Modelling of exfoliated graphite

Progress in Materials Science 50, 93-179

DOI: 10.1016/j.pmatsci.2004.01.001

Citation Report

#	Article	IF	CITATIONS
1	Kinetics of the thermal decomposition of intercalation compounds during exfoliation. New Carbon Materials, 2006, 21, 315-319.	6.1	11
2	Influence of the natural flake graphite particle size on the textural characteristic of exfoliated graphite used for heavy oil sorption. Carbon, 2006, 44, 2590-2592.	10.3	31
3	Unsaturated polyester resin/graphite nanosheet conducting composites with a low percolation threshold. Polymer, 2006, 47, 4440-4444.	3.8	75
4	Different exfoliated graphite as a base of sealing materials. Journal of Physics and Chemistry of Solids, 2006, 67, 1202-1204.	4.0	47
5	Lamellar reaction phenomena: from intercalation to nanomaterials formation. Journal of Physics and Chemistry of Solids, 2006, 67, 888-895.	4.0	11
6	Graphite Nanoplateletâ^'Epoxy Composite Thermal Interface Materials. Journal of Physical Chemistry C, 2007, 111, 7565-7569.	3.1	941
7	Expanded graphite applied in the catalytic process as a catalyst support. Catalysis Today, 2007, 125, 278-281.	4.4	60
8	Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials, 2007, 19, 4396-4404.	6.7	3,276
9	Flocculation of cellulose fibre suspensions: the contribution of percolation and effective-medium theories. Cellulose, 2008, 15, 803-814.	4.9	8
10	Physical gelation of waterâ€borne thermosetting resins by percolation theory—Ureaâ€formaldehyde, melamineâ€ureaâ€formaldehyde, and melamineâ€formaldehyde resins. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 971-978.	2.1	12
11	Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. Macromolecular Chemistry and Physics, 2008, 209, 2487-2493.	2.2	223
12	Influence of nanoclay on ureaâ€formaldehyde resins for wood adhesives and its model. Journal of Applied Polymer Science, 2008, 109, 2442-2451.	2.6	78
13	Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites. Advanced Materials, 2008, 20, 4740-4744.	21.0	878
14	Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chemical Engineering and Processing: Process Intensification, 2008, 47, 499-507.	3.6	68
15	Conductive composites based on exfoliated graphite. Inorganic Materials, 2008, 44, 598-602.	0.8	1
16	Calling all chemists. Nature Nanotechnology, 2008, 3, 10-11.	31.5	459
17	Island hopping. Nature Nanotechnology, 2008, 3, 11-11.	31.5	2
18	Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Materialia, 2008, 58, 846-849.	5.2	96

#	Article	IF	Citations
19	Overview of Carbon Materials in Relation to Adsorption. , 2008, , 15-49.		6
20	Elaboration of Conductive Thermal Storage Composites Made of Phase Change Materials and Graphite for Solar Plant. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.8	48
21	Characteristics of Expanded Graphite Filled Conductive Polymer Composites for PEM Fuel Cell Bipolar Plates. Advanced Composite Materials, 2008, 17, 259-275.	1.9	2
22	Characterization of Expanded Graphite/Flake-Type Graphite Filled Conductive Polymer Composites. Advanced Materials Research, 2008, 33-37, 515-520.	0.3	4
23	Flocculation of cellulose fibres: new comparison of crowding factor with percolation and effective-medium theories. Cellulose, 2009, 16, 983-987.	4.9	49
24	Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polymer International, 2009, 58, 412-417.	3.1	230
25	Porous carbon materials based on exfoliated graphite. Inorganic Materials, 2009, 45, 135-139.	0.8	9
26	Preparation of carbon materials doped with metal compounds. Inorganic Materials, 2009, 45, 374-379.	0.8	3
27	Thermal conductivity and mechanical properties of expanded graphite. Inorganic Materials, 2009, 45, 486-490.	0.8	51
28	Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2. Journal of Colloid and Interface Science, 2009, 334, 50-57.	9.4	52
29	Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. Journal of Power Sources, 2009, 189, 902-908.	7.8	148
30	Tannin-based rigid foams: A survey of chemical and physical properties. Bioresource Technology, 2009, 100, 5162-5169.	9.6	181
31	Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon, 2009, 47, 263-270.	10.3	64
32	A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon, 2009, 47, 337-339.	10.3	114
33	Preparation of exfoliated graphite containing manganese oxides with high electrochemical capacitance by microwave irradiation. Carbon, 2009, 47, 3371-3374.	10.3	25
34	The specific surface area and porous structure of graphite materials. Russian Journal of Physical Chemistry A, 2009, 83, 1022-1025.	0.6	64
35	Network Solids. , 0, , 537-589.		0
36	X-Ray Microtomography Studies of Tannin-Derived Organic and Carbon Foams. Microscopy and Microanalysis, 2009, 15, 384-394.	0.4	48

