Composition, structure and thermal degradation of hen treatments

Polymer Degradation and Stability 89, 327-335

DOI: 10.1016/j.polymdegradstab.2005.01.016

Citation Report

#	Article	IF	CITATIONS
1	Isolation and Characterization of Cellulose Obtained from Ultrasonic Irradiated Sugarcane Bagasse. Journal of Agricultural and Food Chemistry, 2006, 54, 5742-5748.	5.2	116
2	Henequen/Unsaturated Polyester Biocomposites: Electron Beam Irradiation Treatment and Alkali Treatment Effects on the Henequen Fiber. Macromolecular Symposia, 2006, 245-246, 539-548.	0.7	16
3	Porous properties of activated carbon produced from Eucalyptus and Wattle wood by carbon dioxide activation. Korean Journal of Chemical Engineering, 2006, 23, 1046-1054.	2.7	46
4	Stress Relaxation and Thermal Analysis of Hybrid Biofiber Reinforced Rubber Biocomposites. Journal of Reinforced Plastics and Composites, 2006, 25, 1903-1917.	3.1	22
5	Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Composite Interfaces, 2007, 14, 559-578.	2.3	80
6	Optimising industrial hemp fibre for composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 461-468.	7.6	326
7	Bast fiber of flax (Linum usitatissimum L.): Biological foundations of its ancient and modern uses. Israel Journal of Plant Sciences, 2007, 54, 273-280.	0.5	23
8	Characterization of liquefied wood residues from different liquefaction conditions. Journal of Applied Polymer Science, 2007, 105, 3740-3746.	2.6	42
9	Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres. Journal of Materials Science, 2007, 42, 9336-9342.	3.7	68
10	Interfacial evaluation and durability of modified Jute fibers/polypropylene (PP) composites using micromechanical test and acoustic emission. Composites Part B: Engineering, 2008, 39, 1042-1061.	12.0	95
11	Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 2008, 93, 90-98.	5.8	677
12	Dynamic mechanical properties of natural fiber/polymer biocomposites: The effect of fiber treatment with electron beam. Macromolecular Research, 2008, 16, 253-260.	2.4	40
13	Effect of processing route on the composition and properties of hemp fibre. Fibers and Polymers, 2008, 9, 593-603.	2.1	20
14	Preparation of Pectin–ZnO Nanocomposite. Nanoscale Research Letters, 2008, 3, 491-5.	5 . 7	74
15	Recent developments in chemical modification and characterization of natural fiberâ€reinforced composites. Polymer Composites, 2008, 29, 187-207.	4.6	940
16	Preparation and crystalline analysis of highâ€grade bamboo dissolving pulp for cellulose acetate. Journal of Applied Polymer Science, 2008, 107, 1029-1038.	2.6	104
17	Effect of high temperature alkali cooking on the constituents, structure and thermal degradation of hemp fiber. Journal of Applied Polymer Science, 2008, 108, 4058-4064.	2.6	18
18	Inverse gas chromatography for determining the dispersive surface free energy and acid–base interactions of sheet molding compound—Part II 14 Lignoâ€ellulosic fiber types for possible composite reinforcement. Journal of Applied Polymer Science, 2008, 110, 3880-3888.	2.6	34

#	ARTICLE	IF	Citations
19	Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochemistry, 2008, 43, 1195-1201.	3.7	49
20	Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers. Applied Surface Science, 2008, 255, 2466-2473.	6.1	27
21	Bioscouring and bleaching of cotton with pectinase enzyme and peracetic acid in one bath. Coloration Technology, 2008, 124, 36-42.	1.5	38
22	Utilisation of unbleached kenaf fibers for the preparation of magnetic paper. Industrial Crops and Products, 2008, 28, 333-339.	5.2	47
23	A Novel Method for the Synthesis of Cellulose Nanofibril Whiskers from Banana Fibers and Characterization. Journal of Agricultural and Food Chemistry, 2008, 56, 5617-5627.	5.2	305
24	Effect of mercerization of flax fibers on wheat flour/flax fiber biocomposite with respect to thermal and tensile properties. Composite Interfaces, 2008, 15, 759-770.	2.3	12
25	Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification. Composites Part A: Applied Science and Manufacturing, 2008, 39, 979-988.	7.6	271
26	Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1632-1637.	7.6	699
28	Preparation of Novolak Resin by Liquefaction of Oil Palm Empty Fruit Bunches (EFB) and Characterization of EFB Residue. Polymer-Plastics Technology and Engineering, 2008, 48, 10-16.	1.9	10
29	Effect of Fiber Content and Chemical Treatment on the Thermal Properties of <i>Spartium junceum </i> Fiber-Reinforced Polypropylene Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 57, 771-784.	3.4	14
30	Induction of Morphological Changes inHibiscus sabdariffaFiber on Graft Copolymerization with Binary Vinyl Monomer Mixtures. International Journal of Polymer Analysis and Characterization, 2009, 14, 246-258.	1.9	19
31	The application of a novel flame retardant on viscose fiber. Fire and Materials, 2009, 33, 145-156.	2.0	16
32	Comparison of the thermal degradation of natural, alkaliâ€treated and silaneâ€treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science, 2009, 112, 226-234.	2.6	117
33	Treatment of Harakeke fiber for biocomposites. Journal of Applied Polymer Science, 2009, 112, 2710-2715.	2.6	20
34	Influence of mechanical activation on the graft copolymerization of sugarcane bagasse and acrylic acid. Polymer Degradation and Stability, 2009, 94, 1737-1745.	5 . 8	39
35	Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers, 2009, 77, 47-53.	10.2	236
36	Structure and thermal properties of natural colored cottons and bombax cotton. Journal of Thermal Analysis and Calorimetry, 2009, 95, 653-659.	3.6	12
37	Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix. Journal of the European Ceramic Society, 2009, 29, 1861-1868.	5.7	75

3

#	ARTICLE	IF	CITATIONS
38	Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres. Journal of Hazardous Materials, 2009, 165, 240-249.	12.4	77
39	Homogeneous Modification of Cellulose in Ionic Liquid with Succinic Anhydride Using <i>N</i> -Bromosuccinimide as a Catalyst. Journal of Agricultural and Food Chemistry, 2009, 57, 1814-1820.	5. 2	67
40	Physico-chemical characterisation and tensile mechanical properties of <i>Agave americana </i> L. fibres. Journal of the Textile Institute, 2009, 100, 430-439.	1.9	28
41	Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening. Journal of Dairy Science, 2009, 92, 3575-3584.	3.4	21
42	Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A, 2010, 1217, 5922-5929.	3.7	92
43	Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 2010, 70, 116-122.	7.8	447
44	Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 2010, 14, 57-75.	3.1	60
45	Chemically Modified Banana Fiber: Structure, Dielectrical Properties and Biodegradability. Journal of Polymers and the Environment, 2010, 18, 523-531.	5.0	50
46	Self-reinforced cellulose nanocomposites. Cellulose, 2010, 17, 779-791.	4.9	52
47	Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydrate Polymers, 2010, 79, 847-851.	10.2	200
48	Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 2010, 82, 337-345.	10.2	416
49	Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites, 2010, 31, 1928-1937.	4.6	47
50	Thermomechanical and spectroscopic characterization of natural fibre composites., 2011,, 241-274.		39
51	Lignocellulose Aerogel from Wood-Ionic Liquid Solution (1-Allyl-3-methylimidazolium Chloride) under Freezing and Thawing Conditions. Biomacromolecules, 2011, 12, 1860-1867.	5.4	137
52	Mechanical properties of hemp-lime reinforced mortars: influence of the chemical treatment of fibers. Journal of Composite Materials, 2011, 45, 2347-2357.	2.4	44
53	Comparative Studies on Thermochemical Characterization of Corn Stover Pretreated by White-Rot and Brown-Rot Fungi. Journal of Agricultural and Food Chemistry, 2011, 59, 9965-9971.	5 . 2	37
54	Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 30-40.	7.6	76
55	Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 492-500.	7.6	187

