Loop heat pipes

Applied Thermal Engineering 25, 635-657 DOI: 10.1016/j.applthermaleng.2004.07.010

Citation Report

#	Article	IF	CITATIONS
1	Numerical modeling of evaporator surface temperature of a micro loop heat pipe at steady-state condition. Journal of Micromechanics and Microengineering, 2005, 15, 1963-1971.	2.6	17
2	Low-noise cooling system for pc on the base of loop heat pipes. , 0, , .		2
3	Micro heat spreaders based on microchannels for concentrated heatt fluxes on spacecraft subsystems. , 2006, , .		0
4	Heat Transfer Characteristics of a Loop Heat Pipe With Flat Evaporator Having a Bypass Line. , 2006, , 675.		0
5	Modeling of a Loop Heat Pipe with Evaporator of Circumferential Vapor Grooves in Primary Wick. , 2006, , .		6
6	Extensive Development of the Loop Heat Pipe Technology. , 2006, , .		3
7	Performance Improvement in Loop Heat Pipe Using Primary Wick with Circumferential Grooves. , 2006, ,		8
8	Steady-state and transient performance of a miniature loop heat pipe. International Journal of Thermal Sciences, 2006, 45, 1084-1090.	4.9	88
9	Heat transport capability and compensation chamber influence in loop heat pipes performance. Applied Thermal Engineering, 2006, 26, 1158-1168.	6.0	44
10	Investigation of Effects of Auxiliary Measures for Startup of Loop Heat Pipes. Journal of Thermophysics and Heat Transfer, 2006, 20, 389-397.	1.6	5
11	Transient Modeling of Loop Heat Pipes for the Oscillating Behavior Study. Journal of Thermophysics and Heat Transfer, 2007, 21, 487-495.	1.6	37
12	Heat Transfer in Loop Heat Pipe's Wick: Effect of Porous Structure Parameters. Journal of Thermophysics and Heat Transfer, 2007, 21, 702-711.	1.6	7
13	Heat-Transfer in Loop Heat Pipes Capillary Wick: Effect Effective Thermal Conductivity. Journal of Thermophysics and Heat Transfer, 2007, 21, 134-140.	1.6	12
14	Cooling of Electronic Components. , 2007, , 319-341.		1
15	Thermohydraulic Modeling of Capillary Pumped Loop and Loop Heat Pipe. Journal of Thermophysics and Heat Transfer, 2007, 21, 410-421.	1.6	33
16	Special Types of Heat Pipe. , 2007, , 215-274.		0
18	Performance Evaluation When Using Nanofluids in Loop Heat Pipe and Pulsating Heat Pipe. , 0, , .		6
19	Thermal Characteristics of a Flat Evaporator Miniature Loop Heat Pipe. , 2007, , .		0

#	Article	IF	CITATIONS
20	Parametric analysis of loop heat pipe operation: a literature review. International Journal of Thermal Sciences, 2007, 46, 621-636.	4.9	223
21	Low-noise cooling system for PC on the base of loop heat pipes. Applied Thermal Engineering, 2007, 27, 894-901.	6.0	97
22	Study of system dynamics model and control of a high-power LED lighting luminaire. Energy, 2007, 32, 2187-2198.	8.8	45
23	An experimental study on an oscillating loop heat pipe consisting of three interconnected columns. Heat and Mass Transfer, 2007, 43, 527-534.	2.1	5
24	Heat transfer with flow and evaporation in loop heat pipe's wick at low or moderate heat fluxes. International Journal of Heat and Mass Transfer, 2007, 50, 2296-2308.	4.8	36
25	Operating temperature and distribution of a working fluid in LHP. International Journal of Heat and Mass Transfer, 2007, 50, 2704-2713.	4.8	71
26	Experimental study of heat transfer performance in a flattened AGHP. Applied Thermal Engineering, 2008, 28, 1699-1710.	6.0	10
27	Loop heat pipe performance enhancement using primary wick with circumferential grooves. Applied Thermal Engineering, 2008, 28, 1745-1755.	6.0	30
28	Experimental study on the loop heat pipe with a planar bifacial wick structure. International Journal of Heat and Mass Transfer, 2008, 51, 1573-1581.	4.8	77
29	Transient analysis of boiling heat transfer in periodic drying out miniature pools. International Journal of Multiphase Flow, 2008, 34, 1088-1095.	3.4	3
30	A study of loop heat pipe with biporous wicks. Heat and Mass Transfer, 2008, 44, 1537-1547.	2.1	28
31	Equivalent thermal conductivity of heat pipes. Frontiers of Mechanical Engineering in China, 2008, 3, 462-466.	0.4	1
32	Design and performance test of miniature capillary pumped loop for electronics cooling. Central South University, 2008, 15, 235-239.	0.5	0
33	Numerical simulation of transient operation of loop heat pipes. Applied Thermal Engineering, 2008, 28, 967-974.	6.0	67
34	Operational characteristics of a miniature loop heat pipe with flat evaporator. International Journal of Thermal Sciences, 2008, 47, 1504-1515.	4.9	114
35	Experimental investigation on a novel method for set point temperature controlling of the active two-phase cooling loop. International Journal of Refrigeration, 2008, 31, 1391-1397.	3.4	12
36	Correlation to predict heat transfer of an oscillating loop heat pipe consisting of three interconnected columns. Energy Conversion and Management, 2008, 49, 2337-2344.	9.2	20
37	Analytical Model for Characterization of Loop Heat Pipes. Journal of Thermophysics and Heat Transfer, 2008, 22, 623-631.	1.6	59

		EPORT	
#	ARTICLE	IF	Citations
38	The heat pipe heat exchanger: a review of its status and its potential for coolness recovery in tropical buildings. Building Services Engineering Research and Technology, 2008, 29, 291-310.	1.8	13
39	Development of Miniature Loop Heat Pipes for the Thermal Control of Laptops. , 2008, , .		1
40	Design Optimization of Loop Heat Pipes with Cylindrical Evaporator and Integral Reservoir for Space Application. AIP Conference Proceedings, 2008, , .	0.4	4
41	Thermal performance of non-metallic two-phase cold plates for humanoid robot cooling. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	4
42	Performance of a Flexible Evaporator for Loop Heat Pipe Applications. , 2008, , .		0
43	High Power Electronic Component: Review. Recent Patents on Engineering, 2008, 2, 174-188.	0.4	37
44	Vibration/Shock-Tolerant Capillary Two-Phase Loop Technology for Vehicle Thermal Control. , 2008, , .		5
45	Application areas – the built environment, electronics and the home. , 2008, , 323-354.		1
46	A Concept for a Miniature, Mechanically Pumped Two-Phase Cooling Loop. , 0, , .		4
47	Hybrid Thermosyphon for Power Electronics Thermal Management in High Gravity Applications. , 2008, , .		0
48	Manufacturing and testing of the sintered miniature loop heat pipe. , 2009, , .		0
49	Effects of Mass of Charge on Loop Heat Pipe Operational Characteristics. Journal of Thermophysics and Heat Transfer, 2009, 23, 346-355.	1.6	15
50	Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipe. Journal of Heat Transfer, 2009, 131, .	2.1	106
51	Development of a Robust Miniature Loop Heat Pipe for High Power Chip Cooling. , 2009, , .		3
52	Performance Evaluation of a Pump-Assisted, Capillary Two-Phase Cooling Loop. Journal of Thermal Science and Engineering Applications, 2009, 1, .	1.5	20
53	Operational characteristics of a top-heat-type long heat transport loop through a heat exchanger. Applied Thermal Engineering, 2009, 29, 259-264.	6.0	8
54	Mathematical modeling of steady-state operation of a loop heat pipe. Applied Thermal Engineering, 2009, 29, 2643-2654.	6.0	86
55	Simulation of a LHP-based thermal control system under orbital environment. Applied Thermal Engineering, 2009, 29, 2726-2730.	6.0	11

#	Article	IF	CITATIONS
56	Heat transfer during condensation of moving steam in a narrow channel. International Journal of Heat and Mass Transfer, 2009, 52, 2437-2443.	4.8	7
57	Investigation on the three-dimensional multiphase conjugate conduction problem inside porous wick with the lattice Boltzmann method. Science in China Series D: Earth Sciences, 2009, 52, 2973-2980.	0.9	22
58	Development of sintered Ni-Cu wicks for loop heat pipes. Science in China Series D: Earth Sciences, 2009, 52, 1607-1612.	0.9	30
59	Bypass line assisted start-up of a loop heat pipe with a flat evaporator. Journal of Mechanical Science and Technology, 2009, 23, 1613-1619.	1.5	15
60	Gravity Effects on the Performance of a Flat Loop Heat Pipe. Microgravity Science and Technology, 2009, 21, 95-102.	1.4	25
61	Theoretical modelling of miniature loop heat pipe. Heat and Mass Transfer, 2009, 46, 209-224.	2.1	22
62	Thermodynamic analytical model of a loop heat pipe. Heat and Mass Transfer, 2009, 46, 167-173.	2.1	12
63	Operational characteristics of miniature loop heat pipe with flat evaporator. Heat and Mass Transfer, 2009, 46, 267-275.	2.1	34
64	Loop heat pipe for cooling of high-power electronic components. International Journal of Heat and Mass Transfer, 2009, 52, 301-308.	4.8	120
65	Thermal analysis of loop heat pipe used for high-power LED. Thermochimica Acta, 2009, 493, 25-29.	2.7	108
66	Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory. Applied Thermal Engineering, 2009, 29, 1447-1456.	6.0	47
67	Active coolers based on copper–water LHPs for desktop PC. Applied Thermal Engineering, 2009, 29, 3140-3143.	6.0	27
68	System dynamics model and startup behavior of loop heat pipe. Applied Thermal Engineering, 2009, 29, 2999-3005.	6.0	37
69	Heat and mass transfer in a flat disc-shaped evaporator of a miniature loop heat pipe. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Aerospace Engineering, 2009, 223, 609-618.	1.3	6
70	Pulse-Driven Refrigeration: Progress and Challenges. , 2009, , .		4
71	Heat and Mass Transfer in Evaporator of Loop Heat Pipe. Journal of Thermophysics and Heat Transfer, 2009, 23, 725-731.	1.6	25
72	An Experimental Investigation of Miniature Loop Heat Pipe with Flat Evaporator. , 2009, , .		2
73	Fractal Loop Heat Pipe Heat Flux and Operational Performance Testing. , 2009, , .		2

#	Article	IF	CITATIONS
74	Analysis of Loop Heat Pipe Operational Characteristics. , 2010, , .		0
75	Experimental Study on a Flat Loop Heat Pipe Coupling the Compensation Chamber and the Condenser. , 2010, , .		0
76	Experimental tests of a stainless steel loop heat pipe with flat evaporator. Experimental Thermal and Fluid Science, 2010, 34, 866-878.	2.7	58
77	Parametric analysis of steady-state operation of a CLHP. Applied Thermal Engineering, 2010, 30, 850-858.	6.0	19
78	Development of LHPs with ceramic wick. Applied Thermal Engineering, 2010, 30, 1784-1789.	6.0	47
79	Loop Heat Pipes for Cooling Systems of Servers. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 416-423.	1.3	44
80	Theoretical and Experimental Studies on an Ammonia-Based Loop Heat Pipe With a Flat Evaporator. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 478-487.	1.3	19
81	Effect of amount of fluid charge in thermal performance of loop heat pipe. Heat Transfer - Asian Research, 2010, 39, 355-364.	2.8	2
82	Experimental optimization of capillary structures for loop heat pipes and heat switches. Applied Thermal Engineering, 2010, 30, 1312-1319.	6.0	50
83	Modeling and analysis of startup of a loop heat pipe. Applied Thermal Engineering, 2010, 30, 2778-2787.	6.0	36
84	Effect of fabricating parameters on properties of sintered porous wicks for loop heat pipe. Powder Technology, 2010, 204, 241-248.	4.2	33
85	Experimental study on the operating characteristics of a flat bifacial evaporator loop heat pipe. International Journal of Heat and Mass Transfer, 2010, 53, 276-285.	4.8	44
86	Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches. International Journal of Heat and Mass Transfer, 2010, 53, 2143-2148.	4.8	23
87	Reduction of effective thermal conductivity for sintered LHP wicks. International Journal of Heat and Mass Transfer, 2010, 53, 2932-2934.	4.8	15
88	Heat transfer—A review of 2005 literature. International Journal of Heat and Mass Transfer, 2010, 53, 4397-4447.	4.8	85
89	Transient performance investigation of the mechanically pumped cooling loop (MPCL) system. International Journal of Refrigeration, 2010, 33, 26-32.	3.4	13
90	Experimental studies on a high performance compact loop heat pipe with a square flat evaporator. Applied Thermal Engineering, 2010, 30, 741-752.	6.0	125
91	A novel miniaturized loop heat pipe. Applied Thermal Engineering, 2010, 30, 1152-1158.	6.0	31

