New materials for electrochemical sensing VI: Carbon n

TrAC - Trends in Analytical Chemistry 24, 826-838 DOI: 10.1016/j.trac.2005.03.019

Citation Report

#	Article	IF	CITATIONS
1	New materials for electrochemical sensing VI: Carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2005, 24, 826-838.	5.8	626
2	Toward an ICPMS-Linked DNA Assay Based on Gold Nanoparticles Immunoconnected through Peptide Sequences. Analytical Chemistry, 2005, 77, 6500-6503.	3.2	66
3	Magnetically Trigged Direct Electrochemical Detection of DNA Hybridization Using Au67Quantum Dot as Electrical Tracer. Langmuir, 2005, 21, 9625-9629.	1.6	133
4	High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder. Analytical Chemistry, 2006, 78, 3820-3826.	3.2	491
6	Voltammetric Behavior and Determination of 17.BETAEstradiol at Multi-Wall Carbon Nanotube-Nafion Modified Glassy Carbon Electrode. Analytical Sciences, 2006, 22, 895-898.	0.8	38
7	Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube. Electrochimica Acta, 2006, 52, 215-220.	2.6	68
8	Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode. Analytica Chimica Acta, 2006, 573-574, 26-33.	2.6	20
9	Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. Journal of Chromatography A, 2006, 1125, 152-158.	1.8	160
10	Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochemistry Communications, 2006, 8, 1035-1040.	2.3	119
11	Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine. Journal of Pharmaceutical and Biomedical Analysis, 2006, 42, 237-244.	1.4	55
12	Carbon nanotube-epoxy composites for electrochemical sensing. Sensors and Actuators B: Chemical, 2006, 113, 617-622.	4.0	179
13	Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core–shell nanostructures using reverse micelle technology. Journal of Colloid and Interface Science, 2006, 298, 752-756.	5.0	48
14	New materials for electrochemical sensing VII. Microfluidic chip platforms. TrAC - Trends in Analytical Chemistry, 2006, 25, 219-235.	5.8	129
15	Electrochemical Sensors. Analytical Chemistry, 2006, 78, 3965-3984.	3.2	389
16	Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube/Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters. Mikrochimica Acta, 2006, 152, 261-265.	2.5	55
17	Impedimetric genosensors for the detection of DNA hybridization. Analytical and Bioanalytical Chemistry, 2006, 385, 1195-1201.	1.9	67
18	Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnology and Bioengineering, 2006, 95, 804-811.	1.7	154
19	Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis, 2006, 18, 319-326.	1.5	1,158

#	Article	IF	CITATIONS
20	Understanding the Electrochemical Reactivity of Bamboo Multiwalled Carbon Nanotubes: the Presence of Oxygenated Species at Tube Ends May not Increase Electron Transfer Kinetics. Electroanalysis, 2006, 18, 2137-2140.	1.5	47
21	Electrochemical Sensing Properties of Ultra Long Aligned Multi-Walled Carbon Nanotube Microelectrodes. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	0
23	Nanobiomaterials for Electrochemical Biosensors. AIP Conference Proceedings, 2007, , .	0.3	1
24	Carbon Nanotube–Plasma Polymer-Based Amperometric Biosensors: Enzyme-Friendly Platform for Ultrasensitive Glucose Detection. Japanese Journal of Applied Physics, 2007, 46, 6078-6082.	0.8	12
26	Double-Walled Carbon Nanotube Electrodes for Electrochemical Sensing. Electrochemical and Solid-State Letters, 2007, 10, F13.	2.2	30
28	Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes. Talanta, 2007, 71, 1031-1038.	2.9	100
29	Comparative study of multi walled carbon nanotubes-based electrodes in micellar media and their application to micellar electrokinetic capillary chromatography. Talanta, 2007, 74, 376-386.	2.9	27
30	Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta, 2007, 74, 427-433.	2.9	118
31	Carbon nanotubes for electrochemical biosensing. Talanta, 2007, 74, 291-307.	2.9	513
32	Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Talanta, 2007, 74, 398-404.	2.9	19
33	Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors. Analyst, The, 2007, 132, 142-147.	1.7	78
34	Super-washing does not leave single walled carbon nanotubes iron-free. Analyst, The, 2007, 132, 21-23.	1.7	79
35	Detection of cadmium sulphide nanoparticles by using screen-printed electrodes and a handheld device. Nanotechnology, 2007, 18, 035502.	1.3	36
36	Interactions between Single-Walled Carbon Nanotubes and Tetraphenyl Metalloporphyrins: Correlation between Spectroscopic and FET Measurements. Journal of Physical Chemistry C, 2007, 111, 3539-3543.	1.5	42
37	Nonenzymatic Glucose Sensor Using Freestanding Single-Wall Carbon Nanotube Films. Electrochemical and Solid-State Letters, 2007, 10, J58.	2.2	45
38	Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles even after Washing with Nitric Acid at Elevated Temperature Because These Metal Nanoparticles Are Sheathed by Several Graphene Sheets. Langmuir, 2007, 23, 6453-6458.	1.6	267
39	Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)–silane copolymer. Chemical Communications, 2007, , 2610-2612.	2.2	57
40	Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst, The, 2007, 132, 1254.	1.7	62

#	Article	IF	CITATIONS
41	An Electrochemical Sensor Based on the Human Estrogen Receptor Ligand Binding Domain. Nano Letters, 2007, 7, 2831-2834.	4.5	12
42	Monitoring the Covalent Binding of Quantum Dots to Functionalized Gold Surfaces by Surface Plasmon Resonance Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 10313-10319.	1.5	11
43	Food Analysis on Microfluidic Devices Using Ultrasensitive Carbon Nanotubes Detectors. Analytical Chemistry, 2007, 79, 7408-7415.	3.2	120
44	Anomalous Electrochemical Dissolution and Passivation of Iron Growth Catalysts in Carbon Nanotubes. Langmuir, 2007, 23, 11311-11318.	1.6	69
45	Chapter 38 Gold nanoparticles in DNA and protein analysis. Comprehensive Analytical Chemistry, 2007, , 941-958.	0.7	0
46	Double-Codified Gold Nanolabels for Enhanced Immunoanalysis. Analytical Chemistry, 2007, 79, 5232-5240.	3.2	354
47	Nanoprecise Spontaneous Coating of Carbon Nanotubes with a Europium Hydroxide Layer. Chemistry of Materials, 2007, 19, 6513-6517.	3.2	19
48	Spontaneous Coating of Carbon Nanotubes with an Ultrathin Polypyrrole Layer. Chemistry - A European Journal, 2007, 13, 7644-7649.	1.7	40
49	Multifunctional Macroarchitectures of Double-Walled Carbon Nanotube Fibers. Advanced Materials, 2007, 19, 1719-1723.	11.1	52
50	Voltammetric Characterization and Amperometric Detection of β-Carboline Alkaloids at Carbon Nanotube-Modified Electrodes. Electroanalysis, 2007, 19, 237-243.	1.5	15
51	Electrochemical Sensing of DNA Using Gold Nanoparticles. Electroanalysis, 2007, 19, 743-753.	1.5	194
52	Carbon Nanotube Composite as Novel Platform for Microbial Biosensor. Electroanalysis, 2007, 19, 893-898.	1.5	41
53	Nanobiomaterials in Electroanalysis. Electroanalysis, 2007, 19, 739-741.	1.5	61
54	Carbon nanotube detectors for microchip CE: Comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Electrophoresis, 2007, 28, 1274-1280.	1.3	62
55	A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry, 2007, 363, 143-150.	1.1	528
56	Evaluation of carbon nanotubes as a solid-phase extraction adsorbent for the extraction of cephalosporins antibiotics, sulfonamides and phenolic compounds from aqueous solution. Analytica Chimica Acta, 2007, 594, 81-92.	2.6	94
57	Enantioselective screen-printed amperometric biosensor for the determination of d-amino acids. Bioelectrochemistry, 2007, 71, 91-98.	2.4	55
58	Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes. Electrochimica Acta, 2007, 52, 7946-7952.	2.6	55

#	Article	IF	CITATIONS
59	Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes. Journal of Electroanalytical Chemistry, 2007, 603, 1-7.	1.9	131
60	Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 2007, 123, 1195-1205.	4.0	447
61	Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sensors and Actuators B: Chemical, 2007, 124, 269-276.	4.0	92
62	Use of nanoparticles in the electrochemical analysis of biological samples. Journal of Analytical Chemistry, 2007, 62, 813-824.	0.4	21
63	Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Research Letters, 2007, 2, 87-93.	3.1	73
64	Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosensors and Bioelectronics, 2007, 22, 1961-1967.	5.3	143
65	Carbon nanotube/polysulfone screen-printed electrochemical immunosensor. Biosensors and Bioelectronics, 2007, 23, 332-340.	5.3	114
66	Voltammetric determination of terbinafine in biological fluid at glassy carbon electrode modified by cysteic acid/carbon nanotubes composite film. Bioelectrochemistry, 2008, 72, 107-115.	2.4	24
67	Electron transfer of peroxidase assemblies at tailored nanocarbon electrodes. Electrochimica Acta, 2008, 53, 6714-6721.	2.6	17
68	Fabrication and characterization of carbon nanotube array electrodes with gold nanoparticle tips. Sensors and Actuators B: Chemical, 2008, 133, 208-212.	4.0	34
69	Modified glassy carbon electrode with multiwall carbon nanotubes as a voltammetric sensor for determination of noscapine in biological and pharmaceutical samples. Sensors and Actuators B: Chemical, 2008, 134, 292-299.	4.0	69
70	Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization. Journal of Nanoparticle Research, 2008, 10, 97-106.	0.8	37
71	Carbon nanotubes (CNTs)-based electroanalysis. Analytical and Bioanalytical Chemistry, 2008, 390, 293-298.	1.9	33
72	Microwave-assisted preparation of a carbon nanotube/La(OH)3 nanocomposite, and its application to electrochemical determination of adenine and guanine. Mikrochimica Acta, 2008, 162, 175-180.	2.5	27
73	Towards an Ultrasensitive Method for the Determination of Metal Impurities in Carbon Nanotubes. Small, 2008, 4, 1476-1484.	5.2	124
74	Highly Conductive Core–Shell Nanocomposite of Poly(<i>N</i> â€vinylcarbazole)–Polypyrrole with Multiwalled Carbon Nanotubes. Macromolecular Rapid Communications, 2008, 29, 1582-1587.	2.0	47
75	Functional Macromolecules from Singleâ€Walled Carbon Nanotubes: Synthesis and Photophysical Properties of Short Singleâ€Walled Carbon Nanotubes Functionalised with 9,10â€Diphenylanthracene. Chemistry - A European Journal, 2008, 14, 5030-5038.	1.7	6
76	Enhancement Action of Lanthanum Hydroxide Nanowire Towards Voltammetric Response of Dobesilate and Its Application. Chinese Journal of Chemistry, 2008, 26, 220-224.	2.6	4

