Electrochemical energy storage in ordered porous carbo

Carbon 43, 1293-1302 DOI: 10.1016/j.carbon.2004.12.028

Citation Report

#	Article	IF	CITATIONS
1	On the electrical double-layer capacitance of mesoporous templated carbons. Carbon, 2005, 43, 3012-3015.	10.3	45
2	Preparation and Hydrogen Storage Properties of Zeolite-Templated Carbon Materials Nanocast via Chemical Vapor Deposition:Â Effect of the Zeolite Template and Nitrogen Doping. Journal of Physical Chemistry B, 2006, 110, 18424-18431.	2.6	243
3	Textural and electrochemical properties of carbon replica obtained from styryl organo-modified layered double hydroxide. Journal of Materials Chemistry, 2006, 16, 2074-2081.	6.7	54
4	Chapter 6 Application of nanotextured carbons for supercapacitors and hydrogen storage. Interface Science and Technology, 2006, 7, 293-343.	3.3	9
5	Ordered Porous Carbon with Tailored Pore Size for Electrochemical Hydrogen Storage Application. Journal of Physical Chemistry B, 2006, 110, 4875-4880.	2.6	147
6	Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006, 313, 1760-1763.	12.6	3,404
7	Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006, 44, 2498-2507.	10.3	878
8	State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium. Carbon, 2006, 44, 2392-2398.	10.3	96
9	Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochimica Acta, 2006, 51, 2209-2214.	5.2	308
10	Transformation of mesoporous benzene silica to nanoporous carbon. Microporous and Mesoporous Materials, 2006, 91, 276-285.	4.4	12
11	Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources, 2006, 158, 765-772.	7.8	591
12	Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Microporous and Mesoporous Materials, 2006, 96, 357-362.	4.4	129
13	High-performance supercapacitors of hydrous ruthenium oxide/mesoporous carbon composites. Journal of Solid State Electrochemistry, 2006, 11, 283-290.	2.5	16
15	Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors. Electrochimica Acta, 2006, 51, 5715-5720.	5.2	104
16	Novel Megalo-Capacitance Capacitor Based on Graphitic Carbon Cathode. Electrochemical and Solid-State Letters, 2006, 9, A561.	2.2	39
17	An Ordered Mesoporous Carbon with Short Pore Length and Its Electrochemical Performances in Supercapacitor Applications. Journal of the Electrochemical Society, 2007, 154, A731.	2.9	138
19	Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials. Journal of the American Chemical Society, 2007, 129, 1673-1679.	13.7	568
20	Mesoporous carbons with KOH activated framework and their hydrogen adsorption. Journal of Materials Chemistry, 2007, 17, 4204.	6.7	127

#	Article	IF	CITATIONS
21	Experimental and Atomistic Simulation Study of the Structural and Adsorption Properties of Faujasite Zeoliteâ^Templated Nanostructured Carbon Materials. Journal of Physical Chemistry C, 2007, 111, 15863-15876.	3.1	54
22	The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Advanced Functional Materials, 2007, 17, 1828-1836.	14.9	492
23	High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support. Advanced Functional Materials, 2007, 17, 3083-3087.	14.9	411
24	Nanocrystalline diamond/carbon felt as a novel composite for electrochemical storage energy in capacitor. Chemical Physics Letters, 2007, 438, 47-52.	2.6	30
25	Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon, 2007, 45, 160-165.	10.3	90
26	Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 2007, 45, 1989-1996.	10.3	221
27	Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon, 2007, 45, 2628-2635.	10.3	171
28	Causes of supercapacitors ageing in organic electrolyte. Journal of Power Sources, 2007, 171, 1046-1053.	7.8	348
29	Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 2007, 9, 1774.	2.8	1,772
30	Performance of templated mesoporous carbons in supercapacitors. Electrochimica Acta, 2007, 52, 3207-3215.	5.2	116
31			
01	CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. International Journal of Hydrogen Energy, 2008, 33, 116-123.	7.1	71
32	CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. International Journal of Hydrogen Energy, 2008, 33, 116-123. Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of polyethylene in supercritical water. Journal of Materials Science, 2008, 43, 1376-1381.	7.1 3.7	71 9
	Hydrogen Energy, 2008, 33, 116-123. Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of		
32	 Hydrogen Energy, 2008, 33, 116-123. Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of polyethylene in supercritical water. Journal of Materials Science, 2008, 43, 1376-1381. Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall 	3.7	9
32 33	 Hydrogen Energy, 2008, 33, 116-123. Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of polyethylene in supercritical water. Journal of Materials Science, 2008, 43, 1376-1381. Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes. Journal of Solid State Electrochemistry, 2008, 12, 1129-1134. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, 	3.7 2.5	9 77
32 33 34	 Hydrogen Energy, 2008, 33, 116-123. Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of polyethylene in supercritical water. Journal of Materials Science, 2008, 43, 1376-1381. Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes. Journal of Solid State Electrochemistry, 2008, 12, 1129-1134. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry - A European Journal, 2008, 14, 6614-6626. Theoretical Model for Nanoporous Carbon Supercapacitors. Angewandte Chemie - International 	3.7 2.5 3.3	9 77 545
32 33 34 35	Hydrogen Energy, 2008, 33, 116-123. Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of polyethylene in supercritical water. Journal of Materials Science, 2008, 43, 1376-1381. Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes. Journal of Solid State Electrochemistry, 2008, 12, 1129-1134. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry - A European Journal, 2008, 14, 6614-6626. Theoretical Model for Nanoporous Carbon Supercapacitors. Angewandte Chemie - International Edition, 2008, 47, 520-524. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40,	3.7 2.5 3.3 13.8	9 77 545 526

#	Article	IF	CITATIONS
40	Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials. Carbon, 2008, 46, 1053-1059.	10.3	83
41	Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46, 1718-1726.	10.3	575
42	KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon, 2008, 46, 1948-1956.	10.3	130
43	Post-synthesis modifications of SBA-15 carbon replicas: Improving hydrogen storage by increasing microporous volume. Catalysis Today, 2008, 138, 244-248.	4.4	35
44	Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochemistry Communications, 2008, 10, 1594-1597.	4.7	435
45	Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochimica Acta, 2008, 53, 7675-7680.	5.2	114
46	Carbon molecular sieves as model active electrode materials in supercapacitors. Microporous and Mesoporous Materials, 2008, 110, 431-435.	4.4	28
47	Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. Microporous and Mesoporous Materials, 2008, 111, 32-38.	4.4	97
48	Role of microporosity in hydrogen adsorption on templated nanoporous carbons. Microporous and Mesoporous Materials, 2008, 112, 411-418.	4.4	62
49	Materials for electrochemical capacitors. Nature Materials, 2008, 7, 845-854.	27.5	14,090
50	Carbon Electrode Material with High Densities of Energy and Power. Acta Physico-chimica Sinica, 2008, 24, 13-19.	0.6	39
51	Suspension assisted synthesis of triblock copolymer-templated ordered mesoporous carbon spheres with controlled particle size. Chemical Communications, 2008, , 2647.	4.1	39
52	Electrochemical Energy Storage. , 2008, , 593-629.		2
53	Controllable Synthesis of Hierarchical Nanostructured Hollow Core/Mesopore Shell Carbon for Electrochemical Hydrogen Storage. Langmuir, 2008, 24, 12068-12072.	3.5	114
54	Synthesis and High Hydrogen Storage Capacity of Zeolite-Like Carbons Nanocast Using As-Synthesized Zeolite Templates. Journal of Physical Chemistry C, 2008, 112, 2764-2769.	3.1	95
55	Some Effects of Textural Properties of Carbon Fibers from Phenolic Resins on Double-Layer Capacitance in Aprotic Electrolyte. Journal of the Electrochemical Society, 2008, 155, F124.	2.9	3
56	Electrochemical Double Layer Capacitance in Activated Carbon: Ion Size Effects. ECS Transactions, 2010, 25, 163-171.	0.5	7

#	Article	IF	CITATIONS
58	Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Advanced Functional Materials, 2009, 19, 1032-1039.	14.9	566
59	Nitrogenâ€Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. Advanced Functional Materials, 2009, 19, 1800-1809.	14.9	720
60	Combined Effect of Nitrogen―and Oxygen ontaining Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Advanced Functional Materials, 2009, 19, 438-447.	14.9	1,475
61	Influence of the OMCs pore structures on the capacitive performances of supercapacitor. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 654-659.	1.5	8
62	Quantitative assessment of hysteresis in voltammetric curves ofÂelectrochemical capacitors. Adsorption, 2009, 15, 172-180.	3.0	10
63	Striking capacitance of carbon/iodide interface. Electrochemistry Communications, 2009, 11, 87-90.	4.7	248
64	Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores. Electrochimica Acta, 2009, 54, 7025-7032.	5.2	181
65	Electrochemical behaviour of single walled carbon nanotubes – Hydrogen storage and hydrogen evolution reaction. International Journal of Hydrogen Energy, 2009, 34, 8115-8126.	7.1	51
66	Influence of charging parameters on the effectiveness ofÂelectrochemical hydrogen storage in activated carbon. International Journal of Hydrogen Energy, 2009, 34, 9431-9435.	7.1	23
67	A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects. Journal of Hazardous Materials, 2009, 170, 552-559.	12.4	169
68	Effect of template and precursor chemistry on pore architectures of triblock copolymer-templated mesoporous carbons. Microporous and Mesoporous Materials, 2009, 121, 58-66.	4.4	24
69	Influence of the carbon precursors on the structural properties of EMT-type nanocasted-carbon replicas. Microporous and Mesoporous Materials, 2009, 126, 101-106.	4.4	22
70	Nanoporous H-sorbed carbon as anode of secondary cell. Journal of Power Sources, 2009, 188, 617-620.	7.8	9
71	Influence of the mesoporous structure on capacitance of the RuO2 electrode. Journal of Power Sources, 2009, 189, 1284-1291.	7.8	41
72	Hollow spherical carbon with mesoporous shell as a superb anode catalyst support in proton exchange membrane fuel cell. Catalysis Today, 2009, 146, 25-30.	4.4	60
73	Saturation of subnanometer pores in an electric double-layer capacitor. Electrochemistry Communications, 2009, 11, 554-556.	4.7	107
74	Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride. Carbon, 2009, 47, 775-781.	10.3	229
75	Highly Ordered Mesoporous Carbon as Catalyst for Oxidative Dehydrogenation of Ethylbenzene to Styrene. Chemistry - an Asian Journal, 2009, 4, 1108-1113.	3.3	65