6

0.			D	
	TAT	ON	Repo	דעו
\sim				

#	Article	IF	CITATIONS
92	Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components. Applied Thermal Engineering, 2010, 30, 2435-2441.	6.0	17
93	Experimental study on capillary pumping performance of porous wicks for loop heat pipe. Experimental Thermal and Fluid Science, 2010, 34, 1403-1408.	2.7	66
94	Development and investigation of compact cooler using a pulsating heat pipe. High Temperature, 2010, 48, 565-571.	1.0	8
96	Titanium-Water Loop Heat Pipe Operating Characteristics Under Standard and Elevated Acceleration Fields. Journal of Thermophysics and Heat Transfer, 2010, 24, 184-198.	1.6	22
97	Theoretical Studies of Hard Filling in Loop Heat Pipes. Journal of Thermophysics and Heat Transfer, 2010, 24, 173-183.	1.6	17
98	Integration, cooling and packaging issues for aerospace equipments. , 2010, , .		7
99	Experimental Investigation of Temperature Oscillation in Miniature Loop Heat Pipe. , 2010, , .		0
100	Notice of Retraction: Numerical study of the accessorial loop with a micro-pump and ejector for the Capillary Pumped Loop. , 2010, , .		Ο
101	Modeling Laminar Fluid Flows in Rectangular Vapor Grooves of Evaporators Used in Loop Heat Pipes. , 2010, , .		0
102	Experimental Investigation of Effective Thermal Conductivity for LHP Wicks. , 2010, , .		Ο
103	Thermal Potential of Flat Evaporator Miniature Loop Heat Pipes for Notebook Cooling. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 32-45.	1.3	36
104	Titanium-Water Loop Heat Pipe Operating Characteristics Under Standard and Elevated Acceleration Fields. , 2010, , .		Ο
105	CPU thermal management of personal and notebook computer (Transient study). , 2010, , .		8
106	A Compact Loop Heat Pipe With Flat Square Evaporator for High Power Chip Cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 519-527.	2.5	34
107	Modifying the Heat Transfer and Capillary Pressure of Loop Heat Pipe Wicks with Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 9312-9319.	3.1	19
108	Effect of Operational Conditions on Cooling Performance of Pump-Assisted and Capillary-Driven Two-Phase Loop. , 2011, , .		Ο
109	Transient Thermohydraulic Modeling of Capillary Pumped Loop. , 2011, , .		2
110	Gravity Effect on Capillary Limit in a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers. Aerospace Technology Japan the Japan Society for Aeronautical and Space Sciences, 2011, 10, 91-100.	0.1	1

#	Article	IF	Citations
111	Investigation of impact of different working fluids on the operational characteristics of miniature LHP with flat evaporator. Applied Thermal Engineering, 2011, 31, 3387-3392.	6.0	55
112	Investigation of a compact copper–water loop heap pipe with a flat evaporator. Applied Thermal Engineering, 2011, 31, 3533-3541.	6.0	70
113	Effect of pore size distribution in bidisperse wick on heat transfer in a loop heat pipe. Heat and Mass Transfer, 2011, 47, 933-940.	2.1	18
114	3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick. International Journal of Heat and Mass Transfer, 2011, 54, 564-574.	4.8	63
115	Parametric effects on heat transfer in loop heat pipe's wick. International Journal of Heat and Mass Transfer, 2011, 54, 3987-3999.	4.8	13
116	Operation characteristics of AMS-02 loop heat pipe with bypass valve. Science China Technological Sciences, 2011, 54, 1813-1819.	4.0	11
117	Evaluation of permeability of ceramic wick structures for two phase heat transfer devices. Applied Thermal Engineering, 2011, 31, 1076-1081.	6.0	31
118	Experimental analysis and FEM simulation of finned U-shape multi heat pipe for desktop PC cooling. Energy Conversion and Management, 2011, 52, 2937-2944.	9.2	57
119	Study on start-up characteristics of loop heat pipe under low-power. International Journal of Heat and Mass Transfer, 2011, 54, 1002-1007.	4.8	58
120	Simulation of flow and heat transfer with evaporation in a porous wick of a CPL evaporator on pore scale by lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2011, 54, 2890-2901.	4.8	31
121	Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure. International Journal of Heat and Mass Transfer, 2011, 54, 4621-4629.	4.8	43
122	Small Loop Heat Pipe with Plastic Wick for Electronics Cooling. Japanese Journal of Applied Physics, 2011, 50, 11RF02.	1.5	7
123	Development of an Experimental Small Loop Heat Pipe with Polytetrafluoroethylene Wicks. Journal of Thermophysics and Heat Transfer, 2011, 25, 547-552.	1.6	30
124	Numerical Simulation of the Mechanically Pumped Two-Phase Cooling Loop. Applied Mechanics and Materials, 0, 84-85, 244-248.	0.2	1
125	Experimental Investigation of Heat Transfer Performance of a Miniature Loop Heat Pipe with Flat Evaporator. Applied Mechanics and Materials, 2011, 71-78, 3806-3809.	0.2	0
126	Characteristics of Heat Transfer for Heat Pipe and Its Correlation. ISRN Mechanical Engineering, 2011, 2011, 1-7.	0.9	15
127	An Experimental Study of Heat Transfer Characteristics in Miniature Loop Heat Pipes With Rectangular Shaped Evaporator. , 2011, , .		2
128	Minimizing the Wick Thickness in a Planar Microscale Loop Heat Pipe Using Efficient Thermodynamic Design. , 2011, , .		0

#	Article	IF	CITATIONS
129	Device Packaging Techniques for Implementing a Novel Thermal Flux Method for Fluid Degassing and Charging of a Planar Microscale Loop Heat Pipe. , 2011, , .		2
130	Development and Characterization of a Loop Heat Pipe With a Planar Evaporator and Condenser. , 2011, , ,		1
131	Modeling and Analysis of Supercritical Startup of a Cryogenic Loop Heat Pipe. Journal of Heat Transfer, 2011, 133, .	2.1	12
132	Integrating Coherent Porous Silicon as a Wicking Structure in the MEMS Based Fabrication of a Vertically Wicking Micro-Columnated Loop Heat Pipe. , 2011, , .		3
133	Experimental Analysis of a Capillary Pumped Loop for Terrestrial Application. Journal of Thermophysics and Heat Transfer, 2011, 25, 561-571.	1.6	20
134	Effect of Operational Conditions on Cooling Performance of Pump-Assisted and Capillary-Driven Two-Phase Loop. Journal of Thermophysics and Heat Transfer, 2011, 25, 572-580.	1.6	30
135	Fabrication Technology of Miniaturized Loop Heat Pipe. Advanced Materials Research, 2012, 426, 227-230.	0.3	0
136	Heat pipes. , 2012, , 175-207.		4
137	Effect of shroud temperature on performance of a cryogenic loop heat pipe. , 2012, , .		2
138	Experimental study on sintered powder wick loop heat pipe. , 2012, , .		5
139	Loop Heat Pipes: A Review of Fundamentals, Operation,and Design. Heat Transfer Engineering, 2012, 33, 387-405.	1.9	55
139 140		1.9 1.9	55 15
	387-405. Evaporation Heat Transfer Coefficient in a Capillary Pumped Loop and Loop Heat Pipe for Different		
140	 387-405. Evaporation Heat Transfer Coefficient in a Capillary Pumped Loop and Loop Heat Pipe for Different Working Fluids. Heat Transfer Engineering, 2012, 33, 765-774. Effect of Filling Powder Volume Rate in Wick Manufactured for Loop Heat Pipes. Advanced Materials 	1.9	15
140 141	 387-405. Evaporation Heat Transfer Coefficient in a Capillary Pumped Loop and Loop Heat Pipe for Different Working Fluids. Heat Transfer Engineering, 2012, 33, 765-774. Effect of Filling Powder Volume Rate in Wick Manufactured for Loop Heat Pipes. Advanced Materials Research, 0, 488-489, 321-327. Enhanced Miniature Loop Heat Pipe Cooling System for High Power Density Electronics. Journal of 	1.9 0.3	15 5
140 141 142	 387-405. Evaporation Heat Transfer Coefficient in a Capillary Pumped Loop and Loop Heat Pipe for Different Working Fluids. Heat Transfer Engineering, 2012, 33, 765-774. Effect of Filling Powder Volume Rate in Wick Manufactured for Loop Heat Pipes. Advanced Materials Research, 0, 488-489, 321-327. Enhanced Miniature Loop Heat Pipe Cooling System for High Power Density Electronics. Journal of Thermal Science and Engineering Applications, 2012, 4, . 	1.9 0.3	15 5 19
140 141 142 143	387-405. Evaporation Heat Transfer Coefficient in a Capillary Pumped Loop and Loop Heat Pipe for Different Working Fluids. Heat Transfer Engineering, 2012, 33, 765-774. Effect of Filling Powder Volume Rate in Wick Manufactured for Loop Heat Pipes. Advanced Materials Research, 0, 488-489, 321-327. Enhanced Miniature Loop Heat Pipe Cooling System for High Power Density Electronics. Journal of Thermal Science and Engineering Applications, 2012, 4, . Experimental Analysis of Dual-Evaporators Hybrid Two-Phase Cooling Loop. , 2012, , .	1.9 0.3	15 5 19 1

#	Article	IF	CITATIONS
148	Operating characteristics of a miniature cryogenic loop heat pipe. International Journal of Heat and Mass Transfer, 2012, 55, 8093-8099.	4.8	27
149	Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Applied Thermal Engineering, 2012, 35, 212-219.	6.0	146
150	Performance of LHPs with a novel design evaporator. International Journal of Heat and Mass Transfer, 2012, 55, 7005-7014.	4.8	16
151	Design and Operation of a Novel Capillary Pumped Two-Loop System for Cooling of Electronic Devices. Heat Transfer Engineering, 2012, 33, 12-20.	1.9	2
152	Characterization of working fluid in vertically mounted finned U-shape twin heat pipe for electronic cooling. Energy Conversion and Management, 2012, 62, 31-39.	9.2	27
153	Review and Advances in Heat Pipe Science and Technology. Journal of Heat Transfer, 2012, 134, .	2.1	309
154	Experimental investigation on temperature oscillation in a miniature loop heat pipe with flat evaporator. Experimental Thermal and Fluid Science, 2012, 37, 29-36.	2.7	50
155	Development of biporous wicks for flat-plate loop heat pipe. Experimental Thermal and Fluid Science, 2012, 37, 91-97.	2.7	95
156	Experimental investigation on anti-gravity loop heat pipe based on bubbling mode. Experimental Thermal and Fluid Science, 2012, 41, 4-11.	2.7	12
157	Modeling of stability of the condensing interface in a capillary pumped loop. International Journal of Heat and Mass Transfer, 2012, 55, 1709-1715.	4.8	2
158	Operational characteristics of two biporous wicks used in loop heat pipe with flat evaporator. International Journal of Heat and Mass Transfer, 2012, 55, 2204-2207.	4.8	46
159	Effect of pore parameters on thermal conductivity of sintered LHP wicks. International Journal of Heat and Mass Transfer, 2012, 55, 2702-2706.	4.8	44
160	Recent developments of lightweight, high performance heat pipes. Applied Thermal Engineering, 2012, 33-34, 1-14.	6.0	120
161	3D-model for heat and mass transfer simulation in flat evaporator of copper-water loop heat pipe. Applied Thermal Engineering, 2012, 33-34, 124-134.	6.0	52
162	Experimental study of capillary pumped loop for integrated power in gravity field. Applied Thermal Engineering, 2012, 35, 166-176.	6.0	26
163	Anti-Gravity Loop-shaped heat pipe with graded pore-size wick. Applied Thermal Engineering, 2012, 36, 78-86.	6.0	31
164	Experimental analysis of pump-assisted and capillary-driven dual-evaporators two-phase cooling loop. Applied Thermal Engineering, 2012, 38, 133-142.	6.0	50
165	Experimental study on operating parameters of miniature loop heat pipe with flat evaporator. Applied Thermal Engineering, 2012, 40, 318-325.	6.0	31

#	Article	IF	CITATIONS
166	Thermal performance and capillary limit of a ceramic wick applied to LHP and CPL. Applied Thermal Engineering, 2012, 41, 92-103.	6.0	26
167	Experimental investigation of loop heat pipe with flat evaporator using biporous wick. Applied Thermal Engineering, 2012, 42, 34-40.	6.0	74
168	Three-dimensional simulation on heat transfer in the flat evaporator of miniature loop heat pipe. International Journal of Thermal Sciences, 2012, 54, 188-198.	4.9	28
169	An experimental investigation of liquid metal thermal joint. Energy Conversion and Management, 2012, 56, 152-156.	9.2	3
170	Gas Injection in a Liquid Saturated Porous Medium. Influence of Gas Pressurization and Liquid Films. Transport in Porous Media, 2012, 91, 153-171.	2.6	4
171	Experimental Investigation and Optimization of Heat Input and Coolant Velocity of Finned Twin U-Shaped Heat Pipe for CPU Cooling. Experimental Techniques, 2013, 37, 34-40.	1.5	14
172	Evaluation of capillary performance of sintered porous wicks for loop heat pipe. Experimental Thermal and Fluid Science, 2013, 50, 1-9.	2.7	96
173	A novel approach of manufacturing Nickel Wicks for loop heat pipes using Metal Injection Moulding (MIM). Sadhana - Academy Proceedings in Engineering Sciences, 2013, 38, 281-296.	1.3	4
174	Influence of nanofluid on heat transfer in a loop heat pipe. International Communications in Heat and Mass Transfer, 2013, 47, 82-91.	5.6	48
175	Transient responses of the flat evaporator loop heat pipe. International Journal of Heat and Mass Transfer, 2013, 57, 131-141.	4.8	22
176	Combined LHP and PHP based heat-transfer system. International Journal of Thermal Sciences, 2013, 74, 81-85.	4.9	3
177	Loop thermosyphon thermal management of the avionics of an in-flight entertainment system. Applied Thermal Engineering, 2013, 51, 764-769.	6.0	54
178	Visual and instrumental investigations of a copper–water loop heat pipe. International Journal of Heat and Mass Transfer, 2013, 61, 35-40.	4.8	20
179	Micromembrane-enhanced capillary evaporation. International Journal of Heat and Mass Transfer, 2013, 64, 1101-1108.	4.8	95
180	Effect of component layout on the operation of a miniature cryogenic loop heat pipe. International Journal of Heat and Mass Transfer, 2013, 60, 61-68.	4.8	16
181	Study of the heat transport capacity of a novel gravitational loop heat pipe. International Journal of Low-Carbon Technologies, 2013, 8, 210-223.	2.6	13
182	Effect of inventory on the heat performance of copper–water loop heat pipe. Experimental Thermal and Fluid Science, 2013, 44, 875-882.	2.7	14
183	Operating characteristics of a loop heat pipe-based isothermal region generator. International Journal of Heat and Mass Transfer, 2013, 65, 460-470.	4.8	17

