Comparative bioremediation of soils contaminated with biostimulation and bioaugmentation

Bioresource Technology 96, 1049-1055 DOI: 10.1016/j.biortech.2004.09.008

Citation Report

#	Article	IF	Citations
2	Limitations of Urea as the Nutrient Source in Bioremediation of Petroleum Wastes. , 2005, , .		0
3	Bioaugmentation as a method of biodegradation enhancement in oil hydrocarbons contaminated soil. Ecohydrology and Hydrobiology, 2006, 6, 163-169.	2.3	6
4	Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2,4-dichlorophenoxyacetic acid using slurry bioreactors: Effect of electron acceptor and supplementation with an organic carbon source. Process Biochemistry, 2006, 41, 1951-1960.	3.7	40
5	Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Biotechnology, 2006, 5, 347-374.	8.1	186
6	Evaluation of The Efficiency of Various Commercial Products for The Bioremediation of Hydrocarbon Contaminated Soil. The Environmentalist, 2006, 26, 51-62.	0.7	9
7	Remediating polluted soils. Die Naturwissenschaften, 2006, 93, 51-65.	1.6	98
8	Potential of Bioaugmentation and Biostimulation for Enhancing Intrinsic Biodegradation in Oil Hydrocarbon-Contaminated Soil. Bioremediation Journal, 2007, 11, 141-147.	2.0	17
9	Site-Specific Limitations of Using Urea as a Nitrogen Source in Biodegradation of Petroleum Wastes in Soil. Soil and Sediment Contamination, 2007, 16, 497-505.	1.9	13
10	Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 2007, 43, 310-321.	3.2	51
11	Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm. Chemosphere, 2007, 67, 482-488.	8.2	55
12	Modification of the degradative capacity of a soil artificially contaminated with diesel. Chemosphere, 2007, 67, 1057-1063.	8.2	10
13	Bioremediation of kerosene I: A case study in liquid media. Chemosphere, 2007, 69, 1807-1814.	8.2	19
14	Biorremediação de solos contaminados com hidrocarbonetos aromáticos policÃclicos. Ciencia Rural, 2007, 37, 1192-1201.	0.5	29
15	Influence of soil–water ratio on the performance of slurry phase bioreactor treating herbicide contaminated soil. Bioresource Technology, 2007, 98, 2584-2589.	9.6	18
16	Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. Journal of Applied Microbiology, 2007, 102, 1239-1253.	3.1	183
17	Impact of Bioaugmentation with a Consortium of Bacteria on the Remediation of Wastewater-Containing Hydrocarbons (5 pp). Environmental Science and Pollution Research, 2007, 14, 7-11.	5.3	31
18	Temperature effects on bioremediation of PAHs and PCP contaminated south Louisiana soils: A laboratory mesocosm study. Journal of Soils and Sediments, 2007, 7, 153-158.	3.0	21
19	Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene. Petroleum Science, 2007, 4, 68-75.	4.9	35

ATION REI

ARTICLE

IF CITATIONS

Bioremediation of kerosene II: a case study in contaminated clay (Laboratory and field: scale) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 742

21	Natural Attenuation, Biostimulation, and Bioaugmentation in 4-Chloroaniline-Contaminated Soil. Current Microbiology, 2008, 56, 182-188.	2.2	27
22	Electronic nose and SPME techniques to monitor phenanthrene biodegradation in soil. Sensors and Actuators B: Chemical, 2008, 131, 63-70.	7.8	34
23	Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. Journal of Environmental Management, 2008, 88, 115-119.	7.8	15
24	Effects of inorganic nutrient levels on the biodegradation of benzene, toluene, and xylene (BTX) by Pseudomonas spp. in a laboratory porous media sand aquifer model. Bioresource Technology, 2008, 99, 7807-7815.	9.6	43
25	Role of Enzyveba in the aerobic bioremediation and detoxification of a soil freshly contaminated by two different diesel fuels. International Biodeterioration and Biodegradation, 2008, 62, 153-161.	3.9	9
26	Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Marine Pollution Bulletin, 2008, 57, 716-726.	5.0	74
28	The primary aerobic biodegradation of biodiesel B20. Chemosphere, 2008, 71, 1446-1451.	8.2	91
29	Effect of nitrogen amendment on respiration and respiratory quotient (RQ) in three hydrocarbon contaminated soils of different type. Chemosphere, 2008, 72, 947-951.	8.2	38
30	Bacteriology of Extremely Cold Soils Exposed to Hydrocarbon Pollution. Soil Biology, 2008, , 247-274.	0.8	6
31	Biodegradation of petroleum compounds in soil by a solid-phase circulating bioreactor with poultry manure amendments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 125-131.	1.7	11
32	Treatment of Fuel-Oil Contaminated Soils by Biodegradable Surfactant Washing Followed by Fenton-Like Oxidation. Journal of Environmental Engineering, ASCE, 2009, 135, 1015-1024.	1.4	28
33	Twoâ€dimensional modelling of benzene transport and biodegradation in a laboratoryâ€scale aquifer. Environmental Technology (United Kingdom), 2009, 30, 53-62.	2.2	12
34	Enhanced Bioremediation of Fuel-Oil Contaminated Soils: Laboratory Feasibility Study. Journal of Environmental Engineering, ASCE, 2009, 135, 845-853.	1.4	27
35	Bioremediation of petroleum hydrocarbons in anoxic marine sediments: Consequences on the speciation of heavy metals. Marine Pollution Bulletin, 2009, 58, 1808-1814.	5.0	57
36	Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environmental Pollution, 2009, 157, 1831-1840.	7.5	83
37	Development of a fungal preâ€ŧreatment process for reduction of organic matter in contaminated soil. Journal of Chemical Technology and Biotechnology, 2009, 84, 845-850.	3.2	9
38	Biodegradation of Light Fuel Oils in Water and Soil as Determined by the Manometric Respirometric Method. Water, Air, and Soil Pollution, 2009, 197, 3-14.	2.4	14

#	Article	IF	CITATIONS
39	Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. Journal of Applied Microbiology, 2009, 106, 381-392.	3.1	63
40	Integrative approaches for assessing the ecological sustainability of <i>in situ</i> bioremediation. FEMS Microbiology Reviews, 2009, 33, 324-375.	8.6	142
41	Hydrocarbon degrading potential of bacteria isolated from oil-contaminated soil. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 580-582.	5.3	20
42	Bioaugmentation in a newly established LECA-based horizontal flow soil filter reduces the adaptation period and enhances denitrification. Bioresource Technology, 2009, 100, 6284-6289.	9.6	20
43	Evaluation of a bioslurry remediation of petroleum hydrocarbons contaminated sediments using chemical, mathematical and microscopic analysis. International Journal of Environmental Studies, 2009, 66, 563-579.	1.6	7
44	Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere, 2009, 75, 837-842.	8.2	62
45	Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environmental Science and Pollution Research, 2010, 17, 1339-1346.	5.3	82
46	Optimization and enhancement of soil bioremediation by composting using the experimental design technique. Biodegradation, 2010, 21, 345-356.	3.0	33
47	Enhanced Biodegradation of Used Engine Oil in Soil Amended with Organic Wastes. Water, Air, and Soil Pollution, 2010, 209, 173-179.	2.4	72
48	A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Biotechnology, 2010, 9, 215-288.	8.1	281
49	Effect of humic deposit (leonardite) on degradation of semi-volatile and heavy hydrocarbons and soil quality in crude-oil-contaminated soil. Environmental Monitoring and Assessment, 2010, 170, 45-58.	2.7	23
50	Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 2010, 165, 363-375.	5.3	419
51	Biodegradation of semi- and non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: Laboratory pilot-scale experiments at site temperatures. Chemosphere, 2010, 80, 319-326.	8.2	78
52	Ex situ bioremediation of oil-contaminated soil. Journal of Hazardous Materials, 2010, 176, 27-34.	12.4	111
53	Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. Journal of Hazardous Materials, 2010, 179, 891-894.	12.4	140
54	Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technology, 2010, 101, 3437-3443.	9.6	168
55	Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresource Technology, 2010, 101, 6545-6552.	9.6	106
56	Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation. Revista Brasileira De Ciencia Do Solo, 2010, 34, 773-781.	1.3	14

#	Article	IF	CITATIONS
57	Effect of Biostimulation and Bioaugmentation on Degradation of Polyurethane Buried in Soil. Applied and Environmental Microbiology, 2010, 76, 810-819.	3.1	56
58	The study for microorganisms immobilizing to restoration crude oil contaminated-soil. , 2011, , .		0
59	The use of artificial neural network (ANN) for modeling of diesel contaminated soil remediation by composting process. , 2011, , .		2
60	Long-Term Phytoremediation Process of Diesel Oil-Contaminated Soil. Advanced Materials Research, 2011, 414, 280-283.	0.3	3
61	Soil texture affects adsorption capacity and removal efficiency of contaminants in <i>ex situ</i> remediation by thermal desorption of diesel-contaminated soils. Chemistry and Ecology, 2011, 27, 119-130.	1.6	37
62	Biodegradation of commercial gasoline (24% ethanol added) in liquid medium by microorganisms isolated from a landfarming site. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 86-96.	1.7	4
63	Ex Situ Treatment of Hydrocarbon-Contaminated Soil Using Biosurfactants from <i>Lactobacillus pentosus</i> . Journal of Agricultural and Food Chemistry, 2011, 59, 9443-9447.	5.2	62
64	Bioaugmentation for In Situ Soil Remediation: How to Ensure the Success of Such a Process. Soil Biology, 2011, , 129-186.	0.8	24
65	Bioremediation of Contaminated Soils: Effects of Bioaugmentation and Biostimulation on Enhancing Biodegradation of Oil Hydrocarbons. Soil Biology, 2011, , 187-201.	0.8	15
67	Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: Field-scale processes in Poland. Ecological Engineering, 2011, 37, 1895-1900.	3.6	62
68	Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 2011, 37, 1362-1375.	10.0	772
69	Characterization and biodegradation of motor oil by indigenous Pseudomonas aeruginosa and optimizing medium constituents. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 689-695.	5.3	27
70	Comparison between different bio-treatments of a hydrocarbon contaminated soil from a landfill site. African Journal of Biotechnology, 2011, 10, .	0.6	7
71	Degradation of aviation fuel by microorganisms isolated from tropical polluted soils. International Journal of Biological and Chemical Sciences, 2011, 5, .	0.2	5
72	Biological Remediation of Hydrocarbon and Heavy Metals Contaminated Soil. , 2011, , .		28
73	Improvement of Bioremediation Performance for the Degradation of Petroleum Hydrocarbons in Contaminated Sediments. Applied and Environmental Soil Science, 2011, 2011, 1-8.	1.7	20
74	Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment. Applied and Environmental Soil Science, 2011, 2011, 1-10.	1.7	18
75	Biostimulation for the Enhanced Degradation of Herbicides in Soil. Applied and Environmental Soil Science, 2011, 2011, 1-10.	1.7	76

