Response of brain tissue to chronically implanted neura

Journal of Neuroscience Methods 148, 1-18 DOI: 10.1016/j.jneumeth.2005.08.015

Citation Report

#	Article	IF	CITATIONS
1	Increasing the Performance of Cortically-Controlled Prostheses. , 2006, Suppl, 6652-6.		10
2	Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Journal of Neural Engineering, 2006, 3, 59-70.	1.8	570
3	Biocompatibility and the efficacy of medical implants. Regenerative Medicine, 2006, 1, 789-800.	0.8	34
4	Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron, 2006, 52, 205-220.	3.8	691
5	Brain–machine interfaces: past, present and future. Trends in Neurosciences, 2006, 29, 536-546.	4.2	1,438
6	Open-architecture Neural Probes Reduce Cellular Encapsulation. Materials Research Society Symposia Proceedings, 2006, 926, 1.	0.1	6
7	Chapter 2.1 New methodological aspects of microdialysis. Handbook of Behavioral Neuroscience, 2006, 16, 111-129.	0.7	2
8	A high-performance brain–computer interface. Nature, 2006, 442, 195-198.	13.7	628
9	In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials, 2006, 27, 5368-5376.	5.7	92
10	Receptorâ^'Ligand-Based Specific Cell Adhesion on Solid Surfaces:  Hippocampal Neuronal Cells on Bilinker Functionalized Glass. Nano Letters, 2006, 6, 1977-1981.	4.5	10
11	BCI meeting 2005-workshop on signals and recording methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 138-141.	2.7	97
12	Voltammetric Characterization of Micro- and Submicrometer-Electrode Arrays of Conical Shape for Electroanalytical Use. Electroanalysis, 2006, 18, 1749-1756.	1.5	14
13	Fabrication of Polymer Neural Probes with Sub-cellular Features for Reduced Tissue Encapsulation. , 2006, 2006, 4606-9.		27
14	Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. Journal of Neural Engineering, 2006, 3, 316-326.	1.8	158
15	Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. Journal of Neural Engineering, 2006, 3, 196-207.	1.8	290
16	Visual prosthetics 2006: assessment and expectations. Expert Review of Medical Devices, 2006, 3, 315-325.	1.4	35
17	Poly(É>-Caprolactone) and Poly (L-Lactic-Co-Glycolic Acid) Degradable Polymer Sponges Attenuate Astrocyte Response and Lesion Growth in Acute Traumatic Brain Injury. Tissue Engineering, 2007, 13, 2515-2523.	4.9	77
18	Electrochemical polymerization of conducting polymers in living neural tissue. Journal of Neural Engineering, 2007, 4, L6-L13.	1.8	172

TATION REDO

#	Article	IF	CITATIONS
19	A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction. , 2007, , .		13
20	Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex. Journal of Neural Engineering, 2007, 4, 42-53.	1.8	93
21	Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes. Journal of Neural Engineering, 2007, 4, 399-409.	1.8	31
22	Mixture of Trajectory Models for Neural Decoding of Goal-Directed Movements. Journal of Neurophysiology, 2007, 97, 3763-3780.	0.9	138
23	Auditory Midbrain Implant. Otology and Neurotology, 2007, 28, 1045-1052.	0.7	31
24	The peri-electrode space is a significant element of the electrode–brain interface in deep brain stimulation: A computational study. Brain Research Bulletin, 2007, 74, 361-368.	1.4	44
25	Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. Journal of Neural Engineering, 2007, 4, 410-423.	1.8	353
26	Retinal prostheses: current challenges and future outlook. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1031-1055.	1.9	93
27	Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1263-1281.	1.9	60
28	Porous silicon as a neural electrode material. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1301-1308.	1.9	10
29	Independent hydraulic positioning for an implantable multi-electrode array. , 2007, , .		0
30	Stable Biopassive Insulation Synthesized by Initiated Chemical Vapor Deposition of Poly(1,3,5-trivinyltrimethylcyclotrisiloxane). Biomacromolecules, 2007, 8, 2564-2570.	2.6	63
31	Extraction Force and Cortical Tissue Reaction of Silicon Microelectrode Arrays Implanted in the Rat Brain. IEEE Transactions on Biomedical Engineering, 2007, 54, 1097-1107.	2.5	44
32	Minocycline increases quality and longevity of chronic neural recordings. Journal of Neural Engineering, 2007, 4, L1-L5.	1.8	101
33	A Novel Antiâ€inflammatory Surface for Neural Electrodes. Advanced Materials, 2007, 19, 3529-3533.	11.1	99
34	Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials, 2007, 28, 1539-1552.	5.7	460
35	A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning. Journal of Neuroscience Methods, 2007, 160, 45-51.	1.3	30
36	Spatiotemporal pH dynamics following insertion of neural microelectrode arrays. Journal of Neuroscience Methods, 2007, 160, 276-287.	1.3	66

#	Article	IF	CITATIONS
37	A chronically implantable, hybrid cannula–electrode device for assessing the effects of molecules on electrophysiological signals in freely behaving animals. Journal of Neuroscience Methods, 2007, 163, 321-325.	1.3	7
38	Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neuroscience, 2007, 10, 549-551.	7.1	395
39	Metabolic and behavioral deficits following a routine surgical procedure in rats. Brain Research, 2007, 1144, 209-218.	1.1	26
40	Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Research, 2007, 1148, 15-27.	1.1	281
41	An optical neural interface:in vivocontrol of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering, 2007, 4, S143-S156.	1.8	878
42	Implantable microscale neural interfaces. Biomedical Microdevices, 2007, 9, 923-938.	1.4	190
43	Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials, 2007, 28, 3626-3631.	5.7	109
44	Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization. Acta Biomaterialia, 2008, 4, 1208-1217.	4.1	87
45	Characterization of permselective coatings electrosynthesized on Pt–Ir from the three phenylenediamine isomers for biosensor applications. Electrochimica Acta, 2008, 53, 7303-7312.	2.6	71
46	A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomedical Microdevices, 2008, 10, 259-269.	1.4	87
47	Beyond Therapy and Enhancement: The Alteration of Human Nature. NanoEthics, 2008, 2, 15-23.	0.5	44
48	Variations in astrocyte and fibroblast response due to biomaterial particulates <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2008, 85A, 14-24.	2.1	7
49	Chronic multi-electrode neural recording in free-roaming monkeys. Journal of Neuroscience Methods, 2008, 172, 201-214.	1.3	65
50	Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. Journal of Neuroscience Methods, 2008, 173, 279-285.	1.3	99
51	On the mechanisms of biocompatibility. Biomaterials, 2008, 29, 2941-2953.	5.7	2,106
52	Soft tissue reactions evoked by implanted gallium phosphide. Biomaterials, 2008, 29, 4598-4604.	5.7	27
53	Neural Stimulation and Recording Electrodes. Annual Review of Biomedical Engineering, 2008, 10, 275-309.	5.7	1,797
54	Collagenase-Aided Intracortical Microelectrode Array Insertion: Effects on Insertion Force and Recording Performance, IFFE Transactions on Biomedical Engineering, 2008, 55, 2258-2267	2.5	31

#	Article	IF	CITATIONS
55	Neural Prostheses: Electrophysiological and Histological Evaluation of Central Nervous System Alterations Due to Long-Term Implants of Sieve Electrodes to Peripheral Nerves in Cats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16, 223-232.	2.7	15
56	Neural interfaces at the nanoscale. Nanomedicine, 2008, 3, 823-830.	1.7	54
57	Biomaterials for the central nervous system. Journal of the Royal Society Interface, 2008, 5, 957-975.	1.5	205
58	Technology and Signal Processing for Brain-Machine Interfaces. IEEE Signal Processing Magazine, 2008, 25, 29-40.	4.6	37
59	Automated reduction of non-neuronal signals from intra-cortical microwire array recordings by use of correlation technique. , 2008, 2008, 46-9.		5
60	Formation of Biofunctional Thin Films on Gold Electrodes by Electrodeposition of Poly(acrylamide- <i>co</i> -tyrosineamide). Macromolecules, 2008, 41, 448-452.	2.2	2
61	Mechanical and Electrical Reliability of a Chronically Implanted Metal-Polyimide Electrode Array. Materials Research Society Symposia Proceedings, 2008, 1116, 912.	0.1	1
62	Carbon Nanotube Fibers Are Compatible With Mammalian Cells and Neurons. IEEE Transactions on Nanobioscience, 2008, 7, 11-14.	2.2	50
63	Constant pressure fluid infusion into rat neocortex from implantable microfluidic devices. Journal of Neural Engineering, 2008, 5, 385-391.	1.8	24
64	Development of an IrO x micro pH sensor array on flexible polymer substrate. Proceedings of SPIE, 2008, , .	0.8	1
65	Development of flexible microelectrode arrays for recording cortical surface field potentials. , 2008, 2008, 3200-3.		2
66	Investigation of repeatability of sol-gel iridium oxide pH sensor on flexible substrate. , 2008, , .		3
67	Toward Optimal Target Placement for Neural Prosthetic Devices. Journal of Neurophysiology, 2008, 100, 3445-3457.	0.9	24
68	Human cortical prostheses: lost in translation?. Neurosurgical Focus, 2009, 27, E5.	1.0	90
69	Early Interfaced Neural Activity from Chronic Amputated Nerves. Frontiers in Neuroengineering, 2009, 2, 5.	4.8	48
70	Impaired Motor Function: Functional Electrical Stimulation. , 2009, , 3047-3060.		5
71	Characterization of an Elastically Stretchable Microelectrode Array and Its Application to Neural Field Potential Recordings. Journal of the Electrochemical Society, 2009, 156, P85.	1.3	52
72	A Novel Diamond Microprobe for Neuro-Chemical and -Electrical Recording in Neural Prosthesis. Journal of Microelectromechanical Systems, 2009, 18, 511-521.	1.7	57

ARTICLE IF CITATIONS # Three-dimensional flexible microprobe for recording the neural signal., 2009,,. 1 73 Electronic Interfacing with Living Cells., 2009, 117, 155-178. 74 Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes. Journal 75 1.8 55 of Neural Engineering, 2009, 6, 055005. <i>In vivo</i>evaluation of a neural stem cell-seeded prosthesis. Journal of Neural Engineering, 2009, 1.8 6,026005. In vivo performance of a microelectrode neural probe with integrated drug delivery. Neurosurgical 77 1.0 50 Focus, 2009, 27, E8. Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response. Tissue Engineering - Part A, 2009, 15, 3283-3295. 1.6 56 Long-Term Recordings of Multiple, Single-Neurons for Clinical Applications: The Emerging Role of the 80 1.3 13 Bioactive Microelectrode. Materials, 2009, 2, 1762-1794. Using a Common Average Reference to Improve Cortical Neuron Recordings From Microelectrode 359 Arrays. Journal of Neurophysiology, 2009, 101, 1679-1689. The Development of Silicon Carbide Based Electrode Devices for Central Nervous System Biomedical 82 0.1 4 Implants. Materials Research Society Symposia Proceedings, 2009, 1236, 1. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Research, 2009, 1.1 264 1282, 183-200. Multifunctional Nanobiomaterials for Neural Interfaces. Advanced Functional Materials, 2009, 19, 84 7.8 367 573-585. Nanomaterials for Neural Interfaces. Advanced Materials, 2009, 21, 3970-4004. 11.1 460 Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural 86 11.1 246 Recording using Poly(3,4â€ethylenedioxythiophene) Nanotubes. Advanced Materials, 2009, 21, 3764-3770. Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. 87 2.1 Journal of Biomedical Materials Research - Part A, 2009, 90A, 648-655 Synergistic effect of immobilized laminin and nerve growth factor on PC12 neurite outgrowth. 88 1.3 27 Biotechnology Progress, 2009, 25, 227-234. Biomimetic strategies based on viruses and bacteria for the development of immune evasive biomaterials. Biomaterials, 2009, 30, 1989-2005. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked 90 5.336 potentials. Biosensors and Bioelectronics, 2009, 24, 3067-3072. Simulation experiments in bionics: a regulative methodological perspective. Biology and Philosophy, 2009, 24, 301-324.

#	Article	IF	Citations
92	Bulk metallic glasses for biomedical applications. Jom, 2009, 61, 21-29.	0.9	273
93	Biocompatibility of implantable electrodes coated with PVA films in the brain of rats: a histological evaluation. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 393-396.	0.4	5
94	Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode–neural tissue interface. Biomaterials, 2009, 30, 4143-4151.	5.7	170
95	Thin-film silica sol–gel coatings for neural microelectrodes. Journal of Neuroscience Methods, 2009, 180, 106-110.	1.3	39
96	New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: Inter-electrode correlation and virtual referencing. Journal of Neuroscience Methods, 2009, 181, 27-35.	1.3	25
97	Control protocol for robust in vitro glial scar formation around microwires: Essential roles of bFGF and serum in gliosis. Journal of Neuroscience Methods, 2009, 181, 170-177.	1.3	32
98	Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic lesion in rat brain. Journal of Neuroscience Methods, 2009, 182, 6-16.	1.3	91
99	Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality. Journal of Neuroscience Methods, 2009, 183, 149-157.	1.3	48
100	Magnetic insertion system for flexible electrode implantation. Journal of Neuroscience Methods, 2009, 183, 213-222.	1.3	17
101	Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. Journal of Neuroscience Methods, 2009, 184, 199-205.	1.3	168
102	Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications. Carbon, 2009, 47, 884-893.	5.4	52
103	Assessment of gliosis around moveable implants in the brain. Journal of Neural Engineering, 2009, 6, 046004.	1.8	27
104	Implanted Neural Interfaces: Biochallenges and Engineered Solutions. Annual Review of Biomedical Engineering, 2009, 11, 1-24.	5.7	484
105	PEDOT coated microelectrode arrays for chronic neural recording and stimulation. , 2009, , .		14
106	Matrix metalloproteinase-9 deficiency leads to prolonged foreign body response in the brain associated with increased IL-1β levels and leakage of the blood-brain barrier. Matrix Biology, 2009, 28, 148-159.	1.5	43
107	Complete optical neurophysiology: toward optical stimulation and recording of neural tissue. Applied Optics, 2009, 48, D218.	2.1	16
108	Brain–computer interfaces: an overview of the hardware to record neural signals from the cortex. Progress in Brain Research, 2009, 175, 297-315.	0.9	60
109	An Implantable Microactuated Intrafascicular Electrode for Peripheral Nerves. IEEE Transactions on Biomedical Engineering, 2009, 56, 2701-2706.	2.5	20

#	Article	IF	CITATIONS
110	Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants. Biomedical Materials (Bristol), 2009, 4, 015010.	1.7	9
111	A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3, 129-141.	2.7	181
112	Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurgical Focus, 2009, 27, E4.	1.0	96
113	Neural Prostheses for Reaching. , 2009, , 213-220.		2
114	High-Resolution Three-Dimensional Extracellular Recording of Neuronal Activity With Microfabricated Electrode Arrays. Journal of Neurophysiology, 2009, 101, 1671-1678.	0.9	67
115	Excitation of primary afferent neurons by near-infrared light in vitro. NeuroReport, 2010, 21, 662-666.	0.6	34
116	Characterization and Improvement of Neural Electrode-Tissue Interface. Microscopy and Microanalysis, 2010, 16, 1024-1025.	0.2	0
117	Thin-Film Microelectrode Arrays for Biomedical Applications. Biological and Medical Physics Series, 2010, , 157-190.	0.3	2
118	Effects of polymerization potential on the permselectivity of poly(o-phenylenediamine) coatings deposited on Pt–Ir electrodes for biosensor applications. Electrochimica Acta, 2010, 55, 1051-1060.	2.6	35
119	Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials, 2010, 31, 5169-5181.	5.7	171
120	Optoelectronic Stimulation of the Brain Using Carbon Nanotubes. Annals of Biomedical Engineering, 2010, 38, 3500-3508.	1.3	8
121	Effects of Glial Cells on Electrode Impedance Recorded from Neural Prosthetic Devices In Vitro. Annals of Biomedical Engineering, 2010, 38, 1031-1047.	1.3	36
122	Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Medical and Biological Engineering and Computing, 2010, 48, 945-954.	1.6	226
123	Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. Journal of Materials Science: Materials in Medicine, 2010, 21, 925-930.	1.7	62
124	Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio. Biomedical Microdevices, 2010, 12, 41-48.	1.4	13
125	Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. Journal of Controlled Release, 2010, 145, 196-202.	4.8	75
126	Biocompatibility Assessment of Insulating Silicone Polymer Coatings Using an in vitro Clial Scar Assay. Macromolecular Bioscience, 2010, 10, 872-880.	2.1	25
127	Short and long term biocompatibility of NeuroProbes silicon probes. Journal of Neuroscience Methods, 2010, 189, 216-229.	1.3	55

#	Article	IF	CITATIONS
128	Soluble factor effects on glial cell reactivity at the surface of gel-coated microwires. Journal of Neuroscience Methods, 2010, 190, 180-187.	1.3	13
129	A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: The effect of acute and chronic hypoxia on brain tissue PO2. Journal of Neuroscience Methods, 2010, 193, 217-225.	1.3	48
130	Artificial neural networks capable of learning spatiotemporal chemical diffusion in the cortical brain. Pattern Recognition, 2010, 43, 3910-3921.	5.1	4
131	A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells. Biomaterials, 2010, 31, 7883-7891.	5.7	59
132	Pyrrole–hyaluronic acid conjugates for decreasing cell binding to metals and conducting polymers. Acta Biomaterialia, 2010, 6, 4396-4404.	4.1	42
133	The effects of intraspinal microstimulation on spinal cord tissue in the rat. Biomaterials, 2010, 31, 5552-5563.	5.7	45
134	Effects of small pulsed nanocurrents on cell viability in vitro and in vivo: Implications for biomedical electrodes. Biomaterials, 2010, 31, 8666-8673.	5.7	3
135	Surface characterization and in vitro biocompatibility assessment of photosensitive polyimide films. Colloids and Surfaces B: Biointerfaces, 2010, 76, 505-511.	2.5	32
136	Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 635-647.	3.3	57
137	Conductingâ€Polymer Nanotubes Improve Electrical Properties, Mechanical Adhesion, Neural Attachment, and Neurite Outgrowth of Neural Electrodes. Small, 2010, 6, 421-429.	5.2	362
138	Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Frontiers in Neuroengineering, 2010, 3, 5.	4.8	85
139	Real-Time Decision Fusion for Multimodal Neural Prosthetic Devices. PLoS ONE, 2010, 5, e9493.	1.1	9
140	New Trends and Challenges in the Development of Microfabricated Probes for Recording and Stimulating of Excitable Cells. , 2010, , .		1
141	Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Frontiers in Neuroengineering, 2010, 2, 18.	4.8	92
142	Gelatine-embedded electrodes—a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes. Journal of Neural Engineering, 2010, 7, 046005.	1.8	82
143	Three-dimensional flexible microprobe for recording the neural signal. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2010, 9, 031007.	1.0	13
144	Single-crystal Silicon Carbide: A Biocompatible and Hemocompatible Semiconductor for Advanced Biomedical Applications. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	39
145	Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. Journal of Neural Engineering, 2010, 7, 036005.	1.8	123

#	Article	IF	CITATIONS
146	Designingin vivoconcentration gradients with discrete controlled release: a computational model. Journal of Neural Engineering, 2010, 7, 046013.	1.8	0
147	Exploring preprocessing techniques in a three-class brain-machine interface. , 2010, 2010, 4242-5.		Ο
148	Preliminary investigations on laminin coatings for flexible polyimide/platinum thin films for PNS applications. , 2010, 2010, 1527-30.		3
149	Gelatin/glycerol coating to preserve mechanically compliant nanowire electrodes from damage during brain implantation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6K13-C6K16.	0.6	10
150	Acquisition of myoelectric signals to control a hand prosthesis with implantable epimysial electrodes. , 2010, 2010, 5070-3.		6
151	Molecular photovoltaic structures for optical activation of excitable cells: current advances and perspectives. , 2010, 2010, 6230-2.		0
152	<i>In vivo</i> electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus. Journal of Neural Engineering, 2010, 7, 016002.	1.8	20
153	Design and fabrication of Si-neuroprobe arrays. , 2010, , .		1
154	Seeding neural progenitor cells on silicon-based neural probes. Journal of Neurosurgery, 2010, 113, 673-681.	0.9	38
155	Development of a Three Dimensional Neural Sensing Device by a Stacking Method. Sensors, 2010, 10, 4238-4252.	2.1	22
156	Fremdkörper-Reaktionen auf Biomaterialien und Strategien zum Funktionserhalt von Implantaten. BIOmaterialien: Offizielles Organ Der Deutschen Gesellschaft Fuer Biomaterialien, 2010, 11, .	0.1	0
157	Mechanical characterization of conducting polymer actuated neural probes under physiological settings. , 2010, , .		1
158	Dual Functional Polyelectrolyte Multilayer Coatings for Implants: Permanent Microbicidal Base with Controlled Release of Therapeutic Agents. Journal of the American Chemical Society, 2010, 132, 17840-17848.	6.6	94
159	Neural Decoding for Motor and Communication Prostheses. , 2010, , 219-263.		3
160	Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clinical Neurophysiology, 2010, 121, 2128-2133.	0.7	111
161	Conducting polymer-hydrogels for medical electrode applications. Science and Technology of Advanced Materials, 2010, 11, 014107.	2.8	221
162	Brain-computer interfaces: military, neurosurgical, and ethical perspective. Neurosurgical Focus, 2010, 28, E25.	1.0	62
163	Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats. Journal of Neuroscience, 2010, 30, 11476-11485.	1.7	345

#	Article	IF	CITATIONS
164	Texturing of silicon using a microporous polymer etch mask. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6K8-C6K12.	0.6	4
165	Synthesis and Characterization of Glucocorticoid Functionalized Poly(<i>N</i> -vinyl pyrrolidone): A Versatile Prodrug for Neural Interface. Biomacromolecules, 2010, 11, 1298-1307.	2.6	25
166	Development of bioactive conducting polymers for neural interfaces. Expert Review of Medical Devices, 2010, 7, 35-49.	1.4	64
167	Design and fabrication of flexible neural microprobe for three dimensional assembly. , 2010, , .		3
168	Implantable Neural Prostheses 2. Biological and Medical Physics Series, 2010, , .	0.3	57
169	Biocompatibility assessment of advanced wafer-level based chip encapsulation. , 2010, , .		8
170	Reform and characterization of concentric-circle electrode tip for neural stimulating or recording. , 2011, , .		1
171	Evaluation of an elastomer based gold microelectrode array for neural recording applications. , 2011, , , .		1
172	A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Lab on A Chip, 2011, 11, 1647.	3.1	46
173	Facile photopatterning of polyfluorene for patterned neuronal networks. Soft Matter, 2011, 7, 10025.	1.2	10
174	Quantitative modeling of electric field in deep brain stimulation: Study of medium brain tissue and stimulation pulse parameters. , 2011, , .		1
175	Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes. Journal of Micromechanics and Microengineering, 2011, 21, 054009.	1.5	83
176	Diamond-on-Polymer Microelectrode Arrays Fabricated Using a Chemical Release Transfer Process. Journal of Microelectromechanical Systems, 2011, 20, 867-875.	1.7	29
177	A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility. , 2011, , .		31
178	Adaptive Kalman filtering for closed-loop Brain-Machine Interface systems. , 2011, , .		24
179	Chronically Implanted, Nafion-Coated Ag/AgCl Reference Electrodes for Neurochemical Applications. ACS Chemical Neuroscience, 2011, 2, 658-666.	1.7	57
180	Photopatterning of Cell-Adhesive-Modified Poly(ethyleneimine) for Guided Neuronal Growth. Langmuir, 2011, 27, 2717-2722.	1.6	18
181	Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. Journal of Neural Engineering, 2011, 8, 025027.	1.8	429