#	Article	IF	CITATIONS
184	Application Areas – the Built Environment, Electronics, and the Home. , 2013, , 393-435.		0
185	Steady-state modeling of Capillary Pumped Loop in gravity field. International Journal of Thermal Sciences, 2013, 64, 62-80.	4.9	14
186	Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP. International Journal of Heat and Mass Transfer, 2013, 63, 454-462.	4.8	18
187	Interface engineering to enhance thermal contact conductance of evaporators in miniature loop heat pipe systems. Applied Thermal Engineering, 2013, 60, 371-378.	6.0	33
188	A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips. Applied Thermal Engineering, 2013, 56, 18-26.	6.0	109
189	Fractal Loop Heat Pipe performance testing with a compressed carbon foam wick structure. Applied Thermal Engineering, 2013, 59, 290-297.	6.0	20
190	The design and simulation of a new spent fuel pool passive cooling system. Annals of Nuclear Energy, 2013, 58, 124-131.	1.8	73
191	Analysis of heat exchange in the compensation chamber of a loop heat pipe. Energy, 2013, 55, 253-262.	8.8	25
192	Modeling and simulation of transpiration cooling with phase change. Applied Thermal Engineering, 2013, 58, 173-180.	6.0	46
193	Development of biporous Ti3AlC2 ceramic wicks for loop heat pipe. Materials Letters, 2013, 91, 121-124.	2.6	23
194	A Flow Visualization Study on the Temperature Oscillations Inside a Loop Heat Pipe With Flat Evaporator. , 2013, , .		2
195	Optimal Design of Cooling Device for High Power LED Headlamp. Advanced Materials Research, 2013, 834-836, 1648-1653.	0.3	0
196	Study of physical characteristics of nickel wicks developed by metal injection moulding. Powder Metallurgy, 2013, 56, 221-230.	1.7	6
197	Effect of Increasing Wick Evaporation Area on Heat Transfer Performance for Loop Heat Pipes. Advanced Materials Research, 2013, 711, 223-228.	0.3	2
198	Transient Thermo-Fluid Modeling of Loop Heat Pipes and Experimental Validation. Journal of Thermophysics and Heat Transfer, 2013, 27, 641-647.	1.6	26
199	Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device. Applied Physics Letters, 2013, 103, 163102.	3.3	6
200	Integration of a Multiple-Condenser Loop Heat Pipe in a Compact Air-Cooled Heat Sink. , 2013, , .		0
201	Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	9

#	Article	IF	CITATIONS
202	Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and fluid charging approach. Journal of Micromechanics and Microengineering, 2014, 24, 035021.	2.6	3
203	Effect of Sintering Temperature and Time in Nickel Wick for Loop Heat Pipe with Flat Evaporator. Applied Mechanics and Materials, 0, 602-605, 528-532.	0.2	0
204	Development and Characterization of an Air-Cooled Loop Heat Pipe With a Wick in the Condenser. Journal of Thermal Science and Engineering Applications, 2014, 6, .	1.5	6
205	Fractal Loop Heat Pipe Performance Comparisons of a Soda Lime Glass and Compressed Carbon Foam Wick. , 2014, , .		0
206	A review of heat pipe with nanofluid for electronic cooling. , 2014, , .		6
207	Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks. International Journal of Heat and Mass Transfer, 2014, 72, 378-387.	4.8	47
208	An experimental study on the performance of a stainless steel-water loop heat pipe under natural cooling condition. Journal of Thermal Science, 2014, 23, 91-95.	1.9	8
209	Review: Loop heat pipes with flat evaporators. Applied Thermal Engineering, 2014, 67, 294-307.	6.0	155
210	Thermal performance of biomaterial wick loop heat pipes with water-base Al2O3 nanofluids. International Journal of Thermal Sciences, 2014, 76, 128-136.	4.9	51
211	Analysis of superheated loop heat pipes exploiting nanoporous wick membranes. AICHE Journal, 2014, 60, 762-777.	3.6	9
212	Effects of non condensable gas in an ammonia loop heat pipe operating up to 125°C. Applied Thermal Engineering, 2014, 66, 474-484.	6.0	23
213	Experimental study of the loop heat pipe with a flat disk-shaped evaporator. Experimental Thermal and Fluid Science, 2014, 57, 157-164.	2.7	70
214	Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction. Applied Thermal Engineering, 2014, 65, 623-632.	6.0	13
215	Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system. Applied Energy, 2014, 114, 335-352.	10.1	102
216	Capillary evaporator development and qualification for loop heat pipes. Applied Thermal Engineering, 2014, 63, 406-418.	6.0	21
217	Theoretical analysis of steady-state performance of a loop heat pipe with a novel evaporator. Applied Thermal Engineering, 2014, 64, 233-241.	6.0	26
218	Effect of non-condensable gas on the operation of a loop heat pipe. International Journal of Heat and Mass Transfer, 2014, 70, 449-462.	4.8	27
220	Special types of heat pipe. , 2014, , 135-173.		1

IF ARTICLE CITATIONS # Cooling of electronic components., 2014, , 207-225. 221 1 Double-Loop Thermosyphon for Electric Components Cooling. IEEE Transactions on Components, 2.5 9 Packaging and Manufacturing Technology, 2014, 4, 223-231 Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating 223 10.1 67 system in three different climatic regions. Applied Energy, 2014, 135, 20-34. Investigation of thermal characteristics of high-capacity loop heat pipes after a long-term storage. 224 Energy, 2014, 74, 804-809. Experimental study on a novel loop heat pipe with both flat evaporator and boiling pool. 225 4.8 20 International Journal of Heat and Mass Transfer, 2014, 79, 54-63. Long-distance loop heat pipe for effective utilization of energy. International Journal of Heat and Mass Transfer, 2014, 77, 777-784. 4.8 56 Flat Loop Heat Pipe with Bi-Transport Loops for Graphics Card Cooling. Heat Transfer Engineering, 227 1.9 6 2014, 35, 1071-1076. Effect of the number of grooves on a wick's surface on the heat transfer performance of loop heat 228 6.0 pipe. Applied Thermal Engineering, 2014, 71, 371-377. Ground and microgravity results of a circumferentially microgrooved capillary evaporator. Applied 229 6.0 1 Thermal Engineering, 2014, 71, 169-174. Low temperature sintering of copper biporous wicks with improved maximum capillary pressure. 2.6 Materials Letters, 2014, 132, 349-352. Experimental investigation of pump-assisted capillary phase change loop. Applied Thermal Engineering, 231 6.0 23 2014, 71, 581-588. A review on loop heat pipe for use in solar water heating. Energy and Buildings, 2014, 79, 143-154. Heat storage and electricity generation in the Moon during the lunar night. Acta Astronautica, 2014, 233 3.2 27 93, 352-358. Effect of evaporator tilt on the operating temperature of a loop heat pipe without a secondary wick. International Journal of Heat and Mass Transfer, 2014, 77, 600-603. 234 4.8 235 Experimental study on the secondary evaporator of a cryogenic loop heat pipe., 2014,,. 1 Experimental Investigation on Boiling Phenomena of Bi-Layer Composite Porous Wicks Textured With Nano-Porous Layer. , 2014, , . A tree-on-a-chip: design and analysis of MEMS-based superheated loop heat pipes exploiting nanoporous 237 0.4 1 silicon membranes. Journal of Physics: Conference Series, 2014, 557, 012067. Study on internal flow characteristics of multiple evaporators loop heat pipe (Visualization in) Tj ETQq1 1 0.784314 rgBT /Overlock 10 238 0.215-00104-15-00104.

#	Article	IF	CITATIONS
239	Mathematical modeling of multiple evaporators/condensers loop heat pipe operation with flow regulator under various operating conditions. Journal of Thermal Science and Technology, 2015, 10, JTST0021-JTST0021.	1.1	11
240	Hot Spot Elimination by Thin and Smart Heat Spreader. , 2015, , .		2
241	Hybrid numerical methods combining discretized multidimensional and segmented-quasi-one-dimensional models for simulating thermofluid systems. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1404-1425.	2.8	6
242	Realization of tin freezing point using a loop heat pipe-based hydraulic temperature control technique. Metrologia, 2015, 52, 694-707.	1.2	11
243	Operational characteristics of a loop heat pipe with a flat evaporator and two primary biporous wicks. International Journal of Heat and Mass Transfer, 2015, 89, 33-41.	4.8	50
244	Electrowetting Heat Pipes for Heat Transport Over Extended Distances. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1441-1450.	2.5	14
245	Complete analytical model of a loop heat pipe with a flat evaporator. International Journal of Thermal Sciences, 2015, 89, 372-386.	4.9	27
246	Comparative study of a novel liquid–vapour separator incorporated gravitational loop heat pipe against the conventional gravitational straight and loop heat pipes – Part II: Experimental testing and simulation model validation. Energy Conversion and Management, 2015, 93, 228-238.	9.2	12
247	Effect of working fluid on heat transfer performance of the anti-gravity loop-shaped heat pipe. Applied Thermal Engineering, 2015, 88, 391-397.	6.0	11
248	Formation of unsaturated regions in the porous wick of a capillary evaporator. International Journal of Heat and Mass Transfer, 2015, 89, 588-595.	4.8	25
249	Experimental study of a Capillary Pumped Loop for cooling power electronics: Response to high amplitude heat load steps. Applied Thermal Engineering, 2015, 89, 169-179.	6.0	20
250	Development of cryogenic loop heat pipes: A review and comparative analysis. Applied Thermal Engineering, 2015, 89, 180-191.	6.0	42
251	Experimental investigation on the sintered wick of the anti-gravity loop-shaped heat pipe. Experimental Thermal and Fluid Science, 2015, 68, 689-696.	2.7	28
252	Experimental study on loop heat pipe with two-wick flat evaporator. International Journal of Thermal Sciences, 2015, 94, 9-17.	4.9	31
253	Experimental investigation on the operating characteristics of a dual compensation chamber loop heat pipe subjected to acceleration field. Applied Thermal Engineering, 2015, 81, 297-312.	6.0	25
254	Hydraulic operating temperature control of a loop heat pipe. International Journal of Heat and Mass Transfer, 2015, 86, 796-808.	4.8	23
255	Wire-plate and sintered hybrid heat pipes: Model and experiments. International Journal of Thermal Sciences, 2015, 93, 36-51.	4.9	14
256	Manufacture of a biporous nickel wick and its effect on LHP heat transfer performance enhancement. Heat and Mass Transfer, 2015, 51, 1549-1558.	2.1	17

		CITATION REPORT		
#	Article		IF	Citations
257	Adsorption-based antifreeze system for loop heat pipes. Applied Thermal Engineering, 2	2015, 78, 704-711.	6.0	8
258	Operational performance of a novel heat pump assisted solar façade loop-heat-pipe w system. Applied Energy, 2015, 146, 371-382.	ater heating	10.1	60
259	Steady-state modeling and analysis of a loop heat pipe under gravity-assisted operatior Thermal Engineering, 2015, 83, 88-97.	1. Applied	6.0	26
260	Three dimensional liquid and vapour distribution in the wick of capillary evaporators. In Journal of Heat and Mass Transfer, 2015, 83, 636-651.	ternational	4.8	54
261	Micro loop heat pipe for mobile electronics applications. , 2015, , .			19
262	A thermoelectric generator using loop heat pipe and design match for maximum-power Applied Thermal Engineering, 2015, 91, 1082-1091.	r generation.	6.0	31
263	The early design stage for building renovation with a novel loop-heat-pipe based solar t (LHP-STF) heat pump water heating system: Techno-economic analysis in three Europea Energy Conversion and Management, 2015, 106, 964-986.		9.2	21
264	Performance investigation of a compact loop heat pipe with parallel condensers. Experi Thermal and Fluid Science, 2015, 62, 40-51.	imental	2.7	19
265	Comparative study of a novel liquid–vapour separator incorporated gravitational loo against the conventional gravitational straight and loop heat pipes – Part I: Conceptu and theoretical analyses. Energy Conversion and Management, 2015, 90, 409-426.	p heat pipe ual development	9.2	16
266	Literature review: Steady-state modelling of loop heat pipes. Applied Thermal Engineeri 709-723.	ng, 2015, 75,	6.0	69
267	Effect of external factors on the operating characteristics of a copper–water loop hea International Journal of Heat and Mass Transfer, 2015, 81, 297-304.	at pipe.	4.8	34
268	Thermal Performance of a Thin Loop Heat Pipe for Mobile Applications. Journal of Smart 2016, 5, 233-238.	t Processing,	0.1	0
269	Study on a loop heat pipe for a long-distance heat transport under anti-gravity conditio Thermal Engineering, 2016, 107, 167-174.	on. Applied	6.0	59
270	Pore Network Simulations of Heat and Mass Transfer inside an Unsaturated Capillary Pothe Dry-out Regime. Transport in Porous Media, 2016, 114, 623-648.	orous Wick in	2.6	14
271	Derivation and Validation of a Figure of Merit for Loop Heat Pipes With Medium Tempe Fluids. Journal of Heat Transfer, 2016, 138, .	rature Working	2.1	12
272	Experimental study on the supercritical startup of cryogenic loop heat pipes with redur Energy Conversion and Management, 2016, 118, 353-363.	ndancy design.	9.2	26
273	Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transp Heat Pipes for aeronautics. Experimental Thermal and Fluid Science, 2016, 78, 147-152	ort in Loop 2.	2.7	11
274	Numerical simulation of heat and mass transfer in bidispersed capillary structures: Appl evaporator of a loop heat pipe. Applied Thermal Engineering, 2016, 102, 770-784.	ication to the	6.0	32

