Micromixersâ \in "a review on passive and active mixing p

Chemical Engineering Science 60, 2479-2501 DOI: 10.1016/j.ces.2004.11.033

Citation Report

#	Article	IF	CITATIONS
1	Momentum Transfer Effects in the Transport of Adsorbate at a Nano-Patterned Surface. Adsorption Science and Technology, 2005, 23, 633-642.	1.5	2
2	Development of a .SIGMAType Plate Static Micromixer and Its Mixing Performance. Kagaku Kogaku Ronbunshu, 2005, 31, 457-465.	0.1	6
3	Microstructured reactors for catalytic reactions. Catalysis Today, 2005, 110, 2-14.	2.2	429
4	Immunomagnetic Separation in Microchannels: From MEMS to BioNEMS. , 2005, , 27.		1
5	Numerical simulation of polymerization in interdigital multilamination micromixers. Lab on A Chip, 2005, 5, 966.	3.1	55
6	Aqueous Kolbeâ^'Schmitt Synthesis Using Resorcinol in a Microreactor Laboratory Rig under High-p,T Conditions. Organic Process Research and Development, 2005, 9, 479-489.	1.3	85
7	Industrial and real-life applications of micro-reactor process engineering for fine and functional chemistry. Studies in Surface Science and Catalysis, 2006, 159, 35-46.	1.5	4
8	AC electroosmotic micromixer for chemical processing in a microchannel. Lab on A Chip, 2006, 6, 550.	3.1	130
10	A Simple, Valveless Microfluidic Sample Preparation Device for Extraction and Amplification of DNA from Nanoliter-Volume Samples. Analytical Chemistry, 2006, 78, 1444-1451.	3.2	158
11	A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3D microchannels with patterned charged surfaces. Journal of Micromechanics and Microengineering, 2006, 16, 1453-1462.	1.5	38
12	Emerging Technologies Supporting Chemical Process R&D and Their Increasing Impact on Productivity in the Pharmaceutical Industry. Chemical Reviews, 2006, 106, 2794-2810.	23.0	91
13	Mixing in a T-shaped microreactor: scales and quality of mixing. Computer Aided Chemical Engineering, 2006, , 351-357.	0.3	4
14	Scalable Reactor Design for Pharmaceuticals and Fine Chemicals Production. 1:Â Potential Scale-up Obstacles. Organic Process Research and Development, 2006, 10, 539-552.	1.3	50
15	Selective Condensation Reaction of Phenols and Hydroxybenzyl Alcohol Using Micromixers Based on Collision of Fluid Segments. Industrial & Engineering Chemistry Research, 2006, 45, 4954-4961.	1.8	16
17	Effects of channel geometry on mixing performance of micromixers using collision of fluid segments. Chemical Engineering Journal, 2006, 118, 189-197.	6.6	64
18	Foundations of laminar chaotic mixing and spectral theory of linear operators. Chemical Engineering Science, 2006, 61, 2754-2761.	1.9	13
19	Impact of fluid path geometry and operating parameters on I/I-dispersion in interdigital micromixers. Chemical Engineering Science, 2006, 61, 2959-2967.	1.9	45
20	Patterning of flow and mixing in rotating radial microchannels. Microfluidics and Nanofluidics, 2006, 2, 97-105.	1.0	92

#	Article	IF	CITATIONS
21	Convective mixing and chemical reactions in microchannels with high flow rates. Sensors and Actuators B: Chemical, 2006, 117, 495-508.	4.0	207
22	Fluid mixing in a T-shaped micro-mixer. Chemical Engineering Science, 2006, 61, 2950-2958.	1.9	276
25	Single and Multiphase Catalytic Oxidation of Benzyl Alcohol by Tetrapropylammonium Perruthenate in a Mobile Microreactor System. Chemical Engineering and Technology, 2006, 29, 1372-1375.	0.9	20
26	Microreactors as Tools for Synthetic Chemists—The Chemists' Round-Bottomed Flask of the 21st Century?. Chemistry - A European Journal, 2006, 12, 8434-8442.	1.7	433
27	Reducing side product by enhancing mass-transfer rate. AICHE Journal, 2006, 52, 4207-4213.	1.8	30
28	Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques. Journal of Micromechanics and Microengineering, 2006, 16, 53-61.	1.5	43
29	Reaction enhancement of point sources due to vortex stirring. Physical Review E, 2006, 74, 016307.	0.8	24
30	Design of Microfluidic Mixer Utilizing Pressure Disturbances. , 2006, , .		2
33	Unsteady Laminar Flow Regimes and Mixing in T-Shaped Micromixers. , 2007, , 671.		9
34	Design of a Micromixer With Herringbone Grooves Using Numerical Optimization Techniques. , 2007, , 679.		1
35	Microstructured Reactors for Development and Production in Pharmaceutical and Fine Chemistry. Ernst Schering Research Foundation Workshop, 2007, , 205-240.	0.7	4
36	Fabrication of round channels using the surface tension of PDMS and its application to a 3D serpentine mixer. Journal of Micromechanics and Microengineering, 2007, 17, 1533-1541.	1.5	55
37	Design and Numerical Simulation of a Three-Dimensional Nozzle Microstructured Mixer. Key Engineering Materials, 2007, 339, 343-347.	0.4	1
38	Microfluidics: Fundamentals and Engineering Concepts. , 2007, , 1-58.		11
39	Generation of Concentration Gradient from Two-Layered Flow with High-Speed Switching Microvalve. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 1486-1493.	0.2	0
40	Microfluidic device for controlled dilution and sorting of droplets by electrokinetic driving forces. Proceedings of SPIE, 2007, , .	0.8	0
41	Controlled Liquid Antisolvent Precipitation of Hydrophobic Pharmaceutical Nanoparticles in a Microchannel Reactor. Industrial & Engineering Chemistry Research, 2007, 46, 8229-8235.	1.8	158
42	Microfluidic platforms for lab-on-a-chip applications. Lab on A Chip, 2007, 7, 1094.	3.1	925

# 43	ARTICLE Modeling and Simulation of Microreactors. , 0, , 25-78.	IF	CITATIONS
44	A rhombic micromixer with asymmetrical flow for enhancing mixing. Journal of Micromechanics and Microengineering, 2007, 17, 2495-2504.	1.5	61
45	Integrated continuous microfluidic liquid–liquid extraction. Lab on A Chip, 2007, 7, 256-263.	3.1	341
46	Gradient Generation with Active Mixing by a Novel Microvalve using Tailor-made Multilayer Piezoelectric Actuator (TAMPA). , 2007, , .		0
47	A Microcapillary Flow Disc Reactor for Organic Synthesis. Organic Process Research and Development, 2007, 11, 399-405.	1.3	132
50	Application of the Radial Basis Neural Network to Optimization of a Micromixer. Chemical Engineering and Technology, 2007, 30, 962-966.	0.9	21
51	Controlling fine particle formation processes using a concentric microreactor. AICHE Journal, 2007, 53, 196-206.	1.8	12
52	Advanced chemical processing using microspace. Chemical Engineering Science, 2007, 62, 4842-4851.	1.9	58
53	Numerical characterisation of folding flow microchannel mixers. Chemical Engineering Science, 2007, 62, 2718-2727.	1.9	31
54	Millisecond mixing of two liquid streams in a mixer model. Chemical Engineering Science, 2007, 62, 5688-5695.	1.9	15
55	Fast liquid mixing by cross-flow impingement in millimeter channels. Chemical Engineering Science, 2007, 62, 6178-6190.	1.9	21
56	Shape optimization of a micromixer with staggered herringbone groove. Chemical Engineering Science, 2007, 62, 6687-6695.	1.9	95
57	Rapidly Reversible Hydrophobization: An Approach to High First-Pass Drug Extraction. Chemistry and Biology, 2007, 14, 1065-1077.	6.2	6
58	Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer. Sensors and Actuators A: Physical, 2007, 139, 237-244.	2.0	33
59	Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology Advances, 2007, 25, 483-514.	6.0	326
60	Determination of the Segregation Index to Sense the Mixing Quality of Pilot- and Production-Scale Microstructured Mixers. Chemical Engineering Research and Design, 2007, 85, 605-611.	2.7	26
61	Ethanol Steam Reforming in a Microchannel Reactor. Chemical Engineering Research and Design, 2007, 85, 413-418.	2.7	49
62	Free radical polymerization in multilaminated microreactors: 2D and 3D multiphysics CFD modeling. Microfluidics and Nanofluidics, 2007, 3, 451-461.	1.0	33

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
63	Digital microfluidics: is a true lab-on-a-chip possible?. Microfluidics and Nanofluidics, 2007, 3, 245-281.	1.0	925
64	Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics, 2007, 3, 501-525.	1.0	258
65	An overlapping crisscross micromixer. Chemical Engineering Science, 2007, 62, 711-720.	1.9	40
66	Resonant mode-hopping micromixing. Sensors and Actuators A: Physical, 2007, 138, 179-186.	2.0	22
67	Fluids mixing in devices with connected-groove channels. Chemical Engineering Science, 2008, 63, 1871-1881.	1.9	50
68	Mass transfer enhancement due to a soft elastic boundary. Chemical Engineering Science, 2008, 63, 4302-4305.	1.9	28
69	Mixing characterization and energetic dissipation in different networks of minichannels. Chemical Engineering Research and Design, 2008, 86, 1135-1142.	2.7	7
70	Generation of concentration gradient from a wave-like pattern by high frequency vibration of liquid–liquid interface. Biomedical Microdevices, 2008, 10, 329-335.	1.4	7
71	Mixing behavior of the rhombic micromixers over a wide Reynolds number range using Taguchi method and 3D numerical simulations. Biomedical Microdevices, 2008, 10, 739-748.	1.4	25
72	Fabrication of microfluidic devices using photopatternable hybrid sol-gel coatings. Journal of Sol-Gel Science and Technology, 2008, 48, 143-147.	1.1	2
73	Evaluation of surrogate models for optimization of herringbone groove micromixer. Journal of Mechanical Science and Technology, 2008, 22, 387-396.	0.7	4
74	A rapid magnetic particle driven micromixer. Microfluidics and Nanofluidics, 2008, 4, 375-389.	1.0	134
75	Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer. Microfluidics and Nanofluidics, 2008, 4, 589-599.	1.0	63
76	Computational modeling and comparison of three co-laminar microfluidic mixing techniques. Microfluidics and Nanofluidics, 2008, 5, 43-53.	1.0	7
77	Lattice Boltzmann method simulation of electroosmotic stirring in a microscale cavity. Microfluidics and Nanofluidics, 2008, 4, 463-470.	1.0	9
78	Microstructured Reactors for Polymer Synthesis: A Renaissance of Continuous Flow Processes for Tailorâ€Made Macromolecules?. Macromolecular Chemistry and Physics, 2008, 209, 343-356.	1.1	111
79	Carbanions on Tap – Living Anionic Polymerization in a Microstructured Reactor. Macromolecular Chemistry and Physics, 2008, 209, 1106-1114.	1.1	59
80	Development of an Industrial Multiâ€injection Microreactor for Fast and Exothermic Reactions – Part II Chemical Engineering and Technology, 2008, 31, 1155-1161.	. 0.9	68

#	Article	IF	CITATIONS
81	Tailorâ€Made Poly(amidoamine)s for Controlled Complexation and Condensation of DNA. Chemistry - A European Journal, 2008, 14, 2025-2033.	1.7	97
82	Numerical characterization of threeâ€dimensional serpentine micromixers. AICHE Journal, 2008, 54, 1999-2008.	1.8	27
83	Optimisation of analyte transport in integrated microfluidic affinity sensors for the quantification of low levels of analyte. Sensors and Actuators B: Chemical, 2008, 131, 323-332.	4.0	17
84	An effective passive microfluidic mixer utilizing chaotic advection. Sensors and Actuators B: Chemical, 2008, 132, 172-181.	4.0	40
85	Numerical simulation of mass transfer in a liquid–liquid membrane contactor for laminar flow conditions. Computers and Chemical Engineering, 2008, 32, 1325-1333.	2.0	35
86	Computation of scales and quality of mixing in a T-shaped microreactor. Computers and Chemical Engineering, 2008, 32, 108-114.	2.0	75
87	Constitutive modelling of microstructured components fabricated by micro powder injection molding. Acta Materialia, 2008, 56, 5560-5566.	3.8	8
88	Modelling of the residence time distribution in micromixers. Chemical Engineering Journal, 2008, 135, S138-S146.	6.6	84
89	μPIV-Analysis of Taylor flow in micro channels. Chemical Engineering Journal, 2008, 135, S166-S172.	6.6	83
90	Towards a methodology for the systematic analysis and design of efficient chemical processes. Chemical Engineering and Processing: Process Intensification, 2008, 47, 2051-2060.	1.8	165
91	Dimensionless number for identification of flow patterns inside a T-micromixer. Chemical Engineering Science, 2008, 63, 5291-5297.	1.9	81
92	Pseudo 3-D simulation of a falling film microreactor based on realistic channel and film profiles. Chemical Engineering Science, 2008, 63, 5149-5159.	1.9	45
93	Mixing performance of a chaotic micro-mixer. Chemical Engineering Research and Design, 2008, 86, 1128-1134.	2.7	46
94	Flow and mixing characteristics of i_{f} -type plate static mixer with splitting and inverse recombination. Chemical Engineering Research and Design, 2008, 86, 1447-1453.	2.7	29
95	Chaotic mixing and mixing efficiency in a short time. Fluid Dynamics Research, 2008, 40, 1-33.	0.6	39
96	Microfluidic Reactor for Continuous Flow Biotransformations with Immobilized Enzymes: the Example of Lactose Hydrolysis by a Hyperthermophilic β_cont;â€Glycoside Hydrolase. Engineering in Life Sciences, 2008, 8, 40-48.	2.0	38
97	A State-of-the-Art Review of Mixing in Microfluidic Mixers. Chinese Journal of Chemical Engineering, 2008, 16, 503-516.	1.7	167
98	Cell research with physically modified microfluidic channels: A review. Lab on A Chip, 2008, 8, 1015.	3.1	163

#	ARTICLE	IF	CITATIONS
99	Organic Chemistry in Microreactors. , 0, , 59-209.		7
100	Electrowetting of Superhydrophobic ZnO Nanorods. Langmuir, 2008, 24, 5091-5098.	1.6	75
101	Exploring Roughness Effect on Laminar Internal Flow-Are We Ready for Change?. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 61-82.	1.4	38
102	A novel method for determining residence time distribution in intricately structured microreactors. Lab on A Chip, 2008, 8, 431.	3.1	35
103	Quantitative characterization of micromixing simulation. Biomicrofluidics, 2008, 2, 34104.	1.2	19
104	Oxidative Dimerization of Phenol Based on Micromixing in Single- And Two-Phase Systems. Industrial & Engineering Chemistry Research, 2008, 47, 7154-7160.	1.8	0
105	Design and characterisation of the staggered herringbone mixer. Chemical Engineering Journal, 2008, 142, 109-121.	6.6	66
106	A dynamic micromixer for arbitrary control of disguised chemical selectivity. Chemical Communications, 2008, , 3426.	2.2	10
107	Dibal-H Reduction of Methyl Butyrate into Butyraldehyde using Microreactors. Organic Process Research and Development, 2008, 12, 163-167.	1.3	57
108	Influence of micromixer characteristics on polydispersity index of block copolymers synthesized in continuous flow microreactors. Lab on A Chip, 2008, 8, 1682.	3.1	50
109	Fast Liquid Jet Mixing in Millimeter Channels with Various Multislits Designs. Industrial & Engineering Chemistry Research, 2008, 47, 9744-9753.	1.8	10
110	Effect of laminar velocity profile variation on mixing in microfluidic devices: The sigma micromixer. Applied Physics Letters, 2008, 93, .	1.5	15
111	Towards efficient micromixing by synthetic vortical structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222, 839-845.	1.1	2
112	Convective micromixers — design and industrial applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222, 807-816.	1.1	25
113	An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure. Journal of Micromechanics and Microengineering, 2008, 18, 045015.	1.5	26
114	Pre-Design of a Continuous Intensified Reactor Based on Pure Thermo-Chemical Optimisation. Chemical Product and Process Modeling, 2008, 3, .	0.5	1
115	Mixing characterisation for a serpentine microchannel equipped with embedded barriers. Proceedings of SPIE, 2008, , .	0.8	1
116	High performance microreactor for rapid fluid mixing and redox reaction of ascorbic acid. , 2008, , .		2

#	ARTICLE Flow past an oscillating circular cylinder in a channel with an upstream splitter plate. Physics of	IF	CITATIONS
117	Fluids, 2008, 20, .	1.6	21
110		1.2	T
119	Microfluidic for Lab-on-a-Chip. , 2008, , 463-516.		4
120	Nature's Microfluidic Transporter: Rotational Cytoplasmic Streaming at High Péclet Numbers. Physical Review Letters, 2008, 101, 178102.	2.9	39
121	A Study on Micromixing Process Utilizing Gas-Liquid Free Interface. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2008, 74, 1700-1706.	0.2	4
122	Numerical Simulation of Fluid Mixing in the Ribbed Microchannels. , 2008, , .		Ο
123	Development of a PDMS-Glass Hybrid Microchannel Mixer Composed of Micropillars and Micronozzles. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 445-454.	0.5	5
124	Intensified mixing. , 2008, , 215-221.		0
125	Relevant Review Papers/Texts. , 2008, , 393-395.		0
126	Laser assisted manufacturing of microscale chemical device of TT reactor. , 2009, , .		1
127	Design and Numerical Analysis of Magnetic Microrotors for Micromixing. , 2009, , .		0
128	Reciprocating flow-based centrifugal microfluidics mixer. Review of Scientific Instruments, 2009, 80, 075102.	0.6	58
129	Quantifying mixing using equilibrium reactions. Physics of Fluids, 2009, 21, 037101.	1.6	11
130	Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions. Physical Review E, 2009, 79, 036311.	0.8	20
131	A New Active Micro-Mixing Strategy. Heat Transfer Engineering, 2009, 30, 113-120.	1.2	1
132	Fabrication of microfluidic mixers with varying topography in glass using the powder-blasting process. Journal of Micromechanics and Microengineering, 2009, 19, 085024.	1.5	14
133	Finite Element Simulation of Mix Driven by Electroosmotic Flow in Microchannels. Advanced Materials Research, 2009, 76-78, 560-565.	0.3	0
134	Facile Preparation of Danazol Nanoparticles by High-Gravity Anti-solvent Precipitation (HGAP) Method. Chinese Journal of Chemical Engineering, 2009, 17, 318-323.	1.7	41

#	Article	IF	CITATIONS
135	A numerical study of mixing in a microchannel with circular mixing chambers. AICHE Journal, 2009, 55, 2217-2225.	1.8	34
136	Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry. Chemical Engineering and Technology, 2009, 32, 1655-1681.	0.9	374
137	Enhancement of electrokinetically driven microfluidic Tâ€mixer using frequency modulated electric field and channel geometry effects. Electrophoresis, 2009, 30, 3144-3152.	1.3	45
138	Microchip technology in mass spectrometry. Mass Spectrometry Reviews, 2009, 29, n/a-n/a.	2.8	94
139	Performance analysis of a folding flow micromixer. Microfluidics and Nanofluidics, 2009, 6, 763-774.	1.0	41
140	Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluidics and Nanofluidics, 2009, 6, 847-852.	1.0	77
141	A chaotic serpentine mixer efficient in the creeping flow regime: from design concept to optimization. Microfluidics and Nanofluidics, 2009, 7, 783.	1.0	52
142	Laminar mixing using oscillating cantilevered ionic polymer actuators. Sensors and Actuators A: Physical, 2009, 153, 105-113.	2.0	9
143	A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sensors and Actuators B: Chemical, 2009, 140, 629-642.	4.0	58
144	Millisecond mixing of liquids using a novel jet nozzle. Chemical Engineering Science, 2009, 64, 812-820.	1.9	8
145	Mixing efficiency of a multilamination micromixer with consecutive recirculation zones. Chemical Engineering Science, 2009, 64, 1223-1231.	1.9	37
146	Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel. International Journal of Heat and Fluid Flow, 2009, 30, 804-811.	1.1	54
147	Application of microbioreactors in fermentation process development: a review. Analytical and Bioanalytical Chemistry, 2009, 395, 679-695.	1.9	132
148	Numerical and experimental mixing studies in a MEMS-based multilaminated/elongational flow micromixer. Sensors and Actuators B: Chemical, 2009, 139, 637-647.	4.0	17
149	Fabricating non-photodefinable polymer microstructures for micro-total-analysis. Sensors and Actuators B: Chemical, 2009, 139, 673-681.	4.0	2
150	Modulating passive micromixing in 2-D microfluidic devices via discontinuities in surface energy. Sensors and Actuators B: Chemical, 2009, 140, 656-662.	4.0	27
151	Serpentine microfluidic mixer made in LTCC. Sensors and Actuators B: Chemical, 2009, 143, 400-413.	4.0	45
152	Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chemical Engineering Journal, 2009, 146, 439-448.	6.6	85