#	Article	IF	CITATIONS
182	Investigating Sleep Homeostasis with Extracellular Recording of Multiunit Activity from the Neocortex in Freely Behaving Rats. Neuromethods, 2011, , 237-258.	0.2	1
183	Integrating Rehabilitation Engineering Technology With Biologics. PM and R, 2011, 3, S148-57.	0.9	4
184	Decoding the rat forelimb movement direction from epidural and intracortical field potentials. Journal of Neural Engineering, 2011, 8, 036013.	1.8	54
185	Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. Journal of Neural Engineering, 2011, 8, 045005.	1.8	285
186	Astrocyte-Derived Thrombospondin-2 Is Critical for the Repair of the Blood-Brain Barrier. American Journal of Pathology, 2011, 179, 860-868.	1.9	39
187	In Vitro Microelectrode Array Technology and Neural Recordings. Critical Reviews in Biomedical Engineering, 2011, 39, 45-61.	0.5	118
188	Brain-machine interfaces as the new frontier in extreme miniaturization. , 2011, , .		8
189	Brain-machine interfaces as the new frontier in extreme miniaturization. , 2011, , .		1
190	Electroactive Polymeric Biomaterials. , 2011, , 547-561.		5
191	Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience, 2011, 14, 1599-1605.	7.1	981
192	Spatially Controlling Neuronal Adhesion and Inflammatory Reactions on Implantable Diamond. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2011, 1, 557-565.	2.7	7
193	An Implantable Optical Stimulation Delivery System for Actuating an Excitable Biosubstrate. IEEE Journal of Solid-State Circuits, 2011, 46, 321-332.	3.5	19
194	Biocompatible multichannel electrodes for long-term neurophysiological studies and clinical therapy—Novel concepts and design. Progress in Brain Research, 2011, 194, 61-70.	0.9	14
195	An Unusual Inflammatory Response to Implanted Deep Brain Electrodes. Canadian Journal of Neurological Sciences, 2011, 38, 168-170.	0.3	6
196	Implantable Electrodes with Carbon Nanotube Coatings. , 0, , .		4
197	Development of a Neural Interface for PNS Motor Control. , 0, , .		0
198	Future developments in brain-machine interface research. Clinics, 2011, 66, 25-32.	0.6	96
199	The Challenge of Integrating Devices into the Central Nervous System. Critical Reviews in Biomedical Engineering, 2011, 39, 29-44.	0.5	56

#	Article	IF	CITATIONS
200	Hydrogel–Electrospun Fiber Mat Composite Coatings for Neural Prostheses. Frontiers in Neuroengineering, 2011, 4, 2.	4.8	29
201	Adaptive Movable Neural Interfaces for Monitoring Single Neurons in the Brain. Frontiers in Neuroscience, 2011, 5, 94.	1.4	26
202	Cellular Modulation of Polymeric Device Surfaces: Promise of Adult Stem Cells for Neuro-Prosthetics. Frontiers in Neuroscience, 2011, 5, 114.	1.4	11
203	Intrasulcal Electrocorticography in Macaque Monkeys with Minimally Invasive Neurosurgical Protocols. Frontiers in Systems Neuroscience, 2011, 5, 34.	1.2	46
204	Microscale Electrode Implantation during Nerve Repair. Plastic and Reconstructive Surgery, 2011, 128, 270e-278e.	0.7	17
205	Interconnection of Multichannel Polyimide Electrodes Using Anisotropic Conductive Films (ACFs) for Biomedical Applications. IEEE Transactions on Biomedical Engineering, 2011, 58, 1466-1473.	2.5	20
206	In Vivo Electrochemical Characterization of a Tissue–Electrode Interface During Metamorphic Growth. IEEE Transactions on Biomedical Engineering, 2011, 58, 2401-2406.	2.5	9
207	Effect of Insertion Speed on Tissue Response and Insertion Mechanics of a Chronically Implanted Silicon-Based Neural Probe. IEEE Transactions on Biomedical Engineering, 2011, 58, 3250-3259.	2.5	56
208	In Vitro and In Vivo Evaluation of PEDOT Microelectrodes for Neural Stimulation and Recording. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 307-316.	2.7	258
209	The pivotal role of fibrocytes and mast cells in mediating fibrotic reactions to biomaterials. Biomaterials, 2011, 32, 8394-8403.	5.7	77
210	A Three-Dimensional 64-Site Folded Electrode Array Using Planar Fabrication. Journal of Microelectromechanical Systems, 2011, 20, 594-600.	1.7	38
211	Single-crystal cubic silicon carbide: An in vivo biocompatible semiconductor for brain machine interface devices. , 2011, 2011, 2957-60.		26
212	Implantable microdevice for peripheral nerve regeneration: materials and fabrications. Journal of Materials Science, 2011, 46, 4723-4740.	1.7	21
213	First long term in vivo study on subdurally implanted Micro-ECoG electrodes, manufactured with a novel laser technology. Biomedical Microdevices, 2011, 13, 59-68.	1.4	96
214	The fate of ultrafast degrading polymeric implants in the brain. Biomaterials, 2011, 32, 5543-5550.	5.7	26
215	Polymers for neural implants. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 18-33.	2.4	406
216	Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Advanced Functional Materials, 2011, 21, 2624-2632.	7.8	95
217	Characterization of astrocyte reactivity and gene expression on biomaterials for neural electrodes. Journal of Biomedical Materials Research - Part A, 2011, 99A, 141-150.	2.1	21

#	Article	IF	CITATIONS
218	Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids and Surfaces B: Biointerfaces, 2011, 87, 273-279.	2.5	45
219	Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomaterialia, 2011, 7, 2483-2491.	4.1	87
220	The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials, 2011, 32, 681-692.	5.7	136
221	A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials, 2011, 32, 6374-6380.	5.7	154
222	A simple method for fabricating microwire tetrode with sufficient rigidity and integrity without a heat-fusing process. Journal of Neuroscience Methods, 2011, 195, 211-215.	1.3	13
223	Ceramic-based microelectrode arrays: Recording surface characteristics and topographical analysis. Journal of Neuroscience Methods, 2011, 198, 222-229.	1.3	17
224	Direct local polymerization of poly(3,4-ethylenedioxythiophene) in rat cortex. Progress in Brain Research, 2011, 194, 263-271.	0.9	12
225	Nanomodified surfaces and neurite outgrowth. Progress in Brain Research, 2011, 194, 253-262.	0.9	6
226	Multimodal, longitudinal assessment of intracortical microstimulation. Progress in Brain Research, 2011, 194, 131-144.	0.9	44
227	Asynchronous decoding of grasp aperture from human ECoG during a reach-to-grasp task. , 2011, 2011, 4584-7.		8
228	<i>In vivo</i> deployment of mechanically adaptive nanocomposites for intracortical microelectrodes. Journal of Neural Engineering, 2011, 8, 046010.	1.8	133
229	A waveform independent cell identification method to study long-term variability of spike recordings. , 2011, 2011, 2558-61.		0
230	Powering and communicating with mm-size implants. , 2011, , .		27
231	Single-Crystal Silicon Carbide: A Biocompatible and Hemocompatible Semiconductor for Advanced Biomedical Applications. Materials Science Forum, 0, 679-680, 824-830.	0.3	37
232	Nanotechnology Enabled In situ Sensors for Monitoring Health. , 2011, , .		8
233	Grasp Movement Decoding from Premotor and Parietal Cortex. Journal of Neuroscience, 2011, 31, 14386-14398.	1.7	74
234	Optimizing the Decoding of Movement Goals from Local Field Potentials in Macaque Cortex. Journal of Neuroscience, 2011, 31, 18412-18422.	1.7	100
235	Flexible organic electronics for use in neural sensing. , 2011, 2011, 5400-3.		2

#	Article	IF	CITATIONS
236	Chronic intracortical implantation of saccharose-coated flexible shaft electrodes into the cortex of rats. , 2011, 2011, 644-7.		11
237	Coupling biotic and abiotic metrics to create a testbed for predicting neural electrode performance. , 2011, 2011, 3020-3.		9
238	A new type of recording chamber with an easy-to-exchange microdrive array for chronic recordings in macaque monkeys. Journal of Neurophysiology, 2011, 105, 3092-3105.	0.9	27
239	SiC for Brain–Machine Interface (BMI). , 2012, , 257-307.		3
240	Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment. Journal of Neurophysiology, 2012, 107, 1457-1475.	0.9	28
241	Material Science Chemistry of Electrochemical Microsensors and Applications for Biofilm Research. Key Engineering Materials, 2012, 521, 113-139.	0.4	4
242	Retinal Prosthesis Safety: Alterations in Microglia Morphology due to Thermal Damage and Retinal Implant Contact. , 2012, 53, 7802.		26
243	Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. Journal of Neural Engineering, 2012, 9, 046020.	1.8	209
245	The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation. , 2012, 2012, 791-4.		5
246	Towards a noise prediction model for in vivo neural recording. , 2012, 2012, 759-62.		13
247	Ultrasonically enabled neural probes with co-located electrical and mechanical transduction. , 2012, ,		2
248	Quantifying long-term microelectrode array functionality using chronic <i>in vivo</i> impedance testing. Journal of Neural Engineering, 2012, 9, 026028.	1.8	127
249	Extracellular matrix-based materials for neural interfacing. MRS Bulletin, 2012, 37, 606-613.	1.7	22
250	Optimization of multi-layer metal neural probe design. , 2012, 2012, 5995-8.		19
251	Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive. , 2012, 2012, 871-4.		43
252	Fabrication and Packaging of Flexible Polymeric Microantennae for in Vivo Magnetic Resonance Imaging. Polymers, 2012, 4, 656-673.	2.0	17
253	Pre-implantation electrochemical characterization of a Parylene C sheath microelectrode array probe. , 2012, 2012, 5126-9.		8
254	Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques. Journal of Neural Engineering, 2012, 9, 036015.	1.8	90

#	Article	IF	CITATIONS
255	PEDOT Electrochemical Polymerization Improves Electrode Fidelity and Sensitivity. Plastic and Reconstructive Surgery, 2012, 129, 933-942.	0.7	21
256	Acquiring Brain Signals from within the Brain. , 2012, , 81-103.		5
257	Electrodes. , 2012, , 8-43.		4
258	Brain-Machine Interfaces for Motor Control: A Guide for Neuroscience Clinicians. Canadian Journal of Neurological Sciences, 2012, 39, 11-22.	0.3	6
259	Automated image analysis of immunohistochemical stained brain slices of long term polyimid brain implants. Biomedizinische Technik, 2012, 57, .	0.9	0
260	Long term in vivo stability and frequency response of polyimide based flexible array probes. Biomedizinische Technik, 2012, 57, .	0.9	2
261	An implantation technique for polyimide based flexible array probes facilitating neuronavigation and chronic implantation. Biomedizinische Technik, 2012, 57, .	0.9	3
262	Electrode Failure: Tissue, Electrical, and Material Responses. IEEE Pulse, 2012, 3, 30-33.	0.1	23
263	Scaffolds to promote spinal cord regeneration. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 575-594.	1.0	56
264	Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Materials, 2012, 11, 1065-1073.	13.3	601
265	On the viability of implantable electrodes for the natural control of artificial limbs: Review and discussion. BioMedical Engineering OnLine, 2012, 11, 33.	1.3	120
266	Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications. Journal of Microelectromechanical Systems, 2012, 21, 1172-1186.	1.7	33
267	Current Challenges to the Clinical Translation of Brain Machine Interface Technology. International Review of Neurobiology, 2012, 107, 137-160.	0.9	16
268	Neural interfaces for the brain and spinal cord—restoring motor function. Nature Reviews Neurology, 2012, 8, 690-699.	4.9	213
269	Neuropathology of the blood–brain barrier and pharmaco-resistance in human epilepsy. Brain, 2012, 135, 3115-3133.	3.7	117
270	Threeâ€Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces. Macromolecular Materials and Engineering, 2012, 297, 1193-1202.	1.7	120
271	In vivo effects of L1 coating on inflammation and neuronal health at the electrode–tissue interface in rat spinal cord and dorsal root ganglion. Acta Biomaterialia, 2012, 8, 3561-3575.	4.1	57
272	Spatially controlling neuronal adhesion on CVD diamond. Diamond and Related Materials, 2012, 23, 100-104.	1.8	35

	CITA	ATION REPORT	
# 273	ARTICLE Out-of-plane connection in an orthogonal assembly. , 2012, , .	IF	CITATIONS
274	Thin films and microelectrode arrays for neuroprosthetics. MRS Bulletin, 2012, 37, 590-598.	1.7	112
275	SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosensors and Bioelectronics, 2012, 37, 1-5.	5.3	60
276	Can motor volition be extracted from the spinal cord?. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 41.	2.4	13
277	Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array. Lab on A Chip, 2012, 12, 2540.	3.1	58
278	Carbon Nanomaterials: From Therapeutics to Regenerative Medicine. Journal of Nanomedicine & Biotherapeutic Discovery, 2012, 02, .	0.6	3
279	Mechanically adaptive nanocomposites for neural interfacing. MRS Bulletin, 2012, 37, 581-589.	1.7	91
281	Platinum wire implants coated with PEDOT/carbon nanotube conducting polymer films in the brain of rats: A histological evaluation. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 1053-1057.	0.4	11
282	Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Journal of Neural Engineering, 2012, 9, 036001.	1.8	72
283	Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. Journal of Neural Engineering, 2012, 9, 056015.	1.8	254
284	<i>In vivo</i> two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. Journal of Neural Engineering, 2012, 9, 066001.	1.8	177
285	An ultra-compliant, scalable neural probe with molded biodissolvable delivery vehicle. , 2012, , .		43
286	Polymer neural interface with dual-sided electrodes for neural stimulation and recording. , 2012, 2012, 5999-6002.		26
287	Microscopic magnetic stimulation of neural tissue. Nature Communications, 2012, 3, 921.	5.8	149
288	Prediction of Muscle Activities from Electrocorticograms in Primary Motor Cortex of Primates. PLoS ONE, 2012, 7, e47992.	1.1	58
289	Approaches and Challenges of Engineering Implantable Microelectromechanical Systems (MEMS) Drug Delivery Systems for in Vitro and in Vivo Applications. Micromachines, 2012, 3, 615-631.	1.4	51
290	A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis. Frontiers in Neuroengineering, 2012, 5, 23.	4.8	19
291	Behavioral Determination of Stimulus Pair Discrimination of Auditory Acoustic and Electrical Stimuli Using a Classical Conditioning and Heart-rate Approach. Journal of Visualized Experiments, 2012, , e3598.	0.2	4

#	Article	IF	CITATIONS
292	AFM and Cell Staining to Assess the In Vitro Biocompatibility of Opaque Surfaces. , 0, , .		1
293	Automated Segmentation and Morphometry of Cell and Tissue Structures. Selected Algorithms in ImageJ. , 0, , .		15
294	Nanocomposite Thin Films with Hybrid Inorganic/Organic Matrix for the Modification of Siliconâ€Based Implants. Plasma Processes and Polymers, 2012, 9, 709-717.	1.6	3
295	Brain Computer Interfaces, a Review. Sensors, 2012, 12, 1211-1279.	2.1	1,588
296	Bioactive antiâ€inflammatory coating for chronic neural electrodes. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1854-1858.	2.1	25
297	Histocompatibility and <i>in vivo</i> signal throughput for PEDOT, PEDOP, P3MT, and polycarbazole electrodes. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3455-3462.	2.1	22
298	Fabrication of Responsive, Softening Neural Interfaces. Advanced Functional Materials, 2012, 22, 3470-3479.	7.8	127
299	Microfabricationâ€Compatible Nanoporous Gold Foams as Biomaterials for Drug Delivery. Advanced Healthcare Materials, 2012, 1, 172-176.	3.9	43
300	Application of carbon nanotubes in neurology: clinical perspectives and toxicological risks. Archives of Toxicology, 2012, 86, 1009-1020.	1.9	50
301	Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Acta Biomaterialia, 2012, 8, 2233-2242.	4.1	126
302	The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials, 2012, 33, 3446-3455.	5.7	96
303	The upregulation of specific interleukin (IL) receptor antagonists and paradoxical enhancement of neuronal apoptosis due to electrode induced strain and brain micromotion. Biomaterials, 2012, 33, 5983-5996.	5.7	92
304	Wireless multi-channel single unit recording in freely moving and vocalizing primates. Journal of Neuroscience Methods, 2012, 203, 28-40.	1.3	76
305	Reduction of autofluorescence at the microelectrode–cortical tissue interface improves antibody detection. Journal of Neuroscience Methods, 2012, 203, 96-105.	1.3	61
306	Implantable Polyimide Cable for Multichannel High-Data-Rate Neural Recording Microsystems. IEEE Transactions on Biomedical Engineering, 2012, 59, 390-399.	2.5	9
307	Postmortem observation of collagenous lead tip region fibrosis as a rare complication of DBS. Movement Disorders, 2012, 27, 565-569.	2.2	16
308	Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity. Advanced Functional Materials, 2012, 22, 640-651.	7.8	45
309	Mechanics in Neuronal Development and Repair. Annual Review of Biomedical Engineering, 2013, 15, 227-251.	5.7	293

#	Article	IF	CITATIONS
310	The utility of multichannel local field potentials for brain–machine interfaces. Journal of Neural Engineering, 2013, 10, 046005.	1.8	65
311	A carbon-fiber electrode array for long-term neural recording. Journal of Neural Engineering, 2013, 10, 046016.	1.8	203
312	Resorbable scaffold based chronic neural electrode arrays. Biomedical Microdevices, 2013, 15, 481-493.	1.4	14
313	Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay. Biomedical Microdevices, 2013, 15, 917-924.	1.4	13
314	Detecting bladder fullness through the ensemble activity patterns of the spinal cord unit population in a somatovisceral convergence environment. Journal of Neural Engineering, 2013, 10, 056009.	1.8	8
315	Thin Films and Coatings in Biology. Biological and Medical Physics Series, 2013, , .	0.3	6
316	Electrical Performance of Penetrating Microelectrodes Chronically Implanted in Cat Cortex. IEEE Transactions on Biomedical Engineering, 2013, 60, 2153-2160.	2.5	84
317	A Primer on Brain–Machine Interfaces, Concepts, and Technology: A Key Element in the Future of Functional Neurorestoration. World Neurosurgery, 2013, 79, 457-471.	0.7	48
319	An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. Journal of Neural Engineering, 2013, 10, 056012.	1.8	162
320	Organic bioelectrodes in clinical neurosurgery. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4345-4352.	1.1	4
321	Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses. Journal of Neural Engineering, 2013, 10, 026007.	1.8	87
322	Thiolâ€ <scp>C</scp> lick Chemistries for Responsive Neural Interfaces. Macromolecular Bioscience, 2013, 13, 1640-1647.	2.1	33
323	A Compact, Low Input Capacitance Neural Recording Amplifier. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 610-620.	2.7	122
324	Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth. Journal of Materials Chemistry B, 2013, 1, 4166.	2.9	27
325	Effect of an Inductive Hydrogel Composed of Urinary Bladder Matrix Upon Functional Recovery Following Traumatic Brain Injury. Tissue Engineering - Part A, 2013, 19, 1909-1918.	1.6	52
326	3D Parylene sheath probes for reliable, long-term neuroprosthetic recordings. , 2013, , .		4
327	Multi-modal neural microprobe integrating silicon microelectrodes and polymeric microchannels. , 2013, , .		0
328	Technology for bipolar polycarbonate electrodes applied for intraoperative neuromonitoring. , 2013, ,		2

#	Article	IF	CITATIONS
329	Bi-directional Optrode for quantitative prediction of neural interface failure. , 2013, , .		0
330	Silicon carbide neural implants: In vivo neural tissue reaction. , 2013, , .		10
331	In Vivo Measurements With Robust Silicon-Based Multielectrode Arrays With Extreme Shaft Lengths. IEEE Sensors Journal, 2013, 13, 3263-3269.	2.4	13
332	Structural analysis of explanted microelectrode arrays. , 2013, , .		20
333	Drug eluting coating for 3D Parylene sheath electrode. , 2013, , .		4
334	Ultra high aspect ratio penetrating metal microelectrodes for biomedical applications. Microsystem Technologies, 2013, 19, 179-186.	1.2	33
335	Fabrication of flexible microelectrode arrays integrated with microfluidic channels for stable neural interfaces. Sensors and Actuators A: Physical, 2013, 197, 9-14.	2.0	33
336	Ethical considerations for engineers working in cybernetic implants. , 2013, , .		1
337	Scalable nano-bioprobes with sub-cellular resolution for cell detection. Biosensors and Bioelectronics, 2013, 45, 267-273.	5.3	4
338	Astrocytes specifically remove surface-adsorbed fibrinogen and locally express chondroitin sulfate proteoglycans. Acta Biomaterialia, 2013, 9, 7200-7208.	4.1	20
339	Examining the inflammatory response to nanopatterned polydimethylsiloxane using organotypic brain slice methods. Journal of Neuroscience Methods, 2013, 217, 17-25.	1.3	17
340	Interaction of glia with a compliant, microstructured silicone surface. Acta Biomaterialia, 2013, 9, 6936-6942.	4.1	20
341	The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials, 2013, 34, 4703-4713.	5.7	239
342	Sub-meninges implantation reduces immune response to neural implants. Journal of Neuroscience Methods, 2013, 214, 119-125.	1.3	29
343	Impedance Variations over Time for a Closed-Loop Neurostimulation Device: Early Experience with Chronically Implanted Electrodes. Neuromodulation, 2013, 16, 46-50.	0.4	25
344	Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab on A Chip, 2013, 13, 554-561.	3.1	102
345	Silk as a Multifunctional Biomaterial Substrate for Reduced Clial Scarring around Brainâ€Penetrating Electrodes. Advanced Functional Materials, 2013, 23, 3185-3193.	7.8	111
346	Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain. PLoS ONE, 2013, 8, e56673.	1.1	73

CIT		~ ~ ~	Dee	ODT
CH.	AH	ON.	KEF	ORT

#	Article	IF	CITATIONS
347	Silk Hydrogels as Soft Substrates for Neural Tissue Engineering. Advanced Functional Materials, 2013, 23, 5140-5149.	7.8	157
348	Sub-Second Measurements of Glutamate and Other Neurotransmitter Signaling Using Enzyme-Based Ceramic Microelectrode Arrays. Neuromethods, 2013, , 179-199.	0.2	7
349	Controlled delivery for neuro-bionic devices. Advanced Drug Delivery Reviews, 2013, 65, 559-569.	6.6	51
350	The Speculative Neuroscience of the Future Human Brain. Humanities, 2013, 2, 209-252.	0.1	2
351	Smart Polymers for Neural Interfaces. Polymer Reviews, 2013, 53, 108-129.	5.3	63
352	Towards autonomous neuroprosthetic control using Hebbian reinforcement learning. Journal of Neural Engineering, 2013, 10, 066005.	1.8	34
353	Preventing neuronal damage and inflammationin vivoduring cortical microelectrode implantation through the use of Poloxamer P-188. Journal of Neural Engineering, 2013, 10, 016011.	1.8	13
354	Cell Durotaxis on Polyelectrolyte Multilayers with Photogenerated Gradients of Modulus. Biomacromolecules, 2013, 14, 1311-1320.	2.6	34
356	Long-Term Measurement of Impedance in Chronically Implanted Depth and Subdural Electrodes During Responsive Neurostimulation in Humans. Brain Stimulation, 2013, 6, 718-726.	0.7	109
357	Neuroprosthetic technology for individuals with spinal cord injury. Journal of Spinal Cord Medicine, 2013, 36, 258-272.	0.7	64
358	A Highly Compliant Serpentine Shaped Polyimide Interconnect for Front-End Strain Relief in Chronic Neural Implants. Frontiers in Neurology, 2013, 4, 124.	1.1	16
359	Nanomembranes and Nanofibers from Biodegradable Conducting Polymers. Polymers, 2013, 5, 1115-1157.	2.0	90
360	Materials for implantable systems. , 2013, , 3-38.		6
361	Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex. Journal of Neural Engineering, 2013, 10, 066016.	1.8	41
362	Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Frontiers in Neural Circuits, 2012, 6, 122.	1.4	129
363	Perforated 2×2 Parylene sheath electrode array for chronic intracortical recording. , 2013, , .		2
364	Polyethylene Glycol-Coated Polyimide-Based Probe with Neural Recording IC for Chronic Neural Recording. Advanced Materials Research, 2013, 849, 183-188.	0.3	2
365	The density difference between tissue and neural probes is a key factor for glial scarring. Scientific Reports, 2013, 3, 2942.	1.6	84

ARTICLE IF CITATIONS # Novel self-folding electrode for neural stimulation and recording., 2013,,. 5 366 Nanopatterning effects on astrocyte reactivity. Journal of Biomedical Materials Research - Part A, 2.1 2013, 101A, 1743-1757. Computational study on thermal effects of coil-based implantable magnetic stimulation using finite 368 1 element analysis., 2013, , . Microfabricated polymer-based neural interface for electrical stimulation/recording, drug delivery, and chemical sensing - development. , 2013, 2013, 5159-62. A multi-shank silk-backed parylene neural probe for reliable chronic recording., 2013,,. 370 11 Ultra-compliant neural probes are subject to fluid forces during dissolution of polymer delivery 371 vehicles. , 2013, 2013, 1550-3. Optimising electrode surface area to minimize power consumption in a cortical penetrating 372 3 prosthesis., 2013, , . A Flexible Base Electrode Array for Intraspinal Microstimulation. IEEE Transactions on Biomedical Engineering, 2013, 60, 2904-2913. 374 Ultrasonically actuated inserted neural probes for increased recording reliability., 2013,,. 5 Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using 1.8 novel annulus electrodes in rat motor cortex. Journal of Neural Engineering, 2013, 10, 046010. Long-term changes in the material properties of brain tissue at the implant–tissue interface. Journal 376 101 1.8 of Neural Engineering, 2013, 10, 066001. Nanoparticle-based evaluation of blood–brain barrier leakage during the foreign body response. 1.8 Journal of Neural Engineering, 2013, 10, 016013. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. 378 1.8 493 Journal of Neural Éngineering, 2013, 10, 066014. Environmentally-controlled Microtensile Testing of Mechanically-adaptive Polymer Nanocomposites 380 0.2 for ex vivo Characterization. Journal of Visualized Experiments, 2013, ; e50078. Insertion of Flexible Neural Probes Using Rigid Stiffeners Attached with Biodissolvable Adhesive. 381 0.2 68 Journal of Visualized Experiments, 2013, , e50609. Intact Histological Characterization of Brain-implanted Microdevices and Surrounding Tissue. Journal of Visualized Experiments, 2013, , . Biological and Electrophysiologic Effects of Poly(3,4-ethylenedioxythiophene) on Regenerating 383 0.7 9 Peripheral Nerve Fibers. Plastic and Reconstructive Surgery, 2013, 132, 374-385. 384 Functional Restoration through Robotics., 2013,,.