#	Article	IF	CITATIONS
275	Experimental analysis of a capillary pumped loop for terrestrial applications with several evaporators in parallel. Applied Thermal Engineering, 2016, 93, 1304-1312.	6.0	9
276	Transient characteristics of a loop heat pipe-based hydraulic temperature control technique. International Journal of Heat and Mass Transfer, 2016, 103, 125-132.	4.8	9
277	Loop thermosiphon as a feasible cooling method for the stators of gas turbine. Applied Thermal Engineering, 2016, 109, 449-453.	6.0	16
278	An ultra-thin miniature loop heat pipe cooler for mobile electronics. Applied Thermal Engineering, 2016, 109, 514-523.	6.0	83
279	Thermal performance of loop heat pipe with porous copper fiber sintered sheet as wick structure. Applied Thermal Engineering, 2016, 108, 251-260.	6.0	47
280	Experimental study of an ammonia loop heat pipe with a flat plate evaporator. International Journal of Heat and Mass Transfer, 2016, 102, 1050-1055.	4.8	45
281	Visual investigation on startup characteristics of a novel loop heat pipe. Applied Thermal Engineering, 2016, 105, 198-208.	6.0	16
282	Design and Verification Experiment of Small Loop Heat Pipe with Two Evaporators and Two Condensers Part Іï¼Under Atmospheric Condition. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pi_33-Pi_38.	0.2	0
283	Investigation of the flat disk-shaped LHP with a shared compensation chamber. Applied Thermal Engineering, 2016, 104, 139-145.	6.0	20
284	Effect of filling ratio on the performance of a novel miniature loop heat pipe having different diameter transport lines. Applied Thermal Engineering, 2016, 106, 588-600.	6.0	52
285	Development and tests of loop heat pipe with multi-layer metal foams as wick structure. Applied Thermal Engineering, 2016, 94, 324-330.	6.0	53
286	Simulation of steady-state operation of an ejector-assisted loop heat pipe with a flat evaporator for application in electronic cooling. Applied Thermal Engineering, 2016, 95, 236-246.	6.0	24
287	Experimental research on thermal characteristics of loop heat pipe with liquid guiding holes. Applied Thermal Engineering, 2016, 101, 231-238.	6.0	12
288	Optimizing the design for a two-phase cooling loop heat pipe. Applied Thermal Engineering, 2016, 99, 892-904.	6.0	25
289	Review of heat pipe heat exchangers for enhanced dehumidification and cooling in air conditioning systems. International Journal of Low-Carbon Technologies, 2016, 11, 416-423.	2.6	24
290	The decoupling and synergy strategy to construct multiscales from nano to millimeter for heat pipe. International Journal of Heat and Mass Transfer, 2016, 93, 918-933.	4.8	12
291	A review of small heat pipes for electronics. Applied Thermal Engineering, 2016, 96, 1-17.	6.0	224
292	LHP heat transfer performance: A comparison study about sintered copper powder wick and copper mesh wick. Applied Thermal Engineering, 2016, 92, 104-110.	6.0	47

#	Article	IF	CITATIONS
293	Thermofluid Characteristics in Microporous Structure With Different Flow Channels for Loop Heat Pipe. Heat Transfer Engineering, 2016, 37, 947-955.	1.9	7
294	Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe. International Journal of Heat and Mass Transfer, 2016, 92, 1026-1033.	4.8	12
295	Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe. Energy Conversion and Management, 2017, 134, 178-187.	9.2	24
296	Heat Pipes for Aerospace Application. , 2017, , 117-144.		9
297	Simplified Mathematical Model of a novel †̃Closed Loop Two-Phase Wicked Thermosyphon (CLTPWT)'. International Journal of Thermal Sciences, 2017, 114, 281-295.	4.9	4
298	Experimental study of heat transfer and start-up of loop heat pipe with multiscale porous wicks. Applied Thermal Engineering, 2017, 117, 782-798.	6.0	55
299	Capillary-driven low grade heat desalination. Desalination, 2017, 410, 10-18.	8.2	15
300	Heats pipes for temperature homogenization: A literature review. Applied Thermal Engineering, 2017, 118, 490-509.	6.0	46
301	Experimental study on the thermal performance of loop heat pipe for the aircraft anti-icing system. International Journal of Heat and Mass Transfer, 2017, 111, 795-803.	4.8	41
302	Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices. Heat and Mass Transfer, 2017, 53, 3241-3247.	2.1	49
303	Comparative Study on Thermal Performance of Ultrathin Miniature Loop Heat Pipes With Different Internal Wicks. Journal of Heat Transfer, 2017, 139, .	2.1	9
304	Operation characteristics of a new-type loop heat pipe (LHP) with wick separated from heating surface in the evaporator. Applied Thermal Engineering, 2017, 123, 1034-1041.	6.0	19
305	Startup characteristics of pump-assisted capillary phase change loop. Applied Thermal Engineering, 2017, 126, 1115-1125.	6.0	15
306	Numerical analysis on heat transfer of a complete anti-gravity loop-shaped heat pipe. International Journal of Heat and Mass Transfer, 2017, 109, 824-834.	4.8	10
307	Experimental research on the heat performance of a flat copper-water loop heat pipe with different inventories. Experimental Thermal and Fluid Science, 2017, 84, 110-119.	2.7	18
308	Mathematical Modeling of Novel Two-Phase Heat Transfer Device for Thermal Management of Light Emitting Diodes. Journal of Heat Transfer, 2017, 139, .	2.1	4
309	Low-cost manufacturing of loop heat pipe for commercial applications. Applied Thermal Engineering, 2017, 126, 1091-1097.	6.0	17
310	Enhancement of boiling heat transfer under sub-atmospheric pressures using biphilic surfaces. International Journal of Heat and Mass Transfer, 2017, 115, 753-762.	4.8	37

#	Article	IF	CITATIONS
311	Investigation of PCM-assisted heat pipe for electronic cooling. Applied Thermal Engineering, 2017, 127, 1132-1142.	6.0	145
312	The first ammonia loop heat pipe: Long-life operation test. International Journal of Heat and Mass Transfer, 2017, 115, 1085-1091.	4.8	7
313	An experimental study of loop heat pipes with steam jet pump. International Journal of Heat and Mass Transfer, 2017, 115, 137-142.	4.8	11
314	Experimental study of an ammonia loop heat pipe with a flat disk-shaped evaporator using a bimetal wall. Applied Thermal Engineering, 2017, 126, 643-652.	6.0	32
315	Capillary Pumped Loop as a Tool for Collecting Large Heat Fluxes from Electronic Devices On Warships. Polish Maritime Research, 2017, 24, 72-80.	1.9	2
316	Heat pipes with variable thermal conductance property for space applications. Journal of Mechanical Science and Technology, 2017, 31, 2613-2620.	1.5	9
317	Development and on-orbit operation of loop heat pipes on chinese circumlunar return and reentry spacecraft. Journal of Mechanical Science and Technology, 2017, 31, 2597-2605.	1.5	9
318	Effect of liquid filtration in a wick on thermal processes in a flat disk-shaped evaporator of a loop heat pipe. International Journal of Heat and Mass Transfer, 2017, 106, 222-231.	4.8	22
319	Design and testing of an ammonia loop heat pipe. Applied Thermal Engineering, 2017, 111, 1655-1663.	6.0	21
320	Effect of non-condensable gas on the startup of a loop heat pipe. Applied Thermal Engineering, 2017, 111, 1507-1516.	6.0	30
321	Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: Thermodynamics model and experimental study. International Journal of Heat and Mass Transfer, 2017, 106, 407-421.	4.8	49
322	Investigation on the effect of thermoelectric cooler on LHP operation with non-condensable gas. Applied Thermal Engineering, 2017, 110, 1189-1199.	6.0	13
323	Biomorphous Silicon Carbide as Novel Loop Heat Pipe Wicks. Advanced Engineering Materials, 2017, 19, 1600379.	3.5	9
324	Design and performance of a mechanically pumped two-phase loop to support the evaporation-condensation experiments on the TZ1. Case Studies in Thermal Engineering, 2017, 10, 650-655.	5.7	15
325	Nickel-ammonia loop heat pipe based on the molten salt pore forming startup and heat transfer failure characteristics of experimental study. Procedia Engineering, 2017, 205, 3938-3945.	1.2	3
326	Effect of wettability of a porous stainless steel on thermally induced liquid–vapor interface behavior. Surface Topography: Metrology and Properties, 2017, 5, 044006.	1.6	3
327	A Thermal Bus for Vehicle Cooling Applications - Design and Analysis. SAE International Journal of Commercial Vehicles, 0, 10, 122-131.	0.4	8
328	A New Model and its Application to Investigate Transpiration Cooling with Liquid Coolant Phase Change. Transport in Porous Media, 2018, 122, 575-593.	2.6	10

#	Article	IF	CITATIONS
329	Investigation of the thermal performance of a novel flat heat pipe sink with multiple heat sources. International Communications in Heat and Mass Transfer, 2018, 94, 71-76.	5.6	21
330	Development of composite wicks having different thermal conductivities for loop heat pipes. Applied Thermal Engineering, 2018, 136, 229-236.	6.0	26
331	Determination of the liquidus temperature of tin using the heat pulse-based melting and comparison with traditional methods. Metrologia, 2018, 55, 334-349.	1.2	8
332	Experimental study on pore structure and performance of sintered porous wick. Materials Research Express, 2018, 5, 026506.	1.6	6
333	Numerical Analysis of the Impact of Nanofluids and Vapor Grooves Design on the Performance of Capillary Evaporators. Transport in Porous Media, 2018, 122, 401-419.	2.6	4
334	Influence of Sintering Process on the Properties of Porous Ti2AlC. , 2018, , 163-170.		Ο
335	Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide. Applied Thermal Engineering, 2018, 128, 1605-1610.	6.0	26
336	Experimental investigation on transient characteristics of a dual compensation chamber loop heat pipe subjected to acceleration forces. Applied Thermal Engineering, 2018, 130, 169-184.	6.0	19
337	Thermal-fluidic transport characteristics of bi-porous wicks for potential loop heat pipe systems. Experimental Thermal and Fluid Science, 2018, 94, 355-367.	2.7	32
338	Two-phase flow characteristics of a high performance loop heat pipe with flat evaporator under gravity. International Journal of Heat and Mass Transfer, 2018, 117, 1063-1074.	4.8	36
339	Miniature ammonia loop heat pipe for terrestrial applications: Experiments and modeling. International Journal of Thermal Sciences, 2018, 124, 263-278.	4.9	41
340	Development and investigation of a loop heat pipe with a high heat-transfer capacity. Applied Thermal Engineering, 2018, 130, 1052-1061.	6.0	58
341	Porous Structures in Heat Pipes. , 0, , .		6
342	Model-Based Heater Control Design for Loop Heat Pipes. , 2018, , .		3
343	Applications of Microfluidic Devices for Electronics Thermal Management. , 2018, , .		1
344	Thermal design of a novel heat sink cooled by natural convection with phase transition in the series loop. Science China Technological Sciences, 2018, 61, 1732-1744.	4.0	7
345	Case study on solar water heating for flat plate collector. Case Studies in Thermal Engineering, 2018, 12, 666-671.	5.7	46
346	Experimental studies on a miniature loop heat pipe with flat evaporator with various working fluids. Applied Thermal Engineering, 2018, 144, 495-503.	6.0	43

#	Article	IF	CITATIONS
347	Solar Water Heaters. , 2018, , 111-125.		5
348	Thermal Management of Electronic Devices Using Combined Effects of Nanoparticle Coating and Graphene–Water Nanofluid in a Miniature Loop Heat Pipe. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1241-1253.	2.5	14
349	Experimental and analytical study of thermohydraulic performance of a novel loop heat pipe with an innovative active temperature control method. Applied Thermal Engineering, 2018, 143, 964-976.	6.0	2
350	Integrated Mechanical, Thermal, Data, and Power Transfer Interfaces for Future Space Robotics. Frontiers in Robotics and Al, 2018, 5, 64.	3.2	4
351	A review of thermal performance in multiple evaporators loop heat pipe. Applied Thermal Engineering, 2018, 143, 209-224.	6.0	39
352	Experimental study of the liquid/vapor phase change in a porous media of two-phase heat transfer devices. Applied Thermal Engineering, 2018, 143, 275-282.	6.0	18
353	A Hybrid Thermal Bus for Ground Vehicles Featuring Parallel Heat Transfer Pathways. SAE International Journal of Commercial Vehicles, 0, 11, .	0.4	3
354	Enhancement of loop heat pipe performance with the application of micro/nano hybrid structures. International Journal of Heat and Mass Transfer, 2018, 127, 1248-1263.	4.8	14
355	Effect of fabrication parameters on capillary pumping performance of multi-scale composite porous wicks for loop heat pipe. Applied Thermal Engineering, 2018, 143, 621-629.	6.0	36
356	Heat Pipes and Thermosyphons. , 2018, , 2163-2211.		6
357	A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors. Sensors, 2018, 18, 299.	3.8	12
358	An investigation on optimal external cooling condition for an ultra-thin loop thermosyphon-based thermal management system. Energy Conversion and Management, 2018, 172, 328-342.	9.2	15
359	Solid State Foaming of Nickel, Monel, and Copper by the Reduction and Expansion of NiO and CuO Dispersions. Advanced Engineering Materials, 2018, 20, 1800302.	3.5	6
360	Heat transfer characteristics of a natural circulation separate heat pipe under various operating conditions. International Journal of Heat and Mass Transfer, 2018, 126, 191-200.	4.8	24
361	Low-grade waste heat driven desalination with an open loop heat pipe. Energy, 2018, 163, 221-228.	8.8	28
362	Variational surface cutting. ACM Transactions on Graphics, 2018, 37, 1-13.	7.2	35
363	The results of comparative analysis and tests of ammonia loop heat pipes with cylindrical and flat evaporators. Applied Thermal Engineering, 2018, 144, 479-487.	6.0	20
364	Development and tests of a loop heat pipe with several separate heat sources. Applied Thermal Engineering, 2018, 144, 165-169.	6.0	12

