composite with Human Mesenchymal Stem Cells for Bone Regeneration in Maxillofacial Surgery: A Pilot Animal Study. Materials, 2019, 12, 705.	1.3	16
3133	Chitosan and collagen composite for potential application as bone substitute. Research on Biomedical Engineering, 2019, 35, 65-70.	1.5	2
3134	Thermal Analysis of Glass-Ceramics and Composites in Biomedical and Dental Sciences. Series in Bioengineering, 2019, , 245-295.	0.3	2
3135	Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomaterialia, 2019, 90, 37-48.	4.1	172
3136	MSC differentiation on two-photon polymerized, stiffness and BMP2 modified biological copolymers. Biomedical Materials (Bristol), 2019, 14, 035001.	1.7	7
3137	Preparation and properties of dopamineâ€modified alginate/chitosan–hydroxyapatite scaffolds with gradient structure for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 1615-1627.	2.1	43
3138	Programmable Electrofabrication of Porous Janus Films with Tunable Janus Balance for Anisotropic Cell Guidance and Tissue Regeneration. Advanced Functional Materials, 2019, 29, 1900065.	7.8	58
3139	Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. Biomaterials, 2019, 204, 70-79.	5.7	192
3140	Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro. Materials Science and Engineering C, 2019, 100, 544-553.	3.8	41
3141	Multifunctional nanoparticles for intracellular drug delivery and photoacoustic imaging of mesenchymal stem cells. Drug Delivery and Translational Research, 2019, 9, 652-666.	3.0	12
3142	Structural mechanics of 3D-printed poly(lactic acid) scaffolds with tetragonal, hexagonal and wheel-like designs. Biofabrication, 2019, 11, 035009.	3.7	48
3143	Organically modified hydroxyapatite (ormoHAP) nanospheres stimulate the differentiation of osteoblast and osteoclast precursors: a co-culture study. Biomedical Materials (Bristol), 2019, 14, 035015.	1.7	7
3144	Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS Applied Materials & Interfaces, 2019, 11, 12283-12297.	4.0	61
3145	Corrosion behavior of porous magnesium coated by plasma electrolytic oxidation in simulated body fluid. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1561-1569.	0.8	5
3146	Material and regenerative properties of an osteon-mimetic cortical bone-like scaffold. International Journal of Energy Production and Management, 2019, 6, 89-98.	1.9	16
3147	Composite materials based on hydroxyapatite embedded in biopolymer matrices: ways of synthesis and application. , 2019, , 403-440.		0
3148	Characterization of scaffolds based on chitosan and collagen with glycosaminoglycans. International Journal of Polymer Analysis and Characterization, 2019, 24, 374-380.	0.9	3
3149	Composite scaffolds for bone and osteochondral defects. , 2019, , 297-337.		2

#	Article	IF	CITATIONS
3150	Indirect 3D printing technology for the fabrication of customised β-TCP/chitosan scaffold with the shape of rabbit radial head—an in vitro study. Journal of Orthopaedic Surgery and Research, 2019, 14, 102.	0.9	16
3151	Bioactive glass–based composites in bone tissue engineering: synthesis, processing, and cellular responses. , 2019, , 397-439.		0
3152	Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro. ACS Applied Materials & Interfaces, 2019, 11, 15306-15315.	4.0	81
3153	Porous Scaffolds of Poly(lactic- <i>co</i> -glycolic acid) and Mesoporous Hydroxyapatite Surface Modified by Poly(γ-benzyl- <scp>l</scp> -glutamate) (PBLG) for in Vivo Bone Repair. ACS Biomaterials Science and Engineering, 2019, 5, 2466-2481.	2.6	20
3154	Low Temperature 3D Printing of Drug Loaded Bioceramic Scaffolds and Implants. Computational Methods in Applied Sciences (Springer), 2019, , 51-66.	0.1	1
3155	lâ€Optimal design of poly(lacticâ€coâ€glycolic) acid/hydroxyapatite threeâ€dimensional scaffolds produced by thermally induced phase separation. Polymer Engineering and Science, 2019, 59, 1146-1157.	1.5	7
3156	New Developments in Tissue Engineering and Regeneration. Computational Methods in Applied Sciences (Springer), 2019, , .	0.1	0
3157	Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 1-12.	1.5	66
3158	Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering C, 2019, 100, 735-746.	3.8	62
3159	Optimized Bioactive Glass: the Quest for the Bony Graft. Advanced Healthcare Materials, 2019, 8, e1801542.	3.9	35
3160	Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review. Applied Sciences (Switzerland), 2019, 9, 1046.	1.3	23
3161	Enhanced Bone Defect Repair by Polymeric Substitute Fillers of MultiArm Polyethylene Glycolâ€Crosslinked Hyaluronic Acid Hydrogels. Macromolecular Bioscience, 2019, 19, e1900021.	2.1	11
3162	Cemented injectable multi-phased porous bone grafts for the treatment of femoral head necrosis. Journal of Materials Chemistry B, 2019, 7, 2997-3006.	2.9	7
3164	Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Materials Science and Engineering C, 2019, 100, 236-246	3.8	21
3165	Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 797-814.	1.9	46
3166	Laser Powder Bed Fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. International Journal of Machine Tools and Manufacture, 2019, 141, 19-29.	6.2	93
3167	Improving cellular migration in tissue-engineered laryngeal scaffolds. Journal of Laryngology and Otology, 2019, 133, 135-148.	0.4	6
3168	Effects of compressive ratio and sintering temperature on mechanical properties of biocompatible collagen/hydroxyapatite composite scaffolds fabricated for bone tissue engineering. Journal of Asian Ceramic Societies, 2019, 7, 183-198.	1.0	11

#	Article	IF	CITATIONS
3169	Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. Tissue Engineering - Part B: Reviews, 2019, 25, 312-329.	2.5	23
3170	Non-Auxetic Mechanical Metamaterials. Materials, 2019, 12, 635.	1.3	43
3171	Efficacy of a hybrid system of hyaluronic acid and collagen loaded with prednisolone and TGF-Î23 for cartilage regeneration in rats. Journal of Drug Delivery Science and Technology, 2019, 51, 55-62.	1.4	13
3172	Mechanical characterization of 45S5 bioactive glass-derived scaffolds. Materials Letters, 2019, 245, 14-17.	1.3	24
3173	3D printing of polyether-ether-ketone for biomedical applications. European Polymer Journal, 2019, 114, 234-248.	2.6	138
3174	Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Journal of Materials Science, 2019, 54, 7198-7210.	1.7	21
3175	Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Materials and Design, 2019, 167, 107636.	3.3	92
3176	Bioprinted osteon-like scaffolds enhance <i>in vivo</i> neovascularization. Biofabrication, 2019, 11, 025013.	3.7	70
3177	Experimental Tracheal Replacement Using 3-dimensional Bioprinted Artificial Trachea with Autologous Epithelial Cells and Chondrocytes. Scientific Reports, 2019, 9, 2103.	1.6	59
3178	Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon, 2019, 146, 513-523.	5.4	54
3179	Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications. Carbohydrate Polymers, 2019, 212, 75-88.	5.1	89
3180	Injectable hierarchical micro/nanofibrous collagen-based scaffolds. Chemical Engineering Journal, 2019, 365, 220-230.	6.6	19
3181	Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: Physico-mechanical and bioactivity evaluations. Ceramics International, 2019, 45, 10004-10012.	2.3	42
3182	Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 561-579.	1.9	27
3183	Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 2019, 188, 1117-1133.	1.4	14
3184	To Cement or Not? Five-Year Results of a Prospective, Randomized Study Comparing Cemented vs Cementless Total Knee Arthroplasty. Journal of Arthroplasty, 2019, 34, S183-S187.	1.5	34
3185	Tissue response to porous high density polyethylene as a three-dimensional scaffold for bone tissue engineering: An experimental study. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 486-499.	1.9	10
3186	Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Materials and Design, 2019, 168, 107643.	3.3	124

ARTICLE

IF CITATIONS

3187	Natural polymers for bone repair. , 2019, , 199-232.		11
3188	Additively Manufactured Nanofiber Reinforced Bioactive Glass Based Functionally Graded Scaffolds for Bone Tissue Engineering. , 2019, , .		1
3189	Effect of print orientation on microstructural features and mechanical properties of 3D porous structures printed with continuous digital light processing. Rapid Prototyping Journal, 2019, 25, 1017-1029.	1.6	4
3190	Coupling control of pore size and spatial distribution in bone scaffolds based on a random strategy for additive manufacturing. Rapid Prototyping Journal, 2019, ahead-of-print, .	1.6	3
3191	Mechanical characterization of pore-graded bioactive glass scaffolds produced by robocasting. Biomedical Glasses, 2019, 5, 140-147.	2.4	16
3192	The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Biomedical Materials (Bristol), 2019, 14, 065016.	1.7	61
3193	Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model. International Journal of Implant Dentistry, 2019, 5, 32.	1.1	10
3194	Effects of pore size and porosity of surface-modified porous titanium implants on bone tissue ingrowth. Transactions of Nonferrous Metals Society of China, 2019, 29, 2534-2545.	1.7	46
3195	Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts. Biomaterials Research, 2019, 23, 26.	3.2	32
3196	Characteristic of Synthetic Coral Scaffold for Cell Environment. Key Engineering Materials, 2019, 829, 188-193.	0.4	2
3197	Regeneration of the Fibula with Unidirectional Porous Hydroxyapatite. Case Reports in Orthopedics, 2019, 2019, 1-5.	0.1	3
3198	scafSLICR: A MATLAB-based slicing algorithm to enable 3D-printing of tissue engineering scaffolds with heterogeneous porous microarchitecture. PLoS ONE, 2019, 14, e0225007.	1.1	19
3200	Improvement of Bone Formation in Rats with Calvarial Defects by Modulating the Pore Size of Tricalcium Phosphate Scaffolds. Biotechnology and Bioprocess Engineering, 2019, 24, 885-892.	1.4	11
3201	Hydroxyapatite-Collagen Composite Made from Coral and Chicken Claws for Bone Implant Application. Materials Science Forum, 2019, 966, 145-150.	0.3	0
3202	Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells International, 2019, 2019, 1-15.	1.2	65
3203	Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells International, 2019, 2019, 1-16.	1.2	60
3204	Tissue Engineering in Oral and Maxillofacial Surgery. , 2019, , .		0
3205	Mesoporous bioactive glasses for biomedical composites. , 2019, , 355-391.		4

#	Article	IF	CITATIONS
3206	Fabrication and <i>In Vitro</i> Evaluation of 3D Printed Porous Polyetherimide Scaffolds for Bone Tissue Engineering. BioMed Research International, 2019, 2019, 1-8.	0.9	16
3207	Three-dimensional-printed custom-made hemipelvic endoprosthesis for primary malignancies involving acetabulum: the design solution and surgical techniques. Journal of Orthopaedic Surgery and Research, 2019, 14, 389.	0.9	25
3208	Microporosity Clustering Assessment in Calcium Phosphate Bioceramic Particles. Frontiers in Bioengineering and Biotechnology, 2019, 7, 281.	2.0	9
3209	Preparation and Statistical Characterization of Tunable Porous Sponge Scaffolds using UV Cross-linking of Methacrylate-Modified Silk Fibroin. ACS Biomaterials Science and Engineering, 2019, 5, 6374-6388.	2.6	43
3210	Nature-Inspired Processes and Structures: New Paradigms to Develop Highly Bioactive Devices for Hard Tissue Regeneration. , 2019, , .		4
3211	Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon, 2019, 5, e02808.	1.4	16
3212	Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds. BioMedical Engineering OnLine, 2019, 18, 119.	1.3	23
3213	Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation. Molecules, 2019, 24, 4532.	1.7	16
3214	Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Scientific Reports, 2019, 9, 18439.	1.6	29
3215	Antibacterial 3D bone scaffolds for tissue engineering application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1068-1078.	1.6	18
3216	Fabrication and characterization of 3D scaffolds made from blends of sodium alginate and poly(vinyl) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
3217	Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 20-29.	1.5	96
3218	Silk scaffolds with gradient pore structure and improved cell infiltration performance. Materials Science and Engineering C, 2019, 94, 179-189.	3.8	51
3219	Mechanical performance of additively manufactured meta-biomaterials. Acta Biomaterialia, 2019, 85, 41-59.	4.1	230
3220	Mechanical and inÂvitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting. Journal of Alloys and Compounds, 2019, 782, 209-223.	2.8	112
3221	Studies on the performance of selective laser melting porous dental implant by finite element model simulation, fatigue testing and in vivo experiments. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 170-180.	1.0	17
3222	Guided bone regeneration activity of different calcium phosphate/chitosan hybrid membranes. International Journal of Biological Macromolecules, 2019, 126, 159-169.	3.6	26
3223	3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. International Journal of Energy Production and Management, 2019, 6, 29-37.	1.9	30

#	Article	IF	CITATIONS
3224	Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 582-593.	2.6	91
3225	Evaluation of Strontium-Containing PCL-PDIPF Scaffolds for Bone Tissue Engineering: In Vitro and In Vivo Studies. Annals of Biomedical Engineering, 2019, 47, 902-912.	1.3	17
3226	Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility study. Materials Science and Engineering C, 2019, 97, 367-376.	3.8	10
3227	Novel calcium phosphate/PCL graded samples: Design and development in view of biomedical applications. Materials Science and Engineering C, 2019, 97, 336-346.	3.8	24
3228	Effect of Dexamethasone on Room Temperature Three-Dimensional Printing, Rheology, and Degradation of a Low Modulus Polyester for Soft Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 846-858.	2.6	15
3229	Estimation of the effective elastic constants of bone scaffolds fabricated by direct ink writing. Journal of the European Ceramic Society, 2019, 39, 1586-1594.	2.8	18
3230	Chitosan based polymer/bioglass composites for tissue engineering applications. Materials Science and Engineering C, 2019, 96, 955-967.	3.8	83
3231	3D Printing in Spine Surgery. , 2019, , 105-122.		6
3232	Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Materials, 2019, 4, 56-70.	8.6	348
3233	Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. Journal of Colloid and Interface Science, 2019, 539, 468-480.	5.0	36
3234	Mineralization and antibacterial potential of bioactive cryogel scaffolds <i>in vitro</i> . International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 901-914.	1.8	7
3235	Pre-osteoblast cell colonization of porous silicon substituted hydroxyapatite bioceramics: Influence of microporosity and macropore design. Materials Science and Engineering C, 2019, 97, 510-528.	3.8	29
3236	Preparation and characterization of composite scaffold of alginate and cellulose nanofiber from ramie. Textile Reseach Journal, 2019, 89, 3260-3268.	1.1	8
3237	Layered manufacturing of a three-dimensional polymethyl methacrylate (PMMA) scaffold used for bone regeneration. Materials Technology, 2019, 34, 167-177.	1.5	20
3238	Mineralization in micropores of calcium phosphate scaffolds. Acta Biomaterialia, 2019, 83, 435-455.	4.1	91
3239	Keratin as a Protein Biopolymer. Springer Series on Polymer and Composite Materials, 2019, , .	0.5	44
3240	Enhanced Osteogenesis of Bone Marrowâ€Derived Mesenchymal Stem Cells by a Functionalized Silk Fibroin Hydrogel for Bone Defect Repair. Advanced Healthcare Materials, 2019, 8, e1801043.	3.9	63
3241	Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials Science and Engineering C, 2019, 96, 153-165.	3.8	111

ARTICLE IF CITATIONS Clinical Approaches in Endodontic Regeneration., 2019,,. 5 3242 Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering. Tissue Engineering - Part C: 3243 1.1 29 Methods, 2019, 25, 12-24. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 3244 4.1 547 2019, 84, 16-33. Individual response variations in scaffold-guided bone regeneration are determined by independent 3245 strain- and injury-induced mechanisms. Biomaterials, 2019, 194, 183-194. Singleâ€Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue 3246 1.9 38 Engineering Application. Advanced Materials Interfaces, 2019, 6, 1801211. 3247 Guided Bone Regeneration (GBR) for Implants in theÂAesthetic Zone., 2019, , 81-93. Threeâ€dimensional cancer cell culture in highâ€yield multiscale scaffolds by shear spinning. 3248 1.3 6 Biotechnology Progress, 2019, 35, e2750. Fabrication and in vitro biocompatibility of sodium tripolyphosphate-crosslinked 3249 chitosan–hydroxyapatite scaffolds for bone regeneration. Journal of Materials Science, 2019, 54, 1.7 16 3403-3420. Applications of 3D printing on craniofacial bone repair: A systematic review. Journal of Dentistry, 3250 103 1.7 2019, 80, 1-14. Development of novel mechanically stable porous nanocomposite (PVDF-PMMA/HAp/TiO2) film scaffold with nanowhiskers surface morphology for bone repair applications. Materials Letters, 2019, 236, 1.3 694-696. Bone response to porous tantalum implants in a gapâ€healing model. Clinical Oral Implants Research, 3252 1.9 30 2019, 30, 156-168. Bone grafts: which is the ideal biomaterial?. Journal of Clinical Periodontology, 2019, 46, 92-102. 2.3 316 Release of simvastatin from scaffolds of poly(lacticâ€coâ€glycolic) acid and biphasic ceramic designed for 3254 bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 1.6 13 107, 2152-2164. Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen scaffolds for hard tissue 1.1 14 engineering. Journal of the Australian Ceramic Society, 2019, 55, 849-855. I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and 3256 2.317 Thermally Induced Phase Separation. ACS Applied Bio Materials, 2019, 2, 685-696. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal 1.8 114 Regeneration. Journal of Functional Biomaterials, 2019, 10, 3. 3D Molecularly Functionalized Cellâ€Free Biomimetic Scaffolds for Osteochondral Regeneration. 3258 7.8 75 Advanced Functional Materials, 2019, 29, 1807356. Mechanical performance of gelatin fiber mesh scaffolds reinforced with nano-hydroxyapatite under 3259 bone damage mechanisms. Materials Today Communications, 2019, 19, 140-147.

#	Article	IF	CITATIONS
3260	A comparative study on the tribological behavior of Ti-6Al-4V and Ti-24Nb-4Zr-8Sn alloys in simulated body fluid. Materials Technology, 2019, 34, 270-284.	1.5	17
3261	Hyaline cartilage next generation implants from adipose-tissue-derived mesenchymal stem cells: Comparative study on 3D-printed polycaprolactone scaffold patterns. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 342-355.	1.3	39
3262	Simultaneous 3D cell distribution and bioactivity enhancement of bacterial cellulose (BC) scaffold for articular cartilage tissue engineering. Cellulose, 2019, 26, 2513-2528.	2.4	35
3263	The effect of pore size and porosity of Ti6Al4V scaffolds on MC3T3-E1 cells and tissue in rabbits. Science China Technological Sciences, 2019, 62, 1160-1168.	2.0	13
3264	3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chemical Engineering Journal, 2019, 362, 269-279.	6.6	169
3265	Zwitterionic Functionalizable Scaffolds with Gyroid Pore Architecture for Tissue Engineering. Macromolecular Bioscience, 2019, 19, e1800403.	2.1	5
3266	Porous and biodegradable polycaprolactone-borophosphosilicate hybrid scaffolds for osteoblast infiltration and stem cell differentiation. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92, 162-171.	1.5	18
3267	Hydroxyapatite Nanoparticle Coating on Polymer for Constructing Effective Biointeractive Interfaces. Journal of Nanomaterials, 2019, 2019, 1-23.	1.5	179
3268	Porous tissue strands: avascular building blocks for scalable tissue fabrication. Biofabrication, 2019, 11, 015009.	3.7	22
3269	Microstructural investigation of porous titanium coatings, produced by thermal spraying techniques, using plasma atomization and hydride-dehydride powders, for orthopedic implants. Surface and Coatings Technology, 2019, 357, 947-956.	2.2	24
3270	The effect of larger than cell diameter polylactic acid surface patterns on osteogenic differentiation of rat dental pulp stem cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 174-186.	2.1	19
3271	Current and Future Views on Cell-Homing-Based Strategies for Regenerative Endodontics. , 2019, , 139-159.		1
3272	Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone. Advanced Healthcare Materials, 2019, 8, e1801353.	3.9	89
3273	Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane. International Journal of Biological Macromolecules, 2019, 125, 383-391.	3.6	16
3274	Evaluation of silymarin/duck's feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Materials Science and Engineering C, 2019, 97, 347-355.	3.8	22
3275	The role of porosity and solid matrix compressibility on the mechanical behavior of poroelastic tissues. Materials Research Express, 2019, 6, 035404.	0.8	24
3276	Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells. Materials Science and Engineering C, 2019, 97, 12-22.	3.8	11
3277	Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomaterialia, 2019, 84, 453-467.	4.1	69

#	Article	IF	CITATIONS
3278	Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration. Chemical Engineering Journal, 2019, 360, 519-530.	6.6	33
3279	Fabrication and characterization of porous scaffolds for bone replacements using gum tragacanth. Materials Science and Engineering C, 2019, 96, 487-495.	3.8	39
3280	Analysis of Compression and Permeability Behavior of Porous Ti6Al4V by Computed Microtomography. Metals and Materials International, 2019, 25, 669-682.	1.8	15
3281	Keratin as a Biopolymer. Springer Series on Polymer and Composite Materials, 2019, , 163-185.	0.5	14
3282	Alveolar bone preservation by a hydroxyapatite/collagen composite material after tooth extraction. Clinical Oral Investigations, 2019, 23, 2413-2419.	1.4	17
3283	Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceramics International, 2019, 45, 805-816.	2.3	37
3284	Investigation on the orientation dependence of elastic response in Gyroid cellular structures. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 73-85.	1.5	79
3285	Bioactive Glass Scaffolds for Bone Tissue Engineering. , 2019, , 417-442.		7
3286	Bioactive Glasses and Glass-Ceramics for Ophthalmological Applications. , 2019, , 357-382.		1
3287	Functionally Graded Bioactive Glass-Derived Scaffolds Mimicking Bone Tissue. , 2019, , 443-466.		5
3288	Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique. Journal of Materials Science and Technology, 2019, 35, 285-294.	5.6	100
3289	Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application. Materials Science and Engineering C, 2019, 94, 534-546.	3.8	32
3290	Studies on preparation of surfactant-assisted elliptical hydroxyapatite nanoparticles and their protein-interactive ability. Materials Chemistry and Physics, 2019, 221, 367-376.	2.0	9
3291	Bone Substitute Materials. , 2019, , 513-529.		3
3292	Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science and Engineering C, 2019, 95, 397-408.	3.8	67
3293	Influence of macroporosity on NIH/3T3 adhesion, proliferation, and osteogenic differentiation of MC3T3‣1 over bioâ€functionalized highly porous titanium implant material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 73-85.	1.6	26
3294	Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessment. Materials Science and Engineering C, 2019, 95, 371-380.	3.8	12
3295	Biomaterial granules used for filling bone defects constitute 3D scaffolds: porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 415-423.	1.6	24
#	Article	IF	Citations
------	--	-----	-----------
3296	3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials, 2019, 196, 138-150.	5.7	170
3297	Exploring the binding effect of a seaweed-based gum in the fabrication of hydroxyapatite scaffolds for biomedical applications. Materials Research Innovations, 2020, 24, 75-81.	1.0	4
3298	Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects. Advances in Wound Care, 2020, 9, 441-452.	2.6	9
3299	Effect of bone sialoprotein coating on progression of bone formation in a femoral defect model in rats. European Journal of Trauma and Emergency Surgery, 2020, 46, 277-286.	0.8	10
3300	Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications. Materials Science and Technology, 2020, 36, 972-977.	0.8	18
3301	Influence of processing parameters on mechanical properties of a 3Dâ€printed trabecular bone microstructure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 38-47.	1.6	16
3302	Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: Substrates to customize the release of antibiotics according to the idiosyncrasies of the patient. Materials Science and Engineering C, 2020, 106, 110173.	3.8	12
3303	Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model. Materials Science and Engineering C, 2020, 106, 110186.	3.8	46
3304	Influence of precursor characteristics on properties of porous calcium phosphate-titanium dioxide composite bioceramics. Ceramics International, 2020, 46, 243-250.	2.3	6
3305	Physicochemical properties of chitosan–hydroxyapatite matrix incorporated with <i>Ginkgo biloba</i> -loaded PLGA microspheres for tissue engineering applications. Polymers and Polymer Composites, 2020, 28, 320-330.	1.0	2
3306	Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature. Materials Chemistry and Physics, 2020, 239, 122099.	2.0	81
3307	Preparation of electrospun nanofibers with desired microstructures using a programmed three-dimensional (3D) nanofiber collector. Materials Science and Engineering C, 2020, 106, 110188.	3.8	10
3308	Synthetic bone graft substitutes: Calcium-based biomaterials. , 2020, , 125-157.		11
3309	Biomechanical Testing of Additive Manufactured Proximal Humerus Fracture Fixation Plates. Annals of Biomedical Engineering, 2020, 48, 463-476.	1.3	9
3310	In vivo comparison of a granular and putty form of a sintered and a non-sintered silica-enhanced hydroxyapatite bone substitute material. Journal of Biomaterials Applications, 2020, 34, 864-874.	1.2	2
3311	Synthesis and characterization of 3D multilayer porous Si–Ca–P scaffolds doped with Sr ions to modulate in vitro bioactivity. Ceramics International, 2020, 46, 968-977.	2.3	9
3312	Enhanced bioactivity of Si3N4 through trench-patterning and back-filling with Bioglass®. Materials Science and Engineering C, 2020, 106, 110278.	3.8	7
3313	Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering C, 2020, 106, 110289.	3.8	158

ARTICLE IF CITATIONS TNF-1± suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m6A-demethylation of 3314 2.3 22 Nanog mRNA. Science China Life Sciences, 2020, 63, 80-91. Frontiers in research for bone biomaterials., 2020, , 307-332. 3316 Membrane scaffolds for 3D cell culture., 2020, , 157-189. 1 Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. 5.1 319 Carbohydrate Polymers, 2020, 229, 115514. Biological and mechanical enhancement of zirconium dioxide for medical applications. Ceramics 3318 2.3 35 International, 2020, 46, 4041-4057. Doping lithium element to enhance compressive strength of \hat{l}^2 -TCP scaffolds manufactured by 3D printing for bone tissue engineering. Journal of Alloys and Compounds, 2020, 814, 152327. 3319 2.8 Evaluation of topographical and chemical modified TiAl6V4 implant surfaces in a weightâ€bearing 3320 intramedullary femur model in rabbit. Journal of Biomedical Materials Research - Part B Applied 1.6 4 Biomaterials, 2020, 108, 1117-1128. Synthesis and in vivo evaluation of a scaffold containing wollastonite∫l²â€TCP for bone repair in a rabbit tibial defect model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3321 1.6 21 1107-1116. Effect of pore architecture on the mesenchymal stem cell responses to graphene/polycaprolactone 3322 1.3 18 scaffolds prepared by solvent casting and robocasting. Journal of Porous Materials, 2020, 27, 49-61. Three \hat{e} dimensional electrospun nanofibrous scaffolds for bone tissue engineering. Journal of 1.6 Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1311-1321. Quantitative evaluation of the <i>in vivo</i> biocompatibility and performance of freeze-cast tissue 3324 4 1.7 scaffolds. Biomedical Materials (Bristol), 2020, 15, 055003. Bone formation following sinus grafting with an alloplastic biphasic calcium phosphate in Lanyu Taiwanese miniâ€pigs. Journal of Periodontology, 2020, 91, 93-101. 1.7 Key components of engineering vascularized 3-dimensional bioprinted bone constructs. Translational 3326 2.2 61 Research, 2020, 216, 57-76. Porosity Effects on Mechanical Properties of 3D Random Fibrous Materials at Elevated Temperatures. 1.0 Acta Méchanica Solida Sinica, 2020, 33, 14-30. Improving cell distribution on 3D additive manufactured scaffolds through engineered seeding media 3328 4.1 48 density and viscosity. Acta Biomaterialia, 2020, 101, 183-195. Evaluation of mechanical properties and hemocompatibility of open cell iron foams with polyethylene 3329 3.1 glycol coating. Applied Surface Science, 2020, 505, 144634. Effect of phosphate glass reinforcement on the mechanical and biological properties of freeze-dried 3330 gelatin composite scaffolds for bone tissue engineering applications. Materials Today 0.9 17 Čommunications, 2020, 22, 100765. A step toward engineering thick tissues: Distributing microfibers within 3D printed frames. Journal of 2.1 Biomedical Materials Research - Part A, 2020, 108, 581-591.

#	Article	IF	CITATIONS
3332	Multimaterial Dual Gradient Three-Dimensional Printing for Osteogenic Differentiation and Spatial Segregation. Tissue Engineering - Part A, 2020, 26, 239-252.	1.6	23
3333	Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103517.	1.5	106
3334	Biomechanical analysis of the osseointegration of porous tantalum implants. Journal of Prosthetic Dentistry, 2020, 123, 811-820.	1.1	21
3335	Applications of Xâ€ray computed tomography for the evaluation of biomaterialâ€mediated bone regeneration in criticalâ€sized defects. Journal of Microscopy, 2020, 277, 179-196.	0.8	20
3336	Role of implants surface modification in osseointegration: A systematic review. Journal of Biomedical Materials Research - Part A, 2020, 108, 470-484.	2.1	151
3337	Effect of TiO2 doping on degradation rate, microstructure and strength of borate bioactive glass scaffolds. Materials Science and Engineering C, 2020, 107, 110351.	3.8	11
3338	Recent Progress on 3Dâ€Printed Polylactic Acid and Its Applications in Bone Repair. Advanced Engineering Materials, 2020, 22, 1901065.	1.6	52
3339	Scaffold strategies for modulating immune microenvironment during bone regeneration. Materials Science and Engineering C, 2020, 108, 110411.	3.8	67
3340	Fabrication of POX/PLGA Scaffold for the Potential Application of Tissue Engineering and Cell Transplantation. Macromolecular Research, 2020, 28, 196-202.	1.0	8
3341	Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions. Materials Science and Engineering C, 2020, 107, 110301.	3.8	6
3342	Constitutive Modelling of Solid Continua. Solid Mechanics and Its Applications, 2020, , .	0.1	8
3343	Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Materials Science and Engineering C, 2020, 107, 110342.	3.8	56
3344	Rapid prototyping technologies for tissue regeneration. , 2020, , 113-164.		2
3345	Synergistic Effects on Incorporation of β-Tricalcium Phosphate and Graphene Oxide Nanoparticles to Silk Fibroin/Soy Protein Isolate Scaffolds for Bone Tissue Engineering. Polymers, 2020, 12, 69.	2.0	25
3346	Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. International Journal of Biological Macromolecules, 2020, 149, 1-10.	3.6	36
3347	Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds. Bioprinting, 2020, 18, e00076.	2.9	26
3348	Incorporation of functionalized reduced graphene oxide/magnesium nanohybrid to enhance the osteoinductivity capability of 3D printed calcium phosphate-based scaffolds. Composites Part B: Engineering, 2020, 185, 107749.	5.9	45
3349	Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Materials Science and Engineering C, 2020, 110, 110622.	3.8	37

	CITATION	Report	
#	Article	IF	CITATIONS
3350	Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. Journal of Materials Science and Technology, 2020, 43, 52-63.	5.6	33
3351	The electrostimulation and scar inhibition effect of chitosan/oxidized hydroxyethyl cellulose/reduced graphene oxide/asiaticoside liposome based hydrogel on peripheral nerve regeneration in vitro. Materials Science and Engineering C, 2020, 109, 110560.	3.8	50
3352	Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Biofabrication, 2020, 12, 025014.	3.7	90
3353	Crosslinked, biodegradable polyurethanes for precisionâ€porous biomaterials: Synthesis and properties. Journal of Applied Polymer Science, 2020, 137, 48943.	1.3	12
3354	The response of host blood vessels to graded distribution of macro-pores size in the process of ectopic osteogenesis. Materials Science and Engineering C, 2020, 109, 110641.	3.8	14
3355	Production of inter-connective porous dental implants by computer-aided design and metal three-dimensional printing. Journal of Biomaterials Applications, 2020, 34, 1227-1238.	1.2	14
3356	ONO-1301 loaded nanocomposite scaffolds modulate cAMP mediated signaling and induce new bone formation in critical sized bone defect. Biomaterials Science, 2020, 8, 884-896.	2.6	9
3357	The effect of biomimetic mineralization of 3D-printed mesoporous bioglass scaffolds on physical properties and in vitro osteogenicity. Materials Science and Engineering C, 2020, 109, 110572.	3.8	19
3358	Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials Science and Engineering C, 2020, 110, 110595.	3.8	103
3359	Mechanophysical Cues in Extracellular Matrix Regulation of Cell Behavior. ChemBioChem, 2020, 21, 1254-1264.	1.3	28
3360	Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2020, 26, 79-102.	2.5	28
3361	3D Printed Wavy Scaffolds Enhance Mesenchymal Stem Cell Osteogenesis. Micromachines, 2020, 11, 31.	1.4	25
3362	Extraction of Hydroxyapatite Nanostructures from Marine Wastes for the Fabrication of Biopolymer-Based Porous Scaffolds. Marine Drugs, 2020, 18, 26.	2.2	19
3363	Nanofiber membranes as biomimetic and mechanically stable surface coatings. Materials Science and Engineering C, 2020, 108, 110417.	3.8	6
3364	In situ preparation of hierarchically porous β-tricalcium phosphate bioceramic scaffolds by the sol-gel method combined with F127. Ceramics International, 2020, 46, 6396-6405.	2.3	14
3365	Enhanced osteogenesis of honeycomb βâ€ŧricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study. Journal of Biomedical Materials Research - Part A, 2020, 108, 645-653.	2.1	9
3366	Fabrication of 3D plotted scaffold with microporous strands for bone tissue engineering. Journal of Materials Chemistry B, 2020, 8, 951-960.	2.9	20
3367	Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances. Materials Science and Engineering C, 2020, 108, 110416.	3.8	17

#	Article	IF	CITATIONS
3368	Poly(3-hydroxybutyrate-co-3-hydroxyexanoate) scaffolds with tunable macro- and microstructural features by additive manufacturing. Journal of Biotechnology, 2020, 308, 96-107.	1.9	15
3369	Fabrication and evaluation of modified poly(ethylene terephthalate) microfibrous scaffolds for hepatocyte growth and functionality maintenance. Materials Science and Engineering C, 2020, 109, 110523.	3.8	7
3370	Nanocrystalline Hydroxyapatite–Poly(thioketal urethane) Nanocomposites Stimulate a Combined Intramembranous and Endochondral Ossification Response in Rabbits. ACS Biomaterials Science and Engineering, 2020, 6, 564-574.	2.6	14
3371	Silica Release from Silane Cross-Linked Gelatin Based Hybrid Scaffold Affects Cell Proliferation. ACS Applied Bio Materials, 2020, 3, 197-207.	2.3	16
3372	Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture. Journal of Materials Science: Materials in Medicine, 2020, 31, 5.	1.7	19
3373	Gelatin Templated Polypeptide Coâ€Crossâ€Linked Hydrogel for Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e1901239.	3.9	112
3374	Design, optimization, and validation of mechanical properties of different cellular structures for biomedical application. International Journal of Advanced Manufacturing Technology, 2020, 106, 1253-1265.	1.5	42
3375	Novel naturally derived whey protein isolate and aragonite biocomposite hydrogels have potential for bone regeneration. Materials and Design, 2020, 188, 108408.	3.3	26
3376	Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Additive Manufacturing, 2020, 32, 100991.	1.7	36
3377	Integrated approach in designing biphasic nanocomposite collagen/nBCP scaffolds with controlled porosity and permeability for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1738-1753.	1.6	8
3378	Fabrication and preliminary evaluation of the osteogenic potential for micro-/nano-structured porous BCP ceramics. Ceramics International, 2020, 46, 4801-4812.	2.3	9
3379	The application of hyaluronic acid in bone regeneration. International Journal of Biological Macromolecules, 2020, 151, 1224-1239.	3.6	211
3380	Effects of immediately static loading on osteointegration and osteogenesis around 3D-printed porous implant: A histological and biomechanical study. Materials Science and Engineering C, 2020, 108, 110406.	3.8	24
3381	Bone regeneration using βâ€ŧricalcium phosphate (βâ€TCP) block with interconnected pores made by setting reaction of βâ€TCP granules. Journal of Biomedical Materials Research - Part A, 2020, 108, 625-632.	2.1	13
3382	Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects. Journal of Biomedical Materials Research - Part A, 2020, 108, 709-721.	2.1	13
3383	Efficient evaluations of bone implants performances. , 2020, , 305-337.		0
3384	Bioinspired materials and tissue engineering approaches applied to the regeneration of musculoskeletal tissues. , 2020, , 73-105.		1
3385	Mechanical aspects of dental implants and osseointegration: A narrative review. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103574.	1.5	122