#	Article	IF	CITATIONS
385	Simultaneous Recording of Single-Neuron Activities and Broad-Area Intracranial Electroencephalography: Electrode Design and Implantation Procedure. Operative Neurosurgery, 2013, 73, ons146-ons154.	0.4	7
386	Physical principles for scalable neural recording. Frontiers in Computational Neuroscience, 2013, 7, 137.	1.2	215
387	Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy. Clinical Ophthalmology, 2013, 7, 1093.	0.9	14
388	Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex. PLoS ONE, 2013, 8, e72085.	1.1	88
389	Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Frontiers in Neural Circuits, 2013, 7, 57.	1.4	99
390	A simple implantation method for flexible, multisite microelectrodes into rat brains. Frontiers in Neuroengineering, 2013, 6, 6.	4.8	47
391	The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice. Frontiers in Systems Neuroscience, 2013, 7, 8.	1.2	137
392	Implantable Devices: Issues and Challenges. Electronics (Switzerland), 2013, 2, 1-34.	1.8	239
393	Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain. PLoS ONE, 2014, 9, e90221.	1.1	18
394	Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants. Frontiers in Neuroengineering, 2014, 7, 2.	4.8	159
395	Improved selectivity from a wavelength addressable device for wireless stimulation of neural tissue. Frontiers in Neuroengineering, 2014, 7, 5.	4.8	17
396	Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Frontiers in Neuroengineering, 2014, 7, 7.	4.8	39
397	Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. Frontiers in Neuroengineering, 2014, 7, 8.	4.8	66
398	The sinusoidal probe: a new approach to improve electrode longevity. Frontiers in Neuroengineering, 2014, 7, 10.	4.8	87
399	Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions. Frontiers in Neuroengineering, 2014, 7, 13.	4.8	67
400	In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography. Frontiers in Neuroengineering, 2014, 7, 34.	4.8	42
401	A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Frontiers in Neuroscience, 2014, 8, 169.	1.4	115
402	Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis. Frontiers in Neuroscience, 2014, 8, 296.	1.4	43

		CITATION RE	PORT	
#	Article		IF	CITATIONS
403	A functional model and simulation of spinal motor pools and intrafascicular recordings motoneuron activity in peripheral nerve. Frontiers in Neuroscience, 2014, 8, 371.	of	1.4	3
404	Monitoring activity in neural circuits with genetically encoded indicators. Frontiers in N Neuroscience, 2014, 7, 97.	lolecular	1.4	121
405	A Brief Review of Brain Signal Monitoring Technologies for BCI Applications: Challenges Prospects. Journal of Bioengineering & Biomedical Science, 2014, 04, .	s and	0.2	26
407	Brain responses to neural prostheses. , 0, , 554-564.			1
408	Intracranialbrainâ \in "computer interfaces for communication and control. , 2014, , 577-	585.		3
409	Magnetic stimulation of mammalian peripheral nerves in vivo: An alternative to functio stimulation. , 2014, 2014, 2573-6.	nal electrical		6
410	Towards a large-scale recording system: Demonstration of polymer-based penetrating a chronic neural recording. , 2014, 2014, 6830-3.	array for		13
411	Self-recalibrating classifiers for intracortical brain–computer interfaces. Journal of Ne Engineering, 2014, 11, 026001.	ural	1.8	51
412	c-Fos immunoreactivity and variation of neuronal units in rat's motor cortex after chron , 2014, , .	nic implants.		1
413	Behavioral and cellular consequences of high-electrode count Utah Arrays chronically ir rat sciatic nerve. Journal of Neural Engineering, 2014, 11, 046027.	nplanted in	1.8	43
415	In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical prop electrophysiological recording. Sensors and Actuators A: Physical, 2014, 216, 257-265.	erties to	2.0	24
416	Metal/polymer composite Nuss bar for minimally invasive bar removal after <i>Pectus E treatment: FEM simulations. International Journal for Numerical Methods in Biomedical 2014, 30, 1530-1540.</i>	xcavatum Engineering,	1.0	1
417	A field-referenced surface electrode for biosignal detection. , 2014, , .			0
418	Real-time estimation and biofeedback of single-neuron firing rates using local field pote Communications, 2014, 5, 5462.	entials. Nature	5.8	55
419	Molecular release from patterned nanoporous gold thin films. Nanoscale, 2014, 6, 706	2-7071.	2.8	45
420	3C-SiC on Si: A bio- and hemo-compatible material for advanced nano-bio devices. , 202	14, , .		10
421	Longitudinal vascular dynamics following cranial window and electrode implantation m speckle variance optical coherence angiography. Biomedical Optics Express, 2014, 5, 2	easured with 823.	1.5	29
422	Wireless simultaneous stimulation-and-recording device to train cortical circuits in som cortex. , 2014, 2014, 426-9.	hatosensory		2

#	Article	IF	CITATIONS
423	Thiolâ€ene/acrylate substrates for softening intracortical electrodes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1-11.	1.6	108
424	The development, characterization, and cellular response of a novel electroactive nanostructured composite for electrical stimulation of neural cells. Biomaterials Science, 2014, 2, 1727-1739.	2.6	21
425	CHAPTER 8. Bioactive Conducting Polymers for Optimising the Neural Interface. RSC Smart Materials, 2014, , 192-220.	0.1	0
426	Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes. Journal of Biomedical Materials Research - Part A, 2014, 102, 2743-2754.	2.1	77
427	In situ monitoring of brain tissue reaction of chronically implanted electrodes with an optical coherence tomography fiber system. , 2014, , .		1
428	Infrared neural stimulation: a new stimulation tool for central nervous system applications. Neurophotonics, 2014, 1, 011011.	1.7	65
429	Neuron Growth on Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 195-220.	0.2	1
430	3C-SiC on Si: A Versatile Material for Electronic, Biomedical and Clean Energy Applications. Materials Research Society Symposia Proceedings, 2014, 1693, 61.	0.1	4
431	The Enhancement of a Chronically Implanted Microwire Electrode Performance. Advanced Materials Research, 0, 960-961, 689-694.	0.3	0
432	Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation. Journal of Micromechanics and Microengineering, 2014, 24, 025010.	1.5	43
433	Microelectrode Array Recordings from the Ventral Roots in Chronically Implanted Cats. Frontiers in Neurology, 2014, 5, 104.	1.1	20
434	Influence of bio-coatings on the recording performance of neural electrodes. Biomedizinische Technik, 2014, 59, 315-22.	0.9	2
435	Accurate resistivity mouse brain mapping using microelectrode arrays. Biosensors and Bioelectronics, 2014, 60, 143-153.	5.3	8
436	A non-parametric Bayesian approach for clustering and tracking non-stationarities of neural spikes. Journal of Neuroscience Methods, 2014, 223, 85-91.	1.3	11
437	A hybrid silicon–parylene neural probe with locally flexible regions. Sensors and Actuators B: Chemical, 2014, 195, 416-422.	4.0	45
439	A Review of Organic and Inorganic Biomaterials for Neural Interfaces. Advanced Materials, 2014, 26, 1846-1885.	11.1	456
440	Stiffness quantification of conductive polymers for bioelectrodes. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 666-675.	2.4	29
441	Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings. Journal of Materials Science: Materials in Medicine, 2014, 25, 931-940.	1.7	18

#	Article	IF	Citations
442	Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. , 2014, , .		10
443	Drug release from porous silicon for stable neural interface. Applied Surface Science, 2014, 292, 843-851.	3.1	10
444	The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials, 2014, 35, 3919-3925.	5.7	331
445	A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models. Biomaterials, 2014, 35, 5637-5646.	5.7	38
446	Traumatic white matter injury and glial activation: From basic science to clinics. Glia, 2014, 62, 1831-1855.	2.5	81
447	An Analogue Front-End Model for Developing Neural Spike Sorting Systems. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 216-227.	2.7	48
448	Introduction to biomaterials and implantable device design. , 2014, , 1-31.		2
449	Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics. Optics Letters, 2014, 39, 2872.	1.7	19
450	Optogenetic Brain Interfaces. IEEE Reviews in Biomedical Engineering, 2014, 7, 3-30.	13.1	76
451	Neural Computation, Neural Devices, and Neural Prosthesis. , 2014, , .		7
453	Improving Cochlear Implant Properties Through Conductive Hydrogel Coatings. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 411-418.	2.7	62
454	MEMS-based microelectrode technologies capable of penetrating neural tissues. Biomedical Engineering Letters, 2014, 4, 109-119.	2.1	5
455	Development, manufacturing and application of double-sided flexible implantable microelectrodes. Biomedical Microdevices, 2014, 16, 837-850.	1.4	22
456	Advanced materials for neural surface electrodes. Current Opinion in Solid State and Materials Science, 2014, 18, 301-307.	5.6	21
457	Bioactive agarose carbonâ€nanotube composites are capable of manipulating brain–implant interface. Journal of Applied Polymer Science, 2014, 131, .	1.3	16
458	Neural Spike Compression Using Feature Extraction and a Fuzzy C-Means Codebook. , 2014, , .		0
459	<i>In vivo</i> polymerization of poly(3,4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task. Journal of Neural Engineering, 2014, 11, 026005.	1.8	55
460	Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. Journal of Micromechanics and Microengineering, 2014, 24, 065015.	1.5	129

#	Article	IF	CITATIONS
461	Materials considerations of implantable neuroengineering devices for clinical use. Current Opinion in Solid State and Materials Science, 2014, 18, 329-336.	5.6	20
462	Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience, 2014, 282, 139-155.	1.1	64
463	Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task. Journal of Neural Engineering, 2014, 11, 036009.	1.8	55
464	Photostimulation of Wholeâ€Cell Conductance in Primary Rat Neocortical Astrocytes Mediated by Organic Semiconducting Thin Films. Advanced Healthcare Materials, 2014, 3, 392-399.	3.9	61
465	The effect of residual endotoxin contamination on the neuroinflammatory response to sterilized intracortical microelectrodes. Journal of Materials Chemistry B, 2014, 2, 2517-2529.	2.9	36
466	Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means. Current Opinion in Solid State and Materials Science, 2014, 18, 319-328.	5.6	47
467	Development of superoxide dismutase mimetic surfaces to reduce accumulation of reactive oxygen species for neural interfacing applications. Journal of Materials Chemistry B, 2014, 2, 2248-2258.	2.9	43
468	Host response to microgel coatings on neural electrodes implanted in the brain. Journal of Biomedical Materials Research - Part A, 2014, 102, 1486-1499.	2.1	46
470	In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain. Journal of Neuroscience Methods, 2014, 237, 79-89.	1.3	70
471	Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials, 2014, 35, 9255-9268.	5.7	170
472	Time dependent pattern of cellular characteristics causing ventriculoperitoneal shunt failure in children. Clinical Neurology and Neurosurgery, 2014, 127, 30-32.	0.6	19
473	Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014, 17, 1123-1129.	7.1	480
474	The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted Intracortical microelectrodes. Biomaterials, 2014, 35, 8049-8064.	5.7	77
475	Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nature Communications, 2014, 5, 4523.	5.8	136
476	Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review. Biomaterials, 2014, 35, 9068-9086.	5.7	339
477	Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 107.	2.4	13
478	Hyaluronic Acid-Based 3D Culture Model for In Vitro Testing of Electrode Biocompatibility. Biomacromolecules, 2014, 15, 2157-2165.	2.6	25
479	Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nature Reviews Neuroscience, 2014, 15, 313-325.	4.9	304

#	Article	IF	CITATIONS
480	Highly Conductive Stretchable and Biocompatible Electrode–Hydrogel Hybrids for Advanced Tissue Engineering. Advanced Healthcare Materials, 2014, 3, 1919-1927.	3.9	138
481	A Fully Self-Contained Logarithmic Closed-Loop Deep Brain Stimulation SoC With Wireless Telemetry and Wireless Power Management. IEEE Journal of Solid-State Circuits, 2014, 49, 2213-2227.	3.5	87
482	Physiological Challenges for Intracortical Electrodes. Brain Stimulation, 2014, 7, 1-6.	0.7	59
483	Lifetime assessment of atomic-layer-deposited Al2O3–Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization. Acta Biomaterialia, 2014, 10, 960-967.	4.1	80
484	Microscale Characterization of a Mechanically Adaptive Polymer Nanocomposite With Cotton-Derived Cellulose Nanocrystals for Implantable BioMEMS. Journal of Microelectromechanical Systems, 2014, 23, 774-784.	1.7	9
485	The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials, 2014, 35, 6698-6706.	5.7	48
486	Novel interfaces for light directed neuronal stimulation: advances and challenges. International Journal of Nanomedicine, 2014, 9 Suppl 1, 65.	3.3	65
487	Computationally efficient modeling of proprioceptive signals in the upper limb for prostheses: a simulation study. Frontiers in Neuroscience, 2014, 8, 181.	1.4	11
488	Nanotechnology for Neural Tissue Engineering. , 2014, , 367-380.		1
489	Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface. Materials Research Society Symposia Proceedings, 2015, 1795, 1-12.	0.1	0
490	Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury. Journal of Neuroinflammation, 2015, 12, 155.	3.1	41
491	Improving the brain machine interface via multiple Tetramethyl Orthosilicate sol-gel coatings on microelectrode arrays. , 2015, , .		2
492	ADVANCING CHRONIC INTRACORTICAL ELECTRODE RECORDING FUNCTION. , 2015, , 351-368.		0
493	MEASUREMENT OF CYTOKINES IN THE BRAIN. , 2015, , 369-400.		0
494	Nanostructured microsphere coated with living cells and tethered with low-stiffness wire: A possible solution to brain tissue reactions. , 2015, , .		4
495	Extracellular matrix-based intracortical microelectrodes: Toward a microfabricated neural interface based on naturalÂmaterials. Microsystems and Nanoengineering, 2015, 1, .	3.4	46
496	Foldable and Cytocompatible Sol-gel TiO2 Photonics. Scientific Reports, 2015, 5, 13832.	1.6	36
497	Development of silicon electrode neural probe and acute study on implantation mechanics. , 2015, , .		1

#	Article	IF	Citations
498	Fabrication and implantation of hydrogel coated, flexible polyimide electrodes. , 2015, , .		5
499	Evaluation of biodegradable coating on the stiffness control of the polyimide-based probe used in neural devices. , 2015, , .		0
500	Phasic dopamine signals: from subjective reward value to formal economic utility. Current Opinion in Behavioral Sciences, 2015, 5, 147-154.	2.0	69
501	Biocompatibility and magnetic resonance imaging characteristics of carbon nanotube yarn neural electrodes in a rat model. BioMedical Engineering OnLine, 2015, 14, 118.	1.3	19
502	Multifunctional 3D Patternable Drugâ€Embedded Nanocarrierâ€Based Interfaces to Enhance Signal Recording and Reduce Neuron Degeneration in Neural Implantation. Advanced Materials, 2015, 27, 4186-4193.	11.1	22
503	Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Advanced Materials, 2015, 27, 7620-7637.	11.1	297
504	Localized Neuron Stimulation with Organic Electrochemical Transistors on Delaminating Depth Probes. Advanced Materials, 2015, 27, 4405-4410.	11.1	139
505	Dissolvable Base Scaffolds Allow Tissue Penetration of Highâ€Aspectâ€Ratio Flexible Microneedles. Advanced Healthcare Materials, 2015, 4, 1949-1955.	3.9	17
506	Insulation lifetime improvement of polyimide thin film neural implants. Journal of Neural Engineering, 2015, 12, 054001.	1.8	34
507	Future of Seizure Prediction and Intervention. Journal of Clinical Neurophysiology, 2015, 32, 194-206.	0.9	67
508	Critical review of the responsive neurostimulator system for epilepsy. Medical Devices: Evidence and Research, 2015, 8, 405.	0.4	47
509	The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations. Frontiers in Behavioral Neuroscience, 2015, 9, 331.	1.0	35
510	In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes. Frontiers in Neuroscience, 2015, 09, 265.	1.4	34
511	An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation—initial evaluation in cortex cerebri of awake rats. Frontiers in Neuroscience, 2015, 9, 331.	1.4	60
512	A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology. PLoS ONE, 2015, 10, e0145307.	1.1	30
513	In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. Biosensors, 2015, 5, 618-646.	2.3	108
514	Fabrication of Patterned Integrated Electrochemical Sensors. Journal of Nanotechnology, 2015, 2015, 1-13.	1.5	5
515	Time Stability and Coherence Analysis of Multiunit, Single-Unit and Local Field Potential Neuronal Signals in Chronically Implanted Brain Electrodes. Bioelectronic Medicine, 2015, 2, 63-71.	1.0	37

#	Article	IF	CITATIONS
516	Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size. ACS Applied Materials & Interfaces, 2015, 7, 7093-7100.	4.0	123
517	Silicon Carbide Materials for Biomedical Applications. , 2015, , 153-207.		4
518	Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo. RSC Advances, 2015, 5, 39228-39231.	1.7	19
519	A microfabricated coil for implantable applications of magnetic spinal cord stimulation. , 2015, 2015, 6912-5.		0
520	Chronic thresholds for evoking perceptual responses in the rat sensory cortex. , 2015, , .		1
521	EC-PC spike detection for high performance brain-computer interface. , 2015, 2015, 5142-5.		1
522	Parylene-Based Electrochemical-MEMS Force Sensor for Studies of Intracortical Probe Insertion Mechanics. Journal of Microelectromechanical Systems, 2015, 24, 1534-1544.	1.7	18
523	Biological and bionic hands: Natural neural coding and artificial perception. , 2015, , .		1
524	Nanowire based flexible electrode array with pedot film for neural recordings. , 2015, , .		1
525	Layer-by-layer films assembled from natural polymers for sustained release of neurotrophin. Biomedical Materials (Bristol), 2015, 10, 055006.	1.7	16
526	Achievements and challenges of translational research in non-invasive SMR-BCI-controlled upper extremity neuroprosthesis in spinal cord injury. , 2015, , .		1
527	Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses. Brain Research, 2015, 1595, 51-73.	1.1	192
528	Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. Journal of Neural Engineering, 2015, 12, 011001.	1.8	309
529	Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosensors and Bioelectronics, 2015, 67, 450-457.	5.3	144
530	Experimental evaluation and computational modeling of tissue damage from low-flow push–pull perfusion sampling in vivo. Journal of Neuroscience Methods, 2015, 242, 97-105.	1.3	17
531	Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 83-89.	1.5	10
532	Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface. Journal of Neural Engineering, 2015, 12, 016017.	1.8	21
533	Intracortical Recording Interfaces: Current Challenges to Chronic Recording Function. ACS Chemical Neuroscience, 2015, 6, 68-83.	1.7	77

#	Article	IF	CITATIONS
534	Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. Journal of Neural Engineering, 2015, 12, 016019.	1.8	57
535	Patient-Specific Cortical Electrodes for Sulcal and Gyral Implantation. IEEE Transactions on Biomedical Engineering, 2015, 62, 1034-1041.	2.5	26
536	Mathematical modeling of chemotaxis and glial scarring around implanted electrodes. New Journal of Physics, 2015, 17, 023009.	1.2	3
537	Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nature Biotechnology, 2015, 33, 277-284.	9.4	532
538	E-Spun Composite Fibers of Collagen and Dragline Silk Protein: Fiber Mechanics, Biocompatibility, and Application in Stem Cell Differentiation. Biomacromolecules, 2015, 16, 202-213.	2.6	57
539	Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes. Biomaterials, 2015, 44, 55-70.	5.7	55
540	Influence of ligands in metal nanoparticle electrophoresis for the fabrication of biofunctional coatings. Applied Surface Science, 2015, 348, 92-99.	3.1	45
541	Electrical interfaces for recording, stimulation, and sensing. , 2015, , 13-38.		2
542	An in-vivo evaluation of a MEMS drug delivery device using Kunming mice model. Biomedical Microdevices, 2015, 17, 6.	1.4	10
543	REAL-TIME IN VIVO NEUROTRANSMITTER MEASUREMENTS USING ENZYME-BASED CERAMIC MICROELECTRODE ARRAYS: WHAT WE HAVE LEARNED ABOUT GLUTAMATE SIGNALING. , 2015, , 113-136.		0
544	Fabrication of bioactive polypyrrole microelectrodes on insulating surfaces by surface-guided biocatalytical polymerization. RSC Advances, 2015, 5, 67082-67088.	1.7	5
545	Transfer of vertical nanowire arrays on polycaprolactone substrates for biological applications. Microelectronic Engineering, 2015, 135, 52-56.	1.1	7
547	Numerical simulation of capillary deformation of a body implantable device. Biomedical Engineering Letters, 2015, 5, 213-220.	2.1	0
548	Electroactive hybrid hydrogel: Toward a smart coating for neural electrodes. Journal of Bioactive and Compatible Polymers, 2015, 30, 600-616.	0.8	13
549	Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter, 2015, 11, 4847-4861.	1.2	72
550	Insertion of linear 8.4 <i>μ4</i> m diameter 16 channel carbon fiber electrode arrays for single unit recordings. Journal of Neural Engineering, 2015, 12, 046009.	1.8	142
551	Soft Materials in Neuroengineering for Hard Problems in Neuroscience. Neuron, 2015, 86, 175-186.	3.8	251
552	Recent advances in silicon-based neural microelectrodes and microsystems: a review. Sensors and Actuators B: Chemical, 2015, 215, 300-315.	4.0	80

#	Article	IF	CITATIONS
553	Nanotechnology, neuromodulation & the immune response: Discourse, materiality & ethics. Biomedical Microdevices, 2015, 17, 28.	1.4	1
554	Silk coating as a novel delivery system and reversible adhesive for stiffening and shaping flexible probes. Journal of Biological Methods, 2015, 2, e13.	1.0	12
555	Neuroelectronics and Biooptics. JAMA Neurology, 2015, 72, 823.	4.5	84
556	An overview of brain computer interface. , 2015, , .		3
558	A review of flux considerations for in vivo neurochemical measurements. Analyst, The, 2015, 140, 3709-3730.	1.7	12
559	Small bioactive molecules as dual functional co-dopants for conducting polymers. Journal of Materials Chemistry B, 2015, 3, 5058-5069.	2.9	31
560	Neuroplasticity subserving the operation of brain–machine interfaces. Neurobiology of Disease, 2015, 83, 161-171.	2.1	21
561	Development of Silicon Probe With Acute Study on <italic>In Vivo</italic> Neural Recording and Implantation Behavior Monitored by Integrated Si-Nanowire Strain Sensors. Journal of Microelectromechanical Systems, 2015, 24, 1303-1313.	1.7	10
562	Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano, 2015, 9, 4465-4474.	7.3	246
563	Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion. Biomedical Microdevices, 2015, 17, 34.	1.4	49
565	Safety and efficacy of explanting or replacing suprachoroidal electrode arrays in a feline model. Clinical and Experimental Ophthalmology, 2015, 43, 247-258.	1.3	12
566	A High-Sensitivity Fully Passive Neurosensing System for Wireless Brain Signal Monitoring. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2060-2068.	2.9	53
567	Neuroprostheses for restoring hearing loss. , 2015, , 97-125.		0
568	Design of electrodes for stimulation and recording. , 2015, , 59-93.		1
569	Biodegradable Nanoneedles for Localized Delivery of Nanoparticles <i>in Vivo:</i> Exploring the Biointerface. ACS Nano, 2015, 9, 5500-5509.	7.3	171
570	Tools for Probing Local Circuits: High-Density Silicon Probes Combined with Optogenetics. Neuron, 2015, 86, 92-105.	3.8	284
571	Silk-Backed Structural Optimization of High-Density Flexible Intracortical Neural Probes. Journal of Microelectromechanical Systems, 2015, 24, 62-69.	1.7	72
572	Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms. Advanced Materials, 2015, 27, 3145-3151.	11.1	145