#	Article	IF	CITATIONS
76	Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China. Journal of Environmental Sciences, 2011, 23, 1533-1543.	6.1	39
77	Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environmental Pollution, 2011, 159, 515-523.	7.5	37
78	The biodegradation of cable oil components: Impact of oil concentration, nutrient addition and bioaugmentation. Environmental Pollution, 2011, 159, 3777-3783.	7.5	14
79	Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technology, 2011, 102, 11003-11010.	9.6	238
80	Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere, 2011, 84, 1052-1057.	8.2	34
81	Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 2011, 22, 231-241.	3.0	615
82	Effect of the grain-size distribution and water content of rock on the natural attenuation of diesel fuel in the vadose zone. Chemistry and Technology of Fuels and Oils, 2011, 47, 230-236.	0.5	0
83	Bioremediation of Co-contamination of Crude Oil and Heavy Metals in Soil by Phytoremediation Using Chromolaena odorata (L) King & H.E. Robinson. Water, Air, and Soil Pollution, 2011, 215, 261-271.	2.4	49
84	Harnessing the Hydrocarbon-Degrading Potential of Contaminated Soils for the Bioremediation of Waste Engine Oil. Water, Air, and Soil Pollution, 2011, 218, 121-130.	2.4	30
85	Isolation and characterization of four di-n-butyl phthalate (DBP)-degrading Gordonia sp. strains and cloning the 3,4-phthalate dioxygenase gene. World Journal of Microbiology and Biotechnology, 2011, 27, 2611-2617.	3.6	23
86	Effect of Coâ€culture and Nutrients Supplementation on Bioremediation of Crude Petroleum Sludge. Clean - Soil, Air, Water, 2011, 39, 900-907.	1.1	23
87	Enhanced denitrification in a bioaugmented horizontal subsurface flow filter. Ecological Engineering, 2011, 37, 1050-1057.	3.6	13
88	Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy. International Biodeterioration and Biodegradation, 2011, 65, 130-134.	3.9	110
89	Biodegradation of azo and anthraquinone dyes in continuous systems. International Biodeterioration and Biodegradation, 2011, 65, 227-237.	3.9	31
90	Re-use of remediated soils for the bioremediation of waste oil sludge. Journal of Environmental Management, 2011, 92, 866-871.	7.8	58
91	Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials, 2011, 185, 392-400.	12.4	165
92	Kinetic Modeling and Error Analysis for Decontamination of Different Petroleum Hydrocarbon Components in Biostimulation of Oily Soil Microcosm. Soil and Sediment Contamination, 2011, 20, 432-446.	1.9	16
93	Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil. Soil Research, 2011, 49, 261.	1.1	41

#	Article	IF	CITATIONS
94	Effects of Zeolite-Containing Material and Ammonium Nitrate on Biodegradation ofn-Tridecane in Heavy Clay-Loam Leached Chernozem with High Organic Matter Content. Soil and Sediment Contamination, 2011, 20, 824-840.	1.9	0
95	Response surface analysis and modeling of n-alkanes removal through bioremediation of weathered crude oil. Water Science and Technology, 2011, 63, 618-626.	2.5	9
97	Effect of Exposure Time, Contamination Level, and Type of PAH Compound on Biodegradation Capacity of Mangrove Sediment. Soil and Sediment Contamination, 2012, 21, 291-304.	1.9	5
98	Bioremediation of a tropical clay soil contaminated with diesel oil. Journal of Environmental Management, 2012, 113, 510-516.	7.8	35
99	Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technologies and Environmental Policy, 2012, 14, 719-726.	4.1	51
100	Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chemical Engineering Journal, 2012, 213, 295-317.	12.7	109
101	Role of natural attenuation, phytoremediation and hybrid technologies in the remediation of a refinery soil with old/recent petroleum hydrocarbons contamination. Environmental Technology (United Kingdom), 2012, 33, 2097-2104.	2.2	15
104	Role of Microorganisms in Remediation of Contaminated Soil. , 2012, , 81-111.		14
106	Biodegradation of Crude Oil in Contaminated Soils by Free and Immobilized Microorganisms. Pedosphere, 2012, 22, 717-725.	4.0	70
107	Systems biology approach to bioremediation. Current Opinion in Biotechnology, 2012, 23, 483-490.	6.6	135
108	Pilot scale ex-situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain. Journal of Hazardous Materials, 2012, 233-234, 72-78.	12.4	65
109	Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. Journal of Hazardous Materials, 2012, 237-238, 262-269.	12.4	49
110	Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments. Biotechnology Research International, 2012, 2012, 1-8.	1.4	87
111	Surface activity of salt-tolerant Serratia spp. and crude oil biodegradation in saline soil. Plant, Soil and Environment, 2012, 58, 412-416.	2.2	20
112	Biorremediação de solos contaminados com resÃduos oleosos através de bioaumentação e atenuação natural. Semina: Ciências Exatas E TecnolÃ3gicas, 2012, 33, 73-82.	0.1	5
113	Treatment of diesel-polluted clay soil employing combined biostimulation in microcosms. International Journal of Environmental Science and Technology, 2012, 9, 535-542.	3.5	23
114	Feasibility of Different Bioremediation Strategies for Treatment of Clayey and Silty Soils Recently Polluted with Diesel Hydrocarbons. Water, Air, and Soil Pollution, 2012, 223, 2473-2482.	2.4	30
115	Crude Oil-Contaminated Soil Phytoremediation by Using Cyperus brevifolius (Rottb.) Hassk. Water, Air, and Soil Pollution, 2012, 223, 3373-3383.	2.4	51

#	Article	IF	CITATIONS
116	Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture, Ecosystems and Environment, 2012, 149, 109-117.	5.3	133
117	The impact of electrokinetic treatment on a loamy-sand soil properties. Chemical Engineering Journal, 2012, 183, 231-237.	12.7	66
118	Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. International Biodeterioration and Biodegradation, 2012, 66, 39-46.	3.9	94
119	Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil. Science of the Total Environment, 2012, 414, 585-591.	8.0	41
120	Biodegradation of di-n-butyl phthalate and expression of the 3,4-phthalate dioxygenase gene in Arthrobacter sp. ZH2 strain. Process Biochemistry, 2012, 47, 936-940.	3.7	66
121	Bench-scale ex situ diesel removal process using a biobarrier and surfactant flushing. Journal of Industrial and Engineering Chemistry, 2012, 18, 882-887.	5.8	13
122	Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation. World Journal of Microbiology and Biotechnology, 2012, 28, 1203-1222.	3.6	36
123	Assessment of a Biostimulated or Bioaugmented Calcification System with Bacillus pasteurii in a Simulated Soil Environment. Microbial Ecology, 2013, 65, 679-688.	2.8	19
124	Application of the Haug model for process design of petroleum hydrocarbon-contaminated soil bioremediation by composting process. International Journal of Environmental Science and Technology, 2013, 10, 533-544.	3.5	15
125	Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: Assays in a pilot plant. Science of the Total Environment, 2013, 445-446, 347-355.	8.0	92
126	Natural Attenuation and Biosurfactant-Stimulated Bioremediation of Estuarine Sediments Contaminated with Diesel Oil. Applied Biochemistry and Biotechnology, 2013, 171, 173-188.	2.9	6
127	Microwave heating remediation of soils contaminated with diesel fuel. Journal of Soils and Sediments, 2013, 13, 1396-1407.	3.0	39
128	Degradation of petroleum hydrocarbons from bottom sludge of crude oil storage tanks using in-vessel composting followed by oxidation with hydrogen peroxide and Fenton. Journal of Material Cycles and Waste Management, 2013, 15, 321-327.	3.0	30
129	Potential of bioremediation for buried oil removal in beaches after an oil spill. Marine Pollution Bulletin, 2013, 76, 258-265.	5.0	34
130	Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard. Marine Pollution Bulletin, 2013, 74, 199-207.	5.0	45
131	Assessing the efficiency of methods for the bioremediation of oil production wastes. Contemporary Problems of Ecology, 2013, 6, 542-548.	0.7	5
132	Recent Advances in Contaminated Site Remediation. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	24
133	Mixing of an anthracene-contaminated soil: A simple but efficient remediation technique?. Ecotoxicology and Environmental Safety, 2013, 96, 238-241.	6.0	10

#	Article	IF	Citations
134	Founder effect uncovers a new axis in polyethylene succinate bioremediation during biostimulation. FEMS Microbiology Letters, 2013, 346, 113-120.	1.8	11
135	A polyphasic approach for assessing the suitability of bioremediation for the treatment of hydrocarbon-impacted soil. Science of the Total Environment, 2013, 450-451, 51-58.	8.0	20
136	Qualitative determination and application of sewage sludge and municipal solid waste compost for BTEX removal from groundwater. Journal of Environmental Chemical Engineering, 2013, 1, 9-17.	6.7	36
137	Bioaugmentation for Groundwater Remediation: an Overview. , 2013, , 1-37.		10
138	Using volatile organic compounds to enhance atrazine biodegradation in a biobed system. Biodegradation, 2013, 24, 711-720.	3.0	15
139	Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (<i>Eichhornia crassipes</i> [Mart.] Solms). International Journal of Environmental Studies, 2013, 70, 241-258.	1.6	16
140	Dynamics of diesel fuel degradation in contaminated soil using organic wastes. International Journal of Environmental Science and Technology, 2013, 10, 769-778.	3.5	45
141	Effect of Nutrient Source on Indigenous Biodegradation of Diesel Fuel Contaminated Soil. APCBEE Procedia, 2013, 5, 557-561.	0.5	30
142	Ex Situ Bioremediation of Contaminated Soils: An Overview of Conventional and Innovative Technologies. Critical Reviews in Environmental Science and Technology, 2013, 43, 2107-2139.	12.8	105
143	Aged Petroleum-contaminated Soil Restoration and Benzo[a]pyrene Biodegradation. Petroleum Science and Technology, 2013, 31, 1859-1865.	1.5	2
144	Waste management and contaminated site remediation practices after oil spill: A case study. Waste Management and Research, 2013, 31, 1190-1194.	3.9	10
145	Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. , 0, , .		68
146	Use of mycorrhiza in soil remediation: A review. Scientific Research and Essays, 2013, 8, 679-1687.	0.4	36
147	Soil Contamination with Heavy Metals and Petroleum Derivates: Impact on Edaphic Fauna and Remediation Strategies. , 0, , .		12
148	Biodegradation and Leaching of Surfactants During Surfactant-Amended Bioremediation of Oil-Polluted Soil. , 0, , .		4
149	Approaches to bioremediation of fossil fuel contaminated soil: An overview. African Journal of Biotechnology, 2014, 13, 2593-2607.	0.6	0
150	Characterization of diesel degrading bacterial species from contaminated tropical ecosystem. Brazilian Archives of Biology and Technology, 2014, 57, 789-796.	0.5	25
151	Comparison among the Efficiency of Different Bioremediation Technologies of Atrazine–Contaminated Soils. Journal of Bioremediation & Biodegradation, 2014, 05, .	0.5	1

