Effect of nitrogen in carbon electrode on the supercapa

Chemical Physics Letters 404, 53-58

DOI: 10.1016/j.cplett.2005.01.074

Citation Report

#	Article	IF	CITATIONS
1	A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends. Advanced Materials, 2005, 17, 2380-2384.	11.1	298
2	Nanotubes Based Composites for Energy Storage in Supercapacitors. Advances in Science and Technology, 2006, 51, 145-155.	0.2	1
3	Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors. Chemistry of Materials, 2006, 18, 2318-2326.	3.2	427
4	The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Advanced Functional Materials, 2007, 17, 1828-1836.	7.8	492
5	Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon, 2007, 45, 160-165.	5. 4	90
6	Preparation and electrochemical characteristics of N-enriched carbon foam. Carbon, 2007, 45, 1105-1107.	5.4	147
7	Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon, 2007, 45, 1757-1763.	5 . 4	330
8	Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon, 2007, 45, 2116-2125.	5.4	220
9	Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochemistry Communications, 2007, 9, 569-573.	2.3	255
10	Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochemistry Communications, 2007, 9, 1828-1832.	2.3	239
11	Can conductivity measurements serve as a tool for assessing pseudocapacitance processes occurring on carbon electrodes?. Journal of Electroanalytical Chemistry, 2007, 602, 195-202.	1.9	5
12	Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 2007, 9, 1774.	1.3	1,772
13	Polyaniline/porous carbon electrodes by chemical polymerisation: Effect of carbon surface chemistry. Electrochimica Acta, 2007, 52, 4962-4968.	2.6	62
14	Preparation and characterization of carbonaceous materials containing nitrogen as electrochemical capacitor. Journal of Power Sources, 2007, 172, 481-486.	4.0	70
15	Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. Journal of Power Sources, 2008, 180, 671-675.	4.0	182
16	Chemical state of nitrogen in carbon aerogels issued from phenol–melamine–formaldehyde gels. Carbon, 2008, 46, 1259-1262.	5.4	67
17	Pyroelectric temperature sensitization of multi-wall carbon nanotube papers. Carbon, 2008, 46, 1262-1265.	5.4	6
18	Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. Electrochimica Acta, 2008, 53, 5469-5475.	2.6	130

#	ARTICLE	IF	CITATIONS
19	Review on Engineering and Characterization of Activated Carbon Electrodes for Electrochemical Double Layer Capacitors and Separation Processes. Israel Journal of Chemistry, 2008, 48, 287-303.	1.0	17
20	Higher Harmonic Large-Amplitude Fourier Transformed Alternating Current Voltammetry: Analytical Attributes Derived from Studies of the Oxidation of Ferrocenemethanol and Uric Acid at a Glassy Carbon Electrode. Analytical Chemistry, 2008, 80, 4614-4626.	3 . 2	47
21	Charge Storage Mechanism of Binderless Nanocomposite Electrodes Formed by Dispersion of CNTs and Carbon Aerogels. Journal of the Electrochemical Society, 2008, 155, A115.	1.3	13
22	Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Advanced Functional Materials, 2009, 19, 1032-1039.	7.8	566
23	Nitrogenâ€Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. Advanced Functional Materials, 2009, 19, 1800-1809.	7.8	720
24	Combined Effect of Nitrogen―and Oxygen ontaining Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Advanced Functional Materials, 2009, 19, 438-447.	7.8	1,475
25	Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte. Mining Science and Technology, 2009, 19, 295-299.	0.3	5
26	Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure. Microporous and Mesoporous Materials, 2009, 118, 28-34.	2.2	72
27	Preparation of nitrogen-doped mesoporous carbon nanopipes for the electrochemical double layer capacitor. Carbon, 2009, 47, 1407-1411.	5 . 4	84
28	Nitrogen-containing microporous carbons prepared from anionic surfactant-melamine/formaldehyde composites. Carbon, 2009, 47, 2138-2141.	5.4	27
29	High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 2009, 47, 2984-2992.	5 . 4	338
31	Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels. Langmuir, 2009, 25, 11961-11968.	1.6	195
32	Surface Chemistry, Porous Texture, and Morphology of N-Doped Carbon Xerogels. Langmuir, 2009, 25, 466-470.	1.6	93
33	Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009, 113, 13103-13107.	1.5	2,295
34	Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications. Transactions of Nonferrous Metals Society of China, 2009, 19, s738-s742.	1.7	22
35	Electrical Double-Layer Capacitors and Pseudocapacitors. Advanced Materials and Technologies, 2009, , 329-375.	0.4	13
36	Carbon/Layered Double Hydroxide (LDH) Composites for Supercapacitor Application. Energy & Samp; Fuels, 2010, 24, 3346-3351.	2.5	120
37	High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac resin containing peptide linkage. Electrochimica Acta, 2010, 55, 5624-5628.	2.6	19