#	Article	IF	Citations
573	Quality of Neuron Signals Recorded in the Monkey Neocortex Using Chronically Implanted Multiple Microwires. Neuroscience and Behavioral Physiology, 2015, 45, 854-862.	0.2	0
574	Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Materials, 2015, 14, 1286-1292.	13.3	334
575	Implantable Brain Interface: High-Density Microelectrode Array for Neural Recording. KAIST Research Series, 2015, , 75-105.	1.5	0
576	In vitro biological assessment of electrode materials for neural interfaces. , 2015, , .		3
577	Suppression of excitotoxicity and foreign body response by memantine in chronic cannula implantation into the rat brain. Brain Research Bulletin, 2015, 117, 54-68.	1.4	8
578	Miniaturized optogenetic neural implants: a review. Lab on A Chip, 2015, 15, 3838-3855.	3.1	84
579	Strategies for optical control and simultaneous electrical readout of extended cortical circuits. Journal of Neuroscience Methods, 2015, 256, 220-231.	1.3	62
580	Materials for microfabricated implantable devices: a review. Lab on A Chip, 2015, 15, 4256-4272.	3.1	126
581	An Electrochemical Investigation of the Impact of Microfabrication Techniques on Polymer-Based Microelectrode Neural Interfaces. Journal of Microelectromechanical Systems, 2015, 24, 801-809.	1.7	10
582	Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. Journal of Neural Engineering, 2015, 12, 026003.	1.8	150
583	Biofunctionalized Conducting Polymer/Carbon Microfiber Electrodes for Ultrasensitive Neural Recordings. ACS Applied Materials & amp; Interfaces, 2015, 7, 27016-27026.	4.0	34
584	Biological and bionic hands: natural neural coding and artificial perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140209.	1.8	56
585	NeuroGrid: recording action potentials from the surface of the brain. Nature Neuroscience, 2015, 18, 310-315.	7.1	745
586	Recent advances in nanocellulose for biomedical applications. Journal of Applied Polymer Science, 2015, 132, .	1.3	564
587	In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays. Scientific Reports, 2014, 4, 4868.	1.6	54
588	Suppression of Subthalamic Nucleus Activity by Micromagnetic Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 116-127.	2.7	29
589	A strategy to passively reduce neuroinflammation surrounding devices implanted chronically in brain tissue by manipulating device surface permeability. Biomaterials, 2015, 36, 33-43.	5.7	53
590	Carbon for Sensing Devices. , 2015, , .		5

#	Article	IF	CITATIONS
591	Model validation of untethered, ultrasonic neural dust motes for cortical recording. Journal of Neuroscience Methods, 2015, 244, 114-122.	1.3	140
592	Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing. Materials Science and Engineering C, 2015, 46, 25-31.	3.8	22
593	Nanobiomaterials for bionic eye. , 2016, , 257-285.		5
594	The Evolution of Neuroprosthetic Interfaces. Critical Reviews in Biomedical Engineering, 2016, 44, 123-152.	0.5	56
595	Foreign Body Reaction and Stem Cell Responses. , 2016, , 49-69.		0
596	Stimulation of a Suprachoroidal Retinal Prosthesis Drives Cortical Responses in a Feline Model of Retinal Degeneration. , 2016, 57, 5216.		20
597	Amorphous Silicon Carbide for Neural Interface Applications. , 2016, , 249-260.		8
598	Design and Microfabrication Considerations for Reliable Flexible Intracortical Implants. Frontiers in Mechanical Engineering, 2016, 2, .	0.8	8
599	PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In vitro. Frontiers in Neuroscience, 2015, 9, 521.	1.4	45
600	Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design. Frontiers in Neuroscience, 2016, 10, 11.	1.4	112
601	Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation. Frontiers in Neuroscience, 2016, 10, 87.	1.4	38
602	pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Frontiers in Neuroscience, 2016, 10, 151.	1.4	29
603	In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces. Frontiers in Neuroscience, 2016, 10, 301.	1.4	36
604	A Sliced Inverse Regression (SIR) Decoding the Forelimb Movement from Neuronal Spikes in the Rat Motor Cortex. Frontiers in Neuroscience, 2016, 10, 556.	1.4	4
605	The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective. Frontiers in Neuroscience, 2016, 10, 599.	1.4	15
606	Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 108.	1.4	25
607	Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion. Biosensors, 2016, 6, 27.	2.3	22
608	Neural Probes for Chronic Applications. Micromachines, 2016, 7, 179.	1.4	42

#	Article	IF	CITATIONS
609	Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design. Sensors, 2016, 16, 330.	2.1	24
610	Long Term Recordings with Immobile Silicon Probes in the Mouse Cortex. PLoS ONE, 2016, 11, e0151180.	1.1	72
611	Contributions of Subsurface Cortical Modulations to Discrimination of Executed and Imagined Grasp Forces through Stereoelectroencephalography. PLoS ONE, 2016, 11, e0150359.	1.1	22
612	Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers. PLoS ONE, 2016, 11, e0155109.	1.1	20
613	Mechanical Flexibility Reduces the Foreign Body Response to Long-Term Implanted Microelectrodes in Rabbit Cortex. PLoS ONE, 2016, 11, e0165606.	1.1	55
614	In Vivo Exploration of Robust Implantable Devices Constructed From Biocompatible 3C–SiC. , 2016, , 207-248.		0
615	Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates. Journal of Neural Engineering, 2016, 13, 016010.	1.8	51
616	Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials. Macromolecular Bioscience, 2016, 16, 1103-1121.	2.1	12
617	Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex. Journal of Neural Engineering, 2016, 13, 036012.	1.8	72
618	Matrigel coatings for <scp>P</scp> arylene sheath neural probes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 357-368.	1.6	32
619	Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain–machine interfaces. Journal of Neural Engineering, 2016, 13, 041001.	1.8	26
620	Development of an all-SiC neuronal interface device. MRS Advances, 2016, 1, 3679-3684.	0.5	6
621	Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes. Journal of Neural Engineering, 2016, 13, 066020.	1.8	39
623	An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings. Applied Physics Letters, 2016, 108, 023701.	1.5	18
624	Effects of geometry and material on the insertion oi very small neural electrode. , 2016, 2016, 2784-2788.		8
625	Chapter 21 Closed-Loop Control Systems for Deep Brain Stimulation Therapy. , 2016, , 389-414.		0
626	Implantable microcoils for intracortical magnetic stimulation. Science Advances, 2016, 2, e1600889.	4.7	114
627	Suitability of nitinol electrodes in neural prostheses such as endovascular neural interfaces. , 2016, 2016, 4463-4466.		2

#	ARTICLE	IF	CITATIONS
628	Decoding intravesical pressure from local field potentials in rat lumbosacral spinal cord. Journal of Neural Engineering, 2016, 13, 056005.	1.8	8
629	Chapter 20 Electrodes for Neural Stimulation and Monitoring. , 2016, , 373-388.		0
630	Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals. Journal of Neural Engineering, 2016, 13, 046018.	1.8	39
631	Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer. Scientific Reports, 2016, 6, 24773.	1.6	36
632	Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems, 2016, , .	0.1	90
633	Mechanically Compliant Neural Interfaces. Microsystems and Nanosystems, 2016, , 257-273.	0.1	2
634	Nanomedicine. Advances in Delivery Science and Technology, 2016, , .	0.4	6
635	Insinuating electronics in the brain. Journal of the Royal College of Surgeons of Edinburgh, 2016, 14, 213-218.	0.8	3
636	Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions. Proceedings of SPIE, 2016, , .	0.8	0
637	Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives. Brain Research, 2016, 1646, 25-33.	1.1	50
638	Microwave communication links for brain interface applications. , 2016, , .		2
639	A microfabricated neural probe with porous si-parylene hybrid structure to enable a reliable brain-machine interface. , 2016, , .		1
640	Processing of platinum electrodes for parylene-C based neural probes. , 2016, , .		4
641	Peri-infarct depolarizations during focal ischemia in the awake Spontaneously Hypertensive Rat. Minimizing anesthesia confounds in experimental stroke. Neuroscience, 2016, 325, 142-152.	1.1	9
642	Habit formation coincides with shifts in reinforcement representations in the sensorimotor striatum. Journal of Neurophysiology, 2016, 115, 1487-1498.	0.9	42
643	Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity fromÂthe cerebral cortex. Nature Materials, 2016, 15, 782-791.	13.3	400
644	Brain Neuromodulation Techniques. Neuroscientist, 2016, 22, 406-421.	2.6	98
645	A novel seizure detection algorithm informed by hidden Markov model event states. Journal of Neural Engineering, 2016, 13, 036011.	1.8	22

	CITATION REPORT	
Article	IF	Citations
Acute insertion effects of penetrating cortical microelectrodes imaged with quantitative optical coherence angiography. Neurophotonics, 2016, 3, 1.	1.7	7
Ultra-thin polymer coating for promoting neural cells integration with neural implants. Surfaces and Interfaces, 2016, 1-3, 44-51.	1.5	6
Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation. Journal of Materials Science: Materials in Medicine, 2016, 27, 2	163. 1.7	14
Hybrid Thin Film Organosilica Sol–Gel Coatings To Support Neuronal Growth and Limit Astrocy Growth. ACS Applied Materials & Interfaces, 2016, 8, 27553-27563.	yte 4.0	14
Chronic <i>in vivo</i> stability assessment of carbon fiber microelectrode arrays. Journal of Neura Engineering, 2016, 13, 066002.	al 1.8	166
Nanowire Interfaces to Cells and Tissue. Nanoscience and Technology, 2016, , 277-306.	1.5	Ο
Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Research, 2016, 126, 157-184.	0.8	127
Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 712-722.	1.6	11
Mining continuous intracranial <scp>EEG</scp> in focal canine epilepsy: Relating interictal burst seizure onsets. Epilepsia, 2016, 57, 89-98.	ts to 2.6	46
Stable long-term chronic brain mapping at the single-neuron level. Nature Methods, 2016, 13, 82	75-882. 9.0	256
Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells. Materials Science and Engineering C, 2016, 68, 642-650.	3.8	17
Intracortical polyimide electrodes with a bioresorbable coating. Biomedical Microdevices, 2016,	18, 81. 1.4	13
Conducting Polymers: Developments. , 2016, , 1997-2010.		0
A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochrom Devices and Flexible Microelectrodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 33175-3		40
Electrochemical Impedance Spectroscopy at Wellâ€Controlled dc Bias for Nanoporous Platinum Microelectrodes in Rat Embryo Brain. ChemElectroChem, 2016, 3, 2189-2195.	1.7	2
Thin film nanoporous electrodes for the selective catalysis of oxygen in abiotically catalysed micr glucose fuel cells. Journal of Materials Science, 2016, 51, 9095-9107.	ro 1.7	6
Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. Journal of Neural Engineering, 2016, 13, 046019.	1.8	79

664Neural signal processing for closed-loop neuromodulation. Biomedical Engineering Letters, 2016, 6,
113-122.2.12

#

		CITATION REPORT		
#	Article		IF	CITATIONS
665	Feasibility of a chronic, minimally invasive endovascular neural interface. , 2016, 2016, $^{\prime}$	4455-4458.		10
666	Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, and characterization. Biomedical Microdevices, 2016, 18, 97.	fabrication	1.4	43
667	Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Scientific Reports, 2 30961.	2016, 6,	1.6	81
668	Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes 2016, 16, 7731-7738.	:. Nano Letters,	4.5	82
669	Temporal behavior of seizures and interictal bursts in prolonged intracranial recordings epileptic canines. Epilepsia, 2016, 57, 1949-1957.	from	2.6	22
670	Materials and technologies for soft implantable neuroprostheses. Nature Reviews Mate	rials, 2016, 1, .	23.3	485
671	Cytotoxicity of 3Câ \in "SiC Investigated Through Strict Adherence to ISO 10993. , 2016,	, 27-61.		3
672	Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury. Cells Tissues C 202, 6-22.	Drgans, 2016,	1.3	5
673	Flexible graphene transistors for recording cell action potentials. 2D Materials, 2016, 3,	025007.	2.0	53
674	Protein Pretreatment of Microelectrodes Enables in Vivo Electrochemical Measurements Precalibration and Interference-Free from Proteins. Analytical Chemistry, 2016, 88, 723		3.2	58
675	Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-culture Nanoporous Gold Surfaces. Cellular and Molecular Bioengineering, 2016, 9, 433-442.	s on	1.0	16
676	Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes af impedance in vitro and in vivo with no negative effect on reactive gliosis. Journal of Nanobiotechnology, 2016, 14, 3.	fects their	4.2	34
677	CMOS technology: a critical enabler for free-form electronics-based killer applications. ,	2016, , .		0
678	Wireless communication links for brain-machine interface applications. Proceedings of S	SPIE, 2016, , .	0.8	0
679	The Application of Nanotechnology for Implant Drug Release. Advances in Delivery Scier Technology, 2016, , 311-342.	nce and	0.4	0
680	Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and processes in bone marrow-derived mesenchymal stem cells. Colloids and Surfaces B: Bio 2016, 148, 104-115.	anti-fibrotic binterfaces,	2.5	13
681	Multi-odor discrimination by a novel bio-hybrid sensing preserving rat's intact smell perovivo. Sensors and Actuators B: Chemical, 2016, 225, 34-41.	ception in	4.0	8
682	Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural record and Biological Engineering and Computing, 2016, 54, 23-44.	ling. Medical	1.6	123

#	Article	IF	CITATIONS
683	Hydrophobic ion pairing of a minocycline/Ca 2+ /AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release. International Journal of Pharmaceutics, 2016, 499, 351-357.	2.6	41
684	Analysis of the Peak Resistance Frequency Method. IEEE Transactions on Biomedical Engineering, 2016, 63, 2086-2094.	2.5	3
685	Influence of resveratrol release on the tissue response to mechanically adaptive cortical implants. Acta Biomaterialia, 2016, 29, 81-93.	4.1	57
686	A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Biomaterials, 2016, 91, 23-43.	5.7	33
687	Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab on A Chip, 2016, 16, 959-976.	3.1	96
688	Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nature Biotechnology, 2016, 34, 320-327.	9.4	210
689	Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering, 2016, 13, 026003.	1.8	127
690	Brain biocompatibility and microglia response towards engineered self-assembling (RADA)4 nanoscaffolds. Acta Biomaterialia, 2016, 35, 127-137.	4.1	24
691	Long-Term Recording of Single Neurons and Criteria for Assessment. Neuroscience and Behavioral Physiology, 2016, 46, 264-269.	0.2	1
692	Selective Manipulation of Neural Circuits. Neurotherapeutics, 2016, 13, 311-324.	2.1	25
693	Approaches to a cortical vision prosthesis: implications of electrode size and placement. Journal of Neural Engineering, 2016, 13, 025003.	1.8	20
694	Modification of surface/neuron interfaces for neural cell-type specific responses: a review. Biomedical Materials (Bristol), 2016, 11, 014108.	1.7	17
695	Acute changes associated with electrode insertion measured with optical coherence microscopy. , 2016, , .		0
696	Nano-Bioelectronics. Chemical Reviews, 2016, 116, 215-257.	23.0	530
697	An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 177-186.	1.5	23
698	Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT–TFB. Acta Biomaterialia, 2016, 32, 57-67.	4.1	54
699	Microfabricated porous silicon backbone for stable neural interfaces. Materials Letters, 2016, 165, 119-122.	1.3	6
700	Estimation of the Electrode-Fiber Bioelectrical Coupling From Extracellularly Recorded Single Fiber Action Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 951-960.	2.7	8

#	Article	IF	CITATIONS
701	Mechanistic models enable the rational use of <i>in vitro</i> drug-target binding kinetics for better drug effects in patients. Expert Opinion on Drug Discovery, 2016, 11, 45-63.	2.5	27
702	Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils. IEEE Transactions on Biomedical Engineering, 2016, 63, 158-167.	2.5	19
703	Regenerative Electrode Interfaces for Neural Prostheses. Tissue Engineering - Part B: Reviews, 2016, 22, 125-135.	2.5	47
704	Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials, 2017, 122, 114-129.	5.7	132
705	Decoding Local Field Potentials for Neural Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1705-1714.	2.7	52
706	Short-term electrostimulation enhancing neural repair in vitro using large charge capacity nanostructured electrodes. Applied Materials Today, 2017, 6, 29-43.	2.3	17
707	A three dimensional in vitro glial scar model to investigate the local strain effects from micromotion around neural implants. Lab on A Chip, 2017, 17, 795-804.	3.1	32
708	Optimizing inâ€Vitro Impedance and Physicoâ€Chemical Properties of Neural Electrodes by Electrophoretic Deposition of Pt Nanoparticles. ChemPhysChem, 2017, 18, 1108-1117.	1.0	10
709	Photochemical coating of Kapton® with hydrophilic polymers for the improvement of neural implants. Materials Science and Engineering C, 2017, 75, 286-296.	3.8	10
710	Mechanically switchable polymer fibers for sensing in biological conditions. Journal of Biomedical Optics, 2017, 22, 027001.	1.4	3
711	A transfer process to fabricate ultra-compliant neural probes in dissolvable needles. Journal of Micromechanics and Microengineering, 2017, 27, 035008.	1.5	4
712	One-step optogenetics with multifunctional flexible polymer fibers. Nature Neuroscience, 2017, 20, 612-619.	7.1	291
713	Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science, 2017, 355, .	6.0	98
714	Implantable optoelectronic probes for <i>in vivo</i> optogenetics. Journal of Neural Engineering, 2017, 14, 031001.	1.8	39
715	Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels. Journal of Neural Engineering, 2017, 14, 026008.	1.8	16
716	Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Science Advances, 2017, 3, e1601966.	4.7	436
717	Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomaterialia, 2017, 53, 46-58.	4.1	159
718	Various modifications of the intrahippocampal kainate model of mesial temporal lobe epilepsy in rats fail to resolve the marked rat-to-mouse differences in type and frequency of spontaneous seizures in this model. Epilepsy and Behavior, 2017, 68, 129-140.	0.9	16

#	ARTICLE	IF	Citations
719	Organic bioelectronics in medicine. Journal of Internal Medicine, 2017, 282, 24-36.	2.7	35
720	Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes. Advanced Healthcare Materials, 2017, 6, 1601177.	3.9	90
721	Electroconductive polymer-coated silk fiber electrodes for neural recording and stimulation in vivo. Japanese Journal of Applied Physics, 2017, 56, 037001.	0.8	10
722	Analysis of Al ₂ O ₃ —parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays. Journal of Neural Engineering, 2017, 14, 046011.	1.8	24
723	Design and manufacturing challenges of optogenetic neural interfaces: a review. Journal of Neural Engineering, 2017, 14, 041001.	1.8	68
724	Enhanced Control of Cortical Pyramidal Neurons With Micromagnetic Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1375-1386.	2.7	50
725	Physiological properties of brain-machine interface input signals. Journal of Neurophysiology, 2017, 118, 1329-1343.	0.9	38
726	Electro-mechano responsive properties of gelatin methacrylate (GelMA) hydrogel on conducting polymer electrodes quantified using atomic force microscopy. Soft Matter, 2017, 13, 4761-4772.	1.2	15
728	Characterization of Mechanically Matched Hydrogel Coatings to Improve the Biocompatibility of Neural Implants. Scientific Reports, 2017, 7, 1952.	1.6	126
729	Activation of ganglion cells and axon bundles using epiretinal electrical stimulation. Journal of Neurophysiology, 2017, 118, 1457-1471.	0.9	64
730	Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5894-5899.	3.3	181
731	A Housekeeping Prognostic Health Management Framework for Microfluidic Systems. IEEE Transactions on Device and Materials Reliability, 2017, 17, 438-449.	1.5	3
732	Next-generation probes, particles, and proteins for neural interfacing. Science Advances, 2017, 3, e1601649.	4.7	377
733	Emerging Trends in Neuro Engineering and Neural Computation. Series in Bioengineering, 2017, , .	0.3	10
734	Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT. ACS Applied Materials & Interfaces, 2017, 9, 10577-10586.	4.0	47
735	Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiological Reviews, 2017, 97, 767-837.	13.1	409
736	Bioapplications of Electrochemical Sensors and Biosensors. Methods in Enzymology, 2017, 589, 301-350.	0.4	8
737	The intrahippocampal kainate mouse model of mesial temporal lobe epilepsy: Lack of electrographic seizureâ€like events in sham controls. Epilepsia Open, 2017, 2, 180-187.	1.3	32

#	Article	IF	CITATIONS
738	Actively controlled release of Dexamethasone from neural microelectrodes in a chronic inÂvivo study. Biomaterials, 2017, 129, 176-187.	5.7	154
739	Evaluation of the Biocompatibility of Polypyrrole Implanted Subdurally in GAERS. Macromolecular Bioscience, 2017, 17, 1600334.	2.1	16
740	Multifunctional soft implants to monitor and control neural activity in the central and peripheral nervous system: A review. Sensors and Actuators B: Chemical, 2017, 243, 1214-1223.	4.0	60
741	Nanoporous Gold Biointerfaces: Modifying Nanostructure to Control Neural Cell Coverage and Enhance Electrophysiological Recording Performance. Advanced Functional Materials, 2017, 27, 1604631.	7.8	52
742	Neural recording and modulation technologies. Nature Reviews Materials, 2017, 2, .	23.3	414
743	Thinking Small: Progress on Microscale Neurostimulation Technology. Neuromodulation, 2017, 20, 745-752.	0.4	55
744	Recent advances in neural electrode–tissue interfaces. Current Opinion in Biomedical Engineering, 2017, 4, 21-31.	1.8	76
745	Improved long-term stability of thin-film glassy carbon electrodes through the use of silicon carbide and amorphous carbon. , 2017, , .		3
746	Central nervous system microstimulation: Towards selective micro-neuromodulation. Current Opinion in Biomedical Engineering, 2017, 4, 65-77.	1.8	12
747	Extrapolating meaning from local field potential recordings. Journal of Integrative Neuroscience, 2017, 16, 107-126.	0.8	14
748	Precise and Reliable Activation of Cortex with Micro-coils. Springer Briefs in Electrical and Computer Engineering, 2017, , 21-33.	0.3	0
749	Characterization of a Thiol-Ene/Acrylate-Based Polymer for Neuroprosthetic Implants. ACS Omega, 2017, 2, 4604-4611.	1.6	29
750	Conducting Polymer Microcups for Organic Bioelectronics and Drug Delivery Applications. Advanced Materials, 2017, 29, 1702576.	11.1	28
751	Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab on A Chip, 2017, 17, 3331-3337.	3.1	11
753	Intracranial EEG fluctuates over months after implanting electrodes in human brain. Journal of Neural Engineering, 2017, 14, 056011.	1.8	60
755	Microarrays in the Brain. , 2017, , 3-39.		0
756	Feedback-Sensitive and Closed-Loop Solutions. , 2017, , 41-59.		3
757	Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring. Acta Biomaterialia, 2017, 60, 154-166.	4.1	25