#	Article	IF	CITATIONS
153	Design and simulation of passive mixing in microfluidic systems with geometric variations. Chemical Engineering Journal, 2009, 152, 575-582.	6.6	77
154	Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1167-1172.	1.8	49
155	Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence-time distribution. Chemical Engineering Science, 2009, 64, 2422-2432.	1.9	116
156	Total combustion of propane in a catalytic microchannel combustor. Chemical Engineering Research and Design, 2009, 87, 91-96.	2.7	24
157	Three-Minute-Long Chemiluminescent Immunoassay Using Dually Accelerated Immunoreaction by Infrared Heating and Passive Mixing. Analytical Chemistry, 2009, 81, 4043-4047.	3.2	16
158	A brief introduction to slippage, droplets and mixing in microfluidic systems. Lab on A Chip, 2009, 9, 2428.	3.1	62
159	Chaotic mixing in electro-osmotic flows driven by spatiotemporal surface charge modulation. Physics of Fluids, 2009, 21, .	1.6	12
160	Numerical Modeling of Chaotic Mixing in Electroosmotically Stirred Continuous Flow Mixers. Journal of Heat Transfer, 2009, 131, .	1.2	11
161	Sandwich mixer–reactor: influence of the diffusion coefficient and flow rate ratios. Lab on A Chip, 2009, 9, 440-448.	3.1	11
162	DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab on A Chip, 2009, 9, 802-809.	3.1	141
163	Microchemical systems for continuous-flow synthesis. Lab on A Chip, 2009, 9, 2495.	3.1	463
164	Investigation of Micromixing Efficiency in a Novel High-Throughput Microporous Tube-in-Tube Microchannel Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 5004-5009.	1.8	38
165	Numerical Assessment of the Mixing Performance of Different Serpentine Microchannels. Heat Transfer Engineering, 2009, 30, 101-112.	1.2	10
166	A novel micro-mixer with a quasi-active rotor: fabrication and design improvement. Journal of Micromechanics and Microengineering, 2009, 19, 105028.	1.5	10
167	Design of a new static micromixer having simple structure and excellent mixing performance. Lab on A Chip, 2009, 9, 1809.	3.1	10
168	Perspective on Optical Biosensors and Integrated Sensor Systems. Analytical Chemistry, 2009, 81, 519-526.	3.2	217
169	Characterization of Laminar Transient Flow Regimes and Mixing in T-shaped Micromixers. Heat Transfer Engineering, 2009, 30, 91-100.	1.2	141
171	Correlation between Spatial and Temporal Chaotic Behaviour in Two-Phase Microfluidics. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 205-210.	0.4	Ο

#	Article	IF	CITATIONS
172	Flow Visualization of Fluid Mixing in Curvilinear Pipe Flow of Polymer Solution(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 2122-2127.	0.2	1
173	Nonlinear Dynamics in Experimental Two-Phase Microfluidics Timeseries. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 199-204.	0.4	0
174	Characterization and Optimization of a Three-Dimensional T-Type Micromixer for Convective Mixing Enhancement With Reduced Pressure Loss. , 2010, , .		1
175	Modeling of Acoustically Augmented Electroosmotic Flows in Microchannels. , 2010, , .		0
177	A Review on Mixing in Microfluidics. Micromachines, 2010, 1, 82-111.	1.4	249
178	Numerical Simulation of Mixing in Microchannels With Rough Surface. , 2010, , .		0
179	Experimental and Theoretical Characterization of an AC Electroosmotic Micromixer. Analytical Sciences, 2010, 26, 815-819.	0.8	27
181	Print-and-Peel Fabricated Passive Micromixers. Langmuir, 2010, 26, 2951-2957.	1.6	24
182	Homogeneous Polymerization: Benefits Brought by Microprocess Technologies to the Synthesis and Production of Polymers. Macromolecular Reaction Engineering, 2010, 4, 543-561.	0.9	39
183	Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer. Chemical Engineering Journal, 2010, 160, 852-864.	6.6	54
184	Mixing performance of unbalanced split and recombine micomixers with circular and rhombic sub-channels. Chemical Engineering Journal, 2010, 162, 760-767.	6.6	77
185	Mixing intensification by chaotic advection inside droplets for controlled nanoparticle preparation. Microfluidics and Nanofluidics, 2010, 9, 773-786.	1.0	30
186	Development of a micro droplet collider; the liquid–liquid system utilizing the spatial–temporal localized energy. Microfluidics and Nanofluidics, 2010, 9, 945-953.	1.0	8
187	Numerical study of the effect on mixing of the position of fluid stream interfaces in a rectangular microchannel. Microsystem Technologies, 2010, 16, 1757-1763.	1.2	26
188	Nano-engineered living bacterial motors for active microfluidic mixing. IET Nanobiotechnology, 2010, 4, 61.	1.9	9
193	Mikrotrenntechnik: Entwicklungsstand und Perspektiven. Chemie-Ingenieur-Technik, 2010, 82, 215-228.	0.4	28
195	Microfluidics in Inorganic Chemistry. Angewandte Chemie - International Edition, 2010, 49, 6268-6286.	7.2	212
196	Controlled band dispersion for quantitative binding determination and analysis with electrospray ionizationâ€mass spectrometry. Mass Spectrometry Reviews, 2010, 29, 806-829.	2.8	11

#	Article	IF	CITATIONS
197	Nucleation of Alpha lactose monohydrate induced using flow through a venturi orifice. Journal of Crystal Growth, 2010, 312, 800-807.	0.7	9
198	Microfabrication of a nickel mold insert by a modified deep X-ray lithography process and its application to hot embossing. Microelectronic Engineering, 2010, 87, 2449-2455.	1.1	14
199	Performance comparison of micromixers. Chemical Engineering Science, 2010, 65, 405-411.	1.9	288
200	Current methods for characterising mixing and flow in microchannels. Chemical Engineering Science, 2010, 65, 2065-2093.	1.9	167
203	A Multi-purpose Micro Fluid Power Component using Ultrasonic Vibration (2nd Report: Quantitative) Tj ETQq0 O Society, 2010, 41, 115-121.	0 rgBT /O 0.4	verlock 10 Tf 0
204	A Multi-purpose Micro Fluid Power Component using Ultrasonic Vibration. Transactions of the Japan Fluid Power System Society, 2010, 41, 8-13.	0.4	0
205	Evaluation of Floor-grooved Micromixers using Concentration-channel Length Profiles. Micromachines, 2010, 1, 19-33.	1.4	32
206	Development of Noncatalyzed Nitration Reaction Process Using High Temperature and High Pressure Water. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2010, 20, 33-39.	0.1	2
207	Microfluidics for Positron Emission Tomography Probe Development. Molecular Imaging, 2010, 9, 7290.2010.00027.	0.7	31
208	A simplified design of the staggered herringbone micromixer for practical applications. Biomicrofluidics, 2010, 4, .	1.2	49
209	Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P01018.	0.9	111
211	A chaotic micromixer using obstruction-pairs. Journal of Micromechanics and Microengineering, 2010, 20, 015023.	1.5	24
212	Analysis and Optimization of a Passive Micromixer With Curved-Shaped Baffles for Efficient Mixing With Low Pressure Loss in Continuous Flow. , 2010, , .		1
213	Three-dimensional mixers with non-planar microchannels in a monolithic glass substrate using oblique powder blasting. Journal of Micromechanics and Microengineering, 2010, 20, 085028.	1.5	8
214	Microreactor Performance Studies of the Cycloaddition of Isoamylene and α-Methylstyrene. Industrial & Engineering Chemistry Research, 2010, 49, 5549-5560.	1.8	8
215	Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider. Journal of Micromechanics and Microengineering, 2010, 20, 035012.	1.5	8
216	Microstructured Catalytic Reactors. Advances in Catalysis, 2010, , 47-122.	0.1	41
217	The Characteristics of Pressure Drop in Microchannels. Industrial & Engineering Chemistry Research, 2010, 49, 3830-3839.	1.8	8

#	Article	IF	CITATIONS
218	Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews, 2010, 39, 1153.	18.7	1,366
219	Integrated Microreactors for Reaction Automation: New Approaches to Reaction Development. Annual Review of Analytical Chemistry, 2010, 3, 19-42.	2.8	324
220	Applications of micromixing technology. Analyst, The, 2010, 135, 460.	1.7	192
221	Numerical study of a novel passive micromixer design. , 2010, , .		2
222	High performance magnetically controllable microturbines. Lab on A Chip, 2010, 10, 2902.	3.1	87
223	Enhanced mobile hybridization of gold nanoparticles decorated with oligonucleotide in microchannel devices. Lab on A Chip, 2010, 10, 2583.	3.1	9
224	A microfluidic mixer with self-excited â€~turbulent' fluid motion for wide viscosity ratio applications. Lab on A Chip, 2010, 10, 1712.	3.1	46
225	Experimental and numerical study on a planar passive micromixer with semicircle mixing elements. , 2010, , .		5
226	Efficient micromixing of a highly viscous biosample with water using orbital shaking and microchannels. Review of Scientific Instruments, 2010, 81, 054301.	0.6	4
227	Laser-assisted active microfluidic mixer. , 2010, , .		1
228	A Microfluidic Device for Continuous-Flow Magnetically Controlled Capture and Isolation of Microparticles. Journal of Microelectromechanical Systems, 2010, 19, 743-751.	1.7	33
229	Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application. Analyst, The, 2011, 136, 2287.	1.7	44
230	Rapid mixing of sub-microlitre drops by magnetic micro-stirring. Lab on A Chip, 2011, 11, 3313.	3.1	29
231	Recent advances in micro reaction technology. Chemical Communications, 2011, 47, 6512.	2.2	241
232	High-speed pulsed mixing with high-frequency switching of pumping from three inlet microchannels. , 2011, , .		0
233	Passive micromixer for luminol-peroxide chemiluminescence detection. Analyst, The, 2011, 136, 2586.	1.7	20
234	Air stream-mediated vortex agitation of microlitre entities on a fluidic chip. Lab on A Chip, 2011, 11, 1717.	3.1	9
235	Micro-mixing of microbeads utilizing vortex generation near a micro-nano interface. , 2011, , .		0

#	Article	IF	CITATIONS
237	Removal of Carbon Dioxide by Absorption in Microporous Tube-in-Tube Microchannel Reactor. Industrial & Engineering Chemistry Research, 2011, 50, 6369-6374.	1.8	36
238	Towards an optical concentrator for nanoparticles. Proceedings of SPIE, 2011, , .	0.8	4
239	Micromixing Within Microfluidic Devices. Topics in Current Chemistry, 2011, 304, 27-68.	4.0	292
240	Controlling Mass Transport in Microfluidic Devices. Annual Review of Analytical Chemistry, 2011, 4, 275-296.	2.8	57
241	Micro-valve using induced-charge electrokinetic motion of Janus particle. Lab on A Chip, 2011, 11, 2929.	3.1	44
243	An efficient micromixer based on multidirectional vortices due to baffles and channel curvature. Biomicrofluidics, 2011, 5, 14103.	1.2	83
244	Design of hydrophobic surfaces for liquid droplet control. NPG Asia Materials, 2011, 3, 49-56.	3.8	138
245	Microfluidics. Topics in Current Chemistry, 2011, , .	4.0	37
246	Mixing enhancement for high viscous fluids in a microfluidic chamber. Lab on A Chip, 2011, 11, 2081.	3.1	65
247	A flexible microfluidic processor for molecular biology: application to microarray sample preparation. Lab on A Chip, 2011, 11, 2541.	3.1	3
248	Biosensors in Microfluidic Chips. Topics in Current Chemistry, 2011, 304, 117-152.	4.0	21
249	Flow and Mass Transfer inside Networks of Minichannels. , 2011, , .		1
251	Ionic Liquids within Microfluidic Devices. , 2011, , .		3
252	Microfluidic Bioreactors for Cell Culturing: A Review. Micro and Nanosystems, 2011, 3, 137-160.	0.3	38
253	CFD-Based Optimization of a Diamond-Obstacles Inserted Micromixer with Boundary Protrusions. Engineering Applications of Computational Fluid Mechanics, 2011, 5, 210-222.	1.5	26
254	Control of static and dynamic hydrophobicity of solid surface and its application. Journal of the Ceramic Society of Japan, 2011, 119, 711-719.	0.5	8
255	Fluid-Flow Analysis for a Novel Cylindrical Micromixer. Journal of Fluid Science and Technology, 2011, 6, 230-241.	0.2	1
256	Microfluidic Devices: Useful Tools for Bioprocess Intensification. Molecules, 2011, 16, 8368-8401.	1.7	86

#	Article	IF	CITATIONS
257	High-Speed Pulsed Mixing With High-Frequency Switching of Pumping From Three Micropumps. , 2011, , .		0
258	Experimental and Numerical Study on Micromixing by Utilizing the Movement of Gas-Liquid Free Interface. Journal of Fluid Science and Technology, 2011, 6, 128-138.	0.2	4
259	Evaluation of a Reverse Oscillatory Flow Microreactor Design for the Synthesis of Uniformly-Sized Nanoparticles. , 2011, , .		2
260	Efficient synthesis of unsymmetric diarylalkynes from decarboxylative coupling in a continuous flow reaction system. Tetrahedron Letters, 2011, 52, 5064-5067.	0.7	22
261	Polystyrene microdispenser for blood tests using hydrophobic passive valve. Sensors and Actuators A: Physical, 2011, 169, 274-281.	2.0	3
262	Milliseconds mixing in microfluidic channel using focused surface acoustic wave. Sensors and Actuators B: Chemical, 2011, 160, 1552-1556.	4.0	58
263	Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells. Sensors and Actuators B: Chemical, 2011, 160, 1565-1572.	4.0	81
264	Preparation and characterization of micro components fabricated by micro powder injection molding. Materials Characterization, 2011, 62, 615-620.	1.9	13
265	Pressure drop and mixing in single phase microreactors: Simplified designs of micromixers. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1069-1075.	1.8	81
266	Villermaux–Dushman protocol for experimental characterization of micromixers. Chemical Engineering and Processing: Process Intensification, 2011, 50, 979-990.	1.8	143
267	Numerical investigation of the effect of geometrical parameters on the performance of a micro-reactor. Chemical Engineering Science, 2011, 66, 5366-5373.	1.9	20
268	A multilevel Lab on chip platform for DNA analysis. Biomedical Microdevices, 2011, 13, 19-27.	1.4	33
269	In situ Raman spectroscopy to monitor the hydrolysis of acetal in microreactors. Microfluidics and Nanofluidics, 2011, 10, 145-153.	1.0	28
270	Bilayer staggered herringbone micro-mixers with symmetric and asymmetric geometries. Microfluidics and Nanofluidics, 2011, 10, 271-286.	1.0	34
271	Residence time distribution analysis of magnetic nanoparticle-enhanced mixing using time-dependent magnetic actuation in microfluidic system. Microfluidics and Nanofluidics, 2011, 10, 735-747.	1.0	9
272	Micromixing via recirculatory flow generated by an oscillatory microplate. Microfluidics and Nanofluidics, 2011, 11, 167-176.	1.0	5
273	Analysis of chaos and FRET reaction in split-and-recombine microreactors. Microfluidics and Nanofluidics, 2011, 11, 339-352.	1.0	21
274	Unsteady flows in milli- and microsystems: analysis of wall shear rate fluctuations. Experiments in Fluids, 2011, 51, 597-610.	1.1	13

#	Article	IF	CITATIONS
275	Compact, cost-efficient microfluidics-based stopped-flow device. Analytical and Bioanalytical Chemistry, 2011, 399, 1117-1125.	1.9	18
276	Design method for micromixers considering influence of channel confluence and bend on diffusion length. Chemical Engineering Journal, 2011, 167, 643-650.	6.6	46
277	Biotransformation in a microreactor: New method for production of hexanal. Biotechnology and Bioprocess Engineering, 2011, 16, 495-504.	1.4	13
278	Passive micromixer integration with a microfluidic chip for calcium assay based on the arsenazo III method. Biochip Journal, 2011, 5, 1-7.	2.5	10
279	Polymers for Control Freaks: Sequenceâ€Đefined Poly(amidoamine)s and Their Biomedical Applications. Macromolecular Chemistry and Physics, 2011, 212, 8-13.	1.1	69
280	Mixing in tangentially crossing microchannels. AICHE Journal, 2011, 57, 571-580.	1.8	11
281	Microfluidic mixing using contactless dielectrophoresis. Electrophoresis, 2011, 32, 2569-2578.	1.3	31
282	Green and Sustainable Chemical Synthesis Using Flow Microreactors. ChemSusChem, 2011, 4, 331-340.	3.6	380
284	Deciding Whether To Go with the Flow: Evaluating the Merits of Flow Reactors for Synthesis. Angewandte Chemie - International Edition, 2011, 50, 7502-7519.	7.2	868
285	Entwicklung einer leistungsstarken Mikrorektifikationsapparatur für analytische und prÃ p arative Anwendungen. Chemie-Ingenieur-Technik, 2011, 83, 465-478.	0.4	17
286	Microstructured Mixers and Hydrocyclons for Multiphase Contacting and Separation. Chemie-Ingenieur-Technik, 2011, 83, 1036-1043.	0.4	7
287	Indentations and baffles for improving mixing rate in deep microchannel reactors. Chemical Engineering Journal, 2011, 167, 490-495.	6.6	14
288	Development of cesium ion extraction process using a slug flow microreactor. Chemical Engineering Journal, 2011, 167, 700-704.	6.6	53
289	Design and experiments of a short-mixing-length baffled microreactor and its application to microfluidic synthesis of nanoparticles. Chemical Engineering Journal, 2011, 168, 790-798.	6.6	63
290	Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chemical Engineering Journal, 2011, 171, 279-290.	6.6	82
291	Microstructured reactors and supports for ionic liquids. Chemical Engineering Science, 2011, 66, 1480-1489.	1.9	24
292	Micromixer-assisted polymerization processes. Chemical Engineering Science, 2011, 66, 1449-1462.	1.9	62
293	Single-phase fluid flow and mixing in microchannels. Chemical Engineering Science, 2011, 66, 1329-1373.	1.9	206

#	Article	IF	CITATIONS
294	Channel interlacing: A geometric concept for intensification and design of the internal structure of fluid contactors. Chemical Engineering Science, 2011, 66, 709-720.	1.9	10
295	Propane combustion in non-adiabatic microreactors: 2. Flow configuration in posted microreactors. Chemical Engineering Science, 2011, 66, 3732-3741.	1.9	10
296	Ideal micromixing performance in packed microchannels. Chemical Engineering Science, 2011, 66, 2912-2919.	1.9	66
297	Microfluidic mixing using periodically induced secondary potential in electroosmotic flow. Journal of Electrostatics, 2011, 69, 429-434.	1.0	10
298	Slurry mixing device with microchannels for gelcasting. Microelectronic Engineering, 2011, 88, 1814-1816.	1.1	1
299	Geometrical influence on mixing in helical porous membrane microcontactors. Journal of Membrane Science, 2011, 378, 351-358.	4.1	41
300	Microstructure evolution of 316L stainless steel micro components prepared by micro powder injection molding. Powder Technology, 2011, 206, 246-251.	2.1	21
301	Numerical simulation on fluid mixing by effects of geometry in staggered oriented ridges micromixers. Sensors and Actuators B: Chemical, 2011, 153, 284-292.	4.0	24
302	DNA ligation using a disposable microfluidic device combined with a micromixer and microchannel reactor. Sensors and Actuators B: Chemical, 2011, 157, 735-741.	4.0	22
304	A Reverse Oscillatory Flow microreactor system for the synthesis of uniformly-size CdS nanoparticles. , 2011, , .		2
305	Characterization of microfluidic mixing and reaction in microchannels via analysis of cross-sectional patterns. Biomicrofluidics, 2011, 5, 014111.	1.2	11
306	Electrically controlled hydrophobicity in a surface modified nanoporous carbon. Applied Physics Letters, 2011, 98, .	1.5	9
307	High-speed pulsed mixing with high-frequency switching of micropump driving and its application to nanoparticle synthesis. , 2011, , .		3
308	Numerical Analysis of Micro-Mixing in Rough Microchannels. Advanced Materials Research, 2011, 189-193, 1452-1455.	0.3	1
309	Visualization of turbulent reactive mixing in a planar microscale confined impinging-jet reactor. Journal of Micromechanics and Microengineering, 2011, 21, 115006.	1.5	8
310	Constitutive Modelling of Sintering of 316L Stainless Steel Microsize Structures. Applied Mechanics and Materials, 0, 148-149, 846-851.	0.2	0
311	A Microdevice for the Mixing of a Highly Viscous Biosample with Water/Membrane Protein Solution using Microchannel and Centrifugation. Journal of the Association for Laboratory Automation, 2011, 16, 68-81.	2.8	5
312	Gas Mass Flow Rate Measurement in T-Shaped Microchannels in Slip Flow Regime. , 2011, , .		0

#	Article	IF	CITATIONS
313	A microfluidic mixer based on parallel, high-speed circular motion of individual microbeads in a rotating magnetic field. , 2011, , .		1
314	Evaluation of different micromixers by CFD simulations for the anionic polymerisation of styrene. Green Processing and Synthesis, 2012, 1, .	1.3	5
315	Micro Reactors, Flow Reactors and Continuous Flow Synthesis. Journal of Chemical Research, 2012, 36, 181-193.	0.6	47
316	An experimental study on the behaviours of circular synthetic jets at low Reynolds numbers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 2686-2700.	1.1	15
317	Fabrication of High Aspect Ratio Silicon Nanochannel Arrays. ECS Solid State Letters, 2012, 1, P45-P47.	1.4	1
318	Optimization of a passive micromixer using models based on variable diffusion coefficient. , 2012, , .		3
319	Controlled movement of superparamagnetic bead rows for microfluid mixing. Applied Physics Letters, 2012, 100, 153504.	1.5	37
320	Lamination and mixing in three fundamental flow sequences driven by electromagnetic body forces. Physical Review E, 2012, 86, 026313.	0.8	10
321	Tetraethylortossilicate Plasma Thin Film with Hydrophilic and Hydrophobic Characteristics: Use on Passive Mixers. Materials Science Forum, 0, 730-732, 245-250.	0.3	3
322	Chaotic Advection for Thermal Mixing. Advances in Applied Mechanics, 2012, , 189-237.	1.4	12
323	Laser-Induced Thermal Bubble-Mixing on a Microfluidic Platform for Lab-on-a-Chip Applications. Advanced Materials Research, 2012, 557-559, 2197-2201.	0.3	4
324	Parametric Modeling of Transition Tube with Constant Section Area along Straight, Circular and Oblique Central Route on CATIA. Advanced Materials Research, 2012, 619, 18-21.	0.3	0
325	Continuous stream processing: a prototype magnetic field induced flow mixer. Green Processing and Synthesis, 2012, 1, .	1.3	8
327	Mixing, Reaction and Heat Transfer in a Pulsatile Flow Microreactor: Infrared Measurements. , 2012, , .		0
328	Enhanced Convective Mixing and Residence Time Distribution in Advanced Micromixers. , 2012, , .		3
330	Microfluidic mixing in a Y-junction open channel. AIP Advances, 2012, 2, .	0.6	19
331	A Basic Study of a Straight-Flow Micromixing Device Utilizing a Very Thin Liquid Film. Journal of Fluid Science and Technology, 2012, 7, 64-77.	0.2	0
332	- Multiplexible Electrochemical Sensor for Salivary Cancer Biomarker Detection. , 2012, , 654-667.		0

