Identifying gene targets for the metabolic engineering of Escherichia coli

Metabolic Engineering 7, 155-164 DOI: 10.1016/j.ymben.2004.12.003

Citation Report

#	Article	IF	CITATIONS
2	Enhanced Lycopene Productivity by Manipulation of Carbon Flow to Isopentenyl Diphosphate in Escherichia coli. Biotechnology Progress, 2005, 21, 1558-1561.	1.3	74
3	Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23, 612-616.	9.4	406
4	Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals. Biotechnology and Bioprocess Engineering, 2005, 10, 408-417.	1.4	33
5	Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12678-12683.	3.3	775
6	Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach. Applied and Environmental Microbiology, 2005, 71, 8249-8256.	1.4	133
7	Flux balance analysis in the era of metabolomics. Briefings in Bioinformatics, 2006, 7, 140-150.	3.2	227
9	Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2006, 2, 674-681.	3.9	361
10	Towards multidimensional genome annotation. Nature Reviews Genetics, 2006, 7, 130-141.	7.7	321
11	An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabolic Engineering, 2006, 8, 1-13.	3.6	292
12	Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 2006, 8, 172-181.	3.6	164
13	Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metabolic Engineering, 2006, 8, 628-638.	3.6	85
14	Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Applied Microbiology and Biotechnology, 2006, 72, 968-974.	1.7	74
15	Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochemical Pharmacology, 2006, 71, 1026-1035.	2.0	34
16	Enhanced lycopene production inEscherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnology and Bioengineering, 2006, 94, 1025-1032.	1.7	144
17	Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Biotechnology and Bioengineering, 2006, 95, 992-1002.	1.7	65
18	Principles and Practices of Pathway Modelling. Current Bioinformatics, 2006, 1, 147-160.	0.7	9
19	High-Throughput Screen for Poly-3-Hydroxybutyrate in Escherichia coli and Synechocystis sp. Strain PCC6803. Applied and Environmental Microbiology, 2006, 72, 3412-3417.	1.4	83
21	Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7797-7802.	3.3	514

#	Article	IF	Citations
" 22	Metabolic Engineering. Cell Engineering, 2007, , 301-359.	0.4	3
23	Bayesian-based selection of metabolic objective functions. Bioinformatics, 2007, 23, 351-357.	1.8	86
24	Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends in Biotechnology, 2007, 25, 417-424.	4.9	107
25	Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis. Microbial Cell Factories, 2007, 6, 8.	1.9	27
26	Biosynthesis of Plant Natural Products and Characterization of Plant Biosynthetic Pathways in Recombinant Microorganisms. , 2007, , 1-43.		11
27	Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnology and Bioengineering, 2007, 97, 657-671.	1.7	92
28	Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9, 160-168.	3.6	302
29	Global transcription machinery engineering: A new approach for improving cellular phenotype. Metabolic Engineering, 2007, 9, 258-267.	3.6	398
30	Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 2007, 9, 337-347.	3.6	134
31	Improvement of a CrtO-type of β-carotene ketolase for canthaxanthin production in Methylomonas sp Metabolic Engineering, 2007, 9, 348-354.	3.6	10
32	Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nature Protocols, 2007, 2, 727-738.	5.5	757
33	Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 2007, 25, 132-137.	4.9	200
34	Engineering Central Metabolic Pathways for High-Level Flavonoid Production in Escherichia coli. Applied and Environmental Microbiology, 2007, 73, 3877-3886.	1.4	239
35	An update on microbial carotenoid production: application of recent metabolic engineering tools. Applied Microbiology and Biotechnology, 2007, 77, 505-512.	1.7	180
36	Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 289-299.	1.4	68
37	Uncovering the gene knockout landscape for improved lycopene production in E. coli. Applied Microbiology and Biotechnology, 2008, 78, 801-810.	1.7	54
38	Metabolic capacity estimation of <i>Escherichia coli</i> as a platform for redox biocatalysis: constraintâ€based modeling and experimental verification. Biotechnology and Bioengineering, 2008, 100, 1050-1065.	1.7	84
39	Importance of systems biology in engineering microbes for biofuel production. Current Opinion in Biotechnology, 2008, 19, 228-234.	3.3	119

#	Article	IF	CITATIONS
40	Combinatorial engineering of microbes for optimizing cellular phenotype. Current Opinion in Chemical Biology, 2008, 12, 168-176.	2.8	162
41	Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metabolic Engineering, 2008, 10, 216-226.	3.6	53
42	Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 2008, 10, 295-304.	3.6	343
43	Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metabolic Engineering, 2008, 10, 352-359.	3.6	118
44	Metabolic flux analysis and metabolic engineering of microorganisms. Molecular BioSystems, 2008, 4, 113-120.	2.9	141
45	Strategies for systemsâ€level metabolic engineering. Biotechnology Journal, 2008, 3, 612-623.	1.8	59
46	The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotechnology, 2008, 26, 659-667.	9.4	491
47	Biofuel alternatives to ethanol: pumping the microbial well. Trends in Biotechnology, 2008, 26, 375-381.	4.9	338
48	Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interactions, 2008, 3, 75-93.	1.0	123
49	Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. Journal of Biotechnology, 2008, 135, 78-84.	1.9	62
50	The design of papain-based transaminase using semisynthetic methods. Journal of Biotechnology, 2008, 136, S33.	1.9	0
51	Genome-scale FBA analysis to explore the gene manipulation targets of succinic acid producing Escherichia coli. Journal of Biotechnology, 2008, 136, S33-S34.	1.9	2
52	Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms. Molecular Pharmaceutics, 2008, 5, 167-190.	2.3	363
53	Minimal <i>Escherichia coli</i> Cell for the Most Efficient Production of Ethanol from Hexoses and Pentoses. Applied and Environmental Microbiology, 2008, 74, 3634-3643.	1.4	257
54	Bacterial Hosts for Natural Product Production. Molecular Pharmaceutics, 2008, 5, 212-225.	2.3	85
55	Antibiotic Overproduction in Streptomyces coelicolor A3(2) Mediated by Phosphofructokinase Deletion*. Journal of Biological Chemistry, 2008, 283, 25186-25199.	1.6	131
56	Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in <i>Escherichia coli</i> . Nucleic Acids Research, 2008, 36, e102.	6.5	69
57	Metabolic networks analysis using convex optimization. , 2008, , .		7