	CITATION	REPORT	
#	Article	IF	Citations
758	Automated approach to detecting behavioral states using EEG-DABS. Heliyon, 2017, 3, e00344.	1.4	1
759	Fractal Electrodes as a Generic Interface for Stimulating Neurons. Scientific Reports, 2017, 7, 6717.	1.6	19
760	Design of miniaturized wireless power receivers for mm-sized implants. , 2017, , .		13
761	The circadian profile of epilepsy improves seizure forecasting. Brain, 2017, 140, 2169-2182.	3.7	156
762	Photothermally Triggered Shapeâ€Adaptable 3D Flexible Electronics. Advanced Materials Technologies, 2017, 2, 1700120.	3.0	69
763	Structural Analysis and Protein Functionalization of Electroconductive Polypyrrole Films Modified by Plasma Immersion Ion Implantation. ACS Biomaterials Science and Engineering, 2017, 3, 2247-2258.	2.6	10
764	In vitro study of central nervous system foreign body response towards hydrogel particle modified planar substrate. Journal of Biomedical Materials Research - Part A, 2017, 105, 3242-3250.	2.1	3
765	Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface. Nano Letters, 2017, 17, 5836-5842.	4.5	59
766	Improved 3D Hydrogel Cultures of Primary Glial Cells for In Vitro Modelling of Neuroinflammation. Journal of Visualized Experiments, 2017, , .	0.2	8
767	In vivo characterization of the electrophysiological and astrocytic responses to a silicon neuroprobe implanted in the mouse neocortex. Scientific Reports, 2017, 7, 15642.	1.6	21
768	Scalable Fabrication Framework of Implantable Ultrathin and Flexible Probes with Biodegradable Sacrificial Layers. Nano Letters, 2017, 17, 7315-7322.	4.5	12
769	An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Acta Biomaterialia, 2017, 58, 365-375.	4.1	70
770	Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10046-E10055.	3.3	120
771	Design considerations in development of wireless brain-implantable microsystems. , 2017, , .		0
772	The Biocompatibility of Intracortical Microelectrode Recording Arrays for Brain Machine Interfacing. Series on Bioengineering and Biomedical Engineering, 2017, , 259-299.	0.1	3
773	Stimulation of the Spinal Cord for the Control of Walking. Series on Bioengineering and Biomedical Engineering, 2017, , 811-849.	0.1	5
774	The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy and Behavior, 2017, 73, 214-235.	0.9	54
775	Biocompatibility of a quad-shank neural probe. Solid-State Electronics, 2017, 136, 113-119.	0.8	6

#	Article	IF	Citations
776	Intelligent biohybrid systems for functional brain repair. European Journal of Molecular and Clinical Medicine, 2017, 3, 162.	0.5	9
777	In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Analytical Chemistry, 2017, 89, 276-299.	3.2	62
778	Advances in nanowire bioelectronics. Reports on Progress in Physics, 2017, 80, 016701.	8.1	99
779	Silicon-Integrated High-Density Electrocortical Interfaces. Proceedings of the IEEE, 2017, 105, 11-33.	16.4	68
780	Let There Be Light—Optoprobes for Neural Implants. Proceedings of the IEEE, 2017, 105, 101-138.	16.4	51
781	Reduction of the foreign body response and neuroprotection by apyrase and minocycline in chronic cannula implantation in the rat brain. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 313-323.	0.9	7
782	Design and demonstration of an intracortical probe technology with tunable modulus. Journal of Biomedical Materials Research - Part A, 2017, 105, 159-168.	2.1	52
783	Development of soft computing technique for classification of EEG signal. , 2017, , .		2
784	High-channel-count impedance spectroscopy logger. , 2017, , .		3
786	Enplants: Genomically engineered neural tissue with neuroprosthetic and communications functionality. , 2017, , .		2
787	Tunable nanostructured conducting polymers for neural interface applications. , 2017, 2017, 1881-1884.		9
788	PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording. Biomedical Microdevices, 2017, 19, 75.	1.4	11
789	1.29 Electroactive Polymeric Biomaterials â~†. , 2017, , 664-687.		1
790	Advancing coil design in micromagnetic brain stimulation. , 2017, , .		2
791	A neural recording amplifier based on adaptive SNR optimization technique for long-term implantation. , 2017, , .		2
792	Micro/nano-scale needle devices for the brain. , 2017, , .		0
793	An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth. Micro and Nano Systems Letters, 2017, 5, .	1.7	9
794	Microfluidic drive for flexible brain implants. Current Directions in Biomedical Engineering, 2017, 3, 675-678.	0.2	3

#	Article	IF	CITATIONS
795	Mechanical Contact Characteristics of PC3 Human Prostate Cancer Cells on Complex-Shaped Silicon Micropillars. Materials, 2017, 10, 892.	1.3	6
796	Progress in Research of Flexible MEMS Microelectrodes for Neural Interface. Micromachines, 2017, 8, 281.	1.4	18
797	Invasive Intraneural Interfaces: Foreign Body Reaction Issues. Frontiers in Neuroscience, 2017, 11, 497.	1.4	81
798	Visual Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision. Frontiers in Neuroscience, 2017, 11, 620.	1.4	44
799	Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics. Frontiers in Neuroscience, 2017, 11, 665.	1.4	125
800	7.32 Engineering the Neural Interface. , 2017, , 642-660.		4
801	4.32 Gene Editing Tools. , 2017, , 589-599.		0
802	Fabrication of all-silicon carbide neural interfaces. , 2017, , .		0
803	Comparison of the in-vivo neural recording quality of floating and skull-fixed silicon probes. , 2017, , .		3
804	Electrical analysis of minocycline eluting layer-by-layer thin-films from functional micro-electrode arrays. , 2017, , .		3
805	Strain Effects on Expression of Seizures and Epilepsy. , 2017, , 21-38.		3
806	Flexible and Organic Neural Interfaces: A Review. Applied Sciences (Switzerland), 2017, 7, 1292.	1.3	42
807	Targeting CD14 on blood derived cells improves intracortical microelectrode performance. Biomaterials, 2018, 163, 163-173.	5.7	47
808	Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. Journal of Micromechanics and Microengineering, 2018, 28, 065009.	1.5	27
809	Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials, 2018, 164, 1-10.	5.7	59
810	Talking to Cells: Semiconductor Nanomaterials at the Cellular Interface. Advanced Biology, 2018, 2, 1700242.	3.0	16
811	Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording. Nano Research, 2018, 11, 5604-5614.	5.8	26
812	Evaluating the <i>in vivo</i> glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion. Journal of Neural Engineering, 2018, 15, 036002.	1.8	21

#	Article	IF	CITATIONS
813	Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Biomedizinische Technik, 2018, 63, 301-315.	0.9	20
814	Biofunctionalized platforms towards long-term neural interface. Current Opinion in Biomedical Engineering, 2018, 6, 81-91.	1.8	8
815	Brain Tissue Responses to Guide Cannula Insertion and Replacement of a Microrecording Electrode with a Definitive DBS Electrode. Journal of Medical and Biological Engineering, 2018, 38, 573-586.	1.0	2
816	Design and Applications of Cell-Selective Surfaces and Interfaces. Biomacromolecules, 2018, 19, 1746-1763.	2.6	35
817	Deep Brain Stimulation associated gliosis: A post-mortem study. Parkinsonism and Related Disorders, 2018, 54, 51-55.	1.1	20
818	Enhancing surface immobilization of bioactive molecules <i>via</i> a silica nanoparticle based coating. Journal of Materials Chemistry B, 2018, 6, 3058-3067.	2.9	17
819	Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosensors and Bioelectronics, 2018, 105, 109-115.	5.3	7
820	Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance. Journal of Neural Engineering, 2018, 15, 025002.	1.8	31
821	A High-Voltage-Tolerant and Power-Efficient Stimulator With Adaptive Power Supply Realized in Low-Voltage CMOS Process for Implantable Biomedical Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 178-186.	2.7	27
822	Advancing the neurocomputer. Neurocomputing, 2018, 284, 36-51.	3.5	3
823	Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues. Accounts of Chemical Research, 2018, 51, 309-318.	7.6	68
824	Optical And Microwave Technologies. Lecture Notes in Electrical Engineering, 2018, , .	0.3	0
825	Integrated biocircuits: engineering functional multicellular circuits and devices. Journal of Neural Engineering, 2018, 15, 023001.	1.8	8
826	Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields. Journal of Neural Engineering, 2018, 15, 026003.	1.8	28
827	Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding. Hearing Research, 2018, 360, 107-123.	0.9	28
828	Implantable, wireless device platforms for neuroscience research. Current Opinion in Neurobiology, 2018, 50, 42-49.	2.0	104
829	Nanomaterials at the neural interface. Current Opinion in Neurobiology, 2018, 50, 50-55.	2.0	49
830	Development and Characterization of a Sucrose Microneedle Neural Electrode Delivery System. Advanced Biology, 2018, 2, 1700187.	3.0	25

	Chano	N KEPOKI	
#	Article	IF	Citations
831	A Mosquito Inspired Strategy to Implant Microprobes into the Brain. Scientific Reports, 2018, 8, 122.	1.6	67
832	Online Artifact Cancelation in Same-Electrode Neural Stimulation and Recording Using a Combined Hardware and Software Architecture. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 601-613.	2.7	19
833	Nanofabricated Ultraflexible Electrode Arrays for Highâ€Đensity Intracortical Recording. Advanced Science, 2018, 5, 1700625.	5.6	109
834	Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry, 2018, 57, 3995-4004.	1.2	33
835	Fabrication of High Aspect Ratio Millimeter-Tall Free-Standing Carbon Nanotube-Based Microelectrode Arrays. ACS Biomaterials Science and Engineering, 2018, 4, 1900-1907.	2.6	16
836	Exploiting interfacial phenomena in organic bioelectronics: Conformable devices for bidirectional communication with living systems. Colloids and Surfaces B: Biointerfaces, 2018, 168, 143-147.	2.5	5
837	The Microbead: A Highly Miniaturized Wirelessly Powered Implantable Neural Stimulating System. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 521-531.	2.7	52
838	Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1887-1895.	2.1	23
839	Flexible microelectrode array for interfacing with the surface of neural ganglia. Journal of Neural Engineering, 2018, 15, 036027.	1.8	28
840	Nanostructures to Engineer 3D Neuralâ€Interfaces: Directing Axonal Navigation toward Successful Bridging of Spinal Segments. Advanced Functional Materials, 2018, 28, 1700550.	7.8	26
841	Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring. Advanced Functional Materials, 2018, 28, 1700232.	7.8	97
842	A Materials Roadmap to Functional Neural Interface Design. Advanced Functional Materials, 2018, 28, 1701269.	7.8	266
843	Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application. Biosensors and Bioelectronics, 2018, 99, 99-107.	5.3	31
844	Organic Electrodes and Communications with Excitable Cells. Advanced Functional Materials, 2018, 28, 1700587.	7.8	43
845	Time course study of longâ€ŧerm biocompatibility and foreign body reaction to intraneural polyimideâ€based implants. Journal of Biomedical Materials Research - Part A, 2018, 106, 746-757.	2.1	43
846	Acutein vivotesting of a conformal polymer microelectrode array for multi-region hippocampal recordings. Journal of Neural Engineering, 2018, 15, 016017.	1.8	30
847	Neural electrode resilience against dielectric damage may be improved by use of highly doped silicon as a conductive material. Journal of Neuroscience Methods, 2018, 293, 210-225.	1.3	20
848	Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording. Journal of Neural Engineering, 2018, 15, 016007.	1.8	63

#	Article	IF	CITATIONS
849	Engineered Axonal Tracts as "Living Electrodes―for Synapticâ€Based Modulation of Neural Circuitry. Advanced Functional Materials, 2018, 28, 1701183.	7.8	36
850	Carbon fiber on polyimide ultra-microelectrodes. Journal of Neural Engineering, 2018, 15, 016010.	1.8	50
851	A Dualâ€Layered Microfluidic System for Longâ€Term Controlled In Situ Delivery of Multiple Antiâ€Inflammatory Factors for Chronic Neural Applications. Advanced Functional Materials, 2018, 28, 1702009.	7.8	25
852	Living Bioelectronics: Strategies for Developing an Effective Longâ€Term Implant with Functional Neural Connections. Advanced Functional Materials, 2018, 28, 1702969.	7.8	60
853	A review on mechanical considerations for chronically-implanted neural probes. Journal of Neural Engineering, 2018, 15, 031001.	1.8	139
854	Biotolerability of Intracortical Microelectrodes. Advanced Biology, 2018, 2, 1700115.	3.0	7
855	CMOS Circuits for Biological Sensing and Processing. , 2018, , .		2
856	Photonic Interaction with the Nervous System. , 2018, , 233-258.		2
857	Tissue–electronics interfaces: from implantable devices to engineered tissues. Nature Reviews Materials, 2018, 3, .	23.3	372
858	Electronic and Ionic Materials for Neurointerfaces. Advanced Functional Materials, 2018, 28, 1704335.	7.8	63
859	Brain Granuloma: Rare Complication of a Retained Catheter. World Neurosurgery, 2018, 110, 210-216.	0.7	7
860	Implantable computer-controlled adaptive multielectrode positioning system. Journal of Neurophysiology, 2018, 119, 1471-1484.	0.9	5
861	Changes in the electrocorticogram after implantation of intracranial electrodes in humans: The implant effect. Clinical Neurophysiology, 2018, 129, 676-686.	0.7	38
862	The Neuroinflammatory Response to Nanopatterning Parallel Grooves into the Surface Structure of Intracortical Microelectrodes. Advanced Functional Materials, 2018, 28, 1704420.	7.8	39
863	Analysis and Critical Parameter Extraction of an LED for Brain Implants. Lecture Notes in Electrical Engineering, 2018, , 113-123.	0.3	1
864	Specific Nanoporous Geometries on Anodized Alumina Surfaces Influence Astrocyte Adhesion and Glial Fibrillary Acidic Protein Immunoreactivity Levels. ACS Biomaterials Science and Engineering, 2018, 4, 128-141.	2.6	13
865	Fluidic Microactuation of Flexible Electrodes for Neural Recording. Nano Letters, 2018, 18, 326-335.	4.5	84
866	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45

#	Article	IF	CITATIONS
867	Conducting polymers for neuronal microelectrode array recording and stimulation. Sensors and Actuators B: Chemical, 2018, 257, 753-765.	4.0	72
868	Incorporation of Silicon Carbide and Diamond‣ike Carbon as Adhesion Promoters Improves In Vitro and In Vivo Stability of Thinâ€Film Glassy Carbon Electrocorticography Arrays. Advanced Biology, 2018, 2, 1700081.	3.0	24
869	Porous membranes based on poly(ether imide)-graft-poly(vinyl acetate) as a scaffold for cell growth. Journal of Bioactive and Compatible Polymers, 2018, 33, 178-194.	0.8	2
870	Nanostructured Materials for Neural Electrical Interfaces. Advanced Functional Materials, 2018, 28, 1701145.	7.8	50
871	Neural Electrodes Based on 3D Organic Electroactive Microfibers. Advanced Functional Materials, 2018, 28, 1700927.	7.8	15
872	Long-Term Surface Electrode Impedance Recordings Associated with Gliosis for a Closed-Loop Neurostimulation Device. Annals of Neurosciences, 2018, 25, 289-298.	0.9	15
873	Pt-grown carbon nanofibers for enzymatic glutamate biosensors and assessment of their biocompatibility. RSC Advances, 2018, 8, 35802-35812.	1.7	22
874	Controlling the Biocompatibility and Mechanical Effects of Implantable Microelectrodes to Improve Chronic Neural Recordings in the Auditory Nervous System. , 0, , .		2
875	3D Expandable Microwire Electrode Arrays Made of Programmable Shape Memory Materials. , 2018, , .		1
876	Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Critical Reviews in Biomedical Engineering, 2018, 46, 341-367.	0.5	18
877	Silicon Valley new focus on brain computer interface: hype or hope for new applications?. F1000Research, 2018, 7, 1327.	0.8	9
878	Experimental factors effecting stability of Electrochemical Impedance Spectroscopy Measurements. , 2018, 2018, 2949-2952.		1
879	Achieving Ultra-Conformability With Polyimide-Based ECoG Arrays. , 2018, 2018, 4464-4467.		8
880	A Meta-Analysis of Intracortical Device Stiffness and Its Correlation with Histological Outcomes. Micromachines, 2018, 9, 443.	1.4	47
881	A Mechanically-Adaptive Polymer Nanocomposite-Based Intracortical Probe and Package for Chronic Neural Recording. Micromachines, 2018, 9, 583.	1.4	24
882	Neural interfaces based on amorphous silicon carbide ultramicroelectrode arrays. Bioelectronics in Medicine, 2018, 1, 185-200.	2.0	8
883	Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes. Frontiers in Neuroscience, 2018, 12, 772.	1.4	17
884	Recent Progress on Microelectrodes in Neural Interfaces. Materials, 2018, 11, 1995.	1.3	86

#	Article	IF	CITATIONS
885	Prospects for a Robust Cortical Recording Interface. , 2018, , 393-413.		1
886	Invasive Brain-Computer Interfaces and Neural Recordings From Humans. Handbook of Behavioral Neuroscience, 2018, 28, 527-539.	0.7	7
887	Brain–Computer Interfaces: Neurophysiological Bases and Clinical Applications. Neuroscience and Behavioral Physiology, 2018, 48, 1033-1040.	0.2	7
888	Electrophysiological Correlates of Blast-Wave Induced Cerebellar Injury. Scientific Reports, 2018, 8, 13633.	1.6	6
889	Motor Neuroprostheses. , 2018, 9, 127-148.		6
890	In Situ Measurement of Stimulus Induced pH Changes Using ThinFilm Embedded IrOx pH Electrodes. , 2018, 2018, 5049-5052.		3
891	Characterizing Longitudinal Changes in the Impedance Spectra of In-Vivo Peripheral Nerve Electrodes. Micromachines, 2018, 9, 587.	1.4	26
892	Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nature Biomedical Engineering, 2018, 2, 907-914.	11.6	77
893	Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays. Micromachines, 2018, 9, 500.	1.4	47
894	Chronically Implanted Intracranial Electrodes: Tissue Reaction and Electrical Changes. Micromachines, 2018, 9, 430.	1.4	92
895	Planar coil-based contact-mode magnetic stimulation: synaptic responses in hippocampal slices and thermal considerations. Scientific Reports, 2018, 8, 13423.	1.6	3
896	Recording Day and Night: Advice for New Investigators in the Sleep and Memory Field. Handbook of Behavioral Neuroscience, 2018, , 43-62.	0.7	2
897	Long-term recording reliability of liquid crystal polymer <i>µ</i> ECoG arrays. Journal of Neural Engineering, 2018, 15, 066024.	1.8	44
898	Ethical Issues Surrounding a New Generation of Neuroprostheses for Patients With Spinal Cord Injuries. PM and R, 2018, 10, S244-S248.	0.9	1
899	Graphitic Carbon Electrodes on Flexible Substrate for Neural Applications Entirely Fabricated Using Infrared Nanosecond Laser Technology. Scientific Reports, 2018, 8, 14749.	1.6	24
900	Voltaglue Bioadhesives Energized with Interdigitated 3Dâ€Graphene Electrodes. Advanced Healthcare Materials, 2018, 7, e1800538.	3.9	27
901	Automated quantification of EEG spikes and spike clusters as a new read out in Theiler's virus mouse model of encephalitis-induced epilepsy. Epilepsy and Behavior, 2018, 88, 189-204.	0.9	20
902	Demonstration of a Robust All-Silicon-Carbide Intracortical Neural Interface. Micromachines, 2018, 9, 412.	1.4	24

#	Article	IF	CITATIONS
903	A guide towards long-term functional electrodes interfacing neuronal tissue. Journal of Neural Engineering, 2018, 15, 061001.	1.8	44
904	Two-Dimensional Ti ₃ C ₂ MXene for High-Resolution Neural Interfaces. ACS Nano, 2018, 12, 10419-10429.	7.3	173
905	A 0.13- <inline-formula> <tex-math notation="LaTeX">\$muext{m}\$ </tex-math> </inline-formula> CMOS SoC for Simultaneous Multichannel Optogenetics and Neural Recording. IEEE Journal of Solid-State Circuits, 2018, 53, 3087-3100.	3.5	44
906	The Role of Toll-Like Receptor 2 and 4 Innate Immunity Pathways in Intracortical Microelectrode-Induced Neuroinflammation. Frontiers in Bioengineering and Biotechnology, 2018, 6, 113.	2.0	18
907	A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain–Machine Interfaces: W-HERBS. Frontiers in Neuroscience, 2018, 12, 511.	1.4	34
908	The determining role of nanoscale mechanical twinning on cellular functions of nanostructured materials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 185-195.	1.5	10
909	Biochemically Controlled Release of Dexamethasone Covalently Bound to PEDOT. Chemistry - A European Journal, 2018, 24, 10300-10305.	1.7	19
910	Wireless opto-electro neural interface for experiments with small freely behaving animals. Journal of Neural Engineering, 2018, 15, 046032.	1.8	39
911	Cognitive safety of intracranial electrodes for epilepsy. Epilepsia, 2018, 59, 1132-1137.	2.6	3
912	Intermittent convection-enhanced delivery of GDNF into rhesus monkey putamen: absence of local or cerebellar toxicity. Archives of Toxicology, 2018, 92, 2353-2367.	1.9	17
913	Simulations of hydrogel-coated neural microelectrodes to assess biocompatibility improvement using strain as a metric for micromotion. Biomedical Physics and Engineering Express, 2018, 4, 035036.	0.6	12
914	Modified device for fluid percussion injury in rodents. Journal of Neuroscience Research, 2018, 96, 1412-1429.	1.3	10
915	Printed microelectrode arrays on soft materials: from PDMS to hydrogels. Npj Flexible Electronics, 2018, 2, .	5.1	95
916	A wearable system for olfactory electrophysiological recording and animal motion control. Journal of Neuroscience Methods, 2018, 307, 221-229.	1.3	6
917	Prostheses as extensions of the body: Progress and challenges. Neuroscience and Biobehavioral Reviews, 2018, 92, 1-6.	2.9	43
918	The development of neural stimulators: a review of preclinical safety and efficacy studies. Journal of Neural Engineering, 2018, 15, 041004.	1.8	48
919	Multifunctional Neural Interfaces for Closed‣oop Control of Neural Activity. Advanced Functional Materials, 2018, 28, 1703523.	7.8	22
920	Long-term evaluation and feasibility study of the insulated screw electrode for ECoG recording. Journal of Neuroscience Methods, 2018, 308, 261-268.	1.3	5

	CITATION	Report	
#	Article	IF	CITATIONS
921	Electrodeposited Iridium Oxide on Carbon Fiber Ultramicroelectrodes for Neural Recording and Stimulation. Journal of the Electrochemical Society, 2018, 165, D375-D380.	1.3	25
922	Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomedical Optics Express, 2018, 9, 1492.	1.5	132
923	The Safe Delivery of Electrical Currents and Neuromodulation. , 2018, , 83-94.		5
924	Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex. Journal of Neurophysiology, 2018, 120, 2083-2090.	0.9	46
925	Nano-Architectural Approaches for Improved Intracortical Interface Technologies. Frontiers in Neuroscience, 2018, 12, 456.	1.4	36
926	Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology. Journal of Visualized Experiments, 2018, , .	0.2	22
927	Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders. Frontiers in Neuroscience, 2018, 12, 153.	1.4	8
928	Modeling the Improved Visual Acuity Using Photodiode Based Retinal Implants Featuring Fractal Electrodes. Frontiers in Neuroscience, 2018, 12, 277.	1.4	12
929	The Potential of Cognitive Neuroimaging: A Way Forward to the Mind-Machine Interface. Journal of Imaging, 2018, 4, 70.	1.7	9
930	Silicon-Based Microfabrication of Free-Floating Neural Probes and Insertion Tool for Chronic Applications. Micromachines, 2018, 9, 131.	1.4	12
931	A Microfluidic Platform to Study Astrocyte Adhesion on Nanoporous Gold Thin Films. Nanomaterials, 2018, 8, 452.	1.9	9
932	Melatonin improves quality and longevity of chronic neural recording. Biomaterials, 2018, 180, 225-239.	5.7	65
933	Deep brain stimulation foundations and future trends. Frontiers in Bioscience - Landmark, 2018, 23, 162-182.	3.0	94
934	Nano functional neural interfaces. Nano Research, 2018, 11, 5065-5106.	5.8	23
935	Optogenetics Dissection of Sleep Circuits and Functions. , 2018, , 535-564.		0
936	Implantation of Neural Probes in the Brain Elicits Oxidative Stress. Frontiers in Bioengineering and Biotechnology, 2018, 6, 9.	2.0	74
937	Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes. Frontiers in Bioengineering and Biotechnology, 2018, 6, 26.	2.0	22
938	Feasibility of Nitrogen Doped Ultrananocrystalline Diamond Microelectrodes for Electrophysiological Recording From Neural Tissue. Frontiers in Bioengineering and Biotechnology, 2018, 6, 85.	2.0	8