#	ARTICLE	IF	CITATIONS
56	Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: Applied Science and Manufacturing, 2011, 42, 888-895.	7.6	285
57	Structure and properties of new natural cellulose fabrics from Cordia dichotoma. Carbohydrate Polymers, 2011, 86, 1623-1629.	10.2	94
58	The effect of alkaline pretreatment on the thermal decomposition of hemp. Journal of Thermal Analysis and Calorimetry, 2011, 105, 1061-1069.	3.6	41
59	Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydrate Polymers, 2011, 86, 1221-1229.	10.2	216
60	Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis) Tj ETQq0 0 629-641.	0 rgBT /0 2.9	verlock 10 Tf 88
61	Macro-micro structure, antibacterial activity, and physico-mechanical properties of the mulberry bast fibers. Fibers and Polymers, 2011, 12, 471-477.	2.1	16
62	Preparation, composition, structure and properties of the Kosteletzkya virginica bast fiber. Fibers and Polymers, 2011, 12, 911-918.	2.1	8
63	Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science, 2011, 119, 3696-3707.	2.6	120
64	Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research, 2011, 346, 76-85.	2.3	294
65	Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Composites Science and Technology, 2011, 71, 1138-1144.	7.8	131
66	Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 2011, 102, 1988-1997.	9.6	472
67	Influence of chemical treatments on adhesion properties of hemp fibres. Journal of Colloid and Interface Science, 2011, 356, 303-310.	9.4	72
68	Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 2011, 96, 679-685.	5.8	181
69	FTIR spectroscopy of biodegraded historical textiles. Polymer Degradation and Stability, 2011, 96, 574-580.	5.8	61
70	The Structure and Properties of the Degummed <i>Kosteletzkya virginica</i> Bast Fiber. Advanced Materials Research, 2011, 236-238, 346-356.	0.3	2
71	The Potential Use of Roselle as a Novel Graft Copolymer. Journal of Natural Fibers, 2011, 8, 308-321.	3.1	3
72	Evaluation of Dynamic Materials Procured from Waste Biomass. ISRN Materials Science, 2011, 2011, 1-7.	1.0	2
73	Effect of Physical and Chemical Surface Treatment on the Thermal Stability of Hemp Fibers as Reinforcement in Composite Structures. Applied Mechanics and Materials, 0, 71-78, 616-620.	0.2	4

#	ARTICLE	IF	CITATIONS
74	Mechanical Properties of Biodegradable Composites Reinforced with ShortSpartium JunceumFibers before and after Treatments. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 1021-1034.	3.4	21
75	Effect of cotton pectin content and bioscouring on alkyl-dimethyl-benzyl-ammonium chloride adsorption. Textile Reseach Journal, 2012, 82, 1743-1750.	2.2	6
76	Testing of natural textile fibres. , 2012, , 345-390.		6
77	Mercerization of Agave americanal. fibers. Journal of the Textile Institute, 2012, 103, 565-574.	1.9	15
78	Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 2012, 43, 2883-2892.	12.0	1,192
79	Chemical Modification of Hemp Shives and their Characterization. Procedia Engineering, 2012, 42, 931-941.	1.2	65
80	Chemical treatment of sisal fiber using alkali and clay method. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1989-1998.	7.6	85
81	Physico-chemical and mechanical characterization of alkali-treated <i>Agave americana</i> L. fiber. Journal of the Textile Institute, 2012, 103, 349-355.	1.9	22
82	Morphological and thermal properties of maize fiber composites. Fibers and Polymers, 2012, 13, 887-893.	2.1	11
83	Thermal stability and degradation of banana fibre/PF composites fabricated by RTM. Fibers and Polymers, 2012, 13, 1319-1325.	2.1	23
84	Hemp fiber and its composites – a review. Journal of Composite Materials, 2012, 46, 973-986.	2.4	449
85	Accreditation of Novel Roselle Grafted Fiber Reinforced Bio-Composites. Journal of Engineered Fibers and Fabrics, 2012, 7, 155892501200700.	1.0	6
86	DEGRADATION AND STABILITY OF PULP TREATED IN HETEROGENEOUS AND HOMOGENEOUS PHASES. BioResources, 2012, 7, .	1.0	0
87	Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass. Environmental Progress and Sustainable Energy, 2012, 31, 200-204.	2.3	24
88	Effect of highâ€ŧemperature degumming on the constituents and structure of cotton stalk bark fibers. Journal of Applied Polymer Science, 2012, 125, E573.	2.6	15
89	Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1199-1206.	2.2	111
90	Novel Materials Procured from Surface Modification of Biomass. Waste and Biomass Valorization, 2012, 3, 141-148.	3.4	4
91	Modified cellulose films with controlled permeatability and biodegradability by crosslinking with toluene diisocyanate under homogeneous conditions. Carbohydrate Polymers, 2012, 88, 1272-1280.	10.2	38

#	Article	IF	CITATIONS
92	Extraction of dietary fiber from Citrus junos peel with subcritical water. Food and Bioproducts Processing, 2012, 90, 180-186.	3.6	56
93	Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Composites Part B: Engineering, 2012, 43, 159-169.	12.0	171
94	Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Industrial Crops and Products, 2012, 36, 257-266.	5.2	108
95	Use of cellulose fibers from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Industrial Crops and Products, 2012, 39, 89-96.	5.2	71
96	Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Materials & Design, 2012, 35, 318-322.	5.1	148
97	Application of infrared spectroscopy and thermal analysis to the examination of the degradation of cotton fibers. Polymer Degradation and Stability, 2012, 97, 35-39.	5.8	14
98	Investigation of liquefied wood residues based on cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 2012, 123, 850-856.	2.6	79
99	Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction. Biotechnology and Bioengineering, 2012, 109, 84-91.	3.3	45
100	Thermal properties of modified banana trunk fibers. Journal of Thermal Analysis and Calorimetry, 2012, 108, 9-17.	3.6	10
101	Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Industrial Crops and Products, 2013, 41, 198-202.	5.2	74
102	Influence of alkali treatment on the structure and properties of hemp fibers. Fibers and Polymers, 2013, 14, 389-395.	2.1	28
103	Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products, 2013, 49, 357-365.	5.2	86
104	Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Industrial Crops and Products, 2013, 51, 317-327.	5.2	108
106	Design and characterization of cellulose fibers with hierarchical structure for polymer reinforcement. Cellulose, 2013, 20, 2765-2778.	4.9	15
107	Mechanical and structural properties of a novel melt processed PET–hemp composite: Influence of additives and fibers concentration. Journal of Reinforced Plastics and Composites, 2013, 32, 1526-1533.	3.1	14
108	A new use for modified sugarcane bagasse containing adsorbed Co2+ and Cr3+: Catalytic oxidation of terpenes. Industrial Crops and Products, 2013, 50, 288-296.	5.2	12
109	Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products, 2013, 43, 529-537.	5.2	141
110	Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites Part B: Engineering, 2013, 45, 1251-1257.	12.0	190

#	Article	IF	CITATIONS
111	Effect of potassium inorganic and organic salts on the pyrolysis kinetics of cigarette paper. Journal of Analytical and Applied Pyrolysis, 2013, 102, 114-123.	5.5	48
112	Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydrate Polymers, 2013, 94, 843-849.	10.2	98
113	Bionanowhiskers from jute: Preparation and characterization. Carbohydrate Polymers, 2013, 92, 1116-1123.	10.2	50
114	Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules, 2013, 14, 1529-1540.	5.4	392
115	Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 2013, 51, 225-230.	5.1	121
116	Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Materials & Design, 2013, 49, 442-448.	5.1	136
117	Optimized GC-MS Method To Simultaneously Quantify Acetylated Aldose, Ketose, and Alditol for Plant Tissues Based on Derivatization in a Methyl Sulfoxide/1-Methylimidazole System. Journal of Agricultural and Food Chemistry, 2013, 61, 4011-4018.	5.2	27
118	Morphological, Physical, and Thermal Properties of Chemically Treated Banana Fiber. Journal of Natural Fibers, 2013, 10, 365-380.	3.1	84
119	Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Materials & Design, 2013, 43, 200-205.	5.1	252
120	A Study in Physical and Mechanical Properties of Hemp Fibres. Advances in Materials Science and Engineering, 2013, 2013, 1-9.	1.8	76
121	Isolation and Characterization of Cellulose Fibers from Rice Straw and its Application in Modified Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2013, 52, 1566-1573.	1.9	14
122	An Approach to Using Agricultural Waste Fibres in Biocomposites Application: Thermogravimetric Analysis and Activation Energy Study. BioResources, 2013, 9, .	1.0	34
123	Rapid Synthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide-Based Hydrogels for Drug Delivery. International Journal of Polymer Science, 2013, 2013, 1-10.	2.7	66
124	Evaluation of Sereni Fiber Reinforced Composite. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	1.0	1
125	Accessibility and Morphology of Cellulose Fibres Treated with Sodium Hydroxide. BioResources, 2014, 9, .	1.0	22
126	Optimising processing conditions of flax fabric reinforced Acrodur biocomposites. Journal of Composite Materials, 2014, 48, 3281-3292.	2.4	13
127	Adhesive Content Influence on Antimicrobial Properties of Pineapple Leaf Fiber. Advanced Materials Research, 2014, 1048, 3-8.	0.3	1
128	Properties Characterization of Chemically Modified Hemp Hurds. Materials, 2014, 7, 8131-8150.	2.9	160