#	Article	IF	CITATIONS
77	Electrocatalytic Behavior of Glassy Carbon Electrodes Modified with Multiwalled Carbon Nanotubes and Cobalt Phthalocyanine for Selective Analysis of Dopamine in Presence of Ascorbic Acid. Electroanalysis, 2008, 20, 851-857.	1.5	86
78	A Carbon Nanotube PVC Based Matrix Modified with Glutaraldehyde Suitable for Biosensor Applications. Electroanalysis, 2008, 20, 603-610.	1.5	25
79	Disposable Electrospun Electrodes Based on Conducting Nanofibers. Electroanalysis, 2008, 20, 1374-1377.	1.5	18
80	Glassy Carbon Electrodes Modified with Multiwall Carbon Nanotubes Dispersed in Polylysine. Electroanalysis, 2008, 20, 1623-1631.	1.5	37
81	Electrochemical Monitoring of DNA Hybridization by Multiwalled Carbon Nanotube Based Screen Printed Electrodes. Electroanalysis, 2008, 20, 1932-1938.	1.5	51
82	Fabrication of a Sensitive Impedance Biosensor of DNA Hybridization Based on Gold Nanoparticles Modified Gold Electrode. Electroanalysis, 2008, 20, 2127-2133.	1.5	37
83	Carbon nanotube disposable detectors in microchip capillary electrophoresis for waterâ€soluble vitamin determination: Analytical possibilities in pharmaceutical quality control. Electrophoresis, 2008, 29, 2997-3004.	1.3	59
84	Semiconductor Quantum Dots for Bioanalysis. Angewandte Chemie - International Edition, 2008, 47, 7602-7625.	7.2	854
87	Microwave heating coupled with ionic liquids: Synthesis and properties of novel optically active polyamides, thermal degradation and electrochemical stability on multi-walled carbon nanotubes electrode. Polymer, 2008, 49, 3239-3249.	1.8	44
88	Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. Journal of Membrane Science, 2008, 325, 245-251.	4.1	65
89	Bacterial sensors based on chitosan matrices. Sensors and Actuators B: Chemical, 2008, 134, 89-94.	4.0	46
90	Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sensors and Actuators B: Chemical, 2008, 134, 324-331.	4.0	185
91	Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sensors and Actuators B: Chemical, 2008, 134, 787-795.	4.0	99
92	Structure and electronic properties of "DNA–gold–nanotube―systems: A quantum chemical analysis. Journal of Molecular Graphics and Modelling, 2008, 26, 1066-1075.	1.3	7
93	Electrochemical behavior of rigid carbon nanotube composite electrodes. Journal of Electroanalytical Chemistry, 2008, 619-620, 117-124.	1.9	104
94	Direct electrochemistry and electrocatalysis of catalase immobilized on a SWNT-nanocomposite film. Journal of Electroanalytical Chemistry, 2008, 623, 181-186.	1.9	42
95	Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosensors and Bioelectronics, 2008, 23, 1887-1890.	5.3	188
96	Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon, 2008, 46, 898-906.	5.4	146

#	Article	IF	CITATIONS
97	Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Analytical Biochemistry, 2008, 381, 193-198.	1.1	141
98	Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: Optimisation and application in alkaline phosphatase-based assays. Analytica Chimica Acta, 2008, 615, 30-38.	2.6	48
99	Ordered porous thin films in electrochemical analysis. TrAC - Trends in Analytical Chemistry, 2008, 27, 593-603.	5.8	162
100	Electrochemical analysis with nanoparticle-based biosystems. TrAC - Trends in Analytical Chemistry, 2008, 27, 568-584.	5.8	104
101	Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC - Trends in Analytical Chemistry, 2008, 27, 619-626.	5.8	252
102	Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles. Electrochimica Acta, 2008, 53, 4022-4029.	2.6	63
103	DNA Biosensors and Microarrays. Chemical Reviews, 2008, 108, 109-139.	23.0	1,146
104	Nanocatalyst-Based Assay Using DNA-Conjugated Au Nanoparticles for Electrochemical DNA Detection. Langmuir, 2008, 24, 9883-9888.	1.6	68
105	Relationship between Carbon Nanotube Structure and Electrochemical Behavior: Heterogeneous Electron Transfer at Electrochemically Activated Carbon Nanotubes. Chemistry - an Asian Journal, 2008, 3, 2046-2055.	1.7	100
106	Toward a Fast, Easy, and Versatile Immobilization of Biomolecules into Carbon Nanotube/Polysulfone-Based Biosensors for the Detection of hCG Hormone. Analytical Chemistry, 2008, 80, 6508-6514.	3.2	130
107	Biomolecules Functionalized Carbon Nanotubes and Their Applications. Carbon Materials, 2008, , 181-221.	0.2	8
108	Colloidal gold–polystyrene bead hybrid for chemiluminescent detection of sequence-specific DNA. Analyst, The, 2008, 133, 219-225.	1.7	23
109	Multiwalled Carbon Nanotubes Modified Electrode as a Sensor for Adsorptive Stripping Voltammetric Determination of Hydrochlorothiazide. IEEE Sensors Journal, 2008, 8, 1523-1529.	2.4	77
110	Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. Journal of Materials Chemistry, 2008, 18, 2573.	6.7	79
111	Nanomaterials and Analytical Chemistry. Analytical Letters, 2008, 41, 479-520.	1.0	50
112	Modified Glassy Carbon Electrode with Multiwall Carbon Nanotubes as a Voltammetric Sensor for Determination of Leucine in Biological and Pharmaceutical Samples. Analytical Letters, 2008, 41, 2267-2286.	1.0	29
113	Multi-layer Cartridges Filled with Multi-Walled Carbon Nanotubes for the Determination of Volatile Organic Compounds in Indoor Air. Analytical Sciences, 2008, 24, 515-519.	0.8	13
114	Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots. Nanotechnology, 2009, 20, 055101.	1.3	62

#	Article	IF	CITATIONS
115	Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 189-195.	1.8	469
116	Detection in Miniaturized Analytical Systems. , 0, , 213-261.		1
117	Adsorptive Stripping Voltammetric Detection of Tea Polyphenols at Multiwalled Carbon Nanotubes hitosan Composite Electrode. Electroanalysis, 2009, 21, 762-766.	1.5	49
118	Electrochemistry and Adsorptive Stripping Voltammetric Determination of Amoxicillin on a Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode. Electroanalysis, 2009, 21, 1577-1586.	1.5	57
119	Nanomaterials as electrochemical detectors in microfluidics and CE: Fundamentals, designs, and applications. Electrophoresis, 2009, 30, 3315-3323.	1.3	84
121	Phospholipidâ€Coated Carbon Nanotubes as Sensitive Electrochemical Labels with Controlledâ€Assemblyâ€Mediated Signal Transduction for Magnetic Separation Immunoassay. Angewandte Chemie - International Edition, 2009, 48, 9862-9866.	7.2	88
122	A biosensing platform based on horseradish peroxidase immobilized onto chitosan-wrapped single-walled carbon nanotubes. Journal of Solid State Electrochemistry, 2009, 13, 791-798.	1.2	31
123	Electrochemical sensors based on metal and semiconductor nanoparticles. Mikrochimica Acta, 2009, 165, 1-22.	2.5	209
124	Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sensors and Actuators B: Chemical, 2009, 136, 444-450.	4.0	92
125	Modification of carbon nanotubes with redox hydrogel: Improvement of amperometric sensing sensitivity for redox enzymes. Biosensors and Bioelectronics, 2009, 24, 1723-1729.	5.3	38
126	A strategy for immobilisation of carbon nanotubes homogenised in room temperature ionic liquids on carbon electrodes. Journal of Electroanalytical Chemistry, 2009, 633, 106-112.	1.9	19
127	ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. Journal of Nanoparticle Research, 2009, 11, 2003-2011.	0.8	102
128	The use of quantum dots in organic chemistry. TrAC - Trends in Analytical Chemistry, 2009, 28, 279-291.	5.8	82
129	Application of functionalised carbon nanotubes immobilised into chitosan films in amperometric enzyme biosensors. Sensors and Actuators B: Chemical, 2009, 142, 308-315.	4.0	115
130	An active nano-supported interface designed from gold nanoparticles embedded on ionic liquid for depositing DNA. Applied Surface Science, 2009, 256, 52-55.	3.1	9
131	Effect of size and protein environment on electrochemical properties of gold nanoparticles on carbon electrodes. Bioelectrochemistry, 2009, 77, 37-42.	2.4	18
132	Status of biomolecular recognition using electrochemical techniques. Biosensors and Bioelectronics, 2009, 24, 2749-2765.	5.3	287
133	Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosensors and Bioelectronics, 2009, 24, 1984-1989.	5.3	145

#	Article	IF	CITATIONS
134	Controlling the electrochemical deposition of silver onto gold nanoparticles: Reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosensors and Bioelectronics, 2009, 24, 2475-2482.	5.3	67
135	Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosensors and Bioelectronics, 2009, 24, 3372-3378.	5.3	130
136	The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon, 2009, 47, 752-757.	5.4	43
137	Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon, 2009, 47, 1930-1942.	5.4	157
138	Imaging of Oxygen ontaining Groups on Walls of Carbon Nanotubes. Chemistry - an Asian Journal, 2009, 4, 250-253.	1.7	31
139	Metallic Impurities <i>within</i> Residual Catalyst Metallic Nanoparticles Are in Some Cases Responsible for "Electrocatalytic―Effect of Carbon Nanotubes. Chemistry - an Asian Journal, 2009, 4, 554-560.	1.7	90
140	The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst, The, 2009, 134, 657.	1.7	49
141	Validation of doubling exponent models for the impedance of well-aligned MWCNT array electrodes. Russian Journal of Electrochemistry, 2009, 45, 1145-1148.	0.3	6
142	Comparative Study of Different Cross-Linking Agents for the Immobilization of Functionalized Carbon Nanotubes within a Chitosan Film Supported on a Graphiteâ^'Epoxy Composite Electrode. Analytical Chemistry, 2009, 81, 5364-5372.	3.2	91
143	Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta, 2009, 79, 1406-1411.	2.9	110
144	Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst, The, 2009, 134, 60-64.	1.7	97
145	Carbon Nanoparticle-Enhanced Immunoelectrochemical Detection for Protein Tumor Marker with Cadmium Sulfide Biotracers. Analytical Chemistry, 2009, 81, 1340-1346.	3.2	139
146	Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diamond and Related Materials, 2009, 18, 1401-1420.	1.8	212
147	Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing. Journal of Materials Chemistry, 2009, 19, 3127.	6.7	52
148	Electrochemical activation of carbon nanotube/polymer composites. Physical Chemistry Chemical Physics, 2009, 11, 182-186.	1.3	36
149	Investigation of liquid sensing mechanism of poly(lactic acid)/multi-walled carbon nanotube composite films. Smart Materials and Structures, 2009, 18, 035008.	1.8	55
150	Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab on A Chip, 2009, 9, 346-353.	3.1	83
151	Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. Journal of Environmental Monitoring, 2009, 11, 1782.	2.1	75