#	Article	IF	CITATIONS
333	Microflow Technology in Polymer Synthesis. Macromolecules, 2012, 45, 9551-9570.	2.2	173
334	Optimization of a diverging micromixer driven by periodic electroosmotics. Microsystem Technologies, 2012, 18, 1237-1245.	1.2	3
335	Interfacial configurations and mixing performances of fluids in staggered curved-channel micromixers. Microsystem Technologies, 2012, 18, 1823-1833.	1.2	11
336	A microgrooved membrane based gas–liquid contactor. Microfluidics and Nanofluidics, 2012, 13, 499-509.	1.0	12
337	Numerical study on microstructured reactor with chaotic heat and mass transfer and its potential application for exothermic process. Chemical Engineering Research and Design, 2012, 90, 1719-1726.	2.7	5
338	On the performance of static mixers: A quantitative comparison. Progress in Polymer Science, 2012, 37, 1333-1349.	11.8	103
339	Integration of Pillar Array Columns into a Gradient Elution System for Pressure-Driven Liquid Chromatography. Analytical Chemistry, 2012, 84, 4739-4745.	3.2	41
340	The Role of Discontinuities in Mixing. Advances in Applied Mechanics, 2012, , 51-90.	1.4	23
341	Analysis of Flow and Mixing Characteristics of Planar Asymmetric Split-and-Recombine (P-SAR) Micromixers with Fan-Shaped Cavities. Industrial & Engineering Chemistry Research, 2012, 51, 7816-7827.	1.8	33
342	Study of Active Micromixer Driven by Electrothermal Force. Japanese Journal of Applied Physics, 2012, 51, 047002.	0.8	18
343	Continuous Synthesis and in Situ Monitoring of Biodiesel Production in Different Microfluidic Devices. Industrial & Engineering Chemistry Research, 2012, 51, 10755-10767.	1.8	58
344	Mobile oscillating bubble actuated by AC-electrowetting-on-dielectric (EWOD) for microfluidic mixing enhancement. Sensors and Actuators A: Physical, 2012, 182, 153-162.	2.0	31
345	Microfluidic mixing for sperm activation and motility analysis of pearl Danio zebrafish. Theriogenology, 2012, 78, 334-344.	0.9	22
346	A phaseguided passive batch microfluidic mixing chamber for isothermal amplification. Lab on A Chip, 2012, 12, 4576.	3.1	25
347	Controlled Polymerization in Flow Microreactor Systems. Advances in Polymer Science, 2012, , 1-50.	0.4	5
348	Positron Emission Tomography Radiosynthesis in Microreactors. Journal of Flow Chemistry, 2012, 2, 37-42.	1.2	23
349	Application-Oriented Analysis of Mixing Performance in Microreactors. Organic Process Research and Development, 2012, 16, 1513-1522.	1.3	68
350	Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method. Computers and Fluids, 2012, 67, 104-114.	1.3	44

#	Article	IF	CITATIONS
351	Active micromixer using electrokinetic effects in the micro/nanochannel junction. Chemical Engineering Journal, 2012, 197, 289-294.	6.6	48
352	Passive split and recombination micromixer with convergent–divergent walls. Chemical Engineering Journal, 2012, 203, 182-192.	6.6	115
353	Design of a Numerical Microcombustor for Diffusion Flames. Combustion Science and Technology, 2012, 184, 1121-1134.	1.2	0
354	Monitoring and control of microbioreactors: An expert opinion on development needs. Biotechnology Journal, 2012, 7, 1308-1314.	1.8	30
355	Fluid mixing using AC electrothermal flow on meandering electrodes in a microchannel. Electrophoresis, 2012, 33, 2668-2673.	1.3	51
356	Hand-held syringe as a portable plastic pump for on-chip continuous-flow PCR: miniaturization of sample injection device. Analyst, The, 2012, 137, 983-990.	1.7	30
357	Gas mixing enhancement in minichannels using a rotationally oscillatory circular cylinder. Journal of Physics: Conference Series, 2012, 362, 012041.	0.3	2
358	Analysis on flow field of the valveless piezoelectric pump with two inlets and one outlet and a rotating unsymmetrical slopes element. Chinese Journal of Mechanical Engineering (English Edition), 2012, 25, 474-483.	1.9	11
359	Mischen und Rühren. , 2012, , 555-601.		6
360	A planar microfluidic mixer based on logarithmic spirals. Journal of Micromechanics and Microengineering, 2012, 22, 055019.	1.5	49
361	Microfluidic Platforms for Lab-On-A-Chip Applications. , 2012, , 853-895.		17
363	Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. Lab on A Chip, 2012, 12, 2498.	3.1	32
364	Imaging diffusion in a microfluidic device by third harmonic microscopy. Experiments in Fluids, 2012, 53, 777-782.	1.1	8
365	Biodiesel synthesis in microreactors. Green Processing and Synthesis, 2012, 1, .	1.3	14
366	Design and test of a passive planar labyrinth micromixer for rapid fluid mixing. Sensors and Actuators B: Chemical, 2012, 174, 126-132.	4.0	24
367	Heat Management in Single and Multi-injection Microstructured Reactors: Scaling Effects, Stability Analysis, and Role of Mixing. Industrial & Engineering Chemistry Research, 2012, 51, 1474-1489.	1.8	39
368	Development of a miniature piezoelectric mixer. , 2012, , .		0
369	Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis. Lab on A Chip, 2012, 12, 485-494.	3.1	37

#	Article	IF	CITATIONS
370	Numerical and experimental characterization of a novel modular passive micromixer. Biomedical Microdevices, 2012, 14, 849-862.	1.4	25
371	On-chip sample preparation by controlled release of antibodies for simple CD4 counting. Lab on A Chip, 2012, 12, 167-173.	3.1	27
372	Droplet based microfluidics. Reports on Progress in Physics, 2012, 75, 016601.	8.1	813
373	Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel. AICHE Journal, 2012, 58, 1660-1670.	1.8	52
374	Beckmann Rearrangement of Cyclohexanone Oxime to Ϊμ-Caprolactam in a Microreactor. Chemical Engineering and Technology, 2012, 35, 1257-1261.	0.9	24
375	Experimental investigation of a scaled-up passive micromixer with uneven interdigital inlet and teardrop obstruction elements. Experiments in Fluids, 2012, 52, 1261-1275.	1.1	4
376	Multidirectional vortices mixing in three-stream micromixers with two inlets. Microsystem Technologies, 2012, 18, 779-786.	1.2	5
377	Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena. Microfluidics and Nanofluidics, 2012, 12, 897-906.	1.0	28
378	Micro magnetic gyromixer for speeding up reactions in droplets. Microfluidics and Nanofluidics, 2012, 12, 787-794.	1.0	30
379	Quantification of the performance of chaotic micromixers on the basis of finite time Lyapunov exponents. Microfluidics and Nanofluidics, 2012, 13, 19-27.	1.0	7
380	Design Optimization of Liquid-Phase Flow Patterns for Microfabricated Lung on a Chip. Annals of Biomedical Engineering, 2012, 40, 1255-1267.	1.3	34
381	Microstructure-based intensification of a falling film microreactor through optimal film setting with realistic profiles and in-channel induced mixing. Chemical Engineering Journal, 2012, 179, 318-329.	6.6	32
382	On the enhancement of mixing in tangentially crossing micro-channels. Chemical Engineering Journal, 2012, 181-182, 524-529.	6.6	9
383	Analysis of mixing in a curved microchannel with rectangular grooves. Chemical Engineering Journal, 2012, 181-182, 708-716.	6.6	107
384	Visualization of micro-scale mixing in miscible liquids using μ-LIF technique and drug nano-particle preparation in T-shaped micro-channels. Chemical Engineering Journal, 2012, 192, 252-261.	6.6	61
385	Numerical investigation of laminar mass transport enhancement in heterogeneous gaseous microreactors. Chemical Engineering and Processing: Process Intensification, 2012, 54, 1-11.	1.8	19
386	Forcing a low Reynolds number channel flow to generate synthetic turbulent-like structures. Computers and Fluids, 2012, 55, 101-108.	1.3	11
387	Boundary element solution of thermal creep flow in microfluidic devices. Engineering Analysis With Boundary Elements, 2012, 36, 1062-1073.	2.0	4

#	Article	IF	CITATIONS
388	A review on microcombustion: Fundamentals, devices and applications. Progress in Energy and Combustion Science, 2012, 38, 321-359.	15.8	307
389	Size controlled polymersomes by continuous self-assembly in micromixers. Polymer, 2012, 53, 2205-2210.	1.8	43
390	Development of a Microrectification Apparatus for Analytical and Preparative Applications. Chemical Engineering and Technology, 2012, 35, 58-71.	0.9	28
391	Monitoring Onâ€Chip Pictet–Spengler Reactions by Integrated Analytical Separation and Labelâ€Free Timeâ€Resolved Fluorescence. Chemistry - A European Journal, 2012, 18, 1240-1246.	1.7	27
392	Quantification of liquid mixing enhanced by alternatively pulsed injection in a confined jet configuration. Journal of Visualization, 2012, 15, 57-66.	1.1	4
393	SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Computational Mechanics, 2013, 51, 171-185.	2.2	55
394	Hydrodynamics of a rectangular liquid JET in an immiscible liquid–liquid system. Canadian Journal of Chemical Engineering, 2013, 91, 122-126.	0.9	1
395	Numerical simulation of the capillary flow in the meander microchannel. Microsystem Technologies, 2013, 19, 379-386.	1.2	10
396	Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow pattern. Biomicrofluidics, 2013, 7, 044104.	1.2	22
397	How rotational vortices enhance transfers. Physics of Fluids, 2013, 25, .	1.6	22
398	Flash chemistry: flow chemistry that cannot be done in batch. Chemical Communications, 2013, 49, 9896-9904.	2.2	372
399	Crossflow and mixing in obstructed and width-constricted rotating radial microchannel. International Journal of Heat and Mass Transfer, 2013, 64, 457-467.	2.5	21
400	Two-step design protocol for patterned groove micromixers. Chemical Engineering Research and Design, 2013, 91, 778-788.	2.7	18
401	Fluid mixing via multidirectional vortices in converging–diverging meandering microchannels with semi-elliptical side walls. Chemical Engineering Journal, 2013, 217, 320-328.	6.6	48
402	Kinetic Analysis of Aqueous-Phase Pd-Catalyzed, Cu-Free Direct Arylation of Terminal Alkynes Using a Hydrophilic Ligand. Organic Process Research and Development, 2013, 17, 1262-1271.	1.3	11
403	Continuous-flow synthesis of [¹¹ C]raclopride, a positron emission tomography radiotracer, on a microfluidic chip. Canadian Journal of Chemistry, 2013, 91, 326-332.	0.6	14
404	Control of a Spinning Disc Reactor: An Experimental Study. Industrial & Engineering Chemistry Research, 2013, 52, 16832-16841.	1.8	10
405	Multi-injection microstructured reactor for intensification of fast exothermic reactions: proof of concept. Green Processing and Synthesis, 2013, 2, .	1.3	3

#	Article	IF	CITATIONS
406	Pressure drop in a splitâ€andâ€recombine caterpillar micromixer in case of newtonian and nonâ€newtonian fluids. AICHE Journal, 2013, 59, 2679-2685.	1.8	17
407	An Experimental Study of Copper Extraction Characteristics in a Tâ€Junction Microchannel. Chemical Engineering and Technology, 2013, 36, 985-992.	0.9	42
408	Photo-electric biotransducer for activating ionic hydrogel microactuators. Sensors and Actuators B: Chemical, 2013, 176, 1056-1064.	4.0	5
409	Passive micromixer using by convection and surface tension effects with air-liquid interface. Biochip Journal, 2013, 7, 361-366.	2.5	13
410	Mixing enhancement by biologically inspired convection in a micro-chamber using alternating current galvanotactic control of the Tetrahymena pyriformis. Applied Physics Letters, 2013, 103, 103703.	1.5	5
411	Simulation and experimental investigation of planar micromixers with short-mixing-length. Chemical Engineering Journal, 2013, 234, 247-255.	6.6	82
412	Intensified Mixing. , 2013, , 251-258.		1
413	Methyl chloride synthesis over Al2O3 catalyst coated microstructured reactor—Thermodynamics, kinetics and mass transfer. Chemical Engineering Science, 2013, 95, 232-245.	1.9	25
414	Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnology and Bioengineering, 2013, 110, 1005-1019.	1.7	68
415	A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number. Journal of Micromechanics and Microengineering, 2013, 23, 055023.	1.5	58
416	Continuous precipitation of ceria nanoparticles from a continuous flow micromixer. International Journal of Advanced Manufacturing Technology, 2013, 64, 579-586.	1.5	17
417	Organic Reaction Systems: Using Microcapsules and Microreactors to Perform Chemical Synthesis. Accounts of Chemical Research, 2013, 46, 327-338.	7.6	51
418	Thinking continuously: a microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polymer Chemistry, 2013, 4, 2342.	1.9	23
419	Micronization of the Pharmaceutically Active Agent Genipin by an Antisolvent Precipitation Process. Chemical Engineering and Technology, 2013, 36, 33-42.	0.9	15
420	Polymer micromixers bonded to thermoplastic films combining softâ€lithography with plasma and aptes treatment processes. Journal of Polymer Science Part A, 2013, 51, 59-70.	2.5	12
421	A programmable and reconfigurable microfluidic chip. Lab on A Chip, 2013, 13, 4517.	3.1	17
422	Water–ethanol mixing in T-shaped microdevices. Chemical Engineering Science, 2013, 95, 174-183.	1.9	84
423	Micro-separation of fluid systems: A state-of-the-art review. Separation and Purification Technology, 2013, 120, 245-264.	3.9	86

#	Article	IF	CITATIONS
426	Electrokinetic micromixing of charged and non-charged samples near nano–microchannel junction. Microfluidics and Nanofluidics, 2013, 14, 839-844.	1.0	16
429	Electroosmotic Augmentation in Flexural Plate Wave Micropumps. Journal of Microelectromechanical Systems, 2013, 22, 372-385.	1.7	4
430	Free Impinging Jet Microreactors: Controlling Reactive Flows via Surface Tension and Fluid Viscoelasticity. Langmuir, 2013, 29, 7812-7824.	1.6	18
432	Design and additive manufacture for flow chemistry. Lab on A Chip, 2013, 13, 4583.	3.1	155
433	Continuous Ammonium Silicofluoride Ammonification for SiO ₂ Nanoparticles Preparation in a Microchemical System. Industrial & Engineering Chemistry Research, 2013, 52, 5757-5764.	1.8	4
434	A Machineâ€Assisted Flow Synthesis of SR48692: A Probe for the Investigation of Neurotensin Receptorâ€1. Chemistry - A European Journal, 2013, 19, 7917-7930.	1.7	67
435	Mixing Evaluation of a Passive Scaled-Up Serpentine Micromixer With Slanted Grooves. Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .	0.8	31
436	A Novel Passive Three-Dimensional Asymmetric Arc Micromixer Based on the Concept of Chaotic Advection and Unbalanced Splitting-Collision. , 2013, , .		0
437	Progress of Microfluidics for Biology and Medicine. Nano-Micro Letters, 2013, 5, 66-80.	14.4	40
438	Effects of structural parameters on fluid flow and mixing performance in a curved microchannel with gaps and baffles. , 2013, , .		0
439	Extended Parametric Modeling of Transition Tube with Constant Section Area along Arbitrary Central Routes on CATIA. Applied Mechanics and Materials, 2013, 392, 197-200.	0.2	0
440	Design and Fabrication of a Three Dimensional Spiral Micromixer. Chinese Journal of Chemistry, 2013, 31, 209-214.	2.6	38
441	Piezoelectric rotational mixer based on a first bending vibration mode. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 2098-2104.	1.7	6
442	A parallel fully coupled implicit domain decomposition method for numerical simulation of microfluidic mixing in 3D. International Journal of Computer Mathematics, 2013, 90, 615-629.	1.0	4
446	Yield Prediction Method of a Reaction in a Micro-Fluid Device and Experimental Proof of Increased Production Using Parallel-Connected Devices. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 328-343.	0.2	1
447	An Onset of Micromixing Flow Utilizing Marangoni Force. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 888-899.	0.2	1
448	Recent Progress in Lab-on-a-Chip Technology and Its Potential Application to Clinical Diagnoses. International Neurourology Journal, 2013, 17, 2.	0.5	19
449	A Direct Simulation Monte Carlo Study on the Effect of Temperature Gradient on the Gas Mixing in Microgeometries. , 2013, , .		0

#	Article	IF	CITATIONS
450	Two-Dye Laser-Induced Fluorescence Measurements and Numerical Study of Scalar Transport in Planar, Microfluidic Mixers. International Journal of Fluid Mechanics Research, 2013, 40, 530-544.	0.4	0
451	Application of the electrodiffusion method for near-wall flow diagnostics. EPJ Web of Conferences, 2014, 67, 02117.	0.1	1
452	The Effect of Inertia on the Flow and Mixing Characteristics of a Chaotic Serpentine Mixer. Micromachines, 2014, 5, 1270-1286.	1.4	18
455	Semiconductor and Ceramic Microstructure Made by Single Mode Fiber Laser. Journal of Physics: Conference Series, 2014, 494, 012015.	0.3	7
456	Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liquid Crystals Reviews, 2014, 2, 73-110.	1.1	92
457	Novel design and fabrication of a geometrical obstacle-embedded micromixer with notched wall. Japanese Journal of Applied Physics, 2014, 53, 097201.	0.8	12
458	The Influence of Electrodes Position to Alternating Current Annular Micromixer. Key Engineering Materials, 2014, 609-610, 1343-1348.	0.4	0
459	Solvent extraction of In3+ with microreactor from leachant containing Fe2+ and Zn2+. Green Processing and Synthesis, 2014, 3, .	1.3	3
460	5. From batch to continuous chemical synthesis – a toolbox approach. , 2014, , 141-154.		1
461	Computational Modeling of Passive Furrowed Channel Micromixers for Lab-on-a-chip Applications. Journal of Applied Biomaterials and Functional Materials, 2014, 12, 278-285.	0.7	1
462	ISPH Modelling and Analysis of Fluid Mixing in a Microchannel with an Oscillating or a Rotating Stirrer. Engineering Applications of Computational Fluid Mechanics, 2014, 8, 289-298.	1.5	13
463	A Modular Microfluidic System for High Flow Rate Re-Dispersion of Gas-Liquid. , 2014, , .		3
465	Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor. Biomicrofluidics, 2014, 8, 054123.	1.2	13
466	Reaction tubes: A new platform for silicon nanophotonic ring resonator sensors. Journal of Applied Physics, 2014, 115, 044702.	1.1	6
467	Versatile low-Reynolds-number swimmer with three-dimensional maneuverability. Physical Review E, 2014, 90, 053006.	0.8	21
468	Passive Microextractor with Internal Fluid Recirculation for Two Immiscible Liquids. International Journal of Chemical Reactor Engineering, 2014, 12, 285-293.	0.6	2
469	Numerical and Experimental Investigation of the Effect of Geometrical Parameters on the Performance of a Contraction-Expansion Helical Mixer. International Journal of Chemical Reactor Engineering, 2014, 12, 465-475.	0.6	8
470	Fluid mixing in a microchannel with longitudinal vortex generators. Chemical Engineering Journal, 2014, 235, 27-36.	6.6	96

#	Article	IF	Citations
471	Simulation and eigenmode analysis of advective–diffusive transport in micromixers by the diffusive mapping method. Chemical Engineering Science, 2014, 107, 30-46.	1.9	8
472	Intensification of highly exothermic fast reaction by multi-injection microstructured reactor. Chemical Engineering and Processing: Process Intensification, 2014, 84, 14-23.	1.8	23
473	FEM analysis of magnetic agitation for tagging biomolecules with magnetic nanoparticles in a microfluidic system. Sensors and Actuators B: Chemical, 2014, 197, 1-12.	4.0	18
474	A Contraction-expansion Helical Mixer in the Laminar Regime. Chinese Journal of Chemical Engineering, 2014, 22, 261-266.	1.7	11
475	Extraction, amplification and detection of DNA in microfluidic chip-based assays. Mikrochimica Acta, 2014, 181, 1611-1631.	2.5	81
478	Flow and mixing analysis of non-Newtonian fluids in straight and serpentine microchannels. Chemical Engineering Science, 2014, 116, 263-274.	1.9	37
479	Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor. Analyst, The, 2014, 139, 431-438.	1.7	61
480	Flow Pulsation and Geometry Effects on Mixing of Two Miscible Fluids in Microchannels. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	0.8	10
481	Numerical investigation of mixing performance in microchannel T-junction with wavy structure. Computers and Fluids, 2014, 96, 10-19.	1.3	79
482	Facile Droplet-based Microfluidic Synthesis of Monodisperse IV–VI Semiconductor Nanocrystals with Coupled In-Line NIR Fluorescence Detection. Chemistry of Materials, 2014, 26, 2975-2982.	3.2	87
483	Microwaves and microreactors: Design challenges and remedies. Chemical Engineering Journal, 2014, 243, 147-158.	6.6	73
484	Biosensing enhancement using passive mixing structures for microarray-based sensors. Biosensors and Bioelectronics, 2014, 54, 506-514.	5.3	34
485	Fully Automated Continuous Meso-flow Synthesis of 5′-Nucleotides and Deoxynucleotides. Organic Process Research and Development, 2014, 18, 1575-1581.	1.3	7
486	The potential utility of high-intensity ultrasound to treat osteoarthritis. Osteoarthritis and Cartilage, 2014, 22, 1784-1799.	0.6	14
487	Vertically stratified two-phase flow in a curved channel: Insights from a domain perturbation analysis. Physics of Fluids, 2014, 26, 073604.	1.6	8
488	Design and characterization of a lab-on-chip for continuous bioluminescent measurements of ATP. , 2014, , .		0
489	Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime. Lab on A Chip, 2014, 14, 4391-4397.	3.1	13
490	Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane. Lab on A Chip, 2014, 14, 2240-2248.	3.1	9