#	Article	IF	CITATIONS
152	Treatment of Diesel―and Keroseneâ€Contaminated Water by <i>B. subtilis</i> SPB1 Biosurfactantâ€Producing Strain. Water Environment Research, 2014, 86, 707-716.	2.7	20
153	Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rendiconti Lincei, 2014, 25, 505-512.	2.2	17
154	Synergistic Effect of Yeast-Bacterial Co-Culture on Bioremediation of Oil-Contaminated Soil. Bioremediation Journal, 2014, 18, 136-146.	2.0	26
155	Application of Molecular Techniques for the Assessment of Microbial Communities in Contaminated Sites. , 2014, , 85-113.		14
156	E Ffectiveness of Intrinsic Biodegradation Enhancement in Oil Hydrocarbons Contaminated Soil. Archives of Environmental Protection, 2014, 40, 101-113.	1.1	9
157	Advances in Chile for the Treatment of Pesticide Residues: Biobeds Technology. , 2014, , 53-68.		4
158	Biostimulation and Monitoring of Diesel Fuel Polluted Soil Amended With Biowaste. Petroleum Science and Technology, 2014, 32, 2822-2828.	1.5	11
159	Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils. Journal of Environmental Management, 2014, 136, 27-36.	7.8	16
160	Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environmental Science and Pollution Research, 2014, 21, 2592-2602.	5.3	51
161	Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons: test with artificially contaminated and field-aged soils and commercially available bacterial cultures. Journal of Soils and Sediments, 2014, 14, 138-145.	3.0	24
162	Degradation and bound-residue formation of nonylphenol in red soil and the effects of ammonium. Environmental Pollution, 2014, 186, 83-89.	7.5	28
163	Characterization of hydrocarbon-degrading bacteria isolated from oil-contaminated sediments in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments. International Biodeterioration and Biodegradation, 2014, 89, 58-66.	3.9	74
164	Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli OilÂField, China. Environmental Science and Pollution Research, 2014, 21, 7929-7937.	5.3	24
165	The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: Feasibility during field studies. Journal of Environmental Management, 2014, 132, 121-128.	7.8	158
166	Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds removal. Frontiers of Environmental Science and Engineering, 2014, 8, 293-304.	6.0	31
167	Application of Hydrogen Peroxide and Fenton as Pre- and Post-treatment Steps for Composting of Bottom Sludge from Crude Oil Storage Tanks. Petroleum Science and Technology, 2014, 32, 1562-1568.	1.5	25
168	Remediation of hydrocarbon-contaminated soils by <i>ex situ</i> microwave treatment: technical, energy and economic considerations. Environmental Technology (United Kingdom), 2014, 35, 2280-2288.	2.2	33
169	Evaluation of bioaugmentation and biostimulation effects on the treatment of refinery oily sludge using 2 ⁿ full factorial design. Environmental Sciences: Processes and Impacts, 2014, 16, 1889-1896.	3.5	26

#	ARTICLE	IF	CITATIONS
170	Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. Journal of Hazardous Materials, 2014, 280, 595-602.	12.4	67
171	The Evaluation of Different Bioremediation Processes for Egyptian Oily Sludge Polluted Soil on a Microcosm Level. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36, 231-241.	2.3	9
172	Bioremediation in Latin America. , 2014, , .		6
173	Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. International Biodeterioration and Biodegradation, 2014, 95, 338-345.	3.9	69
174	An analytical method for quantifying petroleum hydrocarbon fractions in soils, and its associated uncertainties. Analytical Methods, 2014, 6, 5527-5536.	2.7	9
175	Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya. Environmental Science and Pollution Research, 2014, 21, 10725-10735.	5.3	46
176	Interactive effect of nitrogen fertilizer and hydrocarbon pollution on soil biological indicators. Environmental Earth Sciences, 2014, 72, 3513-3519.	2.7	11
177	Bioremediation of Heavily Oil-Polluted Seawater by a Bacterial Consortium Immobilized in Cocopeat and Rice Hull Powder. Biocontrol Science, 2014, 19, 11-22.	0.8	34
178	Culture-Independent Analysis of Bacterial Diversity during Bioremediation of Soil Contaminated with a Diesel-Biodiesel Blend (B10)S. Journal of Bioremediation & Biodegradation, 2015, 06, .	0.5	1
179	Biotechnological Potential of Bacillus salmalaya 139SI: A Novel Strain for Remediating Water Polluted with Crude Oil Waste. PLoS ONE, 2015, 10, e0120931.	2.5	18
180	Enhanced Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbons after Amendment with <i>Capra aegagrus hircus</i> (Goat) Manure. Biotechnology Research International, 2015, 2015, 1-7.	1.4	30
181	Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 2015, 33, 745-755.	11.7	706
182	Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices. Environmental Science and Pollution Research, 2015, 22, 14809-14819.	5.3	42
183	Feasibility of Bioaugmentation with Iron/Sulfur Oxidizing Acidophiles to Enhance Copper Bioleaching from a Flotation Copper Ore. Applied Mechanics and Materials, 2015, 768, 447-457.	0.2	0
184	Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. International Biodeterioration and Biodegradation, 2015, 105, 268-275.	3.9	58
185	Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. International Biodeterioration and Biodegradation, 2015, 98, 43-52.	3.9	75
186	Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: A comparative study. Journal of Environmental Management, 2015, 153, 121-131.	7.8	66
187	Soil microbial response to waste potassium silicate drilling fluid. Journal of Environmental Sciences, 2015, 29, 189-198.	6.1	4

#	Article	IF	CITATIONS
188	Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. Frontiers in Plant Science, 2014, 5, 756.	3.6	32
189	Bioremediation of a petroleum hydrocarbon-contaminated Antarctic soil: Optimization of a biostimulation strategy using response-surface methodology (RSM). Cold Regions Science and Technology, 2015, 119, 61-67.	3.5	47
190	Input of organic matter enhances degradation of weathered diesel fuel in sub-tropical sediments. Science of the Total Environment, 2015, 533, 82-90.	8.0	25
191	Biodegradation of naphthenic acid surrogates by axenic cultures. Biodegradation, 2015, 26, 313-325.	3.0	15
192	Enhancement in copper extraction from chalcopyrite by re-inoculation of different acidophilic, moderately thermophilic microorganisms. Hydrometallurgy, 2015, 156, 142-151.	4.3	10
193	Does fertilizer (N15P15K15) amendment enhance phytoremediation of petroleum-polluted aquatic ecosystem in the presence of water hyacinth (Eichhornia crassipes[Mart.] Solms)?. Environmental Technology (United Kingdom), 2015, 36, 2502-2514.	2.2	8
194	Microbially-driven strategies for bioremediation of bauxite residue. Journal of Hazardous Materials, 2015, 293, 131-157.	12.4	99
195	Biodegradation of Kerosene by <i>Aspergillus flavus</i> Using Statistical Experimental Designs. Bioremediation Journal, 2015, 19, 69-79.	2.0	6
196	Soil Dehydrogenases as an Indicator of Contamination of the Environment with Petroleum Products. Water, Air, and Soil Pollution, 2015, 226, 372.	2.4	103
197	Bioremediation of Crude Oil–Contaminated Soil By Immobilized Bacteria on an Agroindustrial Waste—Sunflower Seed Husks. Bioremediation Journal, 2015, 19, 277-286.	2.0	21
198	Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study. Bioprocess and Biosystems Engineering, 2015, 38, 2095-2106.	3.4	29
199	Alginate/porous silica matrices for the encapsulation of living organisms: tunable properties for biosensors, modular bioreactors, and bioremediation devices. Open Material Sciences, 2015, 2, .	0.8	8
200	Halophiles. Sustainable Development and Biodiversity, 2015, , .	1.7	16
201	The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environmental Science and Pollution Research, 2015, 22, 3314-3341.	5.3	102
202	Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental Research, 2015, 137, 49-58.	7.5	67
203	Bio-removal of diesel oil through a microbial consortium isolated from a polluted environment. International Biodeterioration and Biodegradation, 2015, 97, 85-89.	3.9	41
204	Rapid remediation of soil heavily contaminated with hydrocarbons: a comparison of different approaches. Annals of Microbiology, 2015, 65, 241-251.	2.6	23
205	Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia. Journal of Environmental Management, 2015, 149, 118-125.	7.8	94

#	Article	IF	CITATIONS
206	Natural attenuation of 1,2,4-trichlorobenzene in shallow aquifer at the Luhuagang's landfill site, Kaifeng, China. Science of the Total Environment, 2015, 505, 216-222.	8.0	19
207	Biosurfactant Producing Microbes and their Potential Applications: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 1522-1554.	12.8	291
208	Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. African Journal of Microbiology Research, 2016, 10, 1637-1644.	0.4	22
209	Biodegradation of used engine oil in a wastewater sludge-amended agricultural soil. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2016, 40, 631-641.	2.1	9
210	Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms. Soil, 2016, 2, 487-498.	4.9	23
211	Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil. Frontiers in Microbiology, 2016, 7, 240.	3.5	45
212	Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites. Frontiers in Microbiology, 2016, 7, 1092.	3.5	152
213	Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge. Frontiers in Microbiology, 2016, 7, 1407.	3.5	114
214	The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Frontiers in Microbiology, 2016, 7, 1836.	3.5	176
215	Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation. Agronomy, 2016, 6, 19.	3.0	119
216	Comparing Oil Degradation Efficiency and Bacterial Communities in Contaminated Soils Subjected to Biostimulation Using Different Organic Wastes. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	17
217	Dynamics of bacterial populations during benchâ€scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats. Microbial Biotechnology, 2016, 9, 157-171.	4.2	17
218	Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 2016, 289, 463-470.	12.7	79
219	Effect of process parameters on the bioremediation of diesel contaminated soil by mixed microbial consortia. International Biodeterioration and Biodegradation, 2016, 113, 375-385.	3.9	34
220	Phytoremediation of fuel oil and lead co-contaminated soil by <i>Chromolaena odorata</i> in association with <i>Micrococcus luteus</i> . International Journal of Phytoremediation, 2016, 18, 994-1001.	3.1	15
221	Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria. Journal of Environmental Management, 2016, 174, 79-86.	7.8	48
222	Application of spent mushroom (Lentinula edodes) substrate and acclimated sewage sludge on the bioremediation of polycyclic aromatic hydrocarbon polluted soil. RSC Advances, 2016, 6, 37274-37285.	3.6	35
223	A Comparison of Microbial Bioaugmentation and Biostimulation for Hexavalent Chromium Removal from Wastewater. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	21