#	Article	IF	CITATIONS
152	Electrochemical Characteristics of Wellâ€aligned MWCNT Array Electrodes. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 548-559.	1.0	4
153	Graphite nanosheet-based composites for mediator-free H2O2 biosensor. Analyst, The, 2009, 134, 2135.	1.7	29
154	Hydroxylamine-amplified gold nanoparticles for the naked eye and chemiluminescent detection of sequence-specific DNA with notable potential for single-nucleotide polymorphism discrimination. Analyst, The, 2009, 134, 497-503.	1.7	11
155	Multicomponent Metallic Impurities and Their Influence upon the Electrochemistry of Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 4401-4405.	1.5	130
156	Recent Advances of Sensitive Electroanalytical Tools and Probes in the Study of DNA Structure. Current Organic Chemistry, 2010, 14, 2300-2309.	0.9	2
158	DNAâ€Functionalized Carbon Nanotubes: Synthesis, Selfâ€Assembly, and Applications. Israel Journal of Chemistry, 2010, 50, 277-290.	1.0	15
159	Glassy carbon electrodes modified by multiwalled carbon nanotubes and poly(neutral red): A comparative study of different brands and application to electrocatalytic ascorbate determination. Analytical and Bioanalytical Chemistry, 2010, 398, 1675-1685.	1.9	58
160	Smart electrochemical biosensors: From advanced materials to ultrasensitive devices. Electrochimica Acta, 2010, 55, 4287-4295.	2.6	51
161	Use of nanomaterials for impedimetric DNA sensors: A review. Analytica Chimica Acta, 2010, 678, 7-17.	2.6	163
162	Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples. Journal of Hazardous Materials, 2010, 183, 138-144.	6.5	24
163	Development of a voltammetric procedure for assay of thebaine at a multi-walled carbon nanotubes electrode: quantification and electrochemical studies. Journal of Solid State Electrochemistry, 2010, 14, 1079-1088.	1.2	33
164	Synthesis and relevant electrochemical properties of 2-hydroxypropyltrimethyl ammonium chloride chitosan-grafted multiwalled carbon nanotubes. Journal of Materials Science, 2010, 45, 5915-5922.	1.7	11
165	Cellobiose Dehydrogenase: A Versatile Catalyst for Electrochemical Applications. ChemPhysChem, 2010, 11, 2674-2697.	1.0	175
166	Singleâ€Walled Carbon Nanotubes Modified Gold Electrodes as an Impedimetric DNA Sensor. Electroanalysis, 2010, 22, 399-405.	1.5	12
167	An Amphiphilic Polymer―and Carbon Nanotubeâ€Modified Indium Tin Oxide Electrode for Sensitive Electrochemical DNA Detection with Low Nonspecific Binding. Electroanalysis, 2010, 22, 2615-2619.	1.5	10
168	Analytical Potentialities of Carbon Nanotube/Silicone Rubber Composite Electrodes: Determination of Propranolol. Electroanalysis, 2010, 22, 2776-2783.	1.5	28
169	Electrochemical DNA Sensing at Singleâ€walled Carbon Nanotubes Chemically Assembled on Gold Surfaces. Electroanalysis, 2010, 22, 2817-2824.	1.5	13
170	Attomolar Electrochemical Detection of DNA Hybridization Based on Enhanced Latex/Gold Nanoparticles. Advanced Engineering Materials, 2010, 12, B649.	1.6	7

#	Article	IF	CITATIONS
173	Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes. Applied Surface Science, 2010, 256, 6035-6039.	3.1	40
174	Novel layer-by-layer assembly molecularly imprinted sol–gel sensor for selective recognition of clindamycin based on Au electrode decorated by multi-wall carbon nanotube. Journal of Colloid and Interface Science, 2010, 344, 158-164.	5.0	62
175	Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2010, 639, 181-186.	1.9	45
176	Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. Journal of Electroanalytical Chemistry, 2010, 640, 75-83.	1.9	282
177	A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode. Electrochimica Acta, 2010, 55, 4436-4440.	2.6	74
178	Electrochemical sensing based on carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2010, 29, 939-953.	5.8	264
179	Carbon nanotubes — chitosan nanobiocomposite for immunosensor. Thin Solid Films, 2010, 519, 1160-1166.	0.8	39
180	Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sensors and Actuators B: Chemical, 2010, 145, 762-768.	4.0	65
181	Fabrication of DNA functionalized carbon nanotubes/Cu2+ complex by one-step electrodeposition and its sensitive determination of nitrite. Analytica Chimica Acta, 2010, 667, 57-62.	2.6	33
182	Ultra-sensitive voltammetric sensor for trace analysis of carbamazepine. Analytica Chimica Acta, 2010, 674, 182-189.	2.6	57
183	The morphology and electrical conductivity of single-wall carbon nanotube thin films prepared by the Langmuir–Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 113-117.	2.3	25
184	A sensitive DNA biosensor fabricated with gold nanoparticles/ploy (p-aminobenzoic acid)/carbon nanotubes modified electrode. Colloids and Surfaces B: Biointerfaces, 2010, 75, 179-185.	2.5	63
185	Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosensors and Bioelectronics, 2010, 25, 2194-2199.	5.3	44
186	Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosensors and Bioelectronics, 2010, 25, 2351-2355.	5.3	111
187	A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosensors and Bioelectronics, 2010, 26, 213-219.	5.3	120
188	Nanoparticles-based strategies for DNA, protein and cell sensors. Biosensors and Bioelectronics, 2010, 26, 1164-1177.	5.3	131
189	Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosensors and Bioelectronics, 2010, 26, 1437-1441.	5.3	123
190	Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon, 2010, 48, 2347-2353.	5.4	172

#	Article	IF	CITATIONS
191	Amperimetric Biosensor Based on Carbon Nanotube and Plasma Polymer. , 0, , .		1
192	Integrated Carbon Nanotubes Electrodes in Microfluidic Chip via MWPCVD. Plasma Science and Technology, 2010, 12, 556-560.	0.7	1
193	Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor. Nanotechnology, 2010, 21, 245502.	1.3	15
194	Nanomaterials as Analytical Tools for Genosensors. Sensors, 2010, 10, 963-993.	2.1	74
195	Electrochemical Characterization of O2Plasma Functionalized Multi-Walled Carbon Nanotube Electrode forLegionella pneumophilaDNA Sensor. Japanese Journal of Applied Physics, 2010, 49, 08JH01.	0.8	4
196	Prospects of Nanotechnology in Clinical Immunodiagnostics. Sensors, 2010, 10, 6535-6581.	2.1	54
197	State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups. Sensors, 2010, 10, 2511-2576.	2.1	29
198	Aminopyrazole-Based Ligand Induces Gold Nanoparticle Formation and Remains Available for Heavy Metal Ions Sensing. A Simple "Mix and Detect―Approach. Langmuir, 2010, 26, 10165-10170.	1.6	39
199	Amperometric Detection of Glucose Using a Conjugated Polyelectrolyte Complex with Single-Walled Carbon Nanotubes. Macromolecules, 2010, 43, 10376-10381.	2.2	63
200	Interfacing Carbon Nanotubes with Living Mammalian Cells and Cytotoxicity Issues. Chemical Research in Toxicology, 2010, 23, 1131-1147.	1.7	150
201	Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta, 2010, 80, 2149-2156.	2.9	63
202	A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta, 2010, 82, 25-33.	2.9	238
203	Investigation of plasma-functionalized multiwalled carbon nanotube film and its application of DNA sensor for Legionella pneumophila detection. Talanta, 2010, 82, 904-911.	2.9	19
204	Orientation and Morphological Evolution of Catalyst Nanoparticles During Carbon Nanotube Growth. ACS Nano, 2010, 4, 5087-5094.	7.3	47
205	Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell. Nano Letters, 2010, 10, 838-846.	4.5	431
206	Simultaneous electrochemical detection of carcinogenic polycyclic aromatic amines in environmental samples using single-walled carbon nanotube-gold nanoparticle composite. Analytical Methods, 2010, 2, 326.	1.3	7
207	Impedimetric detection of influenza A (H1N1) DNA sequence using carbon nanotubes platform and gold nanoparticles amplification. Analyst, The, 2010, 135, 1765.	1.7	49
208	Electro-microchip DNA-biosensor for bacteria detection. Analyst, The, 2010, 135, 2717.	1.7	22

#	Article	IF	CITATIONS
209	Enzyme Biosensor Based on Plasma-Polymerized Film-Covered Carbon Nanotube Layer Grown Directly on A Flat Substrate. ACS Applied Materials & amp; Interfaces, 2011, 3, 2445-2450.	4.0	27
210	Electric Field Induced Electron Transfer between a Single-Walled Carbon Nanotube and a Molecularly Doped Hole Transport Layer. Journal of Physical Chemistry C, 2011, 115, 23964-23969.	1.5	1
211	A novel nanostructured iron oxide–gold bioelectrode for hydrogen peroxide sensing. Nanotechnology, 2011, 22, 265505.	1.3	17
212	Controlled Electrochemically-Assisted Deposition of Solâ^'Gel Biocomposite on Electrospun Platinum Nanofibers. Langmuir, 2011, 27, 7140-7147.	1.6	19
213	DIFFERENT MULTIWALLED CARBON NANOTUBES—ENZYME SYSTEM AND ENZYMATIC ACTIVITY. Preparative Biochemistry and Biotechnology, 2011, 41, 243-251.	1.0	3
214	Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chemical Reviews, 2011, 111, 3433-3458.	23.0	1,184
215	Carbon Nanotube-Based Sensors: Overview. , 2011, , 519-528.		2
216	Multifunctional Free-Standing Single-Walled Carbon Nanotube Films. ACS Nano, 2011, 5, 3214-3221.	7.3	300
217	Influence of gold nanoparticle size (2–50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Physical Chemistry Chemical Physics, 2011, 13, 4980.	1.3	67
218	Biosensors based on one-dimensional nanostructures. Journal of Materials Chemistry, 2011, 21, 8940.	6.7	70
219	Solid carbon nanorod whiskers: application to the electrochemical sensing of biologically relevant molecules. RSC Advances, 2011, 1, 93.	1.7	8
220	Conformational Switching Immobilized Hairpin DNA Probes Following Subsequent Expanding of Gold Nanoparticles Enables Visual Detecting Sequence-specific DNA. Analytical Chemistry, 2011, 83, 7500-7506.	3.2	33
221	A facile approach for quantifying the density of defects (edge plane sites) of carbon nanomaterials and related structures. Physical Chemistry Chemical Physics, 2011, 13, 1210-1213.	1.3	30
222	The characterization study of functionalized multi-wall carbon nanotubes purified by acid oxidation. , 2011, , .		6
223	Size-dependent direct electrochemical detection of gold nanoparticles: application in magnetoimmunoassays. Nanoscale, 2011, 3, 3350.	2.8	53
224	Microbial Biosensors for Environmental Monitoring and Food Analysis. Food Reviews International, 2011, 27, 300-329.	4.3	67
225	Copper(ii) doped nanoporous TiO2 composite based glucose biosensor. Analytical Methods, 2011, 3, 2611.	1.3	7
226	Rationally designed molecularly imprinted polymers for selective extraction of methocarbamol from human plasma. Talanta, 2011, 85, 1680-1688.	2.9	32