#	Article	IF	CITATIONS
76	Empirical Analysis of the Contributions of Mesopores and Micropores to the Double-Layer Capacitance of Carbons. Journal of Physical Chemistry C, 2009, 113, 19335-19343.	3.1	70
77	Preparation and Electrochemical Performance of Novel Ordered Mesoporous Carbon with an Interconnected Channel Structure. Langmuir, 2009, 25, 7783-7785.	3.5	91
78	Hierarchical Porous Coreâ^'Shell Carbon Nanoparticles. Chemistry of Materials, 2009, 21, 1524-1530.	6.7	41
79	Confinement of Symmetric Tetraalkylammonium Ions in Nanoporous Carbon Electrodes of Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2009, 113, 13443-13449.	3.1	49
80	Mesoporous Carbon Nanofibers for Supercapacitor Application. Journal of Physical Chemistry C, 2009, 113, 1093-1097.	3.1	196
81	Capacitance of KOH activated carbide-derived carbons. Physical Chemistry Chemical Physics, 2009, 11, 4943.	2.8	89
82	Hydrogen Storage in High Surface Area Carbons: Experimental Demonstration of the Effects of Nitrogen Doping. Journal of the American Chemical Society, 2009, 131, 16493-16499.	13.7	174
83	Materials for electrochemical capacitors. , 2009, , 320-329.		205
84	Electrical Double-Layer Capacitors and Pseudocapacitors. Advanced Materials and Technologies, 2009, , 329-375.	0.4	13
85	Materials for electrochemical capacitors. , 2010, , 138-147.		25
87	Electrolytes in porous electrodes: Effects of the pore size and the dielectric constant of the medium. Journal of Chemical Physics, 2010, 132, 144705.	3.0	72
88	Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes. Biotechnology Journal, 2010, 5, 192-200.	3.5	24
89	Qualitative Electrochemical Impedance Spectroscopy study of ion transport into sub-nanometer carbon pores in Electrochemical Double Layer Capacitor electrodes. Electrochimica Acta, 2010, 55, 7489-7494.	5.2	156
90	Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal, 2010, 158, 129-142.	12.7	423
91	Carbon materials for electrochemical capacitors. Journal of Power Sources, 2010, 195, 7880-7903.	7.8	1,271
92	Preparation of porous doped carbons and the high performance in electrochemical capacitors. Microporous and Mesoporous Materials, 2010, 131, 89-96.	4.4	86
93	Recent Advances in Understanding the Capacitive Storage in Microporous Carbons. Fuel Cells, 2010, 10, 819-824.	2.4	36
94	Pseudocapacitance Effects for Enhancement of Capacitor Performance. Fuel Cells, 2010, 10, 848-855.	2.4	30

#	Article	IF	CITATIONS
95	Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 2010, 3, 136-168.	6.8	611
96	Nitrogen ontaining Hydrothermal Carbons with Superior Performance in Supercapacitors. Advanced Materials, 2010, 22, 5202-5206.	21.0	849
97	Electrochemical cell studies based on non-aqueous magnesium electrolyte for electric double layer capacitor applications. Journal of Power Sources, 2010, 195, 662-666.	7.8	24
98	Enhanced electrochemical hydrogen storage capacity of activated mesoporous carbon materials containing nickel inclusions. International Journal of Hydrogen Energy, 2010, 35, 12410-12420.	7.1	21
99	Study on synergistic effect of ordered mesoporous carbon and carbon aerogel during electrochemical charge–discharge process. Microporous and Mesoporous Materials, 2010, 131, 261-264.	4.4	51
100	The effects on pore size and particle morphology of heptane additions to the synthesis of mesoporous silica SBA-15. Microporous and Mesoporous Materials, 2010, 133, 66-74.	4.4	58
101	Specific anion and cation capacitance in porous carbon blacks. Carbon, 2010, 48, 1767-1778.	10.3	45
102	Functionalisation and chemical characterisation of cellulose-derived carbon aerogels. Carbon, 2010, 48, 2297-2307.	10.3	103
103	Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. Carbon, 2010, 48, 3579-3591.	10.3	99
104	Structure and electrochemical capacitance of carbon cryogels derived from phenol–formaldehyde resins. Carbon, 2010, 48, 3874-3883.	10.3	54
105	Fabrication of porous carbon micropillars using a block copolymer as porogen. Carbon, 2010, 48, 4109-4115.	10.3	22
106	Facile synthesis of bimodal porous silica and multimodal porous carbon as an anode catalyst support in proton exchange membrane fuel cell. Electrochimica Acta, 2010, 55, 7628-7633.	5.2	33
107	1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors. Electrochimica Acta, 2010, 55, 7506-7510.	5.2	54
108	Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors. Journal of Materials Research, 2010, 25, 1469-1475.	2.6	53
109	Computational modeling of carbon nanostructures for energy storage applications. , 2010, , .		1
110	Nanostructured materials for the construction of asymmetrical supercapacitors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224, 479-503.	1.4	69
111	INFLUENCE OF PORE STRUCTURE ON THE ELECTROCHEMICAL PERFORMANCE OF ACTIVATED CARBON AS ELECTRODE MATERIAL FOR AQUEOUS SUPERCAPACITORS. Functional Materials Letters, 2010, 03, 201-205.	1.2	3
112	Modern Theories of Carbon-Based Electrochemical Capacitors: A Short Review. , 2010, , .		3

#	Article	IF	CITATIONS
113	Enhancement of Hydrogen Insertion into Carbon Interlayers by Surface Catalytic Poisoning. Journal of Physical Chemistry C, 2010, 114, 19108-19115.	3.1	21
114	Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance. Journal of Physical Chemistry C, 2010, 114, 19867-19874.	3.1	197
115	A comparative study of chemical treatment by FeCl ₃ , MgCl ₂ , and ZnCl ₂ on microstructure, surface chemistry, and double-layercapacitance of carbons from waste biomass. Journal of Materials Research, 2010, 25, 1451-1459.	2.6	76
116	Influence of the Surface—Chemistry of Modified Mesoporous Carbon on the Electrochemical Behavior of Solid-State Supercapacitors. Energy & Fuels, 2010, 24, 3313-3320.	5.1	43
117	Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. Journal of Materials Research, 2010, 25, 1525-1531.	2.6	142
118	Hydrogen adsorption in metal-doped highly ordered mesoporous carbon molecular sieve. Journal of Alloys and Compounds, 2010, 498, 168-171.	5.5	19
119	Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Physical Chemistry Chemical Physics, 2010, 12, 170-182.	2.8	114
120	Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons. Energy and Environmental Science, 2010, 3, 1773.	30.8	63
121	One-Pot Synthesis of PtRu Nanoparticle Decorated Ordered Mesoporous Carbons with Improved Hydrogen Storage Capacity. Journal of Physical Chemistry C, 2010, 114, 22012-22018.	3.1	13
122	Dual diffusion mechanism of argon confined in single-walled carbon nanotube bundles. Physical Chemistry Chemical Physics, 2010, 12, 6632.	2.8	25
123	Hybrid MnO ₂ –disordered mesoporous carbon nanocomposites: synthesis and characterization as electrochemical pseudocapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 390-398.	6.7	78
124	Morphology control of ordered mesoporous carbons by changing HCl concentration. Journal of Materials Chemistry, 2011, 21, 5345.	6.7	24
125	Mesoporous carbon nanospheres with an excellent electrocapacitive performance. Journal of Materials Chemistry, 2011, 21, 2274-2281.	6.7	169
126	Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core–shell carbon structure. Journal of Materials Chemistry, 2011, 21, 8880.	6.7	63
127	Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-Containing activated carbon with high surface area. Journal of Materials Chemistry, 2011, 21, 2060.	6.7	151
128	Simulating Electric Double Layer Capacitance of Mesoporous Electrodes with Cylindrical Pores. Journal of the Electrochemical Society, 2011, 158, A1106.	2.9	49
129	Recycle of Silicate Waste into Mesoporous Materials. Environmental Science & Technology, 2011, 45, 3695-3701.	10.0	12
130	Oscillation of Capacitance inside Nanopores. Nano Letters, 2011, 11, 5373-5377.	9.1	290

	Сітатіо	n Report	
#	Article	IF	CITATIONS
131	Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 2011, 11, 2472-2477.	9.1	1,547
132	Direct synthesis of flat cake-type ordered mesoporous carbon in a double surfactant system of P123/CTAB. Journal of Materials Chemistry, 2011, 21, 5576.	6.7	19
133	Designing Nanostructured Carbon Xerogels. , 0, , .		5
134	Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors. Journal of Solid State Chemistry, 2011, 184, 2655-2660.	2.9	30
135	Preparation of activated carbon from sorghum pith and its structural and electrochemical properties. Materials Research Bulletin, 2011, 46, 413-419.	5.2	82
136	Improvement of electrochemical capacitor electrodes using SiO2 nanoparticles. Electrochimica Acta, 2011, 56, 10137-10144.	5.2	28
137	Correlation of hydrogen capacity in carbon material with the parameters of electrosorption. Open Chemistry, 2011, 9, 20-24.	1.9	9
138	Supercapacitive behaviors of worm-like mesoporous carbon in non-aqueous electrolyte. Journal of Applied Electrochemistry, 2011, 41, 71-75.	2.9	7
139	Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene. Canadian Journal of Chemical Engineering, 2011, 89, 1342-1357.	1.7	154
140	A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties. Carbon, 2011, 49, 844-853.	10.3	94
141	The synthesis of microporous carbon by the fluorination of titanium carbide. Carbon, 2011, 49, 2998-3009.	10.3	22
142	Surface and electrochemical properties of amino-fluorinated activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 243-250.	4.7	22
143	Simulation of electric double layer capacitors with mesoporous electrodes: Effects of morphology and electrolyte permittivity. Electrochimica Acta, 2011, 56, 6189-6197.	5.2	78
144	Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution. Journal of Power Sources, 2011, 196, 1608-1614.	7.8	55
145	The effect of Al content of zeolite template on the properties and hydrogen storage capacity of zeolite templated carbons. Microporous and Mesoporous Materials, 2011, 144, 140-147.	4.4	27
146	Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. MRS Bulletin, 2011, 36, 513-522.	3.5	368
147	Synthesis, Characterization and Capacitive Behaviors of Nanoporous Carbons Obtained by Using the Template of Zeolite-13X/MCM-48 Biporous Molecular Sieve. Materials Science Forum, 2011, 688, 326-333.	0.3	1
148	Development of an Ordered Mesoporous Carbon/MoO2 Nanocomposite for High Performance Supercapacitor Electrode. Electrochemical and Solid-State Letters, 2011, 14, A157.	2.2	24

#	Article	IF	CITATIONS
149	Nanodiamond Films for Applications in Electrochemical Systems. International Journal of Electrochemistry, 2012, 2012, 1-16.	2.4	24
150	New Trends on the Boron-Doped Diamond Electrode: From Fundamental Studies to Applications. International Journal of Electrochemistry, 2012, 2012, 1-2.	2.4	7
151	Electrochemical double-layer charging of ultramicroporous synthetic carbons in aqueous electrolytes. Electrochimica Acta, 2012, 86, 232-240.	5.2	12
152	Synthesis of 3D hierarchical porous carbon as electrode material for electric double layer capacitors. New Carbon Materials, 2012, 27, 87-92.	6.1	35
153	Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon, 2012, 50, 5017-5026.	10.3	70
154	Formation of graphitic tubules from ordered mesoporous carbon and their effect on supercapacitive energy storage. Journal of Materials Chemistry, 2012, 22, 21472.	6.7	32
155	Reversible transient hydrogen storage in a fuel cell–supercapacitor hybrid device. Physical Chemistry Chemical Physics, 2012, 14, 3816.	2.8	10
156	Hydrogen Storage in High Surface Area Carbons with Identical Surface Areas but Different Pore Sizes: Direct Demonstration of the Effects of Pore Size. Journal of Physical Chemistry C, 2012, 116, 25734-25740.	3.1	80
157	Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. TrAC - Trends in Analytical Chemistry, 2012, 38, 79-97.	11.4	132
158	Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors. Journal of Solid State Chemistry, 2012, 194, 307-312.	2.9	52
159	Nanostructured carbon for energy storage and conversion. Nano Energy, 2012, 1, 195-220.	16.0	895
160	Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 535-543.	4.3	82
161	Effect of pore characteristics on electrochemical capacitance of activated carbons. Russian Journal of Electrochemistry, 2012, 48, 1179-1186.	0.9	6
163	Adsorption by Carbon Gels. , 2012, , 207-244.		9
164	Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. Journal of Materials Chemistry, 2012, 22, 146-152.	6.7	156
165	Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy and Environmental Science, 2012, 5, 9611.	30.8	297
166	Titanium carbide derived nanoporous carbon for supercapacitor applications. International Journal of Hydrogen Energy, 2012, 37, 19395-19400.	7.1	43
167	Porous graphene: Properties, preparation, and potential applications. Science Bulletin, 2012, 57, 2948-2955.	1.7	98