#	Article	IF	CITATIONS
38	Carbon materials for electrochemical capacitors. Journal of Power Sources, 2010, 195, 7880-7903.	4.0	1,271
39	Pseudocapacitance Effects for Enhancement of Capacitor Performance. Fuel Cells, 2010, 10, 848-855.	1.5	30
40	Oneâ€Step Hydrothermal Synthesis of Nitrogenâ€Doped Nanocarbons: Albumine Directing the Carbonization of Glucose. ChemSusChem, 2010, 3, 246-253.	3.6	124
41	Nitrogenâ€Containing Hydrothermal Carbons with Superior Performance in Supercapacitors. Advanced Materials, 2010, 22, 5202-5206.	11.1	849
42	MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes. Journal of Power Sources, 2010, 195, 667-673.	4.0	59
43	A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, 2010, 195, 1516-1521.	4.0	194
44	High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method. Journal of Power Sources, 2010, 195, 1739-1746.	4.0	66
45	Carbon materials modified by plasma treatment as electrodes for supercapacitors. Journal of Power Sources, 2010, 195, 7535-7539.	4.0	73
46	Guest–host interaction in energy storage systems. Journal of Physics and Chemistry of Solids, 2010, 71, 692-695.	1.9	7
47	Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochimica Acta, 2010, 55, 7021-7027.	2.6	238
48	Specific anion and cation capacitance in porous carbon blacks. Carbon, 2010, 48, 1767-1778.	5.4	45
49	Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. Electrochemistry Communications, 2010, 12, 414-417.	2.3	68
50	High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, 2010, 5, 531-537.	15.6	1,026
51	Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor. Journal of the Electrochemical Society, 2010, 157, B1665.	1.3	116
52	A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials. Journal of Materials Chemistry, 2010, 20, 6746.	6.7	247
53	Preparation and Capacitive Properties of a Carbonaceous Material Containing Nitrogen. Journal of the Electrochemical Society, 2010, 157, A35.	1.3	14
54	Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy and Environmental Science, 2010, 3, 1238.	15.6	1,004
55	Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors. Journal of Power Sources, 2010, 195, 2125-2129.	4.0	92

#	Article	IF	CITATIONS
56	Carbon-Based Nanomaterials for Electrochemical Energy Storage. , 0, , 177-204.		0
57	Oxidative Treatment and Characterization of Plasma Carbon Blacks. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 210-224.	1.0	3
59	Microporous sulfur-doped carbon from thienyl-based polymer network precursors. Chemical Communications, 2011, 47, 8283.	2.2	152
60	Synthesis of mesoporous composite materials of nitrogen-doped carbon and silica using a reactive surfactant approach. Journal of Materials Chemistry, 2011, 21, 15537.	6.7	31
62	Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors. Journal of Fluorine Chemistry, 2011, 132, 1127-1133.	0.9	64
63	Study of activated nitrogen-enriched carbon and nitrogen-enriched carbon/carbon aerogel composite as cathode materials for supercapacitors. Materials Chemistry and Physics, 2011, 126, 453-458.	2.0	36
64	Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes. Journal of Solid State Electrochemistry, 2011, 15, 2667-2674.	1.2	53
65	Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. Journal of Power Sources, 2011, 196, 4117-4122.	4.0	182
66	Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon, 2011, 49, 457-467.	5.4	250
67	One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon, 2011, 49, 3250-3257.	5.4	372
69	Surface and electrochemical properties of amino-fluorinated activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 243-250.	2.3	22
70	Asymmetric capacitance response from the chemical characteristics of activated carbons in KOH electrolyte. Journal of Electroanalytical Chemistry, 2011, 659, 161-167.	1.9	24
71	Activated Nitrogen-Enriched Carbon/Reduced Expanded Graphite Composites for Supercapacitors. Advanced Materials Research, 2011, 211-212, 440-444.	0.3	2
72	Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy, 2012, 1, 723-731.	8.2	78
73	Intrinsically Sulfur―and Nitrogenâ€Coâ€doped Carbons from Thiazolium Salts. Chemistry - A European Journal, 2012, 18, 15416-15423.	1.7	76
74	lonic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Advances, 2012, 2, 8808.	1.7	37
75	Nitrogen-enriched multimodal porous carbons for supercapacitors, fabricated from inclusion complexes hosted by urea hydrates. RSC Advances, 2012, 2, 4353.	1.7	26
76	In-Situ Preparation of Boron-Doped Carbons with Ordered Mesopores and Enhanced Electrochemical Properties in Supercapacitors. Journal of the Electrochemical Society, 2012, 159, E177-E182.	1.3	38