#	Article	IF	CITATIONS
3386	Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. International Journal of Biological Macromolecules, 2020, 143, 619-632.	3.6	61
3387	3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. European Spine Journal, 2020, 29, 1248-1260.	1.0	61
3388	Calcium orthophosphate (CaPO4)–based bone-graft substitutes and the special roles of octacalcium phosphate materials. , 2020, , 213-288.		3
3389	Modification of octacalcium phosphate growth by enamel proteins, fluoride, and substrate materials and influence of morphology on the performance of octacalcium phosphate biomaterials. , 2020, , 309-347.		1
3390	Rapid fabrication and screening of tailored functional 3D biomaterials. Materials Science and Engineering C, 2020, 108, 110489.	3.8	10
3391	Functionalization of Silk Fibers by PDGF and Bioceramics for Bone Tissue Regeneration. Coatings, 2020, 10, 8.	1.2	8
3392	Synthesis and Characterization of Hierarchical Mesoporous-Macroporous TiO2-ZrO2 Nanocomposite Scaffolds for Cancellous Bone Tissue Engineering Applications. Journal of Nanomaterials, 2020, 2020, 1-13.	1.5	3
3393	3D Bone Morphology Alters Gene Expression, Motility, and Drug Responses in Bone Metastatic Tumor Cells. International Journal of Molecular Sciences, 2020, 21, 6913.	1.8	6
3394	Additive manufacturing of trabecular tantalum scaffolds by laser powder bed fusion: Mechanical property evaluation and porous structure characterization. Materials Characterization, 2020, 170, 110694.	1.9	32
3395	<p>A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 6945-6960.	3.3	27
3396	Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. Coatings, 2020, 10, 971.	1.2	64
3397	A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering. Acta Biomaterialia, 2020, 118, 100-112.	4.1	23
3398	Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111361.	2.5	14
3399	3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. International Journal of Molecular Sciences, 2020, 21, 6942.	1.8	38
3400	Influence of bacterial nanocellulose surface modification on calcium phosphates precipitation for bone tissue engineering. Cellulose, 2020, 27, 10747-10763.	2.4	13
3401	Injectable and assembled 3D solid structure for free-to-fixed shape in bone reconstruction. Applied Materials Today, 2020, 21, 100823.	2.3	2
3402	Out-of-plane auxetic nonwoven as a designer meta-biomaterial. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104069.	1.5	11
3403	Potential Applications of Polyhydroxyalkanoates as a Biomaterial for the Aging Population. Polymer Degradation and Stability, 2020, 181, 109371.	2.7	21

#	Article	IF	CITATIONS
3404	Fabrication of highly porous merwinite scaffold using the space holder method. International Journal of Materials Research, 0, , .	0.1	2
3405	Advances on Bone Substitutes through 3D Bioprinting. International Journal of Molecular Sciences, 2020, 21, 7012.	1.8	85
3406	The Impact of Compaction Force on Graft Consolidation in a Guided Bone Regeneration Model. International Journal of Oral and Maxillofacial Implants, 2020, 35, 917-923.	0.6	0
3407	Fabrication of Biomolecule-Loaded Composite Scaffolds Carried by Extracellular Matrix Hydrogel. Tissue Engineering - Part A, 2021, 27, 796-805.	1.6	2
3408	Coaxial nanofiber scaffold with super-active platelet lysate to accelerate the repair of bone defects. RSC Advances, 2020, 10, 35776-35786.	1.7	16
3409	Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO. Materials, 2020, 13, 3948.	1.3	6
3410	An in vitro study on the key features of Poly L-lactic acid/biphasic calcium phosphate scaffolds fabricated via DLP 3D printing for bone grafting. European Polymer Journal, 2020, 141, 110057.	2.6	22
3411	In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. International Journal of Biological Macromolecules, 2020, 165, 1346-1360.	3.6	38
3412	Transglutaminase release and activity from novel poly(ε-caprolactone)-based composites prepared by foaming with supercritical CO2. Journal of Supercritical Fluids, 2020, 166, 105031.	1.6	8
3413	Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS Omega, 2020, 5, 26655-26666.	1.6	44
3414	An in vitro evaluation of zinc silicate fortified chitosan scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 164, 4252-4262.	3.6	21
3415	Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers. Biomaterials Science, 2020, 8, 6625-6636.	2.6	21
3416	Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering, 2020, 7, 115.	1.6	72
3417	An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomaterialia, 2020, 117, 246-260.	4.1	60
3418	Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomaterialia, 2020, 117, 21-39.	4.1	116
3419	Novel design of additive manufactured hollow porous implants. Dental Materials, 2020, 36, 1437-1451.	1.6	20
3420	Effects of design, porosity and biodegradation on mechanical and morphological properties of additive-manufactured triply periodic minimal surface scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104064.	1.5	29
3421	Modeling osteoinduction in titanium bone scaffold with a representative channel structure. Materials Science and Engineering C, 2020, 117, 111347.	3.8	9

#	Article	IF	CITATIONS
3422	Developing Techniques of Acoustic Microscopy for Monitoring Processes of Osteogenesis in Regenerative Medicine. Bulletin of the Russian Academy of Sciences: Physics, 2020, 84, 653-656.	0.1	4
3423	Bone â€ [~] spackling' paste: Mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 103958.	1.5	3
3424	Comparing the regeneration potential between PLLA/Aragonite and PLLA/Vaterite pearl composite scaffolds in rabbit radius segmental bone defects. Bioactive Materials, 2020, 5, 980-989.	8.6	23
3425	Three-dimensional-printed customized prosthesis for pubic defect: prosthesis design and surgical techniques. Journal of Orthopaedic Surgery and Research, 2020, 15, 261.	0.9	7
3426	Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Model. ACS Biomaterials Science and Engineering, 2020, 6, 1681-1689.	2.6	9
3427	Mechanical performance of auxetic meta-biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103658.	1.5	77
3428	Novel TOCNF reinforced injectable alginate / \hat{l}^2 -tricalcium phosphate microspheres for bone regeneration. Materials and Design, 2020, 194, 108892.	3.3	23
3429	Design and additive manufacturing of porous titanium scaffolds for optimum cell viability in bone tissue engineering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2023, 237, 2015-2024.	1.5	8
3430	3D Printing in Biomedical Engineering. Materials Horizons, 2020, , .	0.3	15
3431	Fabrication and characterization of porous bone scaffold of bovine hydroxyapatite-glycerin by 3D printing technology. Bioprinting, 2020, 18, e00078.	2.9	11
3432	Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing. Journal of the European Ceramic Society, 2020, 40, 6087-6094.	2.8	32
3433	Studies on the Performance of Molar Porous Root-Analogue Implant by Finite Element Model Simulation and Verification of a Case Report. Journal of Oral and Maxillofacial Surgery, 2020, 78, 1965.e1-1965.e9.	0.5	8
3434	Tissue Engineering Scaffolds. , 2020, , 1317-1334.		4
3435	Bone Tissue Engineering. , 2020, , 1373-1388.		8
3436	Powder metallurgy in manufacturing of medical devices. , 2020, , 159-190.		2
3437	Investigation on preparation porous titanium through calciothermic reduction of porous TiO precursors. Journal of Materials Research and Technology, 2020, 9, 13137-13146.	2.6	5
3438	3D Printed Polyurethane Scaffolds for the Repair of Bone Defects. Frontiers in Bioengineering and Biotechnology, 2020, 8, 557215.	2.0	24
3439	Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration. Materials, 2020, 13, 5083.	1.3	18

#	Article	IF	CITATIONS
3440	Influence of coatings on degradation and osseointegration of open porous Mg scaffolds in vivo. Materialia, 2020, 14, 100949.	1.3	11
3441	3D printing of metal–organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale, 2020, 12, 24437-24449.	2.8	72
3442	Poly (Glycerol Sebacate)-Based Bio-Artificial Multiporous Matrix for Bone Regeneration. Frontiers in Chemistry, 2020, 8, 603577.	1.8	12
3443	Porous polylactic acid scaffolds for bone regeneration: A study of additively manufactured triply periodic minimal surfaces and their osteogenic potential. Journal of Tissue Engineering, 2020, 11, 204173142095654.	2.3	32
3444	Injectable Magnesium-Zinc Alloy Containing Hydrogel Complex for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 617585.	2.0	11
3445	Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review. Regenerative Engineering and Translational Medicine, 2022, 8, 1-21.	1.6	15
3446	Effect of Pore Size on the Physicochemical Properties and Osteogenesis of Ti6Al4V Porous Scaffolds with Bionic Structure. ACS Omega, 2020, 5, 28684-28692.	1.6	26
3447	Selective laser melting in biomedical manufacturing. , 2020, , 235-269.		19
3448	Computer aided designing and finite element analysis for development of porous 3D tissue scaffold - a review. International Journal of Biomedical Engineering and Technology, 2020, 33, 174.	0.2	4
3449	Sintering Behavior of a Six-Oxide Silicate Bioactive Glass for Scaffold Manufacturing. Applied Sciences (Switzerland), 2020, 10, 8279.	1.3	10
3450	Human Stem Cells an d Tissue Responses to Xenogeneic Bone Block: An In Vitro and Histologic Study. International Journal of Oral and Maxillofacial Implants, 2020, 35, 1170-1176.	0.6	0
3451	New Insight into a Step-by-Step Modeling of Supercritical CO ₂ Foaming to Fabricate Poly(ε-caprolactone) Scaffold. Industrial & Engineering Chemistry Research, 2020, 59, 20033-20044.	1.8	8
3452	Biodegradable materials for bone defect repair. Military Medical Research, 2020, 7, 54.	1.9	121
3453	Solvent-cast 3D printing of magnesium scaffolds. Acta Biomaterialia, 2020, 114, 497-514.	4.1	51
3454	Manufacturing of silicon – Bioactive glass scaffolds by selective laser melting for bone tissue engineering. Ceramics International, 2020, 46, 26936-26944.	2.3	11
3455	Fabrication and evaluation of a chitin whisker/poly(<scp>l</scp> -lactide) composite scaffold by the direct trisolvent-ink writing method for bone tissue engineering. Nanoscale, 2020, 12, 18225-18239.	2.8	29
3456	Improving the mechanical strength of ternary beta titanium alloy (Ti-Ta-Sn) foams, using a bimodal microstructure. Materials and Design, 2020, 195, 108945.	3.3	14
3457	Biphasic fish collagen scaffold for osteochondral regeneration. Materials and Design, 2020, 195, 108947.	3.3	31

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3458	Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 202	0, 1, 403-415.	6.2	315
3459	Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Critical Size Bone Defect Repair. ACS Biomaterials Science and Engineering, 2020, 6, 5	Scaffolds for 120-5131.	2.6	31
3460	A Procedure for Designing Custom-Made Implants for Forehead Augmentation in Peop from Apert Syndrome. Journal of Medical Systems, 2020, 44, 146.	le Suffering	2.2	10
3461	<i>In vitro</i> evaluation of novel low-pressure spark plasma sintered HA–BG compo for bone tissue engineering. RSC Advances, 2020, 10, 23813-23828.	osite scaffolds	1.7	8
3462	Overcoming the Design Challenge in 3D Biomimetic Hybrid Scaffolds for Bone and Ost Regeneration by Factorial Design. Frontiers in Bioengineering and Biotechnology, 2020	ceochondral D, 8, 743.	2.0	11
3463	Integrated 3D Information for Custom-Made Bone Grafts: Focus on Biphasic Calcium F Substitute Biomaterials. International Journal of Environmental Research and Public He 4931.	hosphate Bone alth, 2020, 17,	1.2	2
3464	Biomimetic Design for a Dual Concentric Porous Titanium Scaffold with Appropriate Co Strength and Cells Affinity. Materials, 2020, 13, 3316.	ompressive	1.3	2
3465	Delivering Proangiogenic Factors from 3Dâ€Printed Polycaprolactone Scaffolds for Vas Regeneration. Advanced Healthcare Materials, 2020, 9, e2000727.	scularized Bone	3.9	42
3466	Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Scaffolds Prepared by 3D Printing. ACS Biomaterials Science and Engineering, 2020, 6	Porous , 5181-5190.	2.6	45
3467	Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelera wound healing. Journal of Materials Chemistry B, 2020, 8, 8585-8598.	ted dermal	2.9	36
3468	A comparative study of polycaprolactone–hydroxyapatite scaffold and collagen men for recombinant human bone morphogenic protein-2 for guided bone regeneration. In Journal of Polymeric Materials and Polymeric Biomaterials, 2020, , 1-14.	nbrane carriers ternational	1.8	1
3469	The Porosity and Human Gingival Cells Attachment of Synthetic Coral Scaffold for Bon Regeneration. Key Engineering Materials, 0, 840, 305-310.		0.4	2
3470	Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103891.	melting.	1.5	29
3471	Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. M Science and Engineering C, 2020, 110, 110740.	aterials	3.8	46
3472	3D-Focused ion beam tomography and quantitative porosity evaluation of ZrO2-SiO2 coating; amorphous SiO2 as a porosity tailoring agent. Applied Surface Science, 2020,	composite 511, 145567.	3.1	15
3473	Gradient scaffolds for osteochondral tissue engineering and regeneration. Journal of M Chemistry B, 2020, 8, 8149-8170.	laterials	2.9	88
3474	Fabrication and Biological Analysis of Highly Porous PEEK Bionanocomposites Incorpor Carbon and Hydroxyapatite Nanoparticles for Biological Applications. Molecules, 2020	rated with 1, 25, 3572.	1.7	18
3475	Electrodeposition of Hydroxyapatite on a Metallic 3D-Woven Bioscaffold. Coatings, 20	20, 10, 715.	1.2	11

#	Article	IF	CITATIONS
3476	Silk Fibroin/Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials toward Bone Tissue Regeneration. Materials, 2020, 13, 3433.	1.3	30
3477	The Immunohistochemical Study of Periodontal Tissues Regenerated by Nano Calcium Phosphate Bioceramics. Journal of Physics: Conference Series, 2020, 1622, 012060.	0.3	0
3478	Study of Mechanical and Thermal Properties in Nano-Hydroxyapatite/Chitosan/Carboxymethyl Cellulose Nanocomposite-Based Scaffold for Bone Tissue Engineering: The Roles of Carboxymethyl Cellulose. Applied Sciences (Switzerland), 2020, 10, 6970.	1.3	8
3479	Influence of lubricating conditions on the two-body wear behavior and hardness of titanium alloys for biomedical applications. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 1377-1386.	0.9	6
3480	A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomaterialia, 2020, 118, 83-99.	4.1	50
3481	Susceptibility to biofilm formation on 3D-printed titanium fixation plates used in the mandible: a preliminary study. Journal of Oral Microbiology, 2020, 12, 1838164.	1.2	21
3482	Exploring Macroporosity of Additively Manufactured Titanium Metamaterials for Bone Regeneration with Quality by Design: A Systematic Literature Review. Materials, 2020, 13, 4794.	1.3	22
3483	Influence of Titanium Alloy Scaffolds on Enzymatic Defense against Oxidative Stress and Bone Marrow Cell Differentiation. International Journal of Biomaterials, 2020, 2020, 1-8.	1.1	1
3484	Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior. Metals, 2020, 10, 1156.	1.0	12
3485	Acrylate–gelatin–carbonated hydroxyapatite (cHAP) composites for dental bone-tissue applications. Materials Advances, 2020, 1, 1675-1684.	2.6	6
3486	Biofilms of cellulose and hydroxyapatite composites: Alternative synthesis process. Journal of Bioactive and Compatible Polymers, 2020, 35, 469-478.	0.8	4
3487	Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds. Journal of Materials Chemistry B, 2020, 8, 8536-8545.	2.9	31
3488	3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering. Polymers, 2020, 12, 1962.	2.0	77
3489	Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Advances, 2020, 10, 33782-33835.	1.7	108
3490	Parylene-Based Porous Scaffold with Functionalized Encapsulation of Platelet-Rich Plasma and Living Stem Cells for Tissue Engineering Applications. ACS Applied Bio Materials, 2020, 3, 7193-7201.	2.3	7
3491	Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial. Macromolecular Research, 2020, 28, 979-985.	1.0	20
3492	Three-Dimensional, MultiScale, and Interconnected Trabecular Bone Mimic Porous Tantalum Scaffold for Bone Tissue Engineering. ACS Omega, 2020, 5, 22520-22528.	1.6	28
3493	Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering. Materials, 2020, 13, 3577.	1.3	62

#	Article	IF	CITATIONS
3494	Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury. Theranostics, 2020, 10, 10214-10230.	4.6	27
3495	Mechanical Enhancement of Cytocompatible 3D Scaffolds, Consisting of Hydroxyapatite Nanocrystals and Natural Biomolecules, Through Physical Cross-Linking. Bioengineering, 2020, 7, 96.	1.6	2
3496	A review: silicate ceramic-polymer composite scaffold for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 180-195.	1.8	29
3497	Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 875.	2.0	75
3498	Preparation and properties of a biodegradable poly(lactide- <i>co</i> glycolide)/poly(trimethylene) Tj ETQq0 0 0 r 44, 14632-14641.	gBT /Over 1.4	lock 10 Tf 50 9
3499	Ceramic Scaffolds in a Vacuum Suction Handle for Intraoperative Stromal Cell Enrichment. International Journal of Molecular Sciences, 2020, 21, 6393.	1.8	7
3500	Natural hydroxyapatite/diopside nanocomposite scaffold for bone tissue engineering applications: physical, mechanical, bioactivity and biodegradation evaluation. Materials Technology, 2022, 37, 36-48.	1.5	10
3501	3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiRâ€26a for Bone Repair. Advanced Functional Materials, 2020, 30, 2005531.	7.8	34
3502	Immobilization of BMP-2 and VEGF within Multilayered Polydopamine-Coated Scaffolds and the Resulting Osteogenic and Angiogenic Synergy of Co-Cultured Human Mesenchymal Stem Cells and Human Endothelial Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 6418.	1.8	28
3503	<p>Effect of Attapulgite-Doped Electrospun Fibrous PLGA Scaffold on Pro-Osteogenesis and Barrier Function in the Application of Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 6761-6777.	3.3	13
3504	3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep. Animals, 2020, 10, 1389.	1.0	28
3505	A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives. Coatings, 2020, 10, 757.	1.2	62
3506	Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Journal of Materials Science: Materials in Medicine, 2020, 31, 77.	1.7	20
3507	Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Frontiers in Chemistry, 2020, 8, 604398.	1.8	31
3508	Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. Journal of Tissue Engineering, 2020, 11, 204173142096779.	2.3	63
3509	3-D Cell Culture Systems in Bone Marrow Tissue and Organoid Engineering, and BM Phantoms as In Vitro Models of Hematological Cancer Therapeutics—A Review. Materials, 2020, 13, 5609.	1.3	10
3510	Enzyme-Crosslinked Gelatin Hydrogel with Adipose-Derived Stem Cell Spheroid Facilitating Wound Repair in the Murine Burn Model. Polymers, 2020, 12, 2997.	2.0	33
3511	4D Printing: Materials, Technologies, and Future Applications in the Biomedical Field. Sustainability, 2020, 12, 10628.	1.6	50

#	Article	IF	CITATIONS
3512	In-situ analysis of the hydration ability of bone graft material using a synchrotron radiation X-ray micro-CT. Journal of Applied Biomaterials and Functional Materials, 2020, 18, 228080002096347.	0.7	4
3513	Bone and Cartilage Interfaces With Orthopedic Implants: A Literature Review. Frontiers in Surgery, 2020, 7, 601244.	0.6	30
3514	Elucidating the Role of Matrix Porosity and Rigidity in Glioblastoma Type IV Progression. Applied Sciences (Switzerland), 2020, 10, 9076.	1.3	4
3515	The Effect of TiAl6V4 Particles on Tissue in Rats. Journal of Physics: Conference Series, 2020, 1637, 012104.	0.3	0
3516	Effect of Sodium Bicarbonate Additions on the Physical, Mechanical and Bioactive Property of Sol-Gel Bioglass. IOP Conference Series: Materials Science and Engineering, 2020, 957, 012024.	0.3	0
3517	Tissue Engineering and Three-Dimensional Printing in Periodontal Regeneration: A Literature Review. Journal of Clinical Medicine, 2020, 9, 4008.	1.0	13
3518	Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction. Polymers, 2020, 12, 2938.	2.0	63
3519	3D-cubic interconnected porous Mg-based scaffolds for bone repair. Journal of Magnesium and Alloys, 2020, 9, 1329-1329.	5.5	31
3520	The effects of tubular structure on biomaterial aided bone regeneration in distraction osteogenesis. Journal of Orthopaedic Translation, 2020, 25, 80-86.	1.9	5
3521	Effects of different concentrations of TiAl6V4 particles on MC3T3-E1 cells and bone in rats. Medicine in Novel Technology and Devices, 2020, 7, 100044.	0.9	1
3522	A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects. Stem Cell Research and Therapy, 2020, 11, 533.	2.4	13
3523	A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials, 2020, 13, 5560.	1.3	86
3524	Icaritin Enhancing Bone Formation Initiated by Sub-Microstructured Calcium Phosphate Ceramic for Critical Size Defect Repair. Frontiers in Materials, 2020, 7, .	1.2	4
3525	The Use of Simulated Body Fluid (SBF) for Assessing Materials Bioactivity in the Context of Tissue Engineering: Review and Challenges. Biomimetics, 2020, 5, 57.	1.5	98
3526	Porous Silk Fibroin/Cellulose Hydrogels for Bone Tissue Engineering via a Novel Combined Process Based on Sequential Regeneration and Porogen Leaching. Molecules, 2020, 25, 5097.	1.7	27
3527	Hydroxyapatite Nanoparticles as Injectable Bone Substitute Material in a Vertical Bone Augmentation Model. In Vivo, 2020, 34, 1053-1061.	0.6	12
3528	Influence of chitosan on the mechanical and biological properties of HDPE for biomedical applications. Polymer Testing, 2020, 91, 106610.	2.3	9
3529	Evaluation of unidirectional BGF/PLA and Mg/PLA biodegradable composites bone plates-scaffolds assembly for critical segmental fractures healing. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105929.	3.8	39

#	Article	IF	CITATIONS
3530	Benefits in oxygen control and lowering sintering temperature by using hydride powders to sinter Ti–Nb–Zr SMAs. Journal of Alloys and Compounds, 2020, 838, 155572.	2.8	6
3531	The Effect of Ti-6Al-4V Alloy Surface Structure on the Adhesion and Morphology of Unidirectional Freeze-Coated Gelatin. Coatings, 2020, 10, 434.	1.2	5
3532	<p>Electrospun Icariin-Loaded Core-Shell Collagen, Polycaprolactone, Hydroxyapatite Composite Scaffolds for the Repair of Rabbit Tibia Bone Defects</p> . International Journal of Nanomedicine, 2020, Volume 15, 3039-3056.	3.3	28
3533	In vitro analysis of the influence of mineralized and EDTA-demineralized allogenous bone on the viability and differentiation of osteoblasts and dental pulp stem cells. Cell and Tissue Banking, 2020, 21, 479-493.	0.5	4
3534	Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single enter case series. Xenotransplantation, 2020, 27, e12600.	1.6	17
3535	Development of AM Technologies for Metals in the Sector of Medical Implants. Metals, 2020, 10, 686.	1.0	51
3536	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	23.0	185
3537	Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Biomedical Materials (Bristol), 2020, 15, 052003.	1.7	52
3538	Biomaterials and Tissue Engineering Cancer Models. , 2020, , 485-494.		0
3539	Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Composites Part B: Engineering, 2020, 196, 108099.	5.9	59
3540	The role of microscale solid matrix compressibility on the mechanical behaviour of poroelastic materials. European Journal of Mechanics, A/Solids, 2020, 83, 103996.	2.1	23
3541	3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103850.	1.5	62
3542	An effective device and method for enhanced cell growth in 3D scaffolds: Investigation of cell seeding and proliferation under static and dynamic conditions. Materials Science and Engineering C, 2020, 114, 111060.	3.8	8
3544	Sintering effects of bioactive glass incorporation in tricalcium phosphate scaffolds. Materials Letters, 2020, 274, 128010.	1.3	7
3545	Three-Dimensional Printed Porous Titanium Screw with Bioactive Surface Modification for Bone–Tendon Healing: A Rabbit Animal Model. International Journal of Molecular Sciences, 2020, 21, 3628.	1.8	13
3546	Green preparation of hierarchically structured hemostatic epoxy-amine sponge. Chemical Engineering Journal, 2020, 397, 125445.	6.6	27
3547	Nanocomposites from functionalized bacterial cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 2020, 179, 109203.	2.7	14
3548	Additively Manufactured Continuous Cell-Size Gradient Porous Scaffolds: Pore Characteristics, Mechanical Properties and Biological Responses In Vitro. Materials, 2020, 13, 2589.	1.3	34

#	Article	IF	CITATIONS
3549	β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomaterialia, 2020, 113, 23-41.	4.1	342
3550	Sol-Gel Derived Tertiary Bioactive Glass–Ceramic Nanorods Prepared via Hydrothermal Process and Their Composites with Poly(Vinylpyrrolidone-Co-Vinylsilane). Journal of Functional Biomaterials, 2020, 11, 35.	1.8	4
3551	Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds. Acta Biomaterialia, 2020, 112, 298-315.	4.1	85
3552	Fabrication of a self-assembled honeycomb nanofibrous scaffold to guide endothelial morphogenesis. Biofabrication, 2020, 12, 045001.	3.7	10
3553	A Comparison of Bioactive Glass Scaffolds Fabricated ‎by Robocasting from Powders Made by Sol–Gel and Melt-Quenching Methods. Processes, 2020, 8, 615.	1.3	20
3554	Iron Ionâ€Doped Tricalcium Phosphate Coatings Improve the Properties of Biodegradable Magnesium Alloys for Biomedical Implant Application. Advanced Materials Interfaces, 2020, 7, 2000531.	1.9	31
3555	Emulsion-templated synthetic polypeptide scaffolds prepared by ring-opening polymerization of <i>N</i> -carboxyanhydrides. Polymer Chemistry, 2020, 11, 4260-4270.	1.9	14
3556	Engineering stiffness in highly porous biomimetic gelatin/tertiary bioactive glass hybrid scaffolds using graphene nanosheets. Reactive and Functional Polymers, 2020, 154, 104668.	2.0	4
3557	Materials design for bone-tissue engineering. Nature Reviews Materials, 2020, 5, 584-603.	23.3	851
3558	Scaffolds in Bone Tissue Engineering: Research Progress and Current Applications. , 2020, , 204-215.		8
3559	Inorganic additives to augment the mechanical properties of 3D-printed systems. , 2020, , 83-107.		4
3560	3D-printed Ti6Al4V scaffolds coated with freeze-dried platelet-rich plasma as bioactive interface for enhancing osseointegration in osteoporosis. Materials and Design, 2020, 194, 108825.	3.3	26
3561	Comparing physiologically relevant corrosion performances of Mg AZ31 alloy protected by ALD and sputter coated TiO2. Surface and Coatings Technology, 2020, 395, 125922.	2.2	26
3562	Gelatin—alginate—cerium oxide nanocomposite scaffold for bone regeneration. Materials Science and Engineering C, 2020, 116, 111111.	3.8	85
3563	On design for additive manufacturing (DAM) parameter and its effects on biomechanical properties of 3D printed ceramic scaffolds. Materials Today Communications, 2020, 23, 101065.	0.9	3
3564	Immobilization of BMP-2-derived peptides on 3D-printed porous scaffolds for enhanced osteogenesis. Biomedical Materials (Bristol), 2020, 15, 015002.	1.7	15
3565	In Situ Biological Transmutation of Catalytic Lactic Acid Waste into Calcium Lactate in a Readily Processable Three-Dimensional Fibrillar Structure for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2020, 12, 18197-18210.	4.0	18
3566	Boron Nitride Based Nanobiocomposites: Design by 3D Printing for Bone Tissue Engineering. ACS Applied Bio Materials, 2020, 3, 1865-1874.	2.3	42

#	Article	IF	CITATIONS
3567	Oneâ€pot porogen free method fabricated porous microsphereâ€aggregated 3D PCL scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2699-2710.	1.6	14
3568	A comparative study of the mechanical integrity of natural hydroxyapatite scaffolds prepared from two biogenic sources using a low compaction pressure method. Results in Physics, 2020, 17, 103051.	2.0	31
3569	Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications. Journal of the Korean Ceramic Society, 2020, 57, 392-400.	1.1	21
3570	Computational fluid dynamics simulation from microCT stacks of commercial biomaterials usable for bone grafting. Micron, 2020, 133, 102861.	1.1	9
3571	Cell Seeding Process Experiment and Simulation on Three-Dimensional Polyhedron and Cross-Link Design Scaffolds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 104.	2.0	20
3572	Comparative study of different nitrogen-containing plasma modifications applied on 3D porous PCL scaffolds and 2D PCL films. Applied Surface Science, 2020, 516, 146067.	3.1	22
3573	Wood-Derived Hybrid Scaffold with Highly Anisotropic Features on Mechanics and Liquid Transport toward Cell Migration and Alignment. ACS Applied Materials & Interfaces, 2020, 12, 17957-17966.	4.0	18
3574	Mechanically and Electrically Enhanced Polyurethane-poly(3,4-ethylenedioxythiophene) Conductive Foams with Aligned Pore Structures Promote MC3T3-E1 Cell Growth and Proliferation. ACS Applied Polymer Materials, 2020, 2, 1482-1490.	2.0	5
3575	Oxygen-Releasing Scaffolds for Accelerated Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 2985-2994.	2.6	38
3576	A tarsus construct of a novel branched polyethylene with good elasticity for eyelid reconstruction in vivo. International Journal of Energy Production and Management, 2020, 7, 259-269.	1.9	6
3577	Guided bone marrow stimulation for articular cartilage repair through a freeze-dried chitosan microparticle approach. Materialia, 2020, 9, 100609.	1.3	5
3578	Dense fibrillar collagen-based hydrogels as functional osteoid-mimicking scaffolds. International Materials Reviews, 2020, 65, 502-521.	9.4	30
3579	Additive manufacturing of fracture fixation implants: Design, material characterization, biomechanical modeling and experimentation. Additive Manufacturing, 2020, 33, 101137.	1.7	32
3580	Comparison of two pore sizes of LAE442 scaffolds and their effect on degradation and osseointegration behavior in the rabbit model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2776-2788.	1.6	10
3581	Scaffolds and coatings for bone regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 27.	1.7	86
3582	Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. International Journal of Biological Macromolecules, 2020, 163, 9-18.	3.6	26
3583	Fracture and fatigue behaviour of a laser additive manufactured Zr-based bulk metallic glass. Additive Manufacturing, 2020, 36, 101416.	1.7	24
3584	Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration. Materials and Design, 2020, 194, 108915.	3.3	112

#	Article	IF	CITATIONS
3585	Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 32340-32351.	4.0	15
3586	Mussel Shell-Derived Macroporous 3D Scaffold: Characterization and Optimization Study of a Bioceramic from the Circular Economy. Marine Drugs, 2020, 18, 309.	2.2	26
3587	Advanced Theragenerative Biomaterials with Therapeutic and Regeneration Multifunctionality. Advanced Functional Materials, 2020, 30, 2002621.	7.8	35
3588	Structural analysis of porous bioactive glass scaffolds using micro-computed tomographic images. Journal of Materials Science, 2020, 55, 12705-12724.	1.7	9
3589	Powder-Based 3D Printing for the Fabrication of Device with Micro and Mesoscale Features. Micromachines, 2020, 11, 658.	1.4	55
3590	Osseointegration and biosafety of graphene oxide wrapped porous CF/PEEK composites as implantable materials: The role of surface structure and chemistry. Dental Materials, 2020, 36, 1289-1302.	1.6	44
3591	Development and Characterization of a Biocomposite Material from Chitosan and New Zealand-Sourced Bovine-Derived Hydroxyapatite for Bone Regeneration. ACS Omega, 2020, 5, 16537-16546.	1.6	18
3592	Enhancement of Bone Ingrowth into a Porous Titanium Structure to Improve Osseointegration of Dental Implants: A Pilot Study in the Canine Model. Materials, 2020, 13, 3061.	1.3	16
3593	Enhanced osteogenesis of 3D printed β-TCP scaffolds with Cissus Quadrangularis extract-loaded polydopamine coatings. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103945.	1.5	16
3594	Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioactive Materials, 2020, 5, 1004-1017.	8.6	49
3595	Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Progress in Organic Coatings, 2020, 147, 105858.	1.9	58
3596	Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. Journal of Orthopaedic Translation, 2020, 24, 112-120.	1.9	26
3597	Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2020, 116, 111223.	3.8	40
3598	A novel 3D printed bioactive scaffolds with enhanced osteogenic inspired by ancient Chinese medicine HYSA for bone repair. Experimental Cell Research, 2020, 394, 112139.	1.2	14
3599	Bone responses to biomaterials. , 2020, , 617-636.		0
3600	Textured and Porous Biomaterials. , 2020, , 601-622.		8
3601	Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomaterialia, 2020, 113, 1-22.	4.1	141
3602	Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models. Biomedical Materials (Bristol), 2020, 15, 045022.	1.7	13