#	Article	IF	Citations
491	Integrated air stream micromixer for performing bioanalytical assays on a plastic chip. Lab on A Chip, 2014, 14, 3750.	3.1	16
492	Bio-inspired microvascular exchangers employing circular packing – synthetic rete mirabile. Materials Horizons, 2014, 1, 602-607.	6.4	3
493	9.03 Organic Synthesis in Small Scale Continuous Flow: Flow Chemistry. , 2014, , 54-93.		2
494	Living Anionic Polymerization in Continuous Flow: Facilitated Synthesis of High-Molecular Weight Poly(2-vinylpyridine) and Polystyrene. Organic Process Research and Development, 2014, 18, 1408-1412.	1.3	23
496	From Batch to Continuous Chemical Synthesis—A Toolbox Approach. Organic Process Research and Development, 2014, 18, 1286-1294.	1.3	120
497	Effects of Magnetic Particles Entrance Arrangements on Mixing Efficiency of a Magnetic Bead Micromixer. Nano-Micro Letters, 2014, 6, 30-37.	14.4	11
498	Microreactors for peptide synthesis: looking through the eyes of twenty first century !!!. Amino Acids, 2014, 46, 2091-2104.	1.2	17
499	Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber. Cellulose, 2014, 21, 2963-2972.	2.4	30
500	Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel. International Journal of Heat and Mass Transfer, 2014, 73, 492-499.	2.5	60
501	Micromixing performance of nanoparticle suspensions in a micro-sieve dispersion reactor. Chemical Engineering Journal, 2014, 253, 8-15.	6.6	21
502	A highly efficient extraction protocol for magnetic particles on a digital microfluidic chip. Sensors and Actuators B: Chemical, 2014, 196, 282-291.	4.0	32
503	Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential. International Journal of Heat and Mass Transfer, 2014, 75, 135-144.	2.5	45
504	Electrokinetic Mixing and Displacement of Charged Droplets in Hydrogels. Transport in Porous Media, 2014, 104, 469-499.	1.2	14
505	An efficient passive planar micromixer with ellipse-like micropillars for continuous mixing of human blood. Computer Methods and Programs in Biomedicine, 2014, 117, 20-29.	2.6	45
506	A parametric study of electrothermal flow inside an AC EWOD droplet. International Communications in Heat and Mass Transfer, 2014, 55, 63-70.	2.9	4
507	An oscillating feedback microextractor with asymmetric feedback channels. Chemical Engineering Journal, 2014, 253, 438-447.	6.6	27
508	Scale-up on mixing in rotating microchannel under subcritical and supercritical operating modes. International Journal of Heat and Mass Transfer, 2014, 77, 157-172.	2.5	11
509	Mixing Analysis of Passive Micromixer with Unbalanced Three-Split Rhombic Sub-Channels. Micromachines, 2014, 5, 913-928.	1.4	56

	CHATION	LEPORT	
#	ARTICLE	IF	CITATIONS
510	7. Continuous-now synthesis of carbon-11 radiotracers on a micronuluic chip. , 2014, , 189-212.		0
511	Numerical Analysis Of Mixing Under Low And High Frequency Pulsations At Serpentine Micromixers. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2014, 35, 369-385.	0.7	20
512	Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number. Journal of Fluid Mechanics, 2014, 748, 241-277.	1.4	67
513	Electromagnetic stirring in a microbioreactor with nonâ€conventional chamber morphology and implementation of multiplexed mixing. Journal of Chemical Technology and Biotechnology, 2015, 90, 1927-1936.	1.6	6
515	Microcomponents: Polymeric. , 0, , 4621-4637.		0
516	Fabrication of Three Dimensional Structures in Polymer-Based Microchannels with Lost-Wax Casting Method. Key Engineering Materials, 0, 649, 120-127.	0.4	0
517	Experimental Evidence of Helical Flow in Porous Media. Physical Review Letters, 2015, 115, 194502.	2.9	52
518	Axial mixing with spiral-shaped channel micromixer. Journal of Fluid Science and Technology, 2015, 10, JFST0012-JFST0012.	0.2	1
519	Inertio-elastic flow instability in a micro-cavity swept by a visco-elastic fluid. Transactions of the JSME (in Japanese), 2015, 81, 14-00650-14-00650.	0.1	0
520	Effect of ultra-fast mixing in a microchannel due to a soft wall on the room temperature synthesis of gold nanoparticles. Sadhana - Academy Proceedings in Engineering Sciences, 2015, 40, 973-983.	0.8	6
521	Highâ€Throughput Synthesis of Uniform Silver Seed Particles by a Continuous Microfluidic Synthesis Platform. Chemical Engineering and Technology, 2015, 38, 1131-1137.	0.9	19
522	Numerical Simulation of Fluid Mixing in Micro-Mixers. Key Engineering Materials, 0, 659, 671-675.	0.4	0
523	Ultrasonic Hot Embossed Polymer Microreactors for Optical Measurement ofÂChemical Reactions. Chemical Engineering and Technology, 2015, 38, 1113-1121.	0.9	12
524	A micromixer with consistent mixing performance for a wide range of flow rates. Electrophoresis, 2015, 36, 405-412.	1.3	4
525	High-speed pulsed mixing in a short distance with high-frequency switching of pumping from three inlets. Journal of Micromechanics and Microengineering, 2015, 25, 084003.	1.5	2
526	Passive Micromixers with Interlocking Semi-Circle and Omega-Shaped Modules: Experiments and Simulations. Micromachines, 2015, 6, 953-968.	1.4	30
527	Comparative Analysis of Passive Micromixers at a Wide Range of Reynolds Numbers. Micromachines, 2015, 6, 1166-1179.	1.4	16
528	Mixing Performance of a Serpentine Micromixer with Non-Aligned Inputs. Micromachines, 2015, 6, 842-854.	1.4	37

#	Article	IF	CITATIONS
529	In-chip direct laser writing of a centimeter-scale acoustic micromixer. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2015, 14, 1.	1.0	17
530	Hybrid grid-particle method for fluid mixing simulation. Computational Particle Mechanics, 2015, 2, 233-246.	1.5	12
531	Mixing analysis in a three-dimensional serpentine split-and-recombine micromixer. Chemical Engineering Research and Design, 2015, 100, 95-103.	2.7	68
532	Continuous-flow hydrogenation of olefins and nitrobenzenes catalyzed by platinum nanoparticles dispersed in an amphiphilic polymer. RSC Advances, 2015, 5, 45760-45766.	1.7	18
533	Flow characteristics in a micro-cavity swept by a visco-elastic fluid. Experimental Thermal and Fluid Science, 2015, 67, 96-101.	1.5	10
534	Efficient gas–liquid contact using microfluidic membrane devices with staggered herringbone mixers. Lab on A Chip, 2015, 15, 3132-3137.	3.1	22
535	Lab-on-a-Chip Devices and Micro-Total Analysis Systems. , 2015, , .		38
536	Microfluidics in Planar Microchannels: Synthesis of Chemical Compounds On-Chip. , 2015, , 197-239.		1
537	High Flow Rate Micro Orifice Dispersion of Gas-Liquid Flow. , 2015, , .		2
538	An example of passive micromixer design, simulation and optimization. , 2015, , .		0
538 539	An example of passive micromixer design, simulation and optimization. , 2015, , . An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research and Design, 2015, 93, 1-11.	2.7	0
538 539 540	An example of passive micromixer design, simulation and optimization. , 2015, , . An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research and Design, 2015, 93, 1-11. Mixing Characteristics of Mixers in Flow Analysis. Application to Two-Dimensional Detection in Ion Chromatography. Analytical Chemistry, 2015, 87, 793-800.	2.7 3.2	0 62 12
538 539 540 541	An example of passive micromixer design, simulation and optimization., 2015, ,. An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research and Design, 2015, 93, 1-11. Mixing Characteristics of Mixers in Flow Analysis. Application to Two-Dimensional Detection in Ion Chromatography. Analytical Chemistry, 2015, 87, 793-800. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology, 2015, 26, 092001.	2.7 3.2 1.3	0 62 12 48
538 539 540 541 542	An example of passive micromixer design, simulation and optimization., 2015, , . An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research and Design, 2015, 93, 1-11. Mixing Characteristics of Mixers in Flow Analysis. Application to Two-Dimensional Detection in Ion Chromatography. Analytical Chemistry, 2015, 87, 793-800. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology, 2015, 26, 092001. Liquid〓liquid mixing enhancement rules by microbubbles in three typical micro-mixers. Chemical Engineering Science, 2015, 127, 60-71.	2.7 3.2 1.3 1.9	0 62 12 48 24
538 539 540 541 542 543	An example of passive micromixer design, simulation and optimization., 2015, , . An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research and Design, 2015, 93, 1-11. Mixing Characteristics of Mixers in Flow Analysis. Application to Two-Dimensional Detection in Ion Chromatography. Analytical Chemistry, 2015, 87, 793-800. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology, 2015, 26, 092001. Liquid–liquid mixing enhancement rules by microbubbles in three typical micro-mixers. Chemical Engineering Science, 2015, 127, 60-71. Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chemical Engineering Research and Design, 2015, 95, 22-33.	2.7 3.2 1.3 1.9 2.7	0 62 12 48 24 106
 538 539 540 541 542 543 544 	An example of passive micromixer design, simulation and optimization. , 2015, , . An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research and Design, 2015, 93, 1-11. Mixing Characteristics of Mixers in Flow Analysis. Application to Two-Dimensional Detection in Ion Chromatography. Analytical Chemistry, 2015, 87, 793-800. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology, 2015, 26, 092001. Liquid〓liquid mixing enhancement rules by microbubbles in three typical micro-mixers. Chemical Engineering Science, 2015, 127, 60-71. Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10〓100. Chemical Engineering Research and Design, 2015, 95, 22-33. Magnetic particle mixing with magnetic micro-convection for microfluidics. Journal of Magnetism and Magnetic Materials, 2015, 380, 227-230.	2.7 3.2 1.3 1.9 2.7 1.0	0 62 12 48 24 106
 538 539 540 541 542 543 544 545 	An example of passive micromixer design, simulation and optimization. , 2015, , . An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research and Design, 2015, 93, 1-11. Mixing Characteristics of Mixers in Flow Analysis. Application to Two-Dimensional Detection in Ion Chromatography. Analytical Chemistry, 2015, 87, 793-800. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology, 2015, 26, 092001. Liquidã€"liquid mixing enhancement rules by microbubbles in three typical micro-mixers. Chemical Engineering Science, 2015, 127, 60-71. Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10â€"100. Chemical Engineering Research and Design, 2015, 95, 22-33. Magnetic particle mixing with magnetic micro-convection for microfluidics. Journal of Magnetism and Magnetism (Magnetials, 2015, 380, 227-230. Lagrangian simulation and analysis of the micromixing phenomena in a cylindrical paddle mixer using a modified weakly compressible smoothed particle hydrodynamics method. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 112-124.	2.7 3.2 1.3 1.9 2.7 1.0 0.8	0 62 12 48 24 106 35

#	Article	IF	CITATIONS
548	Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis. RSC Advances, 2015, 5, 13331-13340.	1.7	38
549	Experimental study on oscillating feedback micromixer for miscible liquids using the Coanda Effect. AICHE Journal, 2015, 61, 1054-1063.	1.8	28
550	Convergent–divergent micromixer coupled with pulsatile flow. Sensors and Actuators B: Chemical, 2015, 211, 198-205.	4.0	87
551	Comparing the Mixing Performance of Common Types of Chaotic Micromixers: A Numerical Study. Heat Transfer Engineering, 2015, 36, 1122-1131.	1.2	16
552	Mass transfer enhancement and surface functionalization in digital microfluidics using AC electrowetting: the smaller, the better. Microfluidics and Nanofluidics, 2015, 18, 1373-1389.	1.0	14
553	Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Advanced Functional Materials, 2015, 25, 671-678.	7.8	112
554	Mixing with herringbone-inspired microstructures: overcoming the diffusion limit in co-laminar microfluidic devices. Lab on A Chip, 2015, 15, 1923-1933.	3.1	66
555	Electrostatically induced mixing in confined stratified multi-fluid systems. International Journal of Multiphase Flow, 2015, 75, 194-204.	1.6	4
556	Tracking the liquid–liquid extraction performance in mesoflow reactors. Chemical Engineering Journal, 2015, 279, 9-17.	6.6	12
557	Numerical study on the improvement of flow distribution uniformity among parallel mini-channels. Chemical Engineering and Processing: Process Intensification, 2015, 95, 63-71.	1.8	76
558	Zonal description and quantitative methodology of air–water distribution in comb-like microchannels. Chemical Engineering Science, 2015, 132, 234-243.	1.9	6
559	Time-resolved velocity measurements in a magnetic micromixer. Experimental Thermal and Fluid Science, 2015, 67, 6-13.	1.5	14
560	Fabrication of PDMS passive micromixer by lost-wax casting. International Journal of Precision Engineering and Manufacturing, 2015, 16, 2033-2039.	1.1	29
561	High-Throughput Production of Droplets Using Mini Hydrodynamic Focusing Devices with Recirculation. Industrial & Engineering Chemistry Research, 2015, 54, 6551-6558.	1.8	18
562	Passive micromixers with dual helical channels. Proceedings of SPIE, 2015, , .	0.8	0
563	An active microfluidic mixer utilizing a hybrid gradient magnetic field. International Journal of Applied Electromagnetics and Mechanics, 2015, 47, 583-592.	0.3	36
564	Kinetics of ethanol hydrochlorination over Î ³ -Al2O3 in a microstructured reactor. Chemical Engineering Science, 2015, 134, 681-693.	1.9	4
565	Experimental study on oscillation behaviors in T-jets reactor with excitation. Chemical Engineering Science, 2015, 134, 67-75.	1.9	15

#	ARTICLE	IF	CITATIONS
566	Detail study on improving micro/nano gas mixer performances in slip and transitional flow regimes. Sensors and Actuators B: Chemical, 2015, 218, 78-88.	4.0	5
567	Diffusion enhancement in a laminar flow liquid by near-surface transport of superparamagnetic bead rows. Microfluidics and Nanofluidics, 2015, 19, 395-402.	1.0	12
568	Experimental study on the flow regimes past a confined prism undergoing self-sustained oscillations. International Journal of Heat and Fluid Flow, 2015, 54, 65-76.	1.1	6
569	Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution. Flow Measurement and Instrumentation, 2015, 43, 1-5.	1.0	14
570	Review of the applications of microreactors. Renewable and Sustainable Energy Reviews, 2015, 47, 519-539.	8.2	243
571	Acoustic micromixing increases antibody-antigen binding in immunoassays. Biomedical Microdevices, 2015, 17, 79.	1.4	16
572	Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF ₂ . Lab on A Chip, 2015, 15, 4364-4368.	3.1	20
573	Active mixing of complex fluids at the microscale. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12293-12298.	3.3	210
574	Numerical analysis and characterization of a Wankel pump as a miniaturized mixer. Journal of Micromechanics and Microengineering, 2015, 25, 084001.	1.5	5
575	Large-Scale Preparation of Amorphous Cefixime Nanoparticles by Antisolvent Precipitation in a High-Gravity Rotating Packed Bed. Industrial & Engineering Chemistry Research, 2015, 54, 8157-8165.	1.8	25
576			
	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.	0.7	50
577	 Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?. Analytica Chimica Acta, 2015, 889, 58-70. 	0.7 2.6	50 31
577 578	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?. Analytica Chimica Acta, 2015, 889, 58-70.Fast and Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Organic Process Research and Development, 2015, 19, 1286-1292.	0.7 2.6 1.3	50 31 61
577 578 579	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?. Analytica Chimica Acta, 2015, 889, 58-70.Fast and Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Organic Process Research and Development, 2015, 19, 1286-1292.A simple low pressure drop suspension-based microfluidic mixer. Journal of Micromechanics and Microengineering, 2015, 25, 094003.	0.7 2.6 1.3 1.5	50 31 61 9
577 578 579 580	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?. Analytica Chimica Acta, 2015, 889, 58-70.Fast and Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Organic Process Research and Development, 2015, 19, 1286-1292.A simple low pressure drop suspension-based microfluidic mixer. Journal of Micromechanics and Microengineering, 2015, 25, 094003.Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics and Microengineering, 2015, 25, 094001.	0.7 2.6 1.3 1.5	 50 31 61 9 290
577 578 579 580 581	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?. Analytica Chimica Acta, 2015, 889, 58-70.Fast and Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Organic Process Research and Development, 2015, 19, 1286-1292.A simple low pressure drop suspension-based microfluidic mixer. Journal of Micromechanics and Microengineering, 2015, 25, 094003.Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics and Microengineering, 2015, 25, 094001.Influence of Design Parameters on Hydrodynamics and Heat Transfer of a Modularized Millireactor. Chemical Engineering and Technology, 2015, 38, 602-608.	0.7 2.6 1.3 1.5 1.5 0.9	 50 31 61 9 290 9
 577 578 579 580 581 582 	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?. Analytica Chimica Acta, 2015, 889, 58-70.Fast and Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Organic Process Research and Development, 2015, 19, 1286-1292.A simple low pressure drop suspension-based microfluidic mixer. Journal of Micromechanics and Microengineering, 2015, 25, 094003.Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics and Microengineering, 2015, 25, 094001.Influence of Design Parameters on Hydrodynamics and Heat Transfer of a Modularized Millireactor. Chemical Engineering and Technology, 2015, 38, 602-608.Aerobic flow oxidation of alcohols in water catalyzed by platinum nanoparticles dispersed in an amphiphilic polymer. RSC Advances, 2015, 5, 2647-2654.	0.7 2.6 1.3 1.5 1.5 0.9 1.7	 50 31 61 9 290 9 32

#	Article	IF	CITATIONS
584	Influence of jet–jet interaction on droplet size and jet instability in immiscible liquid–liquid system. Chemical Engineering Science, 2015, 123, 247-254.	1.9	9
585	Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel. Journal of Colloid and Interface Science, 2015, 440, 126-132.	5.0	35
586	The rapid synthesis of oxazolines and their heterogeneous oxidation to oxazoles under flow conditions. Organic and Biomolecular Chemistry, 2015, 13, 207-214.	1.5	42
587	An experimental study on the numbering-up of microchannels for liquid mixing. Lab on A Chip, 2015, 15, 179-187.	3.1	53
588	Multi-Objective Optimization of a Passive Micromixer Based on Periodic Variation of Velocity Profile. Chemical Engineering Communications, 2015, 202, 322-331.	1.5	31
589	Rapid and amplification-free detection of fish pathogens by utilizing a molecular beacon-based microfluidic system. Biosensors and Bioelectronics, 2015, 63, 196-203.	5.3	13
590	Experimental study of oscillation behaviors in confined impinging jets reactor under excitation. AICHE Journal, 2015, 61, 333-341.	1.8	14
591	Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems. Sensors, 2016, 16, 1238.	2.1	14
592	Plug and measure – a chip-to-world interface for photonic lab-on-a-chip applications. Lab on A Chip, 2016, 16, 3220-3226.	3.1	4
593	Determination of the Micromixing Scale in a Microdevice by Numerical Simulation and Experiments. Chemical Engineering and Technology, 2016, 39, 909-917.	0.9	9
594	Evaluation of mixing profiles for a new micromixer design strategy. AICHE Journal, 2016, 62, 1154-1161.	1.8	17
595	Countercurrent Dropletâ€flowâ€based mini extraction with pulsed feeding and without moving parts. AICHE Journal, 2016, 62, 3685-3698.	1.8	15
596	Analysis of a Novel Y-Y Micromixer for Mixing at a Wide Range of Reynolds Numbers. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	0.8	3
597	Gas–Liquid Flow Dispersion in Micro-Orifices and Bubble Coalescence With High Flow Rates. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.2	4
598	In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells. Biomicrofluidics, 2016, 10, 064102.	1.2	35
600	Investigation of micromixing by acoustically oscillated sharp-edges. Biomicrofluidics, 2016, 10, 024124.	1.2	96
601	Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer. Journal of Mechanical Science and Technology, 2016, 30, 307-316.	0.7	21
602	Development of Channel Mixers Utilising 180° Fluid Rotation Combined with Split and Recombination. Chemical Engineering Research and Design, 2016, 108, 118-125.	2.7	9