#	Article	IF	Citations
168	Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon, 2012, 50, 5543-5553.	10.3	213
169	Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. Journal of Materials Chemistry, 2012, 22, 19031.	6.7	112
170	Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 8835.	6.7	87
171	Batteries and Supercapacitors for Electric Vehicles. , 2012, , .		8
172	Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews, 2012, 112, 4124-4155.	47.7	2,796
173	Hierarchically Structured Porous Materials for Energy Conversion and Storage. Advanced Functional Materials, 2012, 22, 4634-4667.	14.9	796
174	Templated Nanocarbons for Energy Storage. Advanced Materials, 2012, 24, 4473-4498.	21.0	672
175	Carbonâ€Based Electrochemical Capacitors. ChemSusChem, 2012, 5, 480-499.	6.8	491
176	Electrochemical behavior and capacitance properties of carbon xerogel/multiwalled carbon nanotubes composites. Journal of Solid State Electrochemistry, 2012, 16, 1067-1076.	2.5	13
177	Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon, 2012, 50, 3572-3584.	10.3	362
178	CVD generated mesoporous hollow carbon spheres as supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 246-250.	4.7	68
179	Steric effects in adsorption of ions from mixed electrolytes into microporous carbon. Electrochemistry Communications, 2012, 15, 63-65.	4.7	61
180	Polystyrene-based carbon spheres as electrode for electrochemical capacitors. Electrochimica Acta, 2012, 59, 424-428.	5.2	30
181	Pore structure and electrochemical performances of tannin-based carbon cryogels. Biomass and Bioenergy, 2012, 39, 274-282.	5.7	58
182	Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes. Journal of Power Sources, 2012, 209, 243-250.	7.8	72
183	Hydrothermal co-doping of boron and phosphorus into porous carbons prepared from petroleum coke to improve oxidation resistance. Materials Letters, 2012, 82, 124-126.	2.6	11
184	Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping. Microporous and Mesoporous Materials, 2012, 147, 86-93.	4.4	49
185	Preparation of mesoporous carbon spheres with a bimodal pore size distribution and its application for electrochemical double layer capacitors based on ionic liquid as the electrolyte. Microporous and Mesoporous Materials, 2012, 151, 282-286.	4.4	31

#	Article	IF	CITATIONS
186	Electrochemical double-layer capacitor performance of novel carbons derived from SAPO zeolite templates. Microporous and Mesoporous Materials, 2012, 160, 25-31.	4.4	19
187	Rapid synthesis of foam-like mesoporous carbon monolith using an ultrasound-assisted air bubbling strategy. Carbon, 2013, 62, 322-329.	10.3	19
188	Small Particles of Chemically-Reduced Graphene with Improved Electrochemical Capacity. Journal of Physical Chemistry C, 2013, 117, 15496-15504.	3.1	14
189	Nanocarbons for Supercapacitors. , 2013, , 393-421.		4
190	Inductive component of impedance of supercapacitor porous interface. Technical Physics Letters, 2013, 39, 533-535.	0.7	4
191	Nanostructured Electrodes for Highâ€Performance Pseudocapacitors. Angewandte Chemie - International Edition, 2013, 52, 1882-1889.	13.8	501
192	Carbon nano-onions for supercapacitor electrodes: recent developments and applications. Journal of Materials Chemistry A, 2013, 1, 13703.	10.3	132
193	Pore morphology: a vital factor in determining electrochemical properties of electrical double layer capacitors. Chemical Communications, 2013, 49, 9998.	4.1	28
194	3-D ordered bimodal porous carbon/nickel oxide hybrid electrodes for supercapacitors. Synthetic Metals, 2013, 177, 105-109.	3.9	2
195	Relation of micropores/mesopore ratio on high electrochemical performance ofÂnano-porous carbons. Journal of Power Sources, 2013, 244, 792-798.	7.8	14
196	Highly confined ions store charge more efficiently in supercapacitors. Nature Communications, 2013, 4, 2701.	12.8	570
197	Enhanced Electrosorption Capacitance of Porous Carbon Particles Synthesized by Spray Pyrolysis. Journal of the Electrochemical Society, 2013, 160, E84-E89.	2.9	4
198	Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method. Surface and Coatings Technology, 2013, 228, S120-S125.	4.8	58
199	Improvement of electric double-layer capacitance of ordered mesoporous carbon CMK-3 by partial graphitization using metal oxide catalysts. Microporous and Mesoporous Materials, 2013, 179, 136-143.	4.4	29
200	Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy. Applied Solar Energy (English Translation of Geliotekhnika), 2013, 49, 153-157.	1.6	0
201	New mesoporous carbon materials synthesized by a templating procedure. Ceramics International, 2013, 39, 4035-4043.	4.8	10
202	A perspective: carbon nanotube macro-films for energy storage. Energy and Environmental Science, 2013, 6, 3183-3201.	30.8	168
203	Microporous and mesoporous carbon nanostructures with the inverse opal lattice. Physics of the Solid State, 2013, 55, 1105-1110.	0.6	8

#	Article	IF	Citations
204	Surface state of carbon materials and accumulation of hydrogen in multiwalled carbon nanotubes. Protection of Metals and Physical Chemistry of Surfaces, 2013, 49, 669-676.	1.1	3
205	A general conversion of polyacrylate–metal complexes into porous carbons especially evinced in the case of magnesium polyacrylate. Journal of Materials Chemistry A, 2013, 1, 4017.	10.3	26
206	Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 4002.	10.3	85
207	Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes. RSC Advances, 2013, 3, 25891.	3.6	60
208	Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. Journal of Materials Chemistry A, 2013, 1, 12962.	10.3	42
209	Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon, 2013, 51, 290-300.	10.3	169
210	Mass transport and electrolyte accessibility through hexagonally ordered channels of self-assembled mesoporous carbons. Journal of Power Sources, 2013, 228, 24-31.	7.8	20
211	Microwave synthesis of micro-mesoporous activated carbon xerogels for high performance supercapacitors. Microporous and Mesoporous Materials, 2013, 168, 206-212.	4.4	63
212	Ion Size to Pore Width Ratio as a Factor that Determines the Electrochemical Stability Window of Activated Carbon Electrodes. Journal of the Electrochemical Society, 2013, 160, A629-A635.	2.9	21
213	In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 16179-16184.	7.1	33
214	Multimodal porous carbon as a highly efficient electrode material in an electric double layer capacitor. Microporous and Mesoporous Materials, 2013, 182, 1-7.	4.4	70
215	Preparation and gases storage capacities of N-doped porous activated carbon materials derived from mesoporous polymer. Materials Chemistry and Physics, 2013, 141, 318-323.	4.0	25
216	Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nature Materials, 2013, 12, 351-358.	27.5	210
217	Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42, 4098.	38.1	541
222	Critical role of small micropores in high CO2 uptake. Physical Chemistry Chemical Physics, 2013, 15, 2523.	2.8	228
223	High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. Journal of Power Sources, 2013, 244, 799-805.	7.8	126
224	Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. Journal of Power Sources, 2013, 235, 289-296.	7.8	243
225	Determination of surface area of carbon-black by simple cyclic-voltammetry measurements in aqueous H2SO4. Journal of Industrial and Engineering Chemistry, 2013, 19, 1730-1734.	5.8	10

#	Article	IF	CITATIONS
226	Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Nanoscale, 2013, 5, 4902.	5.6	112
227	Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 2013, 1, 9365.	10.3	320
229	Carbon/carbon supercapacitors. Journal of Energy Chemistry, 2013, 22, 226-240.	12.9	275
230	Mesoporous carbon as a novel drug carrier of fenofibrate for enhancement of the dissolution and oral bioavailability. International Journal of Pharmaceutics, 2013, 452, 382-389.	5.2	57
231	Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy and Environmental Science, 2013, 6, 2465.	30.8	309
232	Carbons for Supercapacitors. , 2013, , 211-222.		8
233	Correlation between the capacitor performance and pore structure of ordered mesoporous carbons. Advanced Powder Technology, 2013, 24, 737-742.	4.1	24
234	Supercritical CO2Mediated Incorporation of Pd onto Templated Carbons: A Route to Optimizing the Pd Particle Size and Hydrogen Uptake Density. ACS Applied Materials & Interfaces, 2013, 5, 5639-5647.	8.0	24
235	Competition of Desolvation and Stabilization of Organic Electrolytes in Extremely Narrow Nanopores. Journal of Physical Chemistry C, 2013, 117, 17092-17098.	3.1	33
236	Mesoscale modeling of electric double layer capacitors with three-dimensional ordered structures. Journal of Power Sources, 2013, 221, 252-260.	7.8	71
237	Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Advanced Materials, 2013, 25, 5965-5970.	21.0	441
239	Quantifying the Effects of Carbon Sub-Nanoporous Structures on Electrochemical Capacitance. ECS Meeting Abstracts, 2013, , .	0.0	0
240	Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon. Frontiers in Energy Research, 2014, 2, .	2.3	7
241	Thermodynamics of nano-porous carbon materials as adsorbents and electrochemical double-layer capacitor electrodes. Tanso, 2014, 2014, 67-75.	0.1	2
242	New mesoporous silica/carbon composites byin situtransformation of silica template in carbon/silica nanocomposite. Journal of Experimental Nanoscience, 2014, 9, 221-229.	2.4	9
243	Cubeâ€like αâ€Fe ₂ O ₃ Supported on Ordered Multimodal Porous Carbon as High Performance Electrode Material for Supercapacitors. ChemSusChem, 2014, 7, 3102-3111.	6.8	90
244	Components of Power Sources/(or of Electrochemical Energetics). Engineering Materials and Processes, 2014, , 19-81.	0.4	0
245	7. Sustainable carbon hybrid materials made by hydrothermal carbonization and their use in energy applications. , 2014, , 201-226.		2

#	Article	IF	Citations
# 246	Binderfree synthesis of high-surface-area carbon electrodes via CO2 activation of resorcinol–formaldehyde carbon xerogel disks: Analysis of activation process. Carbon, 2014, 76, 240-249.	10.3	36
247	Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. Journal of Power Sources, 2014, 263, 130-140.	7.8	44
248	The influence of microporosity creation in highly mesoporous N-containing carbons obtained from chitosan on their catalytic and electrochemical properties. Catalysis Today, 2014, 227, 223-232.	4.4	24
249	A universal equivalent circuit for carbon-based supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 1377-1387.	2.5	128
250	Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014, 26, 2219-2251.	21.0	2,152
251	Poly(3-methylthiophene)/Vertically Aligned Multi-walled Carbon Nanotubes: Electrochemical Synthesis, Characterizations and Electrochemical Storage Properties in Ionic Liquids. Electrochimica Acta, 2014, 130, 754-765.	5.2	31
252	MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor. Journal of Solid State Electrochemistry, 2014, 18, 1117-1125.	2.5	29
253	Electrochemical studies of few-layered graphene as an anode material for Li ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 941-949.	2.5	82
254	One‣tep Templateâ€Free Synthesis of Highly Porous Boron Nitride Microsponges for Hydrogen Storage. Advanced Energy Materials, 2014, 4, 1301525.	19.5	117
255	Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta, 2014, 130, 766-770.	5.2	74
256	Large area, flexible ordered mesoporous carbon films from soft templating on polymer substrates. RSC Advances, 2014, 4, 3669-3677.	3.6	7
257	Strategies for enhancing the performance of carbon/carbon supercapacitors in aqueous electrolytes. Electrochimica Acta, 2014, 128, 210-217.	5.2	48
258	Carbon Materials for Electrochemical Capacitors. , 2014, , 237-265.		9
259	Template Carbonization. , 2014, , 133-163.		3
260	Carbon Materials for Adsorption of Molecules and Ions. , 2014, , 335-361.		7
261	New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy. Carbon, 2014, 69, 401-408.	10.3	47
262	Effect of Mesopore Ordering in Otherwise Similar Micro/Mesoporous Carbons on the High-Rate Performance of Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2014, 118, 27715-27720.	3.1	28
263	Randomâ€Graft Polymerâ€Directed Synthesis of Inorganic Mesostructures with Ultrathin Frameworks. Angewandte Chemie - International Edition, 2014, 53, 5117-5121.	13.8	36