#	ARTICLE	IF	CITATIONS
77	Ball-Milled Graphite as an Electrode Material for High Voltage Supercapacitor in Neutral Aqueous Electrolyte. Journal of the Electrochemical Society, 2012, 159, A579-A583.	1.3	48
78	A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41, 797-828.	18.7	7,829
79	Preparation, surface characteristics, and electrochemical double-layer capacitance of KOH-activated carbon aerogels and their O- and N-doped derivatives. Journal of Power Sources, 2012, 219, 80-88.	4.0	68
80	Synthesis of microporous carbon nanotubes by templating method and their high electrochemical performance. Electrochimica Acta, 2012, 78, 147-153.	2.6	15
81	Catechol-Modified Activated Carbon Prepared by the Diazonium Chemistry for Application as Active Electrode Material in Electrochemical Capacitor. ACS Applied Materials & Electrochemical Capacitor. ACS Applied M	4.0	110
82	Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer. Journal of the American Chemical Society, 2012, 134, 14846-14857.	6.6	354
83	A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chemistry, 2012, 14, 741.	4.6	162
84	Electrochemical study of anthraquinone groups, grafted by the diazonium chemistry, in different aqueous media-relevance for the development of aqueous hybrid electrochemical capacitor. Electrochimica Acta, 2012, 82, 250-256.	2.6	65
85	Nitrogen modification of highly porous carbon for improved supercapacitor performance. Journal of Materials Chemistry, 2012, 22, 9884.	6.7	212
86	Highly porous chemically modified carbon cryogels and their coherent nanocomposites for energy applications. Energy and Environmental Science, 2012, 5, 5619-5637.	15.6	61
87	Functional Carbon Materials From Ionic Liquid Precursors. Macromolecular Chemistry and Physics, 2012, 213, 1132-1145.	1.1	99
88	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. Macromolecular Chemistry and Physics, 2012, 213, 1078-1090.	1.1	73
89	Nitrogenâ€Doped Carbon Monolith for Alkaline Supercapacitors and Understanding Nitrogenâ€Induced Redox Transitions. Chemistry - A European Journal, 2012, 18, 5345-5351.	1.7	358
90	Nitrogenated porous carbon electrodes for supercapacitors. Journal of Materials Science, 2012, 47, 5996-6004.	1.7	38
91	Electrochemical behavior and capacitance properties of carbon xerogel/multiwalled carbon nanotubes composites. Journal of Solid State Electrochemistry, 2012, 16, 1067-1076.	1.2	13
92	Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon, 2012, 50, 1833-1842.	5.4	213
93	Electrochemical performance of carbon gels with variable surface chemistry and physics. Carbon, 2012, 50, 3324-3332.	5.4	48
94	Fabrication of nitrogen-containing hollow carbon nanospheres by pyrolysis of self-assembled poly(aniline-co-pyrrole). Journal of Analytical and Applied Pyrolysis, 2012, 93, 147-152.	2.6	19

#	Article	IF	CITATIONS
95	Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor. Journal of Colloid and Interface Science, 2012, 381, 152-157.	5.0	30
96	Preparation of sucrose-based microporous carbons and their application as electrode materials for supercapacitors. Microporous and Mesoporous Materials, 2012, 156, 176-180.	2.2	55
97	Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC. Journal of Industrial and Engineering Chemistry, 2012, 18, 116-122.	2.9	24
98	Polyacrylonitrileâ€based electrospun carbon paper for electrode applications. Journal of Applied Polymer Science, 2012, 124, 3861-3870.	1.3	54
99	Structure and Electrochemical Performance of Carbideâ€Derived Carbon Nanopowders. Advanced Functional Materials, 2013, 23, 1081-1089.	7.8	165
100	Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries. Advanced Functional Materials, 2013, 23, 1037-1045.	7.8	304
101	Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy and Environmental Science, 2013, 6, 2839.	15.6	1,585
102	A new family of fluidic precursors for the self-templated synthesis of hierarchical nanoporous carbons. Chemical Communications, 2013, 49, 7289.	2.2	29
103	Nanocarbons for Supercapacitors. , 2013, , 393-421.		4
104	Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes. Journal of Fluorine Chemistry, 2013, 150, 98-103.	0.9	21
105	Relation of micropores/mesopore ratio on high electrochemical performance ofÂnano-porous carbons. Journal of Power Sources, 2013, 244, 792-798.	4.0	14
106	The effect of the HClO4 oxidization of petroleum coke on the properties of the resulting activated carbon for use in supercapacitors. New Carbon Materials, 2013, 28, 262-265.	2.9	11
108	Electrochemical and structural characteristics of activated carbon-based electrodes modified via phosphoric acid. Microporous and Mesoporous Materials, 2013, 172, 131-135.	2.2	41
109	Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. Journal of Materials Chemistry A, 2013, 1, 13949.	5.2	238
110	Nitrogen-Doped Porous Carbon Spheres Derived from Polyacrylamide. Industrial & Engineering Chemistry Research, 2013, 52, 12025-12031.	1.8	50
111	Preparation of Nitrogen-Doped Porous Carbon and its Water Adsorption Behaviour. Adsorption Science and Technology, 2013, 31, 135-144.	1.5	13
112	Nitrogen-enriched carbon electrodes in electrochemical capacitors: investigating accessible porosity using CM-SANS. Physical Chemistry Chemical Physics, 2013, 15, 16774.	1.3	19
113	Preparation of nitrogen-containing mesoporous carbons and their application in supercapacitors. New Journal of Chemistry, 2013, 37, 1768.	1.4	31

#	ARTICLE	IF	CITATIONS
114	Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite. Nano Letters, 2013, 13, 5954-5960.	4.5	142
115	Capacitance property of carbon material derived from starch mixed with guanidine phosphate as electrochemical capacitor. Journal of Power Sources, 2013, 227, 24-30.	4.0	12
117	Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2013, 1, 7222.	5.2	50
118	Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. Journal of Materials Chemistry A, 2013, 1, 7920.	5.2	120
119	Carbon/carbon supercapacitors. Journal of Energy Chemistry, 2013, 22, 226-240.	7.1	275
120	A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8488.	5.2	128
121	Carbons for Supercapacitors. , 2013, , 211-222.		8
123	Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A, 2013, 1, 999-1013.	5.2	602
124	Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide. Electrochimica Acta, 2013, 88, 597-603.	2.6	38
125	Attributes of Largeâ€Amplitude Fourier Transformed Alternating Current Voltammetry at Array and Single Carbon Fiber Microdisk Electrodes. Electroanalysis, 2013, 25, 931-944.	1.5	5
126	Capacitance Enhancement of Activated Carbon Modified in the Propylene Carbonate Electrolyte. Journal of the Electrochemical Society, 2014, 161, A1828-A1835.	1.3	20
127	Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices. Journal of Physical Chemistry Letters, 2014, 5, 4324-4330.	2.1	31
128	Effect of petroleum coke expanding by perchloric acid on the performance of the resulted activated carbon. Functional Materials Letters, 2014, 07, 1350066.	0.7	5
129	7. Sustainable carbon hybrid materials made by hydrothermal carbonization and their use in energy applications., 2014,, 201-226.		2
130	Carbon nanotubes/amorphous carbon composites as high-power negative electrodes in lithium ion capacitors. Journal of Applied Electrochemistry, 2014, 44, 105-113.	1.5	32
131	Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014, 26, 2219-2251.	11.1	2,152
132	Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon, 2014, 70, 130-141.	5.4	171
133	Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbideâ€derived carbon, zeoliteâ€templated carbon, carbon aerogels, carbon nanotubes, onionâ€like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment. 2014. 3, 424-473.	1.9	459