		CITATION REPORT		
# 58	ARTICLE Descriptive and predictive applications of constraint-based metabolic models. , 2009, 2009,	5460-3.	IF	CITATIONS
59	Largeâ€scale identification of genetic design strategies using local search. Molecular Systen 2009, 5, 296.	ns Biology,	3.2	143
60	Systems Metabolic Engineering of E. coli. , 2009, , 441-453.			2
61	A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189. PLoS Compu Biology, 2009, 5, e1000285.	tational	1.5	119
62	Gene Expression Profiling and the Use of Genome-Scale In Silico Models of <i>Escherichia co Analysis: Providing Context for Content. Journal of Bacteriology, 2009, 191, 3437-3444.</i>	li<∕i>for	1.0	51
63	Harnessing nature's toolbox: regulatory elements for synthetic biology. Journal of the Royal Interface, 2009, 6, S535-46.	Society	1.5	42
64	Metabolic engineering of microorganisms: general strategies and drug production. Drug Dis Today, 2009, 14, 78-88.	covery	3.2	121
65	Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnology Advances, 2009, 27, 979-988.		6.0	105
66	Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotech Progress, 2009, 25, 999-1008.	inology	1.3	30
67	High-level production of lycopene in metabolically engineered E. coli. Process Biochemistry, 899-905.	2009, 44,	1.8	33
68	Toward systematic metabolic engineering based on the analysis of metabolic regulation by t integration of different levels of information. Biochemical Engineering Journal, 2009, 46, 23		1.8	44
69	Metabolic engineering based on systems biology for chemicals production. Frontiers of Biolo China: Selected Publications From Chinese Universities, 2009, 4, 260-265.	ogy in	0.2	4
70	Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Applied Microbiology and Biotechnology, 2009, 81, 91	5-925.	1.7	70
71	Biosynthesis and biotechnological production of flavanones: current state and perspectives. Microbiology and Biotechnology, 2009, 83, 799-808.	Applied	1.7	137
72	Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Ap Microbiology and Biotechnology, 2009, 84, 1003-1019.	plied	1.7	54
73	Programming cells by multiplex genome engineering and accelerated evolution. Nature, 200 894-898.	9, 460,	13.7	1,346
74	Stabilized gene duplication enables long-term selection-free heterologous pathway expression Nature Biotechnology, 2009, 27, 760-765.	on.	9.4	272
75	Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Micro Reviews, 2009, 33, 164-190.	biology	3.9	268

#	Article	IF	CITATIONS
76	Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metabolic Engineering, 2009, 11, 328-334.	3.6	199
77	In silico analysis of the effects of H2 and CO2 on the metabolism of a capnophilic bacterium Mannheimia succiniciproducens. Journal of Biotechnology, 2009, 144, 184-189.	1.9	11
78	Metabolic engineering of <i>Clostridium acetobutylicum</i> M5 for highly selective butanol production. Biotechnology Journal, 2009, 4, 1432-1440.	1.8	117
79	Accomplishments in genomeâ€scale <i>in silico</i> modeling for industrial and medical biotechnology. Biotechnology Journal, 2009, 4, 1653-1670.	1.8	77
81	Systems Biology and Biotechnology of Escherichia coli. , 2009, , .		22
82	Increased Malonyl Coenzyme A Biosynthesis by Tuning the <i>Escherichia coli</i> Metabolic Network and Its Application to Flavanone Production. Applied and Environmental Microbiology, 2009, 75, 5831-5839.	1.4	185
83	Flux balance analysis of biological systems: applications and challenges. Briefings in Bioinformatics, 2009, 10, 435-449.	3.2	354
84	Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Research, 2009, 37, e103-e103.	6.5	83
85	In Silico Models for Metabolic Systems Engineering. , 2009, , .		1
86	Microbial Biosynthesis of Fine Chemicals. , 2009, , .		0
88	Redox Biocatalysis and Metabolism: Molecular Mechanisms and Metabolic Network Analysis. Antioxidants and Redox Signaling, 2010, 13, 349-394.	2.5	101
89	Systems metabolic engineering: Genomeâ€scale models and beyond. Biotechnology Journal, 2010, 5, 647-659.	1.8	122
90	Metabolic pathways and fermentative production of <scp>L</scp> â€aspartate family amino acids. Biotechnology Journal, 2010, 5, 560-577.	1.8	77
91	Metabolic systems analysis to advance algal biotechnology. Biotechnology Journal, 2010, 5, 660-670.	1.8	28
92	Progress in the applications of flux analysis of metabolic networks. Science Bulletin, 2010, 55, 2315-2322.	1.7	6
93	gTME for Improved Xylose Fermentation of Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2010, 160, 574-582.	1.4	50
94	Systems biology. Resonance, 2010, 15, 131-153.	0.2	6
95	DREAMS of metabolism. Trends in Biotechnology, 2010, 28, 501-508.	4.9	44

#	Article	IF	CITATIONS
96	Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design. BMC Systems Biology, 2010, 4, 49.	3.0	33
97	Validation study of 24 deepwell microtiterplates to screen libraries of strains in metabolic engineering. Journal of Bioscience and Bioengineering, 2010, 110, 646-652.	1.1	10
98	Modeling with a view to target identification in metabolic engineering: A critical evaluation of the available tools. Biotechnology Progress, 2010, 26, 313-331.	1.3	15
99	Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Journal of Biotechnology, 2010, 149, 52-59.	1.9	72
100	Computational analysis of phenotypic space in heterologous polyketide biosynthesis—Applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. Journal of Theoretical Biology, 2010, 262, 197-207.	0.8	16
101	Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metabolic Engineering, 2010, 12, 105-111.	3.6	62
102	Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metabolic Engineering, 2010, 12, 96-104.	3.6	178
103	The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems. Metabolic Engineering, 2010, 12, 26-38.	3.6	36
104	Metabolic flux analysis and pharmaceutical production. Metabolic Engineering, 2010, 12, 81-95.	3.6	101
105	Rational design and construction of an efficient E. coli for production of diapolycopendioic acid. Metabolic Engineering, 2010, 12, 112-122.	3.6	39
106	Restoration of Growth Phenotypes of <i>Escherichia coli</i> DH5α in Minimal Media through Reversal of a Point Mutation in <i>purB</i> . Applied and Environmental Microbiology, 2010, 76, 6307-6309.	1.4	10
107	<i>In Silico</i> Identification of Gene Amplification Targets for Improvement of Lycopene Production. Applied and Environmental Microbiology, 2010, 76, 3097-3105.	1.4	247
108	irrE, an Exogenous Gene from Deinococcus radiodurans, improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain under Ethanol and Acid Stresses. Journal of Microbiology and Biotechnology, 2010, 20, 1156-1162.	0.9	44
109	Integration of Systems Biology with Bioprocess Engineering: I-Threonine Production by Systems Metabolic Engineering of Escherichia Coli. , 2010, 120, 1-19.		10
110	Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation. PLoS Computational Biology, 2010, 6, e1000822.	1.5	124
111	Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-12.	3.0	54
112	Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-18.	3.0	125
113	OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions. PLoS Computational Biology, 2010, 6, e1000744.	1.5	346