#	Article	IF	CITATIONS
129	Effect of Chemical Surface Modifications on the Properties of Alfa Fiber-Polyester Composites. Polymer-Plastics Technology and Engineering, 2014, 53, 403-410.	1.9	18
130	Effect of kenaf fiber age on PLLA composite properties. Polymer Composites, 2014, 35, 915-924.	4.6	6
131	Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites Part A: Applied Science and Manufacturing, 2014, 67, 259-267.	7.6	47
132	Thermogravimetric analysis of cellulose insulation and determination of activation energy of its thermo-oxidation using non-isothermal, model-free methods. Polymers for Advanced Technologies, 2014, 25, 1169-1174.	3.2	5
133	Development of composites based on recycled polyethylene/sugarcane bagasse fibers. Polymer Composites, 2014, 35, 768-774.	4.6	33
134	Thermal, crystallization, and dynamic rheological behavior of wood particle/HDPE composites: Effect of removal of wood cell wall composition. Journal of Applied Polymer Science, 2014, 131, .	2.6	14
135	Effects of the hygrothermal environment on the mechanical properties of flax fibres. Journal of Composite Materials, 2014, 48, 1699-1707.	2.4	54
136	Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Drug Development and Industrial Pharmacy, 2014, 40, 1340-1349.	2.0	64
137	Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers, 2014, 106, 77-83.	10.2	300
138	Effects of ionic liquid on the rheological properties of wood flour/high density polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2014, 61, 134-140.	7.6	34
139	Evaluation of liquid ammonia treatment on surface characteristics of hemp fiber. Cellulose, 2014, 21, 569-579.	4.9	20
140	Thermochemical and statistical mechanical properties of natural sisal fibres. Composites Part B: Engineering, 2014, 67, 481-489.	12.0	69
141	Compression and injection molding techniques for natural fiber composites. , 2014, , 216-232.		24
142	The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils. Reactive and Functional Polymers, 2014, 85, 142-150.	4.1	29
143	Topological characterization of a bacterial cellulose–acrylic acid polymeric matrix. European Journal of Pharmaceutical Sciences, 2014, 62, 326-333.	4.0	15
144	Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohydrate Polymers, 2014, 112, 422-431.	10.2	78
145	Effect of surface treatment on thermal stability of the hemp-PLA composites: Correlation of activation energy with thermal degradation. Composites Part B: Engineering, 2014, 67, 227-232.	12.0	110
146	Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. Journal of Cleaner Production, 2014, 83, 454-462.	9.3	45

#	Article	IF	CITATIONS
147	Evaluation of Citrus Fibers as a Tablet Excipient. AAPS PharmSciTech, 2014, 15, 279-286.	3.3	6
148	Optimizing the formulation of flax fiber-reinforced cement composites. Construction and Building Materials, 2014, 54, 659-664.	7.2	51
149	Effect of steam explosion on degumming efficiency and physicochemical characteristics of banana fiber. Journal of Applied Polymer Science, 2014, 131, .	2.6	17
150	Micromechanics of Lotus Fibers. Chemistry Letters, 2014, 43, 1137-1139.	1.3	22
151	Physical Characterization of Natural Lignocellulosic Single Areca Fiber. Ciência & Tecnologia Dos Materiais, 2015, 27, 121-135.	0.5	23
152	Influence of NaOH treatment on the mechanical properties of particleboard. Materials Research Innovations, 2015, 19, S8-630-S8-633.	2.3	1
153	Physico-Mechanical Properties of Banana Fiber Reinforced Polymer Composite as an Alternative Building Material. Key Engineering Materials, 0, 650, 131-138.	0.4	8
154	Dissolution of wheat straw with aqueous NaOH/Urea solution. Fibers and Polymers, 2015, 16, 2368-2374.	2.1	8
155	Synthesis and kinetics of ascorbic acid initiated graft copolymerized delignified cellulosic fiber. Polymer Engineering and Science, 2015, 55, 474-484.	3.1	7
156	Study of the Potential Employment of Malvaceae Species in Composites Materials. Key Engineering Materials, 0, 668, 75-85.	0.4	1
157	Investigation of the thermostability of poly(ethylene terephthalate)–hemp fiber composites: Extending natural fiber reinforcements to highâ€melting thermoplastics. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
158	Study on flax fiber toughened poly (lactic acid) composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	21
159	Modification of rapeseed straw with organic acid anhydrides. Journal of Composite Materials, 2015, 49, 1369-1378.	2.4	5
160	Hydrolysis of sweet blue lupin hull using subcritical water technology. Bioresource Technology, 2015, 194, 75-82.	9.6	42
161	Structural and Thermal Investigation of Three Agricultural Biomasses Following Mild-NaOH Pretreatment to Increase Anaerobic Biodegradability. Waste and Biomass Valorization, 2015, 6, 1135-1148.	3.4	9
162	Differential behaviour of nodes and internodes of wheat straw with various pre-treatments. Biomass and Bioenergy, 2015, 83, 373-382.	5.7	40
163	Application of microwave energy in degumming of hemp stems for the processing of fibres. Biosystems Engineering, 2015, 131, 23-31.	4.3	25
164	Oilâ€spill cleanup: The influence of acetylated curaua fibers on the oilâ€removal capability of magnetic composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	39

#	Article	IF	CITATIONS
165	Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose, 2015, 22, 1577-1589.	4.9	119
166	Investigation on the reactive processing of textile-ramie fiber reinforced anionic polyamide-6 composites. Composites Science and Technology, 2015, 110, 188-195.	7.8	14
167	Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites. Journal of Reinforced Plastics and Composites, 2015, 34, 1329-1339.	3.1	38
168	Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 2015, 12, 483-494.	5.0	90
169	Thermal stability evaluation of sweet sorghum fiber and degradation simulation during hot pressing of sweet sorghum–thermoplastic composite panels. Industrial Crops and Products, 2015, 69, 335-343.	5.2	12
170	Two novel algorithms for the thermogravimetric assessment of polymer degradation under non-isothermal conditions. Polymer Testing, 2015, 43, 139-146.	4.8	12
171	Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. Journal of Thermal Analysis and Calorimetry, 2015, 121, 93-105.	3.6	51
172	Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NAOH/PEG aqueous solution. Fibers and Polymers, 2015, 16, 302-307.	2.1	44
173	Extraction and Characterization of Cellulose Nanofibers from Banana Plant., 2015,, 65-80.		3
174	Physical and thermal characterization of some cellulose fabrics as reinforced materials for composite. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1703-1714.	3.6	9
175	Durable superamphiphobic wood surfaces from Cu ₂ O film modified with fluorinated alkyl silane. RSC Advances, 2015, 5, 98203-98208.	3.6	33
176	Isolation and Characterization of Cellulose from Sweet Sorghum Bagasse. Sugar Tech, 2015, 17, 395-403.	1.8	10
177	A robust, anti-acid, and high-temperature–humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 2015, 262, 33-39.	4.8	83
178	Mechanical and water absorption properties of municipal solid waste and banana fiberâ€reinforced urea formaldehyde composites. Environmental Progress and Sustainable Energy, 2015, 34, 211-221.	2.3	8
179	Graft copolymerization of ethyl acrylate onto tamarind kernel powder, and evaluation of its biodegradability. Carbohydrate Polymers, 2015, 117, 11-18.	10.2	25
180	Thermal analysis for fiber identification and characterization. , 2016, , 215-237.		0
181	Effect of surface modification on the interface quality between hemp and linear mediumâ€density polyethylene. Journal of Applied Polymer Science, 2016, 133, .	2.6	19
182	New insights into the functionality of protein to the emulsifying properties of sugar beet pectin. Food Hydrocolloids, 2016, 57, 262-270.	10.7	78

#	Article	IF	CITATIONS
183	Improvement of properties for biobased composites from modified soybean oil and hemp fibers: Dual role of diisocyanate. Composites Part A: Applied Science and Manufacturing, 2016, 90, 278-285.	7.6	25
184	Thermogravimetric characteristics of $\hat{l}\pm$ -cellulose and decomposition kinetics in a micro-tubing reactor. Korean Journal of Chemical Engineering, 2016, 33, 3128-3133.	2.7	11
185	Kinetics of non-isothermal decomposition and flame retardancy of goatskin fiber treated with melamine-based flame retardant. Fibers and Polymers, 2016, 17, 1018-1024.	2.1	13
186	Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: Experimental and mathematical modeling. Journal of Environmental Chemical Engineering, 2016, 4, 3848-3855.	6.7	36
187	An evaluation of the thermal degradation kinetics of novel melt processed PET–hemp fiber composites. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1387-1396.	3 . 6	10
188	Effects of environmental-friendly modified rubber seed shell on the comprehensive properties of high density polyethylene/rubber seed shell composites. Industrial Crops and Products, 2016, 91, 132-141.	5.2	20
189	Thermal Stress Effect on Density Changes of Hemp Hurds Composites. Selected Scientific Papers: Journal of Civil Engineering, 2016, 11, 67-76.	0.1	0
190	Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 2016, 101, 31-45.	12.0	304
191	Evaluation of linden fibre as a potential reinforcement material for polymer composites. Journal of Industrial Textiles, 2016, 45, 1221-1238.	2.4	23
192	Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane. Holzforschung, 2016, 70, 63-68.	1.9	37
193	The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. Journal of Composite Materials, 2016, 50, 3817-3830.	2.4	39
194	Investigation of organosolv and hot-compressed water pretreatments of rice straw. Biomass Conversion and Biorefinery, 2016, 6, 355-364.	4.6	15
195	Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids and Surfaces B: Biointerfaces, 2016, 140, 421-429.	5 . 0	59
196	Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites. Industrial Crops and Products, 2016, 81, 56-65.	5.2	55
197	Fiber surface treatment: Its effect on structural, thermal, and mechanical properties of <i>Luffa cylindrica</i> fiber and its composite. Journal of Composite Materials, 2016, 50, 3117-3131.	2.4	58
198	Banana fiber reinforced low-density polyethylene composites: effect of chemical treatment and compatibilizer addition. Iranian Polymer Journal (English Edition), 2016, 25, 229-241.	2.4	79
199	Effect of hemp surface modification on the morphological and tensile properties of linear medium density polyethylene (LMDPE) composites. Composite Interfaces, 2016, 23, 405-421.	2.3	33
200	Thermo-physical properties of pretreated agricultural residues for bio-hydrogen production using thermo-gravimetric analysis. International Journal of Hydrogen Energy, 2016, 41, 5234-5242.	7.1	26