#	Article	IF	CITATIONS
134	Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 9532-9540.	5.2	91
135	Carbon Materials for Electrochemical Capacitors. , 2014, , 237-265.		9
136	Directed Synthesis of Nanoporous Carbons from Taskâ€Specific Ionic Liquid Precursors for the Adsorption of CO ₂ . ChemSusChem, 2014, 7, 3284-3289.	3.6	21
137	Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. Journal of Materials Chemistry A, 2014, 2, 11753.	5.2	127
138	Nanoarchitectured Grapheneâ€Based Supercapacitors for Nextâ€Generation Energyâ€Storage Applications. Chemistry - A European Journal, 2014, 20, 13838-13852.	1.7	274
139	Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solidâ€State Microâ€Supercapacitors with High Volumetric Energy Density. Advanced Materials, 2014, 26, 6790-6797.	11.1	243
140	Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes. Journal of Solid State Electrochemistry, 2014, 18, 2673-2682.	1.2	17
141	Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups. Physical Chemistry Chemical Physics, 2014, 16, 16003.	1.3	6
142	Effect of surface chemistry on the double layer capacitance of polypyrrole-derived ordered mesoporous carbon. RSC Advances, 2014, 4, 47039-47046.	1.7	12
143	Synthesis and physical–chemical properties of N-containing nanoporous carbons. Journal of Materials Science, 2014, 49, 4354-4362.	1.7	6
144	High temperature ammonia treatment of pitch particulates and fibers for nitrogen enriched microporous carbons. Fuel Processing Technology, 2014, 119, 211-217.	3.7	30
145	Synthesis of Graphene. , 2014, , 34-77.		1
146	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5, 50063-50069.	1.7	27
147	Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350, 1508-1513.	6.0	1,821
148	Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. Journal of Materials Chemistry A, 2015, 3, 18906-18912.	5.2	69
149	Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochimica Acta, 2015, 160, 244-253.	2.6	172
150	Superior Capacitive Performance of Hydrocharâ€Based Porous Carbons in Aqueous Electrolytes. ChemSusChem, 2015, 8, 1049-1057.	3.6	65
151	Increasing Capacitance of Zeolite-Templated Carbons in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5070-A5076.	1.3	29

#	ARTICLE	IF	CITATIONS
152	Hierarchical Porous Carbon Materials with High Capacitance Derived from Schiff-Base Networks. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5811-5819.	4.0	108
153	Progress towards high-power Li/CF _x batteries: electrode architectures using carbon nanotubes with CF _x . Physical Chemistry Chemical Physics, 2015, 17, 22504-22518.	1.3	76
154	Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors. Science China Materials, 2015, 58, 521-533.	3.5	25
155	High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.	3.2	237
156	Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors. Journal of Colloid and Interface Science, 2015, 452, 54-61.	5.0	87
157	Physico-chemical and electrochemical properties of pitch-based high crystallinity cokes used as electrode material for electric double layer capacitor. Journal of Industrial and Engineering Chemistry, 2015, 23, 27-32.	2.9	24
158	Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Journal of Power Sources, 2015, 285, 303-309.	4.0	182
159	Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: Chemical and electrochemical characterization. Carbon, 2015, 91, 252-265.	5.4	44
160	Integrated electrospun carbon nanofibers with vanadium and single-walled carbon nanotubes through covalent bonds for high-performance supercapacitors. RSC Advances, 2015, 5, 40163-40172.	1.7	12
161	"Egg-Box―Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors. ACS Nano, 2015, 9, 11225-11233.	7.3	291
162	Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24453-24462.	5.2	82
163	Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance. Carbon, 2015, 95, 72-83.	5.4	102
164	Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon, 2015, 95, 949-963.	5.4	252
165	Human hair-derived nitrogen and sulfur co-doped porous carbon materials for gas adsorption. RSC Advances, 2015, 5, 73980-73988.	1.7	57
166	N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. Journal of Power Sources, 2015, 278, 218-229.	4.0	126
167	Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon, 2015, 83, 144-151.	5.4	229
168	Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon, 2015, 82, 205-213.	5.4	66
169	Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor. Journal of Power Sources, 2015, 274, 551-559.	4.0	41