#	Article	IF	Citations
3603	Macroporous scaffolds developed from CaSiO3 nanofibers regulating bone regeneration via controlled calcination. Materials Science and Engineering C, 2020, 113, 111005.	3.8	19
3604	Flexible Water-Absorbing Silk-Fibroin Biomaterial Sponges with Unique Pore Structure for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1641-1649.	2.6	22
3605	Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. International Journal of Oral Science, 2020, 12, 6.	3.6	240
3606	Effective balance equations for poroelastic composites. Continuum Mechanics and Thermodynamics, 2020, 32, 1533-1557.	1.4	11
3607	Mechanical modeling of silk fibroin/TiO2 and silk fibroin/fluoridated TiO2 nanocomposite scaffolds for bone tissue engineering. Iranian Polymer Journal (English Edition), 2020, 29, 219-224.	1.3	7
3608	Bone regeneration of minipig mandibular defect by adipose derived mesenchymal stem cells seeded tri-calcium phosphate- poly(D,L-lactide-co-glycolide) scaffolds. Scientific Reports, 2020, 10, 2062.	1.6	59
3609	Novel injectable and self-setting composite materials for bone defect repair. Science China Materials, 2020, 63, 876-887.	3.5	11
3610	Fabrication and Application of a 3D-Printed Poly- <i>ε</i> -Caprolactone Cage Scaffold for Bone Tissue Engineering. BioMed Research International, 2020, 2020, 1-12.	0.9	14
3611	In Situ Precipitation of Cluster and Acicular Hydroxyapatite onto Porous Poly(γ-benzyl- <scp> </scp> -glutamate) Microcarriers for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2020, 12, 12468-12477.	4.0	24
3612	Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair. Journal of Nanobiotechnology, 2020, 18, 39.	4.2	64
3613	Three-Dimensional Printing: A Catalyst for a Changing Orthopaedic Landscape. JBJS Reviews, 2020, 8, e0076-e0076.	0.8	18
3614	A review on computer-aided design and manufacturing of patient-specific maxillofacial implants. Expert Review of Medical Devices, 2020, 17, 345-356.	1.4	44
3615	Determination of the effective dose of bone marrow mononuclear cell therapy for bone healing in vivo. European Journal of Trauma and Emergency Surgery, 2020, 46, 265-276.	0.8	13
3616	Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering. Materials Science and Engineering C, 2020, 115, 110734.	3.8	32
3617	Multiobjective optimization of a newly developed additively manufactured functionally graded anisotropic porous lattice structure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 2233-2255.	1.1	6
3618	Hybrid Bone Scaffold Induces Bone Bridging in Goat Calvarial Critical Size Defects Without Growth Factor Augmentation. Regenerative Engineering and Translational Medicine, 2020, 6, 189-200.	1.6	1
3619	Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised <i>ex ovo</i> chorioallantoic membrane model. Journal of Tissue Engineering, 2020, 11, 204173142090162.	2.3	23
3620	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494

#	Article	IF	CITATIONS
3621	Dense, Strong, and Precise Silicon Nitride-Based Ceramic Parts by Lithography-Based Ceramic Manufacturing. Applied Sciences (Switzerland), 2020, 10, 996.	1.3	49
3622	A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics and Biomedical Engineering, 2020, 40, 624-638.	3.3	147
3623	Combining cobalt ferrite and graphite with cellulose nanocrystals for magnetically active and electrically conducting mesoporous nanohybrids. Carbohydrate Polymers, 2020, 236, 116001.	5.1	10
3624	Arabinoxylan-co-AA/HAp/TiO2 nanocomposite scaffold a potential material for bone tissue engineering: An in vitro study. International Journal of Biological Macromolecules, 2020, 151, 584-594.	3.6	51
3625	Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling. Biofabrication, 2020, 12, 025032.	3.7	36
3626	A Synergistic Relationship between Polycaprolactone and Natural Polymers Enhances the Physical Properties and Biological Activity of Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 13587-13597.	4.0	34
3627	Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by <i>In Vitro</i> Generated Extracellular Matrix Decoration. ACS Applied Materials & Interfaces, 2020, 12, 12510-12524.	4.0	63
3628	Construction and Biocompatibility of Three-Dimensional Composite Polyurethane Scaffolds in Liquid Crystal State. ACS Biomaterials Science and Engineering, 2020, 6, 2312-2322.	2.6	11
3629	Assessment of biological properties of recombinant collagen-hyaluronic acid composite scaffolds. International Journal of Biological Macromolecules, 2020, 149, 1275-1284.	3.6	26
3630	A comparative study of cell growth on a cold sprayed Ti–Ta composite. Journal of Alloys and Compounds, 2020, 826, 154014.	2.8	11
3631	Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch. Polymers, 2020, 12, 372.	2.0	51
3632	Osteo-Compatibility of 3D Titanium Porous Coating Applied by Direct Energy Deposition (DED) for a Cementless Total Knee Arthroplasty Implant: In Vitro and In Vivo Study. Journal of Clinical Medicine, 2020, 9, 478.	1.0	12
3633	Accelerating bone defects healing in calvarial defect model using 3D cultured bone marrowâ€derived mesenchymal stem cells on demineralized bone particle scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 563-574.	1.3	0
3634	Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103673.	1.5	74
3635	Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of growth factors in bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 1122-1135.	2.1	25
3636	In vivo osseointegration of a randomized trabecular titanium structure obtained by an additive manufacturing technique. Journal of Materials Science: Materials in Medicine, 2020, 31, 17.	1.7	18
3637	In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103641.	1.5	62
3638	Synthesis and Properties of Mg-Based Foams by Infiltration Casting Without Protective Cover Gas. Journal of Materials Engineering and Performance, 2020, 29, 681-690.	1.2	5

#	Article	IF	CITATIONS
3639	Exploration of gum ghatti-modified porous scaffolds for bone tissue engineering applications. New Journal of Chemistry, 2020, 44, 2389-2401.	1.4	14
3640	Porous titanium fiber mesh with tailored elasticity and its effect on stromal cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2180-2191.	1.6	7
3641	3D-printed poly(ƕcaprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103638.	1.5	40
3642	Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration. Clinical Oral Implants Research, 2020, 31, 431-441.	1.9	29
3643	Tissue-Engineered Interlocking Scaffold Blocks for the Regeneration of Bone. Jom, 2020, 72, 1443-1457.	0.9	9
3644	3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. Materials, 2020, 13, 512.	1.3	85
3645	Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes. Materials Science and Engineering C, 2020, 110, 110694.	3.8	22
3646	Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS Applied Materials & Interfaces, 2020, 12, 6840-6851.	4.0	64
3647	The in vitro and in vivo biological effects and osteogenic activity of novel biodegradable porous Mg alloy scaffolds. Materials and Design, 2020, 189, 108514.	3.3	50
3648	Generic Method for Designing Self-Standing and Dual Porous 3D Bioscaffolds from Cellulosic Nanomaterials for Tissue Engineering Applications. ACS Applied Bio Materials, 2020, 3, 1197-1209.	2.3	42
3649	Enhanced efficiency in isolation and expansion of hAMSCs via dual enzyme digestion and micro-carrier. Cell and Bioscience, 2020, 10, 2.	2.1	8
3650	3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties. Polymer Testing, 2020, 83, 106347.	2.3	71
3651	Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials, 2020, 239, 119833.	5.7	207
3652	Microfluidics Mediated Production of Foams for Biomedical Applications. Micromachines, 2020, 11, 83.	1.4	26
3653	Dolomite-Foamed Bioactive Silicate Scaffolds for Bone Tissue Repair. Materials, 2020, 13, 628.	1.3	27
3654	Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications. Acta Biomaterialia, 2020, 110, 289-302.	4.1	28
3655	A multifaceted biomimetic interface to improve the longevity of orthopedic implants. Acta Biomaterialia, 2020, 110, 266-279.	4.1	34
3656	An in vivo Comparison Study Between Strontium Nanoparticles and rhBMP2. Frontiers in Bioengineering and Biotechnology, 2020, 8, 499.	2.0	8

#	Article	IF	CITATIONS
3657	Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogelâ€Based Bioinks. Advanced Healthcare Materials, 2020, 9, e1901648.	3.9	190
3658	Collagen-based 3D structures—versatile, efficient materials for biomedical applications. , 2020, , 881-906.		1
3659	Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2020, 31, 38.	1.7	24
3660	Controllable Macroscopic Architecture of Subtractive Manufactured Porous Iron for Cancellous Bone Analogue: Computational to Experimental Validation. Journal of Bionic Engineering, 2020, 17, 357-369.	2.7	5
3661	A bone regeneration concept based on immune microenvironment regulation. , 2020, , 183-230.		1
3662	Three-dimensional scaffolds. , 2020, , 343-360.		12
3663	Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites. Acta Biomaterialia, 2020, 109, 254-266.	4.1	44
3664	Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomaterialia, 2020, 109, 1-20.	4.1	125
3665	A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, 2020, 46, 15725-15739.	2.3	118
3666	Vat photopolymerization of liquid, biodegradable PLGA-based oligomers as tissue scaffolds. European Polymer Journal, 2020, 130, 109693.	2.6	22
3667	Development and characterisation of bilayered periosteum-inspired composite membranes based on sodium alginate-hydroxyapatite nanoparticles. Journal of Colloid and Interface Science, 2020, 572, 408-420.	5.0	33
3668	Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103727.	1.5	77
3669	Effects of porogen morphology on the architecture, permeability, and mechanical properties of hydroxyapatite whisker reinforced polyetheretherketone scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103730.	1.5	18
3670	Biocompatible liquid-crystal elastomers mimic the intervertebral disc. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103757.	1.5	44
3671	Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 2020, 37, 126-141.	8.3	134
3672	High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Materials Science and Engineering C, 2020, 112, 110939.	3.8	65
3673	Role of MRI in the assessment of interbody fusion with tantalum intervertebral implant. Orthopaedics and Traumatology: Surgery and Research, 2020, 106, 285-289.	0.9	3
3674	Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomaterials Science, 2020, 8, 2714-2733.	2.6	111

#	Article	IF	CITATIONS
3675	Features of the Localization of HAP in Porous Silicon with Various Surface Treatments. , 2020, , .		0
3676	Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers, 2020, 12, 905.	2.0	171
3677	Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Regionâ€Dependent Porosity Gradients in an Equine Model. Advanced Healthcare Materials, 2020, 9, e1901807.	3.9	33
3678	3D Printing of Bioinspired Biomaterials for Tissue Regeneration. Advanced Healthcare Materials, 2020, 9, e2000208.	3.9	52
3679	κ-carrageenan-C-phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring. Acta Biomaterialia, 2020, 109, 121-131.	4.1	59
3680	A novel modification for polymer sponge method to fabricate the highly porous composite bone scaffolds with large aspect ratio suitable for repairing critical-sized bone defects. Vacuum, 2020, 176, 109316.	1.6	16
3681	Fabrication of chitosan/collagen/hydroxyapatite scaffolds with encapsulatedCissus quadrangularisextract. Polymers for Advanced Technologies, 2020, 31, 1496-1507.	1.6	11
3682	Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying. International Journal of Heat and Mass Transfer, 2020, 154, 119704.	2.5	45
3683	A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing <i>in vitro</i> and <i>in vivo</i> . International Journal of Biological Sciences, 2020, 16, 1821-1832.	2.6	20
3684	Synthesis and characterization of 3D-printed functionally graded porous titanium alloy. Journal of Materials Science, 2020, 55, 9082-9094.	1.7	21
3685	Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Materials Science and Engineering C, 2020, 112, 110893.	3.8	63
3686	Synthesis and characterization of porous bioactive <scp>SiC</scp> tissue engineering scaffold. Journal of Biomedical Materials Research - Part A, 2020, 108, 2162-2174.	2.1	10
3687	Preparation of Inverse Opal Hydroxyapatite and Drug Delivery Properties. ChemistrySelect, 2020, 5, 3815-3819.	0.7	2
3688	Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioactive Materials, 2020, 5, 584-601.	8.6	128
3689	The design, fabrication and evaluation of 3D printed gHNTs/gMgO whiskers/PLLA composite scaffold with honeycomb microstructure for bone tissue engineering. Composites Part B: Engineering, 2020, 192, 108001.	5.9	55
3690	Enhanced healing of rat calvarial defects with 3D printed calcium-deficient hydroxyapatite/collagen/bone morphogenetic protein 2 scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103782.	1.5	23
3691	Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS Applied Materials & amp; Interfaces, 2020, 12, 21342-21367.	4.0	43
3692	Characterization of dimensional, morphological and morphometric features of retrieved 3D-printed acetabular cups for hip arthroplasty. Journal of Orthopaedic Surgery and Research, 2020, 15, 157.	0.9	11

#	Article	IF	CITATIONS
3693	3D Printing of Hierarchical Scaffolds Based on Mesoporous Bioactive Glasses (MBGs)—Fundamentals and Applications. Materials, 2020, 13, 1688.	1.3	42
3694	3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering. Materials, 2020, 13, 1773.	1.3	77
3695	Additive manufacturing of biodegradable porous orthopaedic screw. Bioactive Materials, 2020, 5, 458-467.	8.6	56
3696	Ternary hydrogels with tunable mechanical and self-healing properties based on the synergistic effects of multiple dynamic bonds. Journal of Materials Chemistry B, 2020, 8, 4660-4671.	2.9	18
3697	Porous composite calcium citrate/polylactic acid materials with high mineralization activity and biodegradability for bone repair tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 507-520.	1.8	8
3698	Bone Substitutes in Orthopaedic Surgery: Current Status and Future Perspectives. Zeitschrift Fur Orthopadie Und Unfallchirurgie, 2021, 159, 304-313.	0.4	14
3699	Three-Dimensional Printing of Scaffolds with Synergistic Effects of Micro–Nano Surfaces and Hollow Channels for Bone Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 872-880.	2.6	15
3700	Vascularization Strategies in the Prevention of Nonunion Formation. Tissue Engineering - Part B: Reviews, 2021, 27, 107-132.	2.5	12
3701	Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2021, 109, 590-599.	2.1	24
3702	Effect of pore size and spacing on neovascularization of a biodegradble shape memory polymer perivascular wrap. Journal of Biomedical Materials Research - Part A, 2021, 109, 272-288.	2.1	7
3703	Influence of Geometry and Architecture on the <i>In Vivo</i> Success of 3D-Printed Scaffolds for Spinal Fusion. Tissue Engineering - Part A, 2021, 27, 26-36.	1.6	22
3704	Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. Journal of Materials Science, 2021, 56, 3947-3969.	1.7	20
3705	The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method. Ceramics International, 2021, 47, 6653-6662.	2.3	7
3706	In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104164.	1.5	22
3707	Design and performance evaluation of additively manufactured composite lattice structures of commercially pure Ti (CP–Ti). Bioactive Materials, 2021, 6, 1215-1222.	8.6	23
3708	Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science and Technology, 2021, 76, 129-149.	5.6	82
3709	Mechanical performance of additively manufactured uniform and graded porous structures based on topology-optimized unit cells. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 1593-1618.	1.1	23
3710	From infection to healing: The use of plant viruses in bioactive hydrogels. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1662.	3.3	15

#	Article	IF	CITATIONS
3711	Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair. Journal of Shoulder and Elbow Surgery, 2021, 30, 544-553.	1.2	18
3712	Functionalized tricalcium phosphate and poly(3-hydroxyoctanoate) derived composite scaffolds as platforms for the controlled release of diclofenac. Ceramics International, 2021, 47, 3876-3883.	2.3	13
3713	Selective Laser Melting of Ti6Al4V sub-millimetric cellular structures: Prediction of dimensional deviations and mechanical performance. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104123.	1.5	25
3714	The impact of 3D-printed LAY-FOMM 40 and LAY-FOMM 60 on L929 cells and human oral fibroblasts. Clinical Oral Investigations, 2021, 25, 1869-1877.	1.4	6
3715	Design optimization of a novel bio-inspired 3D porous structure for crashworthiness. Composite Structures, 2021, 255, 112897.	3.1	56
3716	Modern trabecular metal-backed glenoid components in total shoulder arthroplasty: What is the evidence? A systematic review. Shoulder and Elbow, 2021, 13, 29-37.	0.7	2
3717	The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. Journal of Biomedical Materials Research - Part A, 2021, 109, 1209-1219.	2.1	22
3718	Calcium phosphate cements: Optimization toward biodegradability. Acta Biomaterialia, 2021, 119, 1-12.	4.1	89
3719	3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioactive Materials, 2021, 6, 1073-1082.	8.6	40
3720	In vitro characterization of hierarchical 3D scaffolds produced by combining additive manufacturing and thermally induced phase separation. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 454-476.	1.9	7
3721	Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials, 2021, 266, 120385.	5.7	119
3722	Combining local antibiotic delivery with heparinized nanohydroxyapatite/collagen bone substitute: A novel strategy for osteomyelitis treatment. Materials Science and Engineering C, 2021, 119, 111329.	3.8	25
3723	Tissue-specific mesenchymal stem cell-dependent osteogenesis in highly porous chitosan-based bone analogs. Stem Cells Translational Medicine, 2021, 10, 303-319.	1.6	19
3724	Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioactive Materials, 2021, 6, 890-904.	8.6	89
3725	Fabrication and properties of CaSiO3/ Sr3(PO4)2 composite scaffold based on extrusion deposition. Ceramics International, 2021, 47, 4783-4792.	2.3	16
3726	An emulsion-templated and amino diol-dictated porous material as an efficient and well recyclable boric acid scavenger. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125873.	2.3	4
3727	Ca ions chelation, collagen I incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation. Materials and Design, 2021, 198, 109300.	3.3	15
3728	Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration. Materials Science and Engineering C, 2021, 120, 111706.	3.8	24

#	Article	IF	CITATIONS
3729	Corrosion resistance improvement of additive manufactured scaffolds by anodizing. Electrochimica Acta, 2021, 366, 137423.	2.6	10
3730	<scp>3D</scp> â€printed cryomilled poly(εâ€caprolactone)/graphene composite scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 961-972.	1.6	20
3731	Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomaterialia, 2021, 121, 1-28.	4.1	26
3732	Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation. Bioactive Materials, 2021, 6, 1242-1254.	8.6	69
3733	Evaluation of direct light processing for the fabrication of bioactive ceramic scaffolds: Effect of pore/strut size on manufacturability and mechanical performance. Journal of the European Ceramic Society, 2021, 41, 892-900.	2.8	26
3734	Robocasting of mesoporous bioactive glasses (MBCs) for bone tissue engineering. , 2021, , 327-349.		3
3735	Electrospun three-dimensional nanofibrous scaffolds based on polycaprolactone for stem cells differentiation and bone regeneration. , 2021, , 179-215.		1
3736	Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications. Applied Nanoscience (Switzerland), 2021, 11, 335-346.	1.6	15
3737	The useful agent to have an ideal biological scaffold. Cell and Tissue Banking, 2021, 22, 225-239.	0.5	6
3738	Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomaterialia, 2021, 121, 665-681.	4.1	32
3739	Three-dimensional model for assessing the pore volume of biomaterials intended for implantation. , 2021, , 305-358.		0
3740	High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications. Smart Materials in Medicine, 2021, 2, 15-25.	3.7	72
3741	Preclinical evaluation of a 3D-printed hydroxyapatite/poly(lactic-co-glycolic acid) scaffold for ridge augmentation. Journal of the Formosan Medical Association, 2021, 120, 1100-1107.	0.8	12
3742	Human osteoblast-like SAOS-2 cells on submicron-scale fibers coated with nanocrystalline diamond films. Materials Science and Engineering C, 2021, 121, 111792.	3.8	21
3743	Osseointegration of 3D porous and solid Ti–6Al–4V implants - Narrow gap push-out testing and experimental setup considerations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104282.	1.5	12
3744	Facile fabrication of elastic, macroâ€porous, and fast vascularized silicone orbital implant. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 765-774.	1.6	0
3745	Honeycomb Scaffolds Fabricated Using Extrusion Molding and the Sphere-Packing Theory for Bone Regeneration. ACS Applied Bio Materials, 2021, 4, 721-730.	2.3	22
3746	Attachment and migration of cells on porous bone graft. Journal of the American Ceramic Society, 2021, 104, 1649-1654.	1.9	0

#	Article	IF	CITATIONS
3747	Function-structure-integrated Ti-HA coatings on TiNbZr with enhanced mechanical properties and bioactivity prepared by spark plasma sintering. Vacuum, 2021, 184, 109863.	1.6	10
3748	Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomaterials Science, 2021, 9, 1547-1573.	2.6	17
3749	Fabrication of tissue-engineered tympanic membrane patches using 3D-Printing technology. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104219.	1.5	39
3750	Structured nanofilms comprising Laponite® and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells. Materials Science and Engineering C, 2021, 118, 111440.	3.8	21
3751	Xenotransplantation literature update for September – October 2020. Xenotransplantation, 2021, 28, e12665.	1.6	2
3752	Improved osteointegration and angiogenesis of strontium-incorporated 3D-printed tantalum scaffold via bioinspired polydopamine coating. Journal of Materials Science and Technology, 2021, 69, 106-118.	5.6	26
3753	Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker. Human Cell, 2021, 34, 310-324.	1.2	7
3754	Comprehensive assessment of bioactive glass and glass-ceramic scaffold permeability: experimental measurements by pressure wave drop, modelling and computed tomography-based analysis. Acta Biomaterialia, 2021, 119, 405-418.	4.1	21
3755	Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: Microstructure evaluation and mechanical evolution. Journal of the European Ceramic Society, 2021, 41, 1672-1682.	2.8	41
3756	Biomoleculeâ€Directed Carbon Nanotube Selfâ€Assembly. Advanced Healthcare Materials, 2021, 10, e2001162.	3.9	24
3757	Elastic and elasto-plastic analysis of Ti6Al4V micro-lattice structures under compressive loads. Mathematics and Mechanics of Solids, 2021, 26, 591-615.	1.5	6
3758	Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting. Journal of Biomaterials Applications, 2021, 35, 1153-1167.	1.2	16
3759	Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Research, 2021, 14, 770-777.	5.8	29
3760	3D printed bioactive and antibacterial silicate glass-ceramic scaffold by fused filament fabrication. Materials Science and Engineering C, 2021, 118, 111516.	3.8	19
3761	Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 2021, 119, 111639.	3.8	66
3762	Effect of sintering temperature on sorption properties and compressive strength of calcium phosphate ceramic granules. Materials Letters, 2021, 282, 128858.	1.3	8
3763	Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 377-393.	1.6	45
3764	Electrospun nanofibrous alginate sulfate scaffolds promote mesenchymal stem cells differentiation to chondrocytes. Journal of Applied Polymer Science, 2021, 138, 49868.	1.3	15

#	Article	IF	CITATIONS
3765	Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles. Bio-Design and Manufacturing, 2021, 4, 60-71.	3.9	45
3766	Ternary nano-biocomposite films using synergistic combination of bacterial cellulose with chitosan and gelatin for tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 166-188.	1.9	15
3767	Bioceramics in Tissue Engineering: Retrospect and Prospects. , 2021, , 61-87.		0
3768	High solid content 45S5 Bioglass®-based scaffolds using stereolithographic ceramic manufacturing: process, structural and mechanical properties. Journal of Mechanical Science and Technology, 2021, 35, 823-832.	0.7	10
3769	Bioceramics in Regenerative Medicine. , 2021, , 601-613.		2
3770	Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Biomaterials Science, 2021, 9, 2631-2646.	2.6	32
3771	Comparison of two different biomaterials in the bone regeneration (15, 30 and 60 days) of critical defects in rats. Acta Cirurgica Brasileira, 2021, 36, e360605.	0.3	4
3772	Biomaterial for Osseous Reconstruction. , 2021, , 11-17.		1
3773	Experimental and numerical characterization of 3D-printed scaffolds under monotonic compression with the aid of micro-CT volume reconstruction. Bio-Design and Manufacturing, 2021, 4, 222-242.	3.9	14
3774	Multifunctional Biopolymersâ€Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect, 2021, 6, 154-176.	0.7	15
3775	Generation of Nano-pores in Silk Fibroin Films Using Silk Nanoparticles for Full-Thickness Wound Healing. Biomacromolecules, 2021, 22, 546-556.	2.6	28
3776	Development of highly porous calcium phosphate bone cements applying nonionic surface active agents. RSC Advances, 2021, 11, 23908-23921.	1.7	5
3777	Optimal Bioprinting Parameters and Experimental Investigation of Acellular Dermal Matrix Scaffold. Journal of Renewable Materials, 2021, 9, 1-16.	1.1	1
3778	Macro and Microstructural Characteristics of North Atlantic Deep-Sea Sponges as Bioinspired Models for Tissue Engineering Scaffolding. Frontiers in Marine Science, 2021, 7, .	1.2	11
3780	A biomimetic hierarchical small intestinal submucosa–chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. Journal of Materials Chemistry B, 2021, 9, 7821-7834.	2.9	21
3781	Bioceramic-Starch Paste Design for Additive Manufacturing and Alternative Fabrication Methods Applied for Developing Biomedical Scaffolds. Gels Horizons: From Science To Smart Materials, 2021, , 261-296.	0.3	0
3782	Aerogels as microbial disinfectant. , 2021, , 201-215.		2
3783	Polymer-Coated and Nanofiber-Reinforced Functionally Graded Bioactive Glass Scaffolds Fabricated Using Additive Manufacturing. IEEE Transactions on Nanobioscience, 2022, 21, 380-386.	2.2	3

#	Article	IF	Citations
3784	Nanohydroxyapatite/polyamide 66 crosslinked with QK and BMP-2-derived peptide prevented femur nonunion in rats. Journal of Materials Chemistry B, 2021, 9, 2249-2265.	2.9	15
3785	A Critical Review on the Synthesis of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for Biomedical Delivery Applications. Processes, 2021, 9, 137.	1.3	67
3786	Manuka Honey and Zein Coatings Impart Bioactive Glass Bone Tissue Scaffolds Antibacterial Properties and Superior Mechanical Properties. Frontiers in Materials, 2021, 7, .	1.2	17
3787	Advances in Growth Factor Delivery for Bone Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 903.	1.8	94
3788	3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques. Biomaterials Research, 2021, 25, 3.	3.2	80
3790	Bio-Absorption of Human Dentin-Derived Biomaterial in Sheep Critical-Size Iliac Defects. Materials, 2021, 14, 223.	1.3	10
3791	Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF ₂ and MgF ₂ –CaP coatings. Biomaterials Science, 2021, 9, 7159-7182.	2.6	16
3792	On-Board and Off-Board Technologies for Hydrogen Storage. Advances in Computer and Electrical Engineering Book Series, 2021, , 139-165.	0.2	0
3793	3D printed chitosan/polycaprolactone scaffold for lung tissue engineering: hope to be useful for COVID-19 studies. RSC Advances, 2021, 11, 19508-19520.	1.7	28
3794	Fabrication of Nanostructured Scaffolds for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2021, , 317-334.	0.7	1
3795	Calcium Phosphate Powder for Obtaining of Composite Bioceramics. Inorganic Materials: Applied Research, 2021, 12, 34-39.	0.1	4
3796	Selective Laser Melting Molding of Individualized Femur Implant: Design, Process, Optimization. Journal of Bionic Engineering, 2021, 18, 128-137.	2.7	3
3797	Rapid conversion of highly porous borate glass microspheres into hydroxyapatite. Biomaterials Science, 2021, 9, 1826-1844.	2.6	13
3798	Porous structuring process for osseoconductive surface engineering. , 2021, , 159-192.		0
3799	Prospect of Metal Ceramic (Titanium-Wollastonite) Composite as Permanent Bone Implants: A Narrative Review. Materials, 2021, 14, 277.	1.3	10
3800	Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. Journal of Materials Chemistry B, 2021, 9, 5385-5413.	2.9	51
3802	Hierarchically Porous Osteoinductive Poly(hydroxyethyl methacrylate-co-methyl methacrylate) Scaffold with Sustained Doxorubicin Delivery for Consolidated Osteosarcoma Treatment and Bone Defect Repair. ACS Biomaterials Science and Engineering, 2021, 7, 701-717.	2.6	8
3803	3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. Journal of Biological Engineering, 2021, 15, 4.	2.0	70

#	Article	IF	Citations
3804	Microfluidic devices for developing tissue scaffolds. , 2021, , 413-435.		1
3805	<i>In Vitro</i> and <i>In Vivo</i> Evaluation of Carboxymethyl Cellulose Scaffolds for Bone Tissue Engineering Applications. ACS Omega, 2021, 6, 1246-1253.	1.6	38
3806	Bone formation at <scp>Tiâ€6Alâ€7Nb</scp> scaffolds consisting of <scp>3D</scp> honeycomb frame and diamondâ€like carbon coating implanted into the femur of beagles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1283-1291.	1.6	8
3807	Other metallic alloys: tantalum-based materials for biomedical applications. , 2021, , 229-273.		1
3808	A systematic review of preclinical in vivo testing of <scp>3D</scp> printed porous <scp>Ti6Al4V</scp> for orthopedic applications, part I: Animal models and bone ingrowth outcome measures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1436-1454.	1.6	15
3809	In vitro evaluation of electrochemically bioactivated Ti6Al4V 3D porous scaffolds. Materials Science and Engineering C, 2021, 121, 111870.	3.8	33
3810	Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications. Materials, 2021, 14, 712.	1.3	37
3811	Partially Digested Osteoblast Cell Line-Derived Extracellular Matrix Induces Rapid Mineralization and Osteogenesis. ACS Biomaterials Science and Engineering, 2021, 7, 1134-1146.	2.6	11
3812	Superelastic behaviors of additively manufactured porous NiTi shape memory alloys designed with Menger sponge-like fractal structures. Materials and Design, 2021, 200, 109448.	3.3	56
3813	Cell Attachment and Osteoinductive Properties of Tissue Engineered, Demineralized Bone Fibers for Bone Void Filling Applications. , 0, , .		0
3814	Adjustable conduits for guided peripheral nerve regeneration prepared from bi-zonal unidirectional and multidirectional laminar scaffold of type I collagen. Materials Science and Engineering C, 2021, 121, 111838.	3.8	3
3815	Design, Test and FEM Analysis of Customized Titanium Alloy Implant with Scaffold Based on Additive Manufacturing. IOP Conference Series: Materials Science and Engineering, 2021, 1063, 012007.	0.3	0
3816	A Biomimetic Biphasic Scaffold Consisting of Decellularized Cartilage and Decalcified Bone Matrixes for Osteochondral Defect Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 639006.	1.8	24
3817	Fabrication and Investigation of Bioceramic Scaffolds by a Polymer Sponge Replication Technique. IOP Conference Series: Materials Science and Engineering, 2021, 1076, 012080.	0.3	4
3818	Biomimetic Mineralization Promotes Viability and Differentiation of Human Mesenchymal Stem Cells in a Perfusion Bioreactor. International Journal of Molecular Sciences, 2021, 22, 1447.	1.8	9
3819	Characteristic Sensitivity of Turbulent Flow within a Porous Medium under Initial Conditions. Journal of the Physical Society of Japan, 2021, 90, 024401.	0.7	0
3820	Resorbable additively manufactured scaffold imparts dimensional stability to extraskeletally regenerated bone. Biomaterials, 2021, 269, 120671.	5.7	42
3821	In-Vivo Degradation Behavior and Osseointegration of 3D Powder-Printed Calcium Magnesium Phosphate Cement Scaffolds. Materials, 2021, 14, 946	1.3	14

#	Article	IF	CITATIONS
3822	Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. Applied Sciences (Switzerland), 2021, 11, 1808.	1.3	33
3823	Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers, 2021, 13, 563.	2.0	74
3824	Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds. Current Stem Cell Research and Therapy, 2021, 16, 209-229.	0.6	9
3825	Nanocellulose/PEGDA Aerogels with Tunable Poisson's Ratio Fabricated by Stereolithography for Mouse Bone Marrow Mesenchymal Stem Cell Culture. Nanomaterials, 2021, 11, 603.	1.9	21
3826	Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2009432.	7.8	212
3827	Challenges and Innovations in Osteochondral Regeneration: Insights from Biology and Inputs from Bioengineering toward the Optimization of Tissue Engineering Strategies. Journal of Functional Biomaterials, 2021, 12, 17.	1.8	18
3828	Biomaterials with Potential Use in Bone Tissue Regeneration—Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS. Materials, 2021, 14, 1105.	1.3	34
3829	Bioactive Polymeric Materials for the Advancement of Regenerative Medicine. Journal of Functional Biomaterials, 2021, 12, 14.	1.8	16
3830	Physical characterization of biphasic bioceramic materials with different granulation sizes and their influence on bone repair and inflammation in rat calvaria. Scientific Reports, 2021, 11, 4484.	1.6	15
3831	Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules, 2021, 22, 1027-1052.	2.6	138
3832	Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review. Materials, 2021, 14, 909.	1.3	69
3833	Is Dialdehyde Chitosan a Good Substance to Modify Physicochemical Properties of Biopolymeric Materials?. International Journal of Molecular Sciences, 2021, 22, 3391.	1.8	12
3834	Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. Nanomaterials, 2021, 11, 789.	1.9	29
3835	Dilationâ€Responsive Microshape Programing Prevents Vascular Graft Stenosis. Small, 2021, 17, e2007297.	5.2	7
3836	Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair. International Journal of Energy Production and Management, 2021, 8, rbab007.	1.9	13
3837	Pore geometry influences growth and cell adhesion of infrapatellar mesenchymal stem cells in biofabricated 3D thermoplastic scaffolds useful for cartilage tissue engineering. Materials Science and Engineering C, 2021, 122, 111933.	3.8	15
3838	Effect of surface topography on in vitro osteoblast function and mechanical performance of <scp>3D</scp> printed titanium. Journal of Biomedical Materials Research - Part A, 2021, 109, 1792-1802.	2.1	9
3839	Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). International Journal of Molecular Sciences, 2021, 22, 3504.	1.8	50

#	Article	IF	CITATIONS
3840	Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. Crystals, 2021, 11, 353.	1.0	37
3841	Direct-ink writing of strong and biocompatible titanium scaffolds with bimodal interconnected porosity. Additive Manufacturing, 2021, 39, 101859.	1.7	19
3842	Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA/ β-TCP nanocomposite scaffolds. Bioprinting, 2021, 21, e00117.	2.9	10
3843	Design of Customize Interbody Fusion Cages of Ti64ELI with Gradient Porosity by Selective Laser Melting Process. Micromachines, 2021, 12, 307.	1.4	10
3844	Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Computers in Biology and Medicine, 2021, 130, 104241.	3.9	48
3845	Computational Models of Magnesium Medical Implants Degradation: A Review. Journal of Physics: Conference Series, 2021, 1838, 012012.	0.3	0
3846	Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites. European Polymer Journal, 2021, 147, 110335.	2.6	10
3847	Elastic Mineralized 3D Electrospun PCL Nanofibrous Scaffold for Drug Release and Bone Tissue Engineering. ACS Applied Bio Materials, 2021, 4, 3639-3648.	2.3	25
3848	Applications of Bacterial Cellulose as a Natural Polymer in Tissue Engineering. ASAIO Journal, 2021, 67, 709-720.	0.9	17
3849	A Novel Fast-Setting Strontium-Containing Hydroxyapatite Bone Cement With a Simple Binary Powder System. Frontiers in Bioengineering and Biotechnology, 2021, 9, 643557.	2.0	5
3850	The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 3086.	1.8	19
3851	Scanning Electron Microscopic Evaluation of the Internal Fit Accuracy of 3D-Printed Biphasic Calcium Phosphate Block: An Ex Vivo Pilot Study. Materials, 2021, 14, 1557.	1.3	2
3852	High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews, 2021, 121, 4561-4677.	23.0	89
3853	A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. International Journal of Biological Macromolecules, 2021, 172, 19-29.	3.6	40
3854	<i>In Vivo</i> Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. Tissue Engineering - Part B: Reviews, 2022, 28, 206-245.	2.5	9
3855	Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. International Journal of Molecular Sciences, 2021, 22, 2886.	1.8	22
3856	3D-microtissue derived secretome as a cell-free approach for enhanced mineralization of scaffolds in the chorioallantoic membrane model. Scientific Reports, 2021, 11, 5418.	1.6	5
3857	On structure and mechanics of biomimetic meta-biomaterials fabricated via metal additive manufacturing. Materials and Design, 2021, 201, 109498.	3.3	17