#	Article	IF	Citations
38	Macrokinetics and mathematical simulation of intercalated graphite particle expansion under fast heating. Theoretical Foundations of Chemical Engineering, 2010, 44, 407-412.	0.7	1
39	HTR Fuel Waste Management: TRISO separation and acid-graphite intercalation compounds preparation. Journal of Nuclear Materials, 2010, 407, 71-77.	2.7	10
40	Electrical Conductivity of Graphene Composites with In and In-Ga Alloy. Journal of Electronic Materials, 2010, 39, 1268-1276.	2.2	29
41	Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets. Journal of Materials Science, 2010, 45, 2449-2455.	3.7	55
42	Effect of composition and processing parameters on the characteristics of tannin-based rigid foams. Part II: Physical properties. Materials Chemistry and Physics, 2010, 123, 210-217.	4.0	75
43	A comparative investigation on absorption performances of three expanded graphite-based complex materials for toluene. Journal of Hazardous Materials, 2010, 183, 506-511.	12.4	36
44	Low-density carbon material modified with pyrolytic carbon. Journal of Physics and Chemistry of Solids, 2010, 71, 499-502.	4.0	2
45	Mechanical properties of tannin-based rigid foams undergoing compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4438-4446.	5 . 6	93
46	KNO3/NaNO3 â \in " Graphite materials for thermal energy storage at high temperature: Part I. â \in " Elaboration methods and thermal properties. Applied Thermal Engineering, 2010, 30, 1580-1585.	6.0	134
47	Vaseline-loaded expanded graphite as a new adsorbent for toluene. Chemical Engineering Journal, 2010, 162, 546-551.	12.7	29
48	Preparation of Exfoliated Graphite by Microwave Using Natural Graphite with Different Particle Sizes. Advanced Materials Research, 2010, 163-167, 2333-2336.	0.3	3
49	Thermo-Exfoliated Graphite Containing CuO/Cu2(OH)3NO3:(Co2+/Fe3+) Composites: Preparation, Characterization and Catalytic Performance in CO Conversion. Materials, 2010, 3, 572-584.	2.9	24
50	Three-Dimensional Carbon Nanotube Scaffolds as Particulate Filters and Catalyst Support Membranes. ACS Nano, 2010, 4, 2003-2008.	14.6	72
51	Non-Aqueous Approach to Synthesize Amorphous/Crystalline Metal Oxide-Graphene Nanosheet Hybrid Composites. Journal of Physical Chemistry C, 2010, 114, 18330-18337.	3.1	75
52	Palygorskite–expanded graphite electrodes for catalytic electro-oxidation of phenol. Applied Clay Science, 2010, 49, 64-68.	5.2	33
53	Production and structure of exfoliated graphite/coke composites modified by ZrO2 nanoparticles. New Carbon Materials, 2010, 25, 255-260.	6.1	3
54	Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology, 2011, 22, 165602.	2.6	90
55	Direct Synthesis of Lithium-Intercalated Graphene for Electrochemical Energy Storage Application. ACS Nano, 2011, 5, 4345-4349.	14.6	120

