Surface mineral mapping at Steamboat Springs, Nevada thermal infrared images

Remote Sensing of Environment 99, 140-158 DOI: 10.1016/j.rse.2005.04.030

Citation Report

#	Article	IF	CITATIONS
1	Evidence of Low Land Surface Thermal Infrared Emissivity in the Presence of Dry Vegetation. IEEE Geoscience and Remote Sensing Letters, 2007, 4, 112-116.	3.1	62
2	Using ASTER TIR radiance and surface emissivity data to map lithology and silica abundance in a metamorphic terrain. , 2007, , .		0
3	Correction of Low-altitude Thermal Images applied to estimating Soil Water Status. Biosystems Engineering, 2007, 96, 301-313.	4.3	53
4	Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0Âμm). Remote Sensing of Environment, 2007, 109, 393-405.	11.0	155
5	Temperature and emissivity separation from ASTER data for low spectral contrast surfaces. Remote Sensing of Environment, 2007, 110, 162-175.	11.0	93
6	Development and comparison of Landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux. Remote Sensing of Environment, 2008, 112, 471-481.	11.0	34
7	Surface-sediment dynamics in a dust source from spaceborne multispectral thermal infrared data. Remote Sensing of Environment, 2008, 112, 3212-3221.	11.0	27
8	A Neural Network Technique for Separating Land Surface Emissivity and Temperature From ASTER Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 200-208.	6.3	44
9	Detection of sandy soil surfaces using ASTERâ€derived reflectance, emissivity and elevation data: potential for the identification of land degradation. International Journal of Remote Sensing, 2008, 29, 1833-1840.	2.9	24
10	Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. , 2008, 4, 218.		119
11	Chapter 4 Effects of Yellowstone's Unique Geothermal Landscape on Snow Pack. Journal of Nano Education (Print), 2008, , 53-66.	0.3	0
12	Evaluation of land surface reflectance and emissivity spectra retrieved from MASTER data. Proceedings of SPIE, 2008, , .	0.8	0
13	The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1785-1794.	1.3	6
14	Comparison of Thermal Infrared Emissivities Retrieved With the Two-Lid Box and the TES Methods With Laboratory Spectra. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 1012-1021.	6.3	22
15	The North American ASTER Land Surface Emissivity Database (NAALSED) Version 2.0. Remote Sensing of Environment, 2009, 113, 1967-1975.	11.0	119
16	The ASTER spectral library version 2.0. Remote Sensing of Environment, 2009, 113, 711-715.	11.0	1,258
17	Soil Moisture Effect on Thermal Infrared (8–13-μm) Emissivity. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 2251-2260.	6.3	53
18	Thermal infrared spectroscopy on feldspars — Successes, limitations and their implications for remote sensing. Earth-Science Reviews, 2010, 103, 60-70.	9.1	64

#	ARTICLE	IF	CITATIONS
19	Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5μm) imagery. Remote Sensing of Environment, 2010, 114, 404-413.	11.0	98
20	Imaging spectroscopy of jarosite cement in the Jurassic Navajo Sandstone. Remote Sensing of Environment, 2010, 114, 2259-2270.	11.0	68
21	Mineral mapping in the Pyramid Lake basin: Hydrothermal alteration, chemical precipitates and geothermal energy potential. Remote Sensing of Environment, 2010, 114, 2297-2304.	11.0	99
22	Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. Journal of African Earth Sciences, 2010, 58, 141-151.	2.0	83
23	Atmospheric compensation of thermal infrared hyperspectral imagery with the emissive empirical line method and the in-scene atmospheric compensation algorithms: a comparison. Proceedings of SPIE, 2010, , .	0.8	6
24	Integrated use of Hyperion and ASTER data for alteration mapping. Proceedings of SPIE, 2010, , .	0.8	0
25	Alteration minerals extracting methods in Da Xing'anling, using ASTER imagery. , 2011, , .		0
26	Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 552-559.	2.8	65
27	Analysis of ASTER Emissivity Product Over an Arid Area in Southern New Mexico, USA. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 1316-1324.	6.3	7
28	Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures. Sensors, 2011, 11, 10981-10999.	3.8	43
29	LiDAR and hyperspectral analysis of mineral alteration and faulting on the west side of the Humboldt Range, Nevada. , 2011, 7, 1357-1368.		6
30	Remote sensing and GIS based geothermal exploration in southwest Tengchong, China. , 2012, , .		5
31	Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission. Remote Sensing of Environment, 2012, 117, 83-101.	11.0	180
32	Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region. Remote Sensing of Environment, 2012, 124, 149-158.	11.0	58
33	Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 2012, 14, 112-128.	2.8	735
34	Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya. International Journal of Applied Earth Observation and Geoinformation, 2012, 14, 22-32.	2.8	30
35	Thermal infrared spectroscopy and partial least squares regression to determine mineral modes of granitoid rocks. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	34
36	STcorr: An IDL code for image based normalization of lapse rate and illumination effects on nighttime TIR imagery. Computers and Geosciences, 2012, 43, 63-72.	4.2	11