#	Article	IF	CITATIONS
3858	Stereolithographic additive manufacturing of ceramic components with functionally modulated structures. Open Ceramics, 2021, 5, 100068.	1.0	4
3859	Physicochemical Properties, <i>In Vitro</i> Degradation, and Biocompatibility of Calcium Phosphate Cement Incorporating Poly(lactic- <i>co</i> glycolic acid) Particles with Different Morphologies: A Comparative Study. ACS Omega, 2021, 6, 8322-8331.	1.6	6
3860	Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 3588.	1.8	7
3861	Strontium and selenium doped bioceramics incorporated polyacrylamide-carboxymethylcellulose hydrogel scaffolds: mimicking key features of bone regeneration. Journal of Asian Ceramic Societies, 2021, 9, 531-548.	1.0	12
3862	The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications: A focus on silk fibroin-based scaffolds. Materials Science and Engineering C, 2021, 122, 111867.	3.8	18
3863	Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. Journal of Composites Science, 2021, 5, 78.	1.4	24
3864	Digital light processing strength-strong ultra-thin bioceramic scaffolds for challengeable orbital bone regeneration and repair in Situ. Applied Materials Today, 2021, 22, 100889.	2.3	13
3865	A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers, 2021, 13, 1105.	2.0	435
3866	Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Biomedical Materials (Bristol), 2021, 16, 035037.	1.7	6
3867	Transforming Growth Factor-β3/Recombinant Human-like Collagen/Chitosan Freeze-Dried Sponge Primed With Human Periodontal Ligament Stem Cells Promotes Bone Regeneration in Calvarial Defect Rats. Frontiers in Pharmacology, 2021, 12, 678322.	1.6	7
3868	Efficiency of 3D Implants with Bioactive Properties for Treatment of Extensive Bone Defects: Experimental Study. Travmatologiâ I Ortopediâ Rossii, 2021, 27, 37-52.	0.1	1
3869	Synthesis and characterization of scaffolds produced under mild conditions based on oxidized cashew gums and carboxyethyl chitosan. International Journal of Biological Macromolecules, 2021, 176, 26-36.	3.6	12
3870	Skeletal microenvironment system utilising bovine bone scaffold coâ€ʿcultured with human osteoblasts and osteoclastâ€ʻlike cells. Experimental and Therapeutic Medicine, 2021, 22, 680.	0.8	6
3871	Multiâ€Đimensional Printing for Bone Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2001986.	3.9	41
3872	Performance of <scp>3D</scp> printed <scp>PCL</scp> / <scp>PLGA</scp> / <scp>HA</scp> biological bone tissue engineering scaffold. Polymer Composites, 2021, 42, 3593-3602.	2.3	12
3873	Biomechanically Tunable Nano-Silica/P-HEMA Structural Hydrogels for Bone Scaffolding. Bioengineering, 2021, 8, 45.	1.6	5
3874	Influence of bone formation by composite scaffolds with different proportions of hydroxyapatite and collagen. Dental Materials, 2021, 37, e231-e244.	1.6	20
3875	Additive manufacturing of structural materials. Materials Science and Engineering Reports, 2021, 145, 100596.	14.8	254

#	Article	IF	CITATIONS
3876	Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647007.	2.0	12
3877	Fabrication of three dimensional bioactive Sr 2+ substituted apatite scaffolds by gel asting technique for hard tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 577-585.	1.3	5
3878	<scp>3D</scp> magnetic nanocomposite scaffolds enhanced the osteogenic capacities of rat bone mesenchymal stem cells in vitro and in a rat calvarial bone defect model by promoting cell adhesion. Journal of Biomedical Materials Research - Part A, 2021, 109, 1670-1680.	2.1	12
3879	Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. Materials Science and Engineering C, 2021, 123, 111945.	3.8	5
3880	Effect of Dual Pore Size Architecture on In Vitro Osteogenic Differentiation in Additively Manufactured Hierarchical Scaffolds. ACS Biomaterials Science and Engineering, 2021, 7, 2615-2626.	2.6	9
3881	Spatio-temporal characterization of fracture healing patterns and assessment of biomaterials by time-lapsed in vivo micro-computed tomography. Scientific Reports, 2021, 11, 8660.	1.6	3
3882	Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Materials Science and Engineering C, 2021, 123, 111853.	3.8	28
3883	State-of-Art of Standard and Innovative Materials Used in Cranioplasty. Polymers, 2021, 13, 1452.	2.0	24
3884	Preparation and structural control of polyphenylene sulfide porous fibers via thermally induced phase separation method. Journal of Applied Polymer Science, 2021, 138, 50859.	1.3	2
3885	Threeâ€dimensionalâ€printed customized prosthesis for pubic defect: clinical outcomes in 5 cases at a mean followâ€up of 24 months. BMC Musculoskeletal Disorders, 2021, 22, 405.	0.8	8
3886	Large-Pore Platelet-Rich Fibrin with a Mg Ring to Allow MC3T3-E1 Preosteoblast Migration and to Improve Osteogenic Ability for Bone Defect Repair. International Journal of Molecular Sciences, 2021, 22, 4022.	1.8	9
3887	Bioactivity of microporous borate glass-ceramics prepared from solution and derived glasses. Journal of Non-Crystalline Solids, 2021, 557, 120649.	1.5	5
3888	Multiscale porosity in a 3D printed gellan–gelatin composite for bone tissue engineering. Biomedical Materials (Bristol), 2021, 16, 034103.	1.7	13
3889	Development of collagen/nanohydroxyapatite scaffolds containing plant extract intended for bone regeneration. Materials Science and Engineering C, 2021, 123, 111955.	3.8	17
3890	Hybrid 3D Printing of Advanced Hydrogel-Based Wound Dressings with Tailorable Properties. Pharmaceutics, 2021, 13, 564.	2.0	48
3891	Chitosan/Silver Nanoparticle/Graphene Oxide Nanocomposites with Multi-Drug Release, Antimicrobial, and Photothermal Conversion Functions. Materials, 2021, 14, 2351.	1.3	26
3892	A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications. International Journal of Bioprinting, 2021, 7, 340.	1.7	53
3893	On the production of novel zirconia-reinforced bioactive glassÂporous structures for bone repair. Journal of Materials Science, 2021, 56, 11682-11697.	1.7	1

#	Article	IF	CITATIONS
3894	Construction of conductive and biocompatible three-dimensional nickel scaffolds with electrodeposited chitosan for nerve regeneration. Materials Research Express, 2021, 8, 045401.	0.8	0
3895	Effect of Printing Parameters on Dimensional Error, Surface Roughness and Porosity of FFF Printed Parts with Grid Structure. Polymers, 2021, 13, 1213.	2.0	38
3896	Photopolymerized Porous Hydrogels. Biomacromolecules, 2021, 22, 1325-1345.	2.6	49
3897	Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 2021, 148, 110360.	2.6	73
3898	Mineralization of Titanium Surfaces: Biomimetic Implants. Materials, 2021, 14, 2879.	1.3	20
3899	New Approach for Preparing In Vitro Bioactive Scaffold Consisted of Ag-Doped Hydroxyapatite + Polyvinyltrimethoxysilane. Polymers, 2021, 13, 1695.	2.0	11
3900	Foam Replica Method in the Manufacturing of Bioactive Glass Scaffolds: Out-of-Date Technology or Still Underexploited Potential?. Materials, 2021, 14, 2795.	1.3	29
3901	Advanced Strategies of Biomimetic Tissueâ€Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2100408.	3.9	66
3902	Intrinsic osteoinductivity of <scp>PCLâ€ÐA</scp> / <scp>PLLA semiâ€IPN</scp> shape memory polymer scaffolds. Journal of Biomedical Materials Research - Part A, 2021, 109, 2334-2345.	2.1	13
3903	Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials, 2021, 272, 120789.	5.7	32
3904	Fatigue performance of auxetic meta-biomaterials. Acta Biomaterialia, 2021, 126, 511-523.	4.1	44
3905	Modeling of Twoâ€Step Supercritical CO ₂ Foaming to Fabricate Poly(<i>ε</i> â€caprolactone) Scaffolds. Chemical Engineering and Technology, 2021, 44, 1233-1240.	0.9	4
3906	Compression deformation analysis of cellular lattice structure for structural optimization in additive manufacturing. Materials Today: Proceedings, 2021, 47, 4214-4214.	0.9	1
3907	Development and physicochemical characterization of novel porous phosphate glass bone graft substitute and in vitro comparison with xenograft. Journal of Materials Science: Materials in Medicine, 2021, 32, 60.	1.7	1
3908	Recent Trends in the Development of Bone Regenerative Biomaterials. Frontiers in Cell and Developmental Biology, 2021, 9, 665813.	1.8	82
3909	Robocasting and surface functionalization with highly bioactive glass of ZrO ₂ scaffolds for load bearing applications. Journal of the American Ceramic Society, 2022, 105, 1753-1764.	1.9	8
3910	Growth of Mesenchymal Stem Cells on Poly(3-Hydroxybutyrate) Scaffolds Loaded with Simvastatin. Bulletin of Experimental Biology and Medicine, 2021, 171, 172-177.	0.3	3
3911	Three-dimensional-printed custom-made hemipelvic endoprosthesis for the revision of the aseptic loosening and fracture of modular hemipelvic endoprosthesis: a pilot study. BMC Surgery, 2021, 21, 262.	0.6	5

#	Article	IF	CITATIONS
3912	Effects of biomimetic synthesis route and sintering temperature on physicochemical, microstructural, and mechanical properties of hydroxyapatite. Journal of the Australian Ceramic Society, 2021, 57, 1117-1129.	1.1	8
3913	Mineralization of Phosphorylated Fish Skin Collagen/Mangosteen Scaffolds as Potential Materials for Bone Tissue Regeneration. Molecules, 2021, 26, 2899.	1.7	12
3914	Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceramics International, 2021, 47, 13644-13654.	2.3	38
3915	Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials, 2021, 272, 120769.	5.7	54
3916	Toward Bactericidal Enhancement of Additively Manufactured Titanium Implants. Coatings, 2021, 11, 668.	1.2	4
3917	Modeling and analysis of material anisotropy-topology effects of 3D cellular structures fabricated by powder bed fusion additive manufacturing. International Journal of Mechanical Sciences, 2021, 197, 106325.	3.6	17
3918	Alliance of gallium and strontium potently mediates the osteoclastic and osteogenic activities of β-tricalcium phosphate bioceramic scaffolds. Chemical Engineering Journal, 2021, 412, 128709.	6.6	16
3919	Structural Investigation of Delicate-Geometry Fused Deposition Modeling Additive Manufacturing Scaffolds: Experiment and Analytics. Journal of Materials Engineering and Performance, 2021, 30, 6529-6541.	1.2	19
3920	3D-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering. , 2021, 41, 485-501.		21
3921	The effects of plasma electrolytically oxidized layers containing Sr and Ca on the osteogenic behavior of selective laser melted Ti6Al4V porous implants. Materials Science and Engineering C, 2021, 124, 112074.	3.8	9
3922	Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. Materials Science and Engineering C, 2021, 124, 112088.	3.8	16
3923	Stentoplasty with Resorbable Calcium Salt Bone Void Fillers for the Treatment of Vertebral Compression Fracture: Evaluation After 3 Years. Clinical Interventions in Aging, 2021, Volume 16, 843-852.	1.3	3
3924	Development of mangiferin loaded chitosan-silica hybrid scaffolds: Physicochemical and bioactivity characterization. Carbohydrate Polymers, 2021, 261, 117905.	5.1	14
3925	Complex Bone Tumors of the Trunk—The Role of 3D Printing and Navigation in Tumor Orthopedics: A Case Series and Review of the Literature. Journal of Personalized Medicine, 2021, 11, 517.	1.1	16
3926	Bioactive Glass: Methods for Assessing Angiogenesis and Osteogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 643781.	1.8	28
3927	Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG- <i>g</i> -NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules, 2021, 22, 3069-3083.	2.6	10
3928	Design and research of bone repair scaffold based on two-way fluid-structure interaction. Computer Methods and Programs in Biomedicine, 2021, 204, 106055.	2.6	18
3929	Hexagonal pore geometry and the presence of hydroxyapatite enhance deposition of mineralized bone matrix on additively manufactured polylactic acid scaffolds. Materials Science and Engineering C, 2021, 125, 112091.	3.8	22

#	Article	IF	CITATIONS
3930	In Vivo bone tissue induction by freeze-dried collagen-nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. Journal of Controlled Release, 2021, 334, 188-200.	4.8	19
3932	Sacrificial mold-assisted 3D printing of stable biocompatible gelatin scaffolds. Bioprinting, 2021, 22, e00140.	2.9	17
3933	MSC-derived small extracellular vesicles overexpressing miR-20a promoted the osteointegration of porous titanium alloy by enhancing osteogenesis via targeting BAMBI. Stem Cell Research and Therapy, 2021, 12, 348.	2.4	22
3934	Bone Adaptation-Driven Design of Periodic Scaffolds. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	8
3935	Characterization of bending behavior of hydroxyapatite/biopolymer porous composite beams. Composites Communications, 2021, 25, 100747.	3.3	8
3936	Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines, 2021, 9, 733.	1.4	5
3937	A Method for the Evaluation of Early Osseointegration of Implant Materials Ex Vivo: Human Bone Organ Model. Materials, 2021, 14, 3001.	1.3	7
3938	Effects of molecular weight on macropore sizes and characterization of porous hydroxyapatite ceramics fabricated using polyethylene glycol: mechanisms to generate macropores and tune their sizes. Materials Today Chemistry, 2021, 20, 100421.	1.7	4
3939	Drug Evaluation Based on a Multi-Channel Cell Chip with a Horizontal Co-Culture. International Journal of Molecular Sciences, 2021, 22, 6997.	1.8	4
3940	Facile fabrication of <i>Luffa cylindrica</i> -assisted 3D hydroxyapatite scaffolds. Bioinspired, Biomimetic and Nanobiomaterials, 2021, 10, 37-44.	0.7	10
3941	Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomaterialia, 2021, 127, 338-352.	4.1	17
3942	Pectin as Rheology Modifier of a Gelatin-Based Biomaterial Ink. Materials, 2021, 14, 3109.	1.3	21
3943	3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. International Journal of Nanomedicine, 2021, Volume 16, 4289-4319.	3.3	44
3944	Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium. Journal of Materials Science: Materials in Medicine, 2021, 32, 72.	1.7	17
3945	3D printing cross-linkable calcium phosphate biocomposites for biocompatible surgical implantation. Bioprinting, 2021, 22, e00141.	2.9	2
3946	Physico-chemical and biological behaviour of eggshell bio-waste derived nano-hydroxyapatite matured at different aging time. Materials Today Communications, 2021, 27, 102443.	0.9	10
3947	GO containing PHBHX bone scaffold: GO concentration and in vitro osteointegration. Polymer Bulletin, 2022, 79, 5939-5954.	1.7	2
3948	3D printed poly(hydroxybutyrate-co-hydroxyvalerate)—45S5 bioactive glass composite resorbable scaffolds suitable for bone regeneration. Journal of Materials Research, 2021, 36, 4000-4012.	1.2	12
#	Article	IF	CITATIONS
------	---	-----	-----------
3949	Porosity parameters in biomaterial science: Definition, impact, and challenges in tissue engineering. Frontiers of Materials Science, 2021, 15, 352-373.	1.1	23
3950	Ag-doped Bioactive Glass-Ceramic 3D Scaffolds: Microstructural, Antibacterial, and Biological Properties. Journal of the European Ceramic Society, 2021, 41, 3717-3730.	2.8	10
3951	Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds. Materials and Design, 2021, 204, 109686.	3.3	25
3952	Novel approach of alloy design and selection for additive manufacturing towards targeted applications. Journal of Alloys and Compounds, 2021, 866, 158965.	2.8	9
3953	Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. International Journal of Energy Production and Management, 2021, 8, rbab028.	1.9	22
3954	3D Printing of MgAl2O4 Spinel Mesh and Densification Through Pressure-Less Sintering and Hot Isostatic Pressing. 3D Printing and Additive Manufacturing, 0, , .	1.4	0
3955	Fast decellularization process using supercritical carbon dioxide for trabecular bone. Journal of Supercritical Fluids, 2021, 172, 105194.	1.6	10
3956	Bone biomaterials for overcoming antimicrobial resistance: Advances in non-antibiotic antimicrobial approaches for regeneration of infected osseous tissue. Materials Today, 2021, 46, 136-154.	8.3	53
3957	Influence of surface morphology of chitosan films modified by chitin nanofibrils on their biological properties. Carbohydrate Polymers, 2021, 262, 117917.	5.1	9
3958	How Does Scaffold Porosity Conduct Bone Tissue Regeneration?. Advanced Engineering Materials, 2021, 23, 2100463.	1.6	32
3959	Investigation of the effect of porous titanium cups on stress distribution in bone tissue (mathematical modeling). Trauma, 2021, 22, 28-37.	0.2	5
3960	Histological Assessment of Injectable Macro-porous Calcium Phosphate Cement (CPC) Versus Autogenous Bone Graft on Healing of Osseous Defect (Experimental Animal Study). Egyptian Dental Journal, 2021, 67, 1953-1965.	0.1	0
3961	Additive Manufacturing of Carbon Nanotube Reinforced Bioactive Glass Scaffolds for Bone Tissue Engineering. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2021, 4, .	0.3	12
3962	Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival, distribution, and proliferation of human chondrocytes. Mechanics of Advanced Materials and Structures, 2022, 29, 4911-4922.	1.5	14
3963	Bilayer Membrane Composed of Mineralized Collagen and Chitosan Cast Film Coated With Berberine-Loaded PCL/PVP Electrospun Nanofiber Promotes Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 684335.	2.0	18
3964	Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2102911.	7.8	15
3965	Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1966-1982.	1.9	8
3966	Early time-point cell morphology classifiers successfully predict human bone marrow stromal cell differentiation modulated by fiber density in nanofiber scaffolds. Biomaterials, 2021, 274, 120812.	5.7	9

#	Article	IF	CITATIONS
3967	Effect of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets on 3T3 cell behavior. International Journal of Biological Macromolecules, 2021, 183, 2205-2214.	3.6	10
3968	Morbidity and clinicoradiological outcomes of anterior lumbar arthrodesis using tantalum intervertebral implants. Orthopaedics and Traumatology: Surgery and Research, 2021, 107, 103030.	0.9	0
3969	Carbon Capture Utilization for Biopolymer Foam Manufacture: Thermal, Mechanical and Acoustic Performance of PCL/PHBV CO2 Foams. Polymers, 2021, 13, 2559.	2.0	3
3970	Current Application of Beta-Tricalcium Phosphate in Bone Repair and Its Mechanism to Regulate Osteogenesis. Frontiers in Materials, 2021, 8, .	1.2	29
3971	Size Effects in Finite Element Modelling of 3D Printed Bone Scaffolds Using Hydroxyapatite PEOT/PBT Composites. Mathematics, 2021, 9, 1746.	1.1	1
3972	Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture. ACS Applied Bio Materials, 2021, 4, 5987-6004.	2.3	6
3974	Cubic Lattice Structures of Ti6Al4V under Compressive Loading: Towards Assessing the Performance for Hard Tissue Implants Alternative. Materials, 2021, 14, 3866.	1.3	14
3975	Plasma Spray vs. Electrochemical Deposition: Toward a Better Osteogenic Effect of Hydroxyapatite Coatings on 3D-Printed Titanium Scaffolds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 705774.	2.0	13
3976	Fabrication Methods of Porous Titanium Implants by Powder Metallurgy. Transactions of the Indian Institute of Metals, 2021, 74, 2555-2567.	0.7	14
3977	Biodegradable and biocompatible grapheneâ€based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. Biotechnology and Bioengineering, 2021, 118, 4217-4230.	1.7	14
3978	Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 629270.	2.0	57
3979	Construction of chitosan scaffolds with controllable microchannel for tissue engineering and regenerative medicine. Materials Science and Engineering C, 2021, 126, 112178.	3.8	19
3980	Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced Drug Delivery Reviews, 2021, 174, 504-534.	6.6	163
3981	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	11.1	34
3982	Preparation and characterization of porous HA/ \hat{l}^2 -TCP biphasic calcium phosphate derived from butterfish bone. Materials Technology, 0, , 1-8.	1.5	3
3983	Direct 3D Printing of Seashell Precursor toward Engineering a Multiphasic Calcium Phosphate Bone Graft. ACS Biomaterials Science and Engineering, 2021, 7, 3806-3820.	2.6	7
3984	Additively manufactured patient-specific prosthesis for tumor reconstruction: Design, process, and properties. PLoS ONE, 2021, 16, e0253786.	1.1	11
3985	Bone Conduction Capacity of Highly Porous 3D-Printed Titanium Scaffolds Based on Different Pore Designs. Materials, 2021, 14, 3892.	1.3	10

#	Article	IF	CITATIONS
3986	Bio-functional strontium-containing photocrosslinked alginate hydrogels for promoting the osteogenic behaviors. Materials Science and Engineering C, 2021, 126, 112130.	3.8	17
3987	A Review on Post Additive Manufacturing Techniques to Improve Product Quality. Lecture Notes in Mechanical Engineering, 2022, , 11-20.	0.3	0
3988	Oxygen Plasma Technology-Assisted Preparation of Three-Dimensional Reduced Graphene Oxide/Polypyrrole/Strontium Composite Scaffold for Repair of Bone Defects Caused by Osteoporosis. Molecules, 2021, 26, 4451.	1.7	1
3989	Silver Decorated βTCP-Poly(3hydroxybutyrate) Scaffolds for Bone Tissue Engineering. Materials, 2021, 14, 4227.	1.3	10
3990	Double poroelasticity derived from the microstructure. Acta Mechanica, 2021, 232, 3801-3823.	1.1	6
3991	Surface Characterization and Physiochemical Evaluation of P(3HB-co-4HB)-Collagen Peptide Scaffolds with Silver Sulfadiazine as Antimicrobial Agent for Potential Infection-Resistance Biomaterial. Polymers, 2021, 13, 2454.	2.0	2
3992	Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2021, 182, 1638-1649.	3.6	46
3993	Reconstruction of Surface Porous PEEK Decorated with Strontium-doped Calcium Phosphate Coatings for Enhancing Osteogenic Activity. Journal of Bionic Engineering, 2021, 18, 927-943.	2.7	1
3994	Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications. Advanced Materials, 2021, 33, e2100091.	11.1	97
3995	A new strategy to prepare n-HA/CS composite scaffolds with surface loading of CS microspheres. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1199-1209.	1.8	3
3996	Type I collagen scaffold with WNT5A plasmid for in situ cartilage tissue engineering. Bio-Medical Materials and Engineering, 2022, 33, 65-76.	0.4	3
3997	Morphological Control of Freezeâ€Structured Scaffolds by Selective Temperature and Material Control in the Iceâ€Templating Process. Advanced Engineering Materials, 2022, 24, 2100860.	1.6	8
3998	Production and Characterization of Poly (Lactic Acid)/Nanostructured Carboapatite for 3D Printing of Bioactive Scaffolds for Bone Tissue Engineering. 3D Printing and Additive Manufacturing, 2021, 8, 227-237.	1.4	2
3999	Structure and Dynamics Perturbations in Ubiquitin Adsorbed or Entrapped in Silica Materials Are Related to Disparate Surface Chemistries Resolved by Solid-State NMR Spectroscopy. Biomacromolecules, 2021, 22, 3718-3730.	2.6	4
4000	Surface porous poly-ether-ether-ketone based on three-dimensional printing for load-bearing orthopedic implant. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104561.	1.5	24
4001	Investigation of porous cells interface on elastic property of orthopedic implants: Numerical and experimental studies. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104595.	1.5	6
4002	lodine-Loaded Calcium Titanate for Bone Repair with Sustainable Antibacterial Activity Prepared by Solution and Heat Treatment. Nanomaterials, 2021, 11, 2199.	1.9	12
4003	Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 93.	1.7	40

#	Article	IF	CITATIONS
4004	Shape memory PLLA-TMC/CSH-dPA microsphere scaffolds with mechanical and bioactive enhancement for bone tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126594.	2.3	9
4005	Tantalum as a Novel Biomaterial for Bone Implant: A Literature Review. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 52, 55-65.	0.5	5
4006	Key parameters and applications of extrusion-based bioprinting. Bioprinting, 2021, 23, e00156.	2.9	20
4007	Microchannels in nano-submicro-fibrous cellulose scaffolds favor cell ingrowth. Cellulose, 2021, 28, 9645-9659.	2.4	4
4008	Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704048.	2.0	32
4009	Mechanical behaviors of lotus-type porous Cu/Cu joint soldered by Sn-3.0Ag-0.5Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141655.	2.6	5
4010	3D printed PCL/β-TCP cross-scale scaffold with high-precision fiber for providing cell growth and forming bones in the pores. Materials Science and Engineering C, 2021, 127, 112197.	3.8	27
4011	Studies on novel chitosan/alginate and chitosan/bentonite flexible films incorporated with ZnO nano particles for accelerating dermal burn healing: In vivo and in vitro evaluation. International Journal of Biological Macromolecules, 2021, 184, 235-249.	3.6	18
4012	Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c. ACS Biomaterials Science and Engineering, 2021, 7, 4521-4534.	2.6	14
4013	Research Progress of Electrostatic Spray Technology over the Last Two Decades. Journal of Energy Engineering - ASCE, 2021, 147, .	1.0	10
4014	A New Approach for Manufacturing Stochastic Pure Magnesium Foam by Laser Powder Bed Fusion: Fabrication, Geometrical Characteristics, and Compressive Mechanical Properties. Advanced Engineering Materials, 2021, 23, 2100483.	1.6	7
4015	Bone regeneration using Wollastonite/Ĵ²-TCP scaffolds implants in critical bone defect in rat calvaria. Biomedical Physics and Engineering Express, 2021, 7, 055015.	0.6	2
4016	Scaffolds in Periodontal Regenerative Treatment. Dental Clinics of North America, 2022, 66, 111-130.	0.8	13
4017	Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic) Tj ETQq1 1 ().784314 ı 1.3	rgßT /Overlo
4018	Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering. Biofabrication, 2021, 13, 044102.	3.7	7
4019	3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments. Acta Biomaterialia, 2021, 134, 744-759.	4.1	23
4020	Biodegradable macromers for implant bulk and surface engineering. Biological Chemistry, 2021, 402, 1357-1374.	1.2	2
4021	Biomechanical study on implantable and interventional medical devices. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 875-894.	1.5	19

#	Article	IF	CITATIONS
4022	Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma. Biomaterials, 2021, 275, 120950.	5.7	60
4023	Is three-dimensional–printed custom-made ultra-short stem with a porous structure an acceptable reconstructive alternative in peri-knee metaphysis for the tumorous bone defect?. World Journal of Surgical Oncology, 2021, 19, 235.	0.8	7
4024	3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis. BMC Musculoskeletal Disorders, 2021, 22, 734.	0.8	12
4025	Morbidité et résultats radiocliniques précoces des arthrodèses antérieures lombaires par implant intervertébral en tantale. Revue De Chirurgie Orthopedique Et Traumatologique, 2021, 107, 869-869.	0.0	0
4026	Numerical analysis of heat and mass transfers during intermittent microwave drying of Chinese jujube (Zizyphus jujuba Miller). Food and Bioproducts Processing, 2021, 129, 10-23.	1.8	13
4027	Mechanical characterization and neutrophil NETs response of a novel hybrid geometry polydioxanone near-field electrospun scaffold. Biomedical Materials (Bristol), 2021, 16, 065002.	1.7	4
4028	Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering, 2021, 8, 123.	1.6	9
4029	Effect of hydroxyapatite content and particle size on the mechanical behaviors and osteogenesis in vitro of polyetheretherketone–hydroxyapatite composite. Polymer Composites, 2021, 42, 6512-6522.	2.3	19
4030	Architected implant designs for long bones: Advantages of minimal surface-based topologies. Materials and Design, 2021, 207, 109838.	3.3	33
4032	Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 2021, 276, 120995.	5.7	96
4033	Personalized Baghdadite scaffolds: stereolithography, mechanics and in vivo testing. Acta Biomaterialia, 2021, 132, 217-226.	4.1	21
4034	Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. European Polymer Journal, 2021, 160, 110807.	2.6	33
4035	Comparison of CAD and Voxel-Based Modelling Methodologies for the Mechanical Simulation of Extrusion-Based 3D Printed Scaffolds. Materials, 2021, 14, 5670.	1.3	4
4036	Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: a review. SN Applied Sciences, 2021, 3, 1.	1.5	25
4037	Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. Materials, 2021, 14, 5338.	1.3	32
4038	Bioactive glass with biocompatible polymers for bone applications. European Polymer Journal, 2021, 160, 110801.	2.6	20
4039	Design and characterization of highly porous curcumin loaded freeze-dried wafers for wound healing. European Journal of Pharmaceutical Sciences, 2021, 164, 105888.	1.9	12
4040	ScaffoldCAN: Synthesis of Scaffold Materials based on Generative Adversarial Networks. CAD Computer Aided Design, 2021, 138, 103041.	1.4	5

#	Article	IF	CITATIONS
4041	Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Biomedical Materials (Bristol), 2021, 16, 064102.	1.7	24
4042	Advanced Composites with Aluminum Alloys Matrix and Their Fabrication Processes. , 0, , .		0
4043	Influence of a macroporous \hat{l}^2 -TCP structure on human mesenchymal stem cell proliferation and differentiation in vitro. Open Ceramics, 2021, 7, 100141.	1.0	4
4044	Iron-doped brushite bone cement scaffold with enhanced osteoconductivity and antimicrobial properties for jaw regeneration. Ceramics International, 2021, 47, 25810-25820.	2.3	11
4045	A host-coupling bio-nanogenerator for electrically stimulated osteogenesis. Biomaterials, 2021, 276, 120997.	5.7	37
4046	Honeycomb Scaffold-Guided Bone Reconstruction of Critical-Sized Defects in Rabbit Ulnar Shafts. ACS Applied Bio Materials, 2021, 4, 6821-6831.	2.3	9
4047	Incorporation of hydroxyapatite in crosslinked gelatin/chitosan/poly(vinyl alcohol) hybrids utilizing as reinforced composite sponges, and their water absorption ability. Progress in Natural Science: Materials International, 2021, 31, 664-671.	1.8	11
4048	Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation. Materials Science and Engineering C, 2021, 131, 112453.	3.8	21
4049	Architecture and Composition Dictate Viscoelastic Properties of Organ-Derived Extracellular Matrix Hydrogels. Polymers, 2021, 13, 3113.	2.0	23
4050	Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104613.	1.5	16
4051	Investigating the physical characteristics and cellular interplay on 3D-printed scaffolds depending on the incorporated silica size for hard tissue regeneration. Materials and Design, 2021, 207, 109866.	3.3	9
4052	In vivo evaluation of deer antler trabecular bone as a reconstruction material for bone defects. Research in Veterinary Science, 2021, 138, 116-124.	0.9	0
4053	Surface Integrity and Biological Response of Ti-Alloy Implants after Surface Modification. Materials Today: Proceedings, 2021, , .	0.9	3
4054	The effect of pores and connections geometries on bone ingrowth into titanium scaffolds: an assessment based on 3D microCT images. Biomedical Materials (Bristol), 2021, 16, 065010.	1.7	2
4055	Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Materials Science and Engineering C, 2021, 128, 112287.	3.8	39
4056	Berberine for bone regeneration: Therapeutic potential and molecular mechanisms. Journal of Ethnopharmacology, 2021, 277, 114249.	2.0	22
4057	Determination of an Initial Stage of the Bone Tissue Ingrowth Into Titanium Matrix by Cell Adhesion Model. Frontiers in Bioengineering and Biotechnology, 2021, 9, 736063.	2.0	3
4058	Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Advanced Drug Delivery Reviews, 2021, 176, 113852.	6.6	13

#	Article	IF	CITATIONS
4059	Porous tantalum-composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue <i>in vivo</i> . International Journal of Energy Production and Management, 2021, 8, rbab051.	1.9	13
4060	Comparison of Selective Laser Melted Commercially Pure Titanium Sheetâ€Based Triply Periodic Minimal Surfaces and Trabecularâ€Like Strutâ€Based Scaffolds for Tissue Engineering. Advanced Engineering Materials, 2022, 24, 2100527.	1.6	7
4061	<scp>3D</scp> printedâ€polylactic acid scaffolds coated with natural rubber latex for biomedical application. Journal of Applied Polymer Science, 2022, 139, 51728.	1.3	8
4062	Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology. Materials Science and Engineering C, 2021, 129, 112382.	3.8	37
4063	Continued sustained insulin-releasing PLGA nanoparticles modified 3D-Printed PCL composite scaffolds for osteochondral repair. Chemical Engineering Journal, 2021, 422, 130051.	6.6	26
4064	Interdisciplinary management of skull base surgery. Journal of Oral Biology and Craniofacial Research, 2021, 11, 601-607.	0.8	2
4065	Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria. Carbon, 2021, 184, 375-385.	5.4	35
4066	Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioactive Materials, 2021, 6, 3254-3268.	8.6	48
4067	The role of natural polymers in bone tissue engineering. Journal of Controlled Release, 2021, 338, 571-582.	4.8	145
4068	3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration. Bioactive Materials, 2021, 6, 4083-4095.	8.6	32
4069	Highly active biological dermal acellular tissue scaffold composite with human bone powder for bone regeneration. Materials and Design, 2021, 209, 109963.	3.3	4
4070	Single-parameter mechanical design of a 3D-printed octet truss topological scaffold to match natural cancellous bones. Materials and Design, 2021, 209, 109986.	3.3	12
4071	Porous tantalum scaffolds: Fabrication, structure, properties, and orthopedic applications. Materials and Design, 2021, 210, 110095.	3.3	37
4072	Quantitative evaluation on mechanical characterization of Ti6Al4V porous scaffold designed based on Weaire-Phelan structure via experimental and numerical analysis methods. Journal of Alloys and Compounds, 2021, 885, 160234.	2.8	14
4073	Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration. Applied Materials Today, 2021, 25, 101168.	2.3	17
4074	Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Current Stem Cell Research and Therapy, 2021, 16, 36-47.	0.6	9
4075	Fabrication of porous chitosan particles using a novel two-step porogen leaching and lyophilization method with the label-free multivariate spectral assessment of live adhered cells. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112094.	2.5	3
4076	Fabrication and characterization of two types of bone composites made of chitosan-genipin hydrogel and Bioglass 4555. Open Ceramics, 2021, 8, 100174.	1.0	6

#	Article	IF	CITATIONS
4077	A comparative study of microstructural, biological, and mechanical properties in 20H-80B and 20H-80S composite scaffolds. Materials Letters, 2021, 304, 130668.	1.3	3
4078	Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regenerative Therapy, 2021, 18, 102-111.	1.4	46
4079	3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioactive Materials, 2022, 7, 275-291.	8.6	11
4080	Biomedical Applications of Powder Metallurgy. , 2022, , 417-426.		0
4081	Foamability of thermoplastics. , 2022, , 79-175.		0
4082	Trends in the Development of Tailored Elastin-Like Recombinamer–Based Porous Biomaterials for Soft and Hard Tissue Applications. Frontiers in Materials, 2021, 7, .	1.2	20
4083	How much platelet-rich plasma can be soak-loaded onto beta-tricalcium phosphate? A comparison with or without a unidirectional porous structure. Journal of Rural Medicine: JRM, 2021, 16, 14-21.	0.2	2
4084	3D Printing of Bioactive Devices for Clinical Medicine Applications. , 2021, , 1413-1434.		0
4085	Structural proteins in nature. , 2021, , 179-204.		0
4086	Polydopamine functionalized VEGF gene-activated 3D printed scaffolds for bone regeneration. RSC Advances, 2021, 11, 13282-13291.	1.7	17
4087	A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone regeneration. Journal of Materials Chemistry B, 2021, 9, 4488-4501.	2.9	25
4088	3D printing and 3D printed scaffolds. , 2021, , 183-200.		1
4089	Antioxidant, and enhanced flexible nano porous scaffolds for bone tissue engineering applications. Nano Select, 2021, 2, 1356-1367.	1.9	8
4090	In Vitro and In Vivo Evaluation of Nanostructured Biphasic Calcium Phosphate in Granules and Putty Configurations. International Journal of Environmental Research and Public Health, 2021, 18, 533.	1.2	5
4091	Lattice structures made by laser powder bed fusion. , 2021, , 423-465.		5
4092	Highly interconnected macroporous MBC/PLGA scaffolds with enhanced mechanical and biological properties via green foaming strategy. Chinese Journal of Chemical Engineering, 2021, 29, 426-436.	1.7	7
4093	Sustainable Coated Nanostructures Based on Alginate and Electrospun Collagen Loaded with Antimicrobial Agents. Coatings, 2021, 11, 121.	1.2	4
4094	Apatitic and Tricalcic Calcium Phosphate-Based Bioceramics: Overview and Perspectives. , 2021, , 575-594.		0