#	ARTICLE	IF	Citations
56	Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode. New Carbon Materials, 2011, 26, 459-464.	6.1	42
57	Zirconia-modified exfoliated graphite. Inorganic Materials, 2011, 47, 603-608.	0.8	0
58	Effect of the microstructure on the intercalation and exfoliation behaviour of graphite. Journal of Materials Science, 2011, 46, 2422-2430.	3.7	5
59	Thermal properties of compressed expanded graphite: photothermal measurements. Applied Physics B: Lasers and Optics, 2011, 105, 623-630.	2.2	18
60	Thermal diffusivity of nanocarbon composites. Polymer Composites, 2011, 32, 14-17.	4.6	1
61	Simulation of percolation threshold in composites filled with conducting particles of various morphologies. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 70-74.	0.9	16
62	The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon, 2011, 49, 3233-3241.	10.3	69
63	Continuous fixed bed adsorption of C.I. Acid Blue 92 by exfoliated graphite: An experimental and modeling study. Desalination, 2011, 269, 170-176.	8.2	49
64	Preparation of Functionalized Graphene Sheets. Current Organic Chemistry, 2011, 15, 1133-1150.	1.6	42
66	Structural Evolution of Natural Flake Graphite with Different Particle Sizes during the Intercalation and Exfoliation Processes. Applied Mechanics and Materials, 2011, 80-81, 221-224.	0.2	0
67	Effect of Preparation Technique on Methyl Orange Sorption Behavior of Exfoliated Graphite. Advanced Materials Research, 2011, 284-286, 193-196.	0.3	0
68	Effect of Particle Size of Natural Graphite on Methyl Blue Sorption Behavior of Expanded Graphite. Advanced Materials Research, 0, 499, 12-15.	0.3	2
69	Size Effect of Expandable Graphite. Advanced Materials Research, 2012, 499, 72-75.	0.3	3
70	Electrochemical Synthesis of Graphite-Tetrafluoroaluminate Intercalation Compounds. Journal of the Electrochemical Society, 2012, 159, H876-H880.	2.9	3
71	Electrical properties and microstructure of vinyl ester resin/compressed expanded graphite-based composites. Journal of Reinforced Plastics and Composites, 2012, 31, 3-11.	3.1	6
72	Effect of Agitation on Sorption Behavior of Expanded Graphite for Methyl Orange in Water and Crude Oil Floated on Water. Advanced Materials Research, 2012, 496, 391-394.	0.3	1
73	Expansion Mechanism of Expandable Graphite Formed by Natural Graphite with Different Particle Size. Advanced Materials Research, 2012, 499, 16-19.	0.3	1
74	Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale, 2012, 4, 4972.	5. 6	80

#	Article	IF	CITATIONS
75	Methods of graphite exfoliation. Journal of Materials Chemistry, 2012, 22, 24992.	6.7	447
76	Electrical conductivity of poly(ethylene terephthalate)/expanded graphite nanocomposites prepared by <i>in situ</i> polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1645-1652.	2.1	55
77	Electrical conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	57
79	Graphene-polymer composites. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012018.	0.6	10
81	Greener Electrochemical Synthesis of High Quality Graphene Nanosheets Directly from Pencil and its SPR Sensing Application. Advanced Functional Materials, 2012, 22, 2352-2362.	14.9	129
82	Dynamic mechanical behavior of flexible graphite made from exfoliated graphite. Carbon, 2012, 50, 283-289.	10.3	30
83	Tailoring the structure of cellular vitreous carbon foams. Carbon, 2012, 50, 2026-2036.	10.3	67
84	Three-dimensional evaluation of the compression and recovery behavior in a flexible graphite sheet by synchrotron radiation microtomography. Materials Characterization, 2012, 69, 52-62.	4.4	21
85	Preparation and characterization of sulfur-free exfoliated graphite with large exfoliated volume. Materials Letters, 2012, 73, 11-13.	2.6	20
86	<i>In situ</i> dynamic vulcanization process in preparation of electrically conductive PP/EPDM thermoplastic vulcanizate/expanded graphite nanocomposites: Effects of state of cure. Journal of Applied Polymer Science, 2012, 123, 32-40.	2.6	17
87	Viscoelastic behavior of the cell wall of exfoliated graphite. Carbon, 2013, 61, 305-312.	10.3	36
88	Compression and recovery micro-mechanisms in flexible graphite. Carbon, 2013, 59, 184-191.	10.3	15
89	Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. Journal of Applied Physics, 2013, 114, 164304.	2.5	71
90	An in situ small angle neutron scattering study of expanded graphite under a uniaxial stress. Carbon, 2013, 57, 460-469.	10.3	13
91	Comparative evaluation of cement-matrix composites with distributed versus networked exfoliated graphite. Carbon, 2013, 63, 446-453.	10.3	27
92	Thermal properties of high-porosity monoliths based on exfoliated graphite. Inorganic Materials, 2013, 49, 340-346.	0.8	1
93	Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly. Nanoscale, 2013, 5, 12365.	5.6	44
94	Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery Electrode Material. Journal of the Electrochemical Society, 2013, 160, F910-F915.	2.9	57