#	Article	IF	CITATIONS
224	Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Marine Pollution Bulletin, 2016, 107, 107-117.	5.0	50
225	Influence of soil contamination with PAH on microbial community dynamics and expression level of genes responsible for biodegradation of PAH and production of rhamnolipids. Environmental Science and Pollution Research, 2016, 23, 23043-23056.	5.3	35
226	pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue. Environmental Science & Technology, 2016, 50, 11164-11173.	10.0	51
227	Petroleum Hydrocarbons-Contaminated Soils: Remediation Approaches. , 2016, , 105-129.		8
228	Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. Environmental Science and Pollution Research, 2016, 23, 25024-25038.	5.3	61
229	A new method to restore the water quality level through the use of electric boats. , 2016, , .		3
230	An effective soil slurry bioremediation protocol for the treatment of Libyan soil contaminated with crude oil tank bottom sludge. International Biodeterioration and Biodegradation, 2016, 115, 179-185.	3.9	33
231	Bioremediation potential of diesel-contaminated Libyan soil. Ecotoxicology and Environmental Safety, 2016, 133, 297-305.	6.0	59
232	Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Research in Microbiology, 2016, 167, 731-744.	2.1	30
233	Oily sludge stimulates microbial activity and changes microbial structure in a landfarming soil. International Biodeterioration and Biodegradation, 2016, 115, 90-101.	3.9	35
234	Reclamation of DPK hydrocarbon polluted agricultural soil using a selected bulking agent. Journal of Environmental Management, 2016, 172, 136-142.	7.8	21
235	From oil spills to barley growth – oilâ€degrading soil bacteria and their promoting effects. Journal of Basic Microbiology, 2016, 56, 1252-1273.	3.3	13
236	Treatment of Heavy, Long-Chain Petroleum-Hydrocarbon Impacted Soils Using Chemical Oxidation. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	24
237	Horizontal gene transfer versus biostimulation: A strategy for bioremediation in Goa. Marine Pollution Bulletin, 2016, 113, 271-276.	5.0	4
238	Oil degradation by basidiomycetes in soil and peat at low temperatures. Applied Biochemistry and Microbiology, 2016, 52, 629-637.	0.9	3
239	Metagenomics: Probing pollutant fate in natural and engineered ecosystems. Biotechnology Advances, 2016, 34, 1413-1426.	11.7	42
241	Biodegradation and Bioremediation of Organic Chemical Pollutants by Pseudomonas. , 2016, , 343-417.		11
242	Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel. Environmental Science and Pollution Research, 2016, 23, 18027-18033.	5.3	13

#	Article	IF	CITATIONS
243	Bioattenuation of Detergent Plant Effluents Enhanced via Single Microbial Augmentations. Journal of Surfactants and Detergents, 2016, 19, 637-644.	2.1	2
244	Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil. Environmental Science and Pollution Research, 2016, 23, 8686-8698.	5.3	14
245	Bioaugmentation with Novel Microbial Formula vs. Natural Attenuation of a Long-Term Mixed Contaminated Soil—Treatability Studies in Solid- and Slurry-Phase Microcosms. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	32
246	Cooperative Mn(II) oxidation between two bacterial strains in an aquatic environment. Water Research, 2016, 89, 252-260.	11.3	40
247	Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil. Environmental Pollution, 2016, 213, 549-560.	7.5	33
248	The effect of the bioremediation of soil contaminated with petroleum derivatives on the occurrence of epigeic and edaphic fauna. Bioremediation Journal, 2016, 20, 38-53.	2.0	13
249	Isolation and characterization of biosurfactant producing Bacillus sp. from diesel fuel-contaminated site. Microbiology, 2016, 85, 56-62.	1.2	23
250	Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10A°C. Bioresource Technology, 2016, 205, 166-173.	9.6	95
251	Characterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	10
252	Autochthonous microbial responses and hydrocarbons degradation in polluted soil during biostimulating treatments under different soil moisture. Assay in pilot plant. International Biodeterioration and Biodegradation, 2016, 108, 91-98.	3.9	28
253	Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community. World Journal of Microbiology and Biotechnology, 2016, 32, 6.	3.6	19
254	Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 2016, 563-564, 693-703.	8.0	284
255	Industrial-scale culturing of the crude oil-degrading marine Acinetobacter sp. strain HC8-3S. International Biodeterioration and Biodegradation, 2016, 107, 56-61.	3.9	10
256	In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. Reviews of Environmental Contamination and Toxicology, 2016, 236, 1-115.	1.3	67
257	r-strategist versus K-strategist for the application in bioremediation of hydrocarbon-contaminated soils. International Biodeterioration and Biodegradation, 2016, 106, 41-52.	3.9	40
258	Diesel degradation in soil catalyzed by the addition of a bioagent. International Journal of Environmental Science and Technology, 2016, 13, 551-560.	3.5	9
259	Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons. Environmental Science & Technology, 2016, 50, 2498-2506.	10.0	89
260	Large scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium. Ecological Engineering, 2017, 102, 64-71.	3.6	47

#	Article	IF	Citations
261	Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. International Journal of Phytoremediation, 2017, 19, 755-764.	3.1	25
262	Bioremediation Approaches for Petroleum Hydrocarbon-Contaminated Environments. , 2017, , 21-41.		14
263	Bioremediation of Soil Contaminated with Diesel and Biodiesel Fuel Using Biostimulation with Microalgae Biomass. Journal of Environmental Engineering, ASCE, 2017, 143, .	1.4	34
264	Exploitation of novel synthetic bacterial consortia for biodegradation of oily-sludge TPH of Iran gas and oil refineries. Journal of Environmental Chemical Engineering, 2017, 5, 2964-2975.	6.7	24
265	Successful Integrated Bioremediation System of Hydrocarbon-Contaminated Soil at a Former Oil Refinery Using Autochthonous Bacteria and Rhizo-Microbiota. , 2017, , 53-76.		3
266	Microbial community composition affects soil organic carbon turnover in mineral soils. Biology and Fertility of Soils, 2017, 53, 445-456.	4.3	66
267	Bioremediation of Phenol-Contaminated Industrial Wastewater Using a Bacterial Consortium—from Laboratory to Field. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	31
268	Study Potential of Indigenous Pseudomonas aeruginosa and Bacillus subtilis in Bioremediation of Diesel-Contaminated Water. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	26
269	Cometabolic degradation of blended biodiesel by Moniliella wahieum Y12T and Byssochlamys nivea M1. International Biodeterioration and Biodegradation, 2017, 125, 166-169.	3.9	26
270	Biostimulation of <i>n</i> -Alkane Degradation in Diesel Fuel-Spiked Soils. Soil and Sediment Contamination, 2017, 26, 486-500.	1.9	6
271	Microbial cell immobilization: a renaissance to bioaugmentation inadequacies. AÂreview. Environmental Technology Reviews, 2017, 6, 186-198.	4.3	18
272	Bioaugmentation for the enhancement of hydrocarbon phytoremediation by rhizobacteria consortium in pilot horizontal subsurface flow constructed wetlands. International Journal of Environmental Science and Technology, 2017, 14, 75-84.	3.5	42
273	Use of Rice Husk as Bulking Agent in Bioremediation of Automobile Gas Oil Impinged Agricultural Soil. Soil and Sediment Contamination, 2017, 26, 96-114.	1.9	18
274	Functional and genetic characterization of hydrocarbon biodegrader and exopolymer-producing clones from a petroleum reservoir metagenomic library. Environmental Technology (United Kingdom), 2017, 38, 1139-1150.	2.2	3
275	Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environmental Technology and Innovation, 2017, 7, 1-11.	6.1	64
276	Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil. Acta Microbiologica Et Immunologica Hungarica, 2017, 64, 463-482.	0.8	15
277	Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon. Frontiers in Microbiology, 2017, 8, 279.	3.5	209
278	Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Frontiers in Microbiology, 2017, 8, 1966.	3.5	104

~		<u> </u>
(ΙΤΑΤ	ION	Report
011/11		

#	Article	IF	CITATIONS
279	Hydrocarbon Degradation and Bacterial Community Responses During Remediation of Sediment Artificially Contaminated with Heavy Oil. Biocontrol Science, 2017, 22, 187-203.	0.8	5
280	Assessing Technical and Economic Feasibility of Complete Bioremediation for Soils Chronically Polluted with Petroleum Hydrocarbons. Journal of Bioremediation & Biodegradation, 2017, 08, .	0.5	5
281	Chromosomal and plasmid mediated degradation of crude oil by Bacillus coagulans, Citrobacter koseri and Serratia ficaria isolated from the soil. African Journal of Biotechnology, 2017, 16, 1242-1253.	0.6	7
282	Citrate Addition Increased Phosphorus Bioavailability and Enhanced Gasoline Bioremediation. Journal of Environmental Quality, 2017, 46, 975-983.	2.0	12
283	Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environmental Pollution, 2018, 235, 869-880.	7.5	83
284	A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. Science of the Total Environment, 2018, 630, 1292-1297.	8.0	65
285	Potential Application of Crude Oil Degrading Bacteria in Oil Spill and Waste Management. , 2018, , .		5
286	Bioremediation of Contaminated Soil. , 2018, , 361-417.		3
287	Autochthonous Bioaugmentation-Modified Bacterial Diversity of Phenanthrene Degraders in PAH-Contaminated Wastewater as Revealed by DNA-Stable Isotope Probing. Environmental Science & Technology, 2018, 52, 2934-2944.	10.0	90
288	Agronomic and economic evaluation of Vetiver grass (Vetiveria zizanioides L.) as means for phytoremediation of diesel polluted soils in Israel. Journal of Environmental Management, 2018, 211, 247-255.	7.8	25
289	Genetically Modified Organisms and Its Impact on the Enhancement of Bioremediation. Energy, Environment, and Sustainability, 2018, , 53-76.	1.0	16
290	Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability, 2018, , .	1.0	16
291	Surfactantâ€Enhanced Electroosmotic Flushing in a Trichlorobenzene Contaminated Clayey Soil. Ground Water, 2018, 56, 673-679.	1.3	9
292	Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Science of the Total Environment, 2018, 636, 968-974.	8.0	120
293	Bioaugmentation of PAH-contaminated soils: A novel procedure for introduction of bacterial degraders into contaminated soil. Ecological Engineering, 2018, 118, 93-96.	3.6	26
294	Multispecies Transport Modeling on Biodegradation of Benzene, Toluene, and Xylene in a Saturated Fracture–Matrix System with Multiple Electron Acceptors. Environmental Engineering Science, 2018, 35, 1096-1108.	1.6	6
295	Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil. 3 Biotech, 2018, 8, 229.	2.2	31
296	Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons. Bioprocess and Biosystems Engineering, 2018, 41, 871-883.	3.4	24