#	Article	IF	CITATIONS
114	Bridging the Gap between Fluxomics and Industrial Biotechnology. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.	3.0	21
115	Computational Approaches in Metabolic Engineering. Journal of Biomedicine and Biotechnology, 2010, 2010, 10, 2010, 1-7.	3.0	19
116	Bacteria: Metabolic Engineering. , 2010, , 96-100.		0
117	The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microbial Cell Factories, 2010, 9, 94.	1.9	79
118	Biofuels: Biomolecular Engineering Fundamentals and Advances. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 19-36.	3.3	61
119	Genetic Engineering of <i>Escherichia coli</i> for Biofuel Production. Annual Review of Genetics, 2010, 44, 53-69.	3.2	119
120	Reevaluating synthesis by biology. Current Opinion in Microbiology, 2010, 13, 371-376.	2.3	19
121	Engineering Static and Dynamic Control of Synthetic Pathways. Cell, 2010, 140, 19-23.	13.5	213
122	Chemistry and Biotechnology of Carotenoids. Critical Reviews in Food Science and Nutrition, 2010, 50, 728-760.	5.4	201
123	A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Molecular Systems Biology, 2011, 7, 471.	3.2	72
124	A Spatial Branch-and-Bound Framework for the Global Optimization of Kinetic Models of Metabolic Networks. Industrial & Engineering Chemistry Research, 2011, 50, 5225-5238.	1.8	19
125	Development of an Automated Platform for High-Throughput P1-Phage Transduction of <i>Escherichia Coli</i> . Journal of the Association for Laboratory Automation, 2011, 16, 141-147.	2.8	6
126	Targeting multiple targets in <i>Pseudomonas aeruginosa</i> PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network. Journal of Drug Targeting, 2011, 19, 1-13.	2.1	28
128	Application of Metabolic Flux Analysis in Metabolic Engineering. Methods in Enzymology, 2011, 498, 67-93.	0.4	15
129	Laboratory-Scale Production of ¹³ C-Labeled Lycopene and Phytoene by Bioengineered Escherichia coli. Journal of Agricultural and Food Chemistry, 2011, 59, 9996-10005.	2.4	8
130	Flux-Balance Modeling of Plant Metabolism. Frontiers in Plant Science, 2011, 2, 38.	1.7	124
131	Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microbial Biotechnology, 2011, 4, 572-584.	2.0	24
132	Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metabolic Engineering, 2011, 13, 578-587.	3.6	300

#	Article	IF	CITATIONS
133	Applications of system-level models of metabolism for analysis of bacterial physiology and identification of new drug targets. Briefings in Functional Genomics, 2011, 10, 354-364.	1.3	13
134	gTME for Improved Adaptation of Saccharomyces cerevisiae to Corn Cob Acid Hydrolysate. Applied Biochemistry and Biotechnology, 2011, 164, 1150-1159.	1.4	29
135	Metabolic Flux Analysis and Principal Nodes Identification for Daptomycin Production Improvement by Streptomyces roseosporus. Applied Biochemistry and Biotechnology, 2011, 165, 1725-1739.	1.4	24
136	The evolution of metabolic networks of E. coli. BMC Systems Biology, 2011, 5, 182.	3.0	60
137	Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Systems Biology, 2011, 5, 75.	3.0	60
138	Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network. BMC Systems Biology, 2011, 5, S14.	3.0	14
140	Improved galactose fermentation of <i>Saccharomyces cerevisiae</i> through inverse metabolic engineering. Biotechnology and Bioengineering, 2011, 108, 621-631.	1.7	98
141	Linking genes to microbial growth kinetics—An integrated biochemical systems engineering approach. Metabolic Engineering, 2011, 13, 401-413.	3.6	26
142	Enhancing Isoprene Production by Genetic Modification of the 1-Deoxy- <scp>d</scp> -Xylulose-5-Phosphate Pathway in <i>Bacillus subtilis</i> . Applied and Environmental Microbiology, 2011, 77, 2399-2405.	1.4	103
143	Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity. Nucleic Acids Research, 2011, 39, 8651-8664.	6.5	28
144	Systems Metabolic Engineering for the Production of Non-innate Chemical Compounds. , 2011, , 471-482.		0
145	Toward Biosynthetic Design and Implementation of Escherichia coli-Derived Paclitaxel and Other Heterologous Polyisoprene Compounds. Applied and Environmental Microbiology, 2012, 78, 2497-2504.	1.4	30
146	Some Perspectives and Challenges in the (Discrete) Control of Cellular Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1-3.	0.4	4
147	Mathematical optimization applications in metabolic networks. Metabolic Engineering, 2012, 14, 672-686.	3.6	123
148	Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metabolic Engineering, 2012, 14, 289-297.	3.6	131
149	From Fields to Fuels: Recent Advances in the Microbial Production of Biofuels. ACS Synthetic Biology, 2012, 1, 498-513.	1.9	77
150	Impact of Stoichiometry Representation on Simulation of Genotype-Phenotype Relationships in Metabolic Networks. PLoS Computational Biology, 2012, 8, e1002758.	1.5	31
151	Synthetic Biology and Metabolic Engineering. ACS Synthetic Biology, 2012, 1, 514-525.	1.9	212