#	Article	IF	CITATIONS
227	Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film. Talanta, 2011, 87, 235-242.	2.9	48
228	Nanomaterials for regenerative medicine. Nanomedicine, 2011, 6, 157-181.	1.7	76
229	Binding of the Same Analyte (Glucose) to Different Biosensor Surfaces. , 2011, , 169-196.		0
231	Preparation of Tetraheptylammonium Iodide-Iodine Graphite-Multiwall Carbon Nanotube Paste Electrode: Electrocatalytic Determination of Ascorbic Acid in Pharmaceuticals and Foods. Analytical Sciences, 2011, 27, 929-935.	0.8	11
232	Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol) Tj ETQq0 0 0 rgBT /O and Surfaces B: Biointerfaces, 2011, 88, 614-621.	verlock 10 2.5) Tf 50 587 Td 85
233	Liquid sensing properties of melt processed polypropylene/poly(ε-caprolactone) blends containing multiwalled carbon nanotubes. Composites Science and Technology, 2011, 71, 1451-1460.	3.8	50
234	Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode. Electrochimica Acta, 2011, 56, 8176-8183.	2.6	74
235	Ultrasensitive electrochemical detection of Bacillus thuringiensis transgenic sequence based on in situ Ag nanoparticles aggregates induced by biotin–streptavidin system. Biosensors and Bioelectronics, 2011, 28, 464-468.	5.3	32
236	Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances, 2011, 29, 169-188.	6.0	401
237	Nanographite Impurities of Singleâ€Walled and Doubleâ€Walled Carbon Nanotubes Are Responsible for the Observed "Electrocatalytic―Effect towards the Reduction of Azo Groups. Chemistry - an Asian Journal, 2011, 6, 804-807.	1.7	28
238	Gold nanoparticle-based signal amplification for biosensing. Analytical Biochemistry, 2011, 417, 1-16.	1.1	337
239	Development of ultrasensitive surfactants doped poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotube sensor for the detection of pyrethroids and an organochlorine pesticide. Journal of Applied Electrochemistry, 2011, 41, 29-37.	1.5	22
240	A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Mikrochimica Acta, 2011, 172, 199-205.	2.5	28
241	Surface activation of plasma-patterned carbon nanotube based DNA sensing electrodes. Mikrochimica Acta, 2011, 174, 231-238.	2.5	7
242	Nanoparticles for the development of improved (bio)sensing systems. Analytical and Bioanalytical Chemistry, 2011, 399, 1577-1590.	1.9	86
243	A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer. Bioelectrochemistry, 2011, 81, 109-113.	2.4	36
244	Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosensors and Bioelectronics, 2011, 26, 3542-3548.	5.3	141
245	Magnetic particles and cadmium sulfide nanoparticles tagging for signal-amplifying detection of nucleic acids. Science China Chemistry, 2011, 54, 1304-1310.	4.2	9

#	Article	IF	CITATIONS
248	A New Indirect Electrochemical Method for Determination of Ozone in Water Using Multiwalled Carbon Nanotubes. Electroanalysis, 2011, 23, 1512-1517.	1.5	17
249	Electrochemical Determination of Tetracycline Using Molecularly Imprinted Polymer Modified Carbon Nanotubeâ€Gold Nanoparticles Electrode. Electroanalysis, 2011, 23, 1863-1869.	1.5	77
250	Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes as Coating for Electrochemical Sensors for Sulfhydryl Compounds. Electroanalysis, 2011, 23, 1773-1775.	1.5	13
251	Glassy Carbon Electrode Modified with Functionalized Carbon Nanotubes Within a Poly(allylamine) Tj ETQq1 1 C 2526-2533.	.784314 rg 1.5	gBT /Overloo 25
252	A Biosensor Based on Polyaniline arbon Nanotube Coreâ€ S hell for Electrochemical Detection of Pesticides. Electroanalysis, 2011, 23, 2586-2593.	1.5	37
253	Electrochemical Screening of Biomarkers in Chemotype Mexican Oregano Oils on Singleâ€Walled Carbon Nanotubes Screenâ€Printed Electrodes. Electroanalysis, 2011, 23, 2212-2216.	1.5	19
255	Highlyâ€Ordered Covalent Anchoring of Carbon Nanotubes on Electrode Surfaces by Diazonium Salt Reactions. Angewandte Chemie - International Edition, 2011, 50, 3457-3461.	7.2	35
256	A Highly Sensitive and Selective Fluorescent Probe for Cyanide Based on the Dissolution of Gold Nanoparticles and Its Application in Real Samples. Chemistry - A European Journal, 2011, 17, 9691-9696.	1.7	64
257	Nonenzymatic glucose sensor based on over-oxidized polypyrrole modified Pd/Si microchannel plate electrode. Biosensors and Bioelectronics, 2011, 26, 2579-2584.	5.3	24
258	Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Analytical Biochemistry, 2011, 410, 92-97.	1.1	30
259	A low-potential, H2O2-assisted electrodeposition of cobalt oxide/hydroxide nanostructures onto vertically-aligned multi-walled carbon nanotube arrays for glucose sensing. Electrochimica Acta, 2011, 56, 5538-5544.	2.6	56
260	Cannabinoid receptor gene detection by electrochemical genosensor. Journal of Electroanalytical Chemistry, 2011, 656, 55-60.	1.9	15
261	Carbon nanotube based sensors for the detection of viruses. Sensors and Actuators B: Chemical, 2011, 155, 67-74.	4.0	36
262	The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development. Surface Science, 2011, 605, 435-440.	0.8	59
263	The use of polymer–carbon nanotube composites in fibres. , 2011, , 657-675.		6
264	Evaluation of Acetylcholinesterase Biosensor Based on Carbon Nanotube Paste in the Determination of Chlorphenvinphos. International Journal of Analytical Chemistry, 2011, 2011, 1-6.	0.4	14
265	Prospects of Nanobiomaterials for Biosensing. International Journal of Electrochemistry, 2011, 2011, 1-30.	2.4	53
266	Single-Walled-Carbon-Nanotube-Modified Pyrolytic Graphite Electrode Used as a Simple Sensor for the Determination of Salbutamol in Urine. International Journal of Electrochemistry, 2011, 2011, 1-8.	2.4	9

#	Article	IF	Citations
267	Synthesis and optical properties of polyurethane foam modified with silver nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012, 3, 015001.	0.7	10
268	Biosensors and Their Principles. , O, , .		43
269	Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry. Beilstein Journal of Nanotechnology, 2012, 3, 388-396.	1.5	25
270	Functional Nanoparticle-Based Bioelectronic Devices. ACS Symposium Series, 2012, , 145-180.	0.5	3
271	Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta, 2012, 84, 49-61.	2.6	321
272	Surfaceâ€Imprinting Sensor Based on Carbon Nanotubes/Graphene Composite for Determination of Bovine Serum Albumin. Electroanalysis, 2012, 24, 2109-2116.	1.5	44
273	A developed competitive immunoassay based on impedance measurements for methamphetamine detection. Microfluidics and Nanofluidics, 2012, 13, 319-329.	1.0	14
274	Multiwall carbon nanotubes decorated with FeCr2O4, a new selective electrochemical sensor for amoxicillin determination. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	32
275	A sensitive non-enzymatic glucose sensor in alkaline media based on Cu/MnO2-modified glassy carbon electrode. Journal of the Iranian Chemical Society, 2012, 9, 1007-1014.	1.2	27
276	Functional nanofibers in sound absorption, electromagnetic wave attenuation and bioreactor application. , 2012, , 305-330.		2
277	Evaluation of the Potentialities of a Carbon Nanotubes/Silicone Rubber Composite Electrode in the Determination of Hydrochlorothiazide. Analytical Letters, 2012, 45, 1454-1466.	1.0	14
278	Templated synthesis of nylon nucleic acids and characterization by nuclease digestion. Chemical Science, 2012, 3, 1930.	3.7	12
279	Applications and Nanotoxicity of Carbon Nanotubes and Graphene in Biomedicine. Journal of Nanomaterials, 2012, 2012, 1-19.	1.5	125
280	Nitrogen- and Boron-Doped Carbon Nanotube Electrodes in a Thermo-Electrochemical Cell. Journal of the Electrochemical Society, 2012, 159, B483-B488.	1.3	52
281	Kinetic and Mechanistic Parameters of Laccase Catalyzed Direct Electrochemical Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 38-44.	5.5	93
282	Novel multi walled carbon nanotubes/ \hat{l}^2 -cyclodextrin based carbon paste electrode for flow injection potentiometric determination of piroxicam. Talanta, 2012, 97, 96-102.	2.9	45
283	Simple flow injection for screening of total antioxidant capacity by amperometric detection of DPPH radical on carbon nanotube modified-glassy carbon electrode. Talanta, 2012, 97, 267-272.	2.9	49
284	Nanochannels Preparation and Application in Biosensing. ACS Nano, 2012, 6, 7556-7583.	7.3	184

	Сітат	ion Report	
#	Article	IF	CITATIONS
285	A rational design of the multiwalled carbon nanotube–7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Analytica Chimica Acta, 2012, 748, 81-88.	2.6	43
286	Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chemistry, 2012, 135, 873-879.	4.2	207
287	Ordered mesoporous carbon for electrochemical sensing: A review. Analytica Chimica Acta, 2012, 747, 19-28.	2.6	176
288	Nanoelectrodes: Recent Advances and New Directions. Annual Review of Analytical Chemistry, 2012, 5, 253-272.	2.8	136
289	Sensitive sepiolite-carbon nanotubes based disposable electrodes for direct detection of DNA and anticancer drug–DNA interactions. Analyst, The, 2012, 137, 4001.	1.7	31
290	Scano-magneto immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection. Biosensors and Bioelectronics, 2012, 38, 157-162.	5.3	24
291	Carbon nanotubes modified with antimony nanoparticles: A novel material for electrochemical sensing. Electrochimica Acta, 2012, 85, 560-565.	2.6	35
292	DNA Sensors Employing Nanomaterials for Diagnostic Applications. Springer Series on Chemical Sensors and Biosensors, 2012, , 189-216.	0.5	1
293	Nanotechnology to Improve Detection Sensitivity for Electrochemical Microdevices. Springer Series on Chemical Sensors and Biosensors, 2012, , 257-279.	0.5	0
294	On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes. Lab on A Chip, 2012, 12, 2000.	3.1	27
295	Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors. Biosensors, 2012, 2, 70-82.	2.3	41
296	Conjugated polyelectrolyte complexes with single-walled carbon nanotubes for amperometric detection of glucose with inherent anti-interference properties. Journal of Materials Chemistry, 2012, 22, 9147.	6.7	21
297	A Reusable Impedimetric Aptasensor for Detection of Thrombin Employing a Graphite-Epoxy Composite Electrode. Sensors, 2012, 12, 3037-3048.	2.1	28
298	Electrochemical behavior of o-sec-butylphenol at glassy carbon electrode modified with multiwalled carbon nanotubes and 1-butyl-3-methylimidazolium hexafluorophosphate. Analyst, The, 2012, 137, 4335	. 1.7	7
299	Sensitive Determination of (â^')-Epigallocatechin Gallate in Tea Infusion Using a Novel Ionic Liquid Carbon Paste Electrode. Journal of Agricultural and Food Chemistry, 2012, 60, 6333-6340.	2.4	42
300	Voltammetry of carbon nanotubes and graphenes: excitement, disappointment, and reality. Chemical Record, 2012, 12, 201-213.	2.9	103
301	Determination of 6â€mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubesâ€TiO ₂ as a voltammetric sensor. Drug Testing and Analysis, 2012, 4, 970-977.	1.6	45
302	Glassy Carbon Electrodes Filmâ€Modified with Acidic Functionalities. A Review. Electroanalysis, 2012, 24 1481-1500.	1.5	40

