A framework for managing transitions in chemical plan

Computers and Chemical Engineering 29, 305-322 DOI: 10.1016/j.compchemeng.2004.09.024

Citation Report

#	Article	IF	CITATIONS
1	Production campaign planning including grade transition sequencing and dynamic optimization. Computers and Chemical Engineering, 2005, 29, 2163-2179.	3.8	85
2	Off-line Temporal Signal Comparison Using Singular Points Augmented Time Warping. Industrial & Engineering Chemistry Research, 2005, 44, 4697-4716.	3.7	25
3	Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chemical Engineering Science, 2006, 61, 6109-6132.	3.8	47
4	Production optimization for continuously operated processes with optimal operation and scheduling of multiple units. Computers and Chemical Engineering, 2006, 30, 392-406.	3.8	38
5	Transition Classification and Performance Analysis: A Study on Industrial Hydro-cracker. , 2006, , .		1
6	State-specific Key Variables for Monitoring Multi-state Processes. Chemical Engineering Research and Design, 2007, 85, 1630-1644.	5.6	5
7	Fault diagnosis using dynamic trend analysis: A review and recent developments. Engineering Applications of Artificial Intelligence, 2007, 20, 133-146.	8.1	120
8	State-Specific Key Variables for Monitoring Multi-State Processes. Chemical Engineering Research and Design, 2007, 85, 1630-1644.	5.6	17
9	Artificial intelligence methodologies for agile refining: an overview. Knowledge and Information Systems, 2007, 12, 129-145.	3.2	16
10	Chemical Plant Flare Minimization via Plantwide Dynamic Simulation. Industrial & Engineering Chemistry Research, 2009, 48, 3505-3512.	3.7	64
11	Multi-model based process condition monitoring of offshore oil and gas production process. Chemical Engineering Research and Design, 2010, 88, 572-591.	5.6	50
12	Multi-agent based collaborative fault detection and identification in chemical processes. Engineering Applications of Artificial Intelligence, 2010, 23, 934-949.	8.1	56
13	Hierarchically Distributed Fault Detection and Identification through Dempster–Shafer Evidence Fusion. Industrial & Engineering Chemistry Research, 2011, 50, 9249-9269.	3.7	11
14	An ontology for distributed process supervision of large-scale chemical plants. Computers and Chemical Engineering, 2012, 46, 124-140.	3.8	28
15	An artificial immune system for adaptive fault detection, diagnosis and recovery. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2012, 4, 22-31.	1.1	6
16	Enhanced plant fault diagnosis based on the characterization of transient stages. Computers and Chemical Engineering, 2012, 37, 200-213.	3.8	13
17	Heat integration within process integration. , 2013, , 465-474.		1
18	Fault diagnosis strategy for startup process based on standard operating procedures 2013		2

#	Article	IF	CITATIONS
19	Optimal trajectory profile generation of continuous processes using multimodel framework. , 2013, , .		0
20	Control of Bulk Propylene Polymerizations Operated with Multiple Catalysts through Controller Reconfiguration. Macromolecular Reaction Engineering, 2014, 8, 201-216.	1.5	6
21	A dynamic alarm management strategy for chemical process transitions. Journal of Loss Prevention in the Process Industries, 2014, 30, 207-218.	3.3	70
22	Alarm management based on diagnosis. IFAC-PapersOnLine, 2016, 49, 126-131.	0.9	7
23	Alarm management via temporal pattern learning. Engineering Applications of Artificial Intelligence, 2017, 65, 506-516.	8.1	12
24	Heat integration within process integration. , 2018, , 467-475.		0
26	Time-optimal symbolic control of a changeover process based on an approximately bisimilar symbolic model. Journal of Process Control, 2019, 81, 126-135.	3.3	2
27	Data-driven monitoring of multimode continuous processes: A review. Chemometrics and Intelligent Laboratory Systems, 2019, 189, 56-71.	3.5	112
28	Combining operations documentation and data to diagnose procedure execution. Computers and Chemical Engineering, 2020, 140, 106940.	3.8	0
29	Fault detection of FWTPs in coalâ€fired power plants using Kâ€WDâ€KPCA in consideration of multiple operation conditions. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2599.	1.5	1
30	A general framework and optimization models for the scheduling of continuous chemical processes. AICHE Journal, 2021, 67, e17344.	3.6	5
31	Synthesizing labeled data to enhance soft sensor performance in data-scarce regions. Control Engineering Practice, 2021, 115, 104903.	5.5	10
32	Self-learning of fault diagnosis identification. Computer Aided Chemical Engineering, 2011, 29, 885-889.	0.5	2
33	Data Mining for the Chemical Process Industry. , 2009, , 458-464.		3
36	An evidential reasoning-based fault detection method for multi-mode system. Measurement: Journal of the International Measurement Confederation, 2022, 193, 110942.	5.0	5
37	æ•°æ®é©±åЍçš"åﷺ·¥å†µèį‡ç¨‹å¼,å、ç›ʿ测æ -1 法: 综èį°ä,Žå±•望. Scientia Sinica Informationis, 2023, , .	0.4	0
38	Alarm-based explanations of process monitoring results from deep neural networks. Computers and Chemical Engineering, 2023, 179, 108442.	3.8	1

CITATION REPORT