ARTICLE IF CITATIONS # RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory 152 13.9 78 responses to perturbations. Genome Biology, 2012, 13, R78. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology, 2012, 10, 291-305. 13.6 Expanding the concepts and tools of metabolic engineering to elucidate cancer metabolism. 154 1.3 18 Biotechnology Progress, 2012, 28, 1409-1418. BIOPROCESS SYSTEMS ENGINEERING: TRANSFERRING TRADITIONAL PROCESS ENGINEERING PRINCIPLES TO INDUSTRIAL BIOTECHNOLOGY. Computational and Structural Biotechnology Journal, 2012, 3, e201210022 MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC 156 1.2 120 Bioinformatics, 2012, 13, 6. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microbial Cell Factories, 2012, 11, 148. Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Molecular 158 2.9 25 BioSystems, 2012, 8, 1626. Recent advances in reconstruction and applications of genome-scale metabolic models. Current 3.3 181 Opinion in Biotechnology, 2012, 23, 617-623. Innovation at the intersection of synthetic and systems biology. Current Opinion in Biotechnology, 160 3.3 29 2012, 23, 712-717. Tools for genome-wide strain design and construction. Current Opinion in Biotechnology, 2012, 23, 3.3 666-671 Progress toward an Escherichia coli canthaxanthin bioprocess. Process Biochemistry, 2012, 47, 162 7 1.8 2500-2509. Systems Metabolic Engineering: The Creation of Microbial Cell Factories by Rational Metabolic Design 0.6 and Evolution. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 1-23. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 164 1.3 108 2012, 12, 198. Systems Metabolic Engineering., 2012, , . Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and 167 1.1 41 Constraint-Based Models. PLoS ONE, 2012, 7, e34670. Genome-Scale Network Modeling., 2012, , 1-23. Succinate production in <i>Escherichia coli</i>. Biotechnology Journal, 2012, 7, 213-224. 169 1.8 159 Using Flux Balance Analysis to Guide Microbial Metabolic Engineering. Methods in Molecular Biology, 170 2012, 834, 197-216.

#	Article	IF	CITATIONS
171	Extending homologous sequence based on the single gene mutants by one-step PCR for efficient multiple gene knockouts. Folia Microbiologica, 2012, 57, 209-214.	1.1	11
172	In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Applied Microbiology and Biotechnology, 2012, 94, 637-649.	1.7	46
173	Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Applied Microbiology and Biotechnology, 2012, 93, 1651-1661.	1.7	56
174	Computational identification of gene over-expression targets for metabolic engineering of taxadiene production. Applied Microbiology and Biotechnology, 2012, 93, 2063-2073.	1.7	56
175	Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains. World Journal of Microbiology and Biotechnology, 2012, 28, 313-321.	1.7	30
176	Accelerated protein engineering for chemical biotechnology via homologous recombination. Current Opinion in Biotechnology, 2013, 24, 1017-1022.	3.3	8
177	Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnology Advances, 2013, 31, 818-826.	6.0	103
178	Enhancement of FK506 production by engineering secondary pathways of <i>Streptomyces tsukubaensis</i> and exogenous feeding strategies. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1023-1037.	1.4	54
179	Model-based design of synthetic, biological systems. Chemical Engineering Science, 2013, 103, 2-11.	1.9	18
180	Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnology, 2013, 13, 6.	1.7	66
181	Inferring ancient metabolism using ancestral core metabolic models of enterobacteria. BMC Systems Biology, 2013, 7, 46.	3.0	11
182	Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microbial Cell Factories, 2013, 12, 52.	1.9	67
183	Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Applied Microbiology and Biotechnology, 2013, 97, 519-539.	1.7	50
184	Future Trends in Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	1
185	Improvement of NADPH bioavailability in <i>Escherichia coli</i> by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from <i>Bacillus subtilis</i> and addition of NAD kinase. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1449-1460.	1.4	21
186	Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnology Letters, 2013, 35, 2137-2145.	1.1	42
187	Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2013, 15, 55-66.	3.6	251
188	Metabolic reconstruction and flux analysis of industrial Pichia yeasts. Applied Microbiology and Biotechnology, 2013, 97, 1865-1873.	1.7	13

#	Article	IF	CITATIONS
189	Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnology Advances, 2013, 31, 976-985.	6.0	22
190	Reconstruction of Genome-Scale Metabolic Networks. , 2013, , 229-250.		1
191	Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Applied Microbiology and Biotechnology, 2013, 97, 2761-2772.	1.7	87
192	Metabolic Engineering: Past and Future. Annual Review of Chemical and Biomolecular Engineering, 2013, 4, 259-288.	3.3	254
193	Optimization of amorphadiene synthesis in <i>bacillus subtilis</i> via transcriptional, translational, and media modulation. Biotechnology and Bioengineering, 2013, 110, 2556-2561.	1.7	77
194	Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metabolic Engineering, 2013, 17, 42-50.	3.6	250
195	Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Applied Microbiology and Biotechnology, 2013, 97, 6883-6893.	1.7	26
196	In silico screening of triple reaction knockout Escherichia coli strains for overproduction of useful metabolites. Journal of Bioscience and Bioengineering, 2013, 115, 221-228.	1.1	23
197	The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum. PLoS Computational Biology, 2013, 9, e1002980.	1.5	364
198	Systems metabolic engineering for the production of bioâ€nylon precursor. Biotechnology Journal, 2013, 8, 513-514.	1.8	7
199	Infinitesimal interconnection variation in nonlinear networked systems. , 2013, , .		0
200	Identification of Metabolic Engineering Targets through Analysis of Optimal and Sub-Optimal Routes. PLoS ONE, 2013, 8, e61648.	1.1	16
201	Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast. Frontiers in Microbiology, 2013, 4, 200.	1.5	12
202	Metabolic Engineering Strategies for Production of Commodity and Fine Chemicals: <i>Escherichia coli</i> as a Platform Organism. , 0, , 591-604.		0
203	Capturing the response of Clostridium acetobutylicumto chemical stressors using a regulated genome-scale metabolic model. Biotechnology for Biofuels, 2014, 7, 144.	6.2	56
204	Enabling Technologies to Advance Microbial Isoprenoid Production. Advances in Biochemical Engineering/Biotechnology, 2014, 148, 143-160.	0.6	10
205	k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design. PLoS Computational Biology, 2014, 10, e1003487.	1.5	117
206	Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Applied Microbiology and Biotechnology, 2014, 98, 8155-8164.	1.7	87