#	Article	IF	Citations
201	Impact of Ball-Milling Pretreatment on Pyrolysis Behavior and Kinetics of Crystalline Cellulose. Waste and Biomass Valorization, 2016, 7, 571-581.	3.4	58
202	A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceramics International, 2016, 42, 2170-2179.	4.8	77
203	Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 2016, 199, 228-234.	9.6	68
204	Effect of chemical treatment on thermal properties of bagasse fiber-reinforced epoxy composite. Science and Engineering of Composite Materials, 2017, 24, 237-243.	1.4	11
205	Microscopical, physico-chemical, mineralogical, and mechanical characterization of <i>Sansevieria zeylanica </i> fibers as potential reinforcement of composite structures. Journal of Composite Materials, 2017, 51, 811-829.	2.4	18
206	A study of the effect of chemical treatments on areca fiber reinforced polypropylene composite properties. Science and Engineering of Composite Materials, 2017, 24, 501-520.	1.4	16
207	Properties of cementitious mortars reinforced with natural fibers. Journal of Adhesion Science and Technology, 2017, 31, 1938-1962.	2.6	42
208	Coating of silver nanoparticles on jute fibre by in situ synthesis. Cellulose, 2017, 24, 1563-1577.	4.9	37
209	The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. Journal of Materials Science, 2017, 52, 5759-5777.	3.7	67
210	Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers. Industrial Crops and Products, 2017, 103, 152-160.	5.2	57
211	Processing and characterization of polyethylene/starch/curau \tilde{A}_i composites: Potential for application as thermal insulated coating. Journal of Building Engineering, 2017, 11, 178-186.	3.4	7
212	Fabrication of biomass-derived C-doped Bi2WO6 templated from wood fibers and its excellent sensing of the gases containing carbonyl groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 487-494.	4.7	15
213	Effect of surface modification on morphological, mechanical and thermal conductivity of hemp fiber: Characterization of the interface of hemp –Polyurethane composite. Case Studies in Thermal Engineering, 2017, 10, 550-559.	5.7	70
214	Microwave-Driven Sugar Beet Pulp Liquefaction in Polyhydric Alcohols. International Journal of Food Engineering, 2017, 13, .	1.5	5
215	Poly (ethylene-terephthalate) Reinforced with Hemp Fibers: Elaboration, Characterization, and Potential Applications., 2017,, 43-68.		0
216	Probing the Interaction between Fluoride and the Polysaccharides in Al(III)- and Zr (IV)-Modified Tea Waste by Using Diverse Analytical Characterization Techniques. ChemistrySelect, 2017, 2, 10123-10135.	1.5	10
217	Thermal degradation of natural and treated hemp hurds under air and nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1649-1660.	3.6	50
218	Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites. Green Energy and Technology, 2017, , 125-147.	0.6	5

#	Article	IF	CITATIONS
219	Effect of Alkali Treatment on Alfa Fibers Behavior. Journal of Natural Fibers, 2017, 14, 239-249.	3.1	45
220	Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose, 2017, 24, 333-347.	4.9	132
221	Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrasonics Sonochemistry, 2017, 34, 729-742.	8.2	89
222	Characterisation of cellulose from coffee silverskin. International Journal of Food Properties, 2017, 20, 2830-2843.	3.0	24
224	Recycled synthetic polymer fibers in composites. , 2017, , 73-93.		3
225	Valorization of Tunisian alfa fibres and sumac tannins for the elaboration of biodegradable insulating panels. EPJ Applied Physics, 2017, 80, 20201.	0.7	2
226	Study on Effect of Surface Treating Method on Mechanical Behavior of Three Plant Fiber Reinforced Polypropylene Composites. Polymers and Polymer Composites, 2017, 25, 93-102.	1.9	9
227	Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite. Materials, 2017, 10, 579.	2.9	86
228	DIFFERENT PLANT BIOMASS CHARACTERIZATIONS FOR BIOCHAR PRODUCTION. Cerne, 2017, 23, 529-536.	0.9	36
229	Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region. Fermentation, 2017, 3, 11.	3.0	53
230	Surface Modification of Sisal Fibres by Ultrasonic Field. Key Engineering Materials, 0, 728, 283-288.	0.4	1
231	Influence of field retting duration on the biochemical, microstructural, thermal and mechanical properties of hemp fibres harvested at the beginning of flowering. Industrial Crops and Products, 2018, 116, 170-181.	5.2	55
232	A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Composite Interfaces, 2018, 25, 629-667.	2.3	115
233	Evaluation of the volatile organic compound emissions in modern and naturally aged Japanese paper. Journal of Cultural Heritage, 2018, 33, 18-29.	3.3	8
234	The degradation and saccharification of microcrystalline cellulose in aqueous acetone solution with low severity dilute sulfuric acid. Process Biochemistry, 2018, 68, 146-152.	3.7	8
235	Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Industrial Crops and Products, 2018, 113, 225-233.	5.2	31
236	Lignocellulosic Composite Materials. Springer Series on Polymer and Composite Materials, 2018, , .	0.7	9
237	Mechanical and Thermal Properties of Less Common Natural Fibres and Their Composites. Springer Series on Polymer and Composite Materials, 2018, , 177-213.	0.7	1

#	Article	lF	Citations
238	Ancient and modern paper: Study on ageing and degradation process by means of portable NIR \hat{l}_4 -Raman spectroscopy. Microchemical Journal, 2018, 138, 26-34.	4.5	23
239	Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites. Construction and Building Materials, 2018, 170, 193-199.	7.2	49
240	Evaluation of the mechanical properties of chemically modified chicken feather fibres reinforced high density polyethylene composites. Journal of Taibah University for Science, 2018, 12, 56-63.	2.5	23
241	Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. Journal of Wood Science, 2018, 64, 398-405.	1.9	96
242	Thermal degradation of coir fiber reinforced low-density polyethylene composites. Science and Engineering of Composite Materials, 2018, 25, 363-372.	1.4	10
243	Hybridization effect of coir fiber on physico-mechanical properties of polyethylene-banana/coir fiber hybrid composites. Science and Engineering of Composite Materials, 2018, 25, 133-141.	1.4	21
244	Extraction and Characterization of Nanocrystalline Cellulose from Cassava Bagasse. Journal of Polymers and the Environment, 2018, 26, 789-797.	5.0	23
245	Rotational molding of selfâ€hybrid composites based on linear lowâ€density polyethylene and maple fibers. Polymer Composites, 2018, 39, 4094-4103.	4.6	23
246	An experimental investigation and optimization on the impact strength of kenaf fiber biocomposite: application of response surface methodology. Polymer Bulletin, 2018, 75, 3283-3309.	3.3	25
247	Synthesis and characterization of pectin/SiO2 hybrid materials. Journal of Sol-Gel Science and Technology, 2018, 85, 330-339.	2.4	30
248	Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Industrial Crops and Products, 2018, 111, 422-429.	5.2	95
249	Hemp Cables, a Sustainable Alternative to Harmonic Steel for Cable Nets. Resources, 2018, 7, 70.	3.5	5
250	Morphology and Mechanical Properties of Maple Reinforced LLDPE Produced by Rotational Moulding: Effect of Fibre Content and Surface Treatment. Polymers and Polymer Composites, 2018, 26, 299-308.	1.9	37
251	Hemicellulose and lignin removal on typha fiber by alkali treatment. IOP Conference Series: Materials Science and Engineering, 2018, 352, 012019.	0.6	16
252	Interfacial Modification of Hemp Fiber–Reinforced Composites. , 0, , .		5
253	Sustainable Production of Biofuels from Weedy Biomass and Other Unconventional Lignocellulose Wastes. , 2018, , 83-116.		O
254	Macrocyclic oligomers as compatibilizing agent for hemp fibres/biodegradable polyester eco-composites. Polymer, 2018, 146, 396-406.	3.8	25
255	Encapsulation of Theophylline in Gelatin A–Pectin Complex Coacervates. Advances in Experimental Medicine and Biology, 2018, 1052, 63-74.	1.6	1