#	Article	IF	CITATIONS
95	A PEDOT-reinforced exfoliated graphite composite as a Pt- and TCO-free flexible counter electrode for polymer electrolyte dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1048-1054.	10.3	59
96	Preparation of expanded graphite/poly (phenylene sulfide) composites with high thermal and electrical conductivity by rotating solid-state premixing and melt processing. Journal of Materials Science, 2013, 48, 1932-1939.	3.7	17
97	Carbon meringues derived from flavonoid tannins. Carbon, 2013, 65, 214-227.	10.3	38
98	Effect of the melt processing conditions on the conductive paths formation in thermoplastic polyurethane/expanded graphite (TPU/EG) composites. Composites Science and Technology, 2013, 80, 39-46.	7.8	32
99	Volume Fraction of Graphene Platelets in Copper-Graphene Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 552-559.	2.2	37
100	Thermal decomposition of graphite nitrate. Carbon, 2013, 59, 337-343.	10.3	14
101	Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochimica Acta, 2013, 553, 40-48.	2.7	100
102	Effect of Expanded Temperature on Microstructure of Carbon Nanotubes/Expanded Graphite Composites. Advanced Materials Research, 2013, 716, 373-378.	0.3	0
103	DIELECTRIC PROPERTIES OF EPOXY RESIN COMPOSITES FILLED WITH NANOCARBON INCLUSIONS. , 2013, , .		0
104	Preparation and Microstructure of Two Kinds of Exfoliated Graphite. Advanced Materials Research, 0, 706-708, 211-214.	0.3	O
105	Microstructure and Anti-Friction Effect of Ball-Milled Expanded Graphite. Advanced Materials Research, 0, 704, 110-113.	0.3	0
106	Carbon foams, nano-thin carbonaceous films and nanocarbon based polymer composites: Microwave applications., 2013,,.		O
107	Research on Oilfield Produced Water Treatment by Moderately Compressed Exfoliated Graphite Blocks. Applied Mechanics and Materials, 2013, 468, 53-56.	0.2	0
108	Structural Evolution of Natural Flake Graphite during Intercalation and Exfoliation. Applied Mechanics and Materials, 2014, 552, 328-330.	0.2	1
109	Microwave response properties of epoxy resin composites filled with graphitic fillers., 2014,,.		1
110	Time dependent wettability of graphite upon ambient exposure: The role of water adsorption. Journal of Chemical Physics, 2014, 141, 084709.	3.0	55
111	Preparation and Microstructure of Exfoliated Graphite with Large Expanding Volume by Two-Step Intercalation. Advanced Materials Research, 0, 852, 101-105.	0.3	5
112	Environmentally friendly preparation of exfoliated graphite. Journal of Industrial and Engineering Chemistry, 2014, 20, 1936-1941.	5.8	28

#	Article	IF	CITATIONS
113	Flexible PVC flame retarded with expandable graphite. Polymer Degradation and Stability, 2014, 100, 63-69.	5.8	44
114	Expansion of tetrachloroaluminate-graphite intercalation compound by reaction with anhydrous hydrogen fluoride. Carbon, 2014, 67, 434-439.	10.3	3
115	Graphite foam from pitch and expandable graphite. Carbon, 2014, 73, 41-50.	10.3	41
116	A new method for preparing tannin-based foams. Industrial Crops and Products, 2014, 54, 40-53.	5.2	76
117	Structural and mechanical characterization of graphite foam/phase change material composites. Carbon, 2014, 74, 266-281.	10.3	40
118	Carbon (Graphene/Graphite)., 2014,, 7-235.		22
119	Dielectric properties of graphiteâ€based epoxy composites. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1623-1633.	1.8	32
120	Interface-derived extraordinary viscous behavior of exfoliated graphite. Carbon, 2014, 68, 646-652.	10.3	34
121	Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies. Materials Letters, 2014, 117, 150-152.	2.6	32
122	Tortuosity studies of cellular vitreous carbon foams. Carbon, 2014, 80, 193-202.	10.3	16
123	Facile Synthesis of Graphite-Reduced Graphite Oxide Core–Sheath Fiber via Direct Exfoliation of Carbon Fiber for Supercapacitor Application. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9496-9502.	8.0	30
124	Shear effects on expanded graphite under uniaxial pressure: An in situ small angle neutron scattering study. Carbon, 2014, 74, 54-62.	10.3	10
125	Thermal and electrical conduction in the compaction direction of exfoliated graphite and their relation to the structure. Carbon, 2014, 77, 538-550.	10.3	30
126	Biomass-derived, thermally conducting, carbon foams for seasonal thermal storage. Biomass and Bioenergy, 2014, 67, 312-318.	5.7	30
127	Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon, 2014, 77, 508-517.	10.3	61
128	Obtaining graphene nanoplatelets from various graphite intercalation compounds. IOP Conference Series: Materials Science and Engineering, 2015, 98, 012041.	0.6	3
129	Stiffness threshold of randomly distributed carbon nanotube networks. Journal of the Mechanics and Physics of Solids, 2015, 84, 395-423.	4.8	75
130	Electrical, mechanical, and thermal properties of exfoliated graphite/phenolic resin composite bipolar plate for polymer electrolyte membrane fuel cell. Polymer Engineering and Science, 2015, 55, 917-923.	3.1	39