#	Article	IF	CITATIONS
264	Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 272, 8-15.	7.8	198
265	Easy procedure to prepare nitrogen-containing activated carbons for supercapacitors. RSC Advances, 2014, 4, 39037-39044.	3.6	18
266	Catalyst-free soft-template synthesis of ordered mesoporous carbon tailored using phloroglucinol/glyoxylic acid environmentally friendly precursors. Green Chemistry, 2014, 16, 3079.	9.0	74
267	N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chemical Communications, 2014, 50, 12091-12094.	4.1	90
268	P/N/O co-doped carbonaceous material based supercapacitor with voltage up to 1.9 V in aqueous electrolyte. RSC Advances, 2014, 4, 55971-55979.	3.6	21
270	Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes. Journal of Power Sources, 2014, 272, 90-99.	7.8	18
271	Electric double layer capacitors of high volumetric energy based on ionic liquids and hierarchical-pore carbon. Journal of Materials Chemistry A, 2014, 2, 14963-14972.	10.3	40
272	Optimizing supercapacitor electrode density: achieving the energy of organic electrolytes with the power of aqueous electrolytes. RSC Advances, 2014, 4, 42942-42946.	3.6	26
273	On the development of activated carbons with high affinity for high voltage propylene carbonate based electrolytes. Journal of Power Sources, 2014, 270, 379-385.	7.8	9
274	Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11706-11715.	10.3	129
275	Synthesis of Few-Layer Reduced Graphene Oxide for Lithium-Ion Battery Electrode Materials. Industrial & Engineering Chemistry Research, 2014, 53, 13348-13355.	3.7	32
276	Mosaic-Structured SnO 2 @C Porous Microspheres for High-Performance Supercapacitor Electrode Materials. Electrochimica Acta, 2014, 142, 157-166.	5.2	67
277	Nitrogen- and oxygen-containing hierarchical porous carbon frameworks for high-performance supercapacitors. Electrochimica Acta, 2014, 134, 471-477.	5.2	48
278	Enhancement of Electrochemical Hydrogen Insertion in N-Doped Highly Ordered Mesoporous Carbon. Journal of Physical Chemistry C, 2014, 118, 2370-2374.	3.1	30
279	Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support. Journal of Colloid and Interface Science, 2014, 428, 133-140.	9.4	35
281	Nitrogenâ€Enriched Fe ₃ O ₄ @Carbon Nanospheres Derived from Fe ₃ O ₄ @3â€Aminophenol/Formaldehyde Resin Nanospheres Based on a Facile Hydrothermal Strategy: Towards a Robust Catalyst Scaffold for Platinum Nanocrystals. Chemistry - an Asian Journal. 2015. 10. 2651-2659.	3.3	4
283	Electrical-potential induced surface wettability of porous metallic nanostructures. Applied Surface Science, 2015, 351, 460-465.	6.1	28
284	SANS investigations of CO2 adsorption in microporous carbon. Carbon, 2015, 95, 535-544.	10.3	33

#	Article	IF	Citations
 285	Investigation of different aqueous electrolytes on the electrochemical performance of activated	3.6	83
	carbon-based supercapacitors. RSC Advances, 2015, 5, 107482-107487.		
286	Facile fabrication of N-doped hierarchical porous carbon@CNT coaxial nanocables with high performance for energy storage and conversion. RSC Advances, 2015, 5, 96580-96586.	3.6	18
287	Superior Capacitive Performance of Hydrocharâ€Based Porous Carbons in Aqueous Electrolytes. ChemSusChem, 2015, 8, 1049-1057.	6.8	65
288	Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. Journal of Physics Condensed Matter, 2015, 27, 103102.	1.8	205
289	Low temperature synthesized carbon nanotube superstructures with superior CO ₂ and hydrogen storage capacity. Journal of Materials Chemistry A, 2015, 3, 5148-5161.	10.3	84
290	Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes. Journal of Power Sources, 2015, 276, 176-180.	7.8	23
291	A silver-nanoparticle-catalyzed graphite composite for electrochemical energy storage. Journal of Power Sources, 2015, 275, 688-693.	7.8	19
292	Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Advances, 2015, 5, 19865-19873.	3.6	122
293	Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol. Journal of Materials Science, 2015, 50, 1323-1332.	3.7	32
294	Surface Modification and Performance Enhancement of Carbon Derived from Chromium Carbide for Supercapacitor Applications. Journal of the Electrochemical Society, 2015, 162, A845-A851.	2.9	20
295	Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5158-A5178.	2.9	105
296	Preparation and characterization of activated CMK-1 with Zn and Ni species applied in hydrogen storage. International Journal of Energy Research, 2015, 39, 941-953.	4.5	13
297	Capacitance behavior of ordered mesoporous carbon/Fe2O3 composites: Comparison between 1D cylindrical, 2D hexagonal, and 3D bicontinuous mesostructures. Carbon, 2015, 93, 903-914.	10.3	37
298	Facile simulation of carbon with wide pore size distribution for electric double-layer capacitance based on Helmholtz models. Journal of Materials Chemistry A, 2015, 3, 16535-16543.	10.3	37
299	Water Assistance in Ion Transfer during Charge and Discharge Cycles. Journal of Physical Chemistry C, 2015, 119, 15185-15194.	3.1	9
300	High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. Carbon, 2015, 94, 41-52.	10.3	98
301	Improve Electrochemical Hydrogen Insertion on the Carbon Materials Loaded with Pt nano-particles through H spillover. Electrochimica Acta, 2015, 174, 400-405.	5.2	13
302	Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. ACS Nano, 2015, 9, 5999-6017.	14.6	108

#	Article	IF	Citations
303	In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nature Materials, 2015, 14, 812-819.	27.5	296
304	Interfacial Redox Phenomena for Enhanced Aqueous Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A5140-A5147.	2.9	75
305	Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors. Scientific Reports, 2015, 5, 9277.	3.3	78
306	Mesoporous Materialsâ€Based Electrochemical Sensors. Electroanalysis, 2015, 27, 1303-1340.	2.9	111
307	Insights on the reactivity of ordered porous carbons exposed to different fluorinating agents and conditions. Carbon, 2015, 84, 567-583.	10.3	22
308	Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate). Applied Surface Science, 2015, 346, 182-188.	6.1	43
309	Separating Faradaic and Non-Faradaic Charge Storage Contributions in Activated Carbon Electrochemical Capacitors Using Electrochemical Methods. Journal of the Electrochemical Society, 2015, 162, A1246-A1254.	2.9	47
310	Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors. Carbon, 2015, 90, 63-74.	10.3	67
313	Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon, 2015, 95, 268-278.	10.3	48
314	Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors. Nanotechnology, 2015, 26, 345401.	2.6	20
315	Effect of the Porous Texture of Activated Carbons on the Electrochemical Properties of Molecule-Grafted Carbon Products in Organic Media. Journal of the Electrochemical Society, 2015, 162, A2289-A2295.	2.9	6
316	Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications – a review. RSC Advances, 2015, 5, 88339-88352.	3.6	168
317	Capacitive Energy Storage: Current and Future Challenges. Journal of Physical Chemistry Letters, 2015, 6, 3594-3609.	4.6	99
318	Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: Enhanced double-layer electrochemical properties. Journal of Alloys and Compounds, 2015, 653, 212-218.	5.5	53
319	Preparation and electrochemical performance of corn straw-based nanoporous carbon. Journal of Porous Materials, 2015, 22, 1351-1355.	2.6	2
320	Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles. Thin Solid Films, 2015, 592, 124-134.	1.8	23
321	Facile fabrication of highly flexible graphene paper for photocatalytic reduction of 4-nitrophenol. Bulletin of Materials Science, 2015, 38, 1457-1463.	1.7	8
322	Novel tannin-based Si, P co-doped carbon for supercapacitor applications. Journal of Power Sources, 2015, 275, 835-844.	7.8	48

#	Article	IF	CITATIONS
323	High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. Journal of Materials Chemistry A, 2015, 3, 2903-2913.	10.3	207
324	Activated Carbon, Carbon Blacks and Graphene Based Nanoplatelets as Active Materials for Electrochemical Double Layer Capacitors: A Comparative Study. Journal of the Electrochemical Society, 2015, 162, A44-A51.	2.9	35
325	Comparison of melamine resin and melamine network as precursors for carbon electrodes. Carbon, 2015, 81, 239-250.	10.3	29
326	The influence of layered double hydroxide composition on the morphology, porosity and capacitive properties of nitrogen-doped carbon materials prepared via chemical vapor deposition. Microporous and Mesoporous Materials, 2015, 201, 1-9.	4.4	9
327	Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon, 2015, 81, 148-157.	10.3	144
328	Synthesis and characterization of Pt-CMK-3 hybrid nanocomposite for hydrogen storage. International Journal of Energy Research, 2015, 39, 128-139.	4.5	23
329	Performance Enhancement of Carbon Nanomaterials for Supercapacitors. Journal of Nanomaterials, 2016, 2016, 1-17.	2.7	54
330	Efficient Oxidative Removal of Organic Pollutants by Ordered Mesoporous Carbon-Supported Cobalt Phthalocyanine. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	2
331	An Aqueous Metal-Ion Capacitor with Oxidized Carbon Nanotubes and Metallic Zinc Electrodes. Frontiers in Energy Research, 2016, 4, .	2.3	75
332	Catalytic graphitization of ordered mesoporous carbon CMKâ€3 with iron oxide catalysts: Evaluation of different synthesis pathways. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1395-1402.	1.8	17
333	Surface engineering of nanomaterials for improved energy storage – A review. Chemical Engineering Science, 2016, 154, 3-19.	3.8	49
334	Bifacial carbon nanofoam-fibrous PEDOT composite supercapacitor in the 3-electrode configuration for electrical energy storage. Synthetic Metals, 2016, 219, 1-10.	3.9	42
335	Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 2016, 294, 458-477.	12.7	77
336	Nitrogen-doped mesoporous carbons for high performance supercapacitors. Applied Surface Science, 2016, 379, 132-139.	6.1	44
337	A Study of Hydrogen Accumulation in Multiwall Carbon Nanotubes by Electrochemical Techniques. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 211-217.	1.1	3
338	Boron-doped ordered mesoporous carbons for the application of supercapacitors. Electrochimica Acta, 2016, 207, 266-274.	5.2	98
339	Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors. Electrochimica Acta, 2016, 205, 1-7.	5.2	18
340	Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 427-434.	2.1	14