#	Article	IF	Citations
256	Application of cryogenic and mechanical treatment in degumming of hemp stems. Biosystems Engineering, 2018, 174, 144-152.	4.3	20
257	Characterization of raffia palm fiber for use in polymer composites. Journal of Wood Science, 2018, 64, 650-663.	1.9	15
258	Ageing of ancient paper: A kinetic model of cellulose degradation from Raman spectra. Journal of Raman Spectroscopy, 2018, 49, 1802-1811.	2.5	26
259	Characterization of sodium hydroxide-treated kenaf fibres for biodegradable composite application. High Performance Polymers, 2018, 30, 890-899.	1.8	22
260	Effect of hemp fibers on fire resistance of concrete. Construction and Building Materials, 2018, 184, 473-484.	7.2	62
261	Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. Journal of Elastomers and Plastics, 2019, 51, 224-243.	1.5	56
262	Cellulose Fibers Hydrophobization via a Hybrid Chemical Modification. Polymers, 2019, 11, 1174.	4.5	54
263	Effects of polyamide 6 reinforcement on the compatibility of highâ€density polyethylene/environmentalâ€friendly modified wood fiber composites. Journal of Applied Polymer Science, 2019, 136, 47984.	2.6	3
264	Thermal evaluation of rubber compounds containing pecan nutshell powder for tire treads. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3673-3678.	3.6	0
265	Manufacture and Performance of Textile-ramie Fiber Reinforced Anionic Polyamide 6 Composites. Fibers and Polymers, 2019, 20, 1705-1715.	2.1	5
266	Synergy of the flow behaviour and disperse phase of cellulose nanoparticles in enhancing oil recovery at reservoir condition. PLoS ONE, 2019, 14, e0220778.	2.5	23
267	Effect of chemical treatments on properties of raffia palm (Raphia farinifera) fibers. Cellulose, 2019, 26, 9463-9482.	4.9	20
268	Understanding the microstructural role of bio-sourced 3D printed structures on the tensile performance. Polymer Testing, 2019, 77, 105924.	4.8	27
269	A Mussel Mimetic, Bioadhesive, Antimicrobial Patch Based on Dopamine-Modified Bacterial Cellulose/rGO/Ag NPs: A Green Approach toward Wound-Healing Applications. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	23
270	Tensile Properties and Structure Characterization of Palm Fibers by Alkali Treatment. Fibers and Polymers, 2019, 20, 1029-1035.	2.1	20
271	Alfa fiber-polyurethane composite as a thermal and acoustic insulation material for building applications. SN Applied Sciences, 2019, 1, 1.	2.9	36
272	Characterization of untreated and alkali treated natural fibers extracted from the stem of <i>Catharanthus roseus Naterials Research Express, 2019, 6, 085406.</i>	1.6	73
273	Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Composites Science and Technology, 2019, 180, 51-59.	7.8	99

#	Article	IF	CITATIONS
274	Optimizing Treatment of Oil Palm-Empty Fruit Bunch (OP-EFB) Fiber: Chemical, Thermal and Physical Properties of Alkalized Fibers. Fibers and Polymers, 2019, 20, 527-537.	2.1	10
275	Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure. Carbohydrate Polymers, 2019, 214, 1-7.	10.2	79
276	Effect of Different Reinforcing Fillers on Properties, Interfacial Compatibility and Weatherability of Wood-plastic Composites. Journal of Bionic Engineering, 2019, 16, 337-353.	5.0	22
277	Preparation and characterization of Xyloglucan films extracted from Tamarindus indica seeds for packaging cut-up â€~Sunrise Solo' papaya. International Journal of Biological Macromolecules, 2019, 132, 1163-1175.	7.5	21
278	New trends in physicochemical characterization of solid lignocellulosic waste in anaerobic digestion. Fuel, 2019, 245, 240-246.	6.4	30
279	A Comparative Study of the Effect of Field Retting Time on the Properties of Hemp Fibres Harvested at Different Growth Stages. Fibers, 2019, 7, 108.	4.0	13
280	Structure and properties of high quality natural cellulose nano fibrils from a novel material Ficus natalensis barkcloth. Journal of Industrial Textiles, 2021, 51, 664-680.	2.4	17
281	Evolution of flax cell wall ultrastructure and mechanical properties during the retting step. Carbohydrate Polymers, 2019, 206, 48-56.	10.2	40
282	Study on enzyme washing process of hemp organic cotton blended fabric. International Journal of Clothing Science and Technology, 2019, 31, 58-64.	1.1	11
283	Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules, 2019, 125, 99-108.	7.5	299
284	Innovative cellulose fibres reinforced ethylene-norbornene copolymer composites of an increased degradation potential. Polymer Degradation and Stability, 2019, 159, 174-183.	5.8	11
285	Surface modification of cellulosic materials for polyethylene composite applications. Polymer Composites, 2019, 40, E202.	4.6	8
286	Assessment of Sisal Fiber Integrity as a Reinforcing Element in MgO-Based Cement Matrices. Waste and Biomass Valorization, 2020, 11, 3045-3056.	3.4	3
287	Characterization of microfiber isolated from <i>Hibiscus sabdariffa</i> var. <i>altissima</i> fiber by steam explosion. Journal of Natural Fibers, 2020, 17, 189-198.	3.1	21
288	Fabricating cellulose nanofibril from licorice residues and its cellulose composite incorporated with natural nanoparticles. Carbohydrate Polymers, 2020, 229, 115464.	10.2	22
289	Influence of Ultrasonic on the Flow Behavior and Disperse Phase of Cellulose Nano-particles at Fluid–Fluid Interface. Natural Resources Research, 2020, 29, 1427-1446.	4.7	7
290	Impact of field retting and accelerated retting performed in a lab-scale pilot unit on the properties of hemp fibres/polypropylene biocomposites. Industrial Crops and Products, 2020, 143, 111912.	5.2	13
291	Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. International Journal of Biological Macromolecules, 2020, 147, 1136-1145.	7.5	91

#	Article	IF	CITATIONS
292	Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose, 2020, 27, 2569-2582.	4.9	35
293	Development of Polypropylene Composites with Green Coffee Cake Fibers Subjected to Water Vapor Explosion. Waste and Biomass Valorization, 2020, 11, 6855-6867.	3.4	3
294	Effect of silanized sisal fiber on thermo-mechanical properties of reinforced epoxy composites. Journal of Composite Materials, 2020, 54, 2037-2050.	2.4	8
295	Micro Cellulose Grewia Optiva Fiber-reinforced Polymer Composites: Relationship between Structural and Mechanical Properties. Journal of Natural Fibers, 2022, 19, 2140-2151.	3.1	13
296	Fibrous form-stable phase change materials with high thermal conductivity fabricated by interfacial polyelectrolyte complex spinning. Carbohydrate Polymers, 2020, 249, 116836.	10.2	30
297	Opuntia (Cactaceae) Fibrous Network-reinforced Composites: Thermal, Viscoelastic, Interfacial Adhesion and Biodegradation Behavior. Fibers and Polymers, 2020, 21, 2353-2363.	2.1	17
298	Aeroelastic Response of Suspended Pedestrian Bridges Made of Laminated Wood and Hemp. Infrastructures, 2020, 5, 60.	2.8	2
299	Modification of hemp fibers through alkaline attack assisted by mechanical milling: effect of processing time on the morphology of the system. Cellulose, 2020, 27, 8653-8665.	4.9	24
300	Characterization of Chemically Treated <i>Limonia Acidissima</i> (Wood Apple) Shell Powder: Physicochemical, Thermal, and Morphological Properties. Journal of Natural Fibers, 2022, 19, 4093-4104.	3.1	35
301	Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites. Polymers, 2020, 12, 2928.	4.5	16
302	Cellulose Modification for Improved Compatibility with the Polymer Matrix: Mechanical Characterization of the Composite Material. Materials, 2020, 13, 5519.	2.9	27
303	Investigation of Mechanical Properties of Jute Fiber Reinforced Low Density Polyethylene Composites. Journal of Natural Fibers, 2022, 19, 3109-3126.	3.1	28
304	Thermal Decomposition Kinetics of Basalt Fiber-Reinforced Wood Polymer Composites. Polymers, 2020, 12, 2283.	4.5	11
305	Microwave-assisted One-step Degumming and Modification of Hemp Fiber with Graphene Oxide. Journal of Natural Fibers, 2020, , 1-8.	3.1	3
306	Characterisation of Natural Fibres for Sustainable Discontinuous Fibre Composite Materials. Materials, 2020, 13, 2129.	2.9	49
307	Pulp refining in improving degree of substitution of methylcellulose preparation from jute pulp. Biomass Conversion and Biorefinery, 2020, , $1.$	4.6	8
308	Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105990.	7.6	40
309	Comprehensive Property Investigation of Mold Inhibitor Treated Raw Cotton and Ramie Fabric. Materials, 2020, 13, 1105.	2.9	2