#	Article	IF	CITATIONS
365	Experimental investigation of loop heat pipe with a large squared evaporator for cooling electronics. Applied Thermal Engineering, 2018, 144, 383-391.	6.0	36
366	A Loop Thermosyphon With Hydrophobic Spots Evaporator Surface. , 2018, , .		0
367	Lumped parameter network simulation of a Loop Heat Pipe for energy management systems in full electric vehicles. Applied Thermal Engineering, 2018, 141, 617-629.	6.0	26
368	Thermal analysis of a conceptual loop heat pipe for solar central receivers. Energy, 2018, 158, 709-718.	8.8	31
369	High-efficiency cooling system for highly integrated power electronics for hybrid propulsion aircraft. , 2019, , .		4
370	A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation. Energies, 2019, 12, 2403.	3.1	2
371	A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part l—Modeling and Simulation. Energies, 2019, 12, 2408.	3.1	6
372	An experimental study on thermal management of concentrated photovoltaic cell using loop heat pipe and heat sink. Heat Transfer - Asian Research, 2019, 48, 2456-2477.	2.8	14
373	Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation. Green Energy and Technology, 2019, , .	0.6	7
374	Heat Pipe and Loop Heat Pipe Technologies and Their Applications in Solar Systems. Green Energy and Technology, 2019, , 79-100.	0.6	1
375	Research on the Heat Transfer Characteristics of a Loop Heat Pipe Used as Mainline Heat Transfer Mode for Spacecraft. Journal of Thermal Science, 2019, 28, 736-744.	1.9	23
376	Heat Pump Technologies and Their Applications in Solar Systems. Green Energy and Technology, 2019, , 311-339.	0.6	1
377	Effect of Sink Temperature on the Stability of the Pressure-Controlled Loop Heat Pipe. Journal of Heat Transfer, 2019, 141, .	2.1	4
378	Characterization of capillary pumping amount in novel sintered zeolites and hybrid zeolite-Cu for heat pipe applications. International Journal of Heat and Mass Transfer, 2019, 145, 118759.	4.8	4
379	Heat transfer performance of cylindrical heat pipes with axially graded wick at anti-gravity orientations. Applied Thermal Engineering, 2019, 163, 114413.	6.0	9
380	Three-Year Performance Test of a Dual Compensation Chamber Loop Heat Pipe. , 2019, , .		0
381	Review of recent developments on pump-assisted two-phase flow cooling technology. Applied Thermal Engineering, 2019, 150, 811-823.	6.0	33
382	Numerical study of temperature oscillation in loop heat pipe. Applied Thermal Engineering, 2019, 163, 114281.	6.0	14

ARTICLE IF CITATIONS # Experimental investigation on the effect of heat sink temperature on operational characteristics of a 383 1.8 5 new-type loop heat pipe. Energy Procedia, 2019, 158, 2423-2429. Experimental study on an acetone-charged loop heat pipe with a nickel wick. International Journal of 384 Thermal Sciences, 2019, 146, 106104. Is a non-phase change heat pipe a new heat pipe?. International Journal of Heat and Mass Transfer, 2019, 385 4.8 8 145, 118676. Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced 386 8.9 with heat pipe. Renewable Energy, 2019, 138, 378-394. Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface. International 387 4.8 35 Journal of Heat and Mass Transfer, 2019, 131, 1-10. 388 A novel energy pile: The thermo-syphon helical pile. Applied Thermal Engineering, 2019, 159, 113882. 6.0 Effect of different charge ratios on transient performance of a flat type of the LHP with a shared 389 4.8 9 compensation chamber. International Journal of Heat and Mass Transfer, 2019, 138, 1075-1081. An experimental study on the heat transfer performance of a loop heat pipe system with ethanol-water mixture as working fluid for aircraft anti-icing. International Journal of Heat and 4.8 57 Mass Transfer, 2019, 139, 280-292. Effect of surface properties of capillary structures on the thermal behaviour of a LHP flat 391 4.9 2 disk-shaped evaporator. International Journal of Thermal Sciences, 2019, 142, 163-175. Experimental investigation of a vapour chamber heat spreader with hybrid wick structure. International Journal of Thermal Sciences, 2019, 140, 28-35. Effect of self-rewetting fluids on the liquid/vapor phase change in a porous media of two-phase heat 393 17 4.8 transfer devices. International Journal of Heat and Mass Transfer, 2019, 136, 655-663. Supercritical startup strategy of cryogenic loop heat pipe with different working fluids. Applied Thermal Engineering, 2019, 155, 267-276. 394 6.0 Quiet power-free cooling system enabled by loop heat pipe. Applied Thermal Engineering, 2019, 155, 14-23. 395 6.0 17 Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces. 14.6 190 ACS Nano, 2019, 13, 4160-4173. Evaporation heat transfer characteristics of composite porous wick with spherical-dendritic 397 6.0 17 powders. Applied Thermal Engineering, 2019, 152, 825-834. Visualization study of a loop heat pipe with two evaporators and one condenser under gravity-assisted condition. International Journal of Heat and Mass Transfer, 2019, 135, 378-391. Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe 399 10.1 84 cooling module. Applied Energy, 2019, 239, 859-875. The Recent Research of Loop HeatÂPipe., 2019, , .

#	Article	IF	CITATIONS
401	Study of a Novel Liquid-Vapour Separator-Incorporated Gravitational Loop Heat Pipe. , 0, , .		0
402	Development and Study of a Loop Heat Pipe with Several Heat Sources of Different Power. High Temperature, 2019, 57, 700-706.	1.0	2
403	A new way of supercritical startup of a cryogenic loop heat pipe. International Journal of Heat and Mass Transfer, 2019, 145, 118793.	4.8	11
404	Nonlinear Model Identification Adaptive Heater Control Design for Loop Heat Pipes. , 2019, , .		2
405	Study of copper chemical-plating modified polyacrylonitrile-based carbon fiber wick applied to compact loop heat pipe. Experimental Thermal and Fluid Science, 2019, 100, 104-113.	2.7	32
406	Heat transfer characteristics of a concentric annular high temperature heat pipe under anti-gravity conditions. Applied Thermal Engineering, 2019, 148, 817-824.	6.0	27
407	Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method. Journal of Materials Processing Technology, 2019, 264, 182-189.	6.3	38
408	One-dimensional numerical study for loop heat pipe with two-phase heat leak model. International Journal of Thermal Sciences, 2019, 137, 467-481.	4.9	24
409	Steady-state analysis of a Capillary Pumped Loop for Terrestrial Application with methanol and ethanol as working fluids. International Journal of Thermal Sciences, 2019, 137, 571-583.	4.9	15
410	State of the art review of conventional and anti-gravity thermosyphons: Focus on two working fluids. International Journal of Thermal Sciences, 2019, 136, 491-508.	4.9	9
411	Simulation of heat and mass transfer in a cylindrical evaporator of a loop heat pipe. International Journal of Heat and Mass Transfer, 2019, 131, 442-449.	4.8	18
412	A lean approach of modeling the transient thermal characteristics of Loop Heat Pipes based on experimental investigations. Applied Thermal Engineering, 2019, 147, 895-907.	6.0	6
413	Performance comparison regarding loop heat pipes with different evaporator structures. International Journal of Thermal Sciences, 2019, 136, 86-95.	4.9	8
414	Effect of evaporator tilt on a loop heat pipe with non-condensable gas. International Journal of Heat and Mass Transfer, 2019, 128, 1072-1080.	4.8	25
415	Performance optimization and benefit analyses of a photovoltaic loop heat pipe/solar assisted heat pump water heating system. Renewable Energy, 2019, 134, 1240-1247.	8.9	33
416	Visualization study on the heat and mass transfer in the evaporator-compensation chamber of a loop heat pipe. Applied Thermal Engineering, 2020, 164, 114472.	6.0	32
417	Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model. Energy, 2020, 190, 116338.	8.8	40
418	Experimental study on transient performance of the loop heat pipe with a pouring porous wick. Applied Thermal Engineering, 2020, 164, 114450.	6.0	17

#	Article	IF	CITATIONS
419	Comparative study of two loop heat pipes using R134a as the working fluid. Applied Thermal Engineering, 2020, 164, 114459.	6.0	19
420	Experimental investigation of loop heat pipe with a large squared evaporator for multi-heat sources cooling. Renewable Energy, 2020, 147, 239-248.	8.9	30
421	Experimental investigation on performances and characteristics of nitrogen-charged cryogenic loop heat pipe with wick-mounted condenser. Cryogenics, 2020, 105, 102970.	1.7	14
422	Experimental study on hydraulic and thermal characteristics of composite porous wick with spherical–dendritic powders. Journal of Thermal Analysis and Calorimetry, 2020, 141, 107-117.	3.6	5
423	Volatile compounds of Chinese Luzhou flavoured liquor distilled from grains fermented in 100 to 300 year-old cellars. Journal of the Institute of Brewing, 2020, 126, 116-130.	2.3	7
424	Experimental study and steady-state model of a novel plate loop heat pipe without compensation chamber for CPU cooling. Sustainable Cities and Society, 2020, 53, 101894.	10.4	26
425	Operating characteristics of an anti-gravity loop heat pipe with a flat evaporator that has the capability of a loop thermosyphon. Energy Conversion and Management, 2020, 205, 112431.	9.2	29
426	Development and testing of the re-deployable radiator for deep space explorer. Applied Thermal Engineering, 2020, 165, 114586.	6.0	11
427	Overshoot elimination of the evaporator wall temperature of a loop heat pipe through a bypass line. Applied Thermal Engineering, 2020, 165, 114594.	6.0	8
428	Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics. Applied Thermal Engineering, 2020, 168, 114897.	6.0	26
429	Experimental study on thermal performance of a loop heat pipe with a bypass line. International Journal of Heat and Mass Transfer, 2020, 147, 118996.	4.8	14
430	Experimental investigation on operating behaviors of loop heat pipe with thermoelectric cooler under acceleration conditions. Chinese Journal of Aeronautics, 2020, 33, 852-860.	5.3	13
431	Investigation of thermal characteristics of a loop heat pipe in a wide range of external conditions. International Journal of Heat and Mass Transfer, 2020, 147, 118967.	4.8	29
432	Startup characteristics of a dual compensation chamber loop heat pipe with an extended bayonet tube. International Journal of Heat and Mass Transfer, 2020, 148, 119066.	4.8	11
433	Submillimeter-thick loop heat pipes fabricated using two-layer copper sheets for cooling electronic applications. Applied Thermal Engineering, 2020, 181, 116018.	6.0	15
434	Experimental investigation of the characteristics of thermosyphon with flat evaporator and micro-pillar arrays. International Journal of Thermal Sciences, 2020, 158, 106541.	4.9	5
435	Development of a loop heat pipe with the 3D printed stainless steel wick in the application of thermal management. International Journal of Heat and Mass Transfer, 2020, 161, 120258.	4.8	29
436	Experimental study on the transient behaviors of mechanically pumped two-phase loop with a novel accumulator for thermal control of space camera payload. Applied Thermal Engineering, 2020, 179, 115714.	6.0	26

#	Article	IF	CITATIONS
437	Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas. Applied Thermal Engineering, 2020, 180, 115711.	6.0	14
438	Feasibility of using multiport minichannel as thermosyphon for cooling of miniaturized electronic devices. Heat Transfer, 2020, 49, 4834-4856.	3.0	9
439	Loop Heat Pipes with a Steam Jet Pump. Journal of Engineering Physics and Thermophysics, 2020, 93, 700-709.	0.6	0
440	System Design of Small-scale Seawater Desalination Device. IOP Conference Series: Materials Science and Engineering, 2020, 711, 012054.	0.6	0
441	Experimental study on a dual compensation chamber loop heat pipe with dual bayonet tubes. Applied Thermal Engineering, 2020, 180, 115821.	6.0	12
442	Characterization of flat miniature loop heat pipe using water and methanol at different inclinations. Experimental Heat Transfer, 2020, , 1-23.	3.2	6
443	Condensation characteristics of a propylene loop heat pipe working in 193 K-283 K. , 2020, , .		0
444	A Novel Loop Heat Pipe Based Cooling System for Battery Packs in Electric Vehicles. , 2020, , .		3
445	Thermal Performance of Pump-assisted Loop Heat Pipe using R245fa as Working Fluid. , 2020, , .		1
446	An advanced thermal control technique for aircraft anti-icing/de-icing based on loop heat pipes. , 2020, , 337-366.		0
447	Extended Nonlinear Dynamical Modeling and State Estimation for the Temperature Control of Loop Heat Pipes. , 2020, , .		0
448	Fabrication and testing of a miniature flat evaporator loop heat pipe with polydimethylsiloxane and molding. Applied Thermal Engineering, 2020, 175, 115377.	6.0	14
449	Flat-evaporator-type loop heat pipe with hydrophilic polytetrafluoroethylene porous membranes. Physics of Fluids, 2020, 32, .	4.0	13
450	An experimental and theoretical analysis of vapor-to-liquid phase change on microstructured surfaces. Applied Thermal Engineering, 2020, 178, 115382.	6.0	0
451	Experimental study on operating characteristics of a dual compensation chamber loop heat pipe in periodic acceleration fields. Applied Thermal Engineering, 2020, 176, 115419.	6.0	7
452	A study on thermal performance of a pump-assisted loop heat pipe with ammonia as working fluid. Applied Thermal Engineering, 2020, 175, 115342.	6.0	33
453	Study on evaporation heat transfer performance of composite porous wicks with spherical-dendritic powders based on orthogonal experiment. International Journal of Heat and Mass Transfer, 2020, 156, 119794.	4.8	10
454	Numerical and experimental investigation of the steady-state performance characteristics of loop heat pipes. Applied Thermal Engineering, 2020, 181, 115577.	6.0	5