#	Article	IF	CITATIONS
170	Synthesis of Graphene by CVD and its Nitrogen-plasma Treatment for Electrodes in Electrochemical Capacitor: Significance of Cooling and Plasma Conditions. Electrochemistry, 2016, 84, 506-510.	0.6	2
173	Nitrogen-doped carbon nanosheets for high-performance liquid as well as solid state supercapacitor cells. RSC Advances, 2016, 6, 35014-35023.	1.7	17
174	Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors. Journal of Power Sources, 2016, 321, 143-154.	4.0	77
175	Energy Storage Performance Enhancement by Surface Engineering of Electrode Materials. Advanced Materials Interfaces, 2016, 3, 1600430.	1.9	17
176	Role of surface fluorine in improving the electrochemical properties of Fe/MWCNT electrodes. Journal of Industrial and Engineering Chemistry, 2016, 43, 78-85.	2.9	14
177	Environmentally Friendly Supercapacitors. , 2016, , 351-492.		7
178	X-ray Photoelectron Spectroscopy., 2016,, 153-171.		10
179	Highly conjugated graphitic 3D carbon frameworks for supercapacitors with long cycling stability. Carbon, 2016, 109, 650-657.	5.4	19
180	Design of Hierarchically Porous Carbons with Interlinked Hydrophilic and Hydrophobic Surface and Their Capacitive Behavior. Chemistry of Materials, 2016, 28, 8715-8725.	3.2	35
181	Activated carbon from nitrogen rich watermelon rind for high-performance supercapacitors. RSC Advances, 2016, 6, 59333-59342.	1.7	79
182	Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors. Journal of Applied Electrochemistry, 2016, 46, 667-677.	1.5	82
183	A Facile Bulk Production of Processable Partially Reduced Graphene Oxide as Superior Supercapacitor Electrode Material. Electrochimica Acta, 2016, 196, 386-404.	2.6	30
184	Nitrogen-modified biomass-derived cheese-like porous carbon for electric double layer capacitors. RSC Advances, 2016, 6, 26738-26744.	1.7	22
185	Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors. Applied Surface Science, 2016, 364, 850-861.	3.1	52
186	Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta, 2016, 190, 1134-1141.	2.6	217
187	Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 2286-2292.	5. 2	84
188	Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Journal of Materials Chemistry A, 2016, 4, 1144-1173.	5.2	879
189	Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy and Environmental Science, 2016, 9, 102-106.	15.6	910

#	Article	IF	CITATIONS
190	Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Scientific Reports, 2017, 7, 40259.	1.6	59
191	A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy, 2017, 33, 334-342.	8.2	352
192	One-step preparation of nitrogen-doped graphene nanosheets for high-performance supercapacitors. Applied Surface Science, 2017, 409, 350-357.	3.1	19
193	Creating Nitrogen-Doped Hollow Multiyolk@Shell Carbon as High Performance Electrodes for Flow-Through Deionization Capacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 3329-3338.	3.2	69
194	Flexible fiber-shaped supercapacitors: Design, fabrication, and multi-functionalities. Energy Storage Materials, 2017, 8, 85-109.	9.5	108
195	High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochimica Acta, 2017, 241, 153-161.	2.6	93
196	Improvement of the Structural and Chemical Properties of Carbon Nanoâ€onions for Electrocatalysis. ChemNanoMat, 2017, 3, 583-590.	1.5	24
197	Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors. Applied Surface Science, 2017, 422, 847-855.	3.1	64
198	Nitrogen and Sulfur Co-Doped Glucose-Based Porous Carbon Materials with Excellent Electrochemical Performance for Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A1601-A1607.	1.3	14
199	High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor. Carbon, 2017, 118, 699-708.	5.4	104
200	Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16263-16272.	5.2	53
201	Influence of ionic liquid on pseudocapacitance performance of electrochemically synthesized conductive polymer: Electrochemical and theoretical investigation. Journal of Colloid and Interface Science, 2017, 500, 315-320.	5.0	34
202	Nitrogen-doped reduced graphene oxide as electrode material for high rate supercapacitors. Applied Surface Science, 2017, 399, 265-271.	3.1	107
203	Materials for Electrochemical Capacitors. , 2017, , 495-561.		25
204	Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C ₆₀ Molecules to Obtain Superior Energy Storage. Advanced Materials, 2017, 29, 1603414.	11.1	175
206	Synthesis of graphene oxide/polybenzoxazine-based nitrogen-containing porous carbon nanocomposite for enhanced supercapacitor properties. Electrochimica Acta, 2017, 251, 12-24.	2.6	19
207	Nitrogen-Doped Porous Carbon Nanosheets Derived from Coal Tar Pitch as an Efficient Oxygen-Reduction Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 8880-8887.	1.8	23
209	High Specific Capacitance Based on N-Doped Microporous Carbon in [EMIm]Al _x Cl _y Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2017, 164, A3319-A3325.	1.3	10