#	Article	IF	Citations
297	Bioremediation of petroleum-contaminated soil: A Review. IOP Conference Series: Earth and Environmental Science, 2018, 118, 012063.	0.3	52
298	Effect of remediation strategies on biological activity of oil-contaminated soil - A field study. International Biodeterioration and Biodegradation, 2018, 126, 57-68.	3.9	109
299	Natural Attenuation and Anaerobic Benzene Detoxification Processes at a Chlorobenzene-Contaminated Industrial Site Inferred from Field Investigations and Microcosm Studies. Environmental Science & Technology, 2018, 52, 22-31.	10.0	23
300	Microbes and Petroleum Bioremediation. , 2018, , 97-123.		2
301	Novel and Cost-Effective Technologies for Hydrocarbon Bioremediation. , 2018, , 543-565.		5
302	Microbial Degradation of Petroleum Hydrocarbons: Technology and Mechanism. , 2018, , 125-141.		3
303	Bioaugmentation of Petroleum Hydrocarbon in Contaminated Soil: A Review. , 2018, , 415-439.		6
304	Fast Biodegradation of Diesel Hydrocarbons at High Concentration by the Sophorolipid-Producing Yeast <i>Candida catenulata</i> KP324968. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 240-254.	1.0	11
305	Simulation of a surface spill of different diesel/biodiesel mixtures in an ultisol, using natural attenuation and bioaugmentation/biostimulation. Anais Da Academia Brasileira De Ciencias, 2018, 90, 2741-2752.	0.8	7
306	Construction and Evaluation of a Korean Native Microbial Consortium for the Bioremediation of Diesel Fuel-Contaminated Soil in Korea. Frontiers in Microbiology, 2018, 9, 2594.	3.5	23
307	Roles of Plants and Bacteria in Bioremediation of Petroleum in Contaminated Soils. , 2018, , 23-44.		0
308	The Effect of Moisture Content Variation on the Bioremediation of Hydrocarbon Contaminated Soils: Modeling and Experimental Investigation. Journal of Environmental Analytical Chemistry, 2018, 05, .	0.3	15
309	Gas chromatographic analyses of kerosene bioremediation displayed distinctive pattern ofn-alkane degradation. Petroleum Science and Technology, 2018, 36, 1905-1912.	1.5	3
310	Development of bioremediation in Indonesia: Laboratory scale theory and facts. AIP Conference Proceedings, 2018, , .	0.4	0
311	Testing Method of Degrading Heavy Oil Pollution by Microorganisms. IOP Conference Series: Earth and Environmental Science, 2018, 111, 012023.	0.3	1
312	Combination of sediment washing and bioactivators as a potential strategy for dredged marine sediment recovery. Ecological Engineering, 2018, 125, 26-37.	3.6	20
313	Quorum sensing and quenching in membrane bioreactors: Opportunities and challenges for biofouling control. Bioresource Technology, 2018, 270, 656-668.	9.6	95
314	Novel Bacillus cereus strain from electrokinetically remediated saline soil towards the remediation of crude oil. Environmental Science and Pollution Research, 2018, 25, 26351-26360.	5.3	5

#	Article	IF	CITATIONS
315	Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. Marine Pollution Bulletin, 2018, 133, 595-605.	5.0	44
316	Degradation of Toluene Hydrocarbon by Isolated Yeast Strains: Molecular Genetic Approaches for Identification and Characterization. Russian Journal of Genetics, 2018, 54, 933-943.	0.6	12
317	Microbial Bioremediation of Petroleum Hydrocarbonâ \in '' Contaminated Marine Environments. , 0, , .		34
318	Mycoremediation of Agricultural Soil: Bioprospection for Sustainable Development. Fungal Biology, 2018, , 91-120.	0.6	19
319	Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters, 2018, 16, 1339-1359.	16.2	394
320	Bioremediation capability evaluation of benzene and sulfolane contaminated groundwater: Determination of bioremediation parameters. Science of the Total Environment, 2019, 648, 811-818.	8.0	40
321	Assessment of soil potential to natural attenuation and autochthonous bioaugmentation using microarray and functional predictions from metagenome profiling. Annals of Microbiology, 2019, 69, 945-955.	2.6	4
322	The impact of lead co-contamination on ecotoxicity and the bacterial community during the bioremediation of total petroleum hydrocarbon-contaminated soils. Environmental Pollution, 2019, 253, 939-948.	7.5	42
323	Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan. Applied Microbiology and Biotechnology, 2019, 103, 7261-7274.	3.6	25
324	Molecular Biology-Based Analysis of the Interactive Effect of Nickel and Xanthates on Soil Bacterial Community Diversity and Structure. Sustainability, 2019, 11, 3888.	3.2	3
325	Crude Oil Biodegradation by Newly Isolated Bacterial Strains and Their Consortium Under Soil Microcosm Experiment. Applied Biochemistry and Biotechnology, 2019, 189, 1223-1244.	2.9	29
326	Innovative Techniques for Measuring the Oil Content of Oil ontaminated Porous Media. Ground Water Monitoring and Remediation, 2019, 39, 78-83.	0.8	2
327	Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. Journal of Biosciences, 2019, 44, 1.	1.1	34
328	Fungal proliferation and hydrocarbon removal during biostimulation of oily sludge with high total petroleum hydrocarbon. Environmental Science and Pollution Research, 2019, 26, 33192-33201.	5.3	25
329	Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems—Fate and Microbial Responses. Molecules, 2019, 24, 3400.	3.8	125
330	Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation. Chemosphere, 2019, 234, 864-874.	8.2	85
331	A High-Throughput Fluorescence-Based Assay for Rapid Identification of Petroleum-Degrading Bacteria. Frontiers in Microbiology, 2019, 10, 1318.	3.5	13
332	Weighted linear models for simulation and prediction of biodegradation in diesel polluted soils. Science of the Total Environment, 2019, 686, 580-589.	8.0	6

#	Article	IF	CITATIONS
333	Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation. Journal of Hazardous Materials, 2019, 377, 341-348.	12.4	45
334	Petroleum-contaminated sites: Decision framework for selecting remediation technologies. Journal of Hazardous Materials, 2019, 378, 120722.	12.4	21
335	Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. Journal of Environmental Management, 2019, 245, 358-366.	7.8	97
336	Decontamination of soil containing oil by natural attenuation, phytoremediation and chemical desorption. International Journal of Phytoremediation, 2019, 21, 768-776.	3.1	10
337	Upscaling of microbially driven first-order reactions in heterogeneous porous media. Journal of Contaminant Hydrology, 2019, 224, 103483.	3.3	15
338	PAH biodegradation by telluric saprotrophic fungi isolated from aged PAH-contaminated soils in mineral medium and historically contaminated soil microcosms. Journal of Soils and Sediments, 2019, 19, 3056-3067.	3.0	25
339	Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transport in Porous Media, 2019, 130, 129-156.	2.6	26
340	Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils. Chemosphere, 2019, 225, 574-578.	8.2	23
341	Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: Response and dynamics of the bacterial community. Journal of Environmental Management, 2019, 238, 49-58.	7.8	78
342	Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation. Journal of Environmental Chemical Engineering, 2019, 7, 103054.	6.7	49
343	Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. Journal of Environmental Management, 2019, 240, 93-107.	7.8	37
344	Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Science of the Total Environment, 2019, 671, 948-958.	8.0	43
345	Bioremediation of crude oilâ€contaminated soil by hydrocarbonâ€degrading microorganisms immobilized on humic acidâ€modified biofuel ash. Journal of Chemical Technology and Biotechnology, 2019, 94, 1904-1912.	3.2	27
346	Bioremediation of Petroleum-Contaminated Soil. , 0, , .		5
347	Petroleum contamination evaluation and bacterial community distribution in a historic oilfield located in loess plateau in China. Applied Soil Ecology, 2019, 136, 30-42.	4.3	58
348	Local fungi, willow and municipal compost effectively remediate petroleum-contaminated soil in the Canadian North. Chemosphere, 2019, 220, 47-55.	8.2	23
349	Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME Journal, 2019, 13, 494-508.	9.8	119
350	Biogeochemical Cycle, Occurrence and Biological Treatments of Polycyclic Aromatic Hydrocarbons (PAHs). Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 1393-1410.	1.5	22

