Correlation of the irreversible lithium capacity with the carbons

Carbon 43, 2160-2167 DOI: 10.1016/j.carbon.2005.03.041

Citation Report

#	Article	IF	Citations
1	Surface Properties, Porosity, Chemical and Electrochemical Applications. , 2006, , 495-549.		14
2	EPR, NMR, and Electrochemical Studies of Surface-Modified Carbon Microbeads. Chemistry of Materials, 2006, 18, 2293-2301.	3.2	71
3	In Situ Raman Study on Single- and Double-Walled Carbon Nanotubes as a Function of Lithium Insertion. Small, 2006, 2, 667-676.	5.2	73
4	In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite. Journal of Physics and Chemistry of Solids, 2006, 67, 1228-1232.	1.9	59
5	Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2007, 17, 1321.	6.7	102
6	Raman study on electrochemical lithium insertion into multiwalled carbon nanotubes. Journal of Raman Spectroscopy, 2008, 39, 1183-1188.	1.2	9
7	Preparation of natural microcrystalline graphite with high sphericity and narrow size distribution. Powder Technology, 2008, 181, 51-56.	2.1	35
8	Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin, 2008, 43, 1913-1942.	2.7	514
9	Production and advantages of carbon-coated graphite for the anode of lithium ion rechargeable batteries. Tanso, 2009, 2009, 213-220.	0.1	10
10	Graphitized Carbons of Variable Morphology and Crystallinity: A Comparative Study of Their Performance in Lithium Cells. Journal of the Electrochemical Society, 2009, 156, A986.	1.3	43
11	Electrochemical cell studies on fluorinated natural graphite in propylene carbonate electrolyte with difluoromethyl acetate (MFA) additive for low temperature lithium battery application. Journal of Chemical Sciences, 2009, 121, 339-346.	0.7	32
12	Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors. Journal of Power Sources, 2009, 194, 486-493.	4.0	75
13	Li Storage Properties of Disordered Graphene Nanosheets. Chemistry of Materials, 2009, 21, 3136-3142.	3.2	970
14	Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochimica Acta, 2010, 55, 3330-3335.	2.6	270
15	Effect of vacuum carbonization treatment on the irreversible capacity of hard carbon prepared from biomass material. Materials Letters, 2010, 64, 74-76.	1.3	28
16	Boron Atoms as Loop Accelerator and Surface Stabilizer in Plateletâ€Type Carbon Nanofibers. ChemPhysChem, 2010, 11, 2345-2348.	1.0	15
17	Guest–host interaction in energy storage systems. Journal of Physics and Chemistry of Solids, 2010, 71, 692-695.	1.9	7
18	On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89, 986-991.	3.4	84

TATION REDO

2

CITATION REPORT

#	Article	IF	CITATIONS
19	Effect of electrochemical conditions on the performance worsening of Si/C composite anodes for lithium batteries. Electrochimica Acta, 2010, 55, 729-736.	2.6	23
20	Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy and Environmental Science, 2010, 3, 1218.	15.6	244
21	Improving the Performance of Biomass-Derived Carbons in Li-Ion Batteries by Controlling the Lithium Insertion Process. Journal of the Electrochemical Society, 2010, 157, A791.	1.3	84
22	Carbon-Based Nanomaterials for Electrochemical Energy Storage. , 0, , 177-204.		0
23	Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials. Journal of Materials Chemistry, 2011, 21, 9819.	6.7	67
24	Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy and Environmental Science, 2011, 4, 3342.	15.6	491
25	Graphene-based nanomaterials for energy storage. Energy and Environmental Science, 2011, 4, 668-674.	15.6	1,169
26	Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors. Electrochimica Acta, 2011, 56, 9700-9706.	2.6	74
27	Minimal irreversible capacity caused by the lithium insertion into materials of negative electrodes in lithium-ion batteries. Russian Journal of Electrochemistry, 2011, 47, 965-967.	0.3	4
28	The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells. Journal of Solid State Electrochemistry, 2011, 15, 1987-1995.	1.2	31
29	Improving Anodes for Lithium Ion Batteries. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 231-238.	1.1	40
30	Influence of graphite surface properties on the first electrochemical lithium intercalation. Carbon, 2011, 49, 4867-4876.	5.4	33
31	Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries. Electrochimica Acta, 2011, 56, 6464-6468.	2.6	73
32	Hard carbon: a promising lithium-ion battery anode for high temperature applications with ionic electrolyte. RSC Advances, 2012, 2, 4904.	1.7	79
33	Carbon coating for enhancing the functionalities of materials. Carbon, 2012, 50, 3247-3266.	5.4	95
34	Tailoring of CNT surface oxygen groups by gas-phase oxidation and its implications for lithium ion batteries. Electrochemistry Communications, 2012, 15, 10-13.	2.3	44
35	Influence of surface functional groups on lithium ion intercalation of carbon cloth. Electrochimica Acta, 2012, 65, 22-29.	2.6	26
36	Graphene anchored with nickel nanoparticles as a high-performance anode material for lithium ion batteries. Journal of Power Sources, 2012, 209, 1-6.	4.0	122