#	Article	IF	CITATIONS
207	Current and Emerging Options for Taxol Production. Advances in Biochemical Engineering/Biotechnology, 2014, 148, 405-425.	0.6	25
208	OPâ€Synthetic: identification of optimal genetic manipulations for the overproduction of native and nonâ€native metabolites. Quantitative Biology, 2015, 2, 100-109.	0.3	2
209	MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microbial Cell Factories, 2014, 13, 135.	1.9	64
210	The Problem of Futile Cycles in Metabolic Flux Modeling: Flux Space Characterization and Practical Approaches to Its Solution. Simulation Foundations, Methods and Applications, 2014, , 233-256.	0.8	2
211	FastPros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics, 2014, 30, 981-987.	1.8	43
212	Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects. Marine Drugs, 2014, 12, 4810-4832.	2.2	30
213	Systems metabolic engineering design: Fatty acid production as an emerging case study. Biotechnology and Bioengineering, 2014, 111, 849-857.	1.7	69
214	Metabolic engineering of volatile isoprenoids in plants and microbes. Plant, Cell and Environment, 2014, 37, 1753-1775.	2.8	110
215	Constraintâ€based modeling of heterologous pathways: Application and experimental demonstration for overproduction of fatty acids in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2014, 111, 2056-2066.	1.7	12
216	Modelling and Simulation of Diffusive Processes. Simulation Foundations, Methods and Applications, 2014, , .	0.8	6
217	Production of lycopene by metabolically-engineered Escherichia coli. Biotechnology Letters, 2014, 36, 1515-1522.	1.1	80
218	Software applications for flux balance analysis. Briefings in Bioinformatics, 2014, 15, 108-122.	3.2	94
219	Identification of gene knockout strategies using a hybrid of an ant colony optimization algorithm and flux balance analysis to optimize microbial strains. Computational Biology and Chemistry, 2014, 53, 175-183.	1.1	4
220	Database and tools for metabolic network analysis. Biotechnology and Bioprocess Engineering, 2014, 19, 568-585.	1.4	19
221	Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization. Metabolic Engineering, 2014, 25, 159-173.	3.6	29
222	Microbial biosynthesis of medicinally important plant secondary metabolites. Natural Product Reports, 2014, 31, 1497-1509.	5.2	71
223	Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2014, 7, 99.	6.2	127
224	Improvement of oxidative stress tolerance in <i>Saccharomyces cerevisiae</i> through global transcription machinery engineering. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 869-878.	1.4	32

#	Article	IF	CITATIONS
225	Improving coenzyme Q8 production in Escherichia coli employing multiple strategies. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1297-1303.	1.4	18
226	Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli. Biotechnology Letters, 2014, 36, 1021-1027.	1.1	8
227	Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnology Letters, 2014, 36, 2069-2077.	1.1	70
228	Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microbial Cell Factories, 2014, 13, 64.	1.9	63
229	- DESIGN AND TAILORING OF POLYHYDROXYALKANOATE-BASED BIOMATERIALS CONTAINING 4-HYDROXYBUTYRATE MONOMER. , 2014, , 304-323.		0
230	Modification of targets related to the Entner–Doudoroff/pentose phosphate pathway route for methyl-d-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Microbial Cell Factories, 2015, 14, 117.	1.9	28
231	A refined genomeâ€scale reconstruction of <i>Chlamydomonas</i> metabolism provides a platform for systemsâ€level analyses. Plant Journal, 2015, 84, 1239-1256.	2.8	70
232	Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica. Metabolites, 2015, 5, 794-813.	1.3	30
233	Data-driven integration of genome-scale regulatory and metabolic network models. Frontiers in Microbiology, 2015, 6, 409.	1.5	49
234	Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, 2015, , .	0.6	30
235	Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, 2015, , .	0.1	33
236	Toward Applications of Genomics and Metabolic Modeling to Improve Algal Biomass Productivity. Biofuel and Biorefinery Technologies, 2015, , 173-189.	0.1	5
237	Flux-sum analysis identifies metabolite targets for strain improvement. BMC Systems Biology, 2015, 9, 73.	3.0	15
238	Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite. Microbial Cell Factories, 2015, 14, 193.	1.9	24
239	Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metabolic Engineering Communications, 2015, 2, 85-92.	1.9	66
240	Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes. Microbiology Monographs, 2015, , 303-334.	0.3	20
241	Isoprene. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 289-317.	0.6	21
242	Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochemistry, 2015, 50, 341-346.	1.8	67

#	Article	IF	CITATIONS
243	Genome-scale modeling for metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 327-338.	1.4	82
244	Computational methods in metabolic engineering for strain design. Current Opinion in Biotechnology, 2015, 34, 135-141.	3.3	121
245	Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics, 2015, 31, 3299-3305.	1.8	66
246	CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in <i>E. coli</i> . ACS Synthetic Biology, 2015, 4, 987-1000.	1.9	144
247	Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration. Metabolic Engineering, 2015, 29, 86-96.	3.6	142
248	SSDesign: Computational metabolic pathway design based on flux variability using elementary flux modes. Biotechnology and Bioengineering, 2015, 112, 759-768.	1.7	12
249	Critical assessment of genome-scale metabolic networks: the need for a unified standard. Briefings in Bioinformatics, 2015, 16, 1057-1068.	3.2	62
250	Pareto Optimal Design for Synthetic Biology. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9, 555-571.	2.7	20
251	Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods. , 2015, , 177-196.		0
252	Applications of genome-scale metabolic network model in metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 339-348.	1.4	77
253	Microorganisms in Biorefineries. Microbiology Monographs, 2015, , .	0.3	3
254	Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening. Journal of Biotechnology, 2015, 194, 48-57.	1.9	9
255	Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates. Critical Reviews in Biotechnology, 2015, 35, 313-325.	5.1	17
256	Bilevel optimization techniques in computational strain design. Computers and Chemical Engineering, 2015, 72, 363-372.	2.0	35
257	Secondary Metabolism for Isoprenoid-based Biofuels. , 2016, , 35-71.		7
258	Photosynthetic Platform Strain Selection. , 2016, , 385-406.		1
260	Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering. Journal of the Royal Society Interface, 2016, 13, 20151046.	1.5	47
261	Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli. Metabolic Engineering, 2016, 38, 401-408.	3.6	48