#	Article	IF	CITATIONS
939	The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials, 2018, 183, 200-217.	5.7	30
940	Organic Bioelectronics: Materials and Biocompatibility. International Journal of Molecular Sciences, 2018, 19, 2382.	1.8	102
941	Review: Biomaterial systems to resolve brain inflammation after traumatic injury. APL Bioengineering, 2018, 2, 021502.	3.3	24
942	High-density microfibers as a potential optical interface to reach deep brain regions. Journal of Neural Engineering, 2018, 15, 066002.	1.8	7
943	Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4â€Ethylenedioxythiophene):Pâ€Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography. Small, 2018, 14, e1800863.	5.2	29
944	Electrical stimulation of the midbrain excites the auditory cortex asymmetrically. Brain Stimulation, 2018, 11, 1161-1174.	0.7	7
945	Low-Impedance, High Surface Area Pt-Ir Electrodeposited on Cochlear Implant Electrodes. Journal of the Electrochemical Society, 2018, 165, G3015-G3017.	1.3	23
946	Neurophysiological Assessment of Huntington's Disease Model Mice. Methods in Molecular Biology, 2018, 1780, 163-177.	0.4	3
947	Behavioral Impact of Long-Term Chronic Implantation of Neural Recording Devices in the Rhesus Macaque. Neuromodulation, 2019, 22, 435-440.	0.4	6
948	Environmental Dynamic Mechanical Analysis to Predict the Softening Behavior of Neural Implants. Journal of Visualized Experiments, 2019, , .	0.2	4
949	Tunable magnetic skyrmions in spintronic nanostructures for cellular-level magnetic neurostimulation. Journal Physics D: Applied Physics, 2019, 52, 465002.	1.3	8
950	Photoelectric Dye-Coupled Polyethylene Film: Photoresponsive Properties Evaluated by Kelvin Probe and <i>In Vitro</i> Biological Response Detected in Dystrophic Retinal Tissue of Rats. Advanced Biomedical Engineering, 2019, 8, 137-144.	0.4	6
951	Developing Next-Generation Brain Sensing Technologies—A Review. IEEE Sensors Journal, 2019, 19, 10163-10175.	2.4	26
952	A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1724-1731.	2.7	13
953	Removing the need for invasive brain surgery: the potential of stent electrodes. Bioelectronics in Medicine, 2019, 2, 9-11.	2.0	3
954	Single-cell micro- and nano-photonic technologies. Journal of Neuroscience Methods, 2019, 325, 108355.	1.3	5
955	Quantitative synchrotron X-ray tomography of the material-tissue interface in rat cortex implanted with neural probes. Scientific Reports, 2019, 9, 7646.	1.6	12
956	Strategies for neural control of prosthetic limbs: from electrode interfacing to 3D printing. Materials, 2019, 12, 1927.	1.3	12

#	Article	IF	CITATIONS
957	Biological Considerations of Optical Interfaces for Neuromodulation. Advanced Optical Materials, 2019, 7, 1900385.	3.6	18
958	In-Vitro and In-Vivo Longevity Evaluation of Free-Floating Intracortical Silicon-Stiffened Neural Probes. , 2019, , .		2
959	Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Frontiers in Neuroscience, 2019, 13, 689.	1.4	96
960	Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Frontiers in Systems Neuroscience, 2019, 13, 26.	1.2	25
961	Nano-scale transistors for interfacing with brain: design criteria, progress and prospect. Nanotechnology, 2019, 30, 442001.	1.3	5
962	Neuromodulation with electromagnetic stimulation for seizure suppression: From electrode to magnetic coil. IBRO Reports, 2019, 7, 26-33.	0.3	19
963	Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces. Frontiers in Neuroscience, 2019, 13, 493.	1.4	55
964	A multichannel magnetic stimulation system using submillimeter-sized coils: system development and experimental application to rodent brain <i>in vivo</i> . Journal of Neural Engineering, 2019, 16, 066014.	1.8	19
965	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	936
966	Open Hardware for neuro-prosthesis research: A study about a closed-loop multi-channel system for electrical surface stimulations and measurements. HardwareX, 2019, 6, e00078.	1.1	6
967	Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings. Nano Letters, 2019, 19, 8032-8039.	4.5	24
968	Implantable and Flexible Electronics for In vivo Brain Activity Recordings. Chinese Journal of Analytical Chemistry, 2019, 47, 1549-1558.	0.9	10
969	Optimisation of bioimpedance measurements of neuronal activity with an ex vivo preparation of Cancer pagurus peripheral nerves. Journal of Neuroscience Methods, 2019, 327, 108322.	1.3	6
970	Enhancing VAEs for collaborative filtering. , 2019, , .		24
971	Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 2019, 1, 22.	1.7	44
972	Chronic stability of local field potentials from standard and modified Blackrock microelectrode arrays implanted in the rat motor cortex. Biomedical Physics and Engineering Express, 2019, 5, 065017.	0.6	4
973	Hydrogel-actuated carbon fiber neural probe. , 2019, , .		0
974	Longitudinal Functional Assessment of Brain Injury Induced by High-Intensity Ultrasound Pulse Sequences. Scientific Reports, 2019, 9, 15518.	1.6	4

#	Article	IF	CITATIONS
975	Thermoset Polymers for Bioelectronic Interfaces - Engineering of Thermomechanical Properties. , 2019, , .		1
976	Sewing Bioprobe., 2019,,.		0
977	<i>In Vivo</i> Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sensors, 2019, 4, 3102-3118.	4.0	107
978	A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Advanced Healthcare Materials, 2019, 8, e1900558.	3.9	58
979	A Multi-Channel Asynchronous Neurostimulator With Artifact Suppression for Neural Code-Based Stimulations. Frontiers in Neuroscience, 2019, 13, 1011.	1.4	8
980	Core/Shell Piezoelectric Nanofibers with Spatial Self-Orientated β-Phase Nanocrystals for Real-Time Micropressure Monitoring of Cardiovascular Walls. ACS Nano, 2019, 13, 10062-10073.	7.3	66
981	Simultaneous impedance measurements of the Utah electrodes array : A finite element method analysis. , 2019, , .		0
982	Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy, 2019, 65, 104039.	8.2	101
983	Online Recognition of the Mental States of Drivers with an fNIRS-Based Brain-Computer Interface Using Deep Neural Network. , 2019, , .		5
984	Method for spike detection from microelectrode array recordings contaminated by artifacts of simultaneous two-photon imaging. PLoS ONE, 2019, 14, e0221510.	1.1	3
985	The Microbead: A 0.009 mm ³ Implantable Wireless Neural Stimulator. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 971-985.	2.7	87
986	Precision electronic medicine in the brain. Nature Biotechnology, 2019, 37, 1007-1012.	9.4	62
987	Spin–Orbit Torque and Spin Hall Effect-Based Cellular Level Therapeutic Spintronic Neuromodulator: A Simulation Study. Journal of Physical Chemistry C, 2019, 123, 24963-24972.	1.5	7
988	A superoxide scavenging coating for improving tissue response to neural implants. Acta Biomaterialia, 2019, 99, 72-83.	4.1	21
989	Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials, 2019, 225, 119519.	5.7	83
990	Considerations for hydrogel applications to neural bioelectronics. Journal of Materials Chemistry B, 2019, 7, 1625-1636.	2.9	54
991	Progress in the Field of Micro-Electrocorticography. Micromachines, 2019, 10, 62.	1.4	34
992	Conductive elastomer composites for fully polymeric, flexible bioelectronics. Biomaterials Science, 2019, 7, 1372-1385.	2.6	57

#	Article	IF	CITATIONS
993	Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. Small, 2019, 15, e1805453.	5.2	53
994	Single-channel opto-neurostimulators: a review. Journal of Micromechanics and Microengineering, 2019, 29, 043001.	1.5	6
995	Astrocytic Response to Acutely- and Chronically-Implanted Microelectrode Arrays in the Marmoset (Callithrix jacchus) Brain. Brain Sciences, 2019, 9, 19.	1.1	5
996	Robust Induced Presynapse on Artificial Substrates as a Neural Interfacing Method. ACS Applied Materials & amp; Interfaces, 2019, 11, 7764-7773.	4.0	3
997	A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain. Journal of Neural Engineering, 2019, 16, 066021.	1.8	37
998	Micro/Nano Technologies for High-Density Retinal Implant. Micromachines, 2019, 10, 419.	1.4	26
999	Steerable Microinvasive Probes for Localized Drug Delivery to Deep Tissue. Small, 2019, 15, e1901459.	5.2	17
1000	Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum, 2019, 18, 1064-1097.	1.4	120
1001	Comparing the effects of uncoated nanostructured surfaces on primary neurons and astrocytes. Journal of Biomedical Materials Research - Part A, 2019, 107, 2350-2359.	2.1	8
1002	In vivo Recording Quality of Mechanically Decoupled Floating Versus Skull-Fixed Silicon-Based Neural Probes. Frontiers in Neuroscience, 2019, 13, 464.	1.4	13
1004	Prediction of Forelimb EMGs and Movement Phases from Corticospinal Signals in the Rat During the Reach-to-Pull Task. International Journal of Neural Systems, 2019, 29, 1950009.	3.2	5
1005	Bioactive Neuroelectronic Interfaces. Frontiers in Neuroscience, 2019, 13, 269.	1.4	26
1006	Tuning drug delivery from conducting polymer films for accurately controlled release of charged molecules. Journal of Controlled Release, 2019, 304, 173-180.	4.8	35
1007	Advanced One- and Two-Dimensional Mesh Designs for Injectable Electronics. Nano Letters, 2019, 19, 4180-4187.	4.5	23
1008	Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches. Nano Letters, 2019, 19, 2741-2749.	4.5	59
1009	The impact of modulating the blood–brain barrier on the electrophysiological and histological outcomes of intracortical electrodes. Journal of Neural Engineering, 2019, 16, 046005.	1.8	6
1010	Precise Tubular Braid Structures of Ultrafine Microwires as Neural Probes: Significantly Reduced Chronic Immune Response and Greater Local Neural Survival in Rat Cortex. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 846-856.	2.7	4
1011	Highly Conductive, Stretchable, and Cellâ€Adhesive Hydrogel by Nanoclay Doping. Small, 2019, 15, e1901406.	5.2	62

#	Article	IF	CITATIONS
1012	An Actuated Neural Probe Architecture for Reducing Gliosis-Induced Recording Degradation. IEEE Transactions on Nanobioscience, 2019, 18, 220-225.	2.2	8
1013	Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 2019, 20, 330-345.	4.9	436
1014	Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. Sensors, 2019, 19, 1069.	2.1	19
1015	Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. Advanced Healthcare Materials, 2019, 8, e1801488.	3.9	71
1016	Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays. Biomaterials, 2019, 205, 120-132.	5.7	47
1017	Elastocapillary self-assembled neurotassels for stable neural activity recordings. Science Advances, 2019, 5, eaav2842.	4.7	142
1018	Dextran as a Resorbable Coating Material for Flexible Neural Probes. Micromachines, 2019, 10, 61.	1.4	22
1019	Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording. Journal of Korean Medical Science, 2019, 34, e24.	1.1	12
1020	EEG-Based Brain-Computer Interfacing (BCI). , 2019, , 21-71.		13
1021	<i>In Vivo</i> Models for the Study of Fibrosis. Advances in Wound Care, 2019, 8, 645-654.	2.6	27
1022	Enhanced spinal cord microstimulation using conducting polymer-coated carbon microfibers. Acta Biomaterialia, 2019, 90, 71-86.	4.1	22
1023	Longâ€Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core–Shell Nanowires. Advanced Healthcare Materials, 2019, 8, e1900130.	3.9	52
1024	Volitional control of single-electrode high gamma local field potentials by people with paralysis. Journal of Neurophysiology, 2019, 121, 1428-1450.	0.9	12
1025	Soft and MRI Compatible Neural Electrodes from Carbon Nanotube Fibers. Nano Letters, 2019, 19, 1577-1586.	4.5	87
1026	Optimizing the Yield of Multi-Unit Activity by Including the Entire Spiking Activity. Frontiers in Neuroscience, 2019, 13, 83.	1.4	21
1027	Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. Journal of Neural Engineering, 2019, 16, 035001.	1.8	83
1028	Human Brain/Cloud Interface. Frontiers in Neuroscience, 2019, 13, 112.	1.4	47
1029	Bioinspired neuron-like electronics. Nature Materials, 2019, 18, 510-517.	13.3	277

#	Article	IF	CITATIONS
1030	Flexible fiber-based optoelectronics for neural interfaces. Chemical Society Reviews, 2019, 48, 1826-1852.	18.7	100
1031	Processing and patterning of conducting polymers for flexible, stretchable, and biomedical electronics. , 2019, , 817-842.		10
1032	Brain-computer interfaces and education: the state of technology and imperatives for the future. International Journal of Learning Technology, 2019, 14, 141.	0.2	9
1033	Elastrographic assessment of micromotion-induced strain in tissue adjacent to intracortical implants in rat. , 2019, , .		2
1034	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144.		0
1035	An Improved in vitro Model of Cortical Tissue. Frontiers in Neuroscience, 2019, 13, 1349.	1.4	8
1036	Electrochemical Characterization and Surface Analysis of Activated Glassy Carbon Neural Electrodes. , 2019, 2019, 3923-3926.		2
1037	Floating 5-νm-Diameter Needle for Low Invasive Chronic Recording. , 2019, , .		2
1038	Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Advanced Healthcare Materials, 2019, 8, e1801345.	3.9	32
1039	Covalent Epitope Decoration of Carbon Electrodes using Solid Phase Peptide Synthesis. Scientific Reports, 2019, 9, 17805.	1.6	2
1040	Electrochemical Stability of Thin-Film Platinum as Suitable Material for Neural Stimulation Electrodes. , 2019, 2019, 3762-3765.		2
1041	Introduction to ECoG interfaces. , 2019, , 1-30.		0
1042	Phantom limb pain: peripheral neuromodulatory and neuroprosthetic approaches to treatment. Muscle and Nerve, 2019, 59, 154-167.	1.0	23
1043	Multilayer 3D electrodes for neural implants. Journal of Neural Engineering, 2019, 16, 026013.	1.8	18
1044	Chronic neural recording with probes of subcellular cross-section using 0.06 mm \hat{A}^2 dissolving microneedles as insertion device. Sensors and Actuators B: Chemical, 2019, 284, 369-376.	4.0	20
1045	From softening polymers to multimaterial based bioelectronic devices. Multifunctional Materials, 2019, 2, 012001.	2.4	28
1046	Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomaterialia, 2019, 83, 13-28.	4.1	40
1047	Carbon monofilament electrodes for unit recording and functional MRI in same subjects. NeuroImage, 2019, 186, 806-816.	2.1	14

#	Article		CITATIONS
1048	Anisotropic etching in (3 1 1) Si to fabricate sharp resorbable polymer microneedles carrying neural electrode arrays. Journal of Micromechanics and Microengineering, 2019, 29, 027001.	1.5	5
1049	A high-density carbon fiber neural recording array technology. Journal of Neural Engineering, 2019, 16, 016024.	1.8	42
1050	A Magnetically Assembled Highâ€Aspectâ€Ratio Needle Electrode for Recording Neuronal Activity. Advanced Healthcare Materials, 2019, 8, e1801081.	3.9	3
1051	Minimally Invasive & Longâ€lasting Neural Probes from a Materials Perspective. Electroanalysis, 2019, 31, 586-602.	1.5	7
1052	Neurologic Medical Device Overview for Pathologists. Toxicologic Pathology, 2019, 47, 250-263.	0.9	4
1053	Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials, 2019, 188, 144-159.	5.7	51
1054	Micro-Coil Design Influences the Spatial Extent of Responses to Intracortical Magnetic Stimulation. IEEE Transactions on Biomedical Engineering, 2019, 66, 1680-1694.	2.5	27
1055	Biophysical Modeling for Brain Tissue Conductivity Estimation Using SEEG Electrodes. IEEE Transactions on Biomedical Engineering, 2019, 66, 1695-1704.	2.5	18
1056	Nanoelectronics for Neuroscience. , 2019, , 631-649.		2
1057	Applications of Wireless Power Transfer in Medicine: State-of-the-Art Reviews. Annals of Biomedical Engineering, 2019, 47, 22-38.	1.3	39
1058	Current Advances in the Design of Retinal and Cortical Visual Prostheses. , 2019, , 355-403.		0
1059	Conformal Hermetic Sealing of Wireless Microelectronic Implantable Chiplets by Multilayered Atomic Layer Deposition (ALD). Advanced Functional Materials, 2019, 29, 1806440.	7.8	70
1060	Electron Microscopy for 3D Scaffolds–Cell Biointerface Characterization. Advanced Biology, 2019, 3, e1800103.	3.0	21
1061	Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nature Biomedical Engineering, 2019, 3, 37-46.	11.6	185
1062	The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective. Advanced Materials, 2020, 32, e1901482.	11.1	74
1063	New life for old wires: electrochemical sensor method for neural implants. Journal of Neural Engineering, 2020, 17, 016007.	1.8	15
1064	Printing Flexible and Hybrid Electronics for Human Skin and Eyeâ€Interfaced Health Monitoring Systems. Advanced Materials, 2020, 32, e1902051.	11.1	83
1065	Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes. Acta Biomaterialia, 2020, 102, 205-219.	4.1	33

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1066	Wireless Wearables and Implants: A Dosimetry Review. Bioelectromagnetics, 2020, 41	, 3-20.	0.9	25
1067	Characterization of Parylene-C degradation mechanisms: In vitro reactive accelerated a compared to multiyear in vivo implantation. Biomaterials, 2020, 232, 119731.	aging model	5.7	56
1068	Magnesium-based biodegradable microelectrodes for neural recording. Materials Scier Engineering C, 2020, 110, 110614.	ice and	3.8	8
1069	Recent innovations in artificial skin. Biomaterials Science, 2020, 8, 776-797.		2.6	38
1070	Nanoelectronics for Minimally Invasive Cellular Recordings. Advanced Functional Mate 1906210.	rials, 2020, 30,	7.8	13
1071	Fundamental Limits to the Electrochemical Impedance Stability of Dielectric Elastomer Bioelectronics. Nano Letters, 2020, 20, 224-233.	s in	4.5	28
1072	Stretchable Parylene-C electrodes enabled by serpentine structures on arbitrary elasto silicone rubber adhesive. Journal of Materiomics, 2020, 6, 330-338.	mers by	2.8	31
1073	Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Ma Advanced Materials, 2020, 32, e1902684.	etal Nanowires.	11.1	75
1074	Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals Three-Dimensional Electrical Network. ACS Nano, 2020, 14, 664-675.	through a	7.3	58
1075	Self-aligned, laser-cut organic electrochemical transistors. Flexible and Printed Electror 014007.	nics, 2020, 5,	1.5	13
1076	EMG gait data from indwelling electrodes is attenuated over time and changes indepe experimental effect. Journal of Electromyography and Kinesiology, 2020, 54, 102461.	ndent of any	0.7	9
1077	A comprehensive assessment of Brain Computer Interfaces: Recent trends and challen Neuroscience Methods, 2020, 346, 108918.	ges. Journal of	1.3	50
1078	Immunohistological and Ultrastructural Study of the Inflammatory Response to Perfor Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Record Frontiers in Neuroscience, 2020, 14, 926.		1.4	12
1079	Recent development of implantable and flexible nerve electrodes. Smart Materials in N 131-147.	ledicine, 2020, 1,	3.7	61
1080	Tutorial: guidelines for standardized performance tests for electrodes intended for neu interfaces and bioelectronics. Nature Protocols, 2020, 15, 3557-3578.	ıral	5.5	142
1081	The Active Electrode in the Living Brain: The Response of the Brain Parenchyma to Chro Implanted Deep Brain Stimulation Electrodes. Operative Neurosurgery, 2021, 20, 131-		0.4	11
1082	Ultraflexible Neural Electrodes for Long-Lasting Intracortical Recording. IScience, 2020	, 23, 101387.	1.9	60
1083	Investigating the Association between Motor Function, Neuroinflammation, and Record the Performance of Intracortical Microelectrode Implanted in Motor Cortex. Micromac 838.	ding Metrics in hines, 2020, 11,	1.4	1

	CHAI	ON REPORT	
#	Article	IF	CITATIONS
1084	Bioinspired Materials for InÂVivo Bioelectronic Neural Interfaces. Matter, 2020, 3, 1087-1113.	5.0	43
1085	Natural Leukocyte Membrane-Masked Microelectrodes with an Enhanced Antifouling Ability and Biocompatibility for <i>In Vivo</i> Electrochemical Sensing. Analytical Chemistry, 2020, 92, 11374-11379.	. 3.2	48
1086	Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosensors and Bioelectronics, 2020, 165, 112413.	5.3	49
1087	Numerical Analysis of Microcoilâ€Induced Electric Fields and Evaluation of <i>In vivo</i> Magnetic Stimulation of the Mouse Brain. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 1672-1680.	0.8	4
1088	Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering. Matter, 2020, 3, 1923-1947.	5.0	48
1089	Laser-Facilitated Additive Manufacturing Enables Fabrication of Biocompatible Neural Devices. Sensors, 2020, 20, 6614.	2.1	1
1090	Development of a Polydimethylsiloxaneâ€Based Electrode Array for Electrocorticography. Advanced Materials Interfaces, 2020, 7, 2001152.	1.9	15
1091	Bioâ€interface behaviour of graphene and semiconducting SWCNT:C ₆₀ blend based nano photodiode for subretinal implant. Biosurface and Biotribology, 2020, 6, 53-58.	0.6	4
1092	Recent advances in neural interfaces—Materials chemistry to clinical translation. MRS Bulletin, 2020, 45, 655-668.	1.7	29
1093	Second Harmonic Generation Imaging of Collagen in Chronically Implantable Electrodes in Brain Tissue. Frontiers in Neuroscience, 2020, 14, 95.	1.4	14
1094	Structured nanoscale metallic glass fibres with extreme aspect ratios. Nature Nanotechnology, 2020, 15, 875-882.	15.6	59
1095	Bioinspired microcone-array-based living biointerfaces: enhancing the anti-inflammatory effect and neuronal network formation. Microsystems and Nanoengineering, 2020, 6, 58.	3.4	14
1096	Longitudinal neural and vascular structural dynamics produced by chronic microelectrode implantation. Biomaterials, 2020, 238, 119831.	5.7	19
1097	Toward Long-Term Communication With the Brain in the Blind by Intracortical Stimulation: Challenges and Future Prospects. Frontiers in Neuroscience, 2020, 14, 681.	1.4	24
1098	Axonal blockage with microscopic magnetic stimulation. Scientific Reports, 2020, 10, 18030.	1.6	11
1099	Stretchable bioelectronics: Mitigating the challenges of the percolation threshold in conductive elastomers. APL Materials, 2020, 8, .	2.2	9
1100	Brain Automation, Panacea for Physical Disabilities. , 2020, , .		0
1101	Characterization of kindled VGAT re mice as a new animal model of temporal lobe epilepsy. Epilepsia, 2020, 61, 2277-2288.	2.6	4

#	Article	IF	CITATIONS
1102	Carbon Nanotube-Based Stretchable Hybrid Material Film for Electronic Devices and Applications. Journal of Nanoscience and Nanotechnology, 2020, 20, 4549-4556.	0.9	2
1103	Selective Activation of Cortical Columns Using Multichannel Magnetic Stimulation With a Bent Flat Microwire Array. IEEE Transactions on Biomedical Engineering, 2021, 68, 2164-2175.	2.5	4
1104	Dexamethasone-Enhanced Microdialysis and Penetration Injury. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602266.	2.0	6
1105	Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment. Micromachines, 2020, 11, 1064.	1.4	6
1106	An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. Neuron, 2020, 107, 38-51.e8.	3.8	99
1107	Ultra-small carbon fiber electrode recording site optimization and improved <i>in vivo</i> chronic recording yield. Journal of Neural Engineering, 2020, 17, 026037.	1.8	51
1108	Zwitterionic Polymer Coating Suppresses Microglial Encapsulation to Neural Implants In Vitro and In Vivo. Advanced Biology, 2020, 4, e1900287.	3.0	23
1109	Endovascular Neuromodulation: Safety Profile and Future Directions. Frontiers in Neurology, 2020, 11, 351.	1.1	16
1110	A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. Journal of Neuroinflammation, 2020, 17, 155.	3.1	121
1111	Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS Nano, 2020, 14, 6449-6469.	7.3	82
1112	The significant impact of mechanically-induced phase transformation on cellular functionality of biomedical austenitic stainless steel. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103815.	1.5	7
1113	Host tissue response to floating microelectrode arrays chronically implanted in the feline spinal nerve. Journal of Neural Engineering, 2020, 17, 046012.	1.8	7
1114	A Facile Fabrication of Biodegradable and Biocompatible Cross-Linked Gelatin as Screen Printing Substrates. Polymers, 2020, 12, 1186.	2.0	7
1115	Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. Journal of Materials Chemistry B, 2020, 8, 6624-6666.	2.9	41
1116	Design of Dual-Mode Stimulus Chip With Built-In High Voltage Generator for Biomedical Applications. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 961-970.	2.7	12
1117	Conformable polyimide-based μECoGs: Bringing the electrodes closer to the signal source. Biomaterials, 2020, 255, 120178.	5.7	58
1118	<p>Liposomal Encapsulated Curcumin Effectively Attenuates Neuroinflammatory and Reactive Astrogliosis Reactions in Glia Cells and Organotypic Brain Slices</p> . International Journal of Nanomedicine, 2020, Volume 15, 3649-3667.	3.3	21
1119	Surface Modifications of an Organic Polymer-Based Microwire Platform for Sustained Release of an Anti-Inflammatory Drug. ACS Applied Bio Materials, 2020, 3, 4613-4625.	2.3	2

ARTICLE CITATIONS IF A novel microwire interface for small diameter peripheral nerves in a chronic, awake murine model. 1120 1.8 14 Journal of Neural Engineering, 2020, 17, 046003. Tissue response to a chronically implantable wireless, intracortical visual prosthesis (Gennaris) Tj ETQq1 1 0.784314 ggBT /Overlock 1 1121 Electrochemical and biological performance of chronically stimulated conductive hydrogel 1122 1.8 36 electrodes. Journal of Neural Engineering, 2020, 17, 026018. Focused Ion Beam Lithography to Etch Nano-architectures into Microelectrodes. Journal of Visualized 0.2 Experiments, 2020, , . 64-Channel Carbon Fiber Electrode Arrays for Chronic Electrophysiology. Scientific Reports, 2020, 10, 1124 1.6 34 3830 2. Aktuelle funktionale Implantate., 2020, , 19-144. Sputtered porous Pt for wafer-scale manufacture of low-impedance flexible microelectrodes. Journal 1126 1.8 20 of Neural Engineering, 2020, 17, 036029. The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically 1.4 Aligned Carbon Nanotubes for Interfacing with Retinal Neurons. Micromachines, 2020, 11, 546. Development and Characterization of Novel Composite and Flexible Electrode Based on Titanium 1129 Dioxide. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 1.4 12 1079-1087. A Parylene Neural Probe Array for Multi-Region Deep Brain Recordings. Journal of 1.7 Microelectromechanical Systems, 2020, 29, 499-513. Fabrication of Ti<sub>3</sub>C<sub>2</sub> MXene Microelectrode Arrays for 1131 0.2 15 In Vivo Neural Recording. Journal of Visualized Experiments, 2020, , . Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. Advanced Materials, 11.1 2020, 32, e1907478. Flexible parylene-thread bioprobe and the sewing method for in vivo neuronal recordings. Sensors 1133 4.0 6 and Actuators B: Chemical, 2020, 316, 127835. Focal Suppression of Epileptiform Activity in the Hippocampus by a High-frequency Magnetic Field. 1134 1.1 Neuroscience, 2020, 432, 1-14. Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted 1135 29 1.7 EEG Electrodes. Journal of Neuroscience, 2020, 40, 2371-2380. Non-invasive optical control of endogenous Ca2+ channels in awake mice. Nature Communications, 5.8 2020, 11, 210. Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review. IEEE Transactions on 1137 2.7 100 Biomedical Circuits and Systems, 2020, 14, 343-358. Laser-Induced Periodic Surface Structure Enhances Neuroelectrode Charge Transfer Capabilities and Modulates Astrocyte Function. ACS Biomaterials Science and Engineering, 2020, 6, 1449-1461.