#	Article	IF	CITATIONS
455	Optimization of the sintering parameters of a biporous copper-nickel composite wick for loop heat pipes. Materials Today: Proceedings, 2021, 46, 9297-9302.	1.8	6
456	Experimental study of loop heat pipes with different working fluids in 190–260ÂK. Applied Thermal Engineering, 2020, 178, 115530.	6.0	8
457	Evaporation heat transfer characteristic of porous wick in an open capillary evaporator. International Journal of Thermal Sciences, 2020, 155, 106445.	4.9	9
458	Experimental and analytical study of dual compensation chamber loop heat pipe under acceleration force assisted condition. International Journal of Heat and Mass Transfer, 2020, 153, 119615.	4.8	10
459	Space-Based Advanced Thermal Conductance and Storage Technologies. , 2020, , 165-262.		0
460	Effect of the working fluid transportation in the copper composite wick on the evaporation efficiency of a flat loop heat pipe. Applied Thermal Engineering, 2020, 178, 115515.	6.0	17
461	Experimental study of heat transfer capacity for loop heat pipe with flat disk evaporator. Applied Thermal Engineering, 2020, 173, 115183.	6.0	22
462	Experimental observation of thermal behavior of a loop heat pipe with a bypass line under high heat flux. Energy, 2020, 197, 117241.	8.8	20
463	Preliminary design on high-end workstation cooling system using loop heat pipes. Thermal Science and Engineering Progress, 2020, 20, 100519.	2.7	8
464	Thermodynamic comparison of two novel combined systems based on solar loop heat pipe evaporator. Energy, 2020, 206, 118145.	8.8	14
465	A pulsating heat pipe embedded radiator: Thermal-vacuum characterisation in the pre-cryogenic temperature range for space applications. Thermal Science and Engineering Progress, 2020, 19, 100622.	2.7	9
466	Operating characteristics of a new ultra-thin loop heat pipe. International Journal of Heat and Mass Transfer, 2020, 151, 119436.	4.8	43
467	Metal oxide nanofluids in electronic cooling: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 4381-4398.	2.2	43
468	Numerical study on thermohydraulic behavior in compensation chamber of a loop heat pipe with flat evaporator. Applied Thermal Engineering, 2020, 171, 115073.	6.0	10
469	Ultra low pressure drop, high thermal performance evaporator: Experiments and analyses. Applied Thermal Engineering, 2020, 170, 114930.	6.0	0
470	Experimental study of a Capillary Pumped Loop assisted with a mechanical pump placed at the evaporator inlet. Applied Thermal Engineering, 2020, 169, 114850.	6.0	7
471	Application of bio-wick in compact loop heat pipe. Applied Thermal Engineering, 2020, 169, 114927.	6.0	27
472	Switchable Wettability for Condensation Heat Transfer. ACS Applied Materials & Interfaces, 2020, 12, 22115-22119.	8.0	18

#	Article	IF	CITATIONS
473	Design and production of high temperature heat pipe heat recovery units. Journal of Molecular Structure, 2020, 1212, 127927.	3.6	8
474	Development of a loop heat pipe with kW-class heat transport capability. Applied Thermal Engineering, 2021, 183, 116169.	6.0	23
475	Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment. Applied Thermal Engineering, 2021, 184, 116278.	6.0	19
476	Experimental study on operating characteristics of a cryogenic loop heat pipe without additional power consumption. Applied Thermal Engineering, 2021, 184, 116262.	6.0	8
477	Visualization study on the condensation in a propylene loop heat pipe operating at condenser temperatures between 153 and 283ÂK. Applied Thermal Engineering, 2021, 185, 116349.	6.0	11
478	Experimental investigation on the impact of pressure head of evaporation during the loop heat pipe operation. Applied Thermal Engineering, 2021, 185, 116455.	6.0	6
479	Experimental Evaluation of Performance Characteristics of a Horizontal Copper Mesh Wick-Based Miniature Loop Heat Pipe. Arabian Journal for Science and Engineering, 2021, 46, 2121-2132.	3.0	2
480	Experimental study of a novel loop heat pipe with a vapor-driven jet injector. International Journal of Heat and Mass Transfer, 2021, 164, 120518.	4.8	15
481	Application of biporous wick in flat-plate loop heat pipe with long heat transfer distance. Applied Thermal Engineering, 2021, 184, 116283.	6.0	30
	memul Engineering, 2021, 101, 110203.		
482	ĐšĐ¾Đ½ĐƊµĐ½ÑĐ°Ñ†Ñ–Đ¹Đ½Đ° Đ³ĐµĐ½ĐµÑ€Đ°Ñ†Ñ–Ñ•Ñ,Đ,ÑĐ°Ñƒ Đ² Đ»Ñ–Ñ,Ñ–Ñ"Đ²Đ,Ñ ĐºĐ¾Đ½	Ñ,ьй	∕2ĐỹÑ Ñ,еĐ
482 483		Ñ,ѣ؀й 0.1	∕2ĐợÑ Ñ,еĐ
	ĐšĐ¾Đ¼ĐĐµĐ½ÑĐ°Ñ†Ñ–Đ¹Đ½Đ° Đ³ĐµĐ½ĐµÑ€Đ°Ñ†Ñ–Ñ•Ñ,Đ,ÑĐ°Ñƒ Đ² Đ»Ñ–Ñ,Ñ–Ñ"Đ²Đ,Ñ ĐºĐ¾Đ½ Experimental Research on Instability of Phase-Change Heater in Thermal Power Plant. Mechanical		
483	ĐšĐ¾Đ¼2ĐĐµĐ½ÑĐ°Ñ†Ñ–Đ¹Đ½Đ° Đ³ĐµĐ½ĐµÑ€Đ°Ñ†Ñ–Ñ•Ñ,Đ,ÑĐ°Ñƒ Đ² Đ»Ñ–Ñ,Ñ–Ñ"Đ2Đ,Ñ ĐºĐ¾Đ½ Experimental Research on Instability of Phase-Change Heater in Thermal Power Plant. Mechanical Engineering and Technology, 2021, 10, 426-432. Performance Characteristics of the Metal Foam Wick Prepared by Magnetron Sputtering Method.	0.1	0
483 484	 ĐšĐ¾Đ¼ĐĐµĐ½ÑĐ°Ñ†Ñ–Đ¹Đ½Đ° Đ³ĐµĐ½ĐµÑ€Đ°Ñ†Ñ–Ñ•Ñ,Đ,ÑĐ°Ñƒ Đ² Đ»Ñ–Ñ,Ñ–Ñ"Đ²Đ,Ñ Đ°Đ¾Đ½ Experimental Research on Instability of Phase-Change Heater in Thermal Power Plant. Mechanical Engineering and Technology, 2021, 10, 426-432. Performance Characteristics of the Metal Foam Wick Prepared by Magnetron Sputtering Method. Journal of Thermophysics and Heat Transfer, 0, , 1-8. Development of a Miniature Loop Heat Pipe for High Heat Flux Devices and Evaluation of Its Heat 	0.1 1.6	0
483 484 485	DSD ¾ D¼ D¼ D ₪ D¼ N P N†N – D¹D¼ D° D³Dµ D¼ D № D°N†N – Ñ·N, D, ND°N f D² D » N – N, N – N, " D²D, N D°D¾ D¼ D¼ Experimental Research on Instability of Phase-Change Heater in Thermal Power Plant. Mechanical Engineering and Technology, 2021, 10, 426-432. Performance Characteristics of the Metal Foam Wick Prepared by Magnetron Sputtering Method. Journal of Thermophysics and Heat Transfer, 0, , 1-8. Development of a Miniature Loop Heat Pipe for High Heat Flux Devices and Evaluation of Its Heat Transport Performance. Japanese Journal of Multiphase Flow, 2021, 35, 150-158. Design of CCD thermal control system for SuperView satellite remote sensor and its start debugging	0.1 1.6 0.3	0 0 0
483 484 485 486	 ĐšĐ¾Đ¼ĐĐµĐ¼2ÑĐ°Ñ†Ň–Đ¹Đ½Đ° Đ³ĐµĐ½2ĐµŇ€Đ°Ň†Ň–Ñ•Ň,Đ,ÑĐ°Ňƒ Đ² лҖŇ,Ň–Ň"Đ²Đ,Ň Đ°Đ¾Đ¼2 Experimental Research on Instability of Phase-Change Heater in Thermal Power Plant. Mechanical Engineering and Technology, 2021, 10, 426-432. Performance Characteristics of the Metal Foam Wick Prepared by Magnetron Sputtering Method. Journal of Thermophysics and Heat Transfer, 0, , 1-8. Development of a Miniature Loop Heat Pipe for High Heat Flux Devices and Evaluation of Its Heat Transport Performance. Japanese Journal of Multiphase Flow, 2021, 35, 150-158. Design of CCD thermal control system for SuperView satellite remote sensor and its start debugging in-orbit. Journal of Physics: Conference Series, 2021, 1820, 012013. Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick 	0.1 1.6 0.3 0.4	0 0 0 0 0
483 484 485 486 487	DSD 3/4 D1/2 D DµD1/2 D0° N1†Ñ-D1D1/2 D0° D3 DµD1/2 DµÑ €D°N†Ñ-N, Đ, ND°N, F D2 D, N N°D2 D, N D°D3/4 D1/2 Experimental Research on Instability of Phase-Change Heater in Thermal Power Plant. Mechanical Engineering and Technology, 2021, 10, 426-432. Performance Characteristics of the Metal Foam Wick Prepared by Magnetron Sputtering Method. Journal of Thermophysics and Heat Transfer, 0, , 1-8. Development of a Miniature Loop Heat Pipe for High Heat Flux Devices and Evaluation of Its Heat Transport Performance. Japanese Journal of Multiphase Flow, 2021, 35, 150-158. Design of CCD thermal control system for SuperView satellite remote sensor and its start debugging in-orbit. Journal of Physics: Conference Series, 2021, 1820, 012013. Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials. Energies, 2021, 14, 2453. Effects of pore structures on the capillary and thermal performance of porous silicon nitride as	0.1 1.6 0.3 0.4 3.1	

#	Article	IF	CITATIONS
491	Loop Heat Pipe for Thermal Management of Aircraft Engine Equipment. Journal of Thermophysics and Heat Transfer, 2021, 35, 323-334.	1.6	6
492	Experimental Investigation and Visualization Study of the Condensation Characteristics in a Propylene Loop Heat Pipe. Journal of Thermal Science, 2021, 30, 1803-1813.	1.9	5
493	Experimental Investigation on a Thin-Loop Heat Pipe With New Evaporator Structure. Journal of Heat Transfer, 2021, 143, .	2.1	8
494	Loop heat pipe dynamics modeling and analysis. IOP Conference Series: Materials Science and Engineering, 2021, 1139, 012011.	0.6	0
495	High-performance energy-saving miniature loop heat pipe for cooling compact power semiconductors. Energy Conversion and Management, 2021, 236, 114081.	9.2	22
496	Investigation of the Thermal Characteristics of a Flat Bifacial Evaporator Loop Heat Pipe. Heat Transfer Engineering, 2022, 43, 1097-1107.	1.9	3
497	Operating characteristics of a dual flat-evaporator loop heat pipe for single heat source cooling in any orientation. International Journal of Heat and Mass Transfer, 2021, 172, 121146.	4.8	8
498	Experimental investigation on the performance of an ethane loop heat pipe with different line lengths based on pulse tube refrigerator. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5225-5235.	3.6	0
499	Experimental Study on the Dynamic Heat Transfer Characteristics of a Mechanically Pumped Two-phase Cooling Loop. Frontiers in Energy Research, 2021, 9, .	2.3	3
500	Influence of a Liquid on the Deformation Behavior of Porous Nickel and Titanium under Compression. Journal of Physics: Conference Series, 2021, 1945, 012048.	0.4	1
501	Steady-state modelling of dual-evaporator loop heat pipe. Applied Thermal Engineering, 2021, 193, 116933.	6.0	8
502	Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts. Applied Thermal Engineering, 2021, 194, 117061.	6.0	41
503	Review article: Microscale evaporative cooling technologies for high heat flux microelectronics devices: Background and recent advances. Applied Thermal Engineering, 2021, 194, 117109.	6.0	42
504	Combined Two-Phase Thermal Control System with Parallel Capillary Pumps. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2021, 57, 311-316.	0.3	1
505	Thermo-fluid dynamic analysis in a micro-textured evaporator based on microscale infrared/visible observations for loop heat pipes. International Journal of Multiphase Flow, 2021, 140, 103623.	3.4	5
506	Open loop heat pipes for high-efficiency desalination plant. Applied Thermal Engineering, 2021, 193, 117027.	6.0	2
507	Analysis of Condensation Flow Pattern and Heat Transfer of a Cryogenic Loop Heat Pipe With Different Heating Powers. Journal of Thermal Science and Engineering Applications, 2022, 14, .	1.5	3
508	Thermal performance of self-rewetting gold nanofluids: Application to two-phase heat transfer devices. International Journal of Heat and Mass Transfer, 2021, 174, 121322.	4.8	16