# 341	ARTICLE Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon, 2016, 105, 628-637.	lF 10.3	CITATIONS 84
342	Nanouids: Potential Future Coolants. , 2016, , 805-810.		0
343	The influences of operating conditions and design configurations on the performance of symmetric electrochemical capacitors. Physical Chemistry Chemical Physics, 2016, 18, 28626-28647.	2.8	10
344	A flexible and high-performance all-solid-state supercapacitor device based on Ni3S2 nanosheets coated ITO nanowire arrays on carbon fabrics. RSC Advances, 2016, 6, 75186-75193.	3.6	29
345	Environmentally Friendly Supercapacitors. , 2016, , 351-492.		7
346	Electrolytes for Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 31-254.	0.0	5
347	Activated Carbon Prepared from Lignite as Supercapacitor Electrode Materials. Electroanalysis, 2016, 28, 243-248.	2.9	41
348	Interconnected nitrogen and sulfur dual-doped porous carbon as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. Journal of Power Sources, 2016, 327, 289-296.	7.8	21
349	Electrochemical performance of rod-type ordered mesoporous carbons with different rod lengths for electric double-layer capacitors. New Carbon Materials, 2016, 31, 328-335.	6.1	3
350	Metalâ€Organic Framework/Layered Carbon Nitride Nano–sandwiches for Superior Asymmetric Supercapacitor. ChemistrySelect, 2016, 1, 3730-3738.	1.5	27
351	Sugarcane molasses as a pseudocapacitive material for supercapacitors. RSC Advances, 2016, 6, 88826-88836.	3.6	18
352	Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode. ACS Applied Materials & Interfaces, 2016, 8, 25905-25914.	8.0	46
353	Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochimica Acta, 2016, 212, 839-847.	5.2	144
354	Differentiation of the non-faradaic and pseudocapacitive electrochemical response of graphite felt/CuFeS2 composite electrodes. Electrochimica Acta, 2016, 212, 979-991.	5.2	26
355	Three-dimensional and highly ordered porous carbon–MnO ₂ composite foam for excellent electromagnetic interference shielding efficiency. RSC Advances, 2016, 6, 100713-100722.	3.6	53
356	Hydrogen storage capacity of selected activated carbon electrodes made from brown coal. International Journal of Hydrogen Energy, 2016, 41, 23099-23108.	7.1	23
357	Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. Journal of Power Sources, 2016, 336, 419-426.	7.8	31
358	Tailored activated carbons for supercapacitors derived from hydrothermally carbonized sugars by chemical activation. RSC Advances, 2016, 6, 110629-110641.	3.6	17

#	Article	IF	CITATIONS
359	Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors. Scientific Reports, 2016, 6, 19949.	3.3	45
360	Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. Scientific Reports, 2016, 6, 31555.	3.3	26
361	Electrolytic hydrogen absorption by double- or triple-walled carbon nanotubes. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 771-777.	1.1	1
362	Facile Synthesis of Nitrogen ontaining Mesoporous Carbon for Highâ€Performance Energy Storage Applications. Chemistry - A European Journal, 2016, 22, 4256-4262.	3.3	17
363	Nitrogen and Phosphorous Coâ€Doped Graphene Monolith for Supercapacitors. ChemSusChem, 2016, 9, 513-520.	6.8	90
364	Templated mesoporous carbons: Synthesis and applications. Carbon, 2016, 107, 448-473.	10.3	208
365	Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling. Energy and Environmental Science, 2016, 9, 3392-3398.	30.8	121
366	Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon, 2016, 107, 629-637.	10.3	130
367	Boron–manganese–carbon nanocomposites synthesized from CO2 for electrode applications in both supercapacitors and fuel cells. RSC Advances, 2016, 6, 54889-54897.	3.6	12
368	Graphene- and Graphene-Oxide-Based Gas Sensors. , 2016, , 317-328.		0
368 369	Graphene- and Graphene-Oxide-Based Gas Sensors. , 2016, , 317-328. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Physical Chemistry Chemical Physics, 2016, 18, 4668-4674.	2.8	0
	Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration.	2.8 5.2	
369	Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Physical Chemistry Chemical Physics, 2016, 18, 4668-4674. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high		110
369 370	Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Physical Chemistry Chemical Physics, 2016, 18, 4668-4674. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochimica Acta, 2016, 190, 118-125. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews,	5.2	110
369 370 371	Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Physical Chemistry Chemical Physics, 2016, 18, 4668-4674. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochimica Acta, 2016, 190, 118-125. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206.	5.2	110 133 2,197
369 370 371 372	 Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Physical Chemistry Chemical Physics, 2016, 18, 4668-4674. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochimica Acta, 2016, 190, 118-125. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206. Preparation and applications of self-assembled natural and synthetic nanostructures., 2016, , 29-55. Functionalized, hierarchical and ordered mesoporous carbons for high-performance 	5.2	110 133 2,197 6
369 370 371 372 373	 Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Physical Chemistry Chemical Physics, 2016, 18, 4668-4674. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochimica Acta, 2016, 190, 118-125. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206. Preparation and applications of self-assembled natural and synthetic nanostructures. , 2016, , 29-55. Functionalized, hierarchical and ordered mesoporous carbons for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 6140-6148. Ultrahigh specific surface area porous carbon nanospheres and its composite with polyaniline: 	5.2 16.4 10.3	 110 133 2,197 6 32

#	Article	IF	CITATIONS
377	The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level. Applied Surface Science, 2016, 360, 807-815.	6.1	31
378	Structural Evolution of the Thermally Reduced Graphene NanosheetsDuring Annealing. Springer Theses, 2016, , 51-71.	0.1	1
379	Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal. Journal of Hazardous Materials, 2016, 302, 375-385.	12.4	24
380	Electrochemical Supercapacitor Design, Fabrication, and Operation. , 2017, , 203-246.		0
381	Novel templated mesoporous carbons as electrode for electrochemical capacitors with aqueous neutral electrolytes. Microporous and Mesoporous Materials, 2017, 242, 221-230.	4.4	8
382	Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitors. RSC Advances, 2017, 7, 327-335.	3.6	30
383	Deconvolution of electrochemical double layer capacitance between fractions of active and total surface area of graphite felts. Carbon, 2017, 111, 782-788.	10.3	39
384	Preparation and formation mechanism of porous carbon nanosheets by thermal decomposition of polyvinyl alcohol films impregnated with zinc (II) and nitrate ions. Solid State Sciences, 2017, 65, 33-40.	3.2	5
385	Nitrogen-rich activated carbon monoliths via ice-templating with high CO ₂ and H ₂ adsorption capacities. Journal of Materials Chemistry A, 2017, 5, 2811-2820.	10.3	34
386	Mn ₃ O ₄ hollow microcubes and solid nanospheres derived from a metal formate framework for electrochemical capacitor applications. RSC Advances, 2017, 7, 11129-11134.	3.6	24
387	Nanotechnology in Electrochemical Capacitors. , 2017, , 131-169.		4
388	Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors. Chemical Engineering Journal, 2017, 317, 651-659.	12.7	140
389	Low-cost and massive preparation of nitrogen-doped porous carbon for supercapacitor application. RSC Advances, 2017, 7, 10901-10905.	3.6	24
390	One-pot synthesis of highly activated carbons from melamine and terephthalaldehyde as electrodes for high energy aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14619-14629.	10.3	58
391	Polymer Nanocomposites for Energy and Fuel Cell Applications. , 2017, , 107-137.		2
392	Anatase–CMK-3 nanocomposite development for hydrogen uptake and storage. Bulletin of Materials Science, 2017, 40, 271-280.	1.7	7
393	Recent advances in cathode materials for Li–S battery: structure and performance. Rare Metals, 2017, 36, 365-380.	7.1	27
394	Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin. Green Chemistry, 2017, 19, 2653-2665.	9.0	63

#	Article	IF	Citations
395	Synthesis of MnO 2 /N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chinese Chemical Letters, 2017, 28, 1324-1329.	9.0	91
396	Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes. Carbon, 2017, 120, 281-293.	10.3	46
397	Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous and Mesoporous Materials, 2017, 253, 1-9.	4.4	91
398	Modelling and optimization of electrodes utilization in symmetric electrochemical capacitors for high energy and power. Journal of Energy Storage, 2017, 12, 261-275.	8.1	5
399	Facile large-scale synthesis of three-dimensional graphene-like ordered microporous carbon via ethylene carbonization in CaX zeolite template. Carbon, 2017, 118, 517-523.	10.3	37
400	Self-assembled porous carbon microparticles derived from halloysite clay as a lithium battery anode. Journal of Materials Chemistry A, 2017, 5, 7345-7354.	10.3	56
401	Novel Preparation of Titania-Modified CMK-3 Nanostructured Material as Support for Ir Catalyst Applied in Hydrodenitrogenation of Indole. Catalysis Letters, 2017, 147, 1029-1039.	2.6	14
402	Polysaccharides in Supercapacitors. Springer Briefs in Molecular Science, 2017, , 15-53.	0.1	1
403	Ni-catalyzed carbonization of furfuryl alcohol polymer in ordered mesoporous silica MCM-48 giving ordered mesoporous carbon CMK-1 with high electric double-layer capacitance. Microporous and Mesoporous Materials, 2017, 241, 123-131.	4.4	14
404	Materials for Electrochemical Capacitors. , 2017, , 495-561.		25
405	Influence of nickel nanoparticles on hydrogen storage behaviors of MWCNTs. Applied Surface Science, 2017, 415, 85-89.	6.1	48
406	Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 41224-41232.	8.0	23
407	Stability and catalytic properties of nanostructured carbons in electrochemical environments. Journal of Catalysis, 2017, 355, 156-166.	6.2	13
408	Catalysts Encapsulated in Nanostructured Carbon Systems. , 2017, , 71-122.		1
409	B, N co-doped carbon from cross-linking induced self-organization of boronate polymer for supercapacitor and oxygen reduction reaction. Journal of Power Sources, 2017, 365, 354-361.	7.8	61
410	SFG Study of the Potential-Dependent Adsorption of the <i>p</i> -Toluenesulfonate Anion at an Activated Carbon/Propylene Carbonate Interface. Journal of Physical Chemistry C, 2017, 121, 20567-20575.	3.1	6
411	Electrochemical capacitor performance of 2-(trimethylsilyloxy)ethyl methacrylate-derived highly mesoporous carbon nanofiber composite containing MnO2. Journal of Electroanalytical Chemistry, 2017, 801, 403-409.	3.8	5
412	On energy accumulation in double layer on the surface of materials with low electron state density. Russian Journal of Electrochemistry, 2017, 53, 561-566.	0.9	1

ARTICLE IF CITATIONS # Preparation and characterization of microporous carbon spheres from high amylose pea 413 3.6 21 maltodextrin. RSC Advances, 2017, 7, 36117-36123. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle 414 8.0 19 Composites. ACS Ápplied Materials & amp; Interfaces, 2017, 9, 413'32-41338. Significance of optimal N-doping in mesoporous carbon framework to achieve high specific 415 6.1 41 capacitance. Applied Surface Science, 2017, 418, 40-48. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts, 416 2017, 7, 62. The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance. Advances in Materials Science and Engineering, 2017, 417 1.8 8 2017, 1-9. A Novel Kind of Activated Carbon Foam Electrode for Electric Double Layer Capacitors. International Journal of Electrochemical Science, 2017, 12, 1846-1862. 1.3 Technical feasibility of a proton battery with an activated carbon electrode. International Journal of 419 7.1 28 Hydrogen Energy, 2018, 43, 6197-6209. Electrochemical characterization of laserâ€carbonized polyacrylonitrile nanofiber nonwovens. 420 2.6 Journal of Applied Polymer Science, 2018, 135, 46398. Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for 421 4.0 68 high-performance supercapacitors. Materials Chemistry and Physics, 2018, 211, 234-241. Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for 12.7 supercapacitors. Chemical Engineering Journal, 2018, 347, 233-242. Graphene decorated Pd-Ag nanoparticles for H2 sensing. International Journal of Hydrogen Energy, 423 7.1 44 2018, 43, 11397-11402. Ion Sieving Effects in Chemically Tuned Pillared Graphene Materials for Electrochemical Capacitors. Chemistry of Materials, 2018, 30, 3040-3047. 424 Decomposition of the Thermal Boundary Resistance across Carbon Nanotubeâ€"Graphene Junctions to 425 8.0 10 Different Mechanisms. ACS Applied Materials & amp; Interfaces, 2018, 10, 15226-15231. Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. Journal of Materials Chemistry C, 2018, 426 5.5 143 6, 5239-5249. Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 2018, 21, 427 14.2 335 419-436. Transition metal assisted synthesis of tunable pore structure carbon with high performance as 428 58 sodium/lithium ion battery anode. Carbon, 2018, 129, 667-673. Polymer nanosheets derived porous carbon nanosheets as high efficient electrocatalysts for oxygen 429 9.4 13 reduction reaction. Journal of Colloid and Interface Science, 2018, 516, 9-15. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus 170 for high performance electrochemical capacitors. Journal of Power Sources, 2018, 378, 499-510.