#	Article	IF	Citations
131	Chemically converted graphene: scalable chemistries to enable processing and fabrication. NPG Asia Materials, 2015, 7, e186-e186.	7.9	72
132	Room temperature and high temperature sealing properties and compression properties of compressive gaskets made of micrometric vermiculite particles. Applied Clay Science, 2015, 114, 1-8.	5.2	7
133	Theoretical estimation on the percolation threshold for polymer matrix composites with hybrid fillers. Composite Structures, 2015, 124, 292-299.	5.8	45
134	Carbon foam: Preparation and application. Carbon, 2015, 87, 128-152.	10.3	347
135	Effect of Multiwall Carbon Nanotube contained in the Exfoliated Graphite anode on the power production and internal resistance of microbial fuel cells. KSCE Journal of Civil Engineering, 2015, 19, 857-863.	1.9	2
136	Laser-Induced Thermal Expansion of H ₂ SO ₄ -Intercalated Graphite Lattice. Journal of Physical Chemistry C, 2015, 119, 15942-15947.	3.1	12
137	Determination of chlorine and sulfur in high purity flexible graphite using ion chromatography (IC) and inductively coupled plasma optical emission spectrometry (ICP OES) after pyrohydrolysis sample preparation. Analytical Methods, 2015, 7, 2129-2134.	2.7	30
138	Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Advances, 2015, 5, 28410-28423.	3.6	106
139	Solder–Graphite Network Composite Sheets as High-Performance Thermal Interface Materials. Journal of Electronic Materials, 2015, 44, 929-947.	2.2	19
140	Broadband Dielectric Spectroscopy of Composites Filled With Various Carbon Materials. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2024-2031.	4.6	14
141	Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers. Materials and Design, 2015, 87, 675-680.	7.0	37
142	Microstructure, elastic and electromagnetic properties of epoxy-graphite composites. AIP Advances, 2015, 5, .	1.3	18
143	Latest progresses in the preparation of tannin-based cellular solids. Journal of Cellular Plastics, 2015, 51, 89-102.	2.4	31
144	The cluster architecture of carbon in polymer nanocomposites observed by impulse acoustic microscopy. Physica Status Solidi (B): Basic Research, 2016, 253, 1952-1959.	1.5	24
145	Mechanical energy dissipation modeling of exfoliated graphite based on interfacial friction theory. Carbon, 2016, 108, 291-302.	10.3	18
146	Electrical and Thermal Conductivity of Indium–Graphene and Copper– Graphene Composites. , 2016, , 639-652.		0
147	Toward highly thermally conductive all-carbon composites: Structure control. Carbon, 2016, 109, 575-597.	10.3	132
148	Carbon, a Unique Model Material for Condensed Matter Physics and Engineering Science. NATO Science for Peace and Security Series B: Physics and Biophysics, 2016, , 1-26.	0.3	0

#	Article	IF	CITATIONS
149	Thermophysical Properties of Carbon-Carbon Materials Based on Graphite Foam. Refractories and Industrial Ceramics, 2016, 57, 18-21.	0.6	1
150	An Exfoliated Graphite Based Electrochemical Sensor for As(III) in Water. Electroanalysis, 2016, 28, 1462-1469.	2.9	26
151	Preparation, Characterization, and Structure Trends for Graphite Intercalation Compounds Containing Pyrrolidinium Cations. Chemistry of Materials, 2016, 28, 969-974.	6.7	21
152	Room-Temperature Intercalation and $\hat{a}^{-1/4}1000$ -Fold Chemical Expansion for Scalable Preparation of High-Quality Graphene. Chemistry of Materials, 2016, 28, 2138-2146.	6.7	107
153	Carbon Containing Nanostructured Polymer Blends. , 2016, , 187-213.		1
154	Theoretical and experimental studies of highly active graphene nanosheets to determine catalytic nitrogen sites responsible for the oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2016, 4, 976-990.	10.3	38
155	Electrochemical sensing platforms based on the different carbon derivative incorporated interface. Materials Science and Engineering C, 2016, 58, 790-798.	7.3	16
156	A review of exfoliated graphite. Journal of Materials Science, 2016, 51, 554-568.	3.7	205
157	Utilization of recycled chemical residues from sodium hydrosulfite production in solid lubricant for drilling fluids. Desalination and Water Treatment, 2016, 57, 1804-1813.	1.0	6
158	Expanded graphite/polydimethylsiloxane composites with high thermal conductivity. Journal of Applied Polymer Science, 2017, 134, .	2.6	26
159	One-step room-temperature preparation of expanded graphite. Carbon, 2017, 119, 544-547.	10.3	66
160	Resistivity and low-frequency noise characteristics of epoxy-carbon composites. Journal of Applied Physics, 2017, 121, .	2.5	3
161	Synthesis and reduction of large sized graphene oxide sheets. Chemical Society Reviews, 2017, 46, 7306-7316.	38.1	221
162	The Use of Low-Cost Graphite Nanomaterials to Enhance Zonal Isolation in Oil and Gas Wells., 2017,,.		14
163	Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	8
164	Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.7	78 43 14 rg	BT3 © verloc
165	Selective Laser Sintering of Phase Change Materials for Thermal Energy Storage Applications. Procedia Manufacturing, 2017, 10, 851-865.	1.9	12
166	Shape-controlled of ten-nanometer-thick graphite and worm-like graphite by lithographic exfoliation. Carbon, 2018, 135, 248-252.	10.3	9