#	Article	IF	CITATIONS
37	Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1907-A1915.	1.3	34
38	Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon, 2013, 51, 322-326.	5.4	156
39	Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries. Journal of Power Sources, 2013, 244, 80-86.	4.0	54
40	Properties and lithium insertion behavior of hard carbons produced by pyrolysis of various polymers at 1000°C. Journal of Analytical and Applied Pyrolysis, 2013, 102, 1-6.	2.6	33
41	Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42, 3127.	18.7	1,356
42	Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. RSC Advances, 2013, 3, 4161.	1.7	13
43	Important roles of graphene edges in carbon-based energy storage devices. Journal of Energy Chemistry, 2013, 22, 183-194.	7.1	32
45	Solid Electrolyte Interphase on Lithium-Ion Carbon Nanofiber Electrodes by Atomic and Molecular Layer Deposition. Journal of the Electrochemical Society, 2013, 160, A1971-A1978.	1.3	20
46	New Si–O–C composite film anode materials for LIB by electrodeposition. Journal of Materials Chemistry A, 2014, 2, 883-896.	5.2	34
47	Carbon Materials in Lithium-ion Rechargeable Batteries. , 2014, , 267-287.		2
48	Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. Journal of Physical Chemistry C, 2014, 118, 881-890.	1.5	93
49	Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes. Carbon, 2014, 66, 637-645.	5.4	49
50	Enhancing the Li Storage Capacity and Initial Coulombic Efficiency for Porous Carbons by Sulfur Doping. ACS Applied Materials & Interfaces, 2014, 6, 15950-15958.	4.0	93
51	Mesocrystals as electrode materials for lithium-ion batteries. Nano Today, 2014, 9, 499-524.	6.2	120
52	Spectroscopic Compositional Analysis of Electrolyte during Initial SEI Layer Formation. Journal of Physical Chemistry C, 2014, 118, 17383-17394.	1.5	25
53	A quantitative analysis of carbon edge sites and an estimation of graphene sheet size in high-temperature treated, non-porous carbons. Carbon, 2014, 80, 135-145.	5.4	85
54	Fabrication of Porous Nitrogenâ€Doped Carbon Materials as Anodes for Highâ€Performance Lithium Ion Batteries. Chinese Journal of Chemistry, 2015, 33, 1293-1302.	2.6	21
55	Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiO _{<i>x</i>} on Li ₄ Ti ₅ O ₁₂ for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27934-27939.	4.0	26

#	Article	IF	CITATIONS
56	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage. , 2015, , 213-289.		6
57	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage:. , 2015, , 125-211.		10
58	Microstructurally Composed Nanoparticle Assemblies as Electroactive Materials for Lithium-Ion Battery Electrodes. Green Energy and Technology, 2015, , 353-391.	0.4	1
59	Carbon surface functionalities and SEI formation during Li intercalation. Carbon, 2015, 92, 193-244.	5.4	97
60	Template free construction of a hollow Fe ₃ O ₄ architecture embedded in an N-doped graphene matrix for lithium storage. Dalton Transactions, 2015, 44, 5735-5745.	1.6	29
61	Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Journal of Power Sources, 2015, 299, 465-471.	4.0	40
62	Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2476-A2482.	1.3	508
63	Carbon coated K _{0.8} Ti _{1.73} Li _{0.27} O ₄ : a novel anode material for sodium-ion batteries with a long cycle life. Chemical Communications, 2015, 51, 1608-1611.	2.2	33
64	Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries. Journal of Carbon Research, 2016, 2, 24.	1.4	53
65	Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries. Electrochimica Acta, 2016, 222, 264-270.	2.6	22
66	Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chemical Society Reviews, 2016, 45, 4042-4073.	18.7	194
67	Nanoporous hard carbon microspheres as anode active material of lithium ion battery. Electrochimica Acta, 2016, 203, 9-20.	2.6	53
68	Copper nanoparticles spaced 3D graphene films for binder-free lithium-storing electrodes. Journal of Materials Chemistry A, 2016, 4, 8466-8477.	5.2	21
69	Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Materials and Design, 2016, 109, 282-288.	3.3	22
70	Modification for Improving the Electrochemical Performance of Spherically-Shaped Natural Graphite as Anode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A3078-A3086.	1.3	23
71	Porous three-dimensional activated microwave exfoliated graphite oxide as an anode material for lithium ion batteries. RSC Advances, 2016, 6, 55176-55181.	1.7	1
72	<i>In Situ</i> Raman and Nuclear Magnetic Resonance Study of Trapped Lithium in the Solid Electrolyte Interface of Reduced Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 2600-2608.	1.5	53
73	Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method. Journal of Power Sources, 2016, 307, 762-771.	4.0	20