	CITATION R	EPORT	
#	ARTICLE Systems metabolic engineering of Escherichia coli for the heterologous production of high value	IF	CITATIONS
262	molecules — a veteran at new shores. Current Opinion in Biotechnology, 2016, 42, 178-188.	3.3	41
264	Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metabolic Engineering, 2016, 38, 180-190.	3.6	83
265	Systems Metabolic Engineering of <i>Escherichia coli</i> . EcoSal Plus, 2016, 7, .	2.1	31
266	Strategies of isoprenoids production in engineered bacteria. Journal of Applied Microbiology, 2016, 121, 932-940.	1.4	27
267	Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microbial Cell Factories, 2016, 15, 113.	1.9	158
268	Gene expression pattern analysis of a recombinant Escherichia coli strain possessing high growth and lycopene production capability when using fructose as carbon source. Biotechnology Letters, 2016, 38, 1571-1577.	1.1	9
269	Engineering Microbes to Synthesize Plant Isoprenoids. Methods in Enzymology, 2016, 575, 225-245.	0.4	4
270	Enhancing succinic acid biosynthesis in Escherichia coli by engineering its global transcription factor, catabolite repressor/activator (Cra). Scientific Reports, 2016, 6, 36526.	1.6	15
271	Systematic development of biomass overproducing Scheffersomyces stipitis for high-cell-density fermentations. Synthetic and Systems Biotechnology, 2016, 1, 47-55.	1.8	3
272	Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metabolic Engineering Communications, 2016, 3, 153-163.	1.9	51
273	Targeted delivery of bio-synthetic lycopene by the bacterial carrier. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 91-97.	2.7	6
274	Microbial production strategies and applications of lycopene and other terpenoids. World Journal of Microbiology and Biotechnology, 2016, 32, 15.	1.7	37
275	<i>In Silico</i> Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories. Microbiology and Molecular Biology Reviews, 2016, 80, 45-67.	2.9	103
276	Genome-scale metabolic models as platforms for strain design and biological discovery. Journal of Biomolecular Structure and Dynamics, 2017, 35, 1863-1873.	2.0	19
278	Comparative analysis of metabolic network of pathogens. Frontiers in Biology, 2017, 12, 139-150.	0.7	1
279	FOCuS: a metaheuristic algorithm for computing knockouts from genome-scale models for strain optimization. Molecular BioSystems, 2017, 13, 1355-1363.	2.9	10
280	Enhancement of rapamycin production by metabolic engineering in <i>Streptomyces hygroscopicus</i> based on genome-scale metabolic model. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 259-270.	1.4	22
281	A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nature Communications, 2017, 8, 15526.	5.8	169

ARTICLE IF CITATIONS # Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically nonâ€stationary ¹³C metabolic flux analysis. Biotechnology and Bioengineering, 2017, 114, 282 1.7 66 2298-2308. Evaluating the capabilities of microbial chemical production using genome-scale metabolic models. 284 1.3 Current Opinion in Systems Biology, 2017, 2, 91-97. Selection Finder (SelFi): A computational metabolic engineering tool to enable directed evolution of 285 1.9 8 enzymes. Metabolic Engineering Communications, 2017, 4, 37-47. Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid 286 producer Aureobasidium pullulans CCTCC M2012223. Gene, 2017, 607, 1-8. EcoSynther: A Customized Platform To Explore the Biosynthetic Potential in <i>E. coli</i>. ACS 287 1.6 9 Chemical Biology, 2017, 12, 2823-2829. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve 288 3.6 isoprenoids production in Escherichia coli. Metabolic Engineering, 2017, 44, 13-21. Learning from quantitative data to understand central carbon metabolism. Biotechnology Advances, 289 6.0 23 2017, 35, 971-980. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based 290 1.8 74 biofuels. Synthetic and Systems Biotechnology, 2017, 2, 167-175. Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor. 291 3.6 23 Metabolic Engineering, 2017, 43, 46-53. Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated 6.2 from microbial-based conversions. Biotechnology for Biofuels, 2017, 10, 119. Recent advances in systems metabolic engineering tools and strategies. Current Opinion in 294 3.3 185 Biotechnology, 2017, 47, 67-82. In Silico Approaches to Metabolic Engineering., 2017, , 161-200. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and 297 glycerol production based on in silico simulation of metabolic flux distribution. Microbial Cell 1.9 31 Factories, 2017, 16, 212. Building Metabolic Models From First Principles., 2017, , 201-221. 298 Application of adaptive laboratory evolution to overcome a flux limitation in an <i>Escherichia 299 23 1.7 coli</i> production strain. Biotechnology and Bioengineering, 2018, 115, 1542-1551. Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 2018, 50, 16-46. 300 Influence of site-directed mutagenesis of UbiA, overexpression of dxr, menA and ubiE, and 301 supplementation with precursors on menaquinone production in Elizabethkingia meningoseptica. 1.8 11 Process Biochemistry, 2018, 68, 64-72. Glycolysis and Its Metabolic Engineering Applications., 2018, , 1-33.

#	Article	IF	CITATIONS
303	Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Factories, 2018, 17, 65.	1.9	36
304	Discovery of Boolean metabolic networks: integer linear programming based approach. BMC Systems Biology, 2018, 12, 7.	3.0	3
305	Metabolic engineering tools in model cyanobacteria. Metabolic Engineering, 2018, 50, 47-56.	3.6	57
306	Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiology Letters, 2018, 365, .	0.7	63
307	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	23.0	141
308	Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL. Methods in Molecular Biology, 2018, 1716, 315-336.	0.4	4
309	Analyzing and Designing Cell Factories with OptFlux. Methods in Molecular Biology, 2018, 1716, 37-76.	0.4	4
310	Metabolic Engineering of Microorganisms for the Production of Natural Compounds. Advanced Biology, 2018, 2, 1700190.	3.0	83
312	Model-Based Design for Biosystems. Control Opportunities and Discrete-Time Modelling Challenges. IFAC-PapersOnLine, 2018, 51, 666-671.	0.5	3
313	Improved xylose tolerance and 2,3-butanediol production of Klebsiella pneumoniae by directed evolution of rpoD and the mechanisms revealed by transcriptomics. Biotechnology for Biofuels, 2018, 11, 307.	6.2	18
314	Engineering Haloferax mediterranei as an Efficient Platform for High Level Production of Lycopene. Frontiers in Microbiology, 2018, 9, 2893.	1.5	30
315	Assessing <i>Escherichia coli</i> metabolism models and simulation approaches in phenotype predictions: Validation against experimental data. Biotechnology Progress, 2018, 34, 1344-1354.	1.3	1
316	Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 Biotech, 2018, 8, 269.	1.1	34
317	Integrated constraints based analysis of an engineered violacein pathway in Escherichia coli. BioSystems, 2018, 171, 10-19.	0.9	8
318	Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis. Nature Communications, 2018, 9, 3043.	5.8	73
319	Metabolic engineering for the production of isoprene and isopentenol by Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 7725-7738.	1.7	51
320	In Vivo Platforms for Terpenoid Overproduction and the Generation of Chemical Diversity. Methods in Enzymology, 2018, 608, 97-129.	0.4	7
321	Constraintâ€based metabolic targets for the improved production of heterologous compounds across molecular classification. AICHE Journal, 2018, 64, 4208-4217.	1.8	1