#	Article	IF	CITATIONS
351	Microbial remediation of a pentachloronitrobenzene-contaminated soil under Panax notoginseng: A field experiment. Pedosphere, 2020, 30, 563-569.	4.0	13
352	Biodegradation of biodiesel-oil by <i>Cellulosimicrobium</i> sp. Isolated from Colombian Caribbean soils. Environmental Technology (United Kingdom), 2020, 41, 2337-2349.	2.2	4
353	Bacteria-assisted phytoremediation of fuel oil and lead co-contaminated soil in the salt-stressed condition by <i>chromolaena odorata</i> and <i>Micrococcus luteus</i> . International Journal of Phytoremediation, 2020, 22, 322-333.	3.1	8
354	Biodegradation potential assessment by using autochthonous microorganisms from the sediments from Lac Mégantic (Quebec, Canada) contaminated with light residual oil. Chemosphere, 2020, 239, 124796.	8.2	10
355	Hematite-facilitated pyrolysis: An innovative method for remediating soils contaminated with heavy hydrocarbons. Journal of Hazardous Materials, 2020, 383, 121165.	12.4	29
356	Approaches for Remediation of Sites Contaminated with Total Petroleum Hydrocarbons. , 2020, , 167-205.		10
357	Total Petroleum Hydrocarbons. , 2020, , .		38
358	Assessment of the Bioavailability and Speciation of Heavy Metal(loid)s and Hydrocarbons for Risk-Based Soil Remediation. Agronomy, 2020, 10, 1440.	3.0	14
359	Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability, 2020, 12, 8209.	3.2	59
360	Potential for native hydrocarbon-degrading bacteria to remediate highly weathered oil-polluted soils in Qatar through self-purification and bioaugmentation in biopiles. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00543.	4.4	15
361	Scientometric analysis and mapping of documentary array on the issue "Oil and petroleum products in soil and groundwaterâ€. Environmental Science and Pollution Research, 2020, 27, 23490-23502.	5.3	8
362	Enhancement of Naphthalene Degradation by a Sequential Sulfate Injection Scenario in a (Semi)-Arid Coastal Soil: a Flow-Through Reactor Experiment. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	3
363	Influence of electrode configuration on electrokinetic-enhanced persulfate oxidation remediation of PAH-contaminated soil. Environmental Science and Pollution Research, 2020, 27, 44355-44367.	5.3	14
364	Hydrocarbon degradation in oily sludge by bacterial consortium assisted with alfalfa (Medicago) Tj ETQq1 1 0.78	4314 rgBT 1.3	-/Qyerlock 1(
365	Moisture retention extended enhanced bioelectrochemical remediation of unsaturated soil. Science of the Total Environment, 2020, 724, 138169.	8.0	16
366	Phenolic Acid-Degrading Consortia Increase Fusarium Wilt Disease Resistance of Chrysanthemum. Agronomy, 2020, 10, 385.	3.0	3
367	Biogas slurry as an activator for the remediation of petroleum contaminated soils through composting mediated by humic acid. Science of the Total Environment, 2020, 730, 139117.	8.0	23
368	Accelerated bioremediation of petroleum refinery sludge through biostimulation and bioaugmentation of native microbiome. , 2020, , 23-65.		10

		CITATION RE	PORT	
#	ARTICLE Application of cowdung and sawdust as biostimulants for enhanced bioremediation of o	diesel	IF	CITATIONS
369	contaminated soil. Journal of Applied Sciences and Environmental Management, 2020, 2		0.1	1
370	Diagnosing bioremediation of crude oil-contaminated soil and related geochemical proc field scale through microbial community and functional genes. Annals of Microbiology, 2	esses at the 2020, 70, .	2.6	19
371	Petroleum Depletion Property and Microbial Community Shift After Bioremediation Usir halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 2020, 11, 353.	ıg Bacillus	3.5	16
372	Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms Sustainability, 2020, , .	for	0.7	9
373	Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review. Water Rese 183, 116060.	earch, 2020,	11.3	31
374	Microbial remediation progress and future prospects. , 2020, , 187-214.			6
375	Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparin Actions with Biostimulation Treatment. Molecules, 2020, 25, 661.	g Their	3.8	36
376	Bioremediation and Biotechnology. , 2020, , .			32
377	Comparison of petroleum biodegradation efficiencies of three different bacterial consor determined in petroleum-contaminated waste mud pit. SN Applied Sciences, 2020, 2, 1		2.9	20
378	Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobi in oil-polluted sediments. Chemosphere, 2020, 248, 126023.	c conditions	8.2	50
379	Nutrient drip irrigation for refractory hydrocarbon removal and microbial community shi historically petroleum-contaminated soil. Science of the Total Environment, 2020, 713,		8.0	30
380	Terrestrial Toxicity of Synthetic Gasâ€toâ€Liquid versus Crude Oil–Derived Drilling Flu Environmental Toxicology and Chemistry, 2020, 39, 721-730.	ids in Soil.	4.3	0
381	Bioaugmentation Treatment of a PAH-Polluted Soil in a Slurry Bioreactor. Applied Science (Switzerland), 2020, 10, 2837.	es	2.5	22
382	Aerobic degradation of dichlorinated dibenzo-p-dioxin and dichlorinated dibenzofuran b strains obtained from tropical contaminated soil. Biodegradation, 2020, 31, 123-137.	y bacteria	3.0	12
383	Applications of chitosan in environmental remediation: A review. Chemosphere, 2021, 2	266, 128934.	8.2	131
384	Bioremediation of oily sludge by solid complex bacterial agent with a combined two-ste Ecotoxicology and Environmental Safety, 2021, 208, 111673.	p process.	6.0	24
385	DNA-SIP identification of phenanthrene-degrading bacteria undergoing bioaugmentatio attenuation in petroleum-contaminated soil. Chemosphere, 2021, 266, 128984.	n and natural	8.2	25
386	Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron. Chemosphere, 2021, 270, 2	128627.	8.2	52

#	Article	IF	CITATIONS
387	Phytoremediation of soil co-contaminated with zinc and crude oil using <i>Ocimum gratissimum</i> (L.) in association with <i>Pseudomonas putida</i> MU02. International Journal of Phytoremediation, 2021, 23, 181-189.	3.1	14
388	Biochar as a sustainable product for remediation of petroleum contaminated soil. Current Research in Green and Sustainable Chemistry, 2021, 4, 100055.	5.6	46
389	Metagenomics and future perspectives in discovering pollutant degrading enzymes from soil microbial communities. , 2021, , 257-267.		1
390	VAM: An Alternate Strategy for Bioremediation of Polluted Environment. Microorganisms for Sustainability, 2021, , 153-184.	0.7	0
391	A review of bioreremediation of hydrocarbon contaminated soils in Niger Delta area of Nigeria. Poljoprivredna Tehnika, 2021, 46, 23-39.	0.3	0
392	Characterization of the biosurfactant produced by Pesudomonas areuginosa strain R4 and its application for remediation pyrene-contaminated soils. Journal of Environmental Health Science & Engineering, 2021, 19, 445-456.	3.0	5
393	Influence of Aeration Microporous Aperture on Oxygen Mass Transfer Efficiency in Terms of Bubble Motion Flow Field. ACS Omega, 2021, 6, 2790-2799.	3.5	1
394	Bacteria-mediated remediation: Restoring polycyclic aromatic hydrocarbon (PAHs) contaminated marine ecosystems. , 2021, , 119-136.		3
395	Soil remediation technologies. , 2021, , 193-219.		2
396	Application of biosurfactant as a noninvasive stimulant to enhance the degradation activities of indigenous hydrocarbon degraders in the soil. , 2021, , 69-87.		11
397	Application of biosurfactant during the process of biostimulation for effective bioremediation of a contaminated environment. , 2021, , 291-321.		0
398	Increase in Total Petroleum Hydrocarbons Removal Rate in Contaminated Mining Soil Through Bioaugmentation with Autochthonous Fungi During the Slow Bioremediation Stage. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	8
399	Draft Genome Analysis of Acinetobacter indicus Strain UBT1, an Efficient Lipase and Biosurfactant Producer. Current Microbiology, 2021, 78, 1238-1244.	2.2	5
400	AN APPROACH FOR THE BIODEGRADATION OF POLYCYCLIC AROMATIC HYDROCARBON. Journal of Experimental Biology and Agricultural Sciences, 2021, 9, 65-74.	0.4	0
401	Simple Organic Carbon Sources and High Diversity Inocula Enhance Microbial Bioneutralization of Alkaline Bauxite Residues. Environmental Science & Technology, 2021, 55, 3929-3939.	10.0	19
404	New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. Environmental Monitoring and Assessment, 2021, 193, 163.	2.7	3
405	Nano-enhanced Bioremediation for Oil Spills: A Review. ACS ES&T Engineering, 2021, 1, 928-946.	7.6	49
406	The effects of biostimulation and bioaugmentation on crude oil biodegradation in two adjacent terrestrial oil spills of different age, in a hyper-arid region. Journal of Environmental Management, 2021, 286, 112248.	7.8	15

#	Article	IF	CITATIONS
407	Temporal changes in the extractability, bioaccessibility and biodegradation of target hydrocarbons in soils from former refinery facilities. International Biodeterioration and Biodegradation, 2021, 160, 105227.	3.9	1
408	Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study. Journal of Microbiology, 2021, 59, 634-643.	2.8	4
409	Bioremediation assessment, hematological, and biochemical responses of the earthworm (Allolobophora caliginosa) in soil contaminated with crude oil. Environmental Science and Pollution Research, 2021, 28, 54565-54574.	5.3	8
410	Bioremediation of Crude Oil Contaminated Sea Water. , 2021, , 67-79.		1
412	Phytoremediation: A Synergistic Interaction between Plants and Microbes for Removal of Petroleum Hydrocarbons. , 0, , .		1
413	Scale-up treatment of petroleum hydrocarbon-contaminated soil using a defined microbial consortium. International Journal of Environmental Science and Technology, 2022, 19, 6023-6032.	3.5	1
414	Organic matter composition, BaP biodegradation and microbial communities at sites near and far from the bioanode in a soil microbial fuel cell. Science of the Total Environment, 2021, 772, 144919.	8.0	11
415	Improving the Bioremediation and in situ Production of Biocompounds of a Biodiesel-Contaminated Soil. Environmental Management, 2021, 68, 210-225.	2.7	3
416	Production and analysis of capsules containing microorganisms consortiated for future application in petroleum bioremediation. Biodegradation, 2021, 32, 613-625.	3.0	0
417	Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges. Sustainability, 2021, 13, 9267.	3.2	59
418	Biotreatment of oil sludge containing hydrocarbons by Proteus mirabilis SB. Environmental Technology and Innovation, 2021, 23, 101654.	6.1	9
419	Biofilm Mediated Degradation of Petroleum Products. Geomicrobiology Journal, 2022, 39, 389-398.	2.0	19
420	Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019. International Journal of Environmental Research and Public Health, 2021, 18, 8859.	2.6	6
421	A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole. Journal of Hazardous Materials, 2021, 415, 125705.	12.4	40
422	Stimulated biodegradation of all alkanes in soil. Chemosphere, 2021, 278, 130444.	8.2	8
423	Natural attenuation of legacy hydrocarbon spills in pristine soils is feasible despite difficult environmental conditions in the monsoon tropics. Science of the Total Environment, 2021, 799, 149335.	8.0	3
424	Preliminary investigation and neural network modeling of palm oil mill effluent as a potential bio-stimulating organic co-substrate in hydrocarbon degradation. Environmental Challenges, 2021, 5, 100216.	4.2	4
425	Remediation of soil contaminated with a commercial diesel-biodiesel blend (B12): A microcosm evaluation on the effects of (in)organic amendments. Chemosphere, 2022, 287, 132059.	8.2	6