#	Article	IF	CITATIONS
431	Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels, 2018, 2, 772-785.	4.9	53
432	Deep eutectic solvents-assisted cost-effective synthesis of nitrogen-doped hierarchical porous carbon xerogels from phenol-formaldehyde by two-stage polymerization. Journal of Sol-Gel Science and Technology, 2018, 86, 795-806.	2.4	9
433	High capacity and reversible hydrogen storage on two dimensional C 2 N monolayer membrane. International Journal of Hydrogen Energy, 2018, 43, 9895-9901.	7.1	64
434	Study on effects of applied current and voltage on the ageing of supercapacitors. Electrochimica Acta, 2018, 276, 343-351.	5.2	22
435	Facile synthesis of MoS2/N-doped macro-mesoporous carbon hybrid as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 7326-7337.	7.1	23
436	Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chemical Society Reviews, 2018, 47, 2680-2721.	38.1	737
437	Carbon-based core–shell nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 7310-7337.	10.3	102
438	Doping and controllable pore size enhanced electrochemical performance of free-standing 3D graphene films. Applied Surface Science, 2018, 427, 598-604.	6.1	11
439	An overview of engineered porous material for energy applications: a mini-review. lonics, 2018, 24, 1-17.	2.4	61
440	Obtainment and Comparative Study of Electrochemical Behavior of Composite Electrodes Based on Polyaniline and Its N-Substituted Derivatives. Polymer Science - Series B, 2018, 60, 780-788.	0.8	4
441	The "In Situ Electrolyte―Concept: Using Activation Chemicals as Electrolytes for Carbonâ€Based Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1800087.	5.3	7
442	High–performance Activated Carbons Prepared by KOH Activation of Gulfweed for Supercapacitors. International Journal of Electrochemical Science, 2018, 13, 1728-1743.	1.3	44
443	Novel and simple one-pot method for the synthesis of TiO2 modified-CMK-3 applied in oxidative desulfurization of refractory organosulfur compounds. Fuel, 2018, 226, 498-507.	6.4	15
444	All-carbon hybrids for high performance supercapacitors. International Journal of Energy Research, 2018, 42, 3575-3587.	4.5	43
445	Effect of benzoquinone additives on the performance of symmetric carbon/carbon capacitors – electrochemical impedance study. Journal of Energy Storage, 2018, 18, 340-348.	8.1	6
446	2.12 Electrolytic Materials. , 2018, , 329-367.		5
447	Electrochemical hydrogen storage in a nitrogen-doped uniformed microporous carbon. International Journal of Hydrogen Energy, 2018, 43, 14096-14102.	7.1	17
448	Direct electron transfer of bilirubin oxidase at a carbon flow-through electrode. Electrochimica Acta, 2018, 283, 88-96.	5.2	13

#	Article	IF	CITATIONS
449	Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochimica Acta, 2018, 284, 597-608.	5.2	36
450	Cutting-Processed Single-Wall Carbon Nanotubes with Additional Edge Sites for Supercapacitor Electrodes. Nanomaterials, 2018, 8, 464.	4.1	8
451	Rice Husk Derived Micro-Mesoporous Carbon Materials as Active Components of Supercapacitor Electrodes. Catalysis in Industry, 2018, 10, 173-180.	0.7	9
452	Nitrogen-Enriched Hollow Porous Carbon Nanospheres with Tailored Morphology and Microstructure for All-Solid-State Symmetric Supercapacitors. ACS Applied Energy Materials, 2018, 1, 4293-4303.	5.1	72
453	Electrochemical behaviour of ZnO–AC based nanocomposite electrode for supercapacitor. Materials Research Express, 2018, 5, 085503.	1.6	25
454	Improvement in the pore structure of gulfweed–based activated carbon via two–step acid treatment for high performance supercapacitors. Journal of Electroanalytical Chemistry, 2018, 820, 103-110.	3.8	17
455	Ultramicroporous Carbon Synthesis Using Lithium-Ion Effect in ZSM-5 Zeolite Template. Chemistry of Materials, 2018, 30, 6513-6520.	6.7	16
456	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018, 19, 337-347.	8.1	42
457	Effects of activation temperatures on the surface structures and supercapacitive performances of porous carbon fibers. Surface and Coatings Technology, 2018, 349, 384-391.	4.8	16
458	Nanomaterials for Electrical Energy Storage. , 2019, , 165-206.		12
459	Preparation of Highly Porous Carbon through Slow Oxidative Torrefaction, Pyrolysis, and Chemical Activation of Lignocellulosic Biomass for High-Performance Supercapacitors. Energy & Fuels, 2019, 33, 9309-9329.	5.1	34
460	Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Materials, 2019, 22, 1-14.	18.0	43
461	Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Letters, 2019, 11, 54.	27.0	87
462	Ordered mesoporous carbons obtained from low-value coal tar products for electrochemical energy storage and water remediation. Fuel Processing Technology, 2019, 196, 106152.	7.2	27
463	Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019, 25, 100852.	8.1	417
464	From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors. Journal of Colloid and Interface Science, 2019, 557, 55-64.	9.4	43
465	Enhanced heteroâ€elements doping content in biomass wasteâ€derived carbon for high performance supercapacitor. International Journal of Energy Research, 2019, 43, 8811.	4.5	15
466	Carbon Dioxide Confined between Two Charged Single Layers of Graphene: Molecular Dynamics Studies. Journal of Physical Chemistry C, 2019, 123, 23705-23710.	3.1	3

#	Article	IF	CITATIONS
467	Surface Engineering of Porous Carbon for Self-Healing Nanocomposite Hydrogels by Mussel-Inspired Chemistry and PET-ATRP. ACS Applied Materials & Interfaces, 2019, 11, 38126-38135.	8.0	30
468	A Novel Porous N- and S-Self-Doped Carbon Derived from Chinese Rice Wine Lees as High-Performance Electrode Materials in a Supercapacitor. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	17
469	Organic and Carbon Gels. Advances in Sol-gel Derived Materials and Technologies, 2019, , .	0.2	15
470	Carbon Gels for Electrochemical Applications. Advances in Sol-gel Derived Materials and Technologies, 2019, , 149-189.	0.2	1
471	Redox activity of selenocyanate anion in electrochemical capacitor application. Synthetic Metals, 2019, 253, 62-72.	3.9	22
472	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	10.3	312
473	Supercapacitors (electrochemical capacitors). , 2019, , 383-427.		6
474	Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Advances, 2019, 9, 10976-10982.	3.6	36
475	Biomass-Derived Porous Carbon Materials for Supercapacitor. Frontiers in Chemistry, 2019, 7, 274.	3.6	162
476	Molten-salt strategy for fabrication of hierarchical porous N-doped carbon nanosheets towards high-performance supercapacitors. Materials Chemistry and Physics, 2019, 230, 178-186.	4.0	25
477	Solid-state NMR and electrochemical dilatometry study of charge storage in supercapacitor with redox ionic liquid electrolyte. Energy Storage Materials, 2019, 20, 80-88.	18.0	19
478	Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.	2.5	43
479	Electrochemical oxidation of ordered mesoporous carbons and the influence of graphitization. Electrochimica Acta, 2019, 303, 167-175.	5.2	26
480	Electrochemical hydrogen storage in iron nitrogen dual-doped ordered mesoporous carbon. International Journal of Hydrogen Energy, 2019, 44, 7326-7336.	7.1	16
481	Effect of Pore Size on the Ion Electrosorption and Hydrogen/Deuterium Electrosorption Using Sodium Chloride in H ₂ O and D ₂ O. Journal of the Electrochemical Society, 2019, 166, A4158-A4167.	2.9	8
482	Fabrication and Characterization of Electrospun Aligned Porous PAN/Graphene Composite Nanofibers. Nanomaterials, 2019, 9, 1782.	4.1	14
483	Porous Graphene-like Carbon from Fast Catalytic Decomposition of Biomass for Energy Storage Applications. ACS Omega, 2019, 4, 21446-21458.	3.5	21
484	Porous Organic-Polymer-Derived Nitrogen-Doped Porous Carbon Nanoparticles for Efficient Oxygen Reduction Electrocatalysis and Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 2236-2244.	6.7	31

#	Article	IF	CITATIONS
485	A review on porous polymer composite materials for multifunctional electronic applications. Polymer-Plastics Technology and Materials, 2019, 58, 1253-1294.	1.3	19
486	Carbon Nanomaterials for Energy Storage Devices. , 2019, , 1-29.		2
487	A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage. Energies, 2019, 12, 82.	3.1	23
488	Renewableâ€Resourceâ€Based Waste Materials forÂSupercapacitorÂApplication. ChemistrySelect, 2019, 4, 492-501.	1.5	11
489	A study of the optical, electrical and structural properties of poly(pyrrole-3,4-dicarboxylic acid). Polymer, 2019, 164, 142-153.	3.8	10
490	Sparsely Pillared Graphene Materials for High-Performance Supercapacitors: Improving Ion Transport and Storage Capacity. ACS Nano, 2019, 13, 1443-1453.	14.6	81
491	Optimization of pore-opening condition in single-walled carbon nanohorns to achieve high capacity in double layer capacitor at high charge-discharge rate: Critical effect of their hierarchical pore structures. Carbon, 2019, 142, 150-155.	10.3	21
492	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	32.8	111
493	Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application. Electrochimica Acta, 2019, 296, 8-17.	5.2	95
494	Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy, 2019, 55, 234-259.	16.0	71
495	A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019, 101, 123-145.	16.4	1,049
496	Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors. Microporous and Mesoporous Materials, 2019, 276, 280-291.	4.4	44
497	Carbon electrodes for capacitive technologies. Energy Storage Materials, 2019, 16, 126-145.	18.0	214
498	Short time synthesis of titania modified-CMK-3 carbon mesostructure as support for Ir-catalyst applied in catalytic hydrotreating. Catalysis Today, 2020, 349, 210-216.	4.4	8
499	Water desalination by capacitive electrodialysis: Experiments and modelling. Desalination, 2020, 473, 114150.	8.2	23
500	Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors. Chemical Engineering Journal, 2020, 382, 122945.	12.7	81
501	Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renewable Energy, 2020, 147, 69-76.	8.9	40
503	Facile preparation of CoO nanoparticles embedded N-doped porous carbon from conjugated microporous polymer for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 562, 550-557.	9.4	20