#	Article	IF	CITATIONS
4095	Bone Regeneration With Ceramics Scaffold. , 2021, , 646-661.		2
4096	Decellularised extracellular matrix decorated PCL PolyHIPE scaffolds for enhanced cellular activity, integration and angiogenesis. Biomaterials Science, 2021, 9, 7297-7310.	2.6	22
4097	Biomedical applications of biopolymer-based (nano)materials. , 2021, , 189-332.		1
4098	Biodegradable Mg-Ca-Zn alloys synthesized by powder metallurgy. AIP Conference Proceedings, 2021, , .	0.3	0
4099	Pro-angiogenic and osteogenic composite scaffolds of fibrin, alginate and calcium phosphate for bone tissue engineering. Journal of Tissue Engineering, 2021, 12, 204173142110056.	2.3	35
4100	Repair of a Calvarial Defect With Biofactor and Stem Cell–Embedded Polyethylene Glycol Scaffold. Archives of Facial Plastic Surgery, 2010, 12, 166-171.	0.8	16
4109	Cosmology Inspired Design of Biomimetic Tissue Engineering Templates with Gaussian Random Fields. Lecture Notes in Computer Science, 2006, 9, 544-552.	1.0	2
4110	Clinical Applications of Bone Tissue Engineering. , 2009, , 1-18.		1
4111	Engineering Graded Tissue Interfaces. , 2013, , 299-322.		2
4112	Degradable and Bioactive Synthetic Composite Scaffolds for Bone Tissue Engineering. , 2012, , 111-137.		3
4113	Clinical Efficacy of Stem Cell Mediated Osteogenesis and Bioceramics for Bone Tissue Engineering. Advances in Experimental Medicine and Biology, 2012, 760, 174-187.	0.8	8
4114	Porosity and Diffusion in Biological Tissues. Recent Advances and Further Perspectives. Solid Mechanics and Its Applications, 2020, , 311-356.	0.1	10
4115	Biofabrication in Tissue Engineering. , 2020, , 289-312.		7
4116	Calcium Phosphate Biomaterials for Bone Tissue Engineering: Properties and Relevance in Bone Repair. , 2020, , 535-555.		3
4117	Three-Dimensional (3D) and Drug-Eluting Nanofiber Coating for Prosthetic Implants. , 2020, , 91-114.		3
4118	Production of 3D-Printed Tympanic Membrane Scaffolds as a Tissue Engineering Application. Lecture Notes in Computer Science, 2020, , 175-184.	1.0	4
4119	Synthesis and Structure–Property Relationships of Cryogels. Advances in Polymer Science, 2014, , 103-157.	0.4	89
4120	Hard-Soft Tissue Interface Engineering. Advances in Experimental Medicine and Biology, 2015, 881, 187-204.	0.8	10

#	Article	IF	CITATIONS
4121	Convergence of Osteoimmunology and Immunomodulation for the Development and Assessment of Bone Biomaterials. , 2017, , 107-124.		7
4122	Characterization and Evaluation of Nanofiber Materials. , 2019, , 491-522.		11
4123	A Computational Approach to the Design of Scaffolds for Bone Tissue Engineering. Lecture Notes in Bioengineering, 2018, , 111-117.	0.3	4
4124	Mineralised Collagen as Biomaterial and Matrix for Bone Tissue Engineering. , 2009, , 485-493.		9
4125	Multilevel Experimental and Modelling Techniques for Bioartificial Scaffolds and Matrices. Nanoscience and Technology, 2010, , 425-486.	1.5	1
4126	Analysis of multiple resolution μ-CT image sets for pore-size distribution estimation. IFMBE Proceedings, 2009, , 1261-1264.	0.2	1
4127	Application in the Field of Biomedical Materials. , 2010, , 240-272.		2
4128	Direct Laser Writing. Biological and Medical Physics Series, 2013, , 13-65.	0.3	12
4129	Hydrogen Storage Technologies. , 2017, , 117-142.		9
4130	Biocompatibility of Thin Films. Biological and Medical Physics Series, 2013, , 11-67.	0.3	2
4131	Biopolymeric Scaffolds for Tissue Engineering Application. , 2019, , 249-274.		4
4132	Fabrication and In Vitro Corrosion Characterization of 316L Stainless Steel for Medical Application. Materials Horizons, 2019, , 215-226.	0.3	3
4133	PLA-HAp-CS-Based Biocompatible Scaffolds Prepared Through Micro-Additive Manufacturing: A Review and Future Applications. Materials Horizons, 2020, , 209-229.	0.3	3
4134	Biomaterials and Fabrication Methods of Scaffolds for Tissue Engineering Applications. Materials Horizons, 2020, , 167-186.	0.3	6
4135	Fabrication of paper-based devices for in vitro tissue modeling. Bio-Design and Manufacturing, 2020, 3, 252-265.	3.9	11
4136	Nanofiber composites in bone tissue engineering. , 2017, , 301-323.		5
4137	An "all-in-one―scaffold targeting macrophages to direct endogenous bone repair in situ. Acta Biomaterialia, 2020, 111, 153-169.	4.1	11
4138	3D porous chitosan-chondroitin sulfate scaffolds promote epithelial to mesenchymal transition in prostate cancer cells. Biomaterials, 2020, 254, 120126.	5.7	38

# 4139	ARTICLE Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112,	IF 1.5	CITATIONS
4140	Parameterized design and fabrication of porous bone scaffolds for the repair of cranial defects. Medical Engineering and Physics, 2020, 81, 39-46.	0.8	6
4141	Osteogenic Differentiation of Induced Pluripotent Stem Cells on Electrospun Nanofibers: A Review of Literature. Materials Today Communications, 2020, 25, 101561.	0.9	9
4142	Porous 3D hydroxyapatite/polyurethane composite scaffold for bone tissue engineering and its <i>inÂvitro</i> degradation behavior. Ferroelectrics, 2020, 566, 104-115.	0.3	9
4143	Bone Substitutes: Artificial Biomimetic. , 0, , 1124-1136.		1
4144	Scaffolds and Scaffolding Materials. , 0, , 6999-7015.		1
4145	Immunomodulation of surface biofunctionalized 3D printed porous titanium implants. Biomedical Materials (Bristol), 2020, 15, 035017.	1.7	24
4146	Exploring the role of surface modifications of TiNi-based alloys in evaluating in vitro cytocompatibility: a comparative study. Surface Topography: Metrology and Properties, 2020, 8, 045015.	0.9	5
4147	High-Porosity Poly(ε-Caprolactone)/Mesoporous Silicon Scaffolds: Calcium Phosphate Deposition and Biological Response to Bone Precursor Cells. Tissue Engineering, 2008, 14, 195-206.	4.9	7
4150	The effect to flow rate characteristic on biodegradation of bone scaffold. Malaysian Journal of Fundamental and Applied Sciences, 2017, 13, 546-552.	0.4	5
4152	Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells International, 2019, 2019, 1-16.	1.2	84
4153	Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding. Cells Tissues Organs, 2017, 204, 150-163.	1.3	37
4154	Role of Hydrogels in Bone Tissue Engineering: How Properties Shape Regeneration. Journal of Biomedical Nanotechnology, 2020, 16, 1667-1686.	0.5	21
4155	Immunomodulation for maxillofacial reconstructive surgery. Maxillofacial Plastic and Reconstructive Surgery, 2020, 42, 5.	0.7	18
4156	Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofacial Plastic and Reconstructive Surgery, 2020, 42, 18.	0.7	65
4157	Inorganic and Composite Bioactive Scaffolds for Bone Tissue Engineering. , 2008, , 3-43.		1
4159	Calcium Phosphates as Scaffolds for Mesenchymal Stem Cells. , 2012, , 219-238.		3
4160	Nanocomposite Polymer Scaffolds for Bone Tissue Regeneration. Acta Physica Polonica A, 2012, 121, 518-521.	0.2	15

#	Article	IF	CITATIONS
4162	Tissue Engineering: New Paradigm of Biomedicine. Biosciences, Biotechnology Research Asia, 2019, 16, 521-532.	0.2	9
4163	MICRO-CT IN TISSUE ENGINEERING SCAFFOLDS DESIGNED FOR BONE REGENERATION: PRINCIPLES AND APPLICATION. Ceramics - Silikaty, 2018, , 194-199.	0.2	8
4164	The need for hierarchical scaffolds in bone tissue engineering. Hard Tissue, 2013, 2, .	0.2	19
4165	Biological Properties of Solid Free Form Designed Ceramic Scaffolds with BMP-2: In Vitro and In Vivo Evaluation. PLoS ONE, 2012, 7, e34117.	1.1	76
4166	Influence of Architecture of β-Tricalcium Phosphate Scaffolds on Biological Performance in Repairing Segmental Bone Defects. PLoS ONE, 2012, 7, e49955.	1.1	38
4167	Histological Evaluation of the Biocompatibility of Polyurea Crosslinked Silica Aerogel Implants in a Rat Model: A Pilot Study. PLoS ONE, 2012, 7, e50686.	1.1	36
4168	The Osteogenic Potential of Mesoporous Bioglasses/Silk and Non-Mesoporous Bioglasses/Silk Scaffolds in Ovariectomized Rats: In vitro and In vivo Evaluation. PLoS ONE, 2013, 8, e81014.	1.1	39
4169	Safety Evaluation of a Bioglass–Polylactic Acid Composite Scaffold Seeded with Progenitor Cells in a Rat Skull Critical-Size Bone Defect. PLoS ONE, 2014, 9, e87642.	1.1	31
4170	Repair of Segmental Bone Defect Using Totally Vitalized Tissue Engineered Bone Graft by a Combined Perfusion Seeding and Culture System. PLoS ONE, 2014, 9, e94276.	1.1	8
4171	Biomechanical and Histological Evaluation of Roughened Surface Titanium Screws Fabricated by Electron Beam Melting. PLoS ONE, 2014, 9, e96179.	1.1	23
4172	Osteogenic Differentiation of Human Mesenchymal Stem Cells in 3-D Zr-Si Organic-Inorganic Scaffolds Produced by Two-Photon Polymerization Technique. PLoS ONE, 2015, 10, e0118164.	1.1	79
4173	A three-dimensional block structure consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler. PLoS ONE, 2017, 12, e0172601.	1.1	21
4174	Calcium Orthophosphate (CaPO4) Scaffolds for Bone Tissue Engineering Applications. Journal of Biotechnology and Biomedical Science, 2018, 1, 25-93.	0.6	22
4175	Fortifying the Bone-Implant Interface Part 2: An In Vivo Evaluation of 3D-Printed and TPS-Coated Triangular Implants. International Journal of Spine Surgery, 2017, 11, 16.	0.7	25
4176	The Osteogenic Potential of Human Nondifferentiated and Pre-differentiated Mesenchymal Stem Cells Combined with an Osteoconductive Scaffold – Early Stage Healing. Acta Medica (Hradec Kralove), 2017, 60, 12-18.	0.2	5
4177	Biomimetic Scaffolds for Osteogenesis. Receptors & Clinical Investigation, 0, , .	0.9	2
4178	Biologically structured materials. Independent Journal of Management & Production, 2020, 11, 1119.	0.1	1
4179	Biocompatibility and osteoconductivity of scaffold porous composite collagen–hydroxyapatite based coral for bone regeneration. Open Chemistry, 2020, 18, 584-590.	1.0	24

#	Article	IF	CITATIONS
4180	Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers, 2020, 20, 571-599.	1.3	78
4181	Fabrication of ultrahigh-molecular-weight polyethylene porous implant for bone application. Journal of Polymer Engineering, 2020, 40, 685-692.	0.6	3
4182	Strategies toward Engineering Vascularized Bone Graft Substitutes. , 0, , 299-332.		1
4183	Approach to the Design and Manufacturing of Prosthetic Dental Restorations According to the Rules of Industry 4.0. Materials Performance and Characterization, 2020, 9, 20200020.	0.2	14
4184	Preparation of lotus nanofibers-alginate porous membranes for biomedical applications. BioResources, 2020, 15, 6471-6487.	0.5	2
4185	Biomateriales utilizados en cirugÃa ortopédica como sustitutos del tejido óseo. Revista De La Asociación Argentina De Ortopedia Y TraumatologÃa, 2012, 77, 140.	0.0	4
4186	A Minimum 2-Year Follow-up Using Modular Trabecular Metal Tibial Components in Total Knee Arthroplasty. Reconstructive Review, 2015, 5, .	0.1	1
4187	A micromechanical approach to numerical modeling of yielding of open-cell porous structures under compressive loads. Journal of Theoretical and Applied Mechanics, 0, , 769.	0.2	10
4188	THE STRENGTH OF BONE-METAL BLOCK FOR DIFFERENT TYPES OF IMPLANTS SURFACES UNDER THE CONDITIONS OF NORMAL BONE AND OSTEOPOROSIS IN RATS. Ortopediiï,aï,i, Travmatologiiï,aï,i I Protezirovanie, 2016, .	0.0	5
4189	Nacre Compared to Aragonite as a Bone Substitute: Evaluation of Bioactivity and Biocompatibility. Materials Research, 2015, 18, 395-403.	0.6	5
4190	In vitro Evaluation of PHBV/PCL Blends for Bone Tissue Engineering. Materials Research, 2019, 22, .	0.6	8
4191	Characterization of Ti-35Nb alloy surface modified by controlled chemical oxidation for surgical implant applications. Revista Materia, 2019, 24, .	0.1	3
4193	Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds. International Journal of Bioprinting, 2017, 3, 72.	1.7	32
4194	Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering. International Journal of Bioprinting, 2019, 5, 204.	1.7	42
4195	Combined Porogen Leaching and Emulsion Templating to produce Bone Tissue Engineering Scaffolds. International Journal of Bioprinting, 2020, 6, 265.	1.7	20
4196	3D-printed Biomimetic Bioactive Glass Scaffolds for Bone Regeneration in Rat Calvarial Defects. International Journal of Bioprinting, 2020, 6, 274.	1.7	32
4197	Calcium Orthophosphate Bioceramics. Eurasian Chemico-Technological Journal, 2015, 12, 247.	0.3	5
4198	Synthesis of Porous Titanium with Directional Pores by Selective Laser Melting. International Journal of Automation Technology, 2012, 6, 597-603.	0.5	8

ARTICLE IF CITATIONS Multifunctional materials for bone cancer treatment. International Journal of Nanomedicine, 2014, 9, 4199 3.3 64 2713. EVALUATION OF THE USE OF ZIRCONIA POROUS SCAFFOLD IN THE REPAIR OF OROANTRAL FISTULA. 4200 0.1 Alexandria Dental Journal: ADJ, 2018, 43, 87-93. 3D Printing Technology Over a Drug Delivery for Tissue Engineering. Current Pharmaceutical Design, 4201 0.9 33 2015, 21, 1606-1617. Three-Dimensional (3-D) Printing Technology Exploited for the Fabrication of Drug Delivery Systems. Current Pharmaceutical Design, 2019, 24, 5019-5028. 4202 0.9 Hybrid Organic-Inorganic Scaffolding Biomaterials for Regenerative Therapies. Current Organic 4203 0.9 36 Chemistry, 2014, 18, 2299-2314. Multiscale inorganic hierarchically materials: towards an improved orthopaedic regenerative 4204 1.0 medicine. Current Topics in Medicinal Chemistry, 2015, 15, 2290-2305. Effect of Surface Grafted Hydroxyapatite on the Improved Performance of 4205 0.7 3 Hydroxyapatite/Poly(ε-caprolactone) Scaffold. Current Nanoscience, 2014, 10, 855-862. Injectable Thermosensitive Chitosan/Glycerophosphate-Based Hydrogels for Tissue Engineering and Drug Delivery Applications: A Review. Recent Patents on Drug Delivery and Formulation, 2015, 9, 4206 2.1 28 107-120. Three Dimensional OCT in the Engineering of Tissue Constructs: A Potentially Powerful Tool for 4207 Assessing Optimal Scaffold Structure. The Open Tissue Engineering and Regenerative Medicine Journal, 2.6 23 2009, 2, 8-13. Calcium Phosphate Surface Tailoring Technologies for Drug Delivering and Tissue Engineering., 2012, , 43-111. Three-dimensional cultures of osteogenic and chondrogenic cells: A tissue engineering approach to 4209 104 mimic bone and cartilage in vitro., 2009, 17, 1-14. Establishment of immortalized periodontal ligament progenitor cell line and its behavioural analysis on smooth and rough titanium surface. , 2010, 19, 228-241. Design of ceramic-based cements and putties for bone graft substitution., 2010, 20, 1-12. 4211 261 Ceramic materials lead to underestimated DNA quantifications: a method for reliable measurements., 4212 2010, 20, 38-44. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly 4213 218 porous collagen-based scaffold for bone tissue regeneration. , 2010, 20, 218-230. Magnetic resonance imaging tracking of human adipose derived stromal cells within 4214 three-dimensional scaffolds for bone tissue engineering., 2011, 21, 341-354. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem 4215 76 cells., 2013, 25, 114-129. Cell-scaffold interactions in the bone tissue engineering triad., 2013, 26, 120-132.

#	Article	IF	CITATIONS
4217	A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. , 2014, 27, 332-349.		52
4218	Performance of different three-dimensional scaffolds for in vivo endochondral bone generation. , 2014, 27, 350-364.		29
4219	Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man. , 2014, 28, 166-208.		149
4220	Effect of grain size and microporosity on the in vivo behaviour of β-tricalcium phosphate scaffolds. , 2014, 28, 299-319.		53
4221	Characterization of Electrospun Silk Fibroin Scaffolds for Bone Tissue Engineering: A Review. Tecno Lógicas, 2020, 23, 33-51.	0.1	7
4222	Synthesis and characterization of porous biphasic calcium phosphate scaffold from different porogens for possible bone tissue engineering applications. Science of Sintering, 2011, 43, 183-192.	0.5	12
4224	Improvement of Mechanical Properties of Bone Tissue Engineered Scaffolds through Sintering and Infiltration with Biopolymers. , 2013, , .		2
4225	Formation of New Bone with Preferentially Oriented Biological Apatite Crystals Using a Novel Cylindrical Implant Containing Anisotropic Open Pores Fabricated by the Electron Beam Melting (EBM) Method. ISIJ International, 2011, 51, 262-268.	0.6	29
4226	Formation of New Bone with Preferentially Oriented Biological Apatite Crystals Using Novel Cylindrical Implant Containing Anisotropic Open Pores Fabricated by Electron Beam Melting (EBM) Method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010, 96, 572-578.	0.1	3
4228	Guided Bone Regeneration using Hydroxyapatite-Coated Titanium Fiber Web in Rabbit Mandible: Use of Molecular Precursor Method. Journal of Hard Tissue Biology, 2013, 22, 329-336.	0.2	5
4229	Bone Augmentation Using Novel Unidirectional Porous Hydroxyapatite with Bone Morphogenetic Protein-2 on Rat Skull. Journal of Hard Tissue Biology, 2013, 22, 337-342.	0.2	3
4230	Fabrication of three-dimensional cell scaffolds with spatial gradients of biomolecules. Inflammation and Regeneration, 2007, 27, 102-106.	1.5	4
4232	Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping. International Journal of Materials Research, 2012, 103, 200-206.	0.1	6
4233	Orthopaedic tissue engineering and bone regeneration. Technology and Health Care, 2006, 15, 57-67.	0.5	27
4235	Fabrication of Open-Pored Titanium Foam for Biomedical Implants. Journal of Korean Institute of Metals and Materials, 2019, 57, 679-687.	0.4	3
4236	Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Frontiers in Chemistry, 2020, 8, 53.	1.8	82
4237	Porous Titanium Cylinders Obtained by the Freeze-Casting Technique: Influence of Process Parameters on Porosity and Mechanical Behavior. Metals, 2020, 10, 188.	1.0	22
4238	From Dermal Patch to Implants—Applications of Biocomposites in Living Tissues. Molecules, 2020, 25, 507.	1.7	6

#	Article	IF	CITATIONS
4239	Poly(d,l-Lactic acid) Composite Foams Containing Phosphate Glass Particles Produced via Solid-State Foaming Using CO2 for Bone Tissue Engineering Applications. Polymers, 2020, 12, 231.	2.0	10
4240	Poly(δ-valerolactone)/Poly(ethylene-co-vinylalcohol)/β-Tricalcium Phosphate Composite as Scaffolds: Preparation, Properties, and In Vitro Amoxicillin Release. Polymers, 2021, 13, 46.	2.0	3
4241	Recent Advances in Functional Polymers Containing Coumarin Chromophores. Polymers, 2021, 13, 56.	2.0	31
4242	Dentistry 4.0 Concept in the Design and Manufacturing of Prosthetic Dental Restorations. Processes, 2020, 8, 525.	1.3	44
4243	Fabrication of Micro-grooved Patterns on Hydroxyapatite Ceramics and Observation of Earlier Response of Osteoblasts to the Patterns. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 51-57.	0.6	6
4244	PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties. Korean Journal of Materials Research, 2010, 20, 331~337-331~337.	0.1	9
4245	In Vitro and In Vivo Evaluation of Composite Scaffold of BCP, Bioglass and Gelatin for Bone Tissue Engineering. Korean Journal of Materials Research, 2014, 24, 310~318-310~318.	0.1	2
4246	Cementless Acetabular Reconstruction for Arthropathy in Old Acetabular Fractures. Orthopedics, 2015, 38, e934-9.	0.5	9
4247	Aportaciones de la paleohistologÃa humana al estudio de biomateriales. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 313-320.	0.9	3
4248	Mineralized Nanofibers for Bone Tissue Engineering. , 2018, , 461-475.		1
4249	Self-Assembled Biomimetic Scaffolds for Bone Tissue Engineering. , 2018, , 476-504.		1
4250	Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications. Advanced Biomedical Research, 2016, 5, 177.	0.2	24
4251	Comparative Characterisation of 3-D Hydroxyapatite Scaffolds Developed Via Replication of Synthetic Polymer Foams and Natural Marine Sponges. Journal of Tissue Science & Engineering, 0, s1, .	0.2	14
4252	Advanced Radiographic Imaging Results in Patients with Trabecular Metalï;½ Spinal Implants. Journal of Spine & Neurosurgery, 2013, 02, .	0.1	1
4253	Fabrication of Porous Hydroxyapatite through Combination Of Sacrificial Template and Direct Foaming Techniques. Engineering Journal, 2011, 15, 1-16.	0.5	8
4254	Sol-gel bioceramic material from bentonite clay. Journal of Biomedical Science and Engineering, 2013, 06, 258-264.	0.2	7
4255	Hard Tissue-Forming Ability and Ultra-Micro Structure of Newly Developed Sponges as Scaffolds Made with Sodium Alginate Gel and Chondroitin Sulfate. Journal of Biomedical Science and Engineering, 2018, 11, 289-306.	0.2	2
4256	A Novel <i>in Vitro</i> Three-Dimensional Macroporous Scaffolds from Bacterial Cellulose for Culture of Breast Cancer Cells. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 316-326.	1.0	27

#	Article	IF	CITATIONS
4257	3D Printed Scaffolds as a New Perspective for Bone Tissue Regeneration: Literature Review. Materials Sciences and Applications, 2016, 07, 430-452.	0.3	14
4258	Bone Ingrowth into Pores of Lotus Stem-Type Bioactive Titanium Implants Fabricated Using Rapid Prototyping Technique. Bioceramics Development and Applications, 2010, 1, 1-3.	0.3	4
4259	A Revised Replication Method for Bioceramic Scaffolds. Bioceramics Development and Applications, 2011, 1, 1-8.	0.3	14
4260	Single-stage anterior debridement and reconstruction with tantalum mesh cage for complicated infectious spondylitis. World Journal of Orthopedics, 2017, 8, 710.	0.8	7
4261	ImageJ Plugin for Analysis of Porous Scaffolds used in Tissue Engineering. Journal of Open Research Software, 2015, 3, .	2.7	68
4262	Antimicrobal and ostheointegration activity of bone cement contains nanometals. Journal of Achievements in Materials and Manufacturing Engineering, 2016, 74, 15-21.	0.2	2
4263	Comparison of Apatite-Wollastonite Glass-Ceramic and β-tricalcium Phosphate used as Bone Graft Substitutes after Curettage of Bone Cysts. , 0, , .		1
4264	Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications. , O, , .		78
4266	Three-Dimensional Molding Based on Microstereolithography Using Beta-Tricalcium Phosphate Slurry for the Production of Bioceramic Scaffolds. Japanese Journal of Applied Physics, 2011, 50, 06GL15.	0.8	4
4267	Biomateriais com aplicação na regeneração óssea – método de análise e perspectivas futuras. Revista De Ciências Médicas E Biológicas, 2010, 9, 37.	0.0	11
4268	Fabrication and investigation of bioceramics scaffolds by a salt leaching method. AIP Conference Proceedings, 2021, , .	0.3	2
4269	Nanofiber-Mediated Stem Cell Osteogenesis: Prospects in Bone Tissue Regeneration. , 2021, , 47-67.		3
4270	Biomechanics of Bone Grafts and Bone Substitutes. , 2021, , 37-56.		0
4271	Bioceramics-Based Biomaterials for Bone Tissue Engineering. , 2021, , 573-587.		1
4273	The Application of Chitosan Nanostructures in Stomatology. Molecules, 2021, 26, 6315.	1.7	3
4274	3D-printed Poly-Lactic Co-Glycolic Acid (PLGA) scaffolds in non-critical bone defects impede bone regeneration in rabbit tibia bone. Bio-Medical Materials and Engineering, 2021, 32, 1-7.	0.4	0
4275	Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2. International Journal of Molecular Sciences, 2021, 22, 11485.	1.8	1
4276	Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Materials Science and Engineering C, 2021, 131, 112499.	3.8	32

#	Article	IF	CITATIONS
4277	Microstructure and Biomechanical Properties in Selective Laser Melting of Porous Metal Implants. 3D Printing and Additive Manufacturing, 0, , .	1.4	1
4278	Preparation and properties of foamed cellulose acetate/polylactic acid blends. Polymer Engineering and Science, 2021, 61, 3069-3081.	1.5	5
4279	Evaluation of electrospun nanofibers fabricated using PCL/PVP and PVA/β-TCP as potential scaffolds for bone tissue engineering. Polymer Bulletin, 2022, 79, 8397-8413.	1.7	5
4280	Hydroxyapatite composite scaffold for bone regeneration via rapid prototyping technique: a review. Rapid Prototyping Journal, 2022, 28, 585-605.	1.6	5
4281	Gelatin hydrogel nonwoven fabrics of a cell culture scaffold to formulate 3-dimensional cell constructs. Regenerative Therapy, 2021, 18, 418-429.	1.4	9
4282	Fabrication of novel kaolin-reinforced hydroxyapatite scaffolds with robust compressive strengths for bone regeneration. Applied Clay Science, 2021, 215, 106298.	2.6	26
4283	Optically transparent silk fibroin nanofiber paper maintaining native β-sheet secondary structure obtained by cyclic mechanical nanofibrillation process. Materials Today Communications, 2021, 29, 102895.	0.9	3
4284	Three-dimensional printed 5-fluorouracil /UHMWPE scaffolds for the treatment of breast cancer. Bioprinting, 2021, 24, e00174.	2.9	2
4285	Basics of Polymeric Scaffolds for Tissue Engineering. Journal of ASTM International, 2006, 3, 100428.	0.2	0
4286	Fabrication and Characterization of Poly(Propylene Fumarate) Scaffolds with Controlled Pore Structures Using 3-Dimensional Printing and Injection Molding. Tissue Engineering, 2006, .	4.9	0
4287	Effect of Scaffold Design on Bone Morphologyin Vitro. Tissue Engineering, 2006, .	4.9	0
4288	Mechanical Adaptation of Bone. Advances in Polymeric Biomaterials Series, 2006, , 351-366.	0.0	0
4289	Experimental study of HAP-PLGA composite scaffold for jaw bone regeneration. Nihon Koku Geka Gakkai Zasshi, 2007, 53, 588-593.	0.0	0
4290	In vivo Analyse der inflammatorischen und angiogenen Gewebereaktion auf calciumphosphathaltige Scaffolds fA¼r das Tissue Engineering von Knochen. Langenbecks Archiv Ful`r Chirurgie Supplement, 2008, , 247-249.	0.0	0
4291	Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy. Tissue Engineering - Part A, 2008, 14, 080422095744451.	1.6	10
4292	<i>Bombyx mori</i> Silk Fibroin Membranes as Potential Substrata for Epithelial Constructs Used in the Management of Ocular Surface Disorders. Tissue Engineering - Part A, 2008, .	1.6	1
4293	Bioactive Materials and Scaffolds for Tissue Engineering. , 2008, , 142-151.		0
4294	Temperature-responsive Cell Culture Surfaces for Cell Sheet Tissue Engineering. , 2008, , .		Ο

ARTICLE IF CITATIONS Remedi: A Research Consortium Applying Engineering Strategies to Establish Regenerative Medicine as a 4295 0.2 0 New Industry. IFMBE Proceedings, 2009, 2209-2212. Influence of Nano-hydroxyapatite on the Mechanical Properties of Short-carbon-fiber/Poly(methyl) Tj ETQq1 1 0.784314 rgBT Overloo 4296 Macroporous Polymer Scaffolds Through Leaching Processes. , 2009, , 49-81. 0 4297 Chapter 11. Mesenchymal Osteogenic Precursors for Bone Repair and Regeneration., 2010, , 235-247. 4298 Injectable Hydrogels: From Basics to Nanotechnological Features and Potential Advances. NATO 4299 0.5 0 Science for Peace and Security Series A: Chemistry and Biology, 2010, , 347-378. 4300 Effect of Scaffold Architecture on Tissue Regeneration. IFMBE Proceedings, 2010, , 815-818. 0.2 Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process. Korean Journal of Materials Research, 2010, 20, 418-422. 4301 0.1 0 Micro-CT Based Quantitative Evaluation of In Vivo Bone Regeneration with Collagen-based 4303 0.1 Biomaterials. Dental Medicine Research, 2011, 31, 24-27. Dental stem cells and bone repair. Faculty Dental Journal, 2011, 2, 30-35. 0.0 4304 0 An in vitro Study to Assess the Potential of a Unique Micro porous Algal Derived Cap Bone Void Filler 0.2 in Comparison with Clinically-Used Bone Void Fillers. Journal of Tissue Science & Engineering, 0, s1, . Modelling bone tissue engineering. Towards an understanding of the role of scaffold design 4306 2 0.1 parameters. Computational Methods in Applied Sciences (Springer), 2011, , 71-90. Bioactive Ceramics as Bone Morphogenetic Proteins Carriers., 0,,. 4307 Mesenchymal stem cells: A new treatment tool for rheumatoid arthritis. Inflammation and 4308 1.5 1 Regeneration, 2012, 32, 188-192. Scaffolds for Human Dental Stem Cells to Regenerate Cementum., 2012, , 161-170. 4309 Recent Development in Finite Element Methods and Computer Aided Design in the Development of 4310 0.2 0 Porous Scaffolds-A Review. Journal of Tissue Science & Engineering, 2012, 03, . Scaffold Considerations for Osteochondral Tissue Engineering., 2012,, 779-801. Towards Clinical Application of Mesenchymal Stromal Cells: Perspectives and Requirements for 4312 1 Orthopaedic Applications., 0,,. Total Hip Arthroplasty with Tantalum Constructions. N N Priorov Journal of Traumatology and 0.1 Orthopedics, 2012, 19, 24-29.