#	Article	IF	CITATIONS
210	Tailoring pseudocapacitive materials from a mechanistic perspective. Materials Today Energy, 2017, 6, 211-229.	2.5	100
211	Variable texture few-layer ordered macroporous carbon for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2017, 5, 25171-25176.	5.2	6
213	Synthesis of 3D Flowerâ€like Nanocomposites of Nitrogenâ€Doped Carbon Nanosheets Embedded with Hollow Cobalt(II,III) Oxide Nanospheres for Lithium Storage. ChemElectroChem, 2017, 4, 102-108.	1.7	13
214	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	10.2	226
215	Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO2 capture. Scientific Reports, 2018, 8, 1867.	1.6	35
216	Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors. Carbon, 2018, 132, 220-231.	5.4	75
217	Nitrogen-doped porous microsphere carbons derived from glucose and aminourea for high-performance supercapacitors. Catalysis Today, 2018, 318, 150-156.	2.2	21
218	Facile Preparation of Self-Standing Hierarchical Porous Nitrogen-Doped Carbon Fibers for Supercapacitors from Plant Protein–Lignin Electrospun Fibers. ACS Omega, 2018, 3, 4647-4656.	1.6	38
219	Template-free synthesis of nitrogen-doped hierarchical porous carbon for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 9673-9682.	1.1	4
220	High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. Journal of Power Sources, 2018, 386, 66-76.	4.0	116
221	Electrochemical capacitors using nitrogen-doped vertically aligned multi-walled carbon nanotube electrodes prepared by defluorination. Carbon, 2018, 132, 539-547.	5.4	13
222	Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction. Nano-Micro Letters, 2018, 10, 3.	14.4	99
223	Electrochemical and electronic properties of nitrogen doped fullerene and its derivatives for lithium-ion battery applications. Journal of Energy Chemistry, 2018, 27, 528-534.	7.1	36
224	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5.2	126
225	Electrochemical Properties of Boronâ€Doped Fullerene Derivatives for Lithiumâ€Ion Battery Applications. ChemPhysChem, 2018, 19, 753-758.	1.0	37
226	Nitrogen-doped micro-nano carbon spheres with multi-scale pore structure obtained from interpenetrating polymer networks for electrochemical capacitors. RSC Advances, 2018, 8, 35083-35093.	1.7	3
227	Freeâ€Standing Electrodes Derived from Metal–Organic Frameworks/ Nanofibers Hybrids for Membrane Capacitive Deionization. Advanced Materials Technologies, 2018, 3, 1800135.	3.0	41
228	The "In Situ Electrolyte―Concept: Using Activation Chemicals as Electrolytes for Carbonâ€Based Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1800087.	2.7	7

#	Article	IF	CITATIONS
229	Nitrogen-Enriched Carbon Nanofibers Derived from Polyaniline and Their Capacitive Properties. Applied Sciences (Switzerland), 2018, 8, 1079.	1.3	10
230	Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Springer Theses, 2018, , .	0.0	5
231	Effect of nitrogen doping of graphene nanoflakes on their efficiency in supercapacitor applications. Functional Materials Letters, 2018, 11, 1840005.	0.7	29
232	Marine and Freshwater Feedstocks as a Precursor for Nitrogen-Containing Carbons: A Review. Marine Drugs, 2018, 16, 142.	2.2	11
233	Hierarchical porous carbon obtained from frozen tofu for efficient energy storage. New Journal of Chemistry, 2018, 42, 12421-12428.	1.4	13
234	Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. Journal of Materials Research, 2018, 33, 1612-1624.	1.2	24
235	Aqueous supercapacitors based on carbonized silk electrodes. RSC Advances, 2018, 8, 22146-22153.	1.7	19
236	†Pillar effect†M of chemically bonded fullerene in enhancing supercapacitance performances of partially reduced fullerenol graphene oxide hybrid electrode material. Electrochimica Acta, 2018, 283, 269-290.	2.6	20
237	Medulla stachyuri-derived iron and nitrogen co- doped 2D porous carbon-flakes for highly efficient oxygen reduction electrocatalysis and supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 21726-21737.	3.8	5
238	Nitrogen self-doped activated carbons <i>via</i> the direct activation of <i>Samanea saman</i> leaves for high energy density supercapacitors. RSC Advances, 2019, 9, 21724-21732.	1.7	17
239	Biomassâ€Derived Carbon: A Valueâ€Added Journey Towards Constructing Highâ€Energy Supercapacitors in an Asymmetric Fashion. ChemSusChem, 2019, 12, 4353-4382.	3.6	51
240	Electrochemical performance of hydrothermally synthesized N-Doped reduced graphene oxide electrodes for supercapacitor application. Solid State Sciences, 2019, 96, 105952.	1.5	24
241	Simultaneous densification and nitrogen doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications. Journal of Power Sources, 2019, 441, 227199.	4.0	52
242	Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications. Beilstein Journal of Nanotechnology, 2019, 10, 1618-1627.	1.5	20
243	Mechanisms of the performance fading of carbon-based electrochemical capacitors operating in a LiNO3 electrolyte. Journal of Power Sources, 2019, 438, 227029.	4.0	27
244	Mesophase Pitch-Derived Carbons with High Electronic and Ionic Conductivity Levels for Electric Double-Layer Capacitors. ACS Omega, 2019, 4, 16925-16934.	1.6	3
245	Metallic MoS2 grown on porous g-C3N4 as an efficient electrode material for supercapattery application. Electrochimica Acta, 2019, 301, 401-410.	2.6	33
246	Strategies to Enhance the Performance of Electrochemical Capacitors Based on Carbon Materials. Frontiers in Materials, 2019, 6, .	1.2	58