#	Article	IF	Citations
167	Evaluation of the Reinforcement Efficiency of Low-Cost Graphite Nanomaterials in High-Performance Concrete. KSCE Journal of Civil Engineering, 2018, 22, 3875-3882.	1.9	16
168	Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite. Applied Surface Science, 2018, 436, 1193-1199.	6.1	13
169	Electrophysical properties of low-density composite materials based on inorganic matrices. Materials Today: Proceedings, 2018, 5, 25928-25932.	1.8	0
170	Influence of the range of grinding thermo-expanded graphite on physical-mechanical and tribotechnical properties of composite materials produced on its basis. Materials Today: Proceedings, 2018, 5, 26113-26118.	1.8	0
171	Ratcheting effect of reinforced graphite sheet with stainless steel insert (RGSWSSI) under cyclic compression at elevated temperature. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2391-2401.	3.4	13
172	Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism. Journal of Water Process Engineering, 2018, 25, 128-137.	5.6	31
173	Exfoliated graphite containing metal oxides for high-performance pseudocapacitor applications. Journal of Alloys and Compounds, 2018, 769, 274-281.	5.5	6
174	Fabrication and Characterization of Various Engineered Nanomaterials. , 2018, , 151-171.		17
175	Preparation of Al2O3-coated expanded graphite with enhanced hydrophilicity and oxidation resistance. Ceramics International, 2018, 44, 16256-16264.	4.8	23
176	Process-Structure-Property Relationship in Polymer Nanocomposites. , 2018, , 25-100.		7
177	Expanded Graphite-Polyurethane Foams for Water–Oil Filtration. ACS Applied Materials & Discrete Representation (2019, 11, 30207-30217).	8.0	47
178	Direct synthesis of fine boron carbide powders using expanded graphite. Ceramics International, 2019, 45, 22104-22109.	4.8	8
179	Highâ€Performance Thermally Conductive Phase Change Composites by Largeâ€Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting. Advanced Materials, 2019, 31, e1905099.	21.0	298
181	Beneficiation of ultra-large flake graphite and the preparation of flexible graphite sheets from it. New Carbon Materials, 2019, 34, 205-210.	6.1	14
182	Experimental investigation of phase change materials fabricated using selective laser sintering additive manufacturing. Journal of Manufacturing Processes, 2019, 44, 91-101.	5.9	8
183	Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering. Carbon, 2019, 150, 531-548.	10.3	28
184	Thermal conductivity, permeability and reaction characteristic enhancement of ammonia solid sorbents: A review. International Journal of Heat and Mass Transfer, 2019, 130, 1206-1225.	4.8	23
185	A review of the application of carbon materials in solar thermal energy storage. Solar Energy, 2019, 192, 35-68.	6.1	75