#	Article	IF	CITATIONS
4314	Porous Coatings on Metallic Implant Materials. , 2012, , 307-319.		3
4315	Fabrication and Application of Gradient Hydrogels in Cell and Tissue Engineering. , 2012, , 55-78.		0
4316	Impact of various modifications of biodegradable membranous scaffolds surface on multipotent mesenchimal stromal cells adhesion and viability. Bulletin of Siberian Medicine, 2012, 11, 5-12.	0.1	2
4317	Bone Tissue Regeneration. , 2012, , 183-204.		1
4318	Cell Mechanobiology in Regenerative Medicine. , 2012, , 1-16.		0
4319	Acrylic-based Stereolithographic Resins: Effect of Scaffold Architectures on Biological Response. Journal of Life Sciences and Technologies, 0, , 158-162.	0.0	2
4320	Use of Adult Stem Cells in Biomaterials Research. Journal of Biotechnology & Biomaterials, 2013, 03, .	0.3	0
4322	Preparation and Optimization of Porous HA Ceramic Scaffolds by Wax Spheres Leaching Method. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 74-78.	0.6	2
4323	Tunable electrospun scaffolds on cell behaviour for tissue regeneration and drug delivery system. OA Tissue Engineering, 2013, 1, .	0.4	0
4324	Research on P2P Overlay Network Model with Small-world Features. Journal of Networks, 2013, 8, .	0.4	0
4325	Cementless Fully Porous-Coated Implant-Bone Interface in Revision Total Hip Arthroplasty. , 2014, , 169-182.		0
4326	Soft Matter Composites Interfacing with Biomolecules, Cells, and Tissues. , 2014, , 29-76.		0
4327	Calcium phosphate materials in bone tissue engineering. Serbian Dental Journal, 2014, 61, 93-101.	0.1	1
4328	Cellulosic Biomaterials. , 2014, , 1-34.		0
4329	Clinical evaluation with 18 months follow-up of new PTTM enhanced dental implants in maxillo-facial post-oncological patients. Annali Di Stomatologia, 0, , .	0.6	3
4331	Marine Biomaterials as Drug Delivery System for Osteoporosis and Bone Tissue Regeneration. , 2015, , 1-24.		0
4332	In Vitro and In Vivo Evaluation of Composite Scaffolds for Bone Tissue Engineering. , 2015, , 1-22.		0
4333	Porous Hydroxyapatite for Sustained Drug Release. Ci'gwa Gi'jae Haghoeji - Daehan Ci'gwa Gi'jae Haghoe. 2015. 42. 217.	0.3	0

#	Article	IF	CITATIONS
4334	Primary Zimmer Trabecular Metal Total Ankle Replacement. , 2016, , 131-149.		0
4335	Powder Metallurgical Techniques for Fabrication of Biomaterials. Manufacturing Technology, 2015, 15, 964-969.	0.2	13
4337	Hip Arthroplasty in Patients with Femoral Neck Pseudarthrosis. N N Priorov Journal of Traumatology and Orthopedics, 2016, , 21-25.	0.1	0
4338	Hip Arthroplasty in Patients with Femoral Neck Pseudarthrosis. N N Priorov Journal of Traumatology and Orthopedics, 2016, 23, 21-25.	0.1	1
4339	Stereolithographic Additive Manufacturing of Bulky Ceramic Components with Functionally Geometric Micropattern. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2016, 2016, 000001-000005.	0.2	0
4340	Organic–Inorganic Nanocomposites for Biomedical Applications. , 2016, , 375-395.		0
4341	Three Dimensional Porous Scaffolds: Mechanical and Biocompatibility Properties. Indian Institute of Metals Series, 2017, , 353-384.	0.2	0
4342	2. Designing Scaffolds for Bone Tissue Engineering. , 2016, , 19-40.		1
4343	Prothesenspezifische Aspekte. , 2017, , 109-312.		1
4344	Mineralized Nanofibers for Bone Tissue Engineering. Advances in Medical Technologies and Clinical Practice Book Series, 2017, , 200-218.	0.3	0
4345	The Histological Study of Orthodontic Force on the Periodontal Tissues Regenerated by Nano Bioceramics in Beagle Dogs. , 2017, , .		1
4346	The Biocompatibility of the Scaffolds Reinforced by Fibers or Tubes for Tissue Repair. , 2017, , 145-177.		0
4347	Selective Laser Sintering of Polyamide/Hydroxyapatite Scaffolds. Minerals, Metals and Materials Series, 2017, , 95-103.	0.3	2
4348	Synthesis and Functionalization of Mesoporous Bioactive Classes for Drug Delivery. , 2017, , 257-286.		0
4349	Implant Materials and Structures. , 2017, , 1-29.		0
4350	Spreading and proliferation of cultured rat bone marrow stromal cells on the surface of bioactive glass ceramics. Biopolymers and Cell, 2017, 33, 48-57.	0.1	3
4352	PHYSICOCHEMICAL PROPERTIES OF SILICATE BASED BIOMATERIALS. Egyptian Dental Journal, 2017, 63, 3427-3434.	0.1	1
4353	VISUALIZATION AND MORPHOLOGICAL CHARACTERIZATION OF INTEGRAL SKIN CELLULAR POLYMERIC COMPOSITES USING X-RAY MICROTOMOGRAPHY. RAD Association Journal, 2018, 3, .	0.0	0

#	Article	IF	CITATIONS
4354	Construction and Characterization of Porous Ti Scaffolds by Sugar Spheres Agent. Material Sciences, 2018, 08, 258-264.	0.0	0
4355	Synthesis and properties of nano-hydroxyapatite/poly (methacrylic acid) composite hydrogels. Tehnika, 2018, 73, 613-620.	0.0	2
4357	Octacalcium Phosphate Overgrowth on \hat{l}^2 -Tricalcium Phosphate Substrate in Metastable Calcium Phosphate Solution. , 2018, , 267-272.		0
4358	Osseous Grafts: A Simplified Classification Approach. International Journal of Oral Implantology and Clinical Research, 2018, 9, 17-23.	0.1	0
4359	Sol Gel Synthesis and Preparation of Macroporous Glass: Effect of Sodium Nitrate Addition. International Journal of Current Research in Science Engineering & Technology, 2018, 1, 01.	0.1	1
4360	Effect of Leaching Agent Composition on Morphology, Thermal and Mechanical Properties of Bioglass® Reinforced Polyurethane Scaffold. International Journal of Current Research in Science Engineering & Technology, 2018, 1, 19.	0.1	2
4361	Mechanical Stimulation in a PCL Additive Manufacturing Scaffold. Frontiers of Biomechanics, 2019, , 37-57.	0.1	0
4362	Engineering of Bone: Uncovering Strategies of Static and Dynamic Environments. Materials Horizons, 2019, , 175-214.	0.3	0
4363	Chitosan-Based Systems in Tissue Engineering. , 2019, , 297-320.		0
4364	Vascularization in Oral and Maxillofacial Tissue Engineering. , 2019, , 97-122.		2
4365	In Vitro and In Vivo Evaluation of 1-(3 Dimethylaminopropyl)-3-Ethyl Carbodiimide (EDC) Cross-Linked Gum Arabic–Gelatin Composite as an Ideal Porous Scaffold for Tissue Engineering. Materials Horizons, 2019, , 131-145.	0.3	1
4366	3D Printing of Bioactive Devices for Clinical Medicine Applications. , 2019, , 1-22.		0
4367	Laser Beam Scattering Analysis in Aqueous Environments. Journal of the Korean Society of Manufacturing Process Engineers, 2019, 18, 91-95.	0.1	1
4369	Clinical Functions of Regenerative Dentistry and Tissue Engineering in Treatment of Oral and Maxillofacial Soft Tissues. , 2020, , 223-238.		0
4370	Eklemeli Üretim İle Elde Edilen Fonksiyonel Kademelendirilmiş Gözenekli İmplantlar. Gazi Üniversitesi Fer Bilimleri Dergisi, 2019, 7, 540-553.	¹ 0.2	1
4371	Biologically structured materials. Independent Journal of Management & Production, 2019, 10, 1772.	0.1	0
4372	Radiologic Outcome of Beta-Tricalcium Phosphate as a Bone Substitute in Orthopaedic Surgery. The Korean Journal of Health Service Management, 2019, 13, 133-144.	0.0	1
4373	SCAFOLDS IN PERIODONTAL SURGERY. Review. Medical Science of Ukraine (MSU), 2019, 15, 87-92.	0.0	0

#	Article	IF	Citations
4374	Evaluation of Two Highly Porous Microcrystalline Biphasic Calcium Phosphate-Based Bone Grafts for Bone Regeneration: An Experimental Study in Rabbits. Journal of Materials Science and Chemical Engineering, 2020, 08, 8-30.	0.2	2
4375	Study of polylactide matrices using x-ray microtomography. Zavodskaya Laboratoriya Diagnostika Materialov, 2020, 86, 26-31.	0.1	2
4376	Preparation and Characterization of Polymer Blend and Nano Composite Materials Based on PMMA Used for Bone Tissue Regeneration. Engineering and Technology Journal, 2020, 38, 501-509.	0.4	3
4378	Binder Jetting of Ceramics. , 2020, , 118-130.		0
4379	The Effect of Poly (Vynil Pyrrolidine) (PVP) Added in Variation of Ca2+ and PO43- Concentration in Microbial Cellulose-Hydroxyapatite Composite As Scaffold For Bone Healing. Journal of Stem Cell Research and Tissue Engineering, 2020, 3, .	0.0	0
4380	Trabecular prostheses. Independent Journal of Management & Production, 2020, 11, 1223.	0.1	1
4381	Preclinical Testing of a Novel, Additive-Manufactured, Three-Dimensional Porous Titanium Structure. , 2020, , 322-339.		0
4382	Increased Osteogenic Activity of Dynamic Cultured Composite Bone Scaffolds: Characterization and In Vitro Study. Journal of Oral and Maxillofacial Surgery, 2022, 80, 303-312.	0.5	2
4383	Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Materials Science and Engineering Reports, 2021, 146, 100648.	14.8	209
4384	Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomedical Materials (Bristol), 2021, 16, 065029.	1.7	19
4385	Injectable eggshell-derived hydroxyapatite-incorporated fibroin-alginate composite hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 2021, 193, 799-808.	3.6	25
4386	Hylozoic by Design: Converging Material and Biological Complexities for Cellâ€Driven Living Materials with 4D Behaviors. Advanced Functional Materials, 2022, 32, 2108057.	7.8	9
4387	Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines, 2021, 9, 1537.	1.4	49
4388	Early Recognition of the PCL/Fibrous Carbon Nanocomposites Interaction with Osteoblast-like Cells by Raman Spectroscopy. Nanomaterials, 2021, 11, 2890.	1.9	9
4389	Hydroxypropylmethyl cellulose (HPMC) crosslinked keratin/hydroxyapatite (HA) scaffold fabrication, characterization and in vitro biocompatibility assessment as a bone graft for alveolar bone regeneration. Heliyon, 2021, 7, e08294.	1.4	31
4390	In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnology and Bioengineering, 2022, 119, 591-604.	1.7	8
4391	Chitin and chitosan composites for bone tissue regeneration. , 2020, , 499-553.		3
4392	A Novel Resorbable Composite Material Containing Poly(ester-co-urethane) and Precipitated Calcium Carbonate Spherulites for Bone Augmentation—Development and Preclinical Pilot Trials. Molecules, 2021, 26, 102.	1.7	0

#	Article	IF	CITATIONS
4393	Modelling the elastic mechanical properties of bioactive glass-derived scaffolds. Biomedical Glasses, 2020, 6, 50-56.	2.4	3
4394	An advanced method to design graded cylindrical scaffolds with versatile effective cross-sectional mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104887.	1.5	7
4395	3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104941.	1.5	10
4396	Polymer-based composites for musculoskeletal regenerative medicine. , 2020, , 33-82.		2
4397	Tissue Engineering—Bone Mimics. , 2020, , 750-777.		1
4398	Tissue Engineering and Analysis in Droplet Microfluidics. RSC Soft Matter, 2020, , 223-260.	0.2	1
4399	Tissue-Engineered Skin Substitutes. , 2020, , 459-464.		0
4400	A Review on Next-Generation Nano-Antimicrobials in Orthopedics: Prospects and Concerns. Nanotechnology in the Life Sciences, 2020, , 33-62.	0.4	3
4401	Nanobiomaterials in musculoskeletal regeneration. , 2020, , 43-76.		1
4402	Effects of calcium phosphates incorporation on structural, thermal and drug-delivery properties of collagen:chitosan scaffolds. International Journal of Advances in Medical Biotechnology - IJAMB, 2020, 2, .	0.1	4
4403	Quelle est la pertinence de l'IRM dans l'analyse de la fusion intersomatique avec implant intervertébral lombaire en tantale�. Revue De Chirurgie Orthopedique Et Traumatologique, 2020, 106, 140-144.	0.0	0
4404	Fabrication and Characterization of New Functional Graded Material Based on Ti, Ta, and Zr by Powder Metallurgy Method. Materials, 2021, 14, 6609.	1.3	3
4405	Novel design for an additively manufactured nozzle to produce tubular scaffolds via fused filament fabrication. Additive Manufacturing, 2022, 49, 102467.	1.7	5
4406	In vitro and mechanical characterization of <scp>PLA</scp> /egg shell biocomposite scaffold manufactured using <scp>f</scp> used deposition modeling technology for tissue engineering applications. Polymer Composites, 2022, 43, 173-186.	2.3	18
4407	3D-printed pre-tapped-hole scaffolds facilitate one-step surgery of predictable alveolar bone augmentation and simultaneous dental implantation. Composites Part B: Engineering, 2022, 229, 109461.	5.9	24
4408	Self-Assembled Biomimetic Scaffolds for Bone Tissue Engineering. Advances in Chemical and Materials Engineering Book Series, 0, , 104-132.	0.2	0
4410	Parametric-Expression-Based Construction of Interior Features for Tissue Engineering Scaffold with Defect Bone. Lecture Notes in Computer Science, 2007, , 97-103.	1.0	0
4411	Tissue Engineering – Combining Cells and Biomaterials into Functional Tissues. , 2008, , 193-214.		0

#	Article	IF	CITATIONS
4413	Bioglasses for Bone Tissue Engineering. , 2021, , 165-193.		4
4414	Comparing Static, Dynamic and Impact Loading Behavior of Biomimetic Porous Dental Implants with Conventional Dental Implants (3D Finite Element Analysis) Selcuk Dental Journal, 0, , .	0.1	1
4416	Three-Dimensionally-Printed Bioactive Ceramic Scaffolds: Construct Effects on Bone Regeneration. Journal of Craniofacial Surgery, 2021, 32, 1177-1181.	0.3	8
4421	Clinical evaluation with 18 months follow-up of new PTTM enhanced dental implants in maxillo-facial post-oncological patients. Annali Di Stomatologia, 2014, 5, 136-41.	0.6	5
4423	Local delivery of rhVEGF165 through biocoated nHA/coral block grafts in critical-sized dog mandible defects: a histological study at the early stages of bone healing. International Journal of Clinical and Experimental Medicine, 2015, 8, 4940-53.	1.3	7
4424	Effects of sequentially released BMP-2 and BMP-7 from PELA microcapsule-based scaffolds on the bone regeneration. American Journal of Translational Research (discontinued), 2015, 7, 1417-28.	0.0	15
4425	Biomimetic Scaffolds for Osteogenesis. International Journal of Mechanical Engineering and Applications, 2015, 2, .	0.3	0
4426	Bioresorbable scaffold as a dermal substitute. International Journal of Burns and Trauma, 2017, 7, 34-46.	0.2	1
4427	Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering. Iranian Biomedical Journal, 2019, 23, 190-9.	0.4	3
4431	Nanomaterials and Stem Cells for Bone Tissue Engineering. , 2021, , 1-36.		0
4432	Bioactive glasses and ceramics for tissue engineering. , 2022, , 111-178.		2
4433	Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks. Materials Chemistry and Physics, 2022, 276, 125421.	2.0	15
4434	Additive manufacturing of ceramic alumina/calcium phosphate structures by DLP 3D printing. Materials Chemistry and Physics, 2022, 276, 125417.	2.0	21
4435	Additive manufacture of PCL/nHA scaffolds reinforced with biodegradable continuous Fibers: Mechanical Properties, in-vitro degradation Profile, and cell study. European Polymer Journal, 2022, 162, 110876.	2.6	13
4436	3D-printed porous PEEK scaffold combined with CSMA/POSS bioactive surface: A strategy for enhancing osseointegration of PEEK implants. Composites Part B: Engineering, 2022, 230, 109512.	5.9	26
4437	Static Compressive Behavior and Material Failure Mechanism of Trabecular Tantalum Scaffolds Fabricated by Laser Powder Bed Fusion-based Additive Manufacturing. International Journal of Bioprinting, 2021, 8, 438.	1.7	9
4438	Measurement and Modeling of the Nanofiber Surface Potential during Electrospinning on a Patterned Collector: Toward Directed 3D Microstructuration. Advanced Materials Interfaces, 2021, 8, 2101302.	1.9	4
4439	Synthesis of Macro Porous Ceramic Materials. Engineering Materials, 2022, , 17-42.	0.3	0

#	Article	IF	CITATIONS
4440	Prefabricated 3D-Printed Tissue-Engineered Bone for Mandibular Reconstruction: A Preclinical Translational Study in Primate. ACS Biomaterials Science and Engineering, 2021, 7, 5727-5738.	2.6	16
4441	3D printing monetite-coated Ti-6Al-4V surface with osteoimmunomodulatory function to enhance osteogenesis. Materials Science and Engineering C, 2022, 134, 112562.	3.8	5
4442	Effect of the Pore Size on the Biological Activity of β-Ca3(PO4)2-Based Resorbable Macroporous Ceramic Materials Obtained by Photopolymerization. Russian Journal of Inorganic Chemistry, 2021, 66, 1609-1615.	0.3	3
4443	The Effect of Collagen-I Coatings of 3D Printed PCL Scaffolds for Bone Replacement on Three Different Cell Types. Applied Sciences (Switzerland), 2021, 11, 11063.	1.3	8
4444	Chitosan/β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	1.7	7
4445	Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydrate Polymers, 2022, 277, 118883.	5.1	26
4446	Deformation mechanism of porous composite sandwich beam for orthopaedical application under three-point bending. Composite Structures, 2022, 281, 114983.	3.1	6
4447	A review on mechanical and In-vitro studies of polymer reinforced bioactive glass-scaffolds and their fabrication techniques. Ceramics International, 2022, 48, 5908-5921.	2.3	14
4448	Automated biofabrication of anisotropic dense fibrin gels accelerate osteoblastic differentiation of seeded mesenchymal stem cells. Journal of Materials Research, 0, , .	1.2	2
4449	Fabrication and in vitro study of 3D novel porous hydroxyapatite/polyether ether ketone surface nanocomposite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, , .	1.6	2
4450	3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. International Journal of Molecular Sciences, 2021, 22, 12420.	1.8	18
4451	Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: A mini-review and meta-analysis. Materials Science and Engineering C, 2022, 134, 112578.	3.8	22
4452	Fabrication and characterization of nanofibrous gelatin/chitosan-poly (ethylene oxide) membranes by electrospinning with acetic acid as solvent. Journal of Polymer Research, 2021, 28, 1.	1.2	2
4453	Design and study of in vivo bone formation characteristics of biodegradable bioceramic. Materials and Design, 2021, 212, 110242.	3.3	10
4454	Eularian wall film model for predicting dynamic cell culture process to evaluate scaffold design in a perfusion bioreactor. Medicine in Novel Technology and Devices, 2022, 13, 100104.	0.9	4
4455	An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials?. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1192-1205.	1.6	10
4456	FABRICATION OF POROUS Î ² -TRICALCIUM PHOSPHATE SCAFFOLDS USING FOAM REPLICA WITH 3D TECHNOLOGY. Phosphorus Research Bulletin, 2021, 37, 32-38.	0.1	0
4457	Chapter 5. Inorganic Biomaterials to Support the Formation and Repair of Bone Tissue. Inorganic Materials Series, 2021, , 242-304.	0.5	0

#	Article	IF	CITATIONS
4459	3-D Printing Technologies From Infancy to Recent Times: A Scientometric Review. IEEE Transactions on Engineering Management, 2024, 71, 671-687.	2.4	14
4461	Surface treatment of 3D printed Cu-bearing Ti alloy scaffolds for application in tissue engineering. Materials and Design, 2022, 213, 110350.	3.3	13
4462	Next-generation finely controlled graded porous antibacterial bioceramics for high-efficiency vascularization in orbital reconstruction. Bioactive Materials, 2022, 16, 334-345.	8.6	10
4463	The immune system and its response to polymeric materials used for craniofacial regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 407-424.	1.8	2
4464	Attapulgite-doped electrospun PCL scaffolds for enhanced bone regeneration in rat cranium defects. Materials Science and Engineering C, 2022, 133, 112656.	3.8	12
4465	Preparation and study of 3D printed dipyridamole/β-tricalcium phosphate/ polyvinyl alcohol composite scaffolds in bone tissue engineering. Journal of Drug Delivery Science and Technology, 2022, 68, 103053.	1.4	6
4466	Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105062.	1.5	18
4467	Facile fabrication of silicone rubber composite foam with dual conductive networks and tunable porosity for intelligent sensing. European Polymer Journal, 2022, 164, 110980.	2.6	15
4468	LZS bioactive glass-ceramic scaffolds: Colloidal processing, foam replication technique and mechanical properties to bone tissue engineering. Open Ceramics, 2022, 9, 100219.	1.0	5
4469	Design and evaluation of sodium alginate/polyvinyl alcohol blend hydrogel for 3D bioprinting cartilage scaffold: molecular dynamics simulation and experimental method. Journal of Materials Research and Technology, 2022, 17, 66-78.	2.6	31
4470	Dual-templating strategy for the fabrication of graphene oxide, reduced graphene oxide and composite scaffolds with hierarchical architectures. Carbon, 2022, 189, 186-198.	5.4	6
4471	Composite Biphase Coatings Formed by Hybrid Technology for Biomedical Applications. , 2020, , .		0
4472	Porous Trabecular Implants - Surface Analysis, Design and 3D Printing Prototyping. , 2020, , .		0
4473	Implantation of stem cells on synthetic or biological scaffolds: an overview of bone regeneration. Biotechnology and Genetic Engineering Reviews, 2021, 37, 238-268.	2.4	15
4474	An Investigation on Mechanical and Microstructural Properties of Porous Nickel-Based Alloy Fabricated by Investment Casting as an Implant Materials. European Journal of Technic, 0, , .	0.2	0
4475	Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications. BioImpacts, 2021, , .	0.7	6
4476	Clinical Application and Biological Functionalization of Different Surface Coatings in Artificial Joint Prosthesis: A Comprehensive Research Review. Coatings, 2022, 12, 117.	1.2	0
4477	Independent effects of structural optimization and resveratrol functionalization on extracellular matrix scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112370.	2.5	4

#	Article	IF	CITATIONS
4478	NIR-II Ratiometric Lanthanide-Dye Hybrid Nanoprobes Doped Bioscaffolds for In Situ Bone Repair Monitoring. Nano Letters, 2022, 22, 783-791.	4.5	48
4479	Hierarchical Intrafibrillarly Mineralized Collagen Membrane Promotes Guided Bone Regeneration and Regulates M2 Macrophage Polarization. Frontiers in Bioengineering and Biotechnology, 2021, 9, 781268.	2.0	8
4480	Corrosion of Additively Manufactured Metallic Components: A Review. Arabian Journal for Science and Engineering, 2022, 47, 5465-5490.	1.7	13
4481	Success Factors of Additive Manufactured Root Analogue Implants. ACS Biomaterials Science and Engineering, 2022, 8, 360-378.	2.6	8
4482	Enhanced osteogenic effect in reduced BMP-2 doses with siNoggin transfected pre-osteoblasts in 3D silk scaffolds. International Journal of Pharmaceutics, 2022, 612, 121352.	2.6	7
4483	Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS Applied Bio Materials, 2022, 5, 394-412.	2.3	34
4484	High-strength and tough bioactive Mg-doped hydroxyapatite bioceramics with oriented microchannels. Ceramics International, 2022, 48, 13494-13507.	2.3	9
4485	Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomaterialia, 2023, 163, 259-274.	4.1	24
4486	Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects. ACS Applied Bio Materials, 2022, 5, 734-746.	2.3	7
4487	Applications of electrospun scaffolds with enlarged pores in tissue engineering. Biomaterials Science, 2022, 10, 1423-1447.	2.6	23
4488	Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model. International Journal of Molecular Sciences, 2022, 23, 558.	1.8	14
4490	Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application. Journal of Materials Research, 2022, 37, 796-806.	1.2	7
4491	Chitosan-based scaffolds in tissue engineering and regenerative medicine. , 2022, , 329-354.		4
4492	Synthesis of advanced carbon-based nanocomposites for biomedical application. , 2022, , 571-611.		1
4493	Nano-hydroxyapatite incorporated quince seed mucilage bioscaffolds for osteogenic differentiation of human adipose-derived mesenchymal stem cells. International Journal of Biological Macromolecules, 2022, 195, 492-505.	3.6	4
4494	Current and Emerging Bioresorbable Metallic Scaffolds: An Insight into Their Development, Processing and Characterisation. Journal of the Indian Institute of Science, 0, , .	0.9	3
4495	Mechanical improvement of chitosan–gelatin scaffolds reinforced by β-tricalcium phosphate bioceramic. Ceramics International, 2022, 48, 11428-11434.	2.3	5
4496	Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomaterialia, 2022, 141, 190-197.	4.1	20

#	Article	IF	CITATIONS
4497	Hybrid bilayered chitosan-xanthan/PCL scaffolds as artificial periosteum substitutes for bone tissue regeneration. Journal of Materials Science, 2022, 57, 2924-2940.	1.7	3
4498	Methods to Characterize Electrospun Scaffold Morphology: A Critical Review. Polymers, 2022, 14, 467.	2.0	14
4499	Tunable biomaterials for myocardial tissue regeneration: promising new strategies for advanced biointerface control and improved therapeutic outcomes. Biomaterials Science, 2022, 10, 1626-1646.	2.6	12
4500	Bioinspired bimodal micro-nanofibrous scaffolds promote the tenogenic differentiation of tendon stem/progenitor cells for achilles tendon regeneration. Biomaterials Science, 2022, 10, 753-769.	2.6	5
4501	The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Materials Science and Engineering C, 2022, 133, 112651.	3.8	43
4502	3D Biocompatible Polyester Blend Scaffolds Containing Degradable Calcium Citrate for Bone Tissue Engineering. Journal of Bionic Engineering, 2022, 19, 497-506.	2.7	3
4503	Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration. Polymers, 2022, 14, 445.	2.0	20
4504	3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review. Journal of Orthopaedic Surgery and Research, 2022, 17, 68.	0.9	19
4505	Mechanical Behaviour Evaluation of Porous Scaffold for Tissue-Engineering Applications Using Finite Element Analysis. Journal of Composites Science, 2022, 6, 46.	1.4	14
4506	Properties of Additive-Manufactured Open Porous Titanium Structures for Patient-Specific Load-Bearing Implants. Frontiers in Mechanical Engineering, 2022, 7, .	0.8	9
4507	Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Materials Science and Engineering C, 2022, 134, 112690.	3.8	13
4508	3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. Journal of Orthopaedic Translation, 2022, 33, 13-23.	1.9	15
4509	Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability. International Journal of Biological Macromolecules, 2022, 202, 55-67.	3.6	15
4510	â€~Invisible' orthodontics by polymeric â€~clear' aligners molded on 3D-printed personalized dental models. International Journal of Energy Production and Management, 2022, 9, rbac007.	1.9	35
4511	Development of Tri‣ayered Biomimetic Atelocollagen Scaffolds with Interfaces for Osteochondral Tissue Engineering. Advanced Healthcare Materials, 2022, 11, e2101643.	3.9	8
4512	Synergized bioperformance bone scaffolds of poly(vinyl alcohol)/silk fibroin particles with TiO2Âas the base bone-mimicking materials for oral and maxillofacial surgery. Journal of Materials Research, 2022, 37, 943-958.	1.2	3
4513	Merging strut-based and minimal surface meta-biomaterials: Decoupling surface area from mechanical properties. Additive Manufacturing, 2022, 52, 102684.	1.7	6
4514	lrregular porous titanium enhances implant stability and bone ingrowth in an intraâ€articular ovine model. Journal of Orthopaedic Research, 2022, 40, 2294-2307.	1.2	1

#	Article	IF	CITATIONS
4515	Foaming of PCL-Based Composites Using scCO2: Structure and Physical Properties. Materials, 2022, 15, 1169.	1.3	7
4516	A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. Journal of Nanobiotechnology, 2022, 20, 68.	4.2	16
4517	Engineer a preâ€metastatic niched microenvironment to attract breast cancer cells by utilizing a <scp>3D</scp> printed polycaprolactone/nanoâ€hydroxyapatite osteogenic scaffold – An in vitro model system for proof of concept. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1604-1614.	1.6	6
4518	On-Growth and In-Growth Osseointegration Enhancement in PM Porous Ti-Scaffolds by Two Different Bioactivation Strategies: Alkali Thermochemical Treatment and RGD Peptide Coating. International Journal of Molecular Sciences, 2022, 23, 1750.	1.8	10
4519	Recent Advances in Vertical Alveolar Bone Augmentation Using Additive Manufacturing Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 798393.	2.0	12
4520	Medical Applications of Porous Biomaterials: Features of Porosity and Tissueâ€Specific Implications for Biocompatibility. Advanced Healthcare Materials, 2022, 11, e2102087.	3.9	41
4521	Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers, 2022, 14, 602.	2.0	11
4522	Crushing analysis and optimization for bio-inspired hierarchical 3D cellular structure. Composite Structures, 2022, 286, 115333.	3.1	14
4523	Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomaterials Science, 2022, 10, 2789-2816.	2.6	44
4524	Metallic Foams in Bone Tissue Engineering. , 2022, , 181-205.		1
4525	A 3D-printed biphasic calcium phosphate scaffold loaded with platelet lysate/gelatin methacrylate to promote vascularization. Journal of Materials Chemistry B, 2022, 10, 3138-3151.	2.9	18
4526	Cellulose and Tissue Engineering. , 2022, , 1161-1186.		0
4527	Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. Journal of Applied Biomaterials and Functional Materials, 2022, 20, 228080002210781.	0.7	4
4528	Supercritical Foaming and Impregnation of Polycaprolactone and Polycaprolactone-Hydroxyapatite Composites with Carvacrol. Processes, 2022, 10, 482.	1.3	7
4529	Fabrication of Porous Alumina Structures by SPS and Carbon Sacrificial Template for Bone Regeneration. Materials, 2022, 15, 1754.	1.3	5
4530	Foam-Replicated Diopside/Fluorapatite/Wollastonite-Based Glass–Ceramic Scaffolds. Ceramics, 2022, 5, 120-130.	1.0	9
4531	Formation of Porous Ca3(PO4)2-Based Ceramic from Photocurable Emulsions. Inorganic Materials: Applied Research, 2022, 13, 205-210.	0.1	2
4532	Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks. International Journal of Energy Production and Management, 2022, 9, rbac010.	1.9	7

#	Article	IF	CITATIONS
4533	Kinetic Method of Producing Pores Inside Protein-Based Biomaterials without Compromising Their Structural Integrity. ACS Biomaterials Science and Engineering, 2022, 8, 1132-1142.	2.6	4
4534	Fabrication and histological evaluation of porous carbonate apatite blocks using disodium hydrogen phosphate crystals as a porogen and phosphatization accelerator. Journal of Biomedical Materials Research - Part A, 2022, 110, 1278-1290.	2.1	3
4535	Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model. International Journal of Molecular Sciences, 2022, 23, 2647.	1.8	4
4536	Evaluation of Two Beta-Tricalcium Phosphates with Different Particle Dimensions in Human Maxillary Sinus Floor Elevation: A Prospective, Randomized Clinical Trial. Materials, 2022, 15, 1824.	1.3	4
4537	A novel classification of bone graft materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1724-1749.	1.6	28
4538	Influence of 3D Printing Parameters on the Mechanical Stability of PCL Scaffolds and the Proliferation Behavior of Bone Cells. Materials, 2022, 15, 2091.	1.3	7
4539	Macroporous bioceramic scaffolds based on tricalcium phosphates reinforced with silica: microstructural, mechanical, and biological evaluation. Journal of Asian Ceramic Societies, 2022, 10, 356-369.	1.0	1
4540	In Vitro Corrosion and Tribological Behavior of Multiwall Carbon Nanotube-Coated Ti-6Al-4V/Tantalum Carbide Surface for Implant Applications. Journal of Materials Engineering and Performance, 2022, 31, 7719-7733.	1.2	6
4541	Study of Alveolar Bone Remodeling Using Deciduous Tooth Stem Cells and Hydroxyapatite by Vascular Endothelial Growth Factor Enhancement and Inhibition of Matrix Metalloproteinase-8 Expression in vivo. Clinical, Cosmetic and Investigational Dentistry, 2022, Volume 14, 71-78.	0.7	7
4542	HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications. Arabian Journal of Chemistry, 2022, 15, 103850.	2.3	19
4543	Effects of Channels and Micropores in Honeycomb Scaffolds on the Reconstruction of Segmental Bone Defects. Frontiers in Bioengineering and Biotechnology, 2022, 10, 825831.	2.0	10
4544	CONSTRUCTION OF VASCULAR GRAFT BY 3D PRINTING USING BACTERIAL CELLULOSE FORMULATION AS BIOINK. Cellulose Chemistry and Technology, 2022, 56, 99-113.	0.5	1
4545	A novel natural-derived tilapia skin collagen mineralized with hydroxyapatite as a potential bone-grafting scaffold. Journal of Biomaterials Applications, 2022, 37, 219-237.	1.2	9
4546	Application of artificial neural networks to predict Young's moduli of cartilage scaffolds: An in-vitro and micromechanical study. , 2022, 136, 212768.		10
4547	Prevention of peritoneal adhesions formation by core-shell electrospun ibuprofen-loaded PEG/silk fibrous membrane. Artificial Cells, Nanomedicine and Biotechnology, 2022, 50, 40-48.	1.9	6
4548	Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential. Materials, 2022, 15, 1971.	1.3	5
4549	A fully ingrowing implant for cranial reconstruction: Results in critical size defects in sheep using 3D-printed titanium scaffold. , 2022, 136, 212754.		9
4550	Personalized, 3D- printed fracture fixation plates versus commonly used orthopedic implant materials- biomaterials characteristics and bacterial biofilm formation. Injury, 2022, 53, 938-946.	0.7	11

	Сп	CITATION REPORT	
#	Article	IF	CITATIONS
4551	Materialâ€Assisted Strategies for Osteochondral Defect Repair. Advanced Science, 2022, 9, e2200050). 5.6	25
4552	Current international research into cellulose as a functional nanomaterial for advanced applications. Journal of Materials Science, 2022, 57, 5697-5767.	1.7	73
4553	The advances in nanomedicine for bone and cartilage repair. Journal of Nanobiotechnology, 2022, 20, 141.	4.2	43
4554	3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin. Molecules, 2022, 27, 2148.	1.7	7
4555	Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties. Open Ceramics, 2022, 9, 100235.	1.0	8
4556	Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures. Polymers, 2022, 14, 1062.	2.0	24
4557	Multiâ€modal cell structure formation of poly (lacticâ€coâ€glycolic acid)/superparamagnetic iron oxid nanoparticles composite scaffolds by supercritical <scp>CO₂</scp> varyingâ€temperatu foaming. Polymers for Advanced Technologies, 2022, 33, 1906-1915.	e re 1.6	1
4558	Bioactive and antimicrobial macro-/micro-nanoporous selective laser melted Ti–6Al–4V alloy for biomedical applications. Heliyon, 2022, 8, e09122.	1.4	5
4559	Optimallyâ€Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing. Advanced Materials, 2022, 34, e2109304.	11.1	21
4560	Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. International Journal of Molecular Sciences, 2022, 23, 3265.	1.8	11
4561	In vitro evaluation of porous poly(hydroxybutyrate-co-hydroxyvalerate)/akermanite composite scaffolds manufactured using selective laser sintering. , 2022, 135, 212748.		6
4562	Design and Molding of Thyroid Cartilage Prosthesis Based on 3D Printing Technology. Coatings, 2022, 12, 336.	1.2	1
4563	Comparison of Osseointegration in Different Intravertebral Fixators. Journal of Medical and Biological Engineering, 0, , 1.	1.0	1
4564	Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra- and inter-granular osteogenesis and angiogenesis. Materials Today Bio, 2022, 14, 100247.	2.6	12
4565	Characterization of Porous Titanium-Hydroxyapatite Composite Biological Coating on Polyetheretherketone (PEEK) by Vacuum Plasma Spraying. Coatings, 2022, 12, 433.	1.2	5
4566	Oxygen and Glucose Transportation and Distribution on 3D Osteochondral Scaffold in Silico Model. Journal of Bionic Engineering, 0, , 1.	2.7	0
4567	Comparative analysis of different lattice topologies for cellular structure optimization in additive manufacturing. Materials Today: Proceedings, 2022, 62, 1591-1595.	0.9	1
4568	Reinforcement of hydroxyapatite ceramics by soaking green samples of tetracalcium phosphate / monetite mixture in aqueous solutions. Ceramics International, 2022, 48, 17776-17788.	2.3	2