ARTICLE IF CITATIONS Controlled conductive junction gap for chitosanâ€"carbon nanotube quantum resistive vapour 303 6.7 50 sensors. Journal of Materials Chemistry, 2012, 22, 10656. Harnessing aptamers for electrochemical detection of endotoxin. Analytical Biochemistry, 2012, 424, 304 1.1 12-20. Characteristics of third-generation glucose biosensors based on Corynascus thermophilus 305 cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working 1.1 45 under physiological conditions. Analytical Biochemistry, 2012, 425, 36-42. Simple Förster resonance energy transfer evidence for the ultrahigh quantum dot quenching 306 103 efficiency by graphene oxide compared to other carbon structures. Carbon, 2012, 50, 2987-2993. Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry, 2012, 84, 307 2.4 45 1-5 Use of nanohybrid materials as electrochemical transducers for mercury sensors. Sensors and 308 4.0 64 Actuators B: Chemical, 2012, 165, 143-150. Synergistic Effect of MWNTs/CeO₂/CHIT Film for Detection of CdSe Nanoparticle Labeled 309 1.5 6 Sequenceâ€Specific of 35S Promoter of Cauliflower Mosaic Virus Gene. Electroanalysis, 2012, 24, 392-397. Nanomaterials Based Electrochemical Sensing Applications for Safety and Security. Electroanalysis, 310 1.5 2012, 24, 459-469. Simultaneous Voltammetric Determination of Ascorbic Acid and Sulfite in Beverages Employing a 311 Glassy Carbon Electrode Modified with Carbon Nanotubes within a Poly(Allylamine Hydrochloride) 1.5 25 Film. Électroanalysis, 2012, 24, 627-634. [O] [H] functionalization on carbon nanotube using (O2–H2) gas mixture DC glow discharge. Applied 1.6 Nanoscience (Switzerland), 2012, 2, 47-53. Development of electrochemical DNA biosensor for Trichoderma harzianum based on ionic liquid/ZnO 313 1.2 22 nanoparticles/chitosan/gold electrode. Journal of Solid State Electrochemistry, 2012, 16, 273-282. Application of meltâ€blown technology for the manufacture of temperatureâ€sensitive nonwoven fabrics composed of polymer blends PP/PCL loaded with multiwall carbon nanotubes. Journal of Applied 1.3 Polymer Science, 2013, 127, 869-878. Optical fiber spectroelectrochemical device for detection of catechol at press-transferred 315 single-walled carbon nanotubes electrodes. Analytical and Bioanalytical Chemistry, 2013, 405, 1.9 16 3593-3602. A reagentless enantioselective sensor for tryptophan enantiomers via nanohybrid matrices. Analytical 1.3 Methods, 2013, 5, 4397. Unusual application of common digital devices: Potentialities of Eye-One Pro mini-spectrophotometer 317 \hat{a} \in " A monitor calibrator for registration of surface plasmon resonance bands of silver and gold 4.0 31 nanoparticles in solid matrices. Sensors and Actuators B: Chemical, 2013, 188, 1109-1115. Multivariate optimization of a new 4-chlorophenol sensor fabricated by modification of glassy carbon electrode using Ni(OH)2 nanoparticles-carbon nanotubes (NNH–MWCNTs). Sensors and 34 Actuators B: Chemical, 2013, 186, 536-544. 319 Centri-voltammetric determination of glutathione. Mikrochimica Acta, 2013, 180, 93-100. 2.523 Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2013, 709, 99-105.

#	Article	IF	CITATIONS
322	Voltammetric determination of verapamil and propranolol using a glassy carbon electrode modified with functionalized multiwalled carbon nanotubes within a poly (allylamine hydrochloride) film. Journal of Electroanalytical Chemistry, 2013, 708, 73-79.	1.9	52
323	Electrochemical Behavior of Flavin Adenine Dinucleotide Adsorbed onto Carbon Nanotube and Nitrogen-Doped Carbon Nanotube Electrodes. Langmuir, 2013, 29, 13605-13613.	1.6	16
324	Voltammetric determination of 6-mercaptopurine using a multiwall carbon nanotubes paste electrode in the presence of isoprenaline as a mediator. Journal of Molecular Liquids, 2013, 177, 182-189.	2.3	57
325	Nanoproteomics: a new sprout from emerging links between nanotechnology and proteomics. Trends in Biotechnology, 2013, 31, 99-107.	4.9	43
326	Construction of a carbon paste electrode based on ionic liquid for trace electrochemical detection of nitrite in food samples. Analytical Methods, 2013, 5, 5146.	1.3	11
327	Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sensors and Actuators B: Chemical, 2013, 188, 1293-1299.	4.0	66
328	Computational, electrochemical, and spectroscopic, studies of acetycholinesterase covalently attached to carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2013, 103, 624-629.	2.5	12
329	Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosensors and Bioelectronics, 2013, 40, 412-416.	5.3	263
330	Paper-based nanobiosensors for diagnostics. Chemical Society Reviews, 2013, 42, 450-457.	18.7	481
331	Nanoparticles Based Electroanalysis in Diagnostics Applications. Electroanalysis, 2013, 25, 15-27.	1.5	25
332	Multi-walled carbon nanotubes–dispersive solid-phase extraction combined with liquid chromatography–tandem mass spectrometry for the analysis of 18 sulfonamides in pork. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 929, 107-115.	1.2	62
333	Recycling old screen-printed electrodes with newly designed plastic antibodies on the wall of carbon nanotubes as sensory element for in situ detection of bacterial toxins in water. Sensors and Actuators B: Chemical, 2013, 189, 21-29.	4.0	22
334	Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions. Biosensors and Bioelectronics, 2013, 46, 162-170.	5.3	25
335	A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochimica Acta, 2013, 96, 164-172.	2.6	143
336	Multi-walled carbon nanotube modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-viral drug valganciclovir in pharmaceuticals. Sensors and Actuators B: Chemical, 2013, 177, 841-847.	4.0	81
337	Dispersion studies of carboxyl, amine and thiol-functionalized carbon nanotubes for improving the electrochemical behavior of screen printed electrodes. Sensors and Actuators B: Chemical, 2013, 181, 353-360.	4.0	28
338	Biosensors in Food PDO Authentication. Comprehensive Analytical Chemistry, 2013, 60, 279-297.	0.7	9
339	Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode. Journal of Environmental Sciences, 2013, 25, 838-847.	3.2	43

ARTICLE IF CITATIONS # Turn-on colorimetric sensor for ultrasensitive detection of thrombin using fibrinogen–gold 340 1.7 17 nanoparticle conjugate. Analyst, The, 2013, 138, 1475. Label-free selective impedimetric detection of Cu2+ ions using catalytic DNA. Analyst, The, 2013, 138, 341 1.7 1995. Acetylcholinesterase biosensor for carbamate drugs based on 342 tetrathiafulvalene–tetracyanoquinodimethane/ionic liquid conductive gels. Biosensors and 5.3 51 Bioelectronics, 2013, 46, 61-67. Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics, 343 2013, 40, 121-126. Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers 344 2.1 22 for Acetaminophen Analysis. Sensors, 2013, 13, 4841-4854. Fabrication of an Electrochemical Sensor Based on Multiwalled Carbon Nanotubes for Almotriptan. 1.5 Electroanalysis, 2013, 25, 2684-2690. Electrochemical Techniques for Characterization and Detection Application of Nanostructured 346 4 Carbon Composite., 0, , . Hydrogen Peroxide Sensor Based on Carbon Nanotubes - Poly(celestine blue) Nanohybrid Modified 0.3 Electrode. Advanced Materials Research, 2014, 938, 263-268. Improved Interfacial Electron Transfer in Modified Bilirubin Oxidase Biocathodes. ChemElectroChem, 348 1.7 64 2014, 1, 241-248. Simultaneous Determination of Iron and Copper in Ethanol Fuel Using Nafion/Carbon Nanotubes 349 1.5 Electrode. Electroanalysis, 2014, 26, 1794-1800. Performance Characteristics of Modified Paraffin Impregnated Graphite Electrodesâ€"Testing of 350 3 1.1 Different Carbon Nanotubes Binders. Particulate Science and Technology, 2014, 32, 602-607. Nanosized Materials in Amperometric Sensors. Nanostructure Science and Technology, 2014, , 497-527. 0.1 Voltammetric Sensor for Total Cholesterol Determination. Procedia Chemistry, 2014, 10, 513-518. 352 0.7 12 Performance of a portable biosensor for the analysis of ethion residues. Talanta, 2014, 119, 467-472. 39 Chemiluminescence immunoassay for the rapid and sensitive detection of antibody against porcine 354 parvovirus by using horseradish peroxidase/detection antibodyâ€coated gold nanoparticles as 1.5 14 nanoprobes. Luminescence, 2014, 29, 338-343. A comparison of four protocols for the immobilization of an aptamer on graphite composite electrodes. Mikrochimica Acta, 2014, 181, 355-363. Determination of serotonin on platinum electrode modified with carbon 356 nanotubes/polypyrrole/silver nanoparticles nanohybrid. Materials Science and Engineering C, 2014, 40, 3.8 63 49-54. Three Dimensional Carbon Nanosheets as a Novel Catalyst Support for Enzymatic Bioelectrodes. Advanced Energy Materials, 2014, 4, 1301306.

#	Article	IF	CITATIONS
358	Mediatorless amperometric bienzyme glucose biosensor based on horseradish peroxidase and glucose oxidase cross-linked to multiwall carbon nanotubes. Mikrochimica Acta, 2014, 181, 535-541.	2.5	30
359	A lipase-based electrochemical biosensor for target DNA. Mikrochimica Acta, 2014, 181, 615-621.	2.5	9
360	Rapid and clean amine functionalization of carbon nanotubes in a dielectric barrier discharge reactor for biosensor development. Electrochimica Acta, 2014, 115, 378-385.	2.6	27
361	Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs–chitosan and gold nanoparticles attached to thioglycolic acid. Sensors and Actuators B: Chemical, 2014, 200, 251-258.	4.0	53
362	Carbon-based sorbents: Carbon nanotubes. Journal of Chromatography A, 2014, 1357, 53-67.	1.8	99
363	Sensitive voltammetric determination of cysteamine using promazine hydrochloride as a mediator and modified multi-wall carbon nanotubes carbon paste electrodes. Ionics, 2014, 20, 1335-1342.	1.2	11
364	Methylene blue covalently attached to single stranded DNA as electroactive label for potential bioassays. Sensors and Actuators B: Chemical, 2014, 191, 784-790.	4.0	28
365	Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. TrAC - Trends in Analytical Chemistry, 2014, 55, 24-42.	5.8	82
366	Grafting chitosan and polyHEMA on carbon nanotubes surfaces: "Grafting to―and "Grafting from― methods. International Journal of Biological Macromolecules, 2014, 63, 92-97.	3.6	21
367	Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters. Review of Scientific Instruments, 2014, 85, 104704.	0.6	23
368	Electrochemical synthesis of mixed-valence manganese/copper hybrid composite using graphene oxide and multi-walled carbon nanotubes for nonenzymatic glucose sensor. Journal of Electroanalytical Chemistry, 2014, 735, 36-42.	1.9	20
369	Enzymatic biosensors based on ingá-cipó peroxidase immobilised on sepiolite for TBHQ quantification. Analyst, The, 2014, 139, 2214.	1.7	23
370	A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate. Analyst, The, 2014, 139, 3796-3803.	1.7	15
371	Preparation and evaluation of a polymeric gel containing ionic liquid-functionalized MWCNTs as a novel class of organic solvent absorbent. Journal of Polymer Science Part A, 2014, 52, 3166-3172.	2.5	9
372	Chemical and biological sensing with carbon nanotubes (CNTs). , 2014, , 3-27.		2
373	Low energy electrons focused by the image charge interaction in carbon nanotubes. Carbon, 2014, 80, 50-58.	5.4	3
375	Carbon nanotube modified Zn 0.83 Cd 0.17 S nanocomposite photocatalyst and its hydrogen production under visible-light. International Journal of Hydrogen Energy, 2014, 39, 15380-15386.	3.8	13
376	Nanocrystalline Iron Oxides, Composites, and Related Materials as a Platform for Electrochemical, Magnetic, and Chemical Biosensors. Chemistry of Materials, 2014, 26, 6653-6673.	3.2	140