#	ARTICLE	IF	CITATIONS
310	Effect of chemical treatment and fumed silica coating on tensile and thermogravimetric properties of jute yarn. Materials Today: Proceedings, 2020, 27, 2693-2698.	1.8	11
311	Comparison of alkali treatments on selected chemical, physical and mechanical properties of grape cane fibers. Cellulose, 2020, 27, 7371-7387.	4.9	14
312	Utilization of Taguchi Technique to Enhance the Interlaminar Shear Strength of Wood Dust Filled Woven Jute Fiber Reinforced Polyester Composites in Cryogenic Environment. Journal of Natural Fibers, 2022, 19, 1990-2001.	3.1	59
313	Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS ₂ /C interoverlapped superstructure with robust charge transfer networks. Journal of Materials Chemistry A, 2020, 8, 15002-15011.	10.3	26
314	A Review: Mechanical and Interfacial Properties of Composites after Diverse Types of Aging Using Micromechanical Evaluation. Fibers and Polymers, 2020, 21, 225-237.	2.1	7
315	Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance. Polymers, 2020, 12, 484.	4.5	18
316	Testing of natural textile fibres. , 2020, , 535-576.		1
317	Isolation and characterization of microfibrillated cellulose and nanofibrillated cellulose with "biomechanical hotspots― Carbohydrate Polymers, 2020, 234, 115827.	10.2	20
318	Durability of concrete reinforced with alfa fibres exposed to external sulphate attack and thermal stresses. Asian Journal of Civil Engineering, 2020, 21, 555-567.	1.6	5
319	Effect of particle size, fiber content, and surface treatment on the mechanical properties of maple-reinforced LLDPE produced by rotational molding. Polymers and Polymer Composites, 2021, 29, 343-353.	1.9	12
320	Characterization of the Paint Used by Dumitru Ispas in the Wooden Straja Church, Cluj County, Romania. Analytical Letters, 2021, 54, 255-264.	1.8	1
321	Cured alkali-activated heated clay-cellulose composites: Microstructure, effect of glass addition and performances. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, 60, 62-72.	1.9	8
322	Graft copolymerization of methyl methacrylate on Abelmoschus manihot fibres and their application in oil absorbency. Polymer Bulletin, 2021, 78, 3913-3941.	3.3	6
323	Graft copolymerization of methyl methacrylate on Meizotropis Pellita fibres and their applications in oil absorbency. Iranian Polymer Journal (English Edition), 2021, 30, 9-24.	2.4	5
324	Hygrothermal ageing behavior and mechanism of carbon nanofibers modified flax fiber-reinforced epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106142.	7.6	36
325	Influence of Sodium Hydroxide (NaOH) Treatment on Mechanical Properties and Morphological Behaviour of Phoenix sp.ÅFiber/Epoxy Composites. Journal of Polymers and the Environment, 2021, 29, 765-774.	5.0	73
326	Performance of lightweight mortar reinforced with doum palm fiber. Journal of Composite Materials, 2021, 55, 1591-1607.	2.4	2
327	Antimicrobial Cellulose Nanocomposite Films with In Situ Generations of Bimetallic (Ag and Cu) Nanoparticles Using Vitex negundo Leaves Extract. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 802-815.	3.7	26

#	Article	IF	CITATIONS
328	Transport properties of water vapor through hemp fibers modified with a sustainable process: Effect of surface morphology on the thermodynamic and kinetic phenomena. Applied Surface Science, 2021, 541, 148433.	6.1	17
329	Isolation and characterization of cellulose nanowhiskers from <i>Acacia caesia</i> plant. Journal of Applied Polymer Science, 2021, 138, 50213.	2.6	25
330	Dynamic Mechanical Properties and Free Vibration Characteristics of Surface Modified Jute Fiber/Nano-Clay Reinforced Epoxy Composites. Journal of Polymers and the Environment, 2021, 29, 1076-1088.	5.0	50
331	Sustainable infrastructures: aeroelastic response of a pedestrian suspension bridge made of wood and hemp cables, 2021,,.		0
332	An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. International Journal of Biological Macromolecules, 2021, 170, 459-468.	7.5	47
333	Influence of Fine Structure on the Variations of Thermal and Mechanical Properties in Flax Fibers Modified with Different Alkaline Treatment Conditions. Journal of Natural Fibers, 2022, 19, 5239-5257.	3.1	7
334	Biocomposites based on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix with the hemp fibers: thermal and mechanical properties. Journal of Thermal Analysis and Calorimetry, 2022, 147, 1017-1029.	3 . 6	9
335	EFFECT OF CHEMICAL TREATMENT WITH OXIDANTS ON THE MECHANICAL PROPERTIES OF LUFFA SPONGE/UNSATURATED POLYESTER COMPOSITES. Cellulose Chemistry and Technology, 2021, 55, 159-167.	1.2	1
336	Efficient methods of surface functionalization of lignocellulosic waste toward surface clickability enhancement. Composite Interfaces, 2022, 29, 79-95.	2.3	6
337	Effect of alkali treatment and coupling agent on thermal and mechanical properties of Opuntia ficus-indica cladodes fibers reinforced HDPE composites. Polymer Bulletin, 2022, 79, 2089-2111.	3.3	21
338	Performance of zinc oxide quantum dots coated paper and application of fluorescent anti-counterfeiting. Applied Optics, 2021, 60, 2304.	1.8	5
339	Upgrading Argan Shell Wastes in Wood Plastic Composites with Biobased Polyethylene Matrix and Different Compatibilizers. Polymers, 2021, 13, 922.	4.5	23
340	Extraction and Effects of Mechanical Characterization and Thermal Attributes of Jute, Prosopis Juliflora Bark and Kenaf Fibers Reinforced Bio Composites Used for Engineering Applications. Fibers and Polymers, 2021, 22, 2018-2026.	2.1	22
341	ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Journal of Forestry Faculty of Kastamonu University, 2021, 21, 12-20.	0.4	4
342	Comparative Study of Mechanical Properties of Chemically Treated and Untreated Cyrtostachys Renda Fibers. Journal of Natural Fibers, 0 , $1-16$.	3.1	6
343	Improvement of Performance Profile of Acrylic Based Polyester Bio-Composites by Bast/Basalt Fibers Hybridization for Automotive Applications. Journal of Composites Science, 2021, 5, 100.	3.0	1
344	Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials. Journal of Cleaner Production, 2021, 292, 126064.	9.3	45
345	PROPERTY EVALUATION OF HEMP – BAGASSE FIBER COMPOSITE – A REVIEW. , 2021, 6, .		0

#	Article	IF	CITATIONS
347	The Improved Mechanical and Thermal Properties of Hemp Fibers Reinforced Polypropylene Composites with Dodecyl Bromide Modification. Fibers and Polymers, 2021, 22, 2869.	2.1	3
348	Influence of the Alkali Treatment of Flax and Hemp Fibers on the Properties of PHBV Based Biocomposites. Polymers, 2021, 13, 1965.	4.5	16
349	Development of Multifunctional bio-based cotton composite. Tekstil Ve Konfeksiyon, 0, , .	0.8	0
350	Novel Pretreatment Performance Evaluation for Cellulose Nanofibrils Extraction from Ficus natalensisÂBarkcloth. Journal of Polymers and the Environment, 2022, 30, 1547-1559.	5.0	4
351	Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Industrial Crops and Products, 2021, 168, 113582.	5.2	28
352	Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. Journal of Materials Science, 2021, 56, 18867-18910.	3.7	34
353	Vapothermal curing of hemp shives: Influence on some chemical and physical properties. Industrial Crops and Products, 2021, 171, 113870.	5.2	2
354	Impact of gamma radiation and multi-walled carbon nanotubes on the mechanical and acoustical properties of reinforced sisal fiber/polyester resin composites. Radiation Physics and Chemistry, 2021, 189, 109768.	2.8	12
355	The life and durability issues of natural textiles and clothing. , 2021, , 657-690.		0
356	A review on natural fiber reinforced hybrid composites: chemical treatments, manufacturing methods and potential applications. Materials Today: Proceedings, 2021, 45, 8080-8085.	1.8	37
357	Effect of chemical treatment on thermophysical behavior of Spanish broom flour-reinforced polypropylene biocomposite. Journal of Polymer Engineering, 2021, 41, 9-18.	1.4	2
358	Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties. Industrial Crops and Products, 2017, 108, 853-863.	5.2	80
359	Étude de l'effet du temps de traitement alcalin de fibres palmier sur le comportement mécanique des matériaux à base d'argile rouge de la région de M'sila. Materiaux Et Techniques, 2019, 107, 404.	0.9	1
360	Transforming waste bio-mass to novel grafted copolymer. World Journal of Engineering, 2011, 8, 347-356.	1.6	3
361	Potato pulp as a composting substrate. Zemdirbyste, 2014, 101, 57-66.	0.8	2
362	Effects of physical treatment of hemp fibers on fiber structure and biocomposite properties. Pollack Periodica, 2015, 10, 117-124.	0.4	3
363	Influence of water absorption on the selected properties of hemp hurds composites. Pollack Periodica, 2015, 10, 123-132.	0.4	2
364	Influence of Water Absorption on The Selected Properties of Hemp Hurds Composites. Pollack Periodica, 2015, 10, 123-132.	0.4	9