CITATION REPORT

#	Article	IF	CITATIONS
74	Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. Journal of Materials Science, 2016, 51, 4358-4370.	1.7	18
75	SiOC(N)/Hard Carbon Composite Anodes for Na-Ion Batteries: Influence of Morphology on the Electrochemical Properties. Journal of the Electrochemical Society, 2016, 163, A156-A162.	1.3	33
76	Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries. ACS Nano, 2017, 11, 1911-1919.	7.3	143
77	Improving the initial Coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density. Journal of Materials Science, 2017, 52, 10418-10430.	1.7	47
78	Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 25905-25918.	1.3	162
79	Poly(meth)acrylate nanocomposite membranes containing in situ exfoliated graphene platelets: Synthesis, characterization and gas barrier properties. European Polymer Journal, 2017, 94, 431-445.	2.6	7
80	Investigation of Pre-lithiation in Graphite and Hard-Carbon Anodes Using Different Lithium Source Structures. Journal of the Electrochemical Society, 2017, 164, A3914-A3924.	1.3	103
81	Synthesis and Characterization of CuFe ₂ O ₄ Nano/Submicron Wire–Carbon Nanotube Composites as Binder-free Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 8770-8785.	4.0	42
82	Readiness Level of Sodiumâ€lon Battery Technology: A Materials Review. Advanced Sustainable Systems, 2018, 2, 1700153.	2.7	135
83	Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodiumâ€lon Battery Anodes. Small, 2018, 14, e1703576.	5.2	235
84	Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Materials, 2018, 13, 134-141.	9.5	98
85	Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. Nano Energy, 2018, 44, 327-335.	8.2	229
86	One-Step Synthesis of Co@C Composite as High-Performance Anode Material for Lithium-ion Batteries. International Journal of Electrochemical Science, 2018, , 762-770.	0.5	3
87	Porosityâ€engineered Hard Carbons Hybridized with Carbon Nanotubes for Electrochemical Capacitors. Bulletin of the Korean Chemical Society, 2018, 39, 1171-1175.	1.0	1
88	Morphological Changes of Silicon Nanoparticles and the Influence of Cutoff Potentials in Silicon-Graphite Electrodes. Journal of the Electrochemical Society, 2018, 165, A1503-A1514.	1.3	85
89	Microtubular carbon fibers derived from bamboo and wood as sustainable anodes for lithium and sodium ion batteries. Journal of Porous Materials, 2019, 26, 1821-1830.	1.3	37
90	In Situ Subangstromâ€Thick Organic Engineering Enables Monoâ€scale, Ultrasmall ZnO Nanocrystals for a High Initial Coulombic Efficiency, Fully Reversible Conversion, and Cycleâ€Stable Liâ€Ion Storage. Advanced Energy Materials, 2019, 9, 1900426.	10.2	110
91	Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124.	7.1	174

CITATION REPORT

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
92	Deactivating Defects in Graphenes with Al ₂ O ₃ Nanoclusters to Produce Longâ€Life and Highâ€Rate Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803078.	10.2	65
93	The α-Fe ₂ O ₃ /graphite anode composites with enhanced electrochemical performance for lithium-ion batteries. Nanotechnology, 2020, 31, 435404.	1.3	10
94	Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries. Beilstein Journal of Nanotechnology, 2020, 11, 1217-1229.	1.5	6
95	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	5.4	41
96	Self-supported binder-free hard carbon electrodes for sodium-ion batteries: insights into their sodium storage mechanisms. Journal of Materials Chemistry A, 2020, 8, 5558-5571.	5.2	60
97	Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors. Carbon, 2020, 162, 273-282.	5.4	68
98	Bio-based electric devices. , 2020, , 311-355.		1
99	Chemical Grafting-derived N, P Co-doped Hollow Microporous Carbon Spheres for High-Performance Sodium-ion Battery Anodes. Applied Surface Science, 2020, 518, 146221.	3.1	41
100	Adjusting SiO ₂ : C mole ratios in rice hull ash (RHA) to control carbothermal reduction to nanostructured SiC, Si ₃ N ₄ or Si ₂ N ₂ O composites. Green Chemistry, 2021, 23, 7751-7762.	4.6	9
101	Hard carbon key properties allow for the achievement of high Coulombic efficiency and high volumetric capacity in Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 1743-1758.	5.2	52
103	The role of specific and active surface areas in optimizing hard carbon irreversible capacity loss in sodium ion batteries. Energy Advances, 2022, 1, 185-190.	1.4	11
104	Hard Carbons for Use as Electrodes in Li-S and Li-ion Batteries. Nanomaterials, 2022, 12, 1349.	1.9	8
105	Zn5(OH)6(CO3)2-assisted controlled fabrication of microcrystalline cellulose-derived hierarchical porous carbon for high-performance lithium storage. Journal of Alloys and Compounds, 2022, 911, 165131.	2.8	4
106	A strategy for optimizing the output energy and durability of metal-ion capacitors fabricated with alloy-based anodes. Energy Storage Materials, 2022, 51, 719-732.	9.5	4
107	What can we learn by analyzing the edge sites of carbon materials?. , 2022, 1, 188-205.		5
108	Effect of ultra-fast pyrolysis on polymer-derived SiOC aerogels and their application as anodes for Na-ion batteries. Open Ceramics, 2023, 14, 100354.	1.0	0