#	Article	IF	Citations
186	Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review. Renewable and Sustainable Energy Reviews, 2020, 119, 109539.	16.4	90
187	Modeling of the elastic properties of compressed expanded graphite - A material used in spiral wound gaskets. International Journal of Pressure Vessels and Piping, 2020, 187, 104158.	2.6	10
188	An Overview of the Flame Retardants for Poly(vinyl chloride): Recent States and Perspective ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1870-1896.	4.9	17
189	Material properties and structure of natural graphite sheet. Scientific Reports, 2020, 10, 18672.	3.3	31
190	A review on thermophysical properties of flexible graphite. Procedia Structural Integrity, 2020, 26, 187-198.	0.8	11
191	Mechanical properties of flexible graphite: review. Procedia Structural Integrity, 2020, 25, 420-429.	0.8	17
192	Adaptation of a highly compressible elastomeric material model to simulate compressed expanded graphite and its application in the optimization of a graphite-metallic structure. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	7
193	Thermal conductivity anisotropy of expanded graphite/ chlorate salt composites for thermal energy storage. Soft Materials, 2021, 19, 78-88.	1.7	2
194	Tortuosity of the porous structure of carbon gels. Carbon, 2021, 171, 921-930.	10.3	10
195	Environment-friendly preparation of exfoliated graphite and functional graphite sheets. Journal of Materiomics, 2021, 7, 136-145.	5.7	25
196	SiO2 hydrophilic modification of expanded graphite to fabricate form-stable ternary nitrate composite room temperature phase change material for thermal energy storage. Chemical Engineering Journal, 2021, 413, 127549.	12.7	50
197	Stage-number dependence of intercalated species for fluorosilicate graphite intercalation compounds: pentafluorosilicate vs. hexafluorosilicate. Journal of Fluorine Chemistry, 2021, 242, 109714.	1.7	3
198	Development of Solid Composite Sorbents. Engineering Materials, 2021, , 15-42.	0.6	1
199	Storage Moduli of in situ Polymerised and Melt Extruded PA6 Graphite (G) Composites. Journal of BP Koirala Institute of Health Sciences, 2021, 5, 91-101.	0.0	0
200	Comparison of water nanodroplet properties on different graphite-based substrates. AIP Advances, 2021, 11, .	1.3	3
201	Dual-Functional Aligned and Interconnected Graphite Nanoplatelet Networks for Accelerating Solar Thermal Energy Harvesting and Storage within Phase Change Materials. ACS Applied Materials & Linterfaces, 2021, 13, 19200-19210.	8.0	53
203	Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries. Carbon, 2021, 175, 187-201.	10.3	37
204	ĐžÑ,Ñ€Đ,Đ¼Đ°Đ½Đ½Ñ•Ñ,а ĐºÑ€Đ,ÑÑ,алÑ−Ñ‡Đ½Đ° ÑÑ,Ñ€ÑƒĐºÑ,ÑƒÑ€Đ° Đ³Ñ€Đ°Ñ,,Ñ−Ñ,у, Ñ−Đ½Ñ,	Ðμ ðἷ€ ĐºĐʻ	°ÐxьоÐ

#	Article	IF	CITATIONS
205	Thermal conductivity measurement of an individual millimeter-long expanded graphite ribbon using a variable-length T-type method. International Journal of Heat and Mass Transfer, 2021, 171, 121115.	4.8	12
206	Stretchable and Anisotropic Conductive Composite Hydrogel as Therapeutic Cardiac Patches. , 2021, 3, 1238-1248.		21
207	Phosphate removal from municipal effluent by a porous MgO-expanded graphite composite as a novel adsorbent: Evaluation of seawater as a natural source of magnesium ions. Journal of Water Process Engineering, 2021, 43, 102232.	5.6	16
208	Three dimensional porous Expanded Graphite/Silver Nanoparticles nanocomposite platform as a SERS substrate. Applied Surface Science, 2021, 568, 150946.	6.1	20
209	Expanded Graphite and Its Composites. , 2019, , .		3
210	Photocatalytic Activity of EG-TiO2Composite for Various Dye Solutions Under UV Light and Visible Light. Korean Journal of Materials Research, 2009, 19, 555-561.	0.2	2
211	Water Associated with Bio-Objects: Cells and Tissues. , 2013, , 806-905.		0
212	- Interfacial Phenomena at Surfaces of Carbon Materials. , 2013, , 484-551.		0
214	Industrial tests of heat-insulating material based on graphite intercalation compounds. Eastern-European Journal of Enterprise Technologies, 2014, 3, 30.	0.5	0
215	A Fundamental Assessment of Graphite Nanoplatelet Effects on Progress of Alkali-Silica Reactions. ACI Materials Journal, 2015, 112, .	0.2	0
216	Pollution of drinking watter with salts of heavy metals and removing them from solutions by means of nanocomposites based on zirconium ($\hat{l}^{\text{TM}}\hat{l}^{\text{Y}}$) oxide. ScienceRise Biological Science, 2016, .	0.1	0
217	Nanoindentation of flexible graphite: experimental versus simulation studies. Advanced Material Science, 2018, 3, .	0.3	1
218	Development of the State-of-the-Art Technologies for Improvement of Quality of Cryptocrystalline Graphite. Nanosistemi, Nanomateriali, Nanotehnologii, 2018, 16, .	0.3	1
219	Numerical Analysis of Heat Transfer and Fabrication of Carbon Material for Heat Dissipation in Solar Panel. Journal of the Korean Society of Manufacturing Process Engineers, 2019, 18, 82-90.	0.2	2
220	Dynamic Characteristics of Calcium Chloride/Silica Nano-Holed Microcapsule Composites. Journal of Chemical Engineering of Japan, 2020, 53, 457-462.	0.6	0
221	Gas permeability of graphite foil prepared from exfoliated graphite with different microstructures. Journal of Materials Science, 2021, 56, 4197-4211.	3.7	9
222	Millefeuilleâ€Inspired Thermal Interface Materials based on Double Selfâ€Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding. Small, 2022, 18, e2105567.	10.0	21
223	Window tinting films for microwave absorption and terahertz applications. Journal of Applied Physics, 2022, 131, 025110.	2.5	0