#	Article	IF	CITATIONS
322	Construction of an alternative glycerol-utilization pathway for improved β-carotene production in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 697-705.	1.4	10
323	Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC Systems Biology, 2018, 12, 12.	3.0	58
324	Putting primary metabolism into perspective to obtain better fruits. Annals of Botany, 2018, 122, 1-21.	1.4	77
325	Synthetic biology strategies toward heterologous phytochemical production. Natural Product Reports, 2018, 35, 902-920.	5.2	45
326	The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metabolic Engineering, 2019, 56, 1-16.	3.6	307
327	Synthetic Multienzyme Complexes, Catalytic Nanomachineries for Cascade Biosynthesis <i>In Vivo</i> . ACS Nano, 2019, 13, 9895-9906.	7.3	65
328	The fabrication of a 3D current collector with bitter melon-like TiO ₂ –NCNFs for highly stable lithium–sulfur batteries. Nanoscale Advances, 2019, 1, 527-531.	2.2	4
329	Engineering microbial chemical factories using metabolic models. BMC Chemical Engineering, 2019, 1, .	3.4	5
330	Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ <i>YPL062W</i>) in Metabolically Engineered Terpenoid-Producing <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	19
331	New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Applied Microbiology and Biotechnology, 2019, 103, 2087-2099.	1.7	47
332	Bioengineering of Secondary Metabolites. , 2019, , 55-68.		28
333	Enhanced (â^')-α-Bisabolol Productivity by Efficient Conversion of Mevalonate in Escherichia coli. Catalysts, 2019, 9, 432.	1.6	13
334	Heterologous Production of Squalene from Glucose in Engineered <i>Corynebacterium glutamicum</i> Using Multiplex CRISPR Interference and High-Throughput Fermentation. Journal of Agricultural and Food Chemistry, 2019, 67, 308-319.	2.4	29
335	Optimization of lipid production in Chlorella vulgaris for biodiesel production using flux balance analysis. Biochemical Engineering Journal, 2019, 141, 131-145.	1.8	27
336	Improving l-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering. Journal of Biotechnology, 2020, 308, 27-34.	1.9	9
337	Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renewable and Sustainable Energy Reviews, 2020, 119, 109562.	8.2	56
338	Modular engineering for microbial production of carotenoids. Metabolic Engineering Communications, 2020, 10, e00118.	1.9	72
339	Metabolic Engineering Escherichia coli for the Production of Lycopene. Molecules, 2020, 25, 3136.	1.7	27

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
340	Construction of a Robust Sphingomonas sp. Strain for Welan Gum Production via the I Global Transcriptional Regulator IrrE. Frontiers in Bioengineering and Biotechnology, 20	Expression of)20, 8, 674.	2.0	9
341	Metabolic Engineering of Different Microbial Hosts for Lycopene Production. Journal of and Food Chemistry, 2020, 68, 14104-14122.	Agricultural	2.4	24
342	Systems biology, synthetic biology, and metabolic engineering. , 2020, , 1-31.			2
343	Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol uti pathway and modulating intracellular hydrophobicity. Metabolic Engineering, 2020, 61		3.6	75
344	Biotechnological production of lycopene by microorganisms. Applied Microbiology and Biotechnology, 2020, 104, 10307-10324.		1.7	30
345	Dynamic Flux Balance Analysis to Evaluate the Strain Production Performance on Shikir Production in Escherichia coli. Metabolites, 2020, 10, 198.	nic Acid	1.3	14
346	Tools and strategies of systems metabolic engineering for the development of microbia for chemical production. Chemical Society Reviews, 2020, 49, 4615-4636.	al cell factories	18.7	246
347	Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterolo Siderophore Production. IScience, 2020, 23, 101016.	gous	1.9	11
348	NIHBA: a network interdiction approach for metabolic engineering design. Bioinformati 3482-3492.	cs, 2020, 36,	1.8	7
349	Discovery and modification of cytochrome P450 for plant natural products biosynthesi and Systems Biotechnology, 2020, 5, 187-199.	s. Synthetic	1.8	47
350	Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced productio Escherichia coli. Microbial Cell Factories, 2020, 19, 20.	n of steviol in	1.9	50
351	novoPathFinder: a webserver of designing novel-pathway with integrating GEM-model. Research, 2020, 48, W477-W487.	Nucleic Acids	6.5	28
352	The ModelSEED Biochemistry Database for the integration of metabolic annotations ar reconstruction, comparison and analysis of metabolic models for plants, fungi and mice Acids Research, 2021, 49, D575-D588.		6.5	119
353	Homologous and heterologous expression strategies in microbes. , 2021, , 103-132.			1
354	Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engi Progress in Lipid Research, 2021, 81, 101083.	neering.	5.3	39
355	CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms, 2021, 9, 670.		1.6	16
356	ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxy acid using CRISPRi. Biotechnology for Biofuels, 2021, 14, 100.	phenylacetic	6.2	19
357	NetFlow: A tool for isolating carbon flows in genome-scale metabolic networks. Metabo Engineering Communications, 2021, 12, e00154.	blic	1.9	2