#	ARTICLE	IF	CITATIONS
504	Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste. Journal of Energy Storage, 2020, 32, 101829.	8.1	81
505	Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study. Journal of Chemical Physics, 2020, 153, 134703.	3.0	4
506	Metal-Free Carbon-Based Supercapacitors—A Comprehensive Review. Electrochem, 2020, 1, 410-438.	3.3	18
507	In Situ Twoâ€Step Activation Strategy Boosting Hierarchical Porous Carbon Cathode for an Aqueous Znâ€Based Hybrid Energy Storage Device with High Capacity and Ultraâ€Long Cycling Life. Small, 2020, 16, e2003174.	10.0	105
508	Energy Storage in Supercapacitors: Focus on Tannin-Derived Carbon Electrodes. Frontiers in Materials, 2020, 7, .	2.4	72
509	Synthesis of porous carbon nanostructure formation from peel waste for low cost flexible electrode fabrication towards energy storage applications. Journal of Energy Storage, 2020, 32, 101735.	8.1	8
510	Catalytic <scp>HTL</scp> â€derived biochar and solâ€gel synthesized (Mn, Ti)â€oxides for asymmetric supercapacitors. International Journal of Energy Research, 2020, 44, 12546-12558.	4.5	7
511	Fitting the porous texture of carbon electrodes to a binary ionic liquid electrolyte for the realization of low temperature EDLCs. Electrochimica Acta, 2020, 350, 136416.	5.2	15
512	Achievement of high energy carbon based supercapacitors in acid solution enabled by the balance of SSA with abundant micropores and conductivity. Electrochimica Acta, 2020, 353, 136562.	5.2	9
513	2D materials as the basis of supercapacitor devices. , 2020, , 97-130.		3
514	Fundamentals and energy storage mechanisms—overview. , 2020, , 15-33.		3
515	3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale, 2020, 12, 7416-7432.	5.6	56
516	Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728.	16.0	78
517	Influence of surface properties on electroâ€chemical supercapacitors utilizing <i>Callerya atropurpurea</i> pod derived porous nanocarbons: Structure property relationship between porous structures to energy storage devices. Nano Select, 2020, 1, 226-243.	3.7	37
518	Synthesis of porous carbon derived from poly(vinylidenefluoride) and its adsorption characteristics for CO2 and CH4. Microporous and Mesoporous Materials, 2020, 299, 110121.	4.4	11
519	Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor. Journal of Colloid and Interface Science, 2020, 569, 332-345.	9.4	61
520	Facile Multivalent Redox Chemistries in Water-in-Bisalt Hydrogel Electrolytes for Hybrid Energy Storage Full Cells. ACS Energy Letters, 2020, 5, 1054-1061.	17.4	26
521	Hybrid electrochemical capacitors in aqueous electrolytes: Challenges and prospects. Current Opinion in Electrochemistry, 2020, 21, 167-174.	4.8	15

#	Article	IF	CITATIONS
522	Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes. Separation and Purification Technology, 2020, 241, 116724.	7.9	67
523	Free energy barriers for TMEA+, TMA+, and BF4- ion diffusion through nanoporous carbon electrodes. Carbon, 2020, 161, 550-561.	10.3	11
524	Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors. Nano-Micro Letters, 2020, 12, 20.	27.0	73
525	Electrochemical capacitors operating in aqueous electrolyte with volumetric characteristics improved by sustainable templating of electrode materials. Electrochimica Acta, 2020, 338, 135788.	5.2	20
526	Novel hierarchical porous carbon prepared by a one-step template route for electric double layer capacitors and Li–Se battery devices. Journal of Materials Chemistry A, 2020, 8, 4376-4385.	10.3	25
527	Multi-Scale Model for Describing the Effect of Pore Structure on Carbon-Based Electric Double Layer. Journal of Physical Chemistry C, 2020, 124, 3952-3961.	3.1	20
528	Graphene-like nitrogen-doped porous carbon nanosheets as both cathode and anode for high energy density lithium-ion capacitor. Electrochimica Acta, 2020, 349, 136303.	5.2	23
529	Electrochemical reduction of europium(<scp>iii</scp>) using tetra- <i>n</i> -octyl diglycolamide functionalized ordered mesoporous carbon microelectrodes. Journal of Materials Chemistry C, 2020, 8, 6689-6700.	5.5	11
530	Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews, 2020, 49, 3005-3039.	38.1	391
531	Preparation and adsorption property of novel inverse-opal hierarchical porous N-doped carbon microspheres. Chinese Chemical Letters, 2021, 32, 866-869.	9.0	7
532	Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Microporous and Mesoporous Materials, 2021, 310, 110646.	4.4	10
533	Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renewable Energy, 2021, 163, 276-287.	8.9	108
534	Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous and Mesoporous Materials, 2021, 310, 110659.	4.4	135
535	Inorganic matter in rice husk derived carbon and its effect on the capacitive performance. Journal of Energy Chemistry, 2021, 57, 639-649.	12.9	10
536	Synergetic modulation of graphene oxide and metal oxide particles for exploring integrated capacitance of milk colloid-derived carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125599.	4.7	2
537	Emerging carbon nanostructures in electrochemical processes. , 2021, , 353-388.		3
538	In situ analysis of pore size effect of ionic solvation during the formation of double electric layers. Journal of Electroanalytical Chemistry, 2021, 880, 114846.	3.8	3
539	Biomass waste conversion into low-cost carbon-based materials for supercapacitors: A sustainable approach for the energy scenario. Journal of Electroanalytical Chemistry, 2021, 880, 114899.	3.8	39

#	Article	IF	CITATIONS
540	Electrochemical Hydrogen Storage in Amineâ€Activated Polydopamine. Advanced Sustainable Systems, 2021, 5, 2000176.	5.3	7
541	Building next-generation supercapacitors with battery type Ni(OH) ₂ . Journal of Materials Chemistry A, 2021, 9, 15542-15585.	10.3	74
542	Control of hydrogen release during borohydride electrooxidation with porous carbon materials. RSC Advances, 2021, 11, 15639-15655.	3.6	9
543	Link between Alkali Metals in Salt Templates and in Electrolytes for Improved Carbon-Based Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 2584-2599.	8.0	20
544	Mechanism orienting structure construction of electrodes for aqueous electrochemical energy storage systems: a review. Nanoscale, 2021, 13, 3412-3435.	5.6	15
545	A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15880-15918.	10.3	484
546	Capacitance with Different Electrode Surface Topology. , 2021, , 1-9.		0
547	A complex study of the dependence of the reduced graphite oxide electrochemical behavior on the annealing temperature and the type of electrolyte. Electrochimica Acta, 2021, 370, 137832.	5.2	18
548	Renewable biomassâ€derived carbons for electrochemical capacitor applications. SusMat, 2021, 1, 211-240.	14.9	98
549	Comparative Studies of Solutions of Homogeneous Electrochemical Capacitors Models. Journal of Energy Storage, 2021, 35, 102221.	8.1	1
550	Nano-channel carbon fiber film with enhanced mechanical and electrochemical properties by centrifuged electrospinning for all-solid-state flexible symmetric supercapacitors. Microporous and Mesoporous Materials, 2021, 316, 110972.	4.4	13
551	Supercapacitance Property Study of 3D Open-Framework Prussian Blue in Neutral Electrolyte. Science of Advanced Materials, 2021, 13, 436-446.	0.7	2
552	Mesoporous Carbon: A Versatile Material for Scientific Applications. International Journal of Molecular Sciences, 2021, 22, 4498.	4.1	34
553	In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application. Nano Research, 2022, 15, 346.	10.4	12
554	Synthesis of ordered mesoporous carbon by soft template method. Materials Today: Proceedings, 2023, 81, 842-847.	1.8	10
555	Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fibers used as supercapacitor electrodes. Electrochimica Acta, 2021, 381, 138255.	5.2	10
556	Cucurbit[8]uril-derived porous carbon as high-performance electrode material for ionic liquid-based supercapacitor. Journal of Energy Storage, 2021, 38, 102527.	8.1	11
557	A dual shape pore model to analyze the gas adsorption data of hierarchical micro-mesoporous carbons. Carbon, 2021, 178, 113-124.	10.3	34

#	Article	IF	CITATIONS
558	Developing Anisotropy in Selfâ€Assembled Block Copolymers: Methods, Properties, and Applications. Macromolecular Rapid Communications, 2021, 42, e2100300.	3.9	9
559	On the need for simultaneous electrochemical testing of positive and negative electrodes in carbon supercapacitors. Electrochimica Acta, 2021, 384, 138372.	5.2	5
560	Synthesis and use of hollow carbon spheres for electric double-layer capacitors. New Carbon Materials, 2021, 36, 794-809.	6.1	12
561	Flexible 6-in-1 Microsensor for Real-Time Microscopic Monitoring of Proton Battery. Membranes, 2021, 11, 615.	3.0	0
562	Milk derived highly ordered mesoporous carbon with CaF2 nanoclusters as an efficient electrode for supercapacitors. Carbon, 2021, 180, 101-109.	10.3	22
563	Elucidating the effects of oxygen- and nitrogen-containing functional groups in graphene nanomaterials for applied electrochemistry by density functional theory. Journal of Applied Physics, 2021, 130, .	2.5	2
564	Charge Capacitance and Hydrogen Storage Capacity of Drop Cast and Electrodeposited Reduced Graphene Oxide Coatings. Journal of the Electrochemical Society, 2021, 168, 090506.	2.9	3
565	Lignin-derived Zn single atom/N-codoped porous carbon for $\hat{I}\pm$ -alkylation of aromatic ketones with alcohols via borrowing hydrogen strategy. Nano Research, 2022, 15, 1874-1881.	10.4	28
566	Enhancing capacitor lifetime by alternate constant polarization. Journal of Power Sources, 2021, 506, 230131.	7.8	7
567	Carbon-based slurry electrodes for energy storage and power supply systems. Energy Storage Materials, 2021, 40, 461-489.	18.0	36
568	Mechanisms of Porous Carbonâ€based Supercapacitors. ChemNanoMat, 2021, 7, 1273-1290.	2.8	15
569	A systematic preparation mechanism for directional regulation of pore structure in activated carbon including specific surface area and pore hierarchy. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105266.	5.5	8
570	Electrochemical hydrogen storage in porous carbons with acidic electrolytes: Uncovering the potential. Current Opinion in Electrochemistry, 2022, 31, 100850.	4.8	14
571	Nitrogen self-doped activated carbons with narrow pore size distribution from bamboo shoot shells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127408.	4.7	12
572	Monolithic Electrode for Electric Double-Layer Capacitors Based on Macro/Meso/Microporous S-Containing Activated Carbon with High Surface Area. Springer Theses, 2013, , 79-89.	0.1	6
573	Unraveling the effect of nitrogen doping on graphene nanoflakes and the adsorption properties of ionic liquids: A DFT study. Journal of Molecular Liquids, 2020, 312, 113400.	4.9	16
574	Nanotextured Carbons for Electrochemical Energy Storage. , 2006, , .		6
575	Carbide-Derived Carbons and Templated Carbons. Advanced Materials and Technologies, 2009, , 77-113.	0.4	3

