Prediction of the hydraulic diffusivity from pore size di

Cement and Concrete Research 35, 1724-1733

DOI: 10.1016/j.cemconres.2004.10.043

Citation Report

#	ARTICLE	IF	CITATIONS
1	Characterization of Mineral Building Materials by Mercury-Intrusion Porosimetry. Particle and Particle Systems Characterization, 2006, 23, 20-28.	2.3	36
2	Size and Volume Relationship of Pore for Construction Materials. Journal of Materials in Civil Engineering, 2008, 20, 410-418.	2.9	23
3	Durability of sustainable concrete materials. , 2009, , 239-253.		4
4	Study on the microstructure of thin-layer facade plasters of thermal insulating system during artificial weathering. Construction and Building Materials, 2009, 23, 2559-2566.	7.2	16
5	Toward a better comprehension and modeling of hysteresis cycles in the water sorption–desorption process for cement based materials. Cement and Concrete Research, 2011, 41, 817-827.	11.0	73
6	Assessment of temperature gradient effects on moisture transfer through thermogradient coefficient. Building Simulation, 2012, 5, 107-115.	5.6	25
7	Implication of pore size distribution parameters on compressive strength, permeability and hydraulic diffusivity of concrete. Construction and Building Materials, 2012, 28, 382-386.	7.2	105
8	Determination of water permeability of cementitious materials using a controlled constant flow method. Construction and Building Materials, 2013, 47, 1488-1496.	7.2	69
9	Moisture diffusivity in mortars of different water–cement ratios and in narrow ranges of air humidity changes. International Journal of Heat and Mass Transfer, 2013, 56, 212-222.	4.8	18
10	Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	85
11	Wetting and Drying of Concrete: Modelling and Finite Element Formulation for Stable Convergence. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2014, 24, 192-200.	0.8	6
12	Bridging hydraulic diffusivity from aquifer to particle-size scale: a study on loess sediments from southwest Hungary. Hydrological Sciences Journal, 2015, 60, 269-284.	2.6	10
13	Numerical simulation of moisture transport in concrete based on a pore size distribution model. Cement and Concrete Research, 2015, 67, 31-43.	11.0	80
14	A new evolution model of concrete porosity under continuous hydration. International Journal of Modelling, Identification and Control, 2016, 26, 345.	0.2	4
15	Durability of sustainable construction materials. , 2016, , 397-414.		5
16	Dielectric characterization of concrete at high temperatures. Cement and Concrete Composites, 2016, 73, 54-61.	10.7	20
17	Moisture transport in cementitious materials. Periodic homogenization and numerical analysis. European Journal of Environmental and Civil Engineering, 2017, 21, 1026-1042.	2.1	3
18	Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time. Cement and Concrete Research, 2017, 100, 153-165.	11.0	85

#	Article	IF	CITATIONS
19	Assessment of a new method for determining the relationship between effective diffusivity and moisture concentration $\hat{a} \in \text{``Exemplified by autoclaved aerated concrete of four density classes.}$ International Journal of Heat and Mass Transfer, 2018, 124, 288-297.	4.8	9
20	Quantification of Pore Size Distribution Modification Due to Metakaolin Inclusion in Cement Based Systems. RILEM Bookseries, 2018, , 60-63.	0.4	0
21	Analysis of Pore Structure Characteristics of Carbonated Low-Clinker Cements. Transport in Porous Media, 2018, 124, 861-881.	2.6	20
22	Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density. Cement and Concrete Research, 2019, 126, 105921.	11.0	151
23	Application of sorptivity–diffusivity relationship for the refinement of hydraulic diffusivity function parameters obtained through inverse analysis. Journal of Building Pathology and Rehabilitation, 2020, 5, 1.	1.5	1
24	Determination of the diffusion coefficient and the hydraulic conductivity of porous media based on embedded humidity sensors. Construction and Building Materials, 2020, 263, 120092.	7.2	11
25	Electrical response-based technique for estimation of degree of moisture saturation in cement concrete and mortar in drying and wetting cycle. Construction and Building Materials, 2020, 262, 120855.	7.2	7
26	Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cement and Concrete Research, 2020, 137, 106197.	11.0	53
27	Microstructural properties and compressive strength of lime or/and cement solidified silt: a multi-scale study. Bulletin of Engineering Geology and the Environment, 2020, 79, 5141-5159.	3.5	15
28	The role of moisture transport mechanisms on the performance of lightweight aggregates in internal curing. Construction and Building Materials, 2021, 268, 121191.	7.2	18
29	A Correlation Between Sorptivity Coefficients of Concrete as Calculated from Relationships of Water Uptake with t0.5 or t0.25. RILEM Bookseries, 2021, , 379-386.	0.4	2
30	Prediction of moisture transfer in cement-based materials: Use of a porous network model to access transfer parameters. Cement and Concrete Research, 2021, 142, 106310.	11.0	5
31	Quantification of the Knudsen Effect on the Effective Gas Diffusion Coefficient in Partially Saturated Pore Distributions. Advanced Engineering Materials, 2021, 23, 2100106.	3.5	8
32	Prediction of Strength, Permeability, and Hydraulic Diffusivity of Ordinary Portland Cement Paste. ACI Materials Journal, 2014, 111, .	0.2	1
33	Estimation of Strength, Permeability and Hydraulic Diffusivity of Pozzolana Blended Concrete Through Pore Size Distribution. Journal of Advanced Concrete Technology, 2013, 11, 230-237.	1.8	20
34	Lightweight Concretes with Improved Water and Water Vapor Transport for Remediation of Damp Induced Buildings. Materials, 2021, 14, 5902.	2.9	4
35	Long term moisture penetration in concrete exposed to marine tidal condition. Magazine of Concrete Research, 0, , 1-35.	2.0	2
36	Process and mechanisms of multi-stage water sorptivity in hydrophobic geopolymers incorporating polydimethylsiloxane. Cement and Concrete Composites, 2022, 128, 104460.	10.7	21

#	Article	IF	CITATIONS
37	Water absorption behaviour of concrete: Novel experimental findings and model characterization. Journal of Building Engineering, 2022, 53, 104602.	3.4	13
38	Relationship between sorptivity coefficients of concrete as calculated from the evolution of water uptake versus t0.5 or t0.25. Construction and Building Materials, 2022, 342, 128084.	7.2	4
39	A simplified non-linear hydraulic diffusivity model based on normalised sorptivity. Sadhana - Academy Proceedings in Engineering Sciences, 2023, 48, .	1.3	0
40	Early-stage water-absorbing behavior and mechanism of recycled coarse aggregate. Construction and Building Materials, 2023, 394, 132138.	7.2	4
41	Modeling the ionic diffusion coefficient of unsaturated hardened cement paste: A micromechanical approach. Cement and Concrete Research, 2024, 177, 107415.	11.0	0
42	Influence of initial saturation degree on chloride transport in concrete under hydraulic pressure. Journal of Building Engineering, 2024, 87, 108897.	3.4	0
43	A novel approach for modifying air-voids in concrete by short-term low-air pressure intervention. Journal of Materials Research and Technology, 2024, 30, 1194-1206.	5.8	0