	СПАПО	NKEPORT	
#	Article	IF	Citations
377	Determination of DNA and Thrombin by an Electrochemical Sensor Employing Aggregation of Crosslinked Gold Nanoparticles and Aptamer Segments. Analytical Letters, 2014, 47, 309-322.	1.0	4
378	Simultaneous determination of amantadine, rimantadine and memantine in chicken muscle using multi-walled carbon nanotubes as a reversed-dispersive solid phase extraction sorbent. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 965, 197-205.	1.2	41
379	A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized by sol–gel thin film on a multi-wall carbon nanotube modified electrode. Analytical Methods, 2014, 6, 6310-6315.	1.3	27
380	Electrochemical properties of spaghetti and forest like carbon nanotubes grown on glass substrates. Sensors and Actuators B: Chemical, 2014, 192, 253-260.	4.0	11
381	Mechanistic Insights Gained by Monitoring Carbon Nanotube/Prussian Blue Nanocomposite Formation With in Situ Electrochemically Based Techniques. Journal of Physical Chemistry C, 2014, 118, 13157-13167.	1.5	17
382	Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films. Biosensors and Bioelectronics, 2014, 56, 345-351.	5.3	82
383	Label-free impedimetric aptasensor based on epoxy-graphite electrode for the recognition of cytochrome c. Sensors and Actuators B: Chemical, 2014, 191, 860-865.	4.0	38
384	Antimony nanoparticle-multiwalled carbon nanotubes composite immobilized at carbon paste electrode for determination of trace heavy metals. Sensors and Actuators B: Chemical, 2014, 191, 320-325.	4.0	64
385	Preparation, Characterization, and Bioelectrocatalytic Properties of Hemoglobin Incorporated Multiwalled Carbon Nanotubesâ€Polyâ€ <scp>L</scp> â€lysine Composite Film Modified Electrodes Towards Bromate. Electroanalysis, 2014, 26, 996-1003.	1.5	5
386	Novel single-wall carbon nanotube screen-printed electrode as an immunosensor for human chorionic gonadotropin. Electrochimica Acta, 2014, 136, 323-329.	2.6	30
387	Assessments of Surface Coverage after Nanomaterials are Drop Cast onto Electrodes for Electroanalytical Applications. ChemElectroChem, 2015, 2, 1003-1009.	1.7	22
388	Possible High Efficiency Platform for Biosensors Based on Optimum Physical Chemistry of Carbon Nanotubes. Chemical Vapor Deposition, 2015, 21, 263-266.	1.4	14
389	High Performance Nonâ€enzymatic Glucose Sensor Based on Oneâ€Step Electrodeposited Nickel Sulfide. Chemistry - A European Journal, 2015, 21, 9355-9359.	1.7	85
390	Conductive Polymeric Composites Based on Multiwalled Carbon Nanotubes and Linseed Oil Functionalized and Cross-Linked with Diacetylenes from Propargyl Alcohol. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	3
391	Electronically Type-Sorted Carbon Nanotube-Based Electrochemical Biosensors with Glucose Oxidase and Dehydrogenase. ACS Applied Materials & amp; Interfaces, 2015, 7, 584-592.	4.0	37
392	Surface modifications for enhanced enzyme immobilization and improved electron transfer of PQQ-dependent glucose dehydrogenase anodes. Bioelectrochemistry, 2015, 105, 78-87.	2.4	16
393	Electrospinning-Based Nanobiosensors. Nanoscience and Technology, 2015, , 225-279.	1.5	5
394	Impact electrochemistry: colloidal metal sulfide detection by cathodic particle coulometry. Physical Chemistry Chemical Physics, 2015, 17, 26997-27000.	1.3	9

#	Article	IF	CITATIONS
395	Novel Multi Walled Carbon Nanotubes /Crown Ether Based Disposable Sensors for Determination of Lead in Water Samples. Analytical Chemistry Letters, 2015, 5, 329-337.	0.4	6
396	Electrospun Polyamide 6/Poly(allylamine hydrochloride) Nanofibers Functionalized with Carbon Nanotubes for Electrochemical Detection of Dopamine. ACS Applied Materials & Interfaces, 2015, 7, 4784-4790.	4.0	185
397	A novel nonenzymatic glucose sensor based on magnetic copper ferrite immobilized on multiwalled carbon nanotubes. Analytical Methods, 2015, 7, 2360-2366.	1.3	31
398	Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosensors and Bioelectronics, 2015, 68, 521-528.	5.3	50
399	Antibody-integrated and functionalized graphite-encapsulated magnetic beads, produced using ammonia gas plasma technology, for capturing Salmonella. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1012-1016.	1.0	19
400	Advancing from Rules of Thumb: Quantifying the Effects of Small Density Changes in Mass Transport to Electrodes. Understanding Natural Convection. Analytical Chemistry, 2015, 87, 7226-7234.	3.2	41
401	Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan–copper complex by self-assembly technique. Talanta, 2015, 144, 252-257.	2.9	64
402	Preparation of gold nanoparticles/single-walled carbon nanotubes/polyaniline composite-coated electrode developed for DNA detection. Polymer Bulletin, 2015, 72, 3135-3146.	1.7	18
403	Synthesis of molecular biomimetics. , 2015, , 3-31.		2
404	Fabrication and characterization of highly-ordered Zinc Oxide nanorods on gold/glass electrode, and its application as a voltammetric sensor. Electrochimica Acta, 2015, 174, 1261-1267.	2.6	33
405	Plant root nodule like nickel-oxide–multi-walled carbon nanotube composites for non-enzymatic glucose sensors. RSC Advances, 2015, 5, 44792-44799.	1.7	23
406	Electronic platform for real-time multi-parametric analysis of cellular behavior post-exposure to single-walled carbon nanotubes. Biosensors and Bioelectronics, 2015, 71, 269-277.	5.3	12
407	Electrooxidation of NADH on Modified Screen-Printed Electrodes: Effects of Conducting Polymer and Nanomaterials. Electrochimica Acta, 2015, 166, 261-270.	2.6	41
408	In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. RSC Advances, 2015, 5, 37281-37286.	1.7	57
409	Voltammetric techniques at chemically modified electrodes. Journal of Analytical Chemistry, 2015, 70, 399-418.	0.4	45
410	Layer-by-Layer assembled films of chitosan and multi-walled carbon nanotubes for the electrochemical detection of 171±-ethinylestradiol. Journal of Electroanalytical Chemistry, 2015, 755, 215-220.	1.9	52
411	Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. Journal of Electroanalytical Chemistry, 2015, 757, 250-257.	1.9	77
412	Sensitive electrochemical sensor for the determination of pentachlorophenol in fish meat based on ZnSe quantum dots decorated multiwall carbon nanotubes nanocomposite. Ionics, 2015, 21, 3257-3266.	1.2	18

#	Article	IF	CITATIONS
413	Selective adsorption of gold ions from complex system using oxidized multi-walled carbon nanotubes. Journal of Molecular Liquids, 2015, 212, 480-486.	2.3	37
414	Facile preparation of a highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with electrodeposited metals. RSC Advances, 2015, 5, 2806-2812.	1.7	10
415	Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor. Analytical and Bioanalytical Chemistry, 2015, 407, 439-446.	1.9	44
416	One-dimensional nanostructures based bio-detection. Biosensors and Bioelectronics, 2015, 63, 432-443.	5.3	43
417	Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes–PDDA–gold nanoparticles. Talanta, 2015, 133, 134-141.	2.9	50
418	Tailored carbon nanotube immunosensors for the detection of microbial contamination. Biosensors and Bioelectronics, 2015, 67, 642-648.	5.3	31
419	Electrochemically Activated Screen Printed Carbon Electrode Decorated with Nickel Nano Particles for the Detection of Glucose in Human Serum and Human Urine Sample. International Journal of Electrochemical Science, 2016, 11, 7934-7946.	0.5	20
420	Monitoring of Glucose in Beer Brewing by a Carbon Nanotubes Based Nylon Nanofibrous Biosensor. Journal of Nanomaterials, 2016, 2016, 1-11.	1.5	16
421	Nanocarbonâ€based Electrochemical Detection of Heavy Metals. Electroanalysis, 2016, 28, 2472-2488.	1.5	50
422	The modification of benzene adsorption on zigzag single-wall carbon nanotubes by carboxylation. Materials Research Express, 2016, 3, 125010.	0.8	5
423	Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. TrAC - Trends in Analytical Chemistry, 2016, 84, 22-47.	5.8	78
424	Hydrodynamic chronoamperometric determination of hydrogen peroxide using carbon paste electrodes coated by multiwalled carbon nanotubes decorated with MnO2 or Pt particles. Sensors and Actuators B: Chemical, 2016, 233, 83-92.	4.0	33
425	Applications of MN4 Macrocyclic Metal Complexes in Electroanalysis. , 2016, , 107-133.		2
426	Magical Allotropes of Carbon: Prospects and Applications. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 257-317.	6.8	167
427	Development of an impedimetric immunobiosensor for measurement of carcinoembryonic antigen. Sensors and Actuators A: Physical, 2016, 241, 203-211.	2.0	13
428	Voltammetric sensors based on gel composites containing carbon nanotubes and an ionic liquid. Journal of Analytical Chemistry, 2016, 71, 814-822.	0.4	2
429	Oxidation state selective sorption behavior of plutonium using N,N-dialkylamide functionalized carbon nanotubes: experimental study and DFT calculation. RSC Advances, 2016, 6, 78692-78701.	1.7	37
430	Bio(Sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon, 2016, 108, 481-514.	5.4	118

#	Article	IF	CITATIONS
431	Sorption behaviour of Pu ⁴⁺ and PuO ₂ ²⁺ on amido amine-functionalized carbon nanotubes: experimental and computational study. RSC Advances, 2016, 6, 107011-107020.	1.7	23
432	Development of Disposable Carbon Nanofibers Electrodes Supported on Filters. Electroanalysis, 2016, 28, 890-897.	1.5	4
433	Plasma treatment of multi-walled carbon nanotubes for lipase immobilization. Korean Journal of Chemical Engineering, 2016, 33, 1653-1658.	1.2	11
434	Determination of Hydroquinone with a Carbon Nanotube/Polyurethane Resin Composite Electrode. Analytical Letters, 2016, 49, 1513-1525.	1.0	6
435	Portable analyzer for continuous monitoring of sulfur dioxide in gas stream based on amperometric detection and stabilized gravity-driven flow. Sensors and Actuators B: Chemical, 2016, 225, 24-33.	4.0	8
436	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	18.7	249
437	Significance of the Length of Carbon Nanotubes on the Bioelectrocatalytic Activity of Bilirubin Oxidase for Dioxygen Reduction. Electrochimica Acta, 2016, 192, 133-138.	2.6	27
438	Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Mikrochimica Acta, 2016, 183, 1553-1561.	2.5	40
439	Carbon-nanotube amperometric sensor for selective determination of 4-chloroaniline in commercial chlorhexidine solutions. Sensors and Actuators B: Chemical, 2016, 231, 38-44.	4.0	11
440	An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite. Applied Surface Science, 2016, 364, 703-709.	3.1	46
441	Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. Nano Letters, 2016, 16, 721-727.	4.5	276
442	Multiwall carbon nanotubes chemically modified carbon paste electrodes for determination of gentamicin sulfate in pharmaceutical preparations and biological fluids. Materials Science and Engineering C, 2016, 59, 838-846.	3.8	20
443	Review on Polymer/Carbon Nanotube Composite Focusing Polystyrene Microsphere and Polystyrene Microsphere/Modified CNT Composite: Preparation, Properties, and Significance. Polymer-Plastics Technology and Engineering, 2016, 55, 582-603.	1.9	20
444	Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine. Materials Science and Engineering C, 2016, 60, 67-77.	3.8	28
445	Development and characterization of carbon based electrodes from pyrolyzed paper for biosensing applications. Journal of Electroanalytical Chemistry, 2016, 765, 8-15.	1.9	53
446	Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2017, 91, 728-733.	5.3	149
447	Calixarene/carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples. Sensors and Actuators B: Chemical, 2017, 244, 876-884.	4.0	35
448	Synthesis and characterization of Ag@SiO 2 core-shell nanoparticles for antibacterial and environmental applications. Journal of Molecular Liquids, 2017, 231, 281-287.	2.3	54