#	Article	IF	CITATIONS
603	Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews, 2016, 116, 10276-10341.	23.0	1,166
604	Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters. Chemical Engineering and Processing: Process Intensification, 2016, 104, 243-252.	1.8	51
605	Magnetic droplet microfluidic system incorporated with acoustic excitation for mixing enhancement. Sensors and Actuators A: Physical, 2016, 243, 59-65.	2.0	40
606	In situ kinetics study of the formation of organic nanoparticles by fluorescence lifetime imaging microscopy (FLIM) along a microfluidic device. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	6
607	Microfluidic mixing using pulsating flows. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	15
608	Inverse methods to gradient etch three-dimensional features with prescribed topographies using abrasive jet micro-machining: Part I – Modeling. Precision Engineering, 2016, 45, 272-284.	1.8	18
609	Liquid–liquid flow regimes and mass transfer in various micro-reactors. Chemical Engineering Journal, 2016, 300, 9-19.	6.6	87
610	Statistical models for spatial patterns of heavy particles in turbulence. Advances in Physics, 2016, 65, 1-57.	35.9	114
611	Organometallic Flow Chemistry. Topics in Organometallic Chemistry, 2016, , .	0.7	20
613	CFD Modeling of N2/H2 Gaseous Flow with Geometric Variations in a Monolithic Channel. Procedia Engineering, 2016, 148, 1266-1273.	1.2	2
614	Scaling of mixing time for droplets of different sizes traveling through a serpentine microchannel. RSC Advances, 2016, 6, 98812-98815.	1.7	19
615	Microfluidic Devices for the Culture of Stem Cells. , 2016, , 171-198.		1
616	Droplet in droplet: LBM simulation of modulated liquid mixing. Chemical Engineering Science, 2016, 155, 428-437.	1.9	16
617	Parametric investigation on mixing in a micromixer with two-layer crossing channels. SpringerPlus, 2016, 5, 794.	1.2	10
618	Computationally efficient concentrationâ€based model for accurate evaluation of <i>T</i> â€junction inlet staggered herringbone micromixers. Micro and Nano Letters, 2016, 11, 236-239.	0.6	10
619	Water Purification in Micromagnetofluidic Devices: Mixing in MHD Micromixers. Procedia Engineering, 2016, 162, 593-600.	1.2	4
620	Separation units and equipment for lab-scale process development. Journal of Flow Chemistry, 2016, 6, 181-190.	1.2	28
621	Acoustic Nanofluidics via Roomâ€Temperature Lithium Niobate Bonding: A Platform for Actuation and Manipulation of Nanoconfined Fluids and Particles. Advanced Functional Materials, 2016, 26, 7861-7872.	7.8	49

#	ARTICLE	IF	CITATIONS
622	Experimental investigation of transverse mixing in porous media under helical flow conditions. Physical Review E, 2016, 94, 013113.	0.8	13
623	Living Polymer Chains with Predictable Molecular Weight and Dispersity via Carbanionic Polymerization in Continuous Flow: Mixing Rate as a Key Parameter. Macromolecules, 2016, 49, 5043-5050.	2.2	51
624	Mikrofluidische Chips und Chip-Labore. Technik Im Fokus, 2016, , 89-105.	0.2	0
625	Modulare Verfahrenstechnik: Apparateentwicklung für wandlungsfäige Produktionssysteme. Chemie-Ingenieur-Technik, 2016, 88, 1444-1454.	0.4	11
626	Numerical Simulation for efficient mixing of Newtonian and non-Newtonian fluids in an electro-osmotic micro-mixer. Chemical Engineering and Processing: Process Intensification, 2016, 107, 11-20.	1.8	41
627	Liquid–liquid two-phase mass transfer in T-type micromixers with different junctions and cylindrical pits. Chemical Engineering and Processing: Process Intensification, 2016, 107, 58-67.	1.8	20
628	Development of a two-stage Lau-Wan Wankel pump/mixer. International Journal of Mechanical Engineering Education, 2016, 44, 97-112.	0.6	3
629	Concentration-dependent viscous mixing in microfluidics: modelings and experiments. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	13
630	A microdevice assisted approach for the preparation, characterization and selection of continuous aqueous two-phase systems: from micro to bench-scale. Lab on A Chip, 2016, 16, 2662-2672.	3.1	15
631	Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview. Expert Opinion on Drug Delivery, 2016, 13, 1447-1460.	2.4	85
632	Mixing enhancement by degenerate modes in electrically actuated sessile droplets. Sensors and Actuators B: Chemical, 2016, 232, 318-326.	4.0	26
633	Enhancing mixing at a very low Reynolds number by a heaving square cylinder. Journal of Fluids and Structures, 2016, 65, 1-20.	1.5	44
634	Hydrodynamics and mass transfer of oscillating gasâ€ ŀ iquid flow in ultrasonic microreactors. AICHE Journal, 2016, 62, 1294-1307.	1.8	68
635	Ultrasound assisted liquid–liquid extraction in microchannels—A direct contact method. Chemical Engineering and Processing: Process Intensification, 2016, 102, 37-46.	1.8	42
636	Integratable Capacitive Sensor for Identification of Microfluidic Two-Phase Flow Patterns in Lab-on-Chip Devices. Journal of Microelectromechanical Systems, 2016, 25, 197-206.	1.7	9
637	Preparation of amorphous drug nanoparticles by high-gravity reactive precipitation technique. Chemical Engineering and Processing: Process Intensification, 2016, 104, 253-261.	1.8	18
638	Numerical simulation of a non-equilibrium electrokinetic micro/nano fluidic mixer. Journal of Micromechanics and Microengineering, 2016, 26, 035019.	1.5	16
639	Mixing control by frequency variable magnetic micropillar. RSC Advances, 2016, 6, 11822-11828.	1.7	8

#	Article	IF	CITATIONS
640	Experimental study about mixing characteristic and enhancement of T-jet reactor. Chemical Engineering Science, 2016, 144, 116-125.	1.9	21
641	Development of a PMMA Electrochemical Microfluidic Device for Carcinoembryonic Antigen Detection. Journal of Electronic Materials, 2016, 45, 2455-2462.	1.0	16
642	Simulation of the mixing process in a straight tube with sudden changed cross-section. Chinese Journal of Chemical Engineering, 2016, 24, 711-718.	1.7	19
643	Explicit numerical simulation-based study of the hydrodynamics of micro-packed beds. Chemical Engineering Science, 2016, 145, 71-79.	1.9	9
644	Microbioreactors. , 2016, , 99-152.		7
645	Numerical study of fluid mixing at different inlet flow-rate ratios in Tear-drop and Chain micromixers compared to a new H-C passive micromixer. Engineering Applications of Computational Fluid Mechanics, 2016, 10, 182-192.	1.5	29
646	Enzymatic microreactors in biocatalysis: history, features, and future perspectives. Biocatalysis, 2016, 1, .	2.3	24
647	Stoichiometric control of live cell mixing to enable fluidically-encoded co-culture models in perfused microbioreactor arrays. Integrative Biology (United Kingdom), 2016, 8, 194-204.	0.6	10
648	The use of dimensionless groups to analyse the mixing of streams with large density differences in sub- and supercritical water. Chemical Engineering Journal, 2016, 287, 350-358.	6.6	6
649	Design and characterization of a new H-C passive micromixer up to Reynolds number 100. Chemical Engineering Research and Design, 2016, 108, 152-163.	2.7	20
650	Start-up electroosmotic flow of Maxwell fluids in a rectangular microchannel with high zeta potentials. Journal of Non-Newtonian Fluid Mechanics, 2016, 227, 17-29.	1.0	40
651	Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chemical Engineering Journal, 2016, 284, 1342-1347.	6.6	32
652	Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid–liquid extraction processes. Chemical Engineering Journal, 2016, 283, 855-868.	6.6	114
653	Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System. Journal of the Association for Laboratory Automation, 2016, 21, 323-355.	2.8	79
654	Biodiesel synthesis in micromixer with static elements. Energy Conversion and Management, 2017, 141, 28-39.	4.4	77
655	Application of Polyionic Macromolecules in Micro Flow Syntheses of Nanoparticles. Macromolecular Chemistry and Physics, 2017, 218, 1600371.	1.1	10
656	Magneto-hydrodynamics-driven mixing of a reagent and a phosphate-buffered solution: A computational study. Applied Mathematics and Computation, 2017, 298, 261-271.	1.4	8
657	Shape Optimization of a Three-Dimensional Serpentine Split-and-Recombine Micromixer. Chemical Engineering Communications, 2017, 204, 548-556.	1.5	14

#	Article	IF	CITATIONS
658	Liquid–Liquid Extraction of Lithium Ions Using a Slug Flow Microreactor: Effect of Extraction Reagent and Microtube Material. Solvent Extraction and Ion Exchange, 2017, 35, 61-73.	0.8	12
659	Gas-liquid reaction and mass transfer in microstructured coiled flow inverter. Chemical Engineering Science, 2017, 169, 164-178.	1.9	62
660	Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles. Reaction Chemistry and Engineering, 2017, 2, 129-136.	1.9	56
661	Rapid microfluidic mixer utilizing sharp corner structures. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	24
662	Experimental characterization of axial dispersion in coiled flow inverters. Chemical Engineering Research and Design, 2017, 120, 159-170.	2.7	51
663	Fluidic separation in microstructured devices – Concepts and their Integration into process flow networks. Chemical Engineering Science, 2017, 169, 3-17.	1.9	27
664	Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Analytical Chemistry, 2017, 89, 3858-3866.	3.2	300
665	Rapid mixing by turbulent-like electrokinetic microflow. Chemical Engineering Science, 2017, 165, 113-121.	1.9	19
666	Characterization of Milli- and Microflow Reactors: Mixing Efficiency and Residence Time Distribution. Organic Process Research and Development, 2017, 21, 531-542.	1.3	85
667	Intensifying Multiphase Reactions and Reactors: Strategies and Examples. ACS Sustainable Chemistry and Engineering, 2017, 5, 3607-3622.	3.2	47
668	Modular Process Engineering: Development of Apparatuses for Transformable Production Systems. ChemBioEng Reviews, 2017, 4, 60-70.	2.6	5
669	Liquid metal enabled microfluidics. Lab on A Chip, 2017, 17, 974-993.	3.1	354
670	3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls. Nano Convergence, 2017, 4, 4.	6.3	14
671	Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors. Biotechnology Journal, 2017, 12, 1700030.	1.8	50
672	Is there a future for enzymatic biodiesel industrial production in microreactors?. Applied Energy, 2017, 201, 124-134.	5.1	65
673	Review of Microfluidic Liquid–Liquid Extractors. Industrial & Engineering Chemistry Research, 2017, 56, 7593-7622.	1.8	80
674	Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions. Physics of Fluids, 2017, 29, 021901.	1.6	13
675	The Hitchhiker's Guide to Flow Chemistry. Chemical Reviews, 2017, 117, 11796-11893.	23.0	1,410

#	Article	IF	CITATIONS
676	Developing a fast and tunable micro-mixer using induced vortices around a conductive flexible link. Physics of Fluids, 2017, 29, .	1.6	27
677	Design and Scaling Up of Microchemical Systems: A Review. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 285-305.	3.3	208
678	Arbitrary axisymmetric steady streaming: flow, force and propulsion. Journal of Engineering Mathematics, 2017, 105, 31-65.	0.6	30
679	Quantitative Evaluation of Passive Scalar Flow Mixing – AÂReview of Recent Developments. ChemBioEng Reviews, 2017, 4, 120-140.	2.6	4
680	Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation. Chemical Engineering and Processing: Process Intensification, 2017, 116, 9-16.	1.8	46
681	Combination of microfluidic high-throughput production and parameter screening for efficient shaping of gold nanocubes using Dean-flow mixing. Lab on A Chip, 2017, 17, 1487-1495.	3.1	55
682	Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications – a review. Lab on A Chip, 2017, 17, 209-226.	3.1	213
683	Optimization of a Micromixer with Two‣ayer Serpentine Crossing Channels at Multiple Reynolds Numbers. Chemical Engineering and Technology, 2017, 40, 2212-2220.	0.9	10
684	Anomalous force-velocity relation of driven inertial tracers in steady laminar flows. European Physical Journal E, 2017, 40, 81.	0.7	14
685	Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries. Journal of Micromechanics and Microengineering, 2017, 27, 115003.	1.5	1
686	Stimulation of magnetic nanoparticles to intensify transesterification of soybean oil in micromixers for biodiesel production. Chemical Engineering and Processing: Process Intensification, 2017, 122, 109-121.	1.8	14
687	Using Printing Orientation for Tuning Fluidic Behavior in Microfluidic Chips Made by Fused Deposition Modeling 3D Printing. Analytical Chemistry, 2017, 89, 12805-12811.	3.2	66
688	Statistical optimization of curcumin nanosuspension through liquid anti-solvent precipitation (LASP) process in a microfluidic platform: Box-Behnken design approach. Korean Journal of Chemical Engineering, 2017, 34, 3017-3027.	1.2	24
689	Liquid–liquid microflow reaction engineering. Reaction Chemistry and Engineering, 2017, 2, 611-627.	1.9	90
690	Effect of flap installation on improving the homogeneity of the mixture in an induced-charge electrokinetic micro-mixer. Chemical Engineering and Processing: Process Intensification, 2017, 121, 188-197.	1.8	22
691	Active Mixing Nozzle for Multimaterial and Multiscale Three-Dimensional Printing. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.8	3
692	Mixing characteristics in microchannels with biomimetic superhydrophobic (Lotus leaf replica) walls. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	15
693	Experimental study of efficient mixing in a micro-fluidized bed. Applied Thermal Engineering, 2017, 127, 1642-1649.	3.0	9

#	Article	IF	CITATIONS
695	Millifluidic synthesis of cadmium sulfide nanoparticles and their application in bioimaging. RSC Advances, 2017, 7, 36819-36832.	1.7	22
696	Active Mixing Nozzle for Multi-Material and Multi-Scale 3D Printing. , 2017, , .		4
697	Performance analysis of a microfluidic mixer based on high gradient magnetic separation principles. Journal Physics D: Applied Physics, 2017, 50, 365004.	1.3	10
698	Optimizing electroosmotic pumping rates in a rectangular channel with vertical gratings. Physics of Fluids, 2017, 29, 082002.	1.6	4
699	"Impossible―chemistries based on flow and micro. Journal of Flow Chemistry, 2017, 7, 60-64.	1.2	53
700	Microfluidic Devices and Their Applications. Springer Handbooks, 2017, , 487-536.	0.3	32
701	Magnetofluidic micromixer based on a complex rotating magnetic field. RSC Advances, 2017, 7, 52465-52474.	1.7	14
702	Stability of plane Couette flow of a power-law fluid past a neo-Hookean solid at arbitrary Reynolds number. Physics of Fluids, 2017, 29, .	1.6	12
703	Topology and Sizing Optimization of Micromixers Using Graph-Theoretical Representation and Genetic Algorithm. , 2017, , .		3
704	Kinetic Control of Block Copolymer Selfâ€Assembly in a Micromixing Device – Mechanistical Insight into Vesicle Formation Process. Macromolecular Chemistry and Physics, 2017, 218, 1600347.	1.1	11
705	A micromixer with two-layer serpentine crossing channels having excellent mixing performance at low Reynolds numbers. Chemical Engineering Journal, 2017, 327, 268-277.	6.6	97
706	Numerical and experimental investigations of chaotic mixing behavior in an oscillating feedback micromixer. Chemical Engineering Science, 2017, 171, 303-317.	1.9	49
707	Effect of external pulsation on kinematics of fluid particles in the field of Lamb–Oseen vortex pair. Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 489-504.	0.8	0
708	Effect of channel aspect ratio of 3-D T-mixer on flow patterns and convective mixing for a wide range of Reynolds number. Sensors and Actuators B: Chemical, 2017, 239, 1153-1176.	4.0	34
709	Numerical Investigations on Mixing in Microchannels with Transverse Hydrophobic Strips. Microsystem Technologies, 2017, 23, 2881-2890.	1.2	5
710	Mixing performance of T, Y, and oriented Y-micromixers with spatially arranged outlet channel: evaluation with Villermaux/Dushman test reaction. Microsystem Technologies, 2017, 23, 3117-3130.	1.2	21
711	Mixing and residence time distribution in ultrasonic microreactors. AICHE Journal, 2017, 63, 1404-1418.	1.8	75
712	Ultrasound assisted liquid–liquid extraction with a novel interval-contact reactor. Chemical Engineering and Processing: Process Intensification, 2017, 113, 35-41.	1.8	29

#	ARTICLE	IF	CITATIONS
713	Enhancing liquid micromixing using lowâ€frequency rotating nanoparticles. AICHE Journal, 2017, 63, 337-346.	1.8	14
714	Design and Simulation of a Chaotic Micromixer with Diamond-Like Micropillar Based on Artificial Neural Network. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	10
715	MARANGONI-IMPROVED MIXING IN A TWO-DROPLET SYSTEM. Interfacial Phenomena and Heat Transfer, 2017, 5, 81-95.	0.3	2
717	A Numerical Research of Herringbone Passive Mixer at Low Reynold Number Regime. Micromachines, 2017, 8, 325.	1.4	11
718	A Rapid Magnetofluidic Micromixer Using Diluted Ferrofluid. Micromachines, 2017, 8, 37.	1.4	37
719	Energy Optimization of Gas–Liquid Dispersion in Micronozzles Assisted by Design of Experiment. Processes, 2017, 5, 57.	1.3	9
720	A Review on Micromixers. Micromachines, 2017, 8, 274.	1.4	324
721	An immersed boundary-lattice Boltzmann method to simulate chaotic micromixers with baffles. Computers and Fluids, 2018, 167, 206-214.	1.3	17
722	Numerical simulation of diffusion process in T-shaped micromixer using Shan-Chen Lattice Boltzmann Method. Computers and Fluids, 2018, 167, 229-240.	1.3	16
723	Development of a high-sensitive electrochemical detector with micro-stirrer driven by surface acoustic waves. Sensors and Actuators B: Chemical, 2018, 260, 705-709.	4.0	9
724	Influence of reagents choice (buffer, acid and inert salt) on triiodide production in the Villermaux–Dushman method applied to a stirred vessel. Chemical Engineering Research and Design, 2018, 136, 25-31.	2.7	23
725	Convective mixing of miscible liquids in a rotor-stator spinning disk reactor. Chemical Engineering Journal, 2018, 346, 329-339.	6.6	5
726	Design and numerical study on a novel micromixer based on Cantor fractal structure. Microsystem Technologies, 2018, 24, 4863-4873.	1.2	2
727	Mixing enhancement of a novel C-SAR microfluidic mixer. Chemical Engineering Research and Design, 2018, 132, 338-345.	2.7	26
728	An Acoustic Micromixer Using Low-Powered Voice Coil Actuation. Journal of Microelectromechanical Systems, 2018, 27, 171-178.	1.7	3
729	Steady and unsteady regimes in a T-shaped micro-mixer: Synergic experimental and numerical investigation. Chemical Engineering Journal, 2018, 341, 414-431.	6.6	93
730	Inertia-driven enhancement of mixing efficiency in microfluidic cross-junctions: a combined Eulerian/Lagrangian approach. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	10
731	SPH investigation of the thermal effects on the fluid mixing in a microchannel with rotating stirrers. Fluid Dynamics Research, 2018, 50, 025509.	0.6	5

#	Article	IF	CITATIONS
732	Numerical simulation of mixing process in T-shaped and DT-shaped micromixers. Chemical Engineering Communications, 2018, 205, 363-371.	1.5	18
733	Influence of mixing performance on polymerization of acrylamide in capillary microreactors. AICHE Journal, 2018, 64, 1828-1840.	1.8	38
734	Recent advances and applications of micromixers. Sensors and Actuators B: Chemical, 2018, 259, 677-702.	4.0	190
735	Microfluidic Biosensor. , 2018, , 263-293.		2
736	Evaluation of the mixing performance in a planar passive micromixer with circular and square mixing chambers. Microsystem Technologies, 2018, 24, 2599-2610.	1.2	55
737	Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators. Advanced Functional Materials, 2018, 28, 1705484.	7.8	71
738	Development of an efficient uniflow comb micromixer for biodiesel production at low Reynolds number. Chemical Engineering and Processing: Process Intensification, 2018, 128, 162-172.	1.8	21
739	A gradient-based framework for maximizing mixing in binary fluids. Journal of Computational Physics, 2018, 368, 131-153.	1.9	10
740	Numerical simulation for electro-osmotic mixing under three types of periodic potentials in a T-shaped micro-mixer. Chemical Engineering and Processing: Process Intensification, 2018, 127, 93-102.	1.8	18
741	CFD study on laminar mixing at a very low Reynolds number by pitching and heaving a square cylinder. Computers and Fluids, 2018, 168, 318-327.	1.3	17
742	Ghost Particle Velocimetry as an alternative to $\hat{1}$ /4PIV for micro/milli-fluidic devices. Chemical Engineering Research and Design, 2018, 133, 183-194.	2.7	18
743	Photoresponsive Passive Micromixers Based on Spiropyran Sizeâ€Tunable Hydrogels. Macromolecular Rapid Communications, 2018, 39, 1700086.	2.0	28
744	Numerical Modeling and Parametric Optimization of Micromixer for Low Diffusivity Fluids. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	9
745	A Shell Model for Optimal Mixing. Journal of Nonlinear Science, 2018, 28, 2153-2186.	1.0	10
746	A comparative discussion of different designs of passive micromixers: specific sensitivities of mixing efficiency on Reynolds numbers and fluid properties. Microsystem Technologies, 2018, 24, 1253-1263.	1.2	15
747	Pressure equalization approach for flow uniformity in microreactor with parallel channels. Chemical Engineering Science, 2018, 176, 96-106.	1.9	20
748	Numerical assessment of mixing performances in cross-T microchannel with curved ribs. Microsystem Technologies, 2018, 24, 1949-1963.	1.2	24
749	Fluid flow characteristics of a multi-scale fluidic network. Chemical Engineering and Processing: Process Intensification, 2018, 123, 67-81.	1.8	8