#	Article	IF	CITATIONS
426	Thermal desorption treatment of petroleum hydrocarbon-contaminated soils of tundra, taiga, and forest steppe landscapes. Environmental Geochemistry and Health, 2021, 43, 2331-2346.	3.4	22
427	Microbial Hydrocarbon-Removal Under Halostress. Sustainable Development and Biodiversity, 2015, , 323-354.	1.7	2
428	Functional Genomics and System Biology Approach in Bioremediation of Soil and Water from Organic and Inorganic Pollutants. , 2019, , 1-20.		2
429	Microbes and Processes in Bioremediation of Soil. Microorganisms for Sustainability, 2019, , 11-37.	0.7	2
430	Biological and Nonbiological Approaches for Treatment of Cr(VI) in Tannery Effluent. Microorganisms for Sustainability, 2020, , 147-170.	0.7	7
431	Rhizospheric Treatment of Hydrocarbons Containing Wastewater. Microorganisms for Sustainability, 2020, , 289-301.	0.7	6
432	Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation. Chemosphere, 2017, 185, 764-771.	8.2	57
433	Characterization of Multi-Potential Toluene Metabolizing Bacteria Isolated from Tannery Effluents. Microbiology, 2020, 89, 626-636.	1.2	1
434	Chapter 31 The Fungal Community in Organically Polluted Systems. Mycology, 2017, , 459-470.	0.5	8
435	Bioremediation of Nonaqueous Phase Liquids (NAPLs)-Polluted Soil-Water Resources. , 2017, , 241-256.		5
436	Assessment of the Hydrocarbon Degrading Abilities of Three Bioaugmentation Agents for the Bioremediation of Crude Oil Tank Bottom Sludge Contaminated Libyan Soil. International Journal of Environmental Bioremediation & Biodegradation, 2015, 3, 1-9.	39.0	9
438	Crecimiento de <i>Casuarina equisetifolia</i> (Casuarinaceae) en suelo con diésel, y aplicación de bioestimulación y bioaumentación. Revista De Biologia Tropical, 2013, 61, .	0.4	9
439	Oil Bioremediation in a Tropical Contaminated Soil Using a Reactor. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20181396.	0.8	5
440	BIOREMEDIATION OF SOILS FROM OIL SPILL IMPACTED SITES USING BIOAUGMENTATION WITH BIOSURFACTANTS PRODUCING, NATIVE, FREE-LIVING NITROGEN FIXING BACTERIA. Revista Internacional De Contaminacion Ambiental, 2017, 33, 105-114.	0.4	13
443	Stimulated Biodegradation of Used Lubricating Oil in Soil Using Organic Wastes. Malaysian Journal of Science, 2009, 28, 127-133.	0.3	14
444	Enhanced degradation of diesel-contaminated soil using organic wastes. Malaysian Journal of Science, 2010, 29, 225-230.	0.3	5
445	Biostimulation combined treatments for remediation of diesel contaminated soil. WIT Transactions on Ecology and the Environment, 2010, , .	0.0	2
446	Unconventional yeast in the degradation of hydrocarbons in contaminated soil. Environmental Protection Engineering, 2018, 44, .	0.1	2

#	Article	IF	CITATIONS
447	TEMPORAL DYNAMICS OF MICROBIAL COMMUNITY IN SOIL DURING PHYTOREMEDIATION FIELD EXPERIMENT. Journal of Environmental Engineering and Landscape Management, 2007, 15, 213-220.	1.0	19
449	Enhanced Biodegradation of Mobil Oil Hydrocarbons by Biosurfactant Producing Bacterial Consortium in Wheat and Mustard Rhizosphere. Journal of Petroleum & Environmental Biotechnology, 2013, 04, .	0.3	9
450	Biodegradation of diesel oil and n-alkanes (C ₁₈ , C ₂₀ , and) Tj ETQq Environmental Engineering Research, 2020, 25, 290-298.	0 0 0 rgBT 2.5	/Overlock 1 20
451	Biodegradation of hydrocarbons exploiting spent substrate from Pleurotus ostreatus in agricultural soils. African Journal of Biotechnology, 2014, 13, 3385-3393.	0.6	4
452	The effect of fertilizer amendment on diesel biodegradation in contaminated soils. African Journal of Microbiology Research, 2011, 5, .	0.4	10
453	Biodegradation potentials of bacterial isolates from petroleum storage facilities within the Kumasi Metropolitan area. African Journal of Microbiology Research, 2015, 9, 433-447.	0.4	1
454	Bio-Enrichment of Waste Crude Oil Polluted Soil: Amended with Bacillus 139SI and Organic Waste. International Journal of Environmental Science and Development, 2015, 6, 241-245.	0.6	7
455	Investigating the ability of five fungal species to utilize Gasoline as sole carbon source Egyptian Academic Journal of Biological Sciences G Microbiology, 2011, 3, 7-12.	0.0	2
456	DEGRADAÇÃO DE RESÃÐUOS ORGÃ,NICOS PROVENIENTES DA SUINOCULTURA EMPREGANDO O PROCESSO DE BIOAUMENTAÇÃO. Engevista, 2012, 14, .	0.1	0
457	Biological Remediation of Petroleum Hydrocarbons in Soil: Suitability of Different Technologies Applied in Mesocosm and Microcosm Trials. Soil Biology, 2013, , 203-226.	0.8	1
458	Bioremediation of Four Food Industrial Effluents. Journal of Agriculture and Forestry (New York, N Y) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf S
459	UTILIZAÇÃO DE FUNGO DE BAMBU NA BIORREMEDIAÇÃO DE SOLO CONTAMINADO. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 2013, 10, .	0.0	0
460	Bioremediation of gasoil by two indigenous bacterial strains in contaminated soils. International Journal of Biosciences, 2013, 3, 71-76.	0.1	2
461	The Use of Plants and Wildflowers as Bioremediation for Contaminated Soils in the Hong Kong S.A.R Open Journal of Soil Science, 2014, 04, 305-311.	0.8	3
462	BIOREMEDIATION OF CONTAMINATED SOIL BY SLUDGE OIL USING THE BIOPILES AMELIORATED. Holos Environment, 2014, 14, 38.	0.1	0
464	BIORREMEDIAÇÃO DE SOLO CONTAMINADO COM BIODIESEL DE PROCESSO (BIODIESEL E GLICERINA): AVALIAÇÃO DE CONDIÇÕES OPERACIONAIS EMPREGANDO REATORES ROTATIVO E DE BANDEJA. , 0, , .		0
465	The Effect of Biostimulation and Biostimulation-Bioaugmentation on Biodegradation of Oil-Pollution on Sandy Beaches Using Mesocosms. International Journal of Marine Science, 0, , .	0.0	3
466	BIORREMEDIAÇÃO DE SOLO CONTAMINADO POR BIODIESEL BRUTO EM REATOR ROTATIVO: AMPLIAÇÃO NA ESCALA DE TRATAMENTO. , 0, , .	A	0

ARTICLE IF CITATIONS Genetic diversity of microorganisms capable of degrading diesel as a pool of bioremediation. 0.2 0 467 Environment Conservation Journal, 2015, 16, 29-32. Application of dendrochronological analysis of Retama sphaerocarpa L. (Boiss) for dating 468 agricultural abandonment. Spanish Journal of Soil Science, 0, 6, . 469 Environmental Control of Biotechnology Industries., 2017, , 365-391. 1 Biodegradation Potentials of Bacterial Isolates from Auto-Mechanic Workshops in Oluku, Edo State, Nigeria. Journal of BP Koirala Institute of Health Sciences, 2017, 1, 256-264. BIORREMEDIAÇÃ∱O DE SOLO CONTAMINADO POR ÓLEO LUBRIFICANTE USADO EM BIOPILHA DE BANCADA. 471 0.1 0 Cadernos UniFOA, 2017, 12, 5-14. The Emergence of Different Functionally Equivalent PAH Degrading Microbial Communities from a Single Soil in Liquid PAH Enrichment Cultures and Soil Microcosms Receiving PAHs with and without 1.7 Bioaugmentation. Polish Journal of Microbiology, 2018, 67, 365-375. Evaluation of the Effectiveness of Fungi (Candida Tropicalis and Aspergillus Clavatus) in 473 Bioremediation of used Engine Oil Contaminated Soil using Bioaugmentation Technique. International 0.1 1 Journal of Environment Agriculture and Biotechnology, 2018, 3, 1175-1182. An Environmental Friendly Perspective of Microbial Degradation. Journal of Pharmaceutical Research, 2018, 3, . Potentials of Sugarcane Bagasse and Poultry Manure in the Remediation of Spent Motor Oil 477 0.2 0 Contaminated Soil. Biotechnology Journal International, 0, , 1-11. Bioremediation potentials of chicken droppings on crude oil polluted soil from automobile workshop. GSC Biological and Pharmaceutical Sciences, 2019, 8, 045-052. Biodegradation of Biodiesel in Laboratory and Field in a Clayey Residual Soil. Soils and Rocks, 2019, 42, 479 0.5 0 193-200. Inoculum Addition in the Presence of Plant Rhizosphere for Petroleum-Polluted Soil Remediation., 480 Study on the Repair of Heavy Metal Pollution in Clay by Citric Acid Leaching. Hans Journal of Soil 481 0.0 0 Science, 2020, 08, 82-89. Soil Contamination: A Menace to Life., 0, , . 482 Diversity and Hydrocarbon-Degrading Potential of Deep-Sea Microbial Community from the 483 3.6 6 Mid-Atlantic Ridge, South of the Azores (North Atlantic Ocean). Microorganisms, 2021, 9, 2389. Bioaugmentation and Biostimulation: Comparison of Their Long-Term Effects on Ecotoxicity and 484 Biological Activity of Oil-Contaminated Soil. Innovations in Landscape Research, 2022, , 361-377. Environmental Sulfate-Reducing Microorganisms. Environmental and Microbial Biotechnology, 2022, , 485 0.7 2 625-654. Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 2022, 304, 114313.