\sim			_	
	ΙΤΑΤ	ION	RED	ORT
<u> </u>		1011		

#	Article	IF	CITATIONS
449	3.31 Carbon Nanotube-Based Sensors: Overview â~†. , 2017, , 690-702.		1
450	Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Scientific Reports, 2017, 7, 976.	1.6	63
451	Low-power-consumption flat-panel light-emitting device driven by field-emission electron source using high-crystallinity single-walled carbon nanotubes. Japanese Journal of Applied Physics, 2017, 56, 065101.	0.8	9
452	Electrochemical sensor based on multi-walled carbon nanotubes and chitosan-nickel complex for sensitive determination of metronidazole. Journal of Electroanalytical Chemistry, 2017, 799, 257-262.	1.9	69
453	Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles. Mikrochimica Acta, 2017, 184, 1987-1996.	2.5	18
454	Bioapplications of Electrochemical Sensors and Biosensors. Methods in Enzymology, 2017, 589, 301-350.	0.4	8
455	Electrochemical determination of an anti-hyperlipidimic drug pitavastatin at electrochemical sensor based on electrochemically pre-treated polymer film modified GCE. Journal of Pharmaceutical Analysis, 2017, 7, 258-264.	2.4	20
456	Use of pyrolyzed paper as disposable substrates for voltammetric determination of trace metals. Talanta, 2017, 165, 33-38.	2.9	33
457	Novel ipratropium bromide nanomaterial based screen-printed sensors. Analytical Methods, 2017, 9, 304-311.	1.3	3
458	Quantum capacitance as a reagentless molecular sensing element. Nanoscale, 2017, 9, 15362-15370.	2.8	34
459	Cellobiose dehydrogenase: Insights on the nanostructuration of electrodes for improved development of biosensors and biofuel cells. Applied Materials Today, 2017, 9, 319-332.	2.3	42
460	PMo11V@N-CNT electrochemical properties and its application as electrochemical sensor for determination of acetaminophen. Journal of Solid State Electrochemistry, 2017, 21, 1059-1068.	1.2	16
461	A Peptide Nucleic Acid (PNA)â€DNA Ferrocenyl Intercalator for Electrochemical Sensing. Electroanalysis, 2017, 29, 917-922.	1.5	11
462	A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants. Journal of Hazardous Materials, 2017, 324, 272-280.	6.5	73
463	Electrochemical (Bio)sensing of Clinical Markers Using Quantum Dots. Electroanalysis, 2017, 29, 24-37.	1.5	21
464	Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sensors and Actuators B: Chemical, 2017, 238, 346-356.	4.0	112
465	Carbon Nanotube-Based Chemiresistive Sensors. Sensors, 2017, 17, 882.	2.1	131
466	Disease-Related Detection with Electrochemical Biosensors: A Review. Sensors, 2017, 17, 2375.	2.1	112

#	Article	IF	CITATIONS
467	Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus. Sensors, 2017, 17, 2597.	2.1	60
468	Chemical sensors based onÂhybrid nanomaterials for food analysis. , 2017, , 205-244.		12
469	Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview. Sensors, 2017, 17, 1910.	2.1	62
470	An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors. Journal of Carbon Research, 2017, 3, 8.	1.4	21
471	Development of Single-Walled Carbon Nanotube-Based Biosensor for the Detection of <i>Staphylococcus aureus</i> . Journal of Food Quality, 2017, 2017, 1-8.	1.4	26
472	Conductive Polymer Composites Synthesized from Diacetylene-Functionalized Linseed Oil and MWCNT: Gamma Irradiation and Organic Vapor Sensing. Journal of Renewable Materials, 2017, 5, 132-144.	1.1	1
473	Redox probe-free readings of a \hat{l}^2 -amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensors and Actuators B: Chemical, 2018, 264, 1-9.	4.0	43
474	Simple fabrication method of flexible carbon nanotube electrodes using inkjet and transfer printing methods for dopamine detection. Journal of the Taiwan Institute of Chemical Engineers, 2018, 92, 63-71.	2.7	14
475	Nonenzymatic glucose sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode. Journal of Physics and Chemistry of Solids, 2018, 120, 12-19.	1.9	52
476	Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Analytica Chimica Acta, 2018, 1010, 37-43.	2.6	130
477	Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. Journal of Electroanalytical Chemistry, 2018, 813, 67-74.	1.9	43
478	Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Applied Materials & Interfaces, 2018, 10, 6055-6072.	4.0	115
479	A multi-walled carbon nanotubes/cellulose acetate composite electrode (MWCNT/CA) as sensing probe for the amperometric determination of some catecholamines. Sensors and Actuators B: Chemical, 2018, 255, 3533-3540.	4.0	21
480	Graphene oxides/multi-walled carbon nanotubes hybrid-modified carbon electrodes for fast and sensitive voltammetric determination of the anticancer drug 5-fluorouracil in spiked human plasma samples. Chemical Papers, 2018, 72, 431-439.	1.0	20
481	Synthesis of epicatechin coated silver nanoparticles for selective recognition of gentamicin. Sensors and Actuators B: Chemical, 2018, 257, 897-905.	4.0	23
482	C-MEMS Derived Glassy Carbon Electrodes as Sensitive Electrochemical Biosensors. , 2018, , .		0
483	A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion. IOP Conference Series: Materials Science and Engineering, 2018, 322, 042018.	0.3	2
484	Design, Fabrication, and Optimization of Polypyrrole/Bismuth Oxide Nanocomposite as Voltammetric Sensor for the Electroanalysis of Clofazimine. Journal of the Electrochemical Society, 2018, 165, H979-H990.	1.3	11

		CITATION REPORT		
#	Article		IF	CITATIONS
485	Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Catalysis, 2018, 8, 10279-10289.	on a Electrode. ACS	5.5	43
486				

		CITATION REPORT		
#	Article		IF	Citations
503	Electrochemical DNA Biosensors Based on Labeling with Nanoparticles. Nanomaterials,	, 2019, 9, 1361.	1.9	56
504	Copper-Decorated CNTs as a Possible Electrode Material in Supercapacitors. Batteries,	2019, 5, 60.	2.1	2
505	Influence of Electrostatic Interactions Induced via a Nanocomposite Film onto a Glassy Electrode Used for Highly Selective and Sensitive Ascorbic Acid Detection. Journal of the Electrochemical Society, 2019, 166, B742-B747.	Carbon Ie	1.3	5
506	Fabrication of a highly sensitive and selective modified electrode for imidacloprid deter based on designed nanocomposite graphene quantum dots/ionic liquid/multiwall carbo nanotubes/polyaniline. Sensors and Actuators B: Chemical, 2019, 296, 126682.	mination on	4.0	46
507	Rapid detection of Yersinia enterocolitica using a single–walled carbon nanotube-bas for Kimchi product. LWT - Food Science and Technology, 2019, 108, 48-54.	sed biosensor	2.5	37
508	Facile synthesis of macroporous Ag and CuO monoliths as an efficient nonenzymatic e sensor and antimicrobial agent. Journal of Solid State Chemistry, 2019, 273, 233-242.	lectrochemical	1.4	11
509	Kinetic and thermodynamic studies of molecularly imprinted polymers for the selective and specific enantiomeric recognition of D-mandelic acid. Journal of Polymer Research,	adsorption 2019, 26, 1.	1.2	16
510	Facile Preparation of Carbon Nanotube-Cu2O Nanocomposites as New Catalyst Materi Reduction of P-Nitrophenol. Nanoscale Research Letters, 2019, 14, 78.	als for	3.1	74
511	Towards label-free, wash-free and quantitative B-type natriuretic peptide detection for diagnosis. Nanoscale, 2019, 11, 18347-18357.	heart failure	2.8	10
512	Broad Spectrum Anti-Fouling, Photocatalytic Antibacterial and Superamphiphobic Coat by Composite Electrodeposition Process. Journal of the Electrochemical Society, 2019,	ting Fabricated 166, E564-E575.	1.3	10
513	Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. A Chimica Acta, 2019, 1046, 123-131.	nalytica	2.6	86
514	Reduced graphene oxide/graphene oxide hybrid-modified electrode for electrochemical tobramycin. Chemical Papers, 2019, 73, 291-299.	sensing of	1.0	12
515	Disposable carbon nanotube scaffold films for fast and reliable assessment of total $\hat{l}\pm 1$ glycoprotein in human serum using adsorptive transfer stripping square wave voltamm Analytical and Bioanalytical Chemistry, 2019, 411, 1887-1894.	-acid netry.	1.9	6
516	Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors a Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Ch 2019, 119, 120-194.	nd emical Reviews,	23.0	436
517	Laserâ€Patterned Copper Electrodes for Proximity and Tactile Sensors. Advanced Mate 2020, 7, 1901845.	rials Interfaces,	1.9	10
518	Enhanced detection of volatile organic compounds (VOCs) by caffeine modified carbon junctions. Nano Structures Nano Objects, 2020, 24, 100578.	n nanotube	1.9	6
519	Potentiometric screen-printed sensor for determination of oxybutynin hydrochloride. Jo Iranian Chemical Society, 2020, 17, 3019-3029.	ournal of the	1.2	0
520	Ultrasensitive and Indirect Electrochemical Detection of Sulfamethoxazole Using Ag2C Nanocomposites Modified Glassy Carbon Electrode. International Journal of Electroche 2020, 15, 7610-7623.	0 @ MWCNTs mical Science,	0.5	3