#	Article	IF	CITATIONS
509	Steady-state operating characteristics analysis of loop heat pipes with flat-plate evaporator. Thermal Science and Engineering Progress, 2022, 28, 101070.	2.7	4
510	Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations. Energies, 2021, 14, 5869.	3.1	14
511	Loop Heat Pipe Design: An Evaluation of Recent Research on the Selection of Evaporator, Wick, and Working Fluid. Journal of Thermal Science and Engineering Applications, 2022, 14, .	1.5	5
512	Loop heat pipe-based solar thermal façade water heating system: A review of performance evaluation and enhancement. Solar Energy, 2021, 226, 319-347.	6.1	18
513	Loop Heat Pipes for Thermal Management of Electric Vehicles. Journal of Thermal Science and Engineering Applications, 2022, 14, .	1.5	6
514	Experimental investigation of a loop heat pipe with R245fa and R1234ze (E) as working fluids. Journal of Thermal Science and Engineering Applications, 0, , 1-17.	1.5	1
515	Performance analysis and simplified modelling of a capillary jet loop heat pipe. Applied Thermal Engineering, 2021, 197, 117407.	6.0	2
516	Performance investigation of a loop heat pipe integrated with thermoelectric cooler under acceleration field. International Journal of Heat and Mass Transfer, 2021, 178, 121476.	4.8	9
517	Experimental study of flat-disk loop heat pipe with R1233zd(E) for cooling terrestrial electronics. Applied Thermal Engineering, 2021, 197, 117385.	6.0	15
518	Investigation of thermal characteristics of an LHP evaporator with heat sources having different heating surface areas. Applied Thermal Engineering, 2021, 199, 117533.	6.0	2
519	Investigation of temperature oscillations in a novel loop heat pipe with a vapor-driven jet injector. International Journal of Heat and Mass Transfer, 2021, 179, 121672.	4.8	5
520	Effects of pore structure characteristics on performance of sintered bi-porous Ti ₃ AlC ₂ wicks. Materials Research Express, 2021, 8, 015602.	1.6	3
521	Effect of Vibrations on Thermal Performance of Miniature Loop Heat Pipe for Avionics Cooling: An Experimental Analysis. Journal of Heat Transfer, 2019, 141, .	2.1	6
522	High Performance Loop Heat Pipe With Flat Evaporator for Energy-Saving Cooling Systems of Supercomputers. Journal of Heat Transfer, 2020, 142, .	2.1	14
523	Electro-optical characteristics of an innovative LED luminaire with an LED matrix cooling system based on heat pipes. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2020, 23, 415-423.	1.0	10
524	Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing. Korean Journal of Materials Research, 2007, 17, 453-457.	0.2	1
525	Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory. Transactions of the Korean Society of Mechanical Engineers, B, 2010, 34, 1079-1085.	0.1	1
526	Operating Characteristics of Multiple Evaporators and Multiple Condensers Loop Heat Pipe with Polytetrafluoroethylene Wicks. Journal of Electronics Cooling and Thermal Control, 2014, 04, 22-32.	0.4	14

#	Article	IF	CITATIONS
527	Testing of a Low-Cost Loop Heat Pipe Design. Journal of Electronics Cooling and Thermal Control, 2014, 04, 33-38.	0.4	3
528	Heat Pipe for Aerospace Applications—An Overview. Journal of Electronics Cooling and Thermal Control, 2015, 05, 1-14.	0.4	78
529	Development and Investigation of a Miniature Copper-Acetone Loop Heat Pipe with a Flat Evaporator. Journal of Electronics Cooling and Thermal Control, 2015, 05, 77-88.	0.4	15
530	A VAPOR-PRESSURE-DRIVEN HEAT PIPE FOR SIDEWARD LONG-DISTANCE HEAT TRANSPORT. Frontiers in Heat Pipes, 2010, 1, .	0.9	4
531	STATE-OF-THE-ART EXPERIMENTAL STUDIES ON LOOP HEAT PIPES. Frontiers in Heat Pipes, 2011, 2, .	0.9	23
532	DEVELOPMENT OF TUBULAR NI WICK USED IN LHP FOR SPACE APPLICATIONS. Frontiers in Heat Pipes, 2012, 2, .	0.9	3
533	Design Optimization for Loop Heat Pipe Using Tabu Search. Journal of the Korean Society for Aeronautical & Space Sciences, 2009, 37, 737-743.	0.1	1
534	Small Loop Heat Pipe with Plastic Wick for Electronics Cooling. Japanese Journal of Applied Physics, 2011, 50, 11RF02.	1.5	5
535	Experimental study on characteristics of gravity heat pipe with threaded evaporator. Thermal Science and Engineering Progress, 2021, 26, 101107.	2.7	10
536	Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator. Heat and Mass Transfer, 2022, 58, 813-831.	2.1	4
537	Fabrication and capillary performance of bi-porous Ti3AlC2 wicks with controllable pore size proportion using dissolvable pore formers. Journal of Materials Research and Technology, 2021, 15, 4370-4380.	5.8	7
538	Development and testing of a novel horizontal loop thermosyphon as a kW-class heat transfer device. Applied Thermal Engineering, 2022, 200, 117682.	6.0	11
539	Recent Advances in Loop Heat Pipes with Flat Evaporator. Entropy, 2021, 23, 1374.	2.2	11
540	Characteristic Studies on Loop Heat Pipe with Micro Ceramic Wick. Transactions of the Korean Society of Mechanical Engineers, B, 2007, 31, 823-831.	0.1	2
541	ADVANCES AND OPPORTUNITIES IN BUBBLE-ACTUATED CIRCULATING HEAT PIPE (BACH). Frontiers in Heat Pipes, 2010, 1, .	0.9	3
542	A Study on the Heat Transfer Enhancement of Miniature loop Heat Pipes by Using the Cu Nanofluids. Journal of Power System Engineering, 2013, 17, 70-77.	0.4	1
543	Investigation of a Pilot-scale Photovoltaic/Thermal System and its Opportunities for Future Development. Open Journal of Renewable Energy and Sustainable Development, 2014, 2014, 24-34.	0.1	0
544	Experimental Characterization of a Two-Phase Heatsink. Journal of Fluid Flow, Heat and Mass Transfer, 0, , .	0.0	Ο

#	Article	IF	CITATIONS
545	EPSILON Modelica Library for Thermal Applications. , 2015, , .		0
546	Heat Pipes and Thermosyphons. , 2017, , 1-50.		0
547	Thermal Characterization of a Heat Transport System for Satellite Application. , 0, , .		0
548	Experimental Analysis and FEM Simulation of Antigravity Loop-Shaped Heat Pipe for Radio Remote Unit. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 1625-1633.	2.5	0
549	The Design and Application of Temperature Control Loop Heat Pipe for Space CCD Camera. Springer Proceedings in Physics, 2018, , 65-74.	0.2	1
550	Experimental Study of Copper Wick Loop Heat Pipe with a Flat Plate Evaporator. DEStech Transactions on Environment Energy and Earth Science, 2018, , .	0.0	0
551	An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test. , 0, , .		3
552	Experimental Investigation Thermal Performance of Loop Heat Pipe Operating with Different Working Fluids. Journal of Advanced Thermal Science Research, 0, 6, 19-30.	0.4	1
553	Experimental and Numerical Analysis of Start-Up of a Capillary Pumped Loop for Terrestrial Applications. Journal of Heat Transfer, 2019, 141, .	2.1	2
554	Thermodynamic analysis of a novel solar trigeneration system. Scientia Iranica, 2019, .	0.4	0
555	Investigation of instability on loop heat pipe with flat evaporator. IOP Conference Series: Earth and Environmental Science, 0, 467, 012024.	0.3	0
557	Feasibility of Al2O3/Water Nanofluid in a Compact Loop Heat Pipe. Lecture Notes in Mechanical Engineering, 2021, , 467-483.	0.4	0
558	The heat transfer capacity of multi-layer wick heat pipe tested in anti-gravity orientations. Applied Thermal Engineering, 2022, 200, 117611.	6.0	14
559	Effect of wick oxidation on the thermal performance of a copper-acetone loop heat pipe. Applied Thermal Engineering, 2022, 200, 117627.	6.0	7
560	Experimental investigations of a loop heat pipe with active control of the operating temperature. International Journal of Thermal Sciences, 2022, 172, 107351.	4.9	5
561	Model-Free Control Design for Loop Heat Pipes Using Deep Deterministic Policy Gradient. IFAC-PapersOnLine, 2020, 53, 1575-1580.	0.9	2
562	Numerical exploration of optimal microgroove shape in loop-heat-pipe evaporator. Journal of Thermal Science and Technology, 2020, 15, JTST0034-JTST0034.	1.1	1
563	Experimental study on a R134a loop heat pipe with high heat transfer capacity. Heat and Mass Transfer, 2022 58 903-916	2.1	2

#	Article	IF	CITATIONS
564	Experimental Analysis of a Capillary Pumped Loop for Terrestrial Application. Journal of Thermophysics and Heat Transfer, 2011, 25, 561-571.	1.6	0
565	Development of an Experimental Small Loop Heat Pipe with Polytetrafluoroethylene Wicks. Journal of Thermophysics and Heat Transfer, 2011, 25, 547-552.	1.6	Ο
566	Effect of Operational Conditions on Cooling Performance of Pump-Assisted and Capillary-Driven Two-Phase Loop. Journal of Thermophysics and Heat Transfer, 2011, 25, 572-580.	1.6	0
567	Experimental study of a novel loop heat pipe with a vapor-driven jet injector and a boiling pool. International Journal of Heat and Mass Transfer, 2022, 184, 122267.	4.8	7
568	Experimental investigation of a loop heat pipe with a flat evaporator and cupric oxide nanofluids as working fluid. Energy Reports, 2021, 7, 7693-7703.	5.1	10
569	The Influence of Loop Heat Pipe Evaporator Porous Structure Parameters and Charge on Its Effectiveness for Ethanol and Water as Working Fluids. Materials, 2021, 14, 7029.	2.9	4
570	Effect of heat load on pneumatic temperature control characteristics of a pressure-controlled loop heat pipe. International Journal of Heat and Mass Transfer, 2022, 186, 122472.	4.8	4
571	Comparison tests of loop heat pipes with flat evaporators of different types. International Journal of Heat and Mass Transfer, 2022, 186, 122491.	4.8	4
572	Experimental Investigation on Thermal Characteristics of Long Distance Loop Heat Pipes. Journal of Thermal Science, 2022, 31, 741-750.	1.9	3
573	A novel method for removing noncondensable gas from loop heat pipe. Thermal Science and Engineering Progress, 2022, 30, 101198.	2.7	2
574	Thin diffusion bonded flat loop heat pipes for electronics: Fabrication, modelling and testing. Energy Conversion and Management, 2022, 255, 115329.	9.2	9
575	Experimental study on the thermal performance of an ammonia loop heat pipe using a rectangular evaporator with longitudinal replenishment. Applied Thermal Engineering, 2022, 207, 118199.	6.0	8
576	Simulation of Heat and Mass Transfer in a Cylindrical Evaporator of a Loop Heat Pipe with a Rectangular Interface. High Temperature, 2021, 59, 219-229.	1.0	2
577	A Lightweight, High-Performance Porous Wick for Loop Heat Pipe: Polyethersulfone Film Wick. SSRN Electronic Journal, 0, , .	0.4	0
578	Overshoot Temperature Control on Evaporator Wall Through Bypass Line Under High Thermal Load. SSRN Electronic Journal, 0, , .	0.4	0
579	Novel Hybrid Structures to Improve Performance of Miniature Flat Evaporator Loop Heat Pipes for Electronics Cooling. SSRN Electronic Journal, 0, , .	0.4	0
580	Enhanced Evaporative Cooling Heat Transfer by Bidirectional Freeze-Casting Technique. SSRN Electronic Journal, 0, , .	0.4	0
581	Numerical Analysis of Loop Heat Pipe Using Nucleate Boiling Model in Evaporator Core. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
582	Additive Manufacturing as a Solution to Challenges Associated with Heat Pipe Production. Materials, 2022, 15, 1609.	2.9	11
583	Numerical Analysis of Wick-Type Two-Phase Mechanically Pumped Fluid Loop for Thermal Control of Electric Aircraft Motors. Energies, 2022, 15, 1800.	3.1	1
584	A Novel Supermesh Method for Computing Solutions to the Multi-material Stefan Problem with Complex Deforming Interfaces and Microstructure. Journal of Scientific Computing, 2022, 91, 1.	2.3	2
585	The Study of Novel Self-Rewetting Fluid Application to Loop Heat Pipe. Applied Sciences (Switzerland), 2022, 12, 3121.	2.5	1
586	Copper wick based loop heat pipe for thermal management of a high-power LED module. Applied Thermal Engineering, 2022, 211, 118459.	6.0	23
587	Proposal, transient model, and experimental verification of loop heat pipe as heating device for electric-vehicle batteries. Applied Thermal Engineering, 2022, 211, 118432.	6.0	18
588	Heat-pipe-based tunable multimode horizontal thermal rectifier. Energy Reports, 2022, 8, 4274-4281.	5.1	8
589	Performance Test of Novel Flat Capillary Pump Loop Heat Pipe under Anti-gravity and Microgravity. Microgravity Science and Technology, 2022, 34, .	1.4	2
590	Experimental and analytical investigation of a 0.3-mm-thick loop heat pipe for 10ÂW-class heat dissipation. International Journal of Heat and Mass Transfer, 2022, 193, 122950.	4.8	6
592	Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness. Applied Energy, 2022, 319, 119279.	10.1	18
593	Numerical study on long-term passive heat removal of EPRHR cooling water tank (CWT) using heat pipe heat exchanger. Annals of Nuclear Energy, 2022, 175, 109212.	1.8	1
594	Visualization Study on Operating Performance of a Dual Compensation Chamber Loop Heat Pipe Under Acceleration Condition. SSRN Electronic Journal, 0, , .	0.4	0
595	Performances of loop heat pipe with the novel bi-porous quaternary MAX phase Ti3(Al,Si)C2 capillary wick. Vacuum, 2022, 202, 111185.	3.5	7
596	Heat transfer performance of loop heat pipe for space vehicle thermal control under bypass line operation. International Journal of Heat and Mass Transfer, 2022, 194, 123064.	4.8	6
597	Experimental Investigation of the Performance of a 3D Printed Heat Pipe with Ultra-Small Bending Radius for Space Applications. Microgravity Science and Technology, 2022, 34, .	1.4	2
598	Experimental study on long-distance anti-gravity loop heat pipe with submicron-scale porous structure. Applied Thermal Engineering, 2022, 214, 118793.	6.0	10
599	A review on data centre cooling system using heat pipe technology. Sustainable Computing: Informatics and Systems, 2022, 35, 100774.	2.2	9
600	Relation between triple phase contact line and vapor groove width for enhancing thermal performance of a loop heat pipe evaporator. International Journal of Heat and Mass Transfer, 2022, 195, 123139.	4.8	7