#	Article	IF	CITATIONS
4569	3D-Printed Porous Scaffolds of Hydrogels Modified with TGF-β1 Binding Peptides to Promote <i>In Vivo</i> Cartilage Regeneration and Animal Gait Restoration. ACS Applied Materials & Interfaces, 2022, 14, 15982-15995.	4.0	35
4570	3D-Printed Hydroxyapatite and Tricalcium Phosphates-Based Scaffolds for Alveolar Bone Regeneration in Animal Models: A Scoping Review. Materials, 2022, 15, 2621.	1.3	24
4571	The effect of near-infrared light-assisted photothermal therapy combined with polymer materials on promoting bone regeneration: A systematic review. Materials and Design, 2022, 217, 110621.	3.3	15
4572	Immune-instructive copolymer scaffolds using plant-derived nanoparticles to promote bone regeneration. Inflammation and Regeneration, 2022, 42, 12.	1.5	4
4573	PLA-based 3D printed porous scaffolds under mixed-mode I/III loading. Engineering Fracture Mechanics, 2022, 265, 108382.	2.0	3
4574	Fabrication of hybrid povidone-iodine impregnated collagen-hydroxypropyl methylcellulose composite scaffolds for wound-healing application. Journal of Drug Delivery Science and Technology, 2022, 70, 103247.	1.4	7
4575	Biomaterial-induced pathway modulation for bone regeneration. Biomaterials, 2022, 283, 121431.	5.7	37
4576	Trabecular metal versus non-trabecular metal acetabular components for acetabular revision surgery: A systematic review and meta-analysis. International Journal of Surgery, 2022, 100, 106597.	1.1	9
4577	Treatment options for critical size defects - Comparison of different materials in a calvaria split model in sheep. , 2022, 136, 212788.		3
4578	Design of macropore structure and micro-nano topography to promote the early neovascularization and osteoinductivity of biphasic calcium phosphate bioceramics. Materials and Design, 2022, 216, 110581.	3.3	12
4579	3D printed hydroxyapatite promotes congruent bone ingrowth in rat load bearing defects. Biomedical Materials (Bristol), 2022, 17, 035008.	1.7	4
4580	A two-stage in vivo approach for implanting a 3D printed tissue-engineered tracheal replacement graft: A proof of concept. International Journal of Pediatric Otorhinolaryngology, 2022, 155, 111066.	0.4	8
4581	Histological evaluation of titanium fiber mesh-coated implants in a rabbit femoral condyle model. Dental Materials, 2022, 38, 613-621.	1.6	5
4582	Characterisation of Selected Materials in Medical Applications. Polymers, 2022, 14, 1526.	2.0	13
4583	Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application. International Journal of Biological Macromolecules, 2022, 207, 278-288.	3.6	10
4584	A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 129, 105151.	1.5	27
4585	Towards the biomimetic design of hollow fiber membrane bioreactors for bioartificial organs and tissue engineering: A micro-computed tomography (μCT) approach. Journal of Membrane Science, 2022, 650, 120403.	4.1	2
4586	Optimization of composite bone scaffolds prepared by a new modified foam replica technique. Materials Today Communications, 2022, 31, 103293.	0.9	3

#	Article	IF	CITATIONS
4587	3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering. Materials Today Communications, 2022, 31, 103382.	0.9	3
4588	The influence of porous structure on the corrosion behavior and biocompatibility of bulk Ti-based metallic glass. Journal of Alloys and Compounds, 2022, 906, 164326.	2.8	10
4589	A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. Science Advances, 2021, 7, eabj7857.	4.7	22
4590	3D-printed porous Ti6Al4V alloys with silver coating combine osteocompatibility and antimicrobial properties. Materials Science and Engineering C, 2022, 133, 112629.	3.8	7
4591	Understanding and utilizing textile-based electrostatic flocking for biomedical applications. Applied Physics Reviews, 2021, 8, 041326.	5.5	7
4592	Effect of Macroporous Gelatin Cryogel as Biomaterial Scaffold on Osteogenic Differentiation of Mesenchymal Stem Cells and Direct Conversion of Fibroblasts into Osteoblasts. KSBB Journal, 2021, 36, 272-278.	0.1	0
4593	Chemical Properties of Human Dentin Blocks and Vertical Augmentation by Ultrasonically Demineralized Dentin Matrix Blocks on Scratched Skull without Periosteum of Adult-Aged Rats. Materials, 2022, 15, 105.	1.3	2
4594	Can activated titanium interbody cages accelerate or enhance spinal fusion? a review of the literature and a design for clinical trials. Journal of Materials Science: Materials in Medicine, 2022, 33, 1.	1.7	4
4595	Lotus root and osteonsâ€inspired channel structural scaffold mediate cell biomineralization and vascularized bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1178-1191.	1.6	0
4596	Construction of corrosion resistant and osteogenic multiphase reinforced Titanium/hydroxyapatite nanocomposites prepared by spark plasma sintering. Composite Interfaces, 0, , 1-24.	1.3	1
4597	A review on bovine hydroxyapatite; extraction and characterization. Biomedical Physics and Engineering Express, 2022, 8, 012001.	0.6	5
4598	Green Hydrogels Composed of Sodium Mannuronate/Guluronate, Gelatin and Biointeractive Calcium Silicates/Dicalcium Phosphate Dihydrate Designed for Oral Bone Defects Regeneration. Nanomaterials, 2021, 11, 3439.	1.9	11
4599	Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds. International Journal of Energy Production and Management, 2022, 9, rbab077.	1.9	12
4600	A Report on Future Belongs to Biomaterials How Designers are Taking up the Challenge. International Journal of Advanced Research in Science, Communication and Technology, 0, , 198-204.	0.0	0
4601	3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds. Biofabrication, 2022, 14, 035009.	3.7	12
4602	Microporous Spongy Scaffolds Based on Biodegradable Elastic Polyurethanes for the Migration and Growth of Host Cells. ACS Applied Polymer Materials, 2022, 4, 3942-3951.	2.0	3
4603	Development and evaluation of bioactive 3D zein and zein/nano-hydroxyapatite scaffolds for bone tissue engineering application. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, , 095441192210907.	1.0	2
4604	Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2022, 209, 1553-1561.	3.6	16

#	Article	IF	CITATIONS
4605	3D printing with star-shaped strands: A new approach to enhance in vivo bone regeneration. , 2022, 137, 212807.		3
4606	Hybrid Core-Shell Polymer Scaffold for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2022, 23, 4533.	1.8	9
4607	Stable mechanical fixation in a bionic osteochondral scaffold considering bone growth. Rare Metals, 2022, 41, 2711-2718.	3.6	5
4608	Personalized 3D printed bone scaffolds: A review. Acta Biomaterialia, 2023, 156, 110-124.	4.1	57
4609	Development of an injectable self-healing hydrogel based on N-succinyl chitosan/ oxidized pectin for biomedical applications. Journal of Polymer Research, 2022, 29, .	1.2	4
4610	Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation. International Journal of Molecular Sciences, 2022, 23, 4236.	1.8	3
4611	3D printing of bioactive macro/microporous continuous carbon fibre reinforced hydroxyapatite composite scaffolds with synchronously enhanced strength and toughness. Journal of the European Ceramic Society, 2022, 42, 4396-4409.	2.8	8
4612	Thermal oxidation of a porous Ti 23Nb alloy for wear related biomedical applications: Effect of oxidation duration. Surface and Coatings Technology, 2022, 439, 128429.	2.2	5
4623	Rapid Prototyping Als Innovative Herstellungsmethode für Individuell Angepassten Knochenersatz auf Basis von Calciumphosphat-Keramiken. , 0, , 649-655.		0
4624	Dispensgeplottete Scaffolds aus Hydrogel/Keramik-Composites für die Anwendung als Knochenersatzmaterial. , 0, , 663-668.		0
4625	Indirektes Rapid Prototyping Biphasischer Calciumphosphat-Keramiken: Biomechanische und Zellbiologische Eigenschaften. , 0, , 669-675.		0
4627	Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioactive Materials, 2023, 19, 12-23.	8.6	31
4628	Bioinspired Surface Functionalization of Poly(ether ether ketone) for Enhancing Osteogenesis and Bacterial Resistance. Langmuir, 2022, 38, 5924-5933.	1.6	10
4629	Reconstruction for Massive Proximal Tibial Bone Defects Using Patientâ€Customized Threeâ€Dimensionalâ€Printed Metaphyseal Cones in Revision Total Knee Arthroplasty. Orthopaedic Surgery, 2022, 14, 1071-1077.	0.7	8
4630	Sequential osseointegration from osseohealing to osseoremodeling - Histomorphological comparison of novel 3D porous and solid Ti-6Al-4V titanium implants. Histology and Histopathology, 2021, 36, 753-764.	0.5	0
4631	Osseointegration of a novel 3D porous Ti-6Al-4V implant material - Histomorphometric analysis in rabbits. Histology and Histopathology, 2021, 36, 879-888.	0.5	0
4632	Nano-Hydroxyapatite Bone Scaffolds with Different Porous Structures Processed by Digital Light Processing 3D Printing. International Journal of Bioprinting, 2021, 8, 502.	1.7	21
4633	Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Frontiers in Bioengineering and Biotechnology, 2022, 10, 856398.	2.0	8

#	Article	IF	CITATIONS
4634	Engineering 3D Printed Scaffolds with Tunable Hydroxyapatite. Journal of Functional Biomaterials, 2022, 13, 34.	1.8	8
4638	Preparation and characterization of novel lithium magnesium phosphate bioceramic scaffolds facilitating bone generation. Journal of Materials Chemistry B, 2022, 10, 4040-4047.	2.9	12
4639	A Novel Two-Stage Strengthening and Toughening Behavior of Sic Fiber Reinforced Porous Ti-Nb Based Smas Composites. SSRN Electronic Journal, 0, , .	0.4	0
4640	Bioprinting for skeletal tissue regeneration: from current trends to future promises. , 2022, , 271-301.		0
4641	Biofabricating the Vascular Tree in Engineered Bone Tissue. SSRN Electronic Journal, 0, , .	0.4	0
4642	Preparation of osteoinductive – Antimicrobial nanocomposite scaffolds based on poly (D,L-lactide-co-glycolide) modified with copper – Doped bioactive glass nanoparticles. Polymers and Polymer Composites, 2022, 30, 096739112210982.	1.0	1
4643	Application of three-dimensional bioprinting technology in orthopedics. Digital Medicine, 2022, 8, 8.	0.1	0
4644	Novel Porous Î'-Tcp/Mg-Zn Scaffolds with Suitable Mechanical Properties and Corrosion Resistance Designed Via Statistical Optimization and Function Modelling. SSRN Electronic Journal, 0, , .	0.4	0
4645	Osteogenesis capability of three-dimensionally printed poly(lactic acid)-halloysite nanotube scaffolds containing strontium ranelate. Nanotechnology Reviews, 2022, 11, 1901-1910.	2.6	24
4646	Personalized Design Method of Bionic Bone Scaffold with Voronoi Spacial Architecture. Journal of Shanghai Jiaotong University (Science), 0, , 1.	0.5	1
4647	Effect of Pore Size of Porous-Structured Titanium Implants on Tendon Ingrowth. Applied Bionics and Biomechanics, 2022, 2022, 1-11.	0.5	1
4648	Preparation and characterization of Pullulan-based nanocomposite scaffold incorporating Ag-Silica Janus particles for bone tissue engineering. , 2022, 135, 212733.		10
4649	A review of recent developments of polypropylene surgical mesh for hernia repair. OpenNano, 2022, 7, 100046.	1.8	11
4650	Marine Plankton-Derived Whitlockite Powder-Based 3D-Printed Porous Scaffold for Bone Tissue Engineering. Materials, 2022, 15, 3413.	1.3	3
4651	Extensive cell seeding densities adaptable SF/PGA electrospinning scaffolds for bone tissue engineering. , 2022, 137, 212834.		5
4652	Effect of Angiogenesis in Bone Tissue Engineering. Annals of Biomedical Engineering, 2022, 50, 898-913.	1.3	22
4653	The Structure and Function of Next-Generation Gingival Graft Substitutes—A Perspective on Multilayer Electrospun Constructs with Consideration of Vascularization. International Journal of Molecular Sciences, 2022, 23, 5256.	1.8	2
4654	Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells. , 2022, 137, 212833.		8
ARTICLE IF CITATIONS From Reparative Surgery to Regenerative Surgery: State of the Art of Porous Hydroxyapatite in 4655 1.8 6 Cranioplasty. International Journal of Molecular Sciences, 2022, 23, 5434. Tooth as graft material: Histologic study. Clinical Implant Dentistry and Related Research, 2022, 24, 1.6 488-496. Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and 4657 4.1 18 Permeability. Acta Biomaterialia, 2022, 146, 317-340. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Advances 4658 in Colloid and Interface Science, 2022, 305, 102694. Role of nanostructured materials in hard tissue engineering. Advances in Colloid and Interface 4659 7.0 8 Science, 2022, 304, 102682. Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for 4660 3.3 enhanced osseointegration. Materials and Design, 2022, 218, 110721. Application of bacteriophage to develop indicator for Escherichia coli detection and modulation of 4661 its biochemical reaction to improve detection ability: A proof-of-concept study. Food Control, 2022, 2.8 0 139, 109082. Peek Dental Implants Coated with Boron-Doped Nano-Hydroxyapatites: Investigation of In-Vitro 4662 0.4 Osteogenic Activity. SSRN Electronic Journal, 0, , . Fabrication and Effect of Strontium-Substituted Calcium Silicate/Silk Fibroin on Bone Regeneration In 4663 2.0 1 Vitro and In Vivo. Frontiers in Bioengineering and Biotechnology, 2022, 10, . Advances in Regenerative Sports Medicine Research. Frontiers in Bioengineering and Biotechnology, 4664 2022, 10, . Additive Manufacturing for Bone Load Bearing Applications., 2015, , 337-370. 4665 1 A correlation of Raman data with the nanomechanical results of polymer nanomaterials with carbon 4666 1.8 nanoparticles. Journal of Molecular Structure, 2022, 1264, 133305. Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive 4667 8.6 4 calcium phosphate ceramic. Bioactive Materials, 2023, 19, 127-138. Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: A 4668 8.6 mechanistic study. Bioactive Materials, 2023, 19, 406-417. Fabrication of Radio-Opaque and Macroporous Injectable Calcium Phosphate Cement. ACS Applied Bio 4669 2.33 Materials, 2022, 5, 3075-3085. Highly elastic 3D-printed gelatin/HA/placental-extract scaffolds for bone tissue engineering. 4671 Theranostics, 2022, 12, 4051-4066. Immediate, non-submerged, three-dimensionally printed, one-piece mandibular molar porous 4672 root-analogue titanium implants: A 2-year prospective study involving 18 patients. Journal of 0.5 4 Stomatology, Oral and Maxillofacial Surgery, 2022, 123, e770-e776. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic 4673 Lattice Fabricated by Laser-Based Additive Manufacturing. 3D Printing and Additive Manufacturing, 1.4 2023, 10, 887-904.

#	Article	IF	CITATIONS
4674	Comparative Study on Bioactive Filler/Biopolymer Scaffolds for Potential Application in Supporting Bone Tissue Regeneration. ACS Applied Polymer Materials, 2022, 4, 4306-4318.	2.0	7
4675	A comparative study of physicomechanical and in vitro bioactivity properties of β-wollastonite/cordierite scaffolds obtained via gel casting method. Ceramics International, 2022, 48, 25495-25505.	2.3	6
4676	Progress in bio-based biodegradable polymer as the effective replacement for the engineering applicators. Journal of Cleaner Production, 2022, 362, 132267.	4.6	10
4677	Initial Upsurge of BMPs Enhances Long-Term Osteogenesis in <i>In-Vitro</i> Bone Regeneration. SSRN Electronic Journal, 0, , .	0.4	0
4678	Development of the Multi-Drug-Loaded Implants Combined with Dual-Gene Transfected Bmscs Coating Based on 3d Bioprinting for the Treatment of Nonunion. SSRN Electronic Journal, 0, , .	0.4	0
4679	Three-dimensional-printed polycaprolactone scaffolds with interconnected hollow-pipe structures for enhanced bone regeneration. International Journal of Energy Production and Management, 2022, 9, .	1.9	4
4680	Additive manufacturing of biomaterials for bone tissue engineering – A critical review of the state of the art and new concepts. Progress in Materials Science, 2022, 130, 100963.	16.0	52
4681	Role of nanotechnology in regeneration of pulpo-dentinal complex. International Journal of Health Sciences, 0, , .	0.0	0
4682	Foaming of PCL-Based Composites Using scCO2—Biocompatibility and Evaluation for Biomedical Applications. Materials, 2022, 15, 3858.	1.3	2
4683	In Vitro and In Vivo Comparison of Bone Growth Characteristics in Additive-Manufactured Porous Titanium, Nonporous Titanium, and Porous Tantalum Interbody Cages. Materials, 2022, 15, 3670.	1.3	8
4684	Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells. Drug Delivery and Translational Research, 2022, 12, 2960-2978.	3.0	10
4685	Shape-memory polymer metamaterials based on triply periodic minimal surfaces. European Journal of Mechanics, A/Solids, 2022, 96, 104676.	2.1	23
4686	In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 74.	1.8	11
4687	Crossing Phylums: Butterfly Wing as a Natural Perfusable Three-Dimensional (3D) Bioconstruct for Bone Tissue Engineering. Journal of Functional Biomaterials, 2022, 13, 68.	1.8	4
4688	Inorganic nanomaterial-reinforced hydrogel membrane as an artificial periosteum. Applied Materials Today, 2022, 28, 101532.	2.3	7
4689	Progress of carbon and Metal-Based Three-Dimensional materials for Dendrite-Proof and Interface-Compatible lithium metal anode. Applied Surface Science, 2022, 598, 153785.	3.1	11
4690	Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration. Acta Biomaterialia, 2022, 148, 355-373.	4.1	19
4691	Digital light processing (DLP) of nano biphasic calcium phosphate bioceramic for making bone tissue engineering scaffolds. Ceramics International, 2022, 48, 27681-27692.	2.3	23

#	Article	IF	CITATIONS
4692	Additive Manufacturing of Hydroxyapatite Bioceramic Scaffolds with Projection Based 3D Printing. , 2022, 1, 100021.		4
4694	Improvement of osteogenic properties using a 3D-printed graphene oxide/hyaluronic acid/chitosan composite scaffold. Journal of Bioactive and Compatible Polymers, 2022, 37, 267-283.	0.8	7
4695	PEEK DENTAL IMPLANTS COATED WITH BORON-DOPED NANO-HYDROXYAPATITES: INVESTIGATION OF IN-VITRO OSTEOGENIC ACTIVITY. Journal of Trace Elements in Medicine and Biology, 2022, , 127026.	1.5	5
4696	Mechanical Properties of 3D-Printed Porous Poly-ether-ether-ketone (PEEK) Orthopedic Scaffolds. Jom, 2022, 74, 3379-3391.	0.9	4
4697	Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering. Small, 2022, 18, .	5.2	39
4698	Comparison of the 3D-Microstructure Between Alveolar and Iliac Bone for Enhanced Bioinspired Bone Graft Substitutes. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
4700	Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. Life, 2022, 12, 903.	1.1	32
4701	Influence of alumina substrates open porosity on calcium phosphates formation produced by the biomimetic method. Progress in Biomaterials, 2022, 11, 263-271.	1.8	2
4702	Design and Analysis of Biomedical Scaffolds Using TPMS-Based Porous Structures Inspired from Additive Manufacturing. Coatings, 2022, 12, 839.	1.2	15
4703	High-reliability data processing and calculation of microstructural parameters in hydroxyapatite scaffolds produced by vat photopolymerization. Journal of the European Ceramic Society, 2022, 42, 6206-6212.	2.8	12
4704	Osteoblasts in a Perfusion Flow Bioreactor—Tissue Engineered Constructs of TiO2 Scaffolds and Cells for Improved Clinical Performance. Cells, 2022, 11, 1995.	1.8	6
4705	Laser Sintering Approaches for Bone Tissue Engineering. Polymers, 2022, 14, 2336.	2.0	7
4706	Three-dimensionally printed biphasic calcium phosphate blocks with different pore diameters for regeneration in rabbit calvarial defects. Biomaterials Research, 2022, 26, .	3.2	13
4707	3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 29506-29520.	4.0	9
4708	Comparative evaluation of printability and compression properties of poly-ether-ether-ketone triply periodic minimal surface scaffolds fabricated by laser powder bed fusion. Additive Manufacturing, 2022, 57, 102961.	1.7	10
4709	Development of gelatin hydrogel nonwoven fabrics (Genocel®) as a novel skin substitute in murine skin defects. Regenerative Therapy, 2022, 21, 96-103.	1.4	5
4710	Evaluation of mechanical and morphology properties of porous bioactive glass scaffolds. AIP Conference Proceedings, 2022, , .	0.3	0
4711	The simple method to prepare hydroxyapatite scaffolds exhibiting high porosity. AIP Conference Proceedings, 2022, , .	0.3	0

#	Article	IF	CITATIONS
4712	Well-orchestrated physico-chemical and biological factors for enhanced secretion of osteogenic and angiogenic extracellular vesicles by mesenchymal stem cells in a 3D culture format. Biomaterials Science, 0, , .	2.6	4
4713	Geometrical Structure Enhanced Strength Combined with Modulate D ÂModulus in Auxetic Meta-Biomaterials Fabricated by Selective Laser Melting. SSRN Electronic Journal, 0, , .	0.4	0
4714	A Flexible Design Framework to Design Graded Porous Bone Scaffolds with Adjustable Anisotropic Properties. SSRN Electronic Journal, 0, , .	0.4	0
4715	Injectable macromolecule-based calcium phosphate bone substitutes. Materials Advances, 2022, 3, 6125-6141.	2.6	8
4716	Puffing characteristics of berry slice under continuous microwave puffing conditions. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
4717	The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
4718	Mineralizing Coating on 3D Printed Scaffolds for the Promotion of Osseointegration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
4719	Multicompartmental Scaffolds for Coordinated Periodontal Tissue Engineering. Journal of Dental Research, 2022, 101, 1457-1466.	2.5	10
4720	Biocompatibility and Mechanical Properties Evaluation of Ti-6Al-4V Lattice Structures with Varying Porosities. Key Engineering Materials, 0, 923, 21-29.	0.4	1
4721	Polyethylene glycol derivant crosslink and modify chitosan for tympanic membrane repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-12.	1.8	0
4722	<scp>3D</scp> printed <scp>PCLA</scp> scaffold with nanoâ€hydroxyapatite coating doped green tea <scp>EGCG</scp> promotes bone growth and inhibits multidrugâ€resistant bacteria colonization. Cell Proliferation, 2022, 55, .	2.4	21
4723	Perforated Hydrogels Consisting of Cholesterol-Bearing Pullulan (CHP) Nanogels: A Newly Designed Scaffold for Bone Regeneration Induced by RANKL-Binding Peptides and BMP-2. International Journal of Molecular Sciences, 2022, 23, 7768.	1.8	2
4724	Acrylamide-based hydrogels with distinct osteogenic and chondrogenic differentiation potential. Progress in Biomaterials, 2022, 11, 297-309.	1.8	1
4725	Effects of Scaffold Shape on Bone Regeneration: Tiny Shape Differences Affect the Entire System. ACS Nano, 2022, 16, 11755-11768.	7.3	18
4726	Fabrication and Characterization of Gelatin/Calcium Phosphate Electrospun Composite Scaffold for Bone Tissue Engineering. Fibers and Polymers, 2022, 23, 1915-1923.	1.1	2
4727	Parametric analysis to explore the viability of cold spray additive manufacturing to print SS316L parts for biomedical application. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	1
4728	Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals, 2022, 15, 879.	1.7	59
4729	Preparation of a hydroxyapatite–silver gradient bioactive ceramic coating with porous structure by laser cladding: A study of in vitro bioactivity. Ceramics International, 2022, 48, 304 <u>68-30481</u> .	2.3	8

#	Article	IF	CITATIONS
4730	Metallic Scaffold with Micron-Scale Geometrical Cues Promotes Osteogenesis and Angiogenesis via the ROCK/Myosin/YAP Pathway. ACS Biomaterials Science and Engineering, 2022, 8, 3498-3514.	2.6	5
4731	3D Printed Biomimetic Metamaterials with Graded Porosity and Tapering Topology for Improved Cell Seeding and Bone Regeneration. Bioactive Materials, 2023, 25, 677-688.	8.6	7
4732	Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomaterials Science and Engineering, 2022, 8, 3162-3186.	2.6	52
4733	Additive manufacturing of bioresorbable poly(esterâ€urethane)/glassâ€ceramic composite scaffolds. Polymer Composites, 2022, 43, 5611-5622.	2.3	2
4734	Calcium Phosphate/Hyaluronic Acid Composite Hydrogels for Local Antiosteoporotic Drug Delivery. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
4735	Biomimetic design of implants for long bone critical-sized defects. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 134, 105370.	1.5	10
4736	Preparation and characterization of two novel osteoinductive fishbone-derived biphasic calcium phosphate bone graft substitutes. Journal of Biomaterials Applications, 2022, 37, 600-613.	1.2	2
4737	Additive manufacturing of functionally graded porous titanium scaffolds for dental applications. , 2022, 139, 213018.		13
4738	Microstructures and mechanical properties of biphasic calcium phosphate bioceramics fabricated by SLA 3D printing. Journal of Manufacturing Processes, 2022, 81, 433-443.	2.8	17
4739	Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioactive Materials, 2023, 20, 574-597.	8.6	34
4740	Canine ACL reconstruction with an injectable hydroxyapatite/collagen paste for accelerated healing of tendon-bone interface. Bioactive Materials, 2023, 20, 1-15.	8.6	10
4741	Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers, 2022, 14, 2964.	2.0	3
4742	3D printed zirconia dental implants with integrated directional surface pores combine mechanical strength with favorable osteoblast response. Acta Biomaterialia, 2022, 150, 427-441.	4.1	19
4743	Immunomodulation Effect of Biomaterials on Bone Formation. Journal of Functional Biomaterials, 2022, 13, 103.	1.8	15
4744	Ti6Al4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis. Materials and Design, 2022, 221, 110964.	3.3	11
4745	Preparation of SF/SF-nHA double-layer scaffolds for periodental tissue regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-10.	1.8	1
4746	Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics, 2022, 14, 1637.	2.0	10
4747	Microfluidicâ€assisted preparation of nano and microscale chitosan based <scp>3D</scp> composite materials: Comparison with conventional methods. Journal of Applied Polymer Science, 2022, 139, .	1.3	1

#	Article	IF	CITATIONS
4748	Investigating the Effect of Processing Parameters on Mechanical Behavior of 3D Fused Deposition Modeling Printed Polylactic Acid. Journal of Materials Engineering and Performance, 2023, 32, 1089-1102.	1.2	7
4749	A Biological Study of Composites Based on the Blends of Nanohydroxyapatite, Silk Fibroin and Chitosan. Materials, 2022, 15, 5444.	1.3	3
4750	Parametric Studies on Finishing of AZ31B Magnesium Alloy with Al2O3 Magnetic Abrasives Prepared by Combining Plasma Molten Metal Powder with Sprayed Abrasive Powder. Micromachines, 2022, 13, 1369.	1.4	2
4751	Additive Manufacturing of Biomaterials—Design Principles and Their Implementation. Materials, 2022, 15, 5457.	1.3	31
4752	3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication, 2022, 14, 042003.	3.7	19
4753	Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials, 2022, 288, 121699.	5.7	18
4754	Mature bone mechanoregulation modelling for the characterization of the osseointegration performance of periodic cellular solids. Materialia, 2022, 25, 101552.	1.3	1
4755	Porous construction and surface modification of titanium-based materials for osteogenesis: A review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	17
4756	Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds. Acta Biomaterialia, 2022, 151, 628-646.	4.1	13
4757	A review of bioceramics scaffolds for bone defects in different types of animal models: HA and β -TCP. Biomedical Physics and Engineering Express, 2022, 8, 052002.	0.6	6
4758	Optimization of the Parameters of Tomographic Studies of Biodegradable Polymers. Journal of Surface Investigation, 2022, 16, 569-575.	0.1	0
4759	Coculture of adiposeâ€derived mesenchymal stem cells/macrophages on decellularized placental sponge promotes differentiation into the osteogenic lineage. Artificial Organs, 2023, 47, 47-61.	1.0	8
4760	Multifunctional hydrogel enhances bone regeneration through sustained release of Stromal Cell-Derived Factor-11 [±] and exosomes. Bioactive Materials, 2023, 25, 460-471.	8.6	14
4761	Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications. Biomedical Materials (Bristol), 2022, 17, 055014.	1.7	2
4762	Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery—a promising method for tissue regeneration. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
4763	Direct ink writing of silicone/filler mixtures for sphene scaffolds with advanced topologies. International Journal of Applied Ceramic Technology, 2023, 20, 131-140.	1.1	0
4764	3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration. Journal of Magnesium and Alloys, 2022, , .	5.5	6
4765	Additively manufactured lattice structures with controlled transverse isotropy for orthopedic porous implants. Computers in Biology and Medicine, 2022, 150, 105761.	3.9	7

		CITATION R	EPORT	
# 4766	ARTICLE Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Poly	lactic	IF 1.3	Citations
4767	Enhanced Biocompatibility and Osteogenic Activity of Marine-Plankton-Derived Whitlockit Granules through Bone Morphogenetic Protein 2 Incorporation. Bioengineering, 2022, 9, 3	e Bone 199.	1.6	0
4768	Bioprinting for Bone Tissue Engineering. , 2022, , 1-9.			0
4769	3D-printed composite scaffold with gradient structure and programmed biomolecule delivinguide stem cell behavior for osteochondral regeneration. , 2022, 140, 213067.	ery to		12
4770	Powder-Bed Fusion. , 2022, , 1-15.			0
4771	Structure-property relationships of imperfect additively manufactured lattices based on tri periodic minimal surfaces. Materials and Design, 2022, 222, 111036.	ply	3.3	8
4772	The design and evaluation of bionic porous bone scaffolds in fluid flow characteristics and mechanical properties. Computer Methods and Programs in Biomedicine, 2022, 225, 1070	159.	2.6	13
4773	Physicochemical and cytotoxicity studies of a novel hydrogel nanoclay EPD coating on tita of chitosan/gelatin/halloysite for biomedical applications. Materials Chemistry and Physics, 126543.	nium made 2022, 290,	2.0	9
4774	Fundamental Biomechanics in Bone Tissue Engineering. Synthesis Lectures on Tissue Engir	ieering, 2010,	0.3	14
4776	Modelling the Mechanical Properties of Hydroxyapatite Scaffolds Produced by Digital Light Processing-Based Vat Photopolymerization. Ceramics, 2022, 5, 593-600.		1.0	4
4777	Preparation of chitosan-sodium alginate/bioactive glass composite cartilage scaffolds with activity and bioactivity. Ceramics International, 2023, 49, 1987-1996.	high cell	2.3	3
4778	An Eco-Friendly, Simple, and Inexpensive Method for Metal-Coating Strontium onto Halloy Nanotubes. Journal of Composites Science, 2022, 6, 276.	site	1.4	2
4779	Self-reinforcement hydrogel with sustainable oxygen-supply for enhanced cell ingrowth an potential tissue regeneration. , 2022, 141, 213105.	d		6
4780	Antibacterial performance of graphene oxide/alginate-based antisense hydrogel for potent therapeutic application in Staphylococcus aureus infection. , 2022, 141, 213121.	al		3
4781	Effects of cooling conditions and chitosan coating on the properties of porous calcium pho granules produced from hard clam shells. Advanced Powder Technology, 2022, 33, 10377	osphate 4.	2.0	3
4782	Bifunctionalized hydrogels promote angiogenesis and osseointegration at the interface of three-dimensionally printed porous titanium scaffolds. Materials and Design, 2022, 223, 1	11118.	3.3	6
4783	Hydrophilic competent and enhanced wet-bond strength castor oil-based bioadhesive for b Colloids and Surfaces B: Biointerfaces, 2022, 219, 112835.	one repair.	2.5	9
4784	Effect of stress state on the mechanical behavior of 3D printed porous Ti6Al4V scaffolds p laser powder bed fusion. Materials Science and Engineering B: Solid-State Materials for Adv Technology, 2022, 286, 116013.	roduced by vanced	1.7	7

#	Article	IF	CITATIONS
4785	Mechanoregulation modelling of stretching versus bending dominated periodic cellular solids. Materials Today Communications, 2022, 33, 104315.	0.9	3
4786	Initial upsurge of BMPs enhances long-term osteogenesis in in-vitro bone regeneration. Materialia, 2022, 26, 101576.	1.3	3
4787	Fabrication of bioresorbable hydroxyapatite bone grafts through the setting reaction of calcium phosphate cement. Dental Materials Journal, 2022, 41, 882-888.	0.8	2
4788	Adipogenesis or osteogenesis: destiny decision made by mechanical properties of biomaterials. RSC Advances, 2022, 12, 24501-24510.	1.7	10
4789	Protein–inorganic hybrid porous scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2022, 10, 6546-6556.	2.9	5
4790	Preparation of a novel regenerated silk fibroin-based hydrogel for extrusion bioprinting. Soft Matter, 2022, 18, 7360-7368.	1.2	6
4791	Synergistic Effect of Sulfonation Followed Precipitation of Amorphous Calcium Phosphate on the Bone-Bonding Strength of Carbon-Fiber-Reinforced Peek. SSRN Electronic Journal, 0, , .	0.4	0
4792	Bone tissue engineering supported by bioprinted cell constructs with endothelial cell spheroids. Theranostics, 2022, 12, 5404-5417.	4.6	5
4793	3D printing of conch-like scaffolds for guiding cell migration and directional bone growth. Bioactive Materials, 2023, 22, 127-140.	8.6	15
4794	Biofabricating the vascular tree in engineered bone tissue. Acta Biomaterialia, 2023, 156, 250-268.	4.1	10
4795	A Beginner's Guide to the Characterization of Hydrogel Microarchitecture for Cellular Applications. Gels, 2022, 8, 535.	2.1	23
4796	Calcium phosphate bioceramics: From cell behavior to chemical-physical properties. , 0, 1, .		4
4797	Recent Development of Biomaterials Combined with Mesenchymal Stem Cells as a Strategy in Cartilage Regeneration. International Journal of Translational Medicine, 2022, 2, 456-481.	0.1	2
4798	Robocasting of multicomponent sol-gel–derived silicate bioactive glass scaffolds for bone tissue engineering. Ceramics International, 2022, 48, 35209-35216.	2.3	3
4799	Novel nanoâ€hydroxyapatite coating of additively manufactured threeâ€dimensional porous implants improves bone ingrowth and initial fixation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 453-462.	1.6	2
4800	A Silk Fibroin Methacryloyl-Modified Hydrogel Promoting Cell Adhesion for Customized 3D Cell-Laden Structures. ACS Applied Polymer Materials, 2022, 4, 7014-7024.	2.0	16
4801	Physical and chemical factors influencing the porosity of apatite-biopolymer composites. Himia, Fizika Ta Tehnologia Poverhni, 2022, 13, 301-310.	0.2	0
4802	Impact of surface roughness and bulk porosity on spinal interbody implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 478-489.	1.6	2

#	Article	IF	CITATIONS
4803	Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Marine Drugs, 2022, 20, 589.	2.2	5
4804	Comparison of degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds with alkaline or acid post-treatment. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
4805	Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications. Materials, 2022, 15, 6245.	1.3	5
4806	4D printing: a cutting-edge platform for biomedical applications. Biomedical Materials (Bristol), 2022, 17, 062001.	1.7	23
4807	Biomedical Applications of Polysaccharide-Based Aerogels: A Review. Current Applied Polymer Science, 2022, 5, 87-94.	0.2	1
4810	3D printing of alginate/thymoquinone/halloysite nanotube bio-scaffolds for cartilage repairs: experimental and numerical study. Medical and Biological Engineering and Computing, 2022, 60, 3069-3080.	1.6	7
4811	The DLC Coating on 316L Stainless Steel Stochastic Voronoi Tessellation Structures Obtained by Binder Jetting Additive Manufacturing for Potential Biomedical Applications. Coatings, 2022, 12, 1373.	1.2	4
4812	Scaffolds for bone-tissue engineering. Matter, 2022, 5, 2722-2759.	5.0	25
4813	Macropore Regulation of Hydroxyapatite Osteoinduction via Microfluidic Pathway. International Journal of Molecular Sciences, 2022, 23, 11459.	1.8	5
4814	Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings, 2022, 12, 1380.	1.2	23
4815	Effect of porosity on mechanical and biological properties of bioprinted scaffolds. Journal of Biomedical Materials Research - Part A, 2023, 111, 245-260.	2.1	13
4816	Bone regeneration materials and their application over 20Âyears: A bibliometric study and systematic review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	11
4817	Pullout Strength of Triply Periodic Minimal Surface-Structured Bone Implants. International Journal of Mechanical Sciences, 2023, 237, 107795.	3.6	8
4818	Hierarchically Porous Films Architectured by Self-Assembly of Prolamins at the Air–Liquid Interface. ACS Applied Materials & Interfaces, 2022, 14, 47345-47358.	4.0	5
4819	Fabrication and histological evaluation of antâ€nest type porous carbonate apatite artificial bone using polyurethane foam as a porogen. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 560-567.	1.6	3
4820	3D Polycaprolactone/Gelatin-Oriented Electrospun Scaffolds Promote Periodontal Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 46145-46160.	4.0	16
4821	Preparation and sustained-release properties of poly(lactic acid)/graphene oxide porous biomimetic composite scaffolds loaded with salvianolic acid B. RSC Advances, 2022, 12, 28867-28877.	1.7	2
4822	Incorporation of cerium oxide into hydroxyapatite/chitosan composite scaffolds for bone repair. Processing and Application of Ceramics, 2022, 16, 207-217.	0.4	3