#	Article	IF	CITATIONS
750	Micromixing using swirling induced by three-dimensional dual surface acoustic waves (3D-dSAW). Sensors and Actuators B: Chemical, 2018, 255, 3434-3440.	4.0	37
751	Incompressible SPH Modeling of Rotary Micropump Mixers. International Journal of Computational Methods, 2018, 15, 1850019.	0.8	1
752	Transesterification of sunflower oil in microchannels with circular obstructions. Chinese Journal of Chemical Engineering, 2018, 26, 852-863.	1.7	38
753	Effective mixing in a short serpentine split-and-recombination micromixer. Sensors and Actuators B: Chemical, 2018, 258, 381-392.	4.0	76
754	Optimization of a split and recombine micromixer by improved exploitation of secondary flows. Chemical Engineering Journal, 2018, 334, 1996-2003.	6.6	35
755	Fast prototyping of microtubes with embedded sensing elements made possible with an inkjet printing and rolling process. Journal of Micromechanics and Microengineering, 2018, 28, 025003.	1.5	12
756	On the mixing characteristics of a poorly water soluble drug through microfluidicâ€essisted nanoprecipitation: Experimental and numerical study. Canadian Journal of Chemical Engineering, 2018, 96, 1098-1108.	0.9	6
757	Continuous cell flocculation for recombinant antibody harvesting. Journal of Chemical Technology and Biotechnology, 2018, 93, 1881-1890.	1.6	27
758	13 The Controlled Synthesis of Carbohydrates. , 2018, , .		0
759	Adaptive Micromixer Based on the Solutocapillary Marangoni Effect in a Continuous-Flow Microreactor. Micromachines, 2018, 9, 600.	1.4	18
760	Synergy of Microtechnology and Biotechnology: Microreactors as an Effective Tool for Biotransformation Processes. Food Technology and Biotechnology, 2018, 56, 464-479.	0.9	21
761	Measuring of calcification risk with polymer microchips. Current Directions in Biomedical Engineering, 2018, 4, 367-370.	0.2	1
763	On-chip acoustic mixer integration of electro-microfluidics towards in-situ and efficient mixing in droplets. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	26
764	High Mixing Efficiency by Modulating Inlet Frequency of Viscoelastic Fluid in Simplified Pore Structure. Processes, 2018, 6, 210.	1.3	6
765	One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes. Journal of Visualized Experiments, 2018, , .	0.2	1
766	Asymmetrical Induced Charge Electroosmotic Flow on a Herringbone Floating Electrode and Its Application in a Micromixer. Micromachines, 2018, 9, 391.	1.4	7
767	Fluid flow simulations verified by measurements to investigate adsorption processes in a static mixer. Computers and Mathematics With Applications, 2018, 76, 2744-2757.	1.4	10
768	Energy-efficient generation of controlled vortices on low-voltage digital microfluidic platform. Applied Physics Letters, 2018, 113, 124103.	1.5	11

#	Article	IF	CITATIONS
769	Numerical study on micromixers with smart-rhombic structure. International Journal of Modern Physics B, 2018, 32, 1850301.	1.0	3
770	Microstructured devices for biodiesel production by transesterification. Biomass Conversion and Biorefinery, 2018, 8, 1005-1020.	2.9	18
771	Experimental and Numerical Analyses of Unsteady Flow Regimes and Mixing in a Micro T-Mixer. , 2018, , .		0
772	A Review of Planar PIV Systems and Image Processing Tools for Lab-On-Chip Microfluidics. Sensors, 2018, 18, 3090.	2.1	12
773	Assessing the possibilities of designing a unified multistep continuous flow synthesis platform. Beilstein Journal of Organic Chemistry, 2018, 14, 1917-1936.	1.3	10
774	Mixing Time Scale Measurement With Fast Exothermic Reactions Using Microchannel Reaction Calorimetry. , 2018, , .		Ο
775	Performance Analysis and Numerical Evaluation of Mixing in 3-D T-Shape Passive Micromixers. Micromachines, 2018, 9, 210.	1.4	21
776	Everything Flows: Continuous Micro-Flow for Pharmaceutical Production. Chemistry International, 2018, 40, 12-16.	0.3	11
777	Development of the horizontal swirl mixer with a fillet shape. International Journal of Heat and Mass Transfer, 2018, 125, 129-142.	2.5	4
778	Advancing Flow Chemistry Portability: A Simplified Approach to Scaling Up Flow Chemistry. Organic Process Research and Development, 2018, 22, 1015-1021.	1.3	30
779	Design and performance of a three-dimensional micromixer with curved ribs. Chemical Engineering Research and Design, 2018, 136, 761-775.	2.7	46
780	Integrating continuous flow synthesis with in-line analysis and data generation. Organic and Biomolecular Chemistry, 2018, 16, 5946-5954.	1.5	34
781	Optimization of Wavy-Channel Micromixer Geometry Using Taguchi Method. Micromachines, 2018, 9, 70.	1.4	14
782	Passive Mixing inside Microdroplets. Micromachines, 2018, 9, 160.	1.4	42
783	Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers. Micromachines, 2018, 9, 204.	1.4	38
784	Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling. Rapid Prototyping Journal, 2018, 24, 921-934.	1.6	46
785	Design of a Novel μ-Mixer. Fluids, 2018, 3, 10.	0.8	7
786	Fabrication of Nanoemulsions by Microfluidization. , 2018, , 207-232.		13

ARTICLE IF CITATIONS # A novel application of dielectric stack actuators: a pumping micromixer. Smart Materials and 787 1.8 26 Structures, 2018, 27, 074008. Micro Droplet Formation towards Continuous Nanoparticles Synthesis. Micromachines, 2018, 9, 248. 788 1.4 Thermoformed fluoropolymer tubing for in-line mixing. Reaction Chemistry and Engineering, 2018, 3, 789 1.9 25 707-713. Multi-Objective Optimizations of a Serpentine Micromixer with Crossing Channels at Low and High 790 1.4 Reynolds Numbers. Micromachines, 2018, 9, 110. Investigation of temperature-induced flow stratification and spiral flow in T-shaped microchannel. 791 1.0 3 Microfluidics and Nanofluidics, 2018, 22, 1. Effect of pillars on the mixing efficiency of a peristaltically-driven Bingham fluid within a closed channel: A LBM simulation. Korea Australia Rheology Journal, 2018, 30, 75-88. 792 Microfluidic mixing through oscillatory transverse perturbations. Modern Physics Letters B, 2018, 32, 793 1.0 5 1840030. Simulation and design microreactor configured with micromixers to intensify the isobutane/1-butene 794 2.7 alkylation process. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 53-62. Intensification of liquidâ€"liquid twoâ€phase mass transfer in a capillary microreactor system. AICHE 795 1.8 40 Journal, 2019, 65, 334-346. Process intensification in vapor–liquid mass transfer: The state-of-the-art. Chinese Journal of 796 1.7 14 Chemical Engineering, 2019, 27, 1236-1246. Passive Micromixer Platform for Size- and Shape-Controllable Preparation of Ultrafine HNS. 797 1.8 42 Industrial & amp; Engineering Chemistry Research, 2019, 58, 16709-16718. Efficient Production of Cyclopropylamine by a Continuous-Flow Microreaction System. Industrial 798 1.8 & Engineering Chemistry Research, 2019, 58, 16389-16394. Micromixers and their applications in kinetic analysis of biochemical reactions. Talanta, 2019, 205, 799 2.9 39 120136. Analysis of a Twoâ€Layer Nozzleâ€andâ€Diffuser Electroosmotic Micromixer. Chemical Engineering and Technology, 2019, 42, 2164-2170. Unsteady Flow Regimes in a T-Shaped Micromixer: Mixing and Characteristic Frequencies. Industrial 801 1.8 36 & Engineering Chemistry Research, 2019, 58, 13340-13356. Recent topics of functionalized organolithiums using flow microreactor chemistry. Tetrahedron Letters, 2019, 60, 150923. Pivotal role of electrospun nanofibers in microfluidic diagnostic systems – a review. Journal of 803 2.9 33 Materials Chemistry B, 2019, 7, 4602-4619. Geometrically Similar Rectangular Passive Micromixers and the Scaling Validity on Mixing Efficiency 804 and Pressure Drops. Strojnicky Casopis, 2019, 69, 69-84.

#	Article	IF	CITATIONS
805	Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS Applied Materials & Materials	4.0	34
806	A numerical investigation of magnetic mixing in electroosmotic flows. Journal of Electrostatics, 2019, 100, 103354.	1.0	12
807	Flow nanoprecipitation of size-controlled <scp>d</scp> -leucine nanoparticles for spray-drying formulations. Reaction Chemistry and Engineering, 2019, 4, 1861-1868.	1.9	1
808	Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab on A Chip, 2019, 19, 2936-2946.	3.1	24
809	Mixing performance of a fractal-like tree network micromixer based on Murray's law. International Journal of Heat and Mass Transfer, 2019, 141, 346-352.	2.5	17
810	Shape optimization of an innovative hepatic sinusoids-based micromixer. Chemical Engineering and Processing: Process Intensification, 2019, 146, 107684.	1.8	3
811	Numerical Investigation of the Effect of Obstacles on the Thermal Exchange and Mixing Efficiency of Fluids in Microchannels. , 2019, , .		1
812	Experimental investigation of thermal and flow mixing enhancement induced by Rayleigh-like streaming in a milli-mixer. Thermal Science and Engineering Progress, 2019, 14, 100434.	1.3	4
813	Biomimetic pulsatile flows through flexible microfluidic conduits. Biomicrofluidics, 2019, 13, 014103.	1.2	11
814	Hydrodynamics of Compound Droplet Flowing in the Curved Minichannel. Advances in Condensed Matter Physics, 2019, 2019, 1-11.	0.4	2
815	Acoustic Bubble Induced Microstreaming for The Enhancement of Droplet Mixing in Electrowetting (EW) Microfluidic Platforms. , 2019, , .		5
816	Fully Integrated, Automated, and Smartphone Enabled Point-of-Source Portable Platform With Microfluidic Device for Nitrite Detection. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1518-1524.	2.7	30
817	A Plasmonic Approach to Study Protein Interaction Kinetics through the Dimerization of Functionalized Ag Nanoparticles. Scientific Reports, 2019, 9, 13122.	1.6	2
818	Numerical study on mixing performance of 3D passive micromixer with scaling elements. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	5
819	Integration of Horizontal and Vertical Microfluidic Modules for Core-Shell Droplet Generation and Chemical Application. Micromachines, 2019, 10, 613.	1.4	5
820	Vortex generation in electroosmotic flow in a straight polydimethylsiloxane microchannel with different polybrene modified-to-unmodified section length ratios. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	11
821	Free-Flowing Shear-Thinning Liquid Film in Inclined μ-Channels. Fluids, 2019, 4, 8.	0.8	1
822	Mixing Time Scale Determination in Microchannels Using Reaction Calorimetry. Chemie-Ingenieur-Technik, 2019, 91, 622-631.	0.4	15

#	Article	IF	CITATIONS
823	Liquid–Liquid Microdispersion Method for the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Engineering Chemistry Research, 2019, 58, 12010-12017.	1.8	3
824	High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 8450-8456.	2.7	12
825	Residence time distribution in coil and plate micro-reactors. Chemical Engineering Science, 2019, 207, 181-193.	1.9	10
826	Numerical study of a bubble driven micromixer based on thermal inkjet technology. Physics of Fluids, 2019, 31, 062006.	1.6	19
827	Unsupervised machine learning based on non-negative tensor factorization for analyzing reactive-mixing. Journal of Computational Physics, 2019, 395, 85-104.	1.9	28
828	Acoustically Driven Micromixing: Effect of Transducer Geometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1387-1394.	1.7	11
829	Experimental methods in chemical engineering: Microâ€reactors. Canadian Journal of Chemical Engineering, 2019, 97, 2578-2587.	0.9	24
830	Monolithiation of 5,5′â€Dibromoâ€2,2′â€bithiophene Using Flow Microreactors: Mechanistic Implications a Synthetic Applications. Chemical Engineering and Technology, 2019, 42, 2113-2118.	nd 0.9	6
831	Anionic Polymerization Using Flow Microreactors. Molecules, 2019, 24, 1532.	1.7	17
832	Active Mixing of Reactive Materials for 3D Printing. Advanced Engineering Materials, 2019, 21, 1900147.	1.6	36
833	On the Impact of the Fabrication Method on the Performance of 3D Printed Mixers. Micromachines, 2019, 10, 298.	1.4	21
834	Comparison of Micro-Mixing in Time Pulsed Newtonian Fluid and Viscoelastic Fluid. Micromachines, 2019, 10, 262.	1.4	16
835	Numerical investigation of the effect of the electrodes bed on the electrothermally induced fluid flow velocity inside a microchannel. International Journal of Mechanical Sciences, 2019, 157-158, 415-427.	3.6	8
836	Experimental Studies of Ethyl Acetate Saponification Using Different Reactor Systems: The Effect of Volume Flow Rate on Reactor Performance and Pressure Drop. Applied Sciences (Switzerland), 2019, 9, 532.	1.3	10
837	Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. Biosensors, 2019, 9, 41.	2.3	60
838	Mixing processes in a 3D printed large-flow microstructured reactor: Finite element simulations and experimental study. Chemical Engineering Journal, 2019, 370, 295-304.	6.6	13
839	Mixing process of two-phase non-Newtonian fluids in 2D using Smoothed Particle Hydrodynamics. Computers and Mathematics With Applications, 2019, 78, 110-122.	1.4	11
840	Characterization of mixing in an optimized designed T–T mixer with cylindrical elements. Chinese Journal of Chemical Engineering, 2019, 27, 2337-2351.	1.7	16

#	Article	IF	CITATIONS
841	Enhanced mixing and flow reversal in a modulated microchannel. International Journal of Mechanical Sciences, 2019, 155, 430-439.	3.6	17
842	Dynamic Measurement of Nanoflows: Analysis and Theory of an Optofluidic Flowmeter. Physical Review Applied, 2019, 11, .	1.5	9
843	Performance and implementation of centrifugal serpentine micromixers with non-rectangular cross-section. Journal of Micromechanics and Microengineering, 2019, 29, 075012.	1.5	14
844	Flow Feature Analysis of T-Junction Wavy Micromixer for Mixing Application. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	9
845	An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. Journal of Marine Engineering and Technology, 2022, 21, 73-81.	1.9	47
846	A Micromixer with Two-Layer Crossing Microchannels Based on PMMA Bonding Process. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	5
847	Optimization of passive grooved micromixers based on genetic algorithm and graph theory. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	24
848	Enhanced mixing of biphasic liquid-liquid systems for the synthesis of gem-dihalocyclopropanes using packed bed reactors. Journal of Flow Chemistry, 2019, 9, 27-34.	1.2	15
849	Synthesis and scale-up of water-soluble quaternary cationic monomers in a continuous flow system. Reaction Chemistry and Engineering, 2019, 4, 919-926.	1.9	4
850	Characterization of enhanced liquid mixing in Tâ€T mixer at various Reynolds numbers. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2298.	0.8	5
851	Enhanced Visible-Responsive Photodegradation Through SnFe2O4 Nanoparticles with Modified Magnetic Artificial Cilia Actuation. , 2019, , .		0
852	Programmable hydraulic resistor for microfluidic chips using electrogate arrays. Scientific Reports, 2019, 9, 17242.	1.6	5
853	Versatile Microfluidic Mixing Platform for High- and Low-Viscosity Liquids via Acoustic and Chemical Microbubbles. Micromachines, 2019, 10, 854.	1.4	7
854	Inertial Micromixing in Curved Serpentine Micromixers with Different Curve Angles. Fluids, 2019, 4, 204.	0.8	12
855	Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines, 2019, 10, 830.	1.4	130
856	Rapid mixing in microchannel using standing bulk acoustic waves. Physics of Fluids, 2019, 31, .	1.6	29
857	Integrated vortex micro T-mixer for rapid mixing of fluids. Journal of Mechanical Science and Technology, 2019, 33, 5923-5931.	0.7	10
858	Process intensification of mixing and chemical modification for polymer solutions in microreactors based on gas-liquid two-phase flow. Chemical Engineering Science, 2019, 195, 62-73.	1.9	17

#	Article	IF	CITATIONS
859	Flow, mixing, and heat transfer in fluidic oscillators. Canadian Journal of Chemical Engineering, 2019, 97, 542-559.	0.9	20
860	A novel Koch fractal micromixer with rounding corners structure. Microsystem Technologies, 2019, 25, 2751-2758.	1.2	12
861	Effect of vortex on mass transport and mixing in microcapillary channels. Chemical Engineering Journal, 2019, 362, 442-452.	6.6	24
862	An efficient micromixer combining oscillatory flow and divergent circular chambers. Microsystem Technologies, 2019, 25, 2741-2750.	1.2	25
863	Estimation of kinetic coefficients in micro-reactors for biodiesel synthesis: Bayesian inference with reduced mass transfer model. Chemical Engineering Research and Design, 2019, 141, 550-565.	2.7	11
864	Microextractors applied in nuclear-spent fuel reprocessing: Micro/mini plants and radiochemical analysis. Critical Reviews in Environmental Science and Technology, 2019, 49, 1-31.	6.6	39
865	Simulation and experimental study of asymmetric split and recombine micromixer with Dâ€shaped subâ€channels. Micro and Nano Letters, 2019, 14, 293-298.	0.6	4
866	Preliminary Study on Staggered Herringbone Micromixer Design Suitable for Micro EDM Milling. Lecture Notes in Mechanical Engineering, 2019, , 229-236.	0.3	1
867	Unbalanced Split and Recombine Micromixer with Three-Dimensional Steps. Industrial & Engineering Chemistry Research, 2020, 59, 3744-3756.	1.8	35
868	Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. Ultrasonics Sonochemistry, 2020, 60, 104800.	3.8	31
869	Effects of flexibility of conductive plate on efficiency of an induced-charge electrokinetic micro-mixer under constant and time-varying electric fields-A comprehensive parametric study. Chemical Engineering Science, 2020, 212, 115335.	1.9	12
870	Investigations into planar splitting and recombining micromixers with asymmetric structures. Journal of Micromechanics and Microengineering, 2020, 30, 015006.	1.5	6
871	A comprehensive geometrical study on an induced-charge electrokinetic micromixer equipped with electrically conductive plates. International Journal of Heat and Mass Transfer, 2020, 146, 118892.	2.5	21
872	Acoustic mixing in a dome-shaped chamber-based SAW (DC-SAW) device. Lab on A Chip, 2020, 20, 120-125.	3.1	16
873	Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis. Lab on A Chip, 2020, 20, 582-591.	3.1	55
874	Improvement of silver azide crystal morphology and detonation behavior by fast mixing using a microreaction system with an integrated static micromixer. Reaction Chemistry and Engineering, 2020, 5, 154-162.	1.9	16
875	Experimental and numerical analysis of three Y-shaped split and recombination micromixers based on cantor fractal structures. Microsystem Technologies, 2020, 26, 1783-1796.	1.2	13
876	Correlations of the capture efficiency with the Dean number and its constituents in heterogeneous microfluidic immunosensors. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	3

ARTICLE IF CITATIONS # Energyâ€"efficient mixing generated by prescribed crosswise oscillations of a square prism in highly 877 1.9 4 confined flows. Chemical Engineering Science, 2020, 215, 115456. Polymeric microellipsoids with programmed magnetic anisotropy for controlled rotation using low 878 2.3 (â‰^10 mT) magnetic fields. Applied Materials Today, 2020, 18, 100511. Innovative Metallic Microfluidic Device for Intensified Biodiesel Production. Industrial & amp; 879 1.8 14 Engineering Chemistry Research, 2020, 59, 389-398. Passive Mixer cum Reactor Using Threaded Inserts: Investigations of Flow, Mixing, and Heat Transfer 880 1.8 Characteristics. Industrial & amp; Engineering Chemistry Research, 2020, 59, 3943-3961. Active and passive micromixers: A comprehensive review. Chemical Engineering and Processing: 881 240 1.8 Process Intensification, 2020, 147, 107771. Mass transfer in a novel passive micro-mixer: Flow tortuosity effects. Analytica Chimica Acta, 2020, 2.6 1098, 75-85. Unprecedented yield of methyl-esterification with in-situ generated diazomethane in a microchannel 883 1.9 6 reactor with methanol as solvent. Chemical Engineering Science, 2020, 213, 115397. Performance Evaluation of Liquid Mixing in a T-Junction Passive Micromixer with a Twisted Tape Insert. 884 1.8 19 Industrial & amp; Engineering Chemistry Research, 2020, 59, 3904-3915. Switching Modes of Mixing Due to an Adjustable Gap in a Continuous-Flow Microreactor. Actuators, 885 1.2 3 2020, 9, 2. Handling of Solids and Flow Characterization in a Baffleless Oscillatory Flow Coil Reactor. 1.8 Industrial & amp; Engineering Chemistry Research, 2020, 59, 4007-4019. Experimental Evaluation of Liquid Mixing Using Piezo Actuated Pump System. Instruments and 887 4 0.1 Experimental Techniques, 2020, 63, 758-766. Numerical modeling and experimental validation of passive microfluidic mixer designs for biological 0.6 applications. AIP Advances, 2020, 10, . Mixing enhancement through a micromixer using topology optimization. Chemical Engineering 889 2.7 40 Research and Design, 2020, 161, 187-196. Obstacle-free planar hybrid micromixer with lowÂpressure drop. Microfluidics and Nanofluidics, 2020, 890 1.0 24, 1. Effect of active mixing on capture efficiency in heterogeneous microfluidic immunosensor. 891 1.0 2 Microfluidics and Nanofluidics, 2020, 24, 1. The mixing performance of passive micromixers with smart-rhombic units. Journal of Dispersion 892 Science and Technology, 2022, 43, 439-445. Generation and application of sub-kilohertz oscillatory flows in microchannels. Microfluidics and 893 1.0 13 Nanofluidics, 2020, 24, 1. Flow regimes and mixing characteristics in non-aligned T-jets reactors. Chemical Engineering Science, 894 2020, 228, 115991.