#	Article	IF	CITATIONS
365	THERMAL BEHAVIORS OF OIL PALM EMPTY FRUIT BUNCH FIBER UPON EXPOSURE TO ACID-BASE AQUEOUS SOLUTIONS. Malaysian Journal of Analytical Sciences, 2016, 20, 1095-1103.	0.1	11
366	Impact of Elevated Temperature on the Properties of Concretes Reinforced with Alfa Fiber. Civil and Environmental Engineering Reports, 2020, 30, 161-185.	0.3	3
367	Could Alfa Fibers Substitute Glass Fibers in Composite Materials?. International Polymer Processing, 2019, 34, 133-142.	0.5	2
368	Etude du désencrage des déchets de papier journal par un traitement alcalin. Annales De Chimie: Science Des Materiaux, 2011, 36, 237-245.	0.4	2
369	XRD and Physicochemical Evaluation of Hibiscus sabdariffa Cellulose-Butyl Acrylate-co-vinyl Monomer Graft. American Journal of Biochemistry and Molecular Biology, 2012, 3, 61-70.	0.6	5
370	Characterization of Peanut Shells for Their Valorization in Earth Brick. Journal of Minerals and Materials Characterization and Engineering, 2020, 08, 301-315.	0.4	8
371	Preparation and Characterization of Oligomer from Recycled PET and Evaluated as a Corrosion Inhibitor for C-Steel Material in 0.1 M HCl. Open Journal of Organic Polymer Materials, 2017, 07, 1-15.	3.2	15
372	Biomass Adsorbent for Removal of Toxic Metal Ions From Electroplating Industry Wastewater. , 0, , .		2
373	Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: Master variables and response surface method optimized adsorption process. Chemosphere, 2022, 288, 132577.	8.2	62
374	Cohésion à l'interface matrice minérale/fibres cellulosiques : traitements chimiques des fibres et caractérisation. Materiaux Et Techniques, 2012, 100, 401-411.	0.9	O
375	A study of the effect of acetylation on hemp fibres with vinyl acetate. BioResources, 2012, 7, 3800-3809.	1.0	15
376	Sorrel Fiber as Reinforcement in Bio-composite. Journal of Environmental Science and Technology, 2012, 5, 343-353.	0.3	1
377	Influence of the Mechanical Properties of Tobacco Stalk Fiber Cell Wall on Particleboard Panels. Advances in Materials Science and Applications, 2014, 3, 1-5.	0.7	2
378	Utilization of Maize Husk/Recycled Low Density Polyethylene Waste Materials for Composite Board Production. Research & Reviews Journal of Material Sciences, 2016, 04, .	0.1	O
379	Produção de suspensões nanofibrilares de celulose vegetal por meio de processo combinado – Avaliação do gasto energético. Revista Materia, 2018, 23, .	0.2	3
380	Characterization of Natural Fibres and Their Polymer-based Composites. Journal of Research Updates in Polymer Science, 0, , 35-51.	0.3	O
381	Physical-Chemical and Mechanical Characterization of the Bast Fibers of & Dirickletia cordifolia amp; It; I & Dirickletia amp; It; I & Dirickletia and Materials Characterization and Engineering, 2020, 08, 163-176.	0.4	18
382	Physico-Chemical and Thermal Characterization of Some Lignocellulosic Fibres: & amp;lt;i& amp;gt; Ananas comosus & amp;lt;l& amp;gt; (AC), & amp;lt;i& amp;gt; Neuropeltis acuminatas & amp;lt;l& amp;gt; (NA) and & amp;lt;l& amp;gt; Rhecktophyllum camerunense & amp;lt;l& amp;gt; (RC). lournal of Minerals and Materials Characterization and Engineering, 2020. 08. 205-222.	0.4	15

#	Article	IF	CITATIONS
384	Recent developments of lignocellulosic natural fiber reinforced hybrid thermosetting composites for high-end structural applications: a review. Journal of Polymer Research, 2021, 28, 1.	2.4	7
385	Physical and mechanical behavior in soil matrix materials due to residues addition and burning temperature. Research, Society and Development, 2020, 9, e59891110308.	0.1	0
386	Nonwoven Hemp Fibre Reinforced Acrodur Biocomposites and their Mechanical Performance in Immersed Water. Research & Development in Material Science, 2020, 14, .	0.1	0
388	A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environmental Science & Environmental Scie	10.0	33
389	Substitution of Synthetic Fibers by Bio-Based Fibers in a Structural Mortar., 0,,.		0
390	Enhanced Mechanical Properties of Polyvinyl Chloride-Based Wood–Plastic Composites With Pretreated Corn Stalk. Frontiers in Bioengineering and Biotechnology, 2021, 9, 829821.	4.1	9
391	Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials, 2022, 4, 100078.	5.1	23
392	Thermal and mechanical characterization of fly ash geopolymer with aluminium chloride and potassium hydroxide treated hemp shiv lightweight aggregate. Construction and Building Materials, 2022, 331, 127206.	7.2	6
394	A Review on the Thermal Characterisation of Natural and Hybrid Fiber Composites. Polymers, 2021, 13, 4425.	4.5	60
396	Manufacturing and Characterization of Environmentally Friendly Wood Plastic Composites Using Pinecone as a Filler into a Bio-Based High-Density Polyethylene Matrix. Polymers, 2021, 13, 4462.	4.5	2
397	Gaussian model analysis and thermal decomposition kinetics of nature fibers. Journal of Cleaner Production, 2022, 357, 131784.	9.3	8
398	Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Construction and Building Materials, 2022, 333, 127353.	7.2	68
399	Robust All-Inorganic Absorber for High-Sun Solar Steam Generation and Solvent Recovery. SSRN Electronic Journal, 0, , .	0.4	0
400	Evidence for antimicrobial activity in hemp hurds and lignin-containing nanofibrillated cellulose materials. Cellulose, 0, , .	4.9	1
401	Cellulosic Microfiber Extraction from Ecofriendly Bahunia Racemosa and Its Characterization. Journal of Natural Fibers, 2022, 19, 14477-14489.	3.1	5
402	A review on alternative raw materials for sustainable production: novel plant fibers. Cellulose, 2022, 29, 4877-4918.	4.9	23
403	Extraction and Characterization of Microcrystalline Cellulose from Lagenaria siceraria Fruit Pedicles. Polymers, 2022, 14, 1867.	4.5	16
404	A new method for bio-degumming in less-water environment: Solid-state-fermentation progressive bio-degumming. Industrial Crops and Products, 2022, 183, 114986.	5.2	9

#	Article	IF	CITATIONS
405	Characterisation, rheological properties and immunomodulatory efficiency of corn silk polysaccharides. International Journal of Food Science and Technology, 2023, 58, 2050-2059.	2.7	7
406	Modification of Fibers and Matrices in Natural Fiber Reinforced Polymer Composites: A Comprehensive Review. Macromolecular Rapid Communications, 2022, 43, .	3.9	37
407	Physico-Chemical and Mechanical Characterization of <i>Triumfetta Pentandra</i> Bast Fiber from the Equatorial Region of Cameroon as a Potential Reinforcement of Polymer Composites. Journal of Natural Fibers, 2022, 19, 13106-13119.	3.1	9
408	Hemp Stem Epidermis and Cuticle: From Waste to Starter in Bio-Based Material Development. Polymers, 2022, 14, 2816.	4.5	4
409	Isolation and Characterization of Natural Cellulose from Oxytenanthera abyssinica (Lowland) Tj ETQq0 0 0 rgBT / Solution. International Journal of Polymer Science, 2022, 2022, 1-15.	Overlock : 2.7	10 Tf 50 587 8
410	Influence of sampling area and extraction method on the thermal, physical and mechanical properties of Cameroonian Ananas comosus leaf fibers. Heliyon, 2022, 8, e10127.	3.2	16
411	Hydrophobic chitosan/salicylic acid blends film with excellent tensile properties for degradable food packaging plastic materials. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
412	All-inorganic robust absorber for high-sun solar steam generation and solvent recovery. Solar Energy Materials and Solar Cells, 2022, 247, 111946.	6.2	5
413	Characterization of the Neuropeltis Acuminatas Liana Fiber Treated as Composite Reinforcement. SSRN Electronic Journal, 0, , .	0.4	0
414	Manufacture and Characterization of hemp-Acrodur Biocomposites: Variation of Process Parameters. Fibers and Polymers, 2022, 23, 2261-2270.	2.1	0
416	Source of Nanocellulose and Its Application in Nanocomposite Packaging Material: A Review. Nanomaterials, 2022, 12, 3158.	4.1	29
417	Low density polyethylene composites based on flax fibers modified by a combination of coupling agent. Polymer Engineering and Science, 2022, 62, 3553-3565.	3.1	5
419	Effect of fiber length and treatments on the hygroscopic properties of milkweed fibers for superabsorbent applications. Environmental Technology and Innovation, 2022, 28, 102930.	6.1	7
420	An Investigation of Thermomechanical Behavior of Tunisian Luffa Sponges' Fibers. Materials Sciences and Applications, 2022, 13, 519-531.	0.4	1
421	Breaking of biomass recalcitrance in flax: clean pretreatment for bio-degumming. Cellulose, 0, , .	4.9	1
422	Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Composites Part C: Open Access, 2022, 9, 100322.	3.2	27
423	Kinetic assessment of the thermal decomposition of hemp fiber and the impact of pretreatments. Journal of Thermal Analysis and Calorimetry, 2022, 147, 14423-14435.	3.6	5
425	An Investigation of Thermomechanical Behavior of Tunisian Luffa Sponges' Fibers. Materials Sciences and Applications, 2022, 13, 519-531.	0.4	1