#	Article	IF	CITATIONS
4823	A review on <i>in vitro</i> / <i>in vivo</i> response of additively manufactured Ti–6Al–4V alloy. Journal of Materials Chemistry B, 2022, 10, 9479-9534.	2.9	9
4824	Biodegradable and biocompatible synthetic polymers for applications in bone and muscle tissue engineering. Journal of Medical Science, 2022, 91, e712.	0.2	1
4825	Stereolithographic Additive Manufacturing of Biological Scaffolds. , 2022, , 246-251.		0
4826	Study on βTCP/P(3HB) Scaffolds—Physicochemical Properties and Biological Performance in Low Oxygen Concentration. International Journal of Molecular Sciences, 2022, 23, 11587.	1.8	2
4827	Bone Graft Packing and Its Association with Bone Regeneration in Maxillary Sinus Floor Augmentations: Histomorphometric Analysis of Human Biopsies. Biology, 2022, 11, 1431.	1.3	2
4828	Selective Laser Sintering of Hydroxyapatite-Based Materials for Tissue Engineering. , 2022, , 92-105.		Ο
4829	Ecoâ€Sustainable Approaches in Bone Tissue Engineering: Evaluating the Angiogenic Potential of Different Poly(3â€Hydroxybutyrateâ€Coâ€3â€Hydroxyhexanoate)–Nanocellulose Composites with the Chorioallantoic Membrane Assay. Advanced Engineering Materials, 2023, 25, .	1.6	3
4830	Implantable drug delivery systems for the treatment of osteomyelitis. Drug Development and Industrial Pharmacy, 2022, 48, 511-527.	0.9	3
4831	Freeze-drying platforms design for batch fabrication of Haversian system mimicking scaffolds with enhanced osteogenesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
4832	Calcium Phosphate-Based Biomaterials for Bone Repair. Journal of Functional Biomaterials, 2022, 13, 187.	1.8	58
4833	Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials, 2022, 15, 6952.	1.3	9
4834	Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Bio-Design and Manufacturing, 2023, 6, 51-73.	3.9	6
4835	Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Current Drug Targets, 2023, 24, 13-40.	1.0	1
4836	Fabrication and in vitro evaluation of chitosan-gelatin based aceclofenac loaded scaffold. International Journal of Biological Macromolecules, 2023, 224, 223-232.	3.6	12
4838	Radio Frequency Drying Behavior in Porous Media: A Case Study of Potato Cube with Computer Modeling. Foods, 2022, 11, 3279.	1.9	5
4839	New insight to the mechanical reliability of porous and nonporous hydroxyapatite. Journal of the Australian Ceramic Society, 0, , .	1.1	2
4840	Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers, 2022, 14, 4186.	2.0	9
4841	Could Curdlan/Whey Protein Isolate/Hydroxyapatite Biomaterials Be Considered as Promising Bone Scaffolds?—Fabrication, Characterization, and Evaluation of Cytocompatibility towards Osteoblast Cells In Vitro. Cells, 2022, 11, 3251.	1.8	5

#	Article	IF	CITATIONS
4842	Robocasting and Laser Micromachining of Sol-Gel Derived 3D Silica/Gelatin/β-TCP Scaffolds for Bone Tissue Regeneration. Gels, 2022, 8, 634.	2.1	2
4843	Influence of High Rotational Speeds on the Microstructure and Properties of Friction Stir Manufactured ZK61 Magnesium Alloy-Hydroxyapatite Composites. Transactions of the Indian Institute of Metals, 2023, 76, 729-739.	0.7	3
4844	Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. Molecules, 2022, 27, 6642.	1.7	3
4845	Taguchi grey relational optimization of sol–gel derived hydroxyapatite from a novel mix of two natural biowastes for biomedical applications. Scientific Reports, 2022, 12, .	1.6	8
4846	Osteoconductivity of bone substitutes with filament-based microarchitectures: Influence of directionality, filament dimension, and distanceÂ. International Journal of Bioprinting, 2022, 9, 626.	1.7	2
4847	Biomaterial-induced macrophage polarization for bone regeneration. Chinese Chemical Letters, 2023, 34, 107925.	4.8	8
4848	Effect of 3-dimensional Collagen Fibrous Scaffolds with Different Pore Sizes on Pulp Regeneration. Journal of Endodontics, 2022, 48, 1493-1501.	1.4	4
4849	Pectin/Pectin Derivatives as Potential Scaffolds for the Tissue Engineering Applications. Natural Products Journal, 2023, 13, .	0.1	0
4850	A hydrogel–fiber–hydrogel composite scaffold based on silk fibroin with the dualâ€delivery of oxygen and quercetin. Biotechnology and Bioengineering, 2023, 120, 297-311.	1.7	8
4851	Clinical Outcomes of 3D-Printed Bioresorbable Scaffolds for Bone Tissue Engineering—A Pilot Study on 126 Patients for Burrhole Covers in Subdural Hematoma. Biomedicines, 2022, 10, 2702.	1.4	6
4852	Three-Dimensional Printed Hydroxyapatite Bone Substitutes Designed by a Novel Periodic Minimal Surface Algorithm Are Highly Osteoconductive. 3D Printing and Additive Manufacturing, 2023, 10, 905-916.	1.4	2
4853	A Bioinspired Orthopedic Biomaterial with Tunable Mechanical Properties Based on Sintered Titanium Fibers. Advanced Healthcare Materials, 0, , 2202106.	3.9	0
4854	Plasma Electrolytic Oxidation (PEO) Coating on γ-TiAl Alloy: Investigation of Bioactivity and Corrosion Behavior in Simulated Body Fluid. Metals, 2022, 12, 1866.	1.0	5
4855	How getting twisted in scaffold design can promote bone regeneration: A fluid–structure interaction evaluation. Journal of Biomechanics, 2022, 145, 111359.	0.9	4
4856	A novel method for measuring the porosity of the nanowebs. Results in Materials, 2022, 16, 100345.	0.9	2
4857	Direct ink writing of porous Fe-HA metal-matrix composites (MMCs) with independently adjustable porosity and degradation rate for bone implant applications. Materials and Design, 2022, 224, 111319.	3.3	5
4858	Structure and Properties of Scaffolds for Bone Tissue Regeneration. Synthesis Lectures on Tissue Engineering, 2010, , 125-145.	0.3	0
4859	Biologic Foundations for Skeletal Tissue Engineering. Synthesis Lectures on Tissue Engineering, 2011, ,	0.3	4

#	Article	IF	CITATIONS
4860	Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioactive Materials, 2023, 23, 16-44.	8.6	17
4861	Effects of surface modification processes on the adhesion of hydroxyapatite layers coated onto titanium substrates. , 2019, 29, .		3
4862	3D-Printed Piezoelectric Porous Bioactive Scaffolds and Clinical Ultrasonic Stimulation Can Help in Enhanced Bone Regeneration. Bioengineering, 2022, 9, 679.	1.6	8
4863	Morphometric analysis of patient-specific 3D-printed acetabular cups: a comparative study of commercially available implants from 6 manufacturers. 3D Printing in Medicine, 2022, 8, .	1.7	1
4864	Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses. Journal of Functional Biomaterials, 2022, 13, 245.	1.8	6
4865	Adhesive Bioinspired Coating for Enhancing Glass-Ceramics Scaffolds Bioactivity. Materials, 2022, 15, 8080.	1.3	2
4866	Macroporous Hyaluronic Acid/Chitosan Polyelectrolyte Complex-Based Hydrogels Loaded with Hydroxyapatite Nanoparticles: Preparation, Characterization and In Vitro Evaluation. Polysaccharides, 2022, 3, 745-760.	2.1	6
4867	Extraction of Hydroxyapatite from Camel Bone for Bone Tissue Engineering Application. Molecules, 2022, 27, 7946.	1.7	5
4868	Zonally Stratified Decalcified Bone Scaffold with Different Stiffness Modified by Fibrinogen for Osteochondral Regeneration of Knee Joint Defect. ACS Biomaterials Science and Engineering, 2022, 8, 5257-5272.	2.6	2
4869	Sinterâ€Based Additive Manufacturing of Graded Porous Titanium Scaffolds by Multiâ€Inks 3D Extrusion. Advanced Engineering Materials, 2023, 25, .	1.6	4
4870	High porosity composite structures produced from poly(lactic acid)/hydroxyapatite microspheres using novel Dual Beam Laser Sintering method: Analysis of structural, mechanical and thermal properties. Journal of Manufacturing Processes, 2022, 84, 1284-1297.	2.8	3
4871	Functionalized Microscaffold–Hydrogel Composites Accelerating Osteochondral Repair through Endochondral Ossification. ACS Applied Materials & Interfaces, 2022, 14, 52599-52617.	4.0	4
4872	Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Scientific Reports, 2022, 12, .	1.6	31
4873	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	2.4	54
4874	Bone formation in sinus augmentation with different xenograft particle sizes: systematic review and meta-analysis. Rgo, 0, 70, .	0.2	0
4875	A pH-neutral bioactive glass coated 3D-printed porous Ti6Al4V scaffold with enhanced osseointegration. Journal of Materials Chemistry B, 2023, 11, 1203-1212.	2.9	3
4876	Controlling the hierarchical microstructure of bioceramic scaffolds by 3D printing of emulsion inks. Additive Manufacturing, 2023, 61, 103332.	1.7	3
4877	Biomechanical behavior of PMMA 3D printed biomimetic scaffolds: Effects of physiologically relevant environment. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105612.	1.5	1

# 4878	ARTICLE Nondeterministic multiobjective optimization of 3D printed ceramic tissue scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105580.	lF 1.5	Citations 9
4879	Improving biocompatibility for next generation of metallic implants. Progress in Materials Science, 2023, 133, 101053.	16.0	41
4880	Micromechanical analysis of the effective stiffness of poroelastic composites. European Journal of Mechanics, A/Solids, 2023, 98, 104875.	2.1	7
4881	In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect. Journal of Applied Biomaterials and Functional Materials, 2022, 20, 228080002211426.	0.7	0
4882	Acceleration Voltage and Spot Size of Advanced Bio Material in Nano scale. , 2022, , 1-4.		0
4883	Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds. Polymers, 2022, 14, 5017.	2.0	1
4884	Functional engineering strategies of 3D printed implants for hard tissue replacement. International Journal of Energy Production and Management, 2023, 10, .	1.9	4
4885	Effect of infill pattern on the mechanical properties of polydopamineâ€coated polylactic acid orthopedic bone plates developed by fused filament fabrication. Polymer Engineering and Science, 2023, 63, 353-365.	1.5	6
4886	Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomaterialia, 2023, 157, 108-123.	4.1	11
4887	Hybrid 3D Printed and Electrospun Multi-Scale Hierarchical Polycaprolactone Scaffolds to Induce Bone Differentiation. Pharmaceutics, 2022, 14, 2843.	2.0	3
4888	Boosting bone regeneration using augmented melt-extruded additive-manufactured scaffolds. International Materials Reviews, 2023, 68, 755-785.	9.4	3
4889	The Porosity of Nanofiber Layers. , 0, , .		3
4890	Effect of Cell Geometry on the Mechanical Properties of 3D Voronoi Tessellation. Journal of Functional Biomaterials, 2022, 13, 302.	1.8	0
4891	The effect of pore size and layout on mechanical and biological properties of <scp>3D</scp> â€printed bone scaffolds with gradient porosity. Polymer Composites, 2023, 44, 1343-1359.	2.3	12
4892	Review of bioresorbable AZ91, AZ31 and Mg–Zn–Ca implants and their manufacturing methods. Materials Science and Technology, 2023, 39, 901-925.	0.8	5
4893	Combined Application of Dentin Noncollagenous Proteins and Odontogenic Biphasic Calcium Phosphate in Rabbit Maxillary Sinus Lifting. Tissue Engineering and Regenerative Medicine, 0, , .	1.6	0
4894	Irregular pore size of degradable bioceramic Voronoi scaffolds prepared by stereolithography: Osteogenesis and computational fluid dynamics analysis. Materials and Design, 2022, 224, 111414.	3.3	7
4895	Bone Tissue Engineering Scaffolds: Function of Multiâ€Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 2023, 12, .	3.9	34

#	Article	IF	CITATIONS
4896	Functionalized Collagen/Elastinâ€like Polypeptide Hydrogels for Craniofacial Bone Regeneration. Advanced Healthcare Materials, 2023, 12, .	3.9	5
4897	Three-Dimensional Printing and Digital Flow in Human Medicine: A Review and State-of-the-Art. Applied System Innovation, 2022, 5, 126.	2.7	3
4898	3D soft tissue printing—from vision to reality—review of current concepts. European Journal of Plastic Surgery, 0, , .	0.3	0
4899	Latest Developments and Insights of Orthopedic Implants in Biomaterials Using Additive Manufacturing Technologies. Journal of Manufacturing and Materials Processing, 2022, 6, 162.	1.0	4
4900	Biomineralized Piezoelectrically Active Scaffolds for Inducing Osteogenic Differentiation. Chemistry - A European Journal, 0, , .	1.7	5
4901	A Novel, Image-Based Method for Characterization of the Porosity of Additively Manufactured Bone Scaffolds With Complex Microstructures. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2023, 145, .	1.3	1
4902	Improved corrosion resistance and biocompatibility of AZ31 alloy by acid pickling pretreatment and (H+) hydroxyapatite/chitosan composite coating. Surface and Coatings Technology, 2023, 454, 129157.	2.2	5
4903	Nature-inspired vascularised materials and devices for biomedical engineering. Current Opinion in Biomedical Engineering, 2023, 25, 100444.	1.8	1
4904	PEEK and Hyaluronan-Based 3D Printed Structures: Promising Combination to Improve Bone Regeneration. Molecules, 2022, 27, 8749.	1.7	8
4905	Review: Scaffold Characteristics, Fabrication Methods, and Biomaterials for the Bone Tissue Engineering. International Journal of Precision Engineering and Manufacturing, 2023, 24, 511-529.	1.1	10
4906	Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 1453-1490.	1.9	6
4907	Recent advances in carbon dots: synthesis and applications in bone tissue engineering. Nanoscale, 2023, 15, 3106-3119.	2.8	11
4908	Numerical analysis of the influence of triply periodic minimal surface structures morphometry on the mechanical response. Computer Methods and Programs in Biomedicine, 2023, 230, 107342.	2.6	4
4909	Bioactive Glass-Ceramic Scaffolds Coated with Hyaluronic Acid–Fatty Acid Conjugates: A Feasibility Study. Journal of Functional Biomaterials, 2023, 14, 26.	1.8	1
4910	Immunized Microspheres Engineered Hydrogel Membrane for Reprogramming Macrophage and Mucosal Repair. Small, 2023, 19, .	5.2	11
4911	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	16.0	32
4912	Effects of Pore Size Parameters of Titanium Additively Manufactured Lattice Structures on the Osseointegration Process in Orthopedic Applications: A Comprehensive Review. Crystals, 2023, 13, 113.	1.0	5
4913	Degradable and Tunable Keratin-fibrinogen Hydrogel as Controlled Release System for Skin Tissue Regeneration. Journal of Bionic Engineering, 2023, 20, 1049-1059.	2.7	3

\sim			~	
	ΤΔΤΙ	ON	ISED(דסר
\sim			IVEL V	

#	Article	IF	CITATIONS
4914	Influence of Density Gradient on the Compression of Functionally Graded BCC Lattice Structure. Materials, 2023, 16, 520.	1.3	5
4915	Three-dimensional-printed porous prosthesis for the joint-sparing reconstruction of the proximal humeral tumorous defect. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
4916	Biodegradable BBG/PCL composite scaffolds fabricated by selective laser sintering for directed regeneration of critical-sized bone defects. Materials and Design, 2023, 225, 111543.	3.3	9
4917	Matrices Activated with Messenger RNA. Journal of Functional Biomaterials, 2023, 14, 48.	1.8	1
4918	Computational evaluation of the compressive properties of different lattice geometries to be used as temporary implants. Procedia Computer Science, 2023, 217, 928-937.	1.2	2
4919	Influence of processing parameters tuning and rheological characterization on improvement of mechanical properties and fabrication accuracy of 3D printed models. Rapid Prototyping Journal, 2023, 29, 867-881.	1.6	3
4920	Definition, measurement, and function of pore structure dimensions of bioengineered porous bone tissue materials based on additive manufacturing: A review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
4921	Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Biomaterials, 2023, 294, 121999.	5.7	18
4922	Compression Behavior and Failure Mechanisms of Bionic Porous NiTi Structures Built via Selective Laser Melting. Acta Metallurgica Sinica (English Letters), 2023, 36, 926-936.	1.5	5
4923	Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure. Journal of Materials Science: Materials in Medicine, 2023, 34, .	1.7	3
4924	A review: In vivo studies of bioceramics as bone substitute materials. Nano Select, 2023, 4, 123-144.	1.9	5
4925	Biofabrication of Poly(glycerol sebacate) Scaffolds Functionalized with a Decellularized Bone Extracellular Matrix for Bone Tissue Engineering. Bioengineering, 2023, 10, 30.	1.6	3
4926	The Use of Newly Synthesized Composite Scaffolds for Bone Regeneration - A Review of Literature. , 2022, .		1
4927	Computed Post-analyses on the Morphology of Hydroxyapatite Coated Poly(lactic acid) Scaffolds. , 2022, , .		0
4928	3D printed poly(lactic acid)-based nanocomposite scaffolds with bioactive coatings for tissue engineering applications. Journal of Materials Science, 2023, 58, 2740-2763.	1.7	7
4929	Three-dimensional printable nanocomposite biomaterials as bone scaffolds and grafts. , 2023, , 579-594.		0
4930	Ceramics Choice for Implants. Synthesis Lectures on Biomedical Engineering, 2023, , 59-87.	0.1	1
4931	Synergistic effect of sulfonation followed by precipitation of amorphous calcium phosphate on the bone-bonding strength of carbon fiber reinforced polyetheretherketone. Scientific Reports, 2023, 13, .	1.6	2

#	Article	IF	Citations
4932	Quality of AM implants in biomedical application. , 2023, , 689-743.		1
4933	On the Various Numerical Techniques for the Optimization of Bone Scaffold. Materials, 2023, 16, 974.	1.3	6
4934	Silk fibroin-chitosan aerogel reinforced by nanofibers for enhanced osteogenic differentiation in MC3T3-E1 cells. International Journal of Biological Macromolecules, 2023, 233, 123501.	3.6	10
4935	Potential of unsaturated polyesters in biomedicine and tissue engineering. , 2023, , 341-420.		1
4936	Preparation and Properties of Selfâ€Setting Calcium Phosphate Scaffolds: Effect of Pore Architecture. Advanced Engineering Materials, 2023, 25, .	1.6	1
4937	HISTOLOGICAL STUDY TO COMPARE THE APPROPRIATE PARTICLE SIZE OF BETA TCP FOR SOCKET PRESERVATION. , 2023, , 23-26.		0
4938	Fabrication of polycaprolactone/heparinized nano fluorohydroxyapatite scaffold for bone tissue engineering uses. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 544-555.	1.8	4
4939	Evaluation of innovative polyvinyl alcohol/ alginate/ green palladium nanoparticles composite scaffolds: Effect on differentiated human dental pulp stem cells into osteoblasts. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 140, 105700.	1.5	1
4940	Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects. International Journal of Biological Macromolecules, 2023, 235, 123861.	3.6	5
4941	Soft Functionally Gradient Materials and Structures – Natural and Manmade: A Review. Advanced Materials, 2023, 35, .	11.1	8
4942	Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials, 2023, 296, 122066.	5.7	19
4943	Evaluation of mechanical properties of Ti–6Al–4V BCC lattice structure with different density gradient variations prepared by L-PBF. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144986.	2.6	10
4944	Gradient scaffolds developed by parametric modeling with selective laser sintering. International Journal of Mechanical Sciences, 2023, 248, 108221.	3.6	9
4945	Weibull modulus of a novel mixture of natural hydroxyapatite materials produced from biowastes. Results in Materials, 2023, 18, 100394.	0.9	1
4946	Microenvironment responsive hypoxia-mimetic DFO composite hydrogel for on-demand neovascularization to promote tendon-to-bone healing. Composites Part B: Engineering, 2023, 259, 110726.	5.9	5
4947	Lignin-enriched tricalcium phosphate/sodium alginate 3D scaffolds for application in bone tissue regeneration. International Journal of Biological Macromolecules, 2023, 239, 124258.	3.6	6
4948	Holmium-doped 58S glass-derived foam-like scaffolds. Materials Letters, 2023, 341, 134256.	1.3	0
4949	Fabrication of HAp/rGO nanocomposite coating on PEEK: Tribological performance study. Surfaces and Interfaces, 2023, 38, 102865.	1.5	5

#	Article	IF	CITATIONS
4950	Hierarchically porous calcium phosphate scaffold with degradable PLGA microsphere network. Materials Chemistry and Physics, 2023, 301, 127633.	2.0	1
4951	Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering. International Journal of Mechanical Sciences, 2023, 251, 108353.	3.6	16
4952	Anti-inflammatory and anabolic biphasic scaffold facilitates osteochondral tissue regeneration in osteoarthritic joints. Journal of Materials Science and Technology, 2023, 156, 20-31.	5.6	3
4953	Numerical simulation and printability analysis of fused deposition modeling with dual-temperature control. Bio-Design and Manufacturing, 2023, 6, 174-188.	3.9	1
4954	Preparation of nanofibrous poly (L-lactic acid) scaffolds using the thermally induced phase separation technique in dioxane/polyethylene glycol solution. Designed Monomers and Polymers, 2023, 26, 77-89.	0.7	1
4955	Impact of borosilicate bioactive glass scaffold processing and reactivity on in-vitro dissolution properties. Materials Today Communications, 2023, 35, 105984.	0.9	0
4956	Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration. Heliyon, 2023, 9, e13176.	1.4	3
4957	Production and optimization of novel rice husk ash reinforced polycaprolactone/hydroxyapatite composite for bone regeneration using grey relational analysis. Scientific African, 2023, 19, e01563.	0.7	1
4958	In situ synchrotron study of sintering of gas-atomized Ti-6Al-4 V powders using concomitant micro-tomography and X-ray diffraction: Effect of particle size and interstitials on densification and phase transformation kinetics. Acta Materialia, 2023, 246, 118723.	3.8	3
4959	A comparative study of the mechanical properties of sol-gel derived hydroxyapatite produced from a novel mixture of two natural biowastes for biomedical applications. Materials Chemistry and Physics, 2023, 297, 127434.	2.0	11
4960	Imparting Multiâ€Scalar Architectural Control into Silk Materials Using a Simple Multiâ€Functional Iceâ€Templating Fabrication Platform. Advanced Materials Technologies, 2023, 8, .	3.0	2
4961	Research progress on the design and performance of porous titanium alloy bone implants. Journal of Materials Research and Technology, 2023, 23, 2626-2641.	2.6	28
4962	A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering, 2023, 10, 204.	1.6	19
4963	Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Progress in Biomaterials, 2023, 12, 137-153.	1.8	4
4964	A Oneâ€Stoneâ€Twoâ€Birds Strategy for Osteochondral Regeneration Based on a 3D Printable Biomimetic Scaffold with Kartogenin Biochemical Stimuli Gradient. Advanced Healthcare Materials, 2023, 12, .	3.9	14
4965	3D-Printed GelMA/PEGDA/F127DA Scaffolds for Bone Regeneration. Journal of Functional Biomaterials, 2023, 14, 96.	1.8	8
4966	Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration. Clinical and Experimental Dental Research, 2023, 9, 398-408.	0.8	8
4967	3D printed structured porous hydrogel promotes osteogenic differentiation of BMSCs. Materials and Design, 2023, 227, 111729.	3.3	6

#	Article	IF	CITATIONS
4968	Subsidence Rates Associated With Porous 3D-Printed Versus Solid Titanium Cages in Transforaminal Lumbar Interbody Fusion. Global Spine Journal, 0, , 219256822311577.	1.2	2
4969	Additive Manufacturing of Bio-Inspired Microstructures for Bone Tissue Engineering. Experimental Techniques, 2023, 47, 1213-1227.	0.9	0
4970	A flexible design framework to design graded porous bone scaffolds with adjustable anisotropic properties. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 140, 105727.	1.5	1
4971	The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomaterials Science, 2023, 11, 2639-2660.	2.6	7
4972	Adjustment of Micro- and Macroporosity of ß-TCP Scaffolds Using Solid-Stabilized Foams as Bone Replacement. Bioengineering, 2023, 10, 256.	1.6	2
4973	Effect of Pore Characteristics and Alkali Treatment on the Physicochemical and Biological Properties of a 3D-Printed Polycaprolactone Bone Scaffold. ACS Omega, 2023, 8, 7378-7394.	1.6	6
4974	Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioactive Materials, 2023, 25, 374-386.	8.6	13
4975	The renaissance of one-dimensional carbon nanotubes in tissue engineering. Nano Today, 2023, 49, 101784.	6.2	17
4976	Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review. Journal of Materials Science, 2023, 58, 3879-3908.	1.7	11
4977	Preparation and characterization of porous hydroxyapatite reinforced with hydroxyapatite whiskers. Journal of Nature, Science & Technology, 2023, 3, 1-6.	0.4	0
4978	Fabrication and characterization of β-tricalcium phosphate bone scaffold coated with κ-carrageenan and alginate natural polymers. AIP Conference Proceedings, 2023, , .	0.3	0
4979	Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats. Journal of Functional Biomaterials, 2023, 14, 122.	1.8	3
4980	SLM Additive Manufacturing of NiTi Porous Implants: A Review of Constitutive Models, Finite Element Simulations, Manufacturing, Heat Treatment, Mechanical, and Biomedical Studies. Metals and Materials International, 2023, 29, 2458-2491.	1.8	8
4981	Polyelectrolyte assembly with nanoparticle-immobilized enzymes. , 2023, , 61-87.		0
4982	Sustained Release of BMSCâ€EVs from 3D Printing Gel/HA/nHAP Scaffolds for Promoting Bone Regeneration in Diabetic Rats. Advanced Healthcare Materials, 2023, 12, .	3.9	5
4983	On the Influence of Sterilization Conditions Using Gamma Irradiation on the Properties of Polylactide-Sponge Materials. Nanobiotechnology Reports, 2022, 17, 805-810.	0.2	0
4984	Injectable Biomimetic Hydrogel Guided Functional Bone Regeneration by Adapting Material Degradation to Tissue Healing. Advanced Functional Materials, 2023, 33, .	7.8	5
4985	Osteoregenerative Potential of 3D-Printed Poly Îμ-Caprolactone Tissue Scaffolds In Vitro Using Minimally Manipulative Expansion of Primary Human Bone Marrow Stem Cells. International Journal of Molecular Sciences, 2023, 24, 4940.	1.8	3

#	Article	IF	CITATIONS
4986	Mechanical analysis and additive manufacturing of 3D-printed lattice materials for bone scaffolds. Materials Today: Proceedings, 2023, , .	0.9	2
4987	Functionalization of 3D Printed Scaffolds Using Polydopamine and Silver Nanoparticles for Bone-Interfacing Applications. ACS Applied Bio Materials, 2023, 6, 1161-1172.	2.3	2
4988	Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers, 2023, 15, 1342.	2.0	6
4989	Role and Mechanism of a Micro-/Nano-Structured Porous Zirconia Surface in Regulating the Biological Behavior of Bone Marrow Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 0, , .	4.0	0
4990	Multi-modulation of immune-inflammatory response using bioactive molecule-integrated PLGA composite for spinal fusion. Materials Today Bio, 2023, 19, 100611.	2.6	4
4991	Processing of gelatine coated composite scaffolds based on magnesium and strontium doped hydroxyapatite and yttria-stabilized zirconium oxide. Science of Sintering, 2023, 55, 469-479.	0.5	0
4992	3D Bioprinting in Otolaryngology: A Review. Advanced Healthcare Materials, 2023, 12, .	3.9	9
4993	New Composite Materials Based on Chitosan Films Reinforced with Chitin Nanofibrils for Cosmetic Application. Cosmetics, 2023, 10, 51.	1.5	0
4994	Bio-inspired synthesis of hydroxyapatite materials from two natural sources: a crack behavior and biological insight. Journal of the Australian Ceramic Society, 0, , .	1.1	0
4995	An Investigation into the Potential of Turning Induced Deformation Technique for Developing Porous Magnesium and Mg-SiO2 Nanocomposite. Materials, 2023, 16, 2463.	1.3	2
4996	Influence of Scaffold Microarchitecture on Angiogenesis and Regulation of Cell Differentiation during the Early Phase of Bone Healing: A Transcriptomics and Histological Analysis. International Journal of Molecular Sciences, 2023, 24, 6000.	1.8	3
4997	Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Frontiers in Endocrinology, 0, 14, .	1.5	0
4998	A Tunable Calcium Phosphate Coating to Drive in vivo Osseointegration of Composite Engineered Tissues. Cells Tissues Organs, 2023, 212, 381-396.	1.3	0
4999	Study on the influence of scaffold morphology and structure on osteogenic performance. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	5
5000	3D-printed gelatin/sodium alginate/58S bioactive glass scaffolds promote osteogenesis <i>in vitro</i> and <i>in vivo</i> . Journal of Biomaterials Applications, 2023, 37, 1758-1766.	1.2	2
5001	A review of the different fabrication techniques of porous Mg structures considering the effect of manufacturing parameters on corrosion rate and mechanical properties in the bio application. Journal of Materials Science, 2023, 58, 6556-6579.	1.7	2
5002	Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone regeneration. Computational and Structural Biotechnology Journal, 2023, 21, 2514-2523.	1.9	4
5003	Targeting Endogenous Reactive Oxygen Species Removal and Regulating Regenerative Microenvironment at Annulus Fibrosus Defects Promote Tissue Repair. ACS Nano, 2023, 17, 7645-7661.	7.3	15

#	Article	IF	CITATIONS
5004	<scp>3D</scp> printed <scp>Srâ€HA</scp> / <scp>PCL</scp> scaffolds: Fabrication via liquid solvent technique. Polymers for Advanced Technologies, 0, , .	1.6	0
5005	Engineering Cell–ECM–Material Interactions for Musculoskeletal Regeneration. Bioengineering, 2023, 10, 453.	1.6	1
5006	Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend. In Vitro Models, 2023, 2, 125-151.	1.0	3
5007	Porous structure design and properties of dental implants. Computer Methods in Biomechanics and Biomedical Engineering, 2024, 27, 717-726.	0.9	0
5008	Advanced injectable hydrogels for bone tissue regeneration. Biophysical Reviews, 2023, 15, 223-237.	1.5	4
5009	A comprehensive review of the effects of porosity and macro- and micropore formations in porous β-TCP scaffolds on cell responses. Journal of the Australian Ceramic Society, 2023, 59, 865-879.	1.1	2
5010	Utilization of Bioactive Silk Protein in the Development of Optical Devices: Recent Advancements and Applications. Current Protein and Peptide Science, 2023, 24, .	0.7	1
5011	Three-Dimensional-Printed Molds from Water-Soluble Sulfate Ceramics for Biocomposite Formation through Low-Pressure Injection Molding. Materials, 2023, 16, 3077.	1.3	0
5012	Calcium Phosphate Ceramics and Synergistic Bioactive Agents for Osteogenesis in Implant Dentistry. Tissue Engineering - Part C: Methods, 2023, 29, 197-215.	1.1	6
5013	Surface functionalization techniques and characterization methods of electrospun nanofibers. , 2023, , 49-73.		0
5026	Biological metamaterials. , 2023, , 139-221.		0
5041	Integrated osteoimmunomodulatory strategies based on designing scaffold surface properties in bone regeneration. Journal of Materials Chemistry B, 2023, 11, 6718-6745.	2.9	2
5064	Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS Materials Au, 2023, 3, 394-417.	2.6	4
5065	Hydroxyapatite-based hydrogel nanocomposites for bone tissue engineering applications. , 2023, , 91-124.		0
5070	4D Printing in Pharmaceutics and Biomedical Applications. Advanced Clinical PharmacyÂ- Research, Development and Practical Applications, 2023, , 207-247.	0.0	0
5091	Osteogenic trace element doped ceramic coating for bioimplant applications. , 2023, , 293-321.		0
5093	Production technique–structure relationship in bioceramic-coated scaffold applications. , 2023, , 165-196.		0
5094	Electrochemical synthesis of ceramics for biomedical applications. , 2023, , 87-110.		Ο

#	Article	IF	CITATIONS
5114	Functional Bone Regeneration in Oral and Maxillofacial Surgery: History, Definition, and Indications. , 2023, , 119-141.		0
5139	Biological Nanomaterials and Their Development. , 2023, , 69-90.		0
5147	Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. Materials Horizons, 2023, 10, 4662-4685.	6.4	0
5149	Conventional and Innovative Aspects of Bespoke Metal Implants Production. Lecture Notes in Mechanical Engineering, 2024, , 179-217.	0.3	0
5150	Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review. Biomaterials Science, 2023, 11, 7003-7017.	2.6	0
5154	From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Physical Chemistry Chemical Physics, 2023, 25, 24244-24263.	1.3	1
5168	Nanoparticles in bone tissue engineering. , 2023, , 427-456.		0
5183	3D Printing of Polycaprolactone Scaffolds with Heterogenous Pore Size for Living Tissue Regeneration. Lecture Notes in Mechanical Engineering, 2024, , 345-353.	0.3	0
5190	Application of Decellularized Adipose Matrix as a Bioscaffold in Different Tissue Engineering. Aesthetic Plastic Surgery, 0, , .	0.5	1
5217	Biology-driven material design for ischaemic stroke repair. , 0, , .		0
5218	Green synthesis of polymer nano-composites and its biomedical applications. , 2023, , .		0
5220	3D and 4D Bioprinting Technology for Tissue Engineering Applications. , 2023, , 213-250.		0
5221	Musculoskeletal Pains and its Common Diseases: Novel Insights in Treatments Using Biomaterials. , 2023, , 695-723.		0
5238	Role of mechanotransduction in stem cells and cancer progression. , 2024, , 51-76.		0
5266	Dental Pulp Stem Cells in Endodontics: Advances, Applications, and Challenges. , 2023, , 1-40.		0
5279	Gradient Biomaterials and Their Impact on Cell Migration. , 2023, , 265-306.		0
5286	Three-dimensional bioprinting of articular cartilage using silk fibroin–gelatin bioink. , 2024, , 513-548.		0
5293	Wearable Biosensors on Sutures and Threads. , 2024, , 267-297.		0

#	Article	IF	CITATIONS
5297	Marine-Derived Materials for Hard Tissue Repair and Regeneration. , 2023, , 1-24.		0