	CITATION	Report	
#	Article	IF	Citations
576	Preparation of Carbon Materials from Lignocellulosic Biomass. , 2014, , 47-75.		1
577	Electrolytes for Electrochemical Supercapacitors. , 0, , .		44
578	Metal hydride–nafion composite electrode with dual proton and electron conductivity. International Journal of Smart Grid and Clean Energy, 2014, , .	0.4	2
579	Novel Flexible Supercapacitors Fabricated by Simple Integration of Electrodes, Binders, and Electrolytes into Glass Fibre Separators. Journal of the Korean Electrochemical Society, 2014, 17, 237-244.	0.1	2
580	Local Ordered Structure of Propylene Carbonate in Slit-Shaped Carbon Nanopores by GCMC Simulation. ISRN Nanotechnology, 2011, 2011, 1-5.	1.3	7
581	Potassium hydroxide activation of activated carbon: a commentary. Carbon Letters, 2015, 16, 275-280.	5.9	176
582	Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid. Carbon Letters, 2015, 16, 281-285.	5.9	7
583	Nanotextured Carbons for Electrochemical Energy Storage. Advanced Materials and Technologies, 2006, , 295-319.	0.4	0
584	Modification via KOH attack of the porosity of templated and amorphous carbons. Studies in Surface Science and Catalysis, 2008, , 129-134.	1.5	0
585	Nanocarbons nanocarbon for Supercapacitors nanocarbon for supercapacitors. , 2012, , 6769-6790.		0
586	ELECTROCHEMICAL PERFORMANCE OF ORDERED MESOPOROUS CARBON MODIFIED BY OXIDATIVE TREATMENT WITH AQUEOUS NITRIC ACID. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
588	Introduction to hydrogen storage in carbon materials. , 2018, , 333-341.		0
590	Electrochemical storage reactions of hydrogen in activated carbon from phenolic resin. Catalysis Today, 2022, 397-399, 155-164.	4.4	10
591	Scalable preparation of high-strength hierarchically porous carbon beads with bicontinuous macroporous network by solvent induced phase separation technique for NOx removal. Microporous and Mesoporous Materials, 2022, 330, 111620.	4.4	2
592	Supercapacitive properties of nickel molybdate/rGO hybrids prepared by the hydrothermal method. Surfaces and Interfaces, 2022, 29, 101638.	3.0	7
595	Porous carbons for energy storage and conversion. , 2022, , 239-540.		1
596	Perspectives on Working Voltage of Aqueous Supercapacitors. Small, 2022, 18, e2106360.	10.0	93
597	Structure and Pore Size Distribution in Nanoporous Carbon. Chemistry of Materials, 2022, 34, 617-628.	6.7	29

#	Article	IF	CITATIONS
598	Effects of the composition of active carbon electrodes on the impedance performance of the AC/AC supercapacitors. Journal of Solid State Electrochemistry, 2022, 26, 591-605.	2.5	6
599	Toxicological Profiling of Onion-Peel-Derived Mesoporous Carbon Nanospheres Using In Vivo Drosophila melanogaster Model. Applied Sciences (Switzerland), 2022, 12, 1528.	2.5	1
600	Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chemical Reviews, 2022, 122, 10860-10898.	47.7	81
602	Preparation of High Cycle Performance Carbon-Based Anode Materials Based on Cellulose Aerogels for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2022, 17, 220625.	1.3	1
603	Fundamentals, Mechanism, and Materials for Hybrid Supercapacitors. Advances in Material Research and Technology, 2022, , 71-100.	0.6	1
605	Design and synthesis of highly efficient nitrogen-doped carbon nano-onions for asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 918, 165609.	5.5	12
606	Hierarchical nanoarchitectonics of ordered mesoporous carbon from lignin for high-performance supercapacitors. International Journal of Biological Macromolecules, 2022, 213, 610-620.	7.5	19
607	Hierarchically Ordered Nanoporous Carbon with Exclusively Surfaceâ€Anchored Cobalt as Efficient Electrocatalyst. Small Methods, 2022, 6, .	8.6	5
608	Dealumination of small-pore zeolites through pore-opening migration process with the aid of pore-filler stabilization. Science Advances, 2022, 8, .	10.3	9
609	Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor — A review. Journal of Energy Storage, 2022, 52, 104937.	8.1	61
610	Performance evaluation of electrochemical capacitors with activated carbon spheres as electrode material and aqueous electrolyte. Journal of Power Sources, 2022, 542, 231714.	7.8	4
611	Understanding the effects of electrode meso-macropore structure and solvent polarity on electric double layer capacitors based on a continuum model. Chinese Journal of Chemical Engineering, 2022, 50, 423-434.	3.5	1
612	Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and <i>GW</i> . Chemistry of Materials, 2022, 34, 6240-6254.	6.7	22
613	CO2 outperforms KOH as an activator for high-rate supercapacitors in aqueous electrolyte. Renewable and Sustainable Energy Reviews, 2022, 167, 112716.	16.4	12
614	Nanoconfined Space: Revisiting the Charge Storage Mechanism of Electric Double Layer Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 37259-37269.	8.0	13
615	Operando Monitoring of Local pH Value Changes at the Carbon Electrode Surface in Neutral Sulfate-Based Aqueous Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 37782-37792.	8.0	8
616	A review of carbon materials for supercapacitors. Materials and Design, 2022, 221, 111017.	7.0	128
617	3D ordered hierarchically porous carbon derived from colloidal crystal templates towards alkali metal.ion batteries. Carbon, 2023, 201, 76-99	10.3	18

#	Article	IF	CITATIONS
618	Ion accumulation-induced capacitance elevation in a microporous graphene-based supercapacitor. RSC Advances, 2022, 12, 27082-27093.	3.6	10
619	Synthesis of manganese molybdate/MWCNT nanostructure composite with a simple approach for supercapacitor applications. RSC Advances, 2022, 12, 27868-27876.	3.6	11
620	Electrochemical Capacitor Based on Reduced Graphene Oxide/NiS ₂ Composite. ChemElectroChem, 2022, 9, .	3.4	2
621	Synthesis of Polynorbornadiene within the Pores of Activated Carbons: Effects on EDLC and Hydrogen Adsorption Performances. Langmuir, 2022, 38, 12024-12034.	3.5	5
622	Smart Electronic Textileâ \in Based Wearable Supercapacitors. Advanced Science, 2022, 9, .	11.2	59
623	Recent development of carbon electrode materials for electrochemical supercapacitors. Energy Reports, 2022, 8, 656-661.	5.1	21
624	Structurally Controllable Hay-Slag-Based Porous Carbons for Supercapacitor and CO ₂ Adsorption Applications. International Journal of Nanoscience, 0, , .	0.7	0
625	Mesoporous carbon-based materials and their applications as non-precious metal electrocatalysts in the oxygen reduction reaction. Electrochimica Acta, 2023, 439, 141678.	5.2	6
627	Pyrolysis of Schiffâ€based Manganese Clusters: Effect of Ligand Modulation on Properties as Supercapacitor Electrode Material. Batteries and Supercaps, 0, , .	4.7	0
628	Recent Advances on Heteroatom-Doped Porous Carbon—Based Electrocatalysts for Oxygen Reduction Reaction. Energies, 2023, 16, 128.	3.1	3
629	A new strategy for the preparation of multi-walled carbon nanotubes/NiMoO4 nanostructures for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2023, 59, 106438.	8.1	24
630	Capacitance with Different Electrode Surface Topology. , 2022, , 159-167.		0
631	Novel designs of carbon electrodes for the technological improvement of electrochemical capacitors. , 2023, , 321-358.		1
632	Supercapacitor and electrochemical techniques: A brief review. Results in Chemistry, 2023, 5, 100885.	2.0	30
633	NaOH solution-assisted pyrolysis of waste polycarbonate for co-production of phenolic compounds and supercapacitor material. Polymer Degradation and Stability, 2023, 212, 110363.	5.8	5
634	Vinylene carbonate, toluene and diethyl ether as electrolyte additives for a wide-temperature range operating of EDLCs. Journal of Power Sources, 2023, 560, 232658.	7.8	4
635	Electrochemical properties of activated carbon from waste coffee grounds with hydrothermal-microwave radiation technique. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	2
636	Facile and Tunable Synthesis of Nitrogen-Doped Graphene with Different Microstructures for High-Performance Supercapacitors. , 2023, 5, 944-954.		21

#	Article	IF	CITATIONS
637	Lignin-Derived Carbonaceous Materials for Supercapacitor Applications. Materials Horizons, 2023, , 65-115.	0.6	0
638	Application of Porous Carbon Material for Water Treatment and Gas Storage. Materials Horizons, 2023, , 623-654.	0.6	0
639	Storage of atomic hydrogen in multilayer graphene. International Journal of Hydrogen Energy, 2023, 48, 27944-27959.	7.1	3
640	The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading. Advanced Energy Materials, 2023, 13, .	19.5	21
641	Valorization of Biomass-Derived Polymers to Functional Biochar Materials for Supercapacitor Applications via Pyrolysis: Advances and Perspectives. Polymers, 2023, 15, 2741.	4.5	21
642	Review of Design Routines of MXene Materials for Magnesiumâ€ l on Energy Storage Device. Small, 2023, 19, .	10.0	14
643	Influence of Plasma Treatment on Hydrogen Electrosorption Capacity by Carbon Electrodes. International Journal of Electrochemical Science, 2015, 10, 4860-4872.	1.3	3
644	Mesoporous Carbon Materials as Electrodes for Electrochemical Supercapacitors. International Journal of Electrochemical Science, 2010, 5, 903-916.	1.3	92
645	Combined sustainable production technology of calcium chloride and lignin-derived porous carbon electrode materials. Journal of Cleaner Production, 2023, 419, 138201.	9.3	3
646	Hierarchical porous carbons with honeycomb-like macrostructure derived from steamed-rice for high performance supercapacitors. Materials Today Sustainability, 2023, 24, 100480.	4.1	1
647	Carbon materials: structures, properties, synthesis and applications. Manufacturing Review, 2023, 10, 13.	1.5	0
648	Carbon-Based Materials for Energy Storage Devices: Types and Characterization Techniques. Physchem, 2023, 3, 355-384.	1.1	0
649	Adsorption mechanism of amino acid ionic liquids on the N-doped graphene surface for electrochemical double layer capacitors: A density functional theory study. Journal of the Taiwan Institute of Chemical Engineers, 2023, 152, 105163.	5.3	0
650	Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials for aqueous supercapacitors. Nature Communications, 2023, 14, .	12.8	4
651	Reversible and high-capacity hydrogen storage on two-dimensional monolayer C2N-h2D expected by first-principles calculations. International Journal of Hydrogen Energy, 2024, 50, 586-596.	7.1	2
652	Synthesis of mesoporous carbon particles with different pore sizes by soft template method. Fullerenes Nanotubes and Carbon Nanostructures, 2024, 32, 183-191.	2.1	0
653	Enhanced electrochemical performance of HC/NiCo@Â800ÂC//HC using redox-active electrolytes showing increased energy density. Journal of Alloys and Compounds, 2024, 972, 172753.	5.5	2
654	Introduction to Low-carbon Supercapacitors: New Prospects. , 2023, , 34-62.		0

#	Article	IF	CITATIONS
655	A comprehensive review on fundamentals and components of zinc-ion hybrid supercapacitors. Journal of Energy Storage, 2024, 81, 110370.	8.1	2
656	Advanced electrode materials of supercapacitors. , 2024, , 321-365.		0
657	Sustainable graphene-based energy storage device technology: Materials, methods, Monitoring and digital twin. Critical Reviews in Solid State and Materials Sciences, 0, , 1-34.	12.3	0
658	Organic electrolytes in electrochemical supercapacitors: Applications and developments. Journal of Molecular Liquids, 2024, 400, 124487.	4.9	0