ARTICLE IF CITATIONS Toward guiding principles for the design of biologically-integrated electrodes for the central 1139 1.8 22 nervous system. Journal of Neural Engineering, 2020, 17, 021001. A Removable Insertion Shuttle for Ultraflexible Neural Probe Implantation with Stable Chronic Brain 1140 1.9 Electrophysiological Recording. Advanced Materials Interfaces, 2020, 7, 1901775. Soft and Ionâ€Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels. 1141 3.9 71 Advanced Healthcare Materials, 2020, 9, e1901372. Chronically Implanted Microelectrodes Cause c-fos Expression Along Their Trajectory. Frontiers in 1142 Neuroscience, 2019, 13, 1367. Advancements in Biological Neural Interfaces Using Conducting Polymers: A Review. Industrial & amp; 1143 1.8 15 Engineering Chemistry Research, 2020, 59, 9707-9718. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study. Materials 3.8 Science and Engineering C, 2020, 112, 110870. Mitigating the Effects of Electrode Biofouling-Induced Impedance for Improved Long-Term 1145 3.2 42 Electrochemical Measurements In Vivo. Analytical Chemistry, 2020, 92, 6334-6340. A Flexible and Stretchable Kirigami-Inspired Implantable Neural Probe with Floating Microsites for 1146 Electrophysiology Recordings., 2020, , . Multi-layer PDMS films having antifouling property for biomedical applications. Journal of 1147 1.9 8 Biomatérials Science, Polymer Edition, 2021, 32, 678-693. 1148 How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559. 5.7 The complement cascade at the Utah microelectrode-tissue interface. Biomaterials, 2021, 268, 120583. 1149 7 5.7From Lithographically Patternable to Genetically Patternable Electronic Materials for Miniaturized, Scalable, and Soft Implantable Bioelectronics to Interface with Nervous and Cardiac Systems. ACS 2.0 Applied Electronic Materials, 2021, 3, 101-118. 1151 Hydrogel facilitated bioelectronic integration. Biomaterials Science, 2021, 9, 23-37. 2.6 17 Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. 39 Advanced Healthcare Materials, 2021, 10, e2001397. Noninvasive Brain–Machine Interfaces for Robotic Devices. Annual Review of Control, Robotics, and 1153 30 7.5 Autonomous Systems, 2021, 4, 191-214. Introducing a biomimetic coating for graphene neuroelectronics: toward in-vivo applications. 1154 Biomedical Physics and Engineering Express, 2021, 7, 015006. Neural and electromyography PEDOT electrodes for invasive stimulation and recording. Journal of 1155 2.7 32 Materials Chemistry C, 2021, 9, 7243-7263. Neurostimulator for Hippocampal Memory Prosthesis. Contemporary Clinical Neuroscience, 2021, 39-56.

#	Article	IF	CITATIONS
1157	The Design of an EEG Bio-Amplifier for the Primary Motor Cortex Zone in 180 nm CMOS Technology. Lecture Notes in Networks and Systems, 2021, , 1607-1617.	0.5	0
1158	Connecting residual nervous system and prosthetic legs for sensorimotor and cognitive rehabilitation. , 2021, , 293-320.		4
1159	Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces. Neuromodulation, 2022, 25, 1259-1267.	0.4	8
1160	Advances in Implantable Microelectrode Array Insertion and Positioning. Neuromodulation, 2022, 25, 789-795.	0.4	5
1161	A Review of Brain-Computer Interface. Lecture Notes in Bioengineering, 2021, , 507-531.	0.3	2
1162	Compensation Strategies for Bioelectric Signal Changes in Chronic Selective Nerve Cuff Recordings: A Simulation Study. Sensors, 2021, 21, 506.	2.1	6
1163	Recording site placement on planar silicon-based probes affects signal quality in acute neuronal recordings. Scientific Reports, 2021, 11, 2028.	1.6	16
1164	Quantitative Assessment of the Mechanical Properties of the Neural Interface. , 2021, , 1-47.		0
1165	Bulk-heterojunction photocapacitors with high open-circuit voltage for low light intensity photostimulation of neurons. Journal of Materials Chemistry C, 2021, 9, 1755-1763.	2.7	7
1166	Stimulation and Recording of the Hippocampus Using the Same Pt-Ir Coated Microelectrodes. Frontiers in Neuroscience, 2021, 15, 616063.	1.4	9
1167	Calcium imaging in freely moving mice during electrical stimulation of deep brain structures. Journal of Neural Engineering, 2021, 18, 026008.	1.8	19
1168	Polydopamine–cellulose nanofiber composite for flexible electrode material. Smart Materials and Structures, 2021, 30, 035025.	1.8	8
1169	Design and material for a patternable polysiloxane acrylate-based penetrating intracortical neural probe. Journal of Micromechanics and Microengineering, 2021, 31, 034002.	1.5	7
1170	Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation. Advanced Science, 2021, 8, 2004033.	5.6	34
1171	Implantable Thin Film Devices as Brain-Computer Interfaces: Recent Advances in Design and Fabrication Approaches. Coatings, 2021, 11, 204.	1.2	6
1172	Ceramic packaging in neural implants. Journal of Neural Engineering, 2021, 18, 025002.	1.8	26
1173	Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. Advanced Science, 2021, 8, 2004023.	5.6	73
1174	Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nature Electronics, 2021, 4, 126-133.	13.1	67

#	Article	IF	CITATIONS
1175	Recent Advances and Opportunities of Active Materials for Haptic Technologies in Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2008831.	7.8	63
1176	Inflammatory Foreign Body Response Induced by Neuro-Implants in Rat Cortices Depleted of Resident Microglia by a CSF1R Inhibitor and Its Implications. Frontiers in Neuroscience, 2021, 15, 646914.	1.4	14
1177	High-density neural recordings from feline sacral dorsal root ganglia with thin-film array. Journal of Neural Engineering, 2021, 18, 046005.	1.8	7
1178	Long-term in vivo monitoring of gliotic sheathing of ultrathin entropic coated brain microprobes with fiber-based optical coherence tomography. Journal of Neural Engineering, 2021, 18, 045002.	1.8	0
1179	Flexible Photonic Probes for New-Generation Brain–Computer Interfaces. Accounts of Materials Research, 2021, 2, 315-318.	5.9	5
1180	Novel Graphene Electrode for Retinal Implants: An in vivo Biocompatibility Study. Frontiers in Neuroscience, 2021, 15, 615256.	1.4	12
1181	Soft, wireless and subdermally implantable recording and neuromodulation tools. Journal of Neural Engineering, 2021, 18, 041001.	1.8	13
1183	The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. Advanced Science, 2021, 8, 2002693.	5.6	47
1184	Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing. Frontiers in Neuroscience, 2021, 15, 658703.	1.4	26
1185	Slippery coated Implantable flexible microelectrode array (fMEA) for High-Performance Neural Interface. , 2021, , .		0
1186	Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622524.	2.0	161
1187	Computational and Histological Analyses for Investigating Mechanical Interaction of Thermally Drawn Fiber Implants with Brain Tissue. Micromachines, 2021, 12, 394.	1.4	3
1188	Three-micrometer-diameter needle electrode with an amplifier for extracellular in vivo recordings. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
1189	TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology. Journal of Neural Engineering, 2021, 18, 046030.	1.8	2
1190	More Than Cell Markers: Understanding Heterogeneous Glial Responses to Implantable Neural Devices. Frontiers in Cellular Neuroscience, 2021, 15, 658992.	1.8	1
1191	Recent advances in development of devices and probes for sensing and imaging in the brain. Science China Chemistry, 2021, 64, 915-931.	4.2	24
1192	Hematology and Culture Assessment of Cranially Implanted Rhesus Macaques (<i>Macaca mulatta</i>). Comparative Medicine, 2021, 71, 166-176.	0.4	1
1193	Minimally invasive electroceutical catheter for endoluminal defect sealing. Science Advances, 2021, 7, .	4.7	20

#	Article	IF	CITATIONS
1194	Ultra-thin flexible neuro probe utilizing biodegradable collagen microneedle**. , 2021, , .		0
1195	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. MRS Bulletin, 2021, 46, 576-587.	1.7	5
1197	A comparison of insertion methods for surgical placement of penetrating neural interfaces. Journal of Neural Engineering, 2021, 18, 041003.	1.8	21
1199	Achieving long-term stability of thin-film electrodes for neurostimulation. Acta Biomaterialia, 2022, 139, 65-81.	4.1	36
1200	Electrode Materials for Chronic Electrical Microstimulation. Advanced Healthcare Materials, 2021, 10, e2100119.	3.9	36
1202	Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 659033.	2.0	19
1203	Single-trial decoding of movement intentions using functional ultrasound neuroimaging. Neuron, 2021, 109, 1554-1566.e4.	3.8	51
1204	3D Electrodes for Bioelectronics. Advanced Materials, 2021, 33, e2005805.	11.1	35
1205	Development and review of a sub-millimeter-sized cell-scale micro-magnetic stimulation device. Biomedical Physics and Engineering Express, 2021, 7, 042001.	0.6	2
1206	Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation. Advanced Materials Technologies, 2022, 7, 2100176.	3.0	8
1207	Complications associated with deep brain stimulation for Parkinson's disease: a MAUDE study. British Journal of Neurosurgery, 2021, 35, 625-628.	0.4	6
1208	Nanowire-enabled bioelectronics. Nano Today, 2021, 38, 101135.	6.2	31
1209	Somatic inhibition by microscopic magnetic stimulation. Scientific Reports, 2021, 11, 13591.	1.6	8
1210	Nanoparticle and Biomolecule Surface Modification Synergistically Increases Neural Electrode Recording Yield and Minimizes Inflammatory Host Response. Advanced Healthcare Materials, 2021, 10, e2002150.	3.9	19
1211	Soft, Conductive, Brain-Like, Coatings at Tips of Microelectrodes Improve Electrical Stability under Chronic, In Vivo Conditions. Micromachines, 2021, 12, 761.	1.4	8
1212	A Lubricated Nonimmunogenic Neural Probe for Acute Insertion Trauma Minimization and Longâ€∓erm Signal Recording. Advanced Science, 2021, 8, e2100231.	5.6	24
1213	Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model. Journal of Neural Engineering, 2021, 18, 045008.	1.8	3
1214	Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nature Communications, 2021, 12, 3435.	5.8	130

#	Article	IF	CITATIONS
1215	Biomechanical micromotion at the neural interface modulates intracellular membrane potentials in vivo. Journal of Neural Engineering, 2021, 18, 045010.	1.8	11
1216	Biocompatibility of SU-8 and Its Biomedical Device Applications. Micromachines, 2021, 12, 794.	1.4	27
1218	Substance P/Heparinâ€Conjugated PLCL Mitigate Acute Gliosis on Neural Implants and Improve Neuronal Regeneration via Recruitment of Neural Stem Cells. Advanced Healthcare Materials, 2021, 10, e2100107.	3.9	13
1219	Organic Semiconductor Nanotubes for Electrochemical Devices. Advanced Functional Materials, 2021, 31, 2105358.	7.8	7
1221	Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 720675.	1.8	6
1222	Chronic, Multi-Site Recordings Supported by Two Low-Cost, Stationary Probe Designs Optimized to Capture Either Single Unit or Local Field Potential Activity in Behaving Rats. Frontiers in Psychiatry, 2021, 12, 678103.	1.3	5
1223	Large Animal Studies to Reduce the Foreign Body Reaction in Brain–Computer Interfaces: A Systematic Review. Biosensors, 2021, 11, 275.	2.3	4
1224	Real-time detection of bursts in neuronal cultures using a neuromorphic auditory sensor and spiking neural networks. Neurocomputing, 2021, 449, 422-434.	3.5	4
1225	Construction and Implementation of Carbon Fiber Microelectrode Arrays for Chronic and Acute In Vivo Recordings. Journal of Visualized Experiments, 2021, , .	0.2	0
1226	Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation. Micromachines, 2021, 12, 972.	1.4	16
1227	Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers, 2021, 13, 2834.	2.0	23
1231	Assessment of the Use of Multi-Channel Organic Electrodes to Record ENG on Small Nerves: Application to Phrenic Nerve Burst Detection. Sensors, 2021, 21, 5594.	2.1	1
1232	Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Advanced Healthcare Materials, 2021, 10, e2100102.	3.9	14
1233	Fabrication of a Multilayer Implantable Cortical Microelectrode Probe to Improve Recording Potential. Journal of Microelectromechanical Systems, 2021, 30, 569-581.	1.7	4
1234	Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During <i>In Vivo</i> Microelectrode Insertion Into Rat Brain. IEEE Transactions on Biomedical Engineering, 2021, 68, 2602-2612.	2.5	4
1235	Electrode materials for brain–machine interface: A review. InformaÄnÃ-Materiály, 2021, 3, 1174-1194.	8.5	32
1236	Longâ€ŧerm outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia, 2021, 62, 2826-2844.	2.6	13
1237	Carbon-based neural electrodes: promises and challenges. Journal of Neural Engineering, 2021, 18, 041007.	1.8	29

#	Article	IF	CITATIONS
1238	Recent advances in power supply strategies for untethered neural implants. Journal of Micromechanics and Microengineering, 2021, 31, 104003.	1.5	4
1239	Long-term in vivo two-photon imaging of the neuroinflammatory response to intracortical implants and micro-vessel disruptions in awake mice. Biomaterials, 2021, 276, 121060.	5.7	13
1240	Signal Generation, Acquisition, and Processing in Brain Machine Interfaces: A Unified Review. Frontiers in Neuroscience, 2021, 15, 728178.	1.4	9
1241	A Functional BCI Model by the P2731 working group: Physiology. Brain-Computer Interfaces, 2021, 8, 54-81.	0.9	1
1242	Improve the spatial resolution of fiber photometry by μLED linear array for fluorescence detection. Sensors and Actuators A: Physical, 2021, 331, 112948.	2.0	5
1243	Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain. Biosensors and Bioelectronics, 2021, 192, 113477.	5.3	13
1244	Learning from the brain's architecture: bioinspired strategies towards implantable neural interfaces. Current Opinion in Biotechnology, 2021, 72, 8-12.	3.3	2
1245	Next generation material interfaces for neural engineering. Current Opinion in Biotechnology, 2021, 72, 29-38.	3.3	3
1246	Development of optically controlled "living electrodes―with long-projecting axon tracts for a synaptic brain-machine interface. Science Advances, 2021, 7, .	4.7	40
1247	Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1693.	3.3	14
1248	The Biotic-Abiotic Interface. , 2008, , 31-45.		2
1249	Flexible Electrode for Implantable Neural Devices. , 2014, , 121-156.		4
1250	Active Pixel Sensor Multielectrode Array for High Spatiotemporal Resolution. , 2014, , 207-238.		8
1251	Multielectrode and Multitransistor Arrays for In Vivo Recording. , 2014, , 239-267.		13
1252	Fractal Electronics as a Generic Interface to Neurons. Springer Series in Computational Neuroscience, 2016, , 553-565.	0.3	2
1253	Implantable Monitoring System for Epilepsy. Analog Circuits and Signal Processing Series, 2020, , 11-23.	0.3	3
1254	Conductive Hydrogels for Bioelectronic Interfaces. , 2020, , 237-265.		3
1255	Intracortical Brain–Machine Interfaces. , 2020, , 185-221.		5

#	Article	IF	CITATIONS
1256	Diamond Biosensors. , 2015, , 227-264.		5
1257	Development of Flexible Thin Film Microelectrode Arrays for Neural Recordings. IFMBE Proceedings, 2008, , 286-289.	0.2	3
1258	In vitro Models for Measuring Charge Storage Capacity. IFMBE Proceedings, 2010, , 97-100.	0.2	1
1259	BMIs for Motor Rehabilitation: Key Concepts and Challenges. Biosystems and Biorobotics, 2014, , 235-247.	0.2	3
1260	Microelectrode Arrays: Architecture, Challenges and Engineering Solutions. Series in Bioengineering, 2017, , 41-59.	0.3	8
1261	Biocompatibility of SiC for Neurological Applications. , 2012, , 209-256.		1
1262	Medical Bionics. , 2014, , 327-341.		7
1263	Mesh electronics: a new paradigm for tissue-like brain probes. Current Opinion in Neurobiology, 2018, 50, 33-41.	2.0	131
1264	Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model. Journal of Neuroscience Methods, 2018, 295, 68-76.	1.3	19
1265	An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. Journal of Neural Engineering, 2020, 17, 046014.	1.8	10
1266	Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. Journal of Neural Engineering, 2020, 17, 041002.	1.8	17
1267	High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Journal of Neural Engineering, 2020, 17, 056029.	1.8	32
1268	Spatially confined responses of mouse visual cortex to intracortical magnetic stimulation from micro-coils. Journal of Neural Engineering, 2020, 17, 056036.	1.8	12
1269	Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact. Biomedical Materials (Bristol), 2021, 16, 015008.	1.7	4
1270	Flexible neural interfaces for brain implants—the pursuit of thinness and high density. Flexible and Printed Electronics, 2020, 5, 043002.	1.5	20
1282	Smart Autonomous Electro-Optic Platforms Enabling Innovative Brain Therapies. IEEE Circuits and Systems Magazine, 2020, 20, 28-46.	2.6	10
1283	Mechanics Strategies for Implantation of Flexible Neural Probes. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	14
1284	Laser Sharpening of Carbon Fiber Microelectrode Arrays for Brain Recording. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.8	3

#	Article	IF	CITATIONS
1285	Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release. Biointerphases, 2017, 12, 031002.	0.6	23
1286	Longitudinal multimodal assessment of neurodegeneration and vascular remodeling correlated with signal degradation in chronic cortical silicon microelectrodes. Neurophotonics, 2020, 7, 1.	1.7	6
1287	Building Brain–Machine Interfaces to Restore Neurological Functions. Frontiers in Neuroscience, 2007, , 219-239.	0.0	1
1288	Multielectrode Recording in Behaving Monkeys. Frontiers in Neuroscience, 2007, , 169-188.	0.0	1
1289	A Molecular Perspective on Understanding and Modulating the Performance of Chronic Central Nervous System (CNS) Recording Electrodes. Frontiers in Neuroengineering Series, 2007, , 151-175.	0.4	11
1290	Integration of Microfluidic Capabilities into Micromachined Neural Implants. International Journal of Micro-nano Scale Transport, 2010, 1, 139-158.	0.2	4
1291	Numerical analysis of computational-cannula microscopy. Applied Optics, 2017, 56, D1.	2.1	9
1292	Multiple Implants Do Not Aggravate the Tissue Reaction in Rat Brain. PLoS ONE, 2012, 7, e47509.	1.1	22
1293	Influence of Probe Flexibility and Gelatin Embedding on Neuronal Density and Glial Responses to Brain Implants. PLoS ONE, 2015, 10, e0119340.	1.1	42
1294	Prediction of movement intention using connectivity within motor-related network: An electrocorticography study. PLoS ONE, 2018, 13, e0191480.	1.1	8
1295	The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals. ENeuro, 2018, 5, ENEURO.0261-18.2018.	0.9	16
1296	Electropolymerization of polyaniline nanowires on poly(2-hydroxyethyl methacrylate) coated Platinum electrode. Polimeros, 2020, 30, .	0.2	4
1297	Optically-Controlled 'Living Electrodes' with Long-Projecting Axon Tracts for a Synaptic Brain-Machine Interface. SSRN Electronic Journal, 0, , .	0.4	2
1298	Optimizing the neuron-electrode interface for chronic bioelectronic interfacing. Neurosurgical Focus, 2020, 49, E7.	1.0	8
1299	Biomaterials in cochlear implants. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 2009, 8, Doc10.	0.8	31
1300	Biocompatibility of intracortical microelectrodes: current status and future prospects. Frontiers in Neuroengineering, 2010, 3, 8.	4.8	132
1301	Organic electrode coatings for next-generation neural interfaces. Frontiers in Neuroengineering, 2014, 7, 15.	4.8	211
1302	In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes. Frontiers in Neuroengineering, 2015, 08, 5.	4.8	8

Сітаті	ION REPORT	
ARTICLE Hematological, Biochemical and Histopathological Studies on Marsh Frog, Rana ridibunda, Naturally	IF	CITATIONS
Infected with Waltonella duboisi. International Journal of Zoological Research, 2010, 6, 199-213.	0.6	6
Aplicación del permanganato potásico para la eliminación de cianuros de cobre en aguas residuales de la planta de lixiviación en una mina de oro (I). Revista De Metalurgia, 2009, 45, 415-423.	0.1	3
Brain-Computer Interfaces for Control of Upper Extremity Neuroprostheses in Individuals with High Spinal Cord Injury. , 2018, , 809-836.		2
Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes. Neural Regeneration Research, 2015, 10, 2048.	1.6	16
Graphene and graphene-related materials as brain electrodes. Journal of Materials Chemistry B, 2021, 9, 9485-9496.	2.9	12
Neural tissue-microelectrode interaction: Brain micromotion, electrical impedance, and flexible microelectrode insertion. Journal of Neuroscience Methods, 2022, 365, 109388.	1.3	29
3D microelectrode cluster and stimulation paradigm yield powerful analgesia without noticeable adverse effects. Science Advances, 2021, 7, eabj2847.	4.7	6
Nanostructured gold electrodes promote neural maturation and network connectivity. Biomaterials, 2021, 279, 121186.	5.7	13
Recent advancement of electrocorticography (ECoG) electrodes for chronic neural recording/stimulation. Materials Today Communications, 2021, 29, 102853.	0.9	19
Building Brain–Machine Interfaces to Restore Neurological Functions. , 2007, , 239-260.		1
Nanotechnologies in Neural Tissue Engineering. , 2008, , 295-309.		0
Designing a Neural Interface System to Restore Mobility. , 2009, , 229-242.		3
Polymeric Thin Film Technology for Neural Interfaces: Review and Perspectives. , 0, , .		2

1319	Neurorobotics: Opening Novel Lines of Communication Between Populations of Single Neurons and External Devices. , 2013, , 153-221.		0
1320	Thin Film Coatings as Electrodes in Neuroscience. Biological and Medical Physics Series, 2013, , 301-330.	0.3	0
1321	Title is missing!. Journal of Medical and Biological Engineering, 2014, 34, 341.	1.0	0
1322	A Learning-Based Approach to Artificial Sensory Feedback. Springer Briefs in Electrical and Computer Engineering, 2014, , 31-46.	0.3	0

#

1303

1304

1305

1307

1310

1312

1314

1317

Electrically Active Neural Biomaterials. , 2011, , 95-114.