#	Article	IF	CITATIONS
358	Carboxylesterases for the hydrolysis of acetoacetate esters and their applications in terpenoid production using Escherichia coli. Applied Microbiology and Biotechnology, 2021, 105, 5821-5832.	1.7	2
359	Metabolic engineering of Bacillus subtilis based on genome-scale metabolic model to promote fengycin production. 3 Biotech, 2021, 11, 448.	1.1	15
360	Recent advances in metabolic engineering–integration of in silico design and experimental analysis of metabolic pathways. Journal of Bioscience and Bioengineering, 2021, 132, 429-436.	1.1	5
361	Sorting for secreted molecule production using a biosensor-in-microdroplet approach. Proceedings of the United States of America, 2021, 118, .	3.3	15
362	Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochemistry, 2021, 108, 69-79.	1.8	13
363	Pathway Engineering Using Escherichia coli to Produce Commercialized Carotenoids. Advances in Experimental Medicine and Biology, 2021, 1261, 191-199.	0.8	3
364	A Computational Procedure for Optimal Engineering Interventions Using Kinetic Models of Metabolism. Biotechnology Progress, 2006, 22, 1507-1517.	1.3	31
365	Metabolic Systems Biology. , 2009, , 5535-5552.		6
366	Engineering E. coli Central Metabolism for Enhanced Primary Metabolite Production. , 2009, , 351-376.		2
367	Genome-Scale Reconstruction, Modeling, and Simulation of E. coli℉s Metabolic Network. , 2009, , 149-176.		1
369	Host-Mimetic Metabolomics of Endophytes: Looking Back into the Future. , 2014, , 203-218.		3
373	Optimal In Silico Target Gene Deletion through Nonlinear Programming for Genetic Engineering. PLoS ONE, 2010, 5, e9331.	1.1	2
374	Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques. PLoS ONE, 2011, 6, e24162.	1.1	77
375	Combining Genotype Improvement and Statistical Media Optimization for Isoprenoid Production in E. coli. PLoS ONE, 2013, 8, e75164.	1.1	47
376	Combination of Entner-Doudoroff Pathway with MEP Increases Isoprene Production in Engineered Escherichia coli. PLoS ONE, 2013, 8, e83290.	1.1	64
377	Integer Programming-Based Method for Designing Synthetic Metabolic Networks by Minimum Reaction Insertion in a Boolean Model. PLoS ONE, 2014, 9, e92637.	1.1	7
378	CONSTRICTOR: Constraint Modification Provides Insight into Design of Biochemical Networks. PLoS ONE, 2014, 9, e113820.	1.1	9
379	Bacterial Cells as Model Factories. American Journal of Operations Research, 2013, 03, 81-86.	0.2	1

#	Article	IF	Citations
380	Homology modeling, docking studies and functional analysis of various azoreductase accessory interacting proteins of Nostoc sp.PCC7120. Bioinformation, 2012, 8, 296-300.	0.2	9
381	Enhanced Production of Astaxanthin by Metabolic Engineered Isoprenoid Pathway in Escherichia coli. Journal of Life Science, 2008, 18, 1764-1770.	0.2	2
382	Metabolic Engineering for the Fabrications of Pharmaceutically Central Metabolites from Microorganisms and Higher Plants. , 2009, , .		0
383	Identifying Enzyme Knockout Strategies on Multiple Enzyme Associations. , 0, , .		1
384	Overproduction of Lycopene by Metabolic Engineering Escherichia coli. Bioprocess, 2012, 02, 51-57.	0.1	1
385	Systems Metabolic Engineering for the Production of Noninnate Chemical Compounds. , 2014, , 456-467.		0
387	Electron Partitioning in Anoxic Phototrophic Bacteria. Advances in Photosynthesis and Respiration, 2016, , 679-700.	1.0	0
388	Metabolic Systems Biology. , 2017, , 1-23.		0
389	Microbes: The Next-Generation Bioenergy Producers. , 2020, , 29-60.		0
390	Pathway modeling and simulation analysis. , 2022, , 409-423.		2
391	A cotransformation system of the unicellular red alga Cyanidioschyzon merolae with blasticidin S deaminase and chloramphenicol acetyltransferase selectable markers. BMC Plant Biology, 2021, 21, 573.	1.6	4
392	Multilevel interactions between native and ectopic isoprenoid pathways affect global metabolism in rice. Transgenic Research, 2022, 31, 249-268.	1.3	4
393	OptDesign: Identifying Optimum Design Strategies in Strain Engineering for Biochemical Production. ACS Synthetic Biology, 2022, 11, 1531-1541.	1.9	6
394	Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metabolic Engineering, 2022, 72, 107-115.	3.6	22
399	A computational procedure for optimal engineering interventions using kinetic models of metabolism. Biotechnology Progress, 2006, 22, 1507-17.	1.3	16
402	Metabolic engineering: tools for pathway rewiring and value creation. , 2022, , 3-26.		0
403	Recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3â€hydroxypropionic acid. Biotechnology and Bioengineering, 2022, 119, 2639-2668.	1.7	17
404	Advances and applications of machine learning and intelligent optimization algorithms in genome-scale metabolic network models. Systems Microbiology and Biomanufacturing, 2023, 3, 193-206.	1.5	2

~			<u> </u>		
CI	ΓΑΤ	ION	- RE	POR	Г

#	Article	IF	CITATIONS
405	In silico cell factory design driven by comprehensive genome-scale metabolic models: development and challenges. Systems Microbiology and Biomanufacturing, 2023, 3, 207-222.	1.5	2
406	A Universal Method for Developing Autoinduction Expression Systems Using AHL-Mediated Quorum-Sensing Circuits. ACS Synthetic Biology, 2022, 11, 3114-3119.	1.9	0
407	Engineering an SspB-mediated degron for novel controllable protein degradation. Metabolic Engineering, 2022, 74, 150-159.	3.6	2
408	Improvement of lycopene biosynthesis in waaC and waaF mutants of Escherichia coli by integrant expression of crtEBI gene and deletion of aceE and gdhA. Systems Microbiology and Biomanufacturing, 2023, 3, 739-749.	1.5	1
409	Minireview: Engineering evolution to reconfigure phenotypic traits in microbes for biotechnological applications. Computational and Structural Biotechnology Journal, 2023, 21, 563-573.	1.9	2
411	Metabolic engineering for sustainability and health. Trends in Biotechnology, 2023, 41, 425-451.	4.9	17
418	Modeling the Microbial Cells for Biotechnological Applications. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 121-151.	0.2	0