#	Article	IF	CITATIONS
895	Understanding Interdependencies between Mechanical Velocity and Electrical Voltage in Electromagnetic Micromixers. Micromachines, 2020, 11, 636.	1.4	5
896	Passive Micromixer with Sharp Edges: Simulation and Optimization. , 2020, , .		1
897	Numerical Investigations of Perfectly Mixed Condition at the Inlet of Free Radical Polymerization Tubular Microreactors of Different Geometries. Macromolecular Theory and Simulations, 2020, 29, 2000030.	0.6	3
898	Monolithic 3D micromixer with an impeller for glass microfluidic systems. Lab on A Chip, 2020, 20, 4474-4485.	3.1	21
899	Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 44074-44087.	4.0	13
900	Investigation of the symmetry-breaking instability in a T-mixer with circular cross section. Physics of Fluids, 2020, 32, .	1.6	6
901	On the study of teardrop shaped split and collision (TS-SAC) micromixers with balanced and unbalanced split of subchannels. International Journal of Modelling and Simulation, 2022, 42, 168-177.	2.3	7
902	Characterization of the Mixing Performance of an Innovative Hepatic Sinusoids-Based Microreactor Using Villermaux-Dushman Protocol. Materials Science Forum, 0, 1008, 28-32.	0.3	0
903	Biosensing on the Centrifugal Microfluidic Lab-on-a-Disc Platform. Processes, 2020, 8, 1360.	1.3	30
904	A Review of Passive Micromixers with a Comparative Analysis. Micromachines, 2020, 11, 455.	1.4	97
905	Integrated Immunomagnetic Bead-Based Microfluidic Chip for Exosomes Isolation. Micromachines, 2020, 11, 503.	1.4	17
906	Numerical Investigations of Different Tubular Microreactor Geometries for the Synthesis of Polymers under Unmixed Feed Condition. Macromolecular Theory and Simulations, 2020, 29, 2000008.	0.6	1
907	Controllable Droplet Coalescence in the T-Junction Microchannel with a Funnel-Typed Expansion Chamber. Industrial & Engineering Chemistry Research, 2020, 59, 10298-10307.	1.8	5
908	Shape optimization of stirring rods for mixing binary fluids. IMA Journal of Applied Mathematics, 2020, 85, 762-789.	0.8	5
909	A review on modeling, simulation and experiment of electrokinetic micromixers. Journal of Dispersion Science and Technology, 0, , 1-13.	1.3	3
910	Efficient electroosmotic mixing in a narrow-fluidic channel: the role of a patterned soft layer. Soft Matter, 2020, 16, 6304-6316.	1.2	27
911	Numerical and Experimental Study onÂMixing in Chaotic Micromixers withÂCrossing Structures. Chemical Engineering and Technology, 2020, 43, 1866-1875.	0.9	9
912	Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines, 2020, 11, 599.	1.4	147

#	Article	IF	CITATIONS
913	3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. Reaction Chemistry and Engineering, 2020, 5, 1300-1310.	1.9	19
914	Three-Fluid Sequential Micromixing-Assisted Nanoparticle Synthesis Utilizing Alternating Current Electrothermal Flow. Industrial & Engineering Chemistry Research, 2020, 59, 12514-12524.	1.8	20
915	A Novel Micromixer with Fractal Obstacles Designed Based on Generalized Murray's Law. International Journal of Chemical Reactor Engineering, 2020, 18, .	0.6	7
916	Numerical analysis of a microfluidic mixer and the effects of different cross-sections and various input angles on its mixing performance. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	10
917	A three-dimensional numerical investigation of an induced-charge electrokinetic micromixer equipped with fully polarizable particle. Engineering Research Express, 2020, 2, 025001.	0.8	3
918	Two-Phase Flow in a Coiled Flow Inverter: Process Development from Batch to Continuous Flow. Organic Process Research and Development, 2020, 24, 2094-2104.	1.3	12
919	High-Efficient Micro Reacting Pipe with 3D Internal Structure: Design, Flow Simulation, and Metal Additive Manufacturing. Applied Sciences (Switzerland), 2020, 10, 3779.	1.3	1
920	On-chip mixing of liquids with high-performance embedded barrier structure. International Journal of Heat and Mass Transfer, 2020, 158, 119967.	2.5	10
921	Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel. ACS Sensors, 2020, 5, 2230-2238.	4.0	45
922	Investigation of Mixing Performance of Two-Dimensional Micromixer Using Tesla Structures with Different Shapes of Obstacles. Industrial & Engineering Chemistry Research, 2020, 59, 3636-3643.	1.8	40
923	Numerical and experimental investigation of an efficient convergent–divergent micromixer. Meccanica, 2020, 55, 1025-1035.	1.2	52
924	Rinse, Sense, Adjust, Repeat: Biomimetic Continuous Process Water Analysis in Washing Machines Based on the Hammerhead Shark's Olfaction Hydrodynamics. Advanced Intelligent Systems, 2020, 2, 1900152.	3.3	2
925	Investigations on Selectivity of Gas‣iquid Reactions in Capillaries. Chemie-Ingenieur-Technik, 2020, 92, 624-628.	0.4	3
926	Siphon-Induced Droplet Break-Off for Enhanced Mixing on a Centrifugal Platform. Inventions, 2020, 5, 1.	1.3	15
927	Controlling mass transfer in a continuous-flow microreactor with a variable wall relief. International Communications in Heat and Mass Transfer, 2020, 113, 104522.	2.9	10
928	Continuous Ultrasonic Reactors: Design, Mechanism and Application. Materials, 2020, 13, 344.	1.3	75
929	An Overview of Flow Features and Mixing in Micro T and Arrow Mixers. Industrial & Engineering Chemistry Research, 2020, 59, 3669-3686.	1.8	46
930	Method for determining mixing index in microfluidics by RGB color model. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2407.	0.8	14

#	Article	IF	CITATIONS
931	Numerical study on the mixing quality of an electroosmotic micromixer under periodic potential. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 2113-2125.	1.1	22
932	An automated flow chemistry platform to decouple mixing and reaction times. Reaction Chemistry and Engineering, 2020, 5, 1212-1217.	1.9	23
933	Nanovortexâ€Driven Allâ€Dielectric Optical Diffusion Boosting and Sorting Concept for Labâ€onâ€aâ€Chip Platforms. Advanced Science, 2020, 7, 1903049.	5.6	49
934	Passive continuous-flow microextraction/stripping system with high throughput. Chemical Engineering Science, 2020, 223, 115745.	1.9	5
935	Design and Analysis of New Micromixers Based on Distillation Column Trays. Chemical Engineering and Technology, 2020, 43, 1249-1259.	0.9	8
936	Using expansion units to improve CO2 absorption for natural gas purification - A study on the hydrodynamics and mass transfer. Chinese Journal of Chemical Engineering, 2021, 29, 35-46.	1.7	2
937	Analysis and Design Optimization of Micromixers. SpringerBriefs in Applied Sciences and Technology, 2021, , .	0.2	3
938	A novel geometrically-hybrid microchannel for performance enhancement in mass transfer: Description of Lyapunov exponent and Poincaré map. International Journal of Heat and Mass Transfer, 2021, 165, 120700.	2.5	10
939	Thermal effects on two-phase flow in 2D mixers using SPH. International Communications in Heat and Mass Transfer, 2021, 120, 105055.	2.9	4
940	Toward on-board microchip synthesis of CdSe <i>vs.</i> PbSe nanocrystalline quantum dots as a spectral decoy for protecting space assets. Reaction Chemistry and Engineering, 2021, 6, 471-485.	1.9	5
941	Gear-shaped micromixer for synthesis of silica particles utilizing inertio-elastic flow instability. Lab on A Chip, 2021, 21, 513-520.	3.1	27
942	Numerical investigation of the performance of 3Dâ€helical passive micromixer with Newtonian fluid and nonâ€Newtonian fluid blood. Asia-Pacific Journal of Chemical Engineering, 2021, 16, .	0.8	14
943	Development and Assembly of a Flow Cell for Singleâ€Pass Continuous Electroorganic Synthesis Using Laserâ€Cut Components. Chemistry Methods, 2021, 1, 36-41.	1.8	19
944	Concave wall-based mixing chambers and convex wall-based constriction channel micromixers. International Journal of Environmental Analytical Chemistry, 2021, 101, 561-583.	1.8	13
945	Numerical analysis of passive micromixer with novel obstacle design. Journal of Dispersion Science and Technology, 2021, 42, 440-456.	1.3	21
946	Mixing control in a continuous-flow microreactor using electro-osmotic flow. Mathematical Modelling of Natural Phenomena, 2021, 16, 49.	0.9	4
947	Enhancing the mixing process of two miscible fluids: A review. AIP Conference Proceedings, 2021, , .	0.3	4
948	ISPH modeling and investigation of the effect of viscosity variations on the fluids mixing in a micro-channel due to oscillation of a circular cylinder. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 78-86.	2.7	7

#	Article	IF	CITATIONS
949	Nanocrystalline semiconductors for thin-film devices by microreactor-assisted chemical solution deposition. , 2021, , 167-194.		0
950	Efficient Regulation of Synthetic Biocircuits Using Droplet-Aliquot Operations on MEDA Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 2490-2503.	1.9	1
951	Flow Chemistry in Drug Discovery: Challenges and Opportunities. Topics in Medicinal Chemistry, 2021, , 1-22.	0.4	1
952	Numerical study of the vortexâ€induced electroosmotic mixing of nonâ€Newtonian biofluids in a nonuniformly charged wavy microchannel: Effect of finite ion size. Electrophoresis, 2021, 42, 2498-2510.	1.3	58
953	Enhancement of Mixing Performance of Two-Layer Crossing Micromixer through Surrogate-Based Optimization. Micromachines, 2021, 12, 211.	1.4	4
954	Microfluidic reactor with immobilized enzyme-from construction to applications: A review. Chinese Journal of Chemical Engineering, 2021, 30, 136-145.	1.7	20
955	A new two-layer passive micromixer design based on SAR-vortex principles. International Journal of Chemical Reactor Engineering, 2021, 19, 309-329.	0.6	4
956	Active chaotic mixing in a channel with rotating arc-walls. Physical Review Fluids, 2021, 6, .	1.0	6
957	Effect of stratification on the mixing and reaction yield in a T-shaped micro-mixer. Physical Review Fluids, 2021, 6, .	1.0	22
958	Design and evaluation of a 3D multi-manifold micromixer realized by a double-Archimedes-screw for rapid mixing within a short distance. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 59-66.	2.7	5
959	Study on the Technology of Monodisperse Droplets by a High-Throughput and Instant-Mixing Droplet Microfluidic System. Materials, 2021, 14, 1263.	1.3	2
960	Software-guided microscale flow calorimeter for efficient acquisition of thermokinetic data. Journal of Flow Chemistry, 2021, 11, 321-332.	1.2	8
961	The effects of baffle configuration and number on inertial mixing in a curved serpentine micromixer: Experimental and numerical study. Chemical Engineering Research and Design, 2021, 168, 490-498.	2.7	21
962	Non-Newtonian fluid mixing in a Three-Dimensional spiral passive micromixer. Materials Today: Proceedings, 2021, 47, 3947-3952.	0.9	9
963	Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. International Journal of Pharmaceutics, 2021, 599, 120464.	2.6	36
964	Effect of Thermal Energy and Ultrasonication on Mixing Efficiency in Passive Micromixers. Processes, 2021, 9, 891.	1.3	12
965	A review on acoustic field-driven micromixers. International Journal of Chemical Reactor Engineering, 2021, 19, 553-569.	0.6	17
966	Effect of Channel Aspect Ratio and Inclination Angle on Flow and Mixing Performance of a Microdevice—A CFD Study. Theoretical Foundations of Chemical Engineering, 2021, 55, 426-438.	0.2	0

#	Article	IF	CITATIONS
967	Effect of ultrasound on parallel flow in a microchannel. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108465.	1.8	6
968	Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 2021, 10, 100097.	1.5	81
969	Numerical investigation of gas–liquid slug formation in T-junction microchannel using OpenFOAM. Chemical Papers, 2021, 75, 4381-4390.	1.0	2
970	Lab-on-a-Chip Systems in Asphaltene Characterization: A Review of Recent Advances. Energy & Fuels, 2021, 35, 9080-9101.	2.5	38
971	Development of a New Micromixer "Elis―for Fluid Mixing and Organic Reactions in Millidevices. Industrial & Engineering Chemistry Research, 2021, 60, 9216-9230.	1.8	15
972	Effects of outlets flow rates ratios on flow patterns in cross-shaped channels. Physics of Fluids, 2021, 33, 063601.	1.6	6
973	Micromixing Efficiency in the Presence of an Inert Gas in a Rotor–Stator Spinning Disk Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 8677-8686.	1.8	10
974	Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers. Micromachines, 2021, 12, 858.	1.4	4
975	Mixing Performance of Micromixers with Fractal Obstacles Based on Murray's Law. Chemical Engineering and Technology, 2021, 44, 2220-2227.	0.9	0
976	Performance Evaluation and Scale-Up Behavior of an Engineered In-Line Mixer for 3D Printing. Industrial & Engineering Chemistry Research, 2021, 60, 11568-11578.	1.8	11
977	Multistep batch-flow hybrid synthesis of a terbinafine precursor. Journal of Flow Chemistry, 2022, 12, 51-57.	1.2	1
978	Droplet-Based Microfluidic Synthesis of Hydrogel Microparticles via Click Chemistry-Based Cross-Linking for the Controlled Release of Proteins. ACS Applied Bio Materials, 2021, 4, 6186-6194.	2.3	4
979	Comparative study of mixing behaviors using non-Newtonian fluid flows in passive micromixers. International Journal of Mechanical Sciences, 2021, 201, 106472.	3.6	20
980	Visualization of Local Concentration and Viscosity Distribution during Glycerol-Water Mixing in a Y-Shape Minichannel: A Proof-of-Concept-Study. Micromachines, 2021, 12, 940.	1.4	5
981	Concentration measurement of a mixture using an infrared transceiver. Flow Measurement and Instrumentation, 2021, 80, 101974.	1.0	0
982	Pump-Free Microfluidic Device for the Electrochemical Detection of α ₁ -Acid Glycoprotein. ACS Sensors, 2021, 6, 2998-3005.	4.0	15
983	Performance Enhancement of the Micromixer by the Multiobjective Genetic Algorithm and Surrogate Model Based on a Navier–Stokes Analysis Using Trade-Off Objective Functions. Mathematical Problems in Engineering, 2021, 2021, 1-10.	0.6	1
984	Regulation of gas-liquid Taylor flow by pulsating gas intake in micro-channel. Chemical Engineering Journal, 2021, 417, 129055.	6.6	11

#	Article	IF	CITATIONS
985	Fabrication and characteristic study on mixing enhancement of a magnetofluidic mixer. Sensors and Actuators A: Physical, 2021, 326, 112733.	2.0	9
986	Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. Sensors and Actuators A: Physical, 2021, 326, 112730.	2.0	4
987	Microfluidics for Multiphase Mixing and Liposomal Encapsulation of Nanobioconjugates: Passive vs. Acoustic Systems. Fluids, 2021, 6, 309.	0.8	6
988	Enhanced Solutal Marangoni Flow Using Ultrasound-Induced Heating for Rapid Digital Microfluidic Mixing. Frontiers in Physics, 2021, 9, .	1.0	4
989	Design and operation of an enhanced pervaporation device with static mixers. AICHE Journal, 2022, 68, e17455.	1.8	7
990	Passive mechanical heat/mass exchange enhancement by semi-confined laminar parallel wall jets. International Journal of Mechanical Sciences, 2021, 206, 106623.	3.6	2
991	Silver Nanoparticle Synthesis Using an Inkjet Mixing System. Frontiers in Chemical Engineering, 2021, 3,	1.3	2
992	Physicochemical and hydrodynamic aspects of GdFeO3 production using a free impinging-jets method. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108473.	1.8	9
993	Axial dispersion in curved channels in the presence of pulsating flow. Chemical Engineering and Processing: Process Intensification, 2022, 180, 108629.	1.8	1
994	Investigation of different geometrical configurations effect on mixing performance of passive split-and-recombine micromixer. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	5
995	Macroscopic mixer for disparate property liquid–liquid mixing in aqueous sanitizer preparation. Chemical Papers, 2021, , 1-14.	1.0	3
996	Development of 3D+G printing for the design of customizable flow reactors. Chemical Engineering Journal, 2022, 430, 132670.	6.6	15
997	Numerical simulation of a three dimensional electroosmotic micromixer with a flexible and controllable Rubik's cube module. International Communications in Heat and Mass Transfer, 2021, 127, 105482.	2.9	9
998	Acoustic Bubble-Induced Microstreaming for Biochemical Droplet Mixing Enhancement in Electrowetting (EW) Microfluidic Platforms. Journal of Microelectromechanical Systems, 2021, 30, 783-790.	1.7	5
999	Numerical analysis of electroosmotic mixing in a heterogeneous charged micromixer with obstacles. Chemical Engineering and Processing: Process Intensification, 2021, 168, 108585.	1.8	43
1000	Design and evaluation of two-dimensional passive micromixer based on unbalanced convergence-divergence-splits and reverse-collisions-recombination. Chemical Engineering Science, 2021, 244, 116816.	1.9	13
1001	Numerical investigation of mixing performance in spiral micromixers based on Dean flows and chaotic advection. Chemical Engineering and Processing: Process Intensification, 2021, 169, 108609.	1.8	33
1002	Microfluidics for nanomaterial synthesis. , 2022, , 429-453.		1

#	Article	IF	CITATIONS
1003	A meso-scale ultrasonic milli-reactor enables gas–liquid-solid photocatalytic reactions in flow. Chemical Engineering Journal, 2022, 428, 130968.	6.6	36
1004	Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chemical Society Reviews, 2021, 50, 11979-12012.	18.7	17
1005	Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles. Lab on A Chip, 2021, 21, 2178-2193.	3.1	15
1006	Microfluidic enhancement of self-assembly systems. Lab on A Chip, 2021, 21, 1661-1675.	3.1	4
1007	Effect of Acetonitrileâ€Based Crystallization Conditions on the Crystal Quality ofÂVitaminÂD ₃ . Chemical Engineering and Technology, 2017, 40, 2016-2024.	0.9	5
1008	Microfluidic Mixing for Biosensors. Integrated Analytical Systems, 2018, , 69-103.	0.4	1
1009	Optimization of Chaotic Micromixers Using Finite Time Lyapunov Exponents. , 2012, , 325-336.		1
1010	A Simple and Low Cost Micromixer for Laminar Blood Mixing: Design, Optimization, and Analysis. Communications in Computer and Information Science, 2014, , 91-104.	0.4	8
1011	Scaling Fundamentals and Applications of Digital Microfluidic Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 285-304.	0.5	1
1012	Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 305-376.	0.5	79
1013	Active and Passive Micromixers. SpringerBriefs in Applied Sciences and Technology, 2021, , 11-34.	0.2	2
1014	Rapid synthesis of polyimide precursors by solution polymerization using Continuous-flow microreactors. Chemical Engineering Journal, 2020, 397, 125361.	6.6	15
1015	Microreaction system combining chaotic micromixing with fast mixing and particle growth in liquid-segmented flow for the synthesis of hazardous ionic materials. Energetic Materials Frontiers, 2020, 1, 186-194.	1.3	9
1016	Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. International Journal of Pharmaceutics, 2020, 584, 119408.	2.6	72
1017	3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes. International Journal of Pharmaceutics, 2020, 584, 119436.	2.6	22
1018	Chapter 3. Microfluidic "Lab-on-a-Chip―Sensing in Food Safety and Quality Analysis. Food Chemistry, Function and Analysis, 2017, , 61-94.	0.1	3
1019	Volume-preserving strategies to improve the mixing efficiency of serpentine micromixers. Journal of Micromechanics and Microengineering, 2020, 30, 115022.	1.5	5
1020	Consistent formulation of solid dissipative effects in stability analysis of flow past a deformable solid. Physical Review Fluids, 2016, 1, .	1.0	6

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
1021	Inertial destabilization of highly viscous microfluidic stratifications. Physical Review Fluids, 2016, 1, .	1.0	15
1022	Overview on Design Considerations for Development of Disposable Microbioreactor Prototypes. Jurnal Teknologi (Sciences and Engineering), 0, , 53-60.	0.3	3
1023	A New Active Micro Mixing Strategy. , 2007, , .		1
1024	Impinging-Jets Micromixers and Microreactors: State of the Art and Prospects for Use in the Chemical Technology of Nanomaterials (Review). Theoretical Foundations of Chemical Engineering, 2020, 54, 1131-1147.	0.2	8
1025	Artificial diffusion in the simulation of micromixers: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 5288-5296.	1.1	26
1026	A New Micromixer with Needle Adjustment for Instant Mixing and Heating under High Pressure and High Temperature. Journal of Chemical Engineering of Japan, 2007, 40, 1101-1107.	0.3	22
1027	Fluid Mixing in a Zigzag Microchannel of Trapezoidal Cross-Section. Kagaku Kogaku Ronbunshu, 2007, 33, 173-180.	0.1	3
1028	DESIGN AND SIMULATION OF MICROFLUIDIC PASSIVE MIXER WITH GEOMETRIC VARIATION. Internation Journal of Research in Engineering and Technology, 2016, 05, 55-58.	al 0.1	3
1029	Experimental Analysis on the Ultrasound-based Mixing Technique Applied to Ultra-low Sulphur Diesel and Bio-oils. International Journal on Advanced Science, Engineering and Information Technology, 2019, 9, 307-313.	0.2	16
1030	A Survey of Microchannel Geometries for Mixing of Species in Biomicrofluidics. , 2012, , 548-578.		2
1031	Boundary element solution of thermal creeping flow in a nano single mixer. WIT Transactions on Modelling and Simulation, 2010, , .	0.0	1
1033	Progress of Microfluidics for Biology and Medicine. , 2013, 5, 66.		5
1034	A Study About Biochip Combined with Micro Mixer and Reactor for DNA Ligation. Transactions of the Korean Society of Mechanical Engineers, A, 2008, 32, 624-632.	0.1	1
1035	Numerical Study on Mixing Performance of Straight Groove Micromixers. International Journal of Fluid Machinery and Systems, 2010, 3, 227-234.	0.5	15
1036	Recent Developments in Cell-Based Microscale Technologies and Their Potential Application in Personalised Medicine. , 0, , .		1
1037	Experimental Investigation of Split and Recombination Micromixer in Confront with Basic T- and O- type Micromixers. International Journal of Mechanics and Applications, 2012, 2, 61-69.	9.0	26
1039	Study of Active Micromixer Driven by Electrothermal Force. Japanese Journal of Applied Physics, 2012, 51, 047002.	0.8	11
1040	A millisecond passive micromixer with low flow rate, low sample consumption and easy fabrication.	1.6	17