#	Article	IF	CITATIONS
601	Investigation of a loop heat pipe to achieve high heat flux by incorporating flow boiling. International Journal of Heat and Mass Transfer, 2022, 195, 123173.	4.8	5
602	Experimental investigation on the start-up performance of a novel flat loop heat pipe with dual evaporators. Energy Reports, 2022, 8, 7500-7507.	5.1	5
603	Operating characteristics of a flat evaporator loop heat pipe having a flexible heat transport path. Journal of Mechanical Science and Technology, 2022, 36, 3735-3751.	1.5	0
604	Novel hybrid structures to improve performance of miniature flat evaporator loop heat pipes for electronics cooling. International Journal of Heat and Mass Transfer, 2022, 195, 123187.	4.8	7
605	Numerical analysis of loop heat pipe using nucleate boiling model in evaporator core. International Journal of Heat and Mass Transfer, 2022, 195, 123207.	4.8	6
606	Working fluid study for loop heat pipes. Thermal Science and Engineering Progress, 2022, 35, 101451.	2.7	5
607	The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder. Materials, 2022, 15, 5830.	2.9	1
608	Current Trends in Wick Structure Construction in Loop Heat Pipes Applications: A Review. Materials, 2022, 15, 5765.	2.9	3
609	Experimental investigation on the start-up performance of a loop heat pipe with three flat disk evaporators combined. Applied Thermal Engineering, 2022, 216, 119128.	6.0	7
610	Enhanced evaporative cooling heat transfer by bidirectional freeze-casting technique. Applied Thermal Engineering, 2022, 216, 119063.	6.0	1
611	A novel neural network and grey correlation analysis method for computation of the heat transfer limit of a loop heat pipe (LHP). Energy, 2022, 259, 124830.	8.8	11
612	Visualization study on operating performance of a dual compensation chamber loop heat pipe under acceleration condition. Applied Thermal Engineering, 2022, 217, 119157.	6.0	3
613	Experimental study on global visualization of loop heat pipe with a flat disk-shaped evaporator. Energy Reports, 2022, 8, 10895-10912.	5.1	6
614	Numerical simulation of heat pipes in different applications. International Journal of Thermofluids, 2022, 16, 100199.	7.8	20
615	Capillary Jet Loop performance in parabolic flight. Applied Thermal Engineering, 2022, 217, 119221.	6.0	1
616	Visualization of thermo-fluid behavior of loop heat pipe with two evaporators and one condenser under various orientation with even heat loads. International Journal of Heat and Mass Transfer, 2022, 198, 123397.	4.8	6
617	Experimental and Numerical Study on Pump-Driven Two-Phase Cooling Loop for High Heat Flux Avionics. SSRN Electronic Journal, 0, , .	0.4	0
618	Hybrid numerical models for predictions of thermofluid phenomena in engineering systems, with application to a loop heat pipe in steady operation. Advances in Heat Transfer, 2022, , 179-239.	0.9	1

#	ARTICLE	IF	CITATIONS
619	The capillary and thermal performance of the porous silicon nitride ceramics with nearly spherical pore structure. International Journal of Applied Ceramic Technology, 2023, 20, 780-789.	2.1	1
620	Development of Selection Methods for the Primary and Secondary Capillary Structures of Loop Heat Pipes. Journal of Engineering Physics and Thermophysics, 0, , .	0.6	0
621	Experimental Study on Cooling Down Process of a Nitrogen-Charged Cryogenic Loop Heat Pipe. Journal of Thermal Science, 2023, 32, 153-165.	1.9	3
622	The equilibrium contact angle of ammonia-stainless steel interface. Results in Engineering, 2022, 16, 100691.	5.1	10
623	Overshoot temperature control on evaporator wall of loop heat pipe for space vehicle thermal control through bypass line under high thermal load. Applied Thermal Engineering, 2023, 219, 119446.	6.0	3
624	Heat pipes in battery thermal management systems for electric vehicles: A critical review. Applied Thermal Engineering, 2023, 219, 119495.	6.0	35
625	Closed-type pneumatic temperature control of a pressure-controlled loop heat pipe with a mechanically driven gas pressure controller. International Journal of Heat and Mass Transfer, 2023, 200, 123519.	4.8	1
626	Transient Thermo-Fluid Modeling of Loop Heat Pipes and Experimental Validation. SSRN Electronic Journal, O, , .	0.4	0
627	Formation of Unsaturated Regions in the Porous Wick of a Capillary Evaporator. SSRN Electronic Journal, 0, , .	0.4	0
628	Temperature control of a heat source using a loop heat pipe integrated with a thermoelectric converter. International Journal of Thermal Sciences, 2023, 184, 108012.	4.9	1
629	A study on thermophysical properties of printed wick structures and their applications in ultrathin devices. Results in Engineering, 2022, 16, 100776.	5.1	2
630	Thermal Management Technologies Used for High Heat Flux Automobiles and Aircraft: A Review. Energies, 2022, 15, 8316.	3.1	3
631	Investigation of the dynamics of a Capillary Pumped Loop assisted with a mechanical pump: Influence of pump location. Applied Thermal Engineering, 2023, 221, 119854.	6.0	3
632	Parametric Study on Ammonia-Based Loop Heat Pipe. Heat Transfer Engineering, 0, , 1-14.	1.9	1
633	A Novel Approach for Flow Analysis in Pulsating Heat Pipes: Cross-Correlation of Local Heat Flux. Energies, 2022, 15, 8664.	3.1	2
634	Flow Characterization in Triply Periodic Minimal Surface (TPMS)-Based Porous Geometries: Part 1—Hydrodynamics. Transport in Porous Media, 2023, 146, 669-701.	2.6	13
635	Phase separation of two-phase ammonia in horizontal T-junction at low mass velocity. International Journal of Refrigeration, 2023, 149, 62-72.	3.4	4
636	Experimental study on improving the performance of vapor compression cycle by using loop-type heat pipe. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892211483.	2.5	1

#	Article	IF	CITATIONS
637	Experimental study on the heat transfer performance of loop heat pipe with different particle morphology and wettability of porous wick. International Journal of Thermal Sciences, 2023, 186, 108134.	4.9	3
638	Numerical Investigation with Experimental Validation of Heat and Mass Transfer during Evaporation in the Porous Wick within a Loop Heat Pipe. Energies, 2023, 16, 2088.	3.1	0
639	Ammonia void fraction in smooth tubes at different gravity orientation. International Journal of Refrigeration, 2023, 150, 89-99.	3.4	2
640	Numerical and experimental study on the vapor-liquid distribution of loop heat pipe with varying density of working fluid. Applied Thermal Engineering, 2023, 226, 120278.	6.0	5
641	Analysis of the thermal resistance of a loop heat pipe based on the P-T diagram of the working fluid operating cycle International Journal of Heat and Mass Transfer, 2023, 209, 124157.	4.8	4
642	A polyethersulfone film porous wick for loop heat pipes. International Communications in Heat and Mass Transfer, 2023, 142, 106652.	5.6	2
643	Development and Research of Loop Heat Pipes with Flat Evaporators. High Temperature, 2022, 60, 366-373.	1.0	2
644	Performance improvement of loop heat pipe by micro-pin-fins/powders composite surface. International Journal of Heat and Mass Transfer, 2023, 208, 124093.	4.8	3
645	An R1234ze(E) loop heat pipe with flat-plate evaporator for cooling electronic devices. Thermal Science and Engineering Progress, 2023, 42, 101935.	2.7	0
646	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si32.svg" display="inline" id="d1e329"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> two-phase cooling system for the alpha magnetic spectrometer on the international space station. Applied Thermal Engineering.	6.0	1
647	2023, 230, 120738. Criteria for evaluating working fluids in loop gravity-assisted heat systems. Korean Journal of Chemical Engineering, 0, , .	2.7	0
648	Study of a new thin flat loop heat pipe for electronics. Heat and Mass Transfer, 0, , .	2.1	0
649	A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review. Journal of Energy Storage, 2023, 71, 108025.	8.1	17
650	Experimental study on the thermal performance of a dual compensation chamber loop heat pipe with dual vapor and condenser lines. Thermal Science and Engineering Progress, 2023, 43, 101994.	2.7	1
651	Experimental study on a dual compensation chamber loop heat pipe with a ceramic wick. Applied Thermal Engineering, 2023, 230, 120750.	6.0	5
652	Effect of PTFE wick thickness on Loop heat pipe performance. Thermal Science and Engineering Progress, 2023, 42, 101911.	2.7	1
653	Experimental Study and Visual Observation of a Loop Heat Pipe with a Flat Disk-Shaped Evaporator under Various Orientations. Energies, 2023, 16, 5068.	3.1	1
654	Experimental study on the influence of surface modification methods of carbon fiber felt on the operation and heat transfer characteristics of loop heat pipes. Applied Thermal Engineering, 2023, 233, 121121.	6.0	1

#	Article	IF	CITATIONS
655	Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation. Applied Energy, 2023, 348, 121520.	10.1	2
656	Investigation of thermal conductivity and thermal performance of heat pipes by structurally designed copolymer stabilized ZnO nanofluid. Scientific Reports, 2023, 13, .	3.3	0
657	Thermal comfort and energy efficiency evaluation of a novel conductive-radiative Personal Comfort System. Building and Environment, 2023, 244, 110787.	6.9	1
658	Influence of condenser bypass port area on maximum thermal load of heat pipe. International Communications in Heat and Mass Transfer, 2023, 148, 107006.	5.6	2
659	Numerical study on the heat transfer limits of a novel dual-condenser heat pipe integrated with photovoltaic/thermal (PV/T) system. Renewable Energy, 2023, 218, 119281.	8.9	1
660	Design and experimental validation of a high capacity loop heat pipe for avionics cooling. Thermal Science and Engineering Progress, 2023, 45, 102139.	2.7	0
662	Experimental study on the boiling heat transfer characteristics of a pump-driven two-phase cooling loop system for high heat flux avionics. Thermal Science and Engineering Progress, 2023, 45, 102150.	2.7	1
663	An experimental investigation on the influence of condenser bypass area for the transient and steady-state heat-transfer performance of heat pipes. International Communications in Heat and Mass Transfer, 2023, 148, 107057.	5.6	1
664	Experimental study on evaporation heat transfer characteristics of multi-composite porous wick with three different powders. Applied Thermal Engineering, 2024, 236, 121721.	6.0	0
665	Numerical investigation on necessary condition for temperature oscillation in loop heat pipe. International Journal of Thermal Sciences, 2024, 196, 108704.	4.9	1
666	The Review of the Application of the Heat Pipe on Enhancing Performance of the Air-Conditioning System in Buildings. Processes, 2023, 11, 3081.	2.8	0
667	Visualized experimental study on steady-state performance of a loop heat pipe under elevated acceleration fields. Applied Thermal Engineering, 2024, 238, 121984.	6.0	0
668	Novel Loop Heat Pipe System for EV Thermal Management of Batteries: Effects of Ambient Temperatures. Transportation Research Procedia, 2023, 70, 162-169.	1.5	0
669	Waste heat recovery of air conditioning on thermal efficiency enhancement of water heater. Thermal Science and Engineering Progress, 2024, 47, 102296.	2.7	1
670	Experimental investigation on the thermal performance of a novel loop heat pipe (LHP) with micro-channel structure. Applied Thermal Engineering, 2024, 238, 122046.	6.0	0
671	Experimental investigation on acceleration of working fluid of heat pipe under bypass line operation. Case Studies in Thermal Engineering, 2024, 53, 103742.	5.7	0
672	Design optimization and experimental demonstration of a gravity-assisted cryogenic loop heat pipe. International Journal of Heat and Mass Transfer, 2024, 221, 125037.	4.8	0
673	Visualization of thermo-fluid behavior of loop heat pipe with two evaporators and one condenser under various orientations with uneven heat loads. International Journal of Heat and Mass Transfer, 2024, 221, 125054.	4.8	0

#	Article	IF	CITATIONS
674	NUMERICAL PREDICTIONS OF LAMINAR FULLY DEVELOPED FLUID FLOW AND HEAT TRANSFER IN STRAIGHT DUCTS WITH AXIALLY UNIFORM INJECTION THROUGH THE SIDE WALLS. , 2023, , .		0
675	DESIGN, FABRICATION, AND TESTING OF AN ULTRA-THIN LOOP HEAT PIPE WITH A THICKNESS OF 0.3 mm FOR SMALL ELECTRONIC DEVICES. , 2023, , .		0
676	NUMERICAL INVESTIGATION OF LOOP HEAT PIPE SYSTEM PERFORMANCE AND ITS OPERATIONAL LIMITS. , 2023, , .		0
677	DEVELOPMENT OF LOOP HEAT PIPE BASED ON VISUALIZATION AND MODELING IN MICROSCALE POROUS STRUCTURE. , 2023, , .		0
678	Experimental study on the heat transfer characteristics of a novel self-driven cooling system. International Journal of Heat and Mass Transfer, 2024, 221, 125085.	4.8	0
679	Experimental investigation on a flat loop heat pipe coupled with thermoelectric cooler. Applied Thermal Engineering, 2024, 240, 122270.	6.0	0
681	Heat pipe types and developments. , 2024, , 17-60.		0
682	Additive manufacturing applied to heat pipes. , 2024, , 209-243.		0
683	Cooling of electronic components. , 2024, , 271-306.		0
684	A novel thermal management scheme of 3D-IC based on loop heat pipe. International Journal of Thermal Sciences, 2024, 199, 108906.	4.9	0
686	Development and Study of Operating Characteristics of a Loop Heat Pipe with Increased Heat Transfer Distance. Thermal Engineering (English Translation of Teploenergetika), 2024, 71, 158-166.	0.9	0