#	Article	IF	CITATIONS
247	Conductive Carbon Materials from the Hydrothermal Carbonization of Vineyard Residues for the Application in Electrochemical Double-Layer Capacitors (EDLCs) and Direct Carbon Fuel Cells (DCFCs). Materials, 2019, 12, 1703.	1.3	45
248	Preparation of oxygen-rich hierarchical porous carbon for supercapacitors through the co-carbonization of pitch and biomass. Diamond and Related Materials, 2019, 96, 118-125.	1.8	29
249	Preparation of MgO-Templated N-Doped Mesoporous Carbons from Polyvinylpyrrolidone: Effect of Heating Temperature on Pore Size Distribution. Journal of Carbon Research, 2019, 5, 15.	1.4	0
250	Core-shell nanomaterials: Applications in energy storage and conversion. Advances in Colloid and Interface Science, 2019, 267, 26-46.	7.0	125
251	Cross-linked poly(ionic liquid) as precursors for nitrogen-doped porous carbons. RSC Advances, 2019, 9, 8137-8145.	1.7	11
252	Preparation and electrochemical performance of nitrogen-enriched activated carbon derived from silkworm pupae waste. RSC Advances, 2019, 9, 9878-9886.	1.7	18
253	Hierarchical Porous Carbon Derived from Coal Tar Pitch Containing Discrete Co–Nx–C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 8587-8596.	3.2	28
254	Polyacrylonitrile-derived nanostructured carbon materials. Progress in Polymer Science, 2019, 92, 89-134.	11.8	92
255	Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.	1.2	43
256	Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials. Bioresource Technology, 2019, 280, 260-268.	4.8	113
257	Design of high specific surface area N-doped carbon aerogels via a microwave reduction method. Journal of Materials Science, 2019, 54, 1580-1592.	1.7	6
258	N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors. Microporous and Mesoporous Materials, 2019, 279, 323-333.	2.2	50
259	Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors. Electrochimica Acta, 2019, 299, 987-998.	2.6	24
260	Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 2019, 294, 183-191.	2.6	78
261	Rational Design of Carbonâ€Rich Materials for Energy Storage and Conversion. Advanced Materials, 2019, 31, e1804973.	11.1	74
262	A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019, 101, 123-145.	8.2	1,049
263	Polymer Composites with Functionalized Carbon Nanotube and Graphene., 2019,, 211-248.		16
264	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. Carbon, 2019, 142, 89-98.	5.4	49

#	Article	IF	CITATIONS
265	Nitrogenâ€Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chemistry - an Asian Journal, 2020, 15, 2282-2293.	1.7	100
266	Flower-like NiO/ZnO hybrid coated with N-doped carbon layer derived from metal-organic hybrid frameworks as novel anode material for high performance sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 563, 354-362.	5.0	13
267	Monte Carlo study on the surface potential measurement using the peak-shift method. Applied Surface Science, 2020, 504, 144138.	3.1	10
268	Accommodating succinonitrile rotators in micro-pores of 3D nano-structured cactus carbon for assisting micro-crystallite organization, ion transport and surplus pseudo-capacitance: An extreme temperature supercapacitor behavior. Electrochimica Acta, 2020, 333, 135547.	2.6	2
269	The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.	8.2	141
270	Onion-derived activated carbons with enhanced surface area for improved hydrogen storage and electrochemical energy application. RSC Advances, 2020, 10, 26928-26936.	1.7	19
271	Efficient hole transport material formed by atmospheric pressure plasma functionalization of Spiro-OMeTAD. Materials Today Chemistry, 2020, 17, 100321.	1.7	6
272	Electrode materials for supercapacitors. , 2020, , 35-204.		8
273	Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 2020, 164, 42-50.	5.4	114
274	Synthesis of nitrogen-superdoped and graphene fiber-supported three-dimensional graphene foam for supercapacitors. Journal of Materials Science, 2020, 55, 6952-6962.	1.7	2
275	Bio-based electric devices., 2020,, 311-355.		1
276	Dual-conductive N,S co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor. Chemical Engineering Science, 2020, 217, 115496.	1.9	36
277	Nitrogenâ€Immobilized, Ionic Liquidâ€Derived, Nitrogenâ€Doped, Activated Carbon for Supercapacitors. ChemElectroChem, 2020, 7, 2410-2417.	1.7	10
278	Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. Waste and Biomass Valorization, 2021, 12, 2171-2186.	1.8	54
279	Electrospun carbon nanofibers as electrode materials for supercapacitor applications, , 2021, , 641-688.		5
280	High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Chemistry - A European Journal, 2021, 27, 669-682.	1.7	22
281	Does high sulphur coal have the potential to produce high performance - low cost supercapacitors?. Surfaces and Interfaces, 2021, 22, 100899.	1.5	8
282	Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene. Small, 2021, 17, e2007311.	5.2	83