#	Article	IF	CITATIONS
1323	Decoding Field Potentials. , 2014, , 1-4.		0
1324	Decoding Field Potentials. , 2015, , 965-968.		0
1332	Setup of a white light selective plane microscope to investigate microprobe insertion in a brain model. IFMBE Proceedings, 2018, , 547-550.	0.2	0
1339	Electrical Biosensors: Biopotential Amplifiers. , 2019, , 1-24.		0
1348	Introduction of brain computer interface to neurologists. Annals of Clinical Neurophysiology, 2021, 23, 92-98.	0.1	1
1349	Transcriptional characterization of the glial response due to chronic neural implantation of flexible microprobes. Biomaterials, 2021, 279, 121230.	5.7	12
1351	Minimal Tissue Reaction after Chronic Subdural Electrode Implantation for Fully Implantable Brain–Machine Interfaces. Sensors, 2021, 21, 178.	2.1	9
1353	Optimal design and evaluation of a multi-shank structure based neural probe. International Journal of Applied Electromagnetics and Mechanics, 2020, 64, 1373-1380.	0.3	0
1355	Distributed Neural Interfaces: Challenges and Trends in Scaling Implantable Technology. , 2021, , 1-37.		2
1356	Passive RF Neural Electrodes. , 2020, , 299-319.		2
1358	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 2022, 122, 5233-5276.	23.0	32
1360	Brain-Computer Interfaces for Control of Upper Extremity Neuroprostheses in Individuals with High Spinal Cord Injury. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 237-264.	0.2	3
1363	Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780197.	2.0	5
1364	Intracortical probe arrays with silicon backbone and microelectrodes on thin polyimide wings enable long-term stable recordings in vivo. Journal of Neural Engineering, 2021, 18, 066026.	1.8	2
1365	Long-term in-vivo recording performance of flexible penetrating microelectrode arrays. Journal of Neural Engineering, 2021, 18, 066018.	1.8	10
1366	Think big, see small—A review of nanomaterials for neural interfaces. Nano Select, 2022, 3, 903-918.	1.9	8
1367	Spatial Control of Neuronal Adhesion on Diamond-Like Carbon. Frontiers in Materials, 2021, 8, .	1.2	1
1368	Investigation of the Feasibility of Ventricular Delivery of Resveratrol to the Microelectrode Tissue	1.4	6

#	Article	IF	CITATIONS
1369	Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays. Journal of Neural Engineering, 2021, 18, 066044.	1.8	14
1370	The development of microfabricated solenoids with magnetic cores for micromagnetic neural stimulation. Microsystems and Nanoengineering, 2021, 7, 91.	3.4	12
1371	Inter-layer coatings for softening polymer-based neural interfaces. MRS Advances, 2021, 6, 918.	0.5	0
1372	Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. Biosensors, 2021, 11, 472.	2.3	45
1373	Ultrastructural Analysis of Neuroimplant-Parenchyma Interfaces Uncover Remarkable Neuroregeneration Along-With Barriers That Limit the Implant Electrophysiological Functions. Frontiers in Neuroscience, 2021, 15, 764448.	1.4	7
1374	Electrodeposited Platinum Iridium Enables Microstimulation With Carbon Fiber Electrodes. Frontiers in Nanotechnology, 2021, 3, .	2.4	11
1375	Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromolecular Bioscience, 2022, 22, e2100355.	2.1	14
1376	Flexible and Soft Materials and Devices for Neural Interface. , 2021, , 1-61.		1
1377	Laser Sharpening of Carbon Fiber Microelectrode Arrays for Brain Recording. , 2020, , .		0
1378	The Safety of Micro-Implants for the Brain. Frontiers in Neuroscience, 2021, 15, 796203.	1.4	4
1378 1379	The Safety of Micro-Implants for the Brain. Frontiers in Neuroscience, 2021, 15, 796203. A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology, 2022, 33, 182004.	1.4 1.3	4
	A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology,		
1379	A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology, 2022, 33, 182004. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes.	1.3	12
1379 1381	A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology, 2022, 33, 182004. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell and Tissue Research, 2022, 387, 461-477. Calcium imaging for analgesic drug discovery. Neurobiology of Pain (Cambridge, Mass), 2022, 11,	1.3 1.5	12 14
1379 1381 1382	A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology, 2022, 33, 182004. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell and Tissue Research, 2022, 387, 461-477. Calcium imaging for analgesic drug discovery. Neurobiology of Pain (Cambridge, Mass), 2022, 11, 100083. A floating 5 îl/4m-diameter needle electrode on the tissue for damage-reduced chronic neuronal	1.3 1.5 1.0	12 14 7
1379 1381 1382 1382	A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology, 2022, 33, 182004. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell and Tissue Research, 2022, 387, 461-477. Calcium imaging for analgesic drug discovery. Neurobiology of Pain (Cambridge, Mass), 2022, 11, 100083. A floating 5 îl/4m-diameter needle electrode on the tissue for damage-reduced chronic neuronal recording in mice. Lab on A Chip, 2022, 22, 747-756.	1.3 1.5 1.0	12 14 7 4
1379 1381 1382 1384 1385	A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology, 2022, 33, 182004. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell and Tissue Research, 2022, 387, 461-477. Calcium imaging for analgesic drug discovery. Neurobiology of Pain (Cambridge, Mass), 2022, 11, 100083. A floating 5 μm-diameter needle electrode on the tissue for damage-reduced chronic neuronal recording in mice. Lab on A Chip, 2022, 22, 747-756. Electrical Biosensors: Biopotential Amplifiers. , 2022, , 41-64.	1.3 1.5 1.0 3.1	12 14 7 4 0

		15	0
#	ARTICLE Contributed Session II: Perceptual brightness scales in a White's effect stimulus are not captured by	IF	CITATIONS
1390	multiscale spatial filtering models of brightness perception. Journal of Vision, 2022, 22, 20.	0.1	2
1391	Medical Applications of Porous Biomaterials: Features of Porosity and Tissueâ€5pecific Implications for Biocompatibility. Advanced Healthcare Materials, 2022, 11, e2102087.	3.9	41
1392	Next-Generation Healthcare: Enabling Technologies for Emerging Bioelectromagnetics Applications. IEEE Open Journal of Antennas and Propagation, 2022, 3, 363-390.	2.5	24
1393	Gold nanostructures: synthesis, properties, and neurological applications. Chemical Society Reviews, 2022, 51, 2601-2680.	18.7	43
1395	Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer. Microsystems and Nanoengineering, 2022, 8, 21.	3.4	18
1396	End-to-end optimization of prosthetic vision. Journal of Vision, 2022, 22, 20.	0.1	19
1397	Poly(3,4â€ethylenedioxythiophene)â€Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. Advanced Science, 2022, 9, e2104701.	5.6	32
1398	Research Progress on the Flexibility of an Implantable Neural Microelectrode. Micromachines, 2022, 13, 386.	1.4	15
1399	Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods. Advanced Materials, 2022, 34, e2201129.	11.1	41
1400	Studies to Overcome Brain–Computer Interface Challenges. Applied Sciences (Switzerland), 2022, 12, 2598.	1.3	9
1401	Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 854992.	1.4	12
1402	A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nature Biomedical Engineering, 2022, 6, 706-716.	11.6	80
1403	Characterization of Active Electrode Yield for Intracortical Arrays: Awake versus Anesthesia. Micromachines, 2022, 13, 480.	1.4	6
1404	Insertion mechanics of amorphous SiC ultra-micro scale neural probes. Journal of Neural Engineering, 2022, 19, 026033.	1.8	9
1405	Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: Proposed guidelines based on 10-year experience. NeuroImage, 2022, 254, 119116.	2.1	9
1408	Scalable Batch Transfer of Individual Silicon Dice for Ultra-Flexible Polyimide-Based Bioelectronic Devices. , 2021, 2021, 6880-6883.		4
1409	In Vitro Electrochemical Properties of Titanium Nitride Neural Stimulating and Recording Electrodes as a Function of Film Thickness and Voltage Biasing. , 2021, 2021, 6647-6650.		1
1412	Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces. Frontiers in Bioengineering and Biotechnology, 2021, 9, 759711.	2.0	26

# 1413	ARTICLE Invasive BCI and noninvasive BCI with VR/AR technology. , 2021, , .	IF	CITATIONS
1414	Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Advanced Healthcare Materials, 2022, 11, e2101577.	3.9	15
1415	Microglial Response After Chronic Implantation of Epidural Spinal Cord Electrode. IFMBE Proceedings, 2022, , 2245-2250.	0.2	1
1416	Implanting intracranial electrodes does not affect spikes or network connectivity in nearby or connected brain regions. Network Neuroscience, 0, , 1-33.	1.4	1
1427	A 3D in vitro model of the device-tissue interface: functional and structural symptoms of innate neuroinflammation are mitigated by antioxidant ceria nanoparticles. Journal of Neural Engineering, 2022, 19, 036004.	1.8	4
1428	Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion. SSRN Electronic Journal, O, , .	0.4	0
1429	First Food and Drug Administration Cleared Thin-Film Electrode for Intracranial Stimulation, Recording, and Monitoring of Brain Activity—Part 1: Biocompatibility Testing. Frontiers in Neuroscience, 2022, 16, 876877.	1.4	4
1430	A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats. Advanced Science, 2022, 9, e2105913.	5.6	10
1431	Graphene-based implantable neural electrodes for insect flight control. Journal of Materials Chemistry B, 2022, 10, 4632-4639.	2.9	4
1432	<i>In Vivo</i> Bioelectronic Nose Based on a Bioengineered Rat Realizes the Detection and Classification of Multiodorants. ACS Chemical Neuroscience, 2022, 13, 1727-1737.	1.7	6
1433	High-density neural recording system design. Biomedical Engineering Letters, 2022, 12, 251-261.	2.1	3
1439	The Long-Term Stability of Intracortical Microstimulation and the Foreign Body Response Are Layer Dependent. Frontiers in Neuroscience, 0, 16, .	1.4	14
1441	Surface Area and Local Curvature: Why Roughness Improves the Bioactivity of Neural Implants. Langmuir, 2022, 38, 7512-7521.	1.6	6
1442	Electro-optical mechanically flexible coaxial microprobes for minimally invasive interfacing with intrinsic neural circuits. Nature Communications, 2022, 13, .	5.8	8
1444	Recent progress of electroactive interface in neural engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	6
1445	Stimulation-induced changes at the electrode–tissue interface and their influence on deep brain stimulation. Journal of Neural Engineering, 2022, 19, 046004.	1.8	3
1446	Micro-magnetic stimulation of primary visual cortex induces focal and sustained activation of secondary visual cortex. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	3
1447	Decoding locomotion speed and slope from local field potentials of rat motor cortex. Computer Methods and Programs in Biomedicine, 2022, 223, 106961.	2.6	3

#	Article	IF	CITATIONS
1448	Sex-Dependent Effects of Chronic Microdrive Implantation on Acquisition of Trace Eyeblink Conditioning. Neurobiology of Learning and Memory, 2022, 193, 107649.	1.0	1
1449	Amino acid decorated xanthan gum coatings: Molecular arrangement and cell adhesion. Carbohydrate Polymer Technologies and Applications, 2022, 4, 100227.	1.6	3
1450	A monolithic "all-SiC―neural interface for long-term human applications. , 2022, , 125-159.		0
1451	Decoding Field Potentials. , 2022, , 1158-1160.		0
1452	Finding the Location of Axonal Activation by a Miniature Magnetic Coil. Frontiers in Computational Neuroscience, 0, 16, .	1.2	4
1453	Effects of neuronal cell adhesion molecule L1 and nanoparticle surface modification on microglia. Acta Biomaterialia, 2022, 149, 273-286.	4.1	6
1455	Carbon Nanotube Arrayâ€Based Flexible Multifunctional Electrodes to Record Electrophysiology and Ions on the Cerebral Cortex in Real Time. Advanced Functional Materials, 2022, 32, .	7.8	14
1456	Time stability and connectivity analysis with an intracortical 96-channel microelectrode array inserted in human visual cortex. Journal of Neural Engineering, 2022, 19, 045001.	1.8	3
1458	Parylene C as an Insulating Polymer for Implantable Neural Interfaces: Acute Electrochemical Impedance Behaviors in Saline and Pig Brain In Vitro. Polymers, 2022, 14, 3033.	2.0	2
1460	Technical Considerations for In Vivo Electrophysiology. Neuromethods, 2022, , 275-285.	0.2	0
1461	A Neural Sensor with a Nanocomposite Interface for the Study of Spike Characteristics of Hippocampal Neurons under Learning Training. Biosensors, 2022, 12, 546.	2.3	4
1462	Synergistic Charge Percolation in Conducting Polymers Enables Highâ€Performance In Vivo Sensing of Neurochemical and Neuroelectrical Signals. Angewandte Chemie, 0, , .	1.6	2
1463	Chronic stability of activated iridium oxide film voltage transients from wireless floating microelectrode arrays. Frontiers in Neuroscience, 0, 16, .	1.4	2
1465	Synergistic Charge Percolation in Conducting Polymers Enables Highâ€Performance In Vivo Sensing of Neurochemical and Neuroelectrical Signals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1467	Contributions of Ti-xTa cold spray composite interface to in-vitro cell growth. , 2023, 1, 100007.		0
1468	In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials, 2022, 289, 121784.	5.7	18
1469	Single-Cell Resolution Optogenetics Via Expression of Soma-Targeted Rhodopsins. Methods in Molecular Biology, 2022, , 229-257.	0.4	0
1470	Atomic Force Microscope Characterization of the Bending Stiffness and Surface Topography of Silicon and Polymeric Electrodes. , 2022, , .		0

#	Article	IF	Citations
1471	Biological Impact on the Stability and Reliability of Acute and Chronic Platinum based Thin Film Neural Interfaces in Vivo. , 2022, , .		0
1472	Manually wound coil fabrication process based on cyclic olefin copolymer substrate. , 2022, , .		0
1473	Primary Cortical Cell Tri-Culture-Based Screening of Neuroinflammatory Response in Toll-like Receptor Activation. Biomedicines, 2022, 10, 2122.	1.4	4
1474	Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes. Journal of Neural Engineering, 2022, 19, 056024.	1.8	2
1475	A tassel-type multilayer flexible probe for invasive neural recording. , 2022, 1, 100024.		0
1476	Electrochemical and biological performance of hierarchical platinum-iridium electrodes structured by a femtosecond laser. Microsystems and Nanoengineering, 2022, 8, .	3.4	6
1477	Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nature Biomedical Engineering, 2023, 7, 486-498.	11.6	25
1478	Mechanically Tissueâ€Like and Highly Conductive Au Nanoparticles Embedded Elastomeric Fiber Electrodes of Brain–Machine Interfaces for Chronic In Vivo Brain Neural Recording. Advanced Functional Materials, 2022, 32, .	7.8	13
1479	Keypoint Localization Based on Convolutional Neural Network for Robotic Implantation of Flexible Micro-Electrodes. , 2022, , .		0
1480	Next Generation Neural Interface Electronics. , 2022, , 141-178.		0
1481	Electrodeposited PEDOT:BF ₄ Coatings Improve Impedance of Chronic Neural Stimulating Probes In Vivo. Advanced Materials Interfaces, 2022, 9, .	1.9	5
1482	Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. Science Advances, 2022, 8, .	4.7	10
1483	All-Polymeric Electrode Based on PEDOT:PSS for In Vivo Neural Recording. Biosensors, 2022, 12, 853.	2.3	3
1486	Ultrasonically actuated neural probes for reduced trauma and inflammation in mouse brain. Microsystems and Nanoengineering, 2022, 8, .	3.4	0
1488	CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood–Brain Barrier and Towards Specific Cellular Targeting. Pharmaceutical Research, 2023, 40, 77-105.	1.7	9
1489	A silk-based self-adaptive flexible opto-electro neural probe. Microsystems and Nanoengineering, 2022, 8, .	3.4	18
1490	Longitudinal neural and vascular recovery following ultraflexible neural electrode implantation in aged mice. Biomaterials, 2022, 291, 121905.	5.7	7
1491	Slippery Epidural ECoG Electrode for High-Performance Neural Recording and Interface. Biosensors, 2022, 12, 1044.	2.3	О

#	Article	IF	CITATIONS
1492	Bioactive polymer-enabled conformal neural interface and its application strategies. Materials Horizons, 2023, 10, 808-828.	6.4	2
1493	In Vivo Penetrating Microelectrodes for Brain Electrophysiology. Sensors, 2022, 22, 9085.	2.1	3
1494	Aligning latent representations of neural activity. Nature Biomedical Engineering, 2023, 7, 337-343.	11.6	4
1495	A Review: Research Progress of Neural Probes for Brain Research and Brain–Computer Interface. Biosensors, 2022, 12, 1167.	2.3	5
1496	Characterizing deep brain biosignals: The advances and applications of implantable MEMS-based devices. Materials Today Advances, 2022, 16, 100322.	2.5	0
1497	A flexible neural implant with ultrathin substrate for low-invasive brain–computer interface applications. Microsystems and Nanoengineering, 2022, 8, .	3.4	8
1500	Electron Conductive and Transparent Hydrogels for Recording Brain Neural Signals and Neuromodulation. Advanced Materials, 2023, 35, .	11.1	18
1502	Implantable intracortical microelectrodes: reviewing the present with a focus on the future. Microsystems and Nanoengineering, 2023, 9, .	3.4	20
1503	Neural interfacing biomaterials coated with the firmly tethered neuro-specific lipid bilayer. Applied Surface Science, 2023, 624, 156424.	3.1	0
1504	Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing. Journal of Functional Biomaterials, 2023, 14, 35.	1.8	4
1505	Significantly reduced inflammatory foreign-body-response to neuroimplants and improved recording performance in young compared to adult rats. Acta Biomaterialia, 2023, , .	4.1	1
1508	Biological evaluation of medical devices—Part 6: Tests for local effects after implantation. , 2016, , .		0
1509	Zwitterionic Polymer Coated and Aptamer Functionalized Flexible Micro-Electrode Arrays for In Vivo Cocaine Sensing and Electrophysiology. Micromachines, 2023, 14, 323.	1.4	5
1510	Flexible and Soft Materials and Devices for Neural Interface. , 2023, , 79-139.		1
1511	Peripheral Neural Interfaces (PNIs) for Decoding Motor Intentions and Encoding Somatosensations in Upper-Limb Amputees. , 2023, , 903-925.		0
1512	State-of-the-Art Technology on Highly Miniaturized Free-Floating Neural Implants. , 2023, , 877-899.		0
1513	Distributed Neural Interfaces: Challenges and Trends in Scaling Implantable Technology. , 2023, , 381-417.		0
1514	Neurosurgical Considerations for the Brain Computer Interface. , 2023, , 3567-3604.		0

#	Article	IF	CITATIONS
1515	Neural Drug Delivery. , 2023, , 651-691.		0
1516	Neuroflex: Intraneural and Extraneural Flexible Sensor Architectures for Neural Probing. , 2023, , 531-559.		0
1517	Quantitative Assessment of the Mechanical Properties of the Neural Interface. , 2023, , 213-259.		0
1519	Liquid metal enabled conformal electronics. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	9
1520	Developing an electrochemical sensor for the <i>in vivo</i> measurements of dopamine. Sensors & Diagnostics, 2023, 2, 559-581.	1.9	5
1521	Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors, 2023, 23, 2991.	2.1	18
1522	Wireless in vivo recording of cortical activity by an ion-sensitive field effect transistor. Sensors and Actuators B: Chemical, 2023, 382, 133549.	4.0	1
1523	Durable conducting polymer electrodes pursue low impedance, antifouling, and electrochemical stress tolerance. Applied Surface Science, 2023, 621, 156902.	3.1	0
1524	Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing. Biosensors and Bioelectronics, 2023, 227, 115182.	5.3	0
1525	Neural modulation with photothermally active nanomaterials. , 2023, 1, 193-207.		15
1526	Improving focality and consistency in micromagnetic stimulation. Frontiers in Computational Neuroscience, 0, 17, .	1.2	2
1527	Semiconducting electrodes for neural interfacing: a review. Chemical Society Reviews, 2023, 52, 1491-1518.	18.7	5
1528	Development of a Slow-Degrading Polymerized Curcumin Coating for Intracortical Microelectrodes. ACS Applied Bio Materials, 2023, 6, 806-818.	2.3	7
1529	Biopolymeric Coatings for Local Release of Therapeutics from Biomedical Implants. Advanced Science, 2023, 10, .	5.6	6
1530	Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. Biosensors, 2023, 13, 280.	2.3	1
1532	Biomedical Materials and Devices. , 2023, , 427-466.		0
1533	Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. Journal of Neural Engineering, 2023, 20, 026019.	1.8	4
1534	Flexible Organic Transistors for Biosensing: Devices and Applications. Advanced Materials, 0, , .	11.1	21

		EPORT	
#	Article	IF	CITATIONS
1535	Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures. Cells, 2023, 12, 821.	1.8	4
1536	Advances in In Vitro Models of Neuromuscular Junction: Focusing on Organâ€onâ€aâ€Chip, Organoids, and Biohybrid Robotics. Advanced Materials, 2023, 35, .	11.1	9
1537	Electrodeposited NaYF ₄ :Yb ³⁺ , Er ³⁺ up-conversion films for flexible neural device construction and near-infrared optogenetics. Journal of Materials Chemistry B, 2023, 11, 5565-5573.	2.9	1
1538	Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex. Micromachines, 2023, 14, 680.	1.4	6
1540	Materials and Structural Designs for Neural Interfaces. ACS Applied Electronic Materials, 2023, 5, 1926-1946.	2.0	5
1541	Electronic tissue technologies for seamless biointerfaces. Journal of Polymer Science, 2023, 61, 1707-1712.	2.0	1
1542	Translational opportunities and challenges of invasive electrodes for neural interfaces. Nature Biomedical Engineering, 2023, 7, 424-442.	11.6	17
1543	Ethical Considerations of Endovascular Brain–Computer Interfaces. Advances in Neuroethics, 2023, , 43-63.	0.1	0
1545	Impact of Tip Size and Shape on the Insertion Force of Implantable CMOS Neural Probes. , 2023, , .		1
1546	In Vivo Application of Electrical Rejuvenation Pulses to Chronically Implanted Neural Macroelectrodes in Nonhuman Primates for Regulation of Interface Properties. , 2023, , .		0
1564	Implantable neural electrodes: from preparation optimization to application. Journal of Materials Chemistry C, 2023, 11, 6550-6572.	2.7	0
1567	Mxene/Polydimethylsiloxane (PDMS) Based Implantable and Flexible Bioelectrodes for Neural Sensing. , 2023, , .		0
1582	Neural encoding of artificial sensations evoked by peripheral nerve stimulation for neuroprosthetic applications. , 2023, , 237-265.		0
1607	A Library of Polymer-based Microelectrode Array Designs for Recording from the Brain of Different Animal Models *. , 2023, , .		0
1613	Neuromorphic hardware for somatosensory neuroprostheses. Nature Communications, 2024, 15, .	5.8	1
1617	Brain-Controlled Assistive Robotics and Prosthetics. , 0, , 129-147.		0