#	Article	IF	CITATIONS
37	A selective combined classification algorithm for mapping alterations on ASTER data. Applied Geomatics, 2012, 4, 47-54.	2.5	7
38	Developing selective mining capability for longwall shearers using thermal infrared-based seam tracking. International Journal of Mining Science and Technology, 2013, 23, 47-53.	10.3	15
39	Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, 2013, , .	0.7	85
40	Hydrated silica on Mars: Combined analysis with near-infrared and thermal-infrared spectroscopy. Icarus, 2013, 223, 633-648.	2.5	61
41	Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing. Remote Sensing and Digital Image Processing, 2013, , 43-67.	0.7	5
42	Thermal Infrared Remote Sensing of Geothermal Systems. Remote Sensing and Digital Image Processing, 2013, , 453-473.	0.7	14
43	Mineral Mapping with Airborne Hyperspectral Thermal Infrared Remote Sensing at Cuprite, Nevada, USA. Remote Sensing and Digital Image Processing, 2013, , 495-514.	0.7	10
44	Long-wavelength infrared Fabry-Perot etalon for multi-spectral thermal imaging. , 2013, , .		1
45	Thermal-infrared imaging of weathering and alteration changes on the surfaces of basalt flows, Hawaiâ€~i, USA. International Journal of Remote Sensing, 2013, 34, 3332-3355.	2.9	5
46	Tamarugite-bearing paragenesis formed by sulphate acid alteration in Diana Cave, Romania. European Journal of Mineralogy, 2013, 25, 479-486.	1.3	12
47	Temperature and Emissivity Separation from Thermal Airborne Hyperspectral Imager (TASI) Data. Photogrammetric Engineering and Remote Sensing, 2013, 79, 1099-1107.	0.6	9
48	Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic. Remote Sensing, 2014, 6, 7005-7025.	4.0	38
49	Mineral Mapping and Ore Prospecting with HyMap Data over Eastern Tien Shan, Xinjiang Uyghur Autonomous Region. Remote Sensing, 2014, 6, 11829-11851.	4.0	14
50	ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. SpringerPlus, 2014, 3, 130.	1.2	75
51	Statistical and in-situ validations of the ASTER spectral emissivity product at Railroad Valley, Nevada, USA. Remote Sensing of Environment, 2014, 145, 81-92.	11.0	6
52	Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 2014, 148, 124-133.	11.0	188
53	Geologic remote sensing for geothermal exploration: A review. International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 255-269.	2.8	90
54	The <scp>ASTER</scp> Global Emissivity Dataset (<scp>ASTER GED</scp>): Mapping Earth's emissivity at 100 meter spatial scale. Geophysical Research Letters, 2015, 42, 7966-7976.	4.0	166