#	Article	IF	CITATIONS
426	A simple and rapid technique of template preparation for PCR. Frontiers in Microbiology, 0, 13, .	3.5	3
427	Investigation of capacitors and electrical circuit elements performance of magnetic biocomposites prepared by using the hemp biomass. Materials Chemistry and Physics, 2023, 296, 127171.	4.0	4
428	Natural source compatibilizers for olive waste/recycled polypropylene matrix composites. Polymers for Advanced Technologies, $0, , .$	3.2	0
429	Recent Advancement in Sustainable Hybrid Fiber-Reinforced Biocomposites: A State of the Art. Lecture Notes in Mechanical Engineering, 2023, , 699-711.	0.4	1
430	A green process for flax fiber extraction by white rot fungus (Laccase mediators system) in a less-water environment. Industrial Crops and Products, 2023, 193, 116209.	5.2	1
431	Assessment of the Potential of Waste Copper Chromium and Arsenic (CCA)-Treated Timber Fibre Reinforced Polypropylene Composites for Construction. Journal of Composites Science, 2023, 7, 48.	3.0	2
432	Characteristics of <i> Abelmoschus esculentus </i> (Indian okra) fiber varieties. Emerging Materials Research, 2023, 12, 204-211.	0.7	3
433	Kinetics modeling & Comparative examine on thermal degradation of alkali treated Crotalaria juncea fiber using model fitting method. Journal of the Indian Chemical Society, 2023, 100, 100918.	2.8	1
434	Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: a comprehensive review on thermogravimetry analysis. Cellulose, 2023, 30, 2753-2790.	4.9	7
435	Metal ferrite supported bio-nanocomposite from hemp biomass and properties. Biomass Conversion and Biorefinery, 0, , .	4.6	1
436	Thermal, Morphological and Mechanical Properties of a BioPE Matrix Composite: Case of Shell, Pulp, and Argan Cake as Biofillers. Materials, 2023, 16, 2241.	2.9	2
437	The Interaction Effect of the Design Parameters on the Water Absorption of the Hemp-Reinforced Biocarbon-Filled Bio-Epoxy Composites. International Journal of Molecular Sciences, 2023, 24, 6093.	4.1	2
438	Investigations of thermo-mechanical properties of cryogenic and dual alkali-anhydrous treated hemp fibre and its composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622311645.	2.1	0
439	Production of quasi-unidirectional woven fabrics from water-retted hemp fibers and mechanical characterization of their composites. Journal of Composite Materials, 0, , 002199832311689.	2.4	0
440	Impact of Cultivation Area on the Physical, Chemical, and Mechanical Properties of Banana Pseudo-Stems Fibers in Cameroon. Journal of Natural Fibers, 2023, 20, .	3.1	0
441	The Sustainability of Industrial Hemp: A Literature Review of Its Economic, Environmental, and Social Sustainability. Sustainability, 2023, 15, 6457.	3.2	9
442	Thermal Response of Biocarbon-Filled Hemp Fiber-Reinforced Bioepoxy Composites. ACS Omega, 0, , .	3.5	0
443	Optimization of Activated Carbon Fiber Preparation from Hemp Fiber through Dipotassium Hydrogen Phosphate for Application of Thermal Storage System. Adsorption Science and Technology, 2023, 2023, .	3.2	0

#	Article	IF	CITATIONS
444	Mechanical and thermal properties of Careya arborea bast fiber–reinforced chitosan composites for packaging industries. Biomass Conversion and Biorefinery, 0, , .	4.6	0
445	Cured NaOH-Etched Heated Clay-Cellulose Composites: Characterization, Dye Adsorption, and Desorption Study Using Response Surface Methodology. Arabian Journal for Science and Engineering, 0, , .	3.0	0
448	Characterisation of Sodium Acetate Treatment on Acacia pennata Natural Fibres. Polymers, 2023, 15, 1996.	4.5	9
449	Targeted Pre-Treatment of Hemp Fibers and the Effect on Mechanical Properties of Polymer Composites. Fibers, 2023, 11, 43.	4.0	9
450	Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polymer Testing, 2023, 124, 108083.	4.8	23
451	Tethering cellulose fibers with disulphide linkages for rapid and efficient adsorption of mercury ions and dye from wastewater: Adsorption mechanism and process optimization using RSM. Separation and Purification Technology, 2023, 322, 124275.	7.9	4
452	Characterization of <i>Grewia bicolor</i> fibre and its use in the development of composites. International Wood Products Journal, 2023, 14, 74-86.	1.1	3
453	Isolation of cellulose and synthesis of nanocellulose from banana (Musa acuminata) rachis fibre and their utilization and characterization as bioactive aerogels. Biomass Conversion and Biorefinery, 0, , .	4.6	1
454	Examination of compressive and flexural behaviors of acrylonitrile-butadiene-styrene filled with hemp fiber particles. Journal of Thermoplastic Composite Materials, 2024, 37, 743-771.	4.2	2
455	A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 2023, 19, 101271.	5.1	54
456	Effect of heating–cooling regimes on the compressive strength of Alfa fiber Concrete. Proceedings of Institution of Civil Engineers: Construction Materials, 0, , 1-49.	1.1	0
457	Computational modelling and analysis of thermoacoustic behaviour of carbon nanotube-reinforced plant fibre epoxy composite – An extensive review. Materials Today Communications, 2023, 36, 106717.	1.9	2
458	EFFECT OF ALKALINE TREATMENT ON MECHANICAL PROPERTIES OF ALFA FIBER/UNSATURATED POLYESTER COMPOSITE. Cellulose Chemistry and Technology, 2023, 57, 607-615.	1.2	0
459	Influence of Khas Khas Grass/Mesquite Bark Fillers on the Mechanical, Hydrophobicity Behavior and Thermal Stability of Banana Fibers Reinforced Hybrid Epoxy Composites. Fibers and Polymers, 0, , .	2.1	0
460	Fagus orientalis Yýzeyinin ZnO/TiO2/FAS-17 Bazlı Nanopartiküllerle İşlenmesi. Journal of Forestry Faculty of Kastamonu University, 2023, 23, 175-185.	0.4	0
461	Influence of Shea Butter Residues on the Physico-Mechanical Properties of Earth Renders. Chemistry Africa, O, , .	2.4	0
462	Cellulose- supported sulfated-magnetic biocomposite produced from hemp biomass: Effective removal of cationic dyes from aqueous solution. International Journal of Biological Macromolecules, 2024, 257, 128747.	7.5	1
463	Isolation and Characterization of Cellulose from Pomegranate (<i>Punica granatum</i>) Peel. Journal of Natural Fibers, 2024, 21, .	3.1	0

#	Article	IF	CITATIONS
464	Optimisation of mechanical behaviour of Calotropis gigantea and Prosopis juliflora natural fibre-based hybrid composites by using Taguchi-Grey relational analysis. Composites Part C: Open Access, 2024, 13, 100433.	3.2	5
465	Pseudo-catalytic kinetics induced by electron withdrawal of Na ions for cellulose activation: A theoretical multiscale study. Fuel, 2024, 364, 131097.	6.4	0
466	An Investigation into the Effect of Pre-treated Milkweed Fibers on Hydration of Portland Cement. RILEM Bookseries, 2024, , 159-171.	0.4	0
467	Utilization of cellulose-based carbon nanodots in sulfonated polysulfone based membrane for direct methanol fuel cell. South African Journal of Chemical Engineering, 2024, 48, 265-275.	2.4	0
468	Effect of Mercerization on the Crystallographic, Macromolecular, and Thermal Properties of Plantain Fibers for Fiber Reinforced Composite. Materials Science Forum, 0, 1115, 63-70.	0.3	0
469	Drying Shrinkage and Mechanical Strength of Cementitious Composites with Alkali-Treated Makino Bamboo Fibers. Journal of Natural Fibers, 2024, 21, .	3.1	0
470	Industrial-scale manufacturing of particleboards using agricultural waste camellia oleifera shells. Construction and Building Materials, 2024, 424, 135922.	7.2	0
471	Structural, morphological and dielectrical properties of acorn cupule extract doped hydrogels. Journal of Molecular Structure, 2024, 1309, 138120.	3.6	0
472	Ultrasonicationâ€assisted alkali treatment of hemp fibers to improve the fiber/matrix interface of hemp/epoxy composites: The influence of sodium dodecyl sulfate surfactant. Polymer Composites, 0, , .	4.6	0