#	Article	IF	CITATIONS
283	Comparative Studies of Solutions of Homogeneous Electrochemical Capacitors Models. Journal of Energy Storage, 2021, 35, 102221.	3.9	1
284	Hierarchical Lignin-Based Carbon Matrix and Carbon Dot Composite Electrodes for High-Performance Supercapacitors. ACS Omega, 2021, 6, 7851-7861.	1.6	20
285	Digitally Patterned Mesoporous Carbon Nanostructures of Colorless Polyimide for Transparent and Flexible Micro-Supercapacitor. Energies, 2021, 14, 2547.	1.6	6
286	Improvement of Mesoporosity on Supercapacitive Performance of Activated Carbons Derived From Coffee Grounds. Bulletin of the Korean Chemical Society, 2021, 42, 748-755.	1.0	7
287	N-Doped Carbon Nanosheets from Biomass for Ultra Long-Cycling and High Energy Density Symmetric Supercapacitors. ECS Journal of Solid State Science and Technology, 2021, 10, 051004.	0.9	4
288	Multiwalled Carbon Nanotubes Coated with Nitrogen–Sulfur Co-Doped Activated Carbon for Detecting Fenitrothion. ACS Applied Nano Materials, 2021, 4, 4781-4789.	2.4	22
289	Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature. Carbon Letters, 2021, 31, 581-592.	3.3	29
290	Effects of FeCl ₃ Catalytic Hydrothermal Carbonization on Chemical Activation of Corn Wet Distillers' Fiber. ACS Omega, 2021, 6, 14875-14886.	1.6	15
291	Facile preparation of N-doped porous carbon nanosheets derived from potassium citrate/melamine for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 892, 115302.	1.9	13
292	Enhancing capacitor lifetime by alternate constant polarization. Journal of Power Sources, 2021, 506, 230131.	4.0	7
293	Hierarchical porous carbon/Kraft lignin composite with significantly improved superior pseudocapacitive behavior. Electrochimica Acta, 2021, 398, 139307.	2.6	10
294	Biomass-derived N-doped porous carbon nanosheets for energy technologies. Chemical Engineering Journal, 2021, 425, 129017.	6.6	93
295	Role of graphene in solid-state asymmetric supercapacitors. , 2021, , 123-147.		0
296	Boosting the Supercapacitance of Nitrogenâ€Doped Carbon by Tuning Surface Functionalities. ChemSusChem, 2017, 10, 4018-4024.	3.6	38
297	Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1687-1694.	2.4	12
298	CHAPTER 7. Hydrothermal Carbon Materials for Heterogeneous Catalysis. RSC Green Chemistry, 2015, , 191-224.	0.0	1
299	The Rate-Dependence of Supercapacitor Performance: Quantitative Evaluation Using Peukert's Constant. Journal of the Electrochemical Society, 2020, 167, 130506.	1.3	4
300	Nanotextured Carbons for Electrochemical Energy Storage. , 2006, , .		6

#	Article	IF	CITATIONS
301	Preparation of Carbon Materials from Lignocellulosic Biomass., 2014,, 47-75.		1
302	Functionalized Exfoliated Graphene Oxide as Supercapacitor Electrodes. Soft Nanoscience Letters, 2012, 02, 59-66.	0.8	86
303	Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties. Bulletin of the Korean Chemical Society, 2008, 29, 413-416.	1.0	34
304	Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes. Carbon Letters, 2016, 17, 70-73.	3.3	4
305	Capacitance behavior of carbonaceous materials derived from KAPTON films containing small amounts of metallic compounds. Tanso, 2009, 2009, 121-125.	0.1	3
306	Pore structure and application of MgO-templated carbons. Tanso, 2010, 2010, 60-68.	0.1	20
307	Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor. Korean Chemical Engineering Research, 2012, 50, 1043-1048.	0.2	3
308	Nanotextured Carbons for Electrochemical Energy Storage. Advanced Materials and Technologies, 2006, , 295-319.	0.4	0
309	Template synthesis of carbon-based uniform nanoporous materials and their applications for energy storage. Tanso, 2011, 2011, 89-95.	0.1	7
310	Nanocarbons nanocarbon for Supercapacitors nanocarbon for supercapacitors., 2012,, 6769-6790.		0
311	Matrix and Bulk Synthesis, Activation and Functionalization of Nanoporous Carbon Adsorbents. Himia, Fizika Ta Tehnologia Poverhni, 2015, 6, 97-121.	0.2	2
312	Nitrogen Doping of Mesoporous Carbon Materials. Springer Theses, 2018, , 35-47.	0.0	1
313	Study of electrochemical properties of activated carbon electrode synthesized using bio-waste for supercapacitor applications. Biomass Conversion and Biorefinery, 2023, 13, 14059-14070.	2.9	7
315	Doping of Carbon Nanostructures for Energy Application. Advances in Material Research and Technology, 2022, , 83-109.	0.3	3
317	Nitrogen-Enriched Activated Carbons Via Dual N-Doping Processes: Electrode Material for High Gravimetric- and Volumetric-Performance Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
318	Understanding the Performance Increase of Catalysts Supported on N-Functionalized Carbon in PEMFC Catalyst Layers. Journal of the Electrochemical Society, 2022, 169, 054520.	1.3	10
319	Hydrothermal cocarbonization of cellulose and organic matter of municipal sewage sludge for the preparation of supercapacitor carbon materials. Biomass and Bioenergy, 2022, 163, 106526.	2.9	8
320	A critical review on polyimide derived carbon materials for high-performance supercapacitor electrodes. Journal of Energy Storage, 2022, 55, 105667.	3.9	16

#	Article	IF	CITATIONS
321	One-step fabrication of N-doped activated carbon by NH3 activation coupled with air oxidation for supercapacitor and CO2 capture applications. Journal of Analytical and Applied Pyrolysis, 2022, 168, 105710.	2.6	6
322	Lignosulfonate Boost the Nitrogen-Dopped Carbon Supercapacitor Pseudocapacitance Behavior. SSRN Electronic Journal, 0, , .	0.4	0
323	Nitrogen-enriched activated carbons via dual N-doping processes: Electrode material for high gravimetric- and volumetric-performance supercapacitor. Journal of Energy Storage, 2022, 56, 106040.	3.9	7
324	Synthesis of N-doped carbon material via hydrothermal carbonization: Effects of reaction solvent and nitrogen source. Journal of Energy Storage, 2023, 60, 106588.	3.9	10