#	Article	IF	CITATIONS
521	Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sensors, 2020, 5, 3721-3738.	4.0	75
522	Theoretical insight into tar carbonization mechanism. Chemical Physics Letters, 2020, 747, 137373.	1.2	1
523	Sensitive electrochemical sensor using polypyrrole-coated Fe3O4 core-shell nanoparticles/multiwall carbon nanotubes modified graphite electrode for atorvastatin analysis. Microchemical Journal, 2020, 158, 105159.	2.3	29
524	C-MEMS Derived Glassy Carbon Electrodes-Based Sensitive Electrochemical Biosensors. IEEE Sensors Journal, 2020, 20, 12472-12478.	2.4	10
525	β- Cyclodextrin / Carbon Xerogel Based Potentiometric Screen Printed Sensor for Determination of Meclofenoxate Hydrochloride. International Journal of Electrochemical Science, 2020, 15, 3365-3381.	0.5	5
526	Review—Enzymatic Strips for Detection of Serum Total Cholesterol with Point-of-Care Testing (POCT) Devices: Current Status and Future Prospect. Journal of the Electrochemical Society, 2020, 167, 037535.	1.3	20
527	Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60). SN Applied Sciences, 2020, 2, 1.	1.5	48
528	Enhanced electrochemical oxidation of ethanol using a hybrid catalyst cascade architecture containing pyrene-TEMPO, oxalate decarboxylase and carboxylated multi-walled carbon nanotube. Biosensors and Bioelectronics, 2020, 154, 112077.	5.3	17
529	Chemical Wet Oxidation of Carbon Nanotubes for Electrochemical Determination of Methyl Parathion. Journal of Analytical Chemistry, 2020, 75, 119-126.	0.4	23
530	Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Materials Chemistry and Physics, 2020, 250, 123042.	2.0	270
531	Characterization of Microfibers of Carbon Nanotubes Obtained by Electrospinning for Use in Electrochemical Sensor. Journal of Polymers and the Environment, 2021, 29, 1551-1565.	2.4	9
532	Ionic liquid-multi-walled carbon nanotubes modified screen-printed electrodes for sensitive electrochemical sensing of uranium. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 267-276.	0.7	6
533	Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors, 2021, 11, 41.	2.3	9
534	Determination of p â€Nitrophenol in Synthetic Textile Wastewater Samples Using a Graphene Oxide/Palladium Nanoparticles Modified Carbon Paste Electrode. Electroanalysis, 2021, 33, 1623-1632.	1.5	1
535	Determining nadifloxacin in pharmaceutical formulations using novel differential pulse voltammetric approach. Microchemical Journal, 2021, 163, 105942.	2.3	7
536	Single-walled carbon nanotube-gold urchin nanohybrid for identifying gastric cancer on dimicroelectrodes junction. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 108-114.	2.7	10
537	New magnetic polymeric hybrid composite electrode material for amperometric nitrite sensor. International Journal of Environmental Analytical Chemistry, 0, , 1-18.	1.8	1
538	Carbon Nanotube Microelectrode Set: Detection of Biomolecules to Heavy Metals. Analytical Chemistry, 2021, 93, 7439-7448.	3.2	8

#	Article	IF	CITATIONS
539	Copper Oxide Based Disposable Sensors for Sensitive Voltammetric Assay of Sumatriptan. International Journal of Electrochemical Science, 0, , ArticleID:210540.	0.5	7
540	Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review. Analytica Chimica Acta, 2021, 1159, 338384.	2.6	73
541	Microbial Biosensors as Pesticide Detector: An Overview. Journal of Sensors, 2021, 2021, 1-9.	0.6	9
542	Doxorubicin Anticancer Drug Monitoring by ds-DNA-Based Electrochemical Biosensor in Clinical Samples. Micromachines, 2021, 12, 808.	1.4	26
543	Design a high sensitive electrochemical sensor based on immobilized cysteine on Fe3O4@Au core-shell nanoparticles and reduced graphene oxide nanocomposite for nitrite monitoring. Microchemical Journal, 2021, 166, 106217.	2.3	18
544	Graphene for the Building of Electroanalytical Enzyme-Based Biosensors. Application to the Inhibitory Detection of Emerging Pollutants. Nanomaterials, 2021, 11, 2094.	1.9	7
545	Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines, 2021, 9, 964.	1.4	12
546	Recent advances in applications of surfactantâ€based voltammetric sensors. Journal of Surfactants and Detergents, 2021, 24, 873-895.	1.0	14
547	Novel Disposable Potentiometric Sensor for Determination of Granisetron in Surface Water Samples and Pharmaceutical Formulations. Egyptian Journal of Chemistry, 2021, 64, 5-6.	0.1	0
548	Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. Environmental Chemistry Letters, 2021, 19, 643-668.	8.3	32
550	Biomedical Applications of Organic–Inorganic Hybrid Nanoparticles. , 2009, , 707-768.		8
551	Electrochemical Immunosensing Using Micro and Nanoparticles. Methods in Molecular Biology, 2009, 504, 145-155.	0.4	4
552	Multi-Walled Carbon Nanotubes. , 2013, , 147-188.		37
554	Application of Nanomaterials for DNA Sensing. Nucleic Acids and Molecular Biology, 2014, , 305-332.	0.2	4
555	Nanosized Materials. Monographs in Electrochemistry, 2014, , 139-181.	0.2	1
556	Functionalization and Characterization of MWCNT Produced by Different Methods. Acta Physica Polonica A, 2016, 129, 405-408.	0.2	23
557	Carbon Nanotubes: Detection of Chemical and Biological Warfare Agents. Defence Science Journal, 2008, 58, 617-625.	0.5	14
558	Determination of metformin at metal-organic framework (Cu-BTC) nanocrystals/multi-walled carbon nanotubes modified glassy carbon electrode. South African Journal of Chemistry, 20 <u>16, 69, .</u>	0.3	4

#	Article	IF	CITATIONS
559	Graphite-Epoxy Electrodes Modified with Functionalised Carbon Nanotubes and Chitosan for the Rapid Electrochemical Determination of Dipyrone. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 590-598.	0.6	19
560	Current Perspective and Developments in Electrochemical Sensors Modified with Nanomaterials for Environmental and Pharmaceutical Analysis. Current Analytical Chemistry, 2022, 18, 102-115.	0.6	20
561	Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface. Open Materials Science Journal, 2011, 5, 242-247.	0.2	159
562	CARBON NANOTUBES COMPOSITE FOR ENVIRONMENTALLY FRIENDLY SENSING. Environmental Engineering and Management Journal, 2012, 11, 239-246.	0.2	11
563	Carbon Nanotubes as Nanosensor for Differential Electrolytic Micropotentiometry. American Journal of Analytical Chemistry, 2014, 05, 879-890.	0.3	4
564	Technology and Applications of Microbial Biosensor. Open Journal of Applied Biosensor, 2013, 02, 83-93.	1.6	43
565	Synthesis and Modification of Carboxylated Multi Wall Nanotubes with Atenolol. Soft Nanoscience Letters, 2014, 04, 75-81.	0.8	4
566	Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates. Bulletin of the Korean Chemical Society, 2010, 31, 3697-3702.	1.0	28
567	Introduction of Various Amine Groups onto Poly(glycidyl methacrylate)-g-MWNTs and their Application as Biosensor Supports. Porrime, 2012, 36, 470-477.	0.0	2
568	A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open, 2021, 4, 100072.	1.7	61
569	Processing of Biosensing Materials and Biosensors. , 2008, , 401-453.		0
571	P2.4.22 Forest and Disordered Carbon Nanotubes: Sensitivity Improvement of Electrochemical Detection in Miniaturized Devices. , 2012, , .		0
575	Nanomaterials: Conducting Polymers and Sensing. , 0, , 5311-5335.		0
577	Nanomaterials: Conducting Polymers and Sensing. , 2017, , 1035-1059.		0
579	Novel Electroanalytical Technique for Determination of Trospium Hydrochloride. Egyptian Journal of Chemistry, 2020, .	0.1	0
580	Fabricating BiOI nanostructures armed catalytic strips for selective electrochemical and SERS detection of pesticide in polluted water. Environmental Pollution, 2022, 296, 118754.	3.7	14
581	Highly sensitive potentiometric assay of vardenafil in pharmaceutical formulations and biological fluids. Egyptian Journal of Chemistry, 2020, .	0.1	0
582	A Novel Labelâ€free Chronoamperometric Immunosensor Based on a Biocomposite Material for Rapid Detection of Carcinoembryonic Antigen. Electroanalysis, 2022, 34, 1289-1298.	1.5	5

#	ARTICLE A Highly Sensitive Electrochemical Sensor Based on β-cyclodextrin Functionalized Multi-Wall Carbon	IF	CITATIONS
583	Nanotubes and Fe ₃ O ₄ Nanoparticles for Rutin Detection. Journal of the Electrochemical Society, 2022, 169, 047509.	1.3	8
584	Functional nanomaterials based opto-electrochemical sensors for the detection of gonadal steroid hormones. TrAC - Trends in Analytical Chemistry, 2022, 150, 116571.	5.8	13
588	The Modified Glassy Carbon Electrode by MWCNTs-PLL to Detect Both Paracetamol and Ibuprofen in Human Biological Fluid. Journal of the Electrochemical Society, 2022, 169, 057525.	1.3	1
589	Electrochemical Determination of Riboflavin using a Poly(Titan Yellow) Modified Carbon Nanotube Paste Electrode in the Presence of Dopamine. ChemistrySelect, 2022, 7, .	0.7	2
590	Carbon Nanomaterials for Tailored Biomedical Applications. , 2021, 10, 24-33.		0
591	An overview of nanomaterial-enhanced miniaturized/microfluidic devices for electrochemical sensing. , 2022, , 23-42.		1
592	Nanotechnology-based approaches against COVID-19. , 2022, , 305-364.		0
593	Voltammetric Detection of Glucose—The Electrochemical Behavior of the Copper Oxide Materials with Well-Defined Facets. Sensors, 2022, 22, 4783.	2.1	4
594	Influence of fillers on epoxy resins properties: a review. Journal of Materials Science, 2022, 57, 15183-15212.	1.7	31
595	Nanomaterial Based Electrochemical Biosensors. Current Nanoscience, 2022, 18, .	0.7	537
596	Novel electrochemical sensor based on molecularly imprinted polymer combined with L-His-MWCNTs@PDMS-5 nanocomposite for selective and sensitive assay of tetracycline. Electrochimica Acta, 2022, 430, 141102.	2.6	21
597	Assembly of an improved hybrid cascade system for complete ethylene glycol oxidation: Enhanced catalytic performance for an enzymatic biofuel cell. Biosensors and Bioelectronics, 2022, 216, 114649.	5.3	3
598	Role of nanocellulose in tailoring electroanalytical performance of hybrid nanocellulose/multiwalled carbon nanotube electrodes. Cellulose, 0, , .	2.4	5
599	Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. Biosensors, 2022, 12, 850.	2.3	3
600	Electrochemical Sensing of Paracetamol Using 3D Porous Laser Scribed Graphene Platform. Electroanalysis, 0, , .	1.5	4
601	Fabrication of nanostructured molecularly imprinted polymer as enantioselective sensor and sorbent for L-phenylalanine benzyl ester. Journal of Polymer Research, 2022, 29, .	1.2	0
602	Hostâ€guest Assembly Based on γ yclodextrinâ€functionalized Multiwalled Carbon Nanotubes for Rutin Electrochemical Sensing. Electroanalysis, 2023, 35, .	1.5	1
603	Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications. Materials Advances, 2023, 4, 823-834.	2.6	10

#	Article	IF	CITATIONS
604	Carbon-Based Nanomaterials: Carbon Nanotube, Fullerene, and Carbon Dots. , 2023, , 27-57.		1
605	New Trends in DNA Sensors for Environmental Applications: Nanomaterials, Miniaturization, and Lab-on-a-Chip Technology. , 2011, , 141-164.		0
606	Nanocomposite-Based Electrochemical Sensors for Neurotransmitters Detection in Neurodegenerative Diseases. Chemosensors, 2023, 11, 103.	1.8	8
607	A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications. Critical Reviews in Analytical Chemistry, 0, , 1-24.	1.8	51
608	Fabrication of a Novel CNT-COOâ~'/Ag3PO4@AglO4Composite with Enhanced Photocatalytic Activity under Natural Sunlight. Molecules, 2023, 28, 1586.	1.7	1
609	Self-assembled monolayer-assisted label-free electrochemical genosensor for specific point-of-care determination of Haemophilus influenzae. Mikrochimica Acta, 2023, 190, .	2.5	18
610	Multiwalled Carbon Nanotubes-Modified Metallic Electrode Prepared Using Chemical Vapor Deposition as Sequential Injection Analysis Detector for Determination of Ascorbic Acid. Nanomaterials, 2023, 13, 1264.	1.9	1
621	Food Safety and Quality Testing: Recent Areas of Focus and Research Perspectives. Food Engineering Series, 2023, , 307-337.	0.3	0