Effect of temperature on intrinsic permeation propertie 6FDA-Durene/1,3-phenylenediamine (mPDA) copolyimin membranes for CO/CH separation

Journal of Membrane Science 250, 95-103

DOI: 10.1016/j.memsci.2004.10.021

Citation Report

#	Article	IF	CITATIONS
1	Gas permeation in hollow fiber membranes with nonlinear sorption isotherm and concentration dependent diffusion coefficient. Journal of Membrane Science, 2005, 267, 99-103.	4.1	5
2	Development of high-performance polysulfone/poly(4-vinylpyridine) composite hollow fibers for CO2/CH4 separation. Desalination, 2006, 192, 112-116.	4.0	15
3	Solvent selection for manufacture of fluorinated polyimide composite membranes. Desalination, 2006, 193, 8-13.	4.0	6
4	Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes—A Review. Separation and Purification Reviews, 2007, 36, 113-174.	2.8	251
5	Performance of PEI/BMI semi-IPN membranes for separations of various binary gaseous mixturesâ~†. Separation and Purification Technology, 2007, 53, 301-311.	3.9	25
6	Poly(N,N-dimethylaminoethyl methacrylate)–poly(ethylene oxide) copolymer membranes for selective separation of CO2. Journal of Membrane Science, 2008, 310, 365-373.	4.1	30
7	State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries. Separation Science and Technology, 2009, 44, 1273-1421.	1.3	256
8	Factors affect defect-free Matrimid® hollow fiber gas separation performance in natural gas purification. Journal of Membrane Science, 2010, 353, 17-27.	4.1	78
9	Physical aging of 6FDA-based polyimide membranes monitored by gas permeability. Polymer, 2011, 52, 3374-3380.	1.8	73
10	Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 2012, 37, 907-974.	11.8	1,666
11	Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology. Sustainability, 2015, 7, 16465-16482.	1.6	4
12	Gas Membranes for CO ₂ /CH ₄ (Biogas) Separation: A Review. Environmental Engineering Science, 2015, 32, 71-85.	0.8	59
13	Modeling of Spinning Process for Efficient Production of Hollow Fiber Membranes Used in Wastewater Treatment. Procedia CIRP, 2015, 26, 775-780.	1.0	2
14	A Dual-mode model interpretation of CO2/CH4 permeability in polysulfone membranes at low pressures. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1855-1864.	0.3	10
15	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	4.1	210
16	Development of Thinâ€Film Composite Membranes from Aromatic Cardoâ€Type Coâ€Polyimide for Mixed and Sour Gas Separations from Natural Gas. Global Challenges, 2020, 4, 1900107	1.8	13
17	Separation of CO2 from CH4 using mixed matrix membranes incorporated with amine functionalized MIL-125 (Ti) nanofiller. Chemical Engineering Research and Design, 2020, 159, 236-247.	2.7	25
18	CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering, 2021, 15, 720-754.	2.3	38

#	Article	IF	CITATIONS
19	Research and development of high-performance polymeric materials including polyimides and fluoro-polyimides and their industrialized products. , 2022, , 266-325.		0
20	Research and development of high-performance and thermomechanically stable Ceramer (polymers–ceramic composites materials) and 'CeramImide' nanocomposites material formulations based on fluoro-polyimides for the advanced industrial applications. , 2022, , 517-585.		1
21	Polyimides, fluoro-polyimides, fluoro-poly(ether imide), fluoro-poly(ether amide) and fluoro-poly(ether amide-imide), and their copolymers: designing "molecular architectures―of next-generation of advanced high-performance and thermomechanically stable polymers and copolymers from commercially available and specially designed monomers. , 2022, , 326-454.		0
22	Polymeric composite membranes in carbon dioxide capture process: a review. Environmental Science and Pollution Research, 2022, 29, 38735-38767.	2.7	15

CITATION REPORT