#	Article	IF	CITATIONS
487	What determines the efficacy of landfarming for petroleum-contaminated soils: Significance of contaminant characteristics. Chemosphere, 2022, 290, 133392.	8.2	7
488	Ecotoxicity and bioremediation potential assessment of soil from oil refinery station area. Journal of Environmental Health Science & Engineering, 2022, 20, 337-346.	3.0	4
489	Advances in bioremediation of nonaqueous phase liquid pollution in soil and water. , 2022, , 191-231.		5
490	Mineralization of pyrene (polycyclic aromatic hydrocarbon) in clay soil supplemented with animal organic carbon source. Journal of Environmental Health Science & Engineering, 0, , 1.	3.0	0
491	Effects of atrazine on soil microbial indicators and the evaluation of herbicide attenuation in microcosms. Journal of Soils and Sediments, 2022, 22, 1165-1175.	3.0	10
492	Biodegradation of hazardous naphthalene and cleaner production of rhamnolipids — Green approaches of pollution mitigation. Environmental Research, 2022, 209, 112875.	7.5	18
493	Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere, 2022, 293, 133572.	8.2	59
494	IN SITU AND EX SITU BIOREMEDIATION OF HEAVY METALS: THE PRESENT SCENARIO. Journal of Environmental Engineering and Landscape Management, 2021, 29, 454-469.	1.0	15
495	Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. Journal of Biosciences, 2019, 44,	1.1	7
496	Novel Strategy for Soil Remediation of Contaminated Sites Using Persulfate-based Advanced Oxidation Technologies. Chemistry in the Environment, 2022, , 289-314.	0.4	0
497	Bioremediation of Agriculture Soil Contaminated by Organic Pollutants. Energies, 2022, 15, 1561.	3.1	7
498	Comparative Analysis of Microbial Consortiums and Nanoparticles for Rehabilitating Petroleum Waste Contaminated Soils. Molecules, 2022, 27, 1945.	3.8	4
499	Degradación de diésel por sustrato residual de Agaricus bisporus a nivel microcosmos. Revista Mexicana De Ciencias Agricolas, 2022, 13, 223-234.	0.2	0
503	Bioremediation of organic pollutants: a mini review on current and critical strategies for wastewater treatment. Archives of Microbiology, 2022, 204, 286.	2.2	50
504	Paenibacillus sp. Strain OL15 Immobilized in Agar as a Potential Bioremediator for Waste Lubricating Oil-Contaminated Soils and Insights into Soil Bacterial Communities Affected by Inoculations of the Strain and Environmental Factors. Biology, 2022, 11, 727.	2.8	5
505	Characterization of A Diesel-Degrading Strain Isolated From A Local Hydrocarbon-Contaminated Site. , 2013, 1, 1-8.		0
506	A metagenomic portrait of the microbial community responsible for two decades of bioremediation of poly-contaminated groundwater. Water Research, 2022, 221, 118767.	11.3	11
507	Shifts of the new functional marker gene (pahE) of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial population and its relationship with PAHs biodegradation. Journal of Hazardous Materials, 2022, 437, 129305.	12.4	18

#	Article	IF	Citations
508	Bioremediation of Petroleum-Contaminated Soil. , 0, , .		0
509	Features of the processes of detoxification and self-restoration of oil-contaminated soils — a field study. Journal of Soils and Sediments, 2022, 22, 3087-3105.	3.0	3
511	Influences of Microorganisms based Biosurfactants in Bioremediation Process: An Eco-friendly Approach. , 2022, , 111-131.		0
512	Microbial augmented phytoremediation with improved ecosystems services. , 2022, , 27-62.		1
513	Interspecies Metabolic Interactions in a Synergistic Consortium Drive Efficient Degradation of the Herbicide Bromoxynil Octanoate. Journal of Agricultural and Food Chemistry, 2022, 70, 11613-11622.	5.2	7
515	Effects of surfactant and oxidant on bioremediation of contaminated soil by total petroleum hydrocarbons using indigenous bacteria. International Journal of Environmental Science and Technology, 0, , .	3.5	0
516	Newly isolated halotolerant Aspergillus sp. showed high diesel degradation efficiency under high salinity environment aided with hematite. Journal of Hazardous Materials, 2023, 443, 130324.	12.4	8
517	Effective bioremediation of soil from the Burgan oil field (Kuwait) using compost: A comprehensive hydrocarbon and DNA fingerprinting study. Ecotoxicology and Environmental Safety, 2022, 247, 114267.	6.0	5
518	Risk assessment and biodegradation potential of PAHs originating from Map Ta Phut Industrial Estate, Rayong, Thailand. Environmental Technology (United Kingdom), 0, , 1-15.	2.2	1
519	Nanoparticle-Based Bioremediation for Crude Oil Removal from Marine Environment. , 2023, , 347-364.		0
520	Biodegradation of hydrocarbons by Purpureocillium lilacinum and Penicillium chrysogenum from heavy oil sludge and their potential for bioremediation of contaminated soils. International Biodeterioration and Biodegradation, 2023, 178, 105566.	3.9	8
521	Effects of flue gas recirculation on the thermal performance of the gas remediation well. Applied Thermal Engineering, 2023, 223, 120031.	6.0	1
522	Distribution of the new functional marker gene (pahE) of aerobic polycyclic aromatic hydrocarbon (PAHs) degrading bacteria in different ecosystems. Science of the Total Environment, 2023, 865, 161233.	8.0	8
523	Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances, 2023, 10, 100293.	3.0	3
524	New insight into the mechanisms of autochthonous fungal bioaugmentation of phenanthrene in petroleum contaminated soil by stable isotope probing. Journal of Hazardous Materials, 2023, 452, 131271.	12.4	3
527	Bioremediation of diesel contaminated soil through microbial flora. Environment Conservation Journal, 2012, 13, 111-114.	0.2	1
528	A Green Approach Used for Heavy Metals †Phytoremediation' Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. Plants, 2023, 12, 725.	3.5	19
529	Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms. Microbiological Research, 2023, 270, 127343.	5.3	4

#	Article	IF	CITATIONS
530	Bioaugmentation of diesel-contaminated soil with Pseudomonas sp. DTF1. International Journal of Environmental Science and Technology, 0, , .	3.5	0
531	Biodegradation of phenol-rich sewage water using indigenous bacterial consortium: a laboratory- to plant-scale study. International Journal of Environmental Science and Technology, 2024, 21, 817-832.	3.5	1
532	An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. Environmental Science and Ecotechnology, 2023, 16, 100278.	13.5	8
533	Sterilize Methods Comparison for Soils: Cost, Time, and Efficiency. , 2023, 2, 34-40.		0
534	Metagenomic analysis of the microbial community at the Riutort oil shale mine (NE Spain): Potential applications in bioremediation and enhanced oil recovery. Fuel, 2023, 349, 128609.	6.4	2
535	Bioremediation of oil-contaminated soil by yeast bioaugmentation. , 2023, , 395-447.		0
536	Rapid degradation of long-alkanes by mild Fe-SOM pre-oxidation in soils. Journal of Environmental Management, 2023, 342, 118291.	7.8	1
538	Utilization of—Omic technologies in cold climate hydrocarbon bioremediation: a text-mining approach. Frontiers in Microbiology, 0, 14, .	3.5	0
539	Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations. Environmental Science and Pollution Research, 2023, 30, 79676-79705.	5.3	6
540	Bacterial community dynamics and associated genes in hydrocarbon contaminated soil during bioremediation using brewery spent grain. Access Microbiology, 2023, 5, .	0.5	0
541	Bioaugmentation-assisted bioremediation and biodegradation mechanisms for PCB in contaminated environments: A review on sustainable clean-up technologies. Journal of Environmental Chemical Engineering, 2023, 11, 110055.	6.7	4
542	Strategies for Bioremediation of Soil from an Industrial Site Exposed to Chlorinated and Nitroaromatic Compounds. Ground Water Monitoring and Remediation, 2023, 43, 108-120.	0.8	0
543	Control of marine biodegradation of an aliphatic polyester using endospores. Polymer Degradation and Stability, 2023, 215, 110466.	5.8	2
544	Biostimulatory potentials of plantain skin on soils polluted with used motor oil. AIP Conference Proceedings, 2023, , .	0.4	0
546	Biodegradation of Waste Lubricant Oil by a Novel Isolated Biosurfactant Producer- <i>Achromobacter xylosoxidans</i> PSA5. Geomicrobiology Journal, 0, , 1-10.	2.0	0
547	A comprehensive study on diesel oil bioremediation under microcosm conditions using a combined microbiological, enzymatic, mass spectrometry, and metabarcoding approach. Environmental Science and Pollution Research, 0, , .	5.3	0
548	Bioaugmentation: an approach to biological treatment of pollutants. Biodegradation, 2024, 35, 117-135.	3.0	1
549	Performance of Bioremediation Strategy in Waste Lubricating Oil Pollutants: A Review. Geomicrobiology Journal, 0, , 1-14.	2.0	10

#	Article	IF	CITATIONS
551	Features of the self-restoration of the oil-contaminated peat-bog soil – a field study. BIO Web of Conferences, 2023, 67, 01009.	0.2	0
552	Enhanced petroleum removal with a novel biosurfactant producer consortium isolated from drilling cuttings of offshore Akçakoca-5 in the Black Sea. , 2023, 231, 212348.		0
553	Toxicity of polyaromatic hydrocarbons and their biodegradation in the environment. , 2024, , 43-66.		0
554	The role and dynamics of fungi population as a remediator in used motor vehicle oil biodegradation. AIP Conference Proceedings, 2023, , .	0.4	0
555	Xenobiotics in Urban Soils and Water: Remediation Strategies, Socioeconomic Impacts, and Regulatory Provisions. , 2023, , 399-430.		0
556	The effect of sulfurous oil on the biological activity of soils. E3S Web of Conferences, 2023, 451, 03004.	0.5	0
557	Carbendazim mycoremediation: a combined approach to restoring soil. Mycological Progress, 2024, 23, .	1.4	0
558	A multi-omics approach to unravelling the coupling mechanism of nitrogen metabolism and phenanthrene biodegradation in soil amended with biochar. Environment International, 2024, 183, 108435.	10.0	0
559	Systematic Intrinsic Biodegradation Studies of Crude Oil Contaminated Soil of Bdere Community in South-South, Nigeria. UMYU Journal of Microbiology Research, 2023, 8, 40-55.	0.1	0
560	Monitoramento ambiental de áreas contaminadas. , 0, , 187-218.		0
561	Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
562	A Conceptual Framework for Modeling Spatiotemporal Dynamics of Diesel Attenuation Capacity: A Case Study across Namyangju, South Korea. Hydrology, 2024, 11, 19.	3.0	0
563	Remediation Technologies for Petroleum Hydrocarbons from the Environment. Environmental Science and Engineering, 2023, , 205-233.	0.2	0
564	Environmental Fate and Microbial Reactions to Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems. Environmental Science and Engineering, 2023, , 139-158.	0.2	0
565	High-performance diesel biodegradation using biogas digestate as microbial inoculum in lab-scale solid supported bioreactors. Chemosphere, 2024, 352, 141384.	8.2	0
566	Groundwater, co-produced water, and biogenic coalbed gas. , 2024, , 495-595.		0
567	Characterization of renewable diesel, petroleum diesel and renewable diesel/biodiesel/petroleum diesel blends. Renewable Energy, 2024, 224, 120151.	8.9	0