#	Article	IF	CITATIONS
55	Comparison of different water infrared emissivity retrieval methods with the theoretical model. Proceedings of SPIE, 2015, , .	0.8	0
56	Ge/ZnS-Based Micromachined Fabry–Perot Filters for Optical MEMS in the Longwave Infrared. Journal of Microelectromechanical Systems, 2015, 24, 2109-2116.	2.5	13
57	Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data. International Journal of Applied Earth Observation and Geoinformation, 2015, 40, 19-28.	2.8	24
58	Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geology Reviews, 2015, 71, 1-13.	2.7	98
59	Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping. , 2015, , .		1
60	Spectral analyses of basement rocks in El-Sibai-Umm Shaddad area, Central Eastern Desert, Egypt, using ASTER thermal infrared data. Arabian Journal of Geosciences, 2015, 8, 6853-6865.	1.3	21
61	Identification and characterization of Biological Soil Crusts in a sand dune desert environment across Israel–Egypt border using LWIR emittance spectroscopy. Journal of Arid Environments, 2015, 112, 75-86.	2.4	35
62	Remote sensing of geothermal-related minerals for resource exploration in Nevada. Geothermics, 2015, 53, 517-526.	3.4	47
63	Utilizing HyspIRI Prototype Data for Geological Exploration Applications: A Southern California Case Study. Geosciences (Switzerland), 2016, 6, 11.	2.2	12
64	Enhanced Compositional Mapping through Integrated Full-Range Spectral Analysis. Remote Sensing, 2016, 8, 757.	4.0	9
65	Lithological mapping using ASTER and magnetic data: A case study from Zhalute area, China. , 2016, , .		0
66	Detection of Alteration Minerals Using Hyperion Data Analysis in Lahroud. Journal of the Indian Society of Remote Sensing, 2016, 44, 713-721.	2.4	8
67	A water vapor scaling model for improved land surface temperature and emissivity separation of MODIS thermal infrared data. Remote Sensing of Environment, 2016, 182, 252-264.	11.0	58
68	Automated lithological mapping using airborne hyperspectral thermal infrared data: A case study from Anchorage Island, Antarctica. Remote Sensing of Environment, 2016, 176, 225-241.	11.0	36
69	MEMS-Based Tunable Fabry–Perot Filters for Adaptive Multispectral Thermal Imaging. Journal of Microelectromechanical Systems, 2016, 25, 227-235.	2.5	17
70	Noise Simulation and Correction in Synthetic Airborne TIR Data for Mineral Quantification. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 1545-1553.	6.3	2
71	A review of progress in identifying and characterizing biocrusts using proximal and remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2017, 57, 245-255.	2.8	23
72	Predicting the abundance of clays and quartz in oil sands using hyperspectral measurements. International Journal of Applied Earth Observation and Geoinformation, 2017, 59, 1-8.	2.8	11

#	Article	IF	CITATIONS
73	Estimation of methylene blue index in oil sands tailings using hyperspectral data. Canadian Journal of Chemical Engineering, 2017, 95, 92-99.	1.7	5
74	Large-Area MEMS Tunable Fabry–Perot Filters for Multi/Hyperspectral Infrared Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 45-52.	2.9	27
75	Spectral Radiance Modeling and Bayesian Model Averaging for Longwave Infrared Hyperspectral Imagery and Subpixel Target Identification. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6726-6735.	6.3	8
76	Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California. Journal of Volcanology and Geothermal Research, 2017, 347, 15-43.	2.1	14
77	Geological mapping and spectral based classification of basement rocks using remote sensing data analysis: The Korbiai-Gerf nappe complex, South Eastern Desert, Egypt. Journal of African Earth Sciences, 2017, 134, 404-418.	2.0	32
78	Spectral mineral mapping for characterization of subtle geothermal prospects using ASTER data. Journal of Physics: Conference Series, 2017, 852, 012024.	0.4	1
79	Hyperspectral remote sensing applied to uranium exploration: A case study at the Mary Kathleen metamorphic-hydrothermal U-REE deposit, NW, Queensland, Australia. Journal of Geochemical Exploration, 2017, 179, 36-50.	3.2	36
80	Field Hyperspectral Remote Sensing of Target Region in Xiemisitai Mountain, Xinjiang Province, China. IOP Conference Series: Earth and Environmental Science, 2017, 57, 012020.	0.3	0
81	Selection of HyspIRI optimal band positions for the earth compositional mapping using HyTES data. Remote Sensing of Environment, 2018, 206, 350-362.	11.0	8
82	NASA's MODIS and VIIRS Land Surface Temperature and Emissivity Products: A Long-Term and Consistent Earth System Data Record. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 522-535.	4.9	41
83	Mapping rock forming minerals at Boundary Canyon, Death Valey National Park, California, using aerial SEBASS thermal infrared hyperspectral image data. International Journal of Applied Earth Observation and Geoinformation, 2018, 64, 326-339.	2.8	28
84	MEMS-based Low SWaP Solutions for Multi/Hyperspectral Infrared Sensing and Imaging. , 2018, , .		1
85	Spatial Identification of Key Alteration Minerals Using ASTER and Landsat 8 Data in a Heavily Vegetated Tropical Area. Journal of the Indian Society of Remote Sensing, 2018, 46, 1061-1073.	2.4	4
86	Integrating airborne hyperspectral imagery and LiDAR for volcano mapping and monitoring through image classification. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 323-339.	2.8	37
87	True-Color Three-Dimensional Imaging and Target Classification Based on Hyperspectral LiDAR. Remote Sensing, 2019, 11, 1541.	4.0	15
88	Imaging of hydrothermal altered zones in Wadi Al-Bana, in southern Yemen, using remote sensing techniques and very low frequency–electromagnetic data. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	10
89	Longwave Infrared Hyperspectral Imaging: Principles, Progress, and Challenges. IEEE Geoscience and Remote Sensing Magazine, 2019, 7, 72-100.	9.6	33
91	Remote sensing satellite imagery for prospecting geothermal systems in an aseismic geologic setting: Yankari Park, Nigeria. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 157-172.	2.8	11