#	Article	IF	CITATIONS
224	Effect of Expanded Graphite on the Reaction Sintering of Boron Carbide. Materials, 2022, 15, 1500.	2.9	0
225	Preparation and characterization of room-temperature chemically expanded graphite: Application for cationic dye removal. Korean Journal of Chemical Engineering, 2022, 39, 1496-1506.	2.7	7
226	Rapid Removal of Organic Micropollutants Under Aqueous Solutions Using Mesoporous Exfoliated Graphite. SSRN Electronic Journal, 0, , .	0.4	0
227	Highly Crystalline Graphene Foams Based on Capillarity and Deintercalation Sewing. Chemistry of Materials, 2022, 34, 7424-7433.	6.7	0
228	Rapid removal of organic dyes from aqueous solutions using mesoporous exfoliated graphite. Diamond and Related Materials, 2022, 130, 109480.	3.9	10
229	Studying the porosity of graphite foil with different densities: pore space model and gas permeability. Journal of Materials Science, 2022, 57, 21156-21171.	3.7	2
230	Physicochemical Modifications on Thin Films of Poly(Ethylene Terephthalate) and Its Nanocomposite with Expanded Graphite Nanostructured by Ultraviolet and Infrared Femtosecond Laser Irradiation. Polymers, 2022, 14, 5243.	4.5	4
231	Thermal volatilisation analysis of graphite intercalation compound fire retardants. Journal of Thermal Analysis and Calorimetry, 2023, 148, 1905-1920.	3.6	1
232	Porous structure features of carbon materials with extended-surface. Izvestiya Vuzov Poroshkovaya Metallurgiya I Funktsional'nye Pokrytiya, 2022, , 49-56.	0.2	0
233	High-performance expanded graphite from flake graphite by microwave-assisted chemical intercalation process. Journal of Industrial and Engineering Chemistry, 2023, 122, 562-572.	5.8	8
234	Research on Expanded Graphite Matrix Phase Change Composites. , 0, 33, 252-260.		0
235	Reactivities of Modified and Unmodified Exfoliated Graphite Electrodes in Selected Redox Systems. International Journal of Electrochemical Science, 2012, 7, 9441-9453.	1.3	23
236	FIB-SEM investigation and uniaxial compression of flexible graphite. Materials and Design, 2023, 233, 112187.	7.0	0
237	Effect of intercalated and exfoliated graphite particles on the mechanical properties of polymer composite: A micromechanics-computational approach. Journal of Reinforced Plastics and Composites, 0, , .	3.1	0
238	Development of a Method for Multisensory Stripping Voltammetry in the Analysis of Medical Preparations. ACS Omega, 0, , .	3.5	0
239	Expanded Graphite - Carbon Nanotubes Nanocomposite Materials. , 2023, , .		0
240	Methane hydrate formation enhanced by thermally expanded graphite with multi-sized pores. Chemical Engineering Journal, 2024, 480, 148280.	12.7	0
241	Piezoresistive Behavior of Carbon/Carbon Composite Based on Expanded Graphite and Polyfurfuryl Alcohol. Lecture Notes in Networks and Systems, 2024, , 105-112.	0.7	0

#	Article	IF	CITATIONS
242	The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils. Nanomaterials, 2024, 14, 540.	4.1	0