#	Article	IF	CITATIONS
1041	Design and implementation of combined liquid pump and active–passive mixer for a drug delivery system utilizing two 1-DOF piezoelectric actuated cantilever beams. Materials Today: Proceedings, 2021, , .	0.9	2
1042	Digital Light Processing Based Bioprinting with Composable Gradients. Advanced Materials, 2022, 34, e2107038.	11.1	71
1044	Shape Optimization of A Micromixer with Herringbone Grooves Using Kriging Model. Transactions of the Korean Society of Mechanical Engineers, B, 2007, 31, 711-717.	0.0	0
1045	Fabrication of Ceramic-based Passive Mixers for Microfluidic Application by Thick Film Lithography. Journal of the Korean Ceramic Society, 2008, 45, 739-743.	1.1	0
1046	Advection-diffusion in chaotic flows. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2009, , 149-217.	0.3	0
1047	Establishment of Compact Chemical Process by Supercritical Fluids. Journal of the Vacuum Society of Japan, 2009, 52, 557-562.	0.3	1
1048	Design and Simulation of an Interdigital-Chaotic Advection Micromixer for Lab-on-a-chip Applications. Houille Blanche, 2009, 95, 118-124.	0.3	0
1049	Lab-on-a-Chip. , 2010, , 7-1-7-33.		1
1050	EXPERIMENTAL INVESTIGATION ON PARAMETERS FOR THE CONTROL OF DROPLETS DYNAMICS. World Scientific Series on Nonlinear Science, Series B, 2010, , 151-156.	0.2	0
1051	Basis of Microscale Fluid Flows. Journal of the Institute of Electrical Engineers of Japan, 2011, 131, 283-286.	0.0	0
1052	Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System. Transactions of the Korean Society of Mechanical Engineers, B, 2011, 35, 385-390.	0.0	0
1053	Light-Driven and Optically Actuated Technologies. , 2012, , 3-46.		0
1054	Light-Driven Micro- and Nanofluidic Systems. , 2012, , 375-403.		0
1055	Geometrical Optimization of Micro-Mixer with Wavy Structure Design for Chemical Processes Using Taguchi Method. Lecture Notes in Mechanical Engineering, 2013, , 1173-1184.	0.3	0
1057	Yield Improvement of Consecutive Reaction Using Microreactor and Simulation Technology. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 490-497.	0.0	0
1058	Solvent Extraction of Cu2+ with Laminar Flow of Microreactor from Leachant Containing Cu and Fe. , 2015, , 45-52.		1
1059	Simulação numérica da sÃntese de Biodiesel a partir do Ã3leo de Pinhão Manso em microcanais. , 0, , .		0
1060	Embedding of a Discrete Element to the Inner Wall of PDMS Microchannel. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 330-336.	0.0	0

ARTICLE IF CITATIONS Microcomponents: Polymeric., 2017,, 900-916. 0 1061 THE FORMATION OF DROPLETS IN MICRO-REACTORS: A COMPUTATIONAL AND EXPERIMENTAL MICROFLUIDIC 1062 Reaktoren fÃ1/4r spezielle technisch-chemische Prozesse: Mikrostrukturreaktoren. Springer Reference 1063 0.2 0 Naturwissenschaften, 2019, , 1-37. Additively Manufactured Advanced Flow Reactors for Enhanced Heat and Mass Transfer. RSC Green 1064 0.0 Chemistry, 2019, , 416-439. Design of Microreactor Systems with Minimization of Flow Pulsation. Computer Aided Chemical 1065 0.3 1 Engineering, 2019, , 1795-1800. Novel Micromixer with Complex 3D-Shape Inner Units: Design, Simulation and Additive Manufacturing. 0.8 CMES - Computer Modeling in Engineering and Sciences, 2020, 123, 1061-1077. Power-law fluid micromixing enhancement using surface acoustic waves. Journal of Molecular 1068 2.3 5 Liquids, 2022, 347, 117978. Numerical study of a fractal-like tree node micromixer based on Murray's law. International Journal 1069 0.6 of Chemical Reactor Engineering, 2022, 20, 475-485. Study of capture efficiency utilizing passive mixing in heterogeneous microfluidic immunosensors. 1070 0 1.8 Chemical Engineering and Processing: Process Intensification, 2022, 180, 108708. 3D printing of metallic micro-gears for micro-fluidic applications. Journal of Micromechanics and 1071 Molecular Physics, 2021, 06, Acoustic microreactors for chemical engineering. Chemical Engineering Journal, 2022, 433, 133258. 1072 6.6 16 Sharp-edge acoustic microfluidics: Principles, structures, and applications. Applied Materials Today, 2.3 2021, 25, 101239. Mischen und Rühren. , 2020, , 733-798. 1074 0 Computational Fluid Dynamics (CFD) Simulation on Mixing in T-Shaped Micromixer. IOP Conference 0.3 Series: Materials Science and Engineering, 2020, 932, 012006. Numerical Investigation of the Mixing Performance of a Novel Hepatic Sinusoids-Based Micromixer. 1078 0.7 1 International Journal of Mechanical Engineering and Robotics Research, 2020, , 371-377. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass 1079 spectrometry. Analytica Chimica Acta, 2022, 1190, 339252 Numerical simulation of an electroosmotic micromixer with variable modules. International Journal 1080 1.0 0 of Modern Physics B, 2021, 35, . Investigation on steady regimes in a X-shaped micromixer fed with water and ethanol. Chemical Engineering Science, 2022, 248, 117254.

#	Article	IF	CITATIONS
1082	Numerical study of a novel spiral-type micromixer for low Reynolds number regime. Korea Australia Rheology Journal, 2021, 33, 333-342.	0.7	5
1083	Mixing Enhancement of Non-Newtonian Shear-Thinning Fluid for a Kenics Micromixer. Micromachines, 2021, 12, 1494.	1.4	3
1084	Design and implementation of a mixer for different physical and chemical properties liquid-liquid mixing and mixing performance evaluation with a UV-Visible spectrophotometer. Materials Today: Proceedings, 2022, 57, 1677-1681.	0.9	2
1085	Microreactor synthesis of nanosized particles: The role of micromixing, aggregation, and separation processes in heterogeneous nucleation. Chemical Engineering Research and Design, 2022, 178, 73-94.	2.7	11
1086	Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Applied Materials Today, 2022, 26, 101356.	2.3	20
1087	Steps, hops and turns: examining the effects of channel shapes on mass transfer in continuous electrochemical reactors. Reaction Chemistry and Engineering, 2022, 7, 264-268.	1.9	1
1088	Numerical Simulation of Mixing Process in a Splitting-and-Recombination Microreactor. Frontiers in Chemical Engineering, 2022, 3, .	1.3	0
1089	Sustainability of green solvents – review and perspective. Green Chemistry, 2022, 24, 410-437.	4.6	95
1090	Analyzing the critical mixing time for the liquid-phase reduction synthesis of monodisperse gold nanoparticles using glass microfluidics. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	4
1091	Paper-Based Microfluidics Perform Mixing Effects by Utilizing Planar Constricted–Expanded Structures to Enhance Chaotic Advection. Sensors, 2022, 22, 1028.	2.1	0
1092	Mixing Improvement in a T-Shaped Micro-Junction through Small Rectangular Cavities. Micromachines, 2022, 13, 159.	1.4	6
1093	Photobiocatalysis in Continuous Flow. Frontiers in Catalysis, 2022, 1, .	1.8	18
1094	Microfluidic Antisolvent Crystallization of Lactose: Effect of Process Parameters. Waste and Biomass Valorization, 0, , 1.	1.8	0
1095	Mixing length correlation for laminar liquid mixing in wall-bounded flows. International Communications in Heat and Mass Transfer, 2022, 132, 105913.	2.9	3
1096	Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2388-2396.	3.2	6
1097	Numerical study of microscale passive mixing in a 3-Dimensional spiral mixer design. Materials Today: Proceedings, 2022, 56, 851-856.	0.9	2
1099	Effect of ultrasonic waveforms on gas–liquid mass transfer in microreactors. AICHE Journal, 2022, 68, .	1.8	8
1100	Simulation of multi-point mixing concentration gradient generator. International Journal of Modern Physics B, 0, , .	1.0	ο

#	Article	IF	CITATIONS
1101	Open-channel microfluidics via resonant wireless power transfer. Nature Communications, 2022, 13, 1869.	5.8	8
1102	AC electroosmosis micromixing on a lab-on-a-foil electric microfluidic device. Sensors and Actuators B: Chemical, 2022, 359, 131611.	4.0	13
1103	Quantum materials made in microfluidics - critical review and perspective. Chemical Engineering Journal, 2022, 438, 135616.	6.6	13
1105	Application of the TV-HLL scheme to multidimensional ideal magnetohydrodynamic flows. Shock Waves, 2022, 32, 103-120.	1.0	0
1106	Microfluidic Roadmap for Translational Nanotheranostics. Small Methods, 2022, 6, e2101217.	4.6	5
1107	Numerical Modeling, Analysis, and Performance Enhancement of Y-shape Passive Micromixer. , 2021, , .		0
1108	Open-source multi-purpose sensor for measurements in continuous capillary flow. Journal of Flow Chemistry, 2022, 12, 185-196.	1.2	5
1109	Mixing Performance of a Passive Micro-Mixer with Mixing Units Stacked in Cross Flow Direction. Micromachines, 2021, 12, 1530.	1.4	9
1110	The investigation of the height effect of a slit microchannel with a textured wall on its hydrodynamic drag. Journal of Physics: Conference Series, 2021, 2119, 012050.	0.3	0
1111	Designing and Modeling a Centrifugal Micromixer for Continuous Circulating Tumor Cells Lysis. , 2021, , .		1
1112	Generation of Controlled Liquid–Liquid Slug Flow by Interlocking Two Diaphragm Pumps. Separations, 2022, 9, 97.	1.1	2
1113	New insights into the mixing behavior of Non-Newtonian fluid in electroosmotic micromixer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	2
1114	Experimental parametric analysis of biodiesel synthesis in microreactors using waste cooking oil (WCO) in ethilic route. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	3
1120	Efficacy of microconfined fluid mixing in a combined electroosmotic and pressure driven transport of complex fluid over discrete electrodes. Physics of Fluids, 2022, 34, .	1.6	11
1121	T-shaped micromixers aligned in a row: characterization of the engulfment regime. Acta Mechanica, 0,	1.1	2
1122	Optimization of a Micromixer with Automatic Differentiation. Fluids, 2022, 7, 144.	0.8	2
1123	Mixing characteristics and pressure drop analysis in a spiral micromixer. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236, 2618-2629.	1.4	6
1124	Enhanced electroosmotic mixing of non-Newtonian fluids in a heterogeneous surface charged micromixer with obstacles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129215.	2.3	17

#	Article	IF	Citations
1125	Module-Fluidics: Building Blocks for Spatio-Temporal Microenvironment Control. Micromachines, 2022, 13, 774.	1.4	1
1127	Effects of cylinder cross-sectional geometry and blockage ratio on VIV-based mixing performance in two dimensional laminar channel flow. Chemical Engineering and Processing: Process Intensification, 2022, 177, 108987.	1.8	5
1128	Manipulation of Elastic Instability of Viscoelastic Fluid in a Rhombus Cross Microchannel. Polymers, 2022, 14, 2152.	2.0	1
1130	INSIGHT INTO AN EFFICIENT MICROMIXER WITH STAGGER ABREAST BAFFLES. Surface Review and Letters, 2022, 29, .	0.5	2
1131	Evaluation of Hydrodynamic and Thermal Behaviour of Non-Newtonian-Nanofluid Mixing in a Chaotic Micromixer. Micromachines, 2022, 13, 933.	1.4	4
1132	Performance evaluation of a 3D split-and-recombination micromixer with asymmetric structures. Journal of Micromechanics and Microengineering, 2022, 32, 075007.	1.5	0
1133	An open-source topology optimization modeling framework for the design of passive micromixer structure. Chemical Engineering Science, 2022, 259, 117820.	1.9	2
1134	Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles. Lab on A Chip, 2022, 22, 3025-3044.	3.1	6
1135	Mixing Enhancement of a Passive Micromixer with Submerged Structures. Micromachines, 2022, 13, 1050.	1.4	7
1136	Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer. Scientific Reports, 2022, 12, .	1.6	17
1137	Numerical evaluation of an additively manufactured uniform fractal flow mixer. Chemical Engineering and Processing: Process Intensification, 2022, 179, 109047.	1.8	3
1138	Effect of micro-impeller geometries on mixing in a continuous flow active microreactor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115843.	1.7	1
1139	Acoustofluidic bubble-driven micromixers for the rational engineering of multifunctional ZnO nanoarray. Chemical Engineering Journal, 2022, 450, 138273.	6.6	8
1140	Fluid dynamics and mass transfer in curved reactors: A CFD study on Dean flow effects. Journal of Environmental Chemical Engineering, 2022, 10, 108304.	3.3	6
1141	Experimental Study of Liquid Behavior in T-Micromixer at Different Inlet Flow Rate Ratios. Journal of Engineering Thermophysics, 2022, 31, 537-550.	0.6	2
1142	Effect of swirling addition on the liquid mixing performance in a T-jets mixer. Chinese Journal of Chemical Engineering, 2022, 50, 108-116.	1.7	1
1143	A tri-fluid tortuous microfluidic chip for green synthesis of nanoparticles and inactivation of a model gram-negative bacteria: Intracellular components evaluation. Journal of Flow Chemistry, 2022, 12, 337-352.	1.2	1
1144	Recent Advancements on Hydrodynamics and Mass Transfer Characteristics for CO ₂ Absorption in Microreactors. Industrial & Engineering Chemistry Research, 2022, 61, 12249-12268.	1.8	13

ARTICLE IF CITATIONS # Fluid flow simulation on a Turritella-seashell-like geometry demonstrating its ability as static mixer 1145 1.9 1 for inline mixing. Chemical Engineering Science, 2022, 262, 118031. Mixing Performance of the Modified Tesla Micromixer with Tip Clearance. Micromachines, 2022, 13, 1146 1.4 1375. Numerical and experimental analysis of effective passive mixing via a 3D serpentine channel. Chemical 1147 1.9 4 Engineering Science, 2022, 261, 117972. Mixing Enhancement By Gravity-dependent Convection in a Y-shaped Continuous-flow Microreactor. 1148 Microgravity Science and Technology, 2022, 34, . Microflow chemistry and its electrification for sustainable chemical manufacturing. Chemical 1149 3.7 11 Science, 2022, 13, 10644-10685. Additive Manufacturing as the Future of Green Chemical Engineering., 2022, 239-307. Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor. Beilstein 1151 1.3 4 Journal of Organic Chemistry, 0, 18, 1123-1130. Recent Developments in Process Digitalisation for Advanced Nanomaterial Syntheses. Chemistry 1.8 Methods, 2022, 2, . Investigation of the collective motion of water vapor microbubbles by thermoplasmonic effect., 2022, 1153 0 ,. Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications. TrAC -1154 5.8 Trends in Analytical Chemistry, 2023, 158, 116785. Vertical chaotic mixing of oscillating feedback micromixer in passive mode. Chemical Engineering 1155 2 1.9 Science, 2022, 263, 118127. Critical elements: opportunities for microfluidic processing and potential for ESG-powered mining 1156 4.6 investments. Green Chemistry, 2022, 24, 8879-8898. Investigations of mixing and heat transfer in a structured tubeâ€inâ€tube millireactor by numerical, 1157 0.8 0 experimental and statistical methods. Asia-Pacific Journal of Chemical Engineering, 0, , . Numerical Simulation of Mixing Fluid with Ferrofluid in a Magnetic Field Using the Meshless SPH 0.8 Method. Fluids, 2022, 7, 341 Local Electric Field and Electrical Conductivity Analysis Using a Glass Microelectrode. ACS Omega, 1159 1.6 1 2022, 7, 39437-39445. Flow behavior and mixing of single-phase laminar Newtonian miscible fluid in T-junction micromixer with twisted mixing channel - A numerical study. Chemical Engineering and Processing: Process 1.8 Intensification, 2022, 181, 109171. In Situ FTIR Spectroscopic Imaging of Asphaltene Deposition from Crude Oil under n-Heptane and 1161 0.4 2 Acetone Flows. Petroleum Chemistry, 2022, 62, 1087-1095. Vortex-induced vibration effects on mixing performance. Chemical Engineering and Processing: 1.8 Process Intensification, 2022, 182, 109211.

#	Article	IF	CITATIONS
1163	Effect of Chamber Depth Modifications on Flow Regimes and Mixing Performance in Cross-Shaped Mixers. Industrial & Engineering Chemistry Research, 2022, 61, 17351-17365.	1.8	0
1164	Hierarchical optofluidic microreactor for water purification using an array of TiO2 nanostructures. Npj Clean Water, 2022, 5, .	3.1	7
1165	The removal of Cr3+ using a vertical rotating micro-channel extractor with gas intensification and parallel model. Chemical Engineering and Processing: Process Intensification, 2023, 183, 109208.	1.8	0
1166	Design and analysis of a novel Bi-layer curved serpentine chaotic micromixer for efficient mixing. Chemical Engineering and Processing: Process Intensification, 2023, 183, 109246.	1.8	3
1167	Intensification and kinetic study of trifluoromethylbenzen nitration with mixed acid in the microreactor. Chemical Engineering and Processing: Process Intensification, 2023, 183, 109239.	1.8	4
1168	Mixing performance of T-shape micromixers equipped with 3D printed Gyroid matrices: A numerical evaluation. Results in Engineering, 2023, 17, 100811.	2.2	3
1169	Integration of Droplet Transport and Mixing on EWOD. , 2022, , .		0
1170	Effects of hydrophobic slips in non-uniform electrokinetic transport of charged viscous fluid in nozzle-diffuser. Physics of Fluids, 2023, 35, .	1.6	5
1171	3D magnetic resonance velocimetry for the characterization of hydrodynamics in microdevices: Application to micromixers and comparison with CFD simulations. Chemical Engineering Science, 2023, 269, 118473.	1.9	3
1172	Analysis of interfacial mixing zone and mixing index in microfluidic channels. Microfluidics and Nanofluidics, 2023, 27, .	1.0	2
1173	Induced-charge electroosmosis for rapid mixing of reactive precipitation systems to obtain small and uniform particles. Chemical Engineering Research and Design, 2023, 190, 715-729.	2.7	4
1174	Experimental study on fluid mixing and pressure drop of mini-mixer with flexible vortex generator. International Communications in Heat and Mass Transfer, 2023, 142, 106615.	2.9	2
1175	Particle detection and size recognition based on defocused particle images: a comparison of a deterministic algorithm and a deep neural network. Experiments in Fluids, 2023, 64, .	1.1	6
1176	Herringbone micromixers for particle filtration. Biomicrofluidics, 2023, 17, 014106.	1.2	0
1177	Non-fouling flow reactors for nanomaterial synthesis. Reaction Chemistry and Engineering, 2023, 8, 955-977.	1.9	6
1178	Sustainable Heterogeneous Catalytic Reactions for the Fine and Pharma Industry. , 2014, , 47-83.		0
1179	In-situ CdS nanowires on g-C3N4 nanosheet heterojunction construction in 3D-Optofluidic microreactor for the photocatalytic green hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 15406-15420.	3.8	2
1180	Numerical simulation and optimized design of rhombic micromixers. Brazilian Journal of Chemical Engineering, 2023, 40, 749-757.	0.7	2

ARTICLE IF CITATIONS Analysis of a Square Split-and-Recombined Electroosmotic Micromixer with Non-aligned Inlet-Outlet 1181 1.4 7 Channels. Nanoscale and Microscale Thermophysical Engineering, 2023, 27, 55-73. Taming the transition between ZIF-L–(Zn, Co) and ZIF-(8, 67) using a multi-inlet vortex mixer (MIVM). 1.3 CrystEngComm, 2023, 25, 1519-1528. Mixing Enhancement of Newtonian Liquids in a Curvature Induced Split and Recombine Micromixer. 1183 7 1.8 Industrial & amp; Engineering Chemistry Research, 2023, 62, 4135-4150. Ultrasound spray nozzle atomizer as a chemical reaction medium: Evaluation using 1184 1.2 Villermaux-Dushman test reaction. Korean Journal of Chemical Engineering, 0, , . Numerical Investigation of T-Micromixer with Twisted Outlet Channel for Non-newtonian Fluid. 1185 0.3 0 Lecture Notes in Mechanical Engineering, 2023, , 99-107. Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. Annual 3.3 Review of Chemical and Biomolecular Engineering, 2023, 14, 283-300. Chemoconvective mixing in a Y-shaped continuous-flow microchannel. Thermophysics and 1187 0.1 0 Aeromechanics, 2022, 29, 951-958. Microfluidic devices and their applicability to cell studies., 2023, , 27-118. 1188 CO2 capture in a miniaturized annular rotating device with countercurrent flow. Separation and 1190 3.9 3 Purification Technology, 2023, 317, 123872. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. Materials Horizons, 1194 6.4 2023, 10, 2343-2372. Design of a Microreactor for Biodiesel Synthesis., 2023, , 25-32. 1200 0 Chemical and Biochemical Reactors for Controlled Synthesis of Organic and Inorganic Compounds. 1208 0.1 Russian Journal of Applied Chemistry, 2022, 95, 1653-1676. 1213 Microfluidic mixing on plasmonic nanostructures., 2023,,. 0 Methyl acetate production by reactive distillation using a vertical plate microdistillator. Journal of 1.2 Flow Chemistry, 0, , . Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and 1222 3.10 opportunities. Lab on A Chip, 2024, 24, 1154-1174. Numerical Analysis on the Effect of Constriction on the Mixing of Fluids in Serpentine Microchannels. Lecture Notes in Mechanical Engineering, 2024, , 51-62.