	Сітатіо	n Report	
#	Article	IF	Citations
92	Mapping the wavelength position of mineral features in hyperspectral thermal infrared data. International Journal of Applied Earth Observation and Geoinformation, 2019, 79, 133-140.	2.8	14
93	Detection of heavy hydrocarbon plumes (Ethane, propane and Butane) using airborne longwave (7.6–13.5†μ4m) infrared hyperspectral data. Fuel, 2019, 242, 863-870.	6.4	6
94	Machine Learning Algorithms for Automatic Lithological Mapping Using Remote Sensing Data: A Case Study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS International Journal of Geo-Information, 2019, 8, 248.	2.9	68
95	Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 2019, 11, 2356.	4.0	46
96	The relationship between soil emissivity and soil reflectance under the effects of soil water content. Physics and Chemistry of the Earth, 2019, 110, 133-137.	2.9	6
98	Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, central Tibet using field SWIR spectrometry. Ore Geology Reviews, 2019, 108, 147-157.	2.7	27
99	Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 2019, 108, 54-72.	2.7	49
100	Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: a case study from Yankari Park, NE Nigeria. Geocarto International, 2019, 34, 597-625.	3.5	29
101	Reflecting on siliceous rocks in central Australia: Using advanced remote sensing to map ancient "toolâ€stone―resources. Geoarchaeology - an International Journal, 2020, 35, 400-415.	1.5	0
102	Emissivity of agricultural soil attributes in southeastern Brazil via terrestrial and satellite sensors. Geoderma, 2020, 361, 114038.	5.1	16
103	Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India. International Journal of Applied Earth Observation and Geoinformation, 2020, 86, 102006.	2.8	47
104	Monitoring of Surface Temperature on Parco delle Biancane (Italian Geothermal Area) Using Optical Satellite Data, UAV and Field Campaigns. Remote Sensing, 2020, 12, 2018.	4.0	24
105	Validation and Quality Assessment of the ECOSTRESS Level-2 Land Surface Temperature and Emissivity Product. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-23.	6.3	46
106	Lithology Discrimination Using Sentinel-1 Dual-Pol Data and SRTM Data. Remote Sensing, 2021, 13, 1280.	4.0	15
107	The influence of variable emissivity on lava flow propagation modeling. Bulletin of Volcanology, 2021, 83, 1.	3.0	11
108	Mapping Sandy Land Using the New Sand Differential Emissivity Index From Thermal Infrared Emissivity Data. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 5464-5478.	6.3	8
109	Optical Microelectromechanical Systems Technologies for Spectrally Adaptive Sensing and Imaging. Advanced Functional Materials, 2022, 32, 2103153.	14.9	7
110	Active and fossil hydrothermal zones of the Apacheta volcano: Insights for the Cerro Pabellón hidden geothermal system (Northern Chile). Geothermics, 2021, 96, 102206.	3.4	9

#	Article	IF	Citations
111	An Overview of Thermal Infrared Remote Sensing with Applications to Geothermal and Mineral Exploration in the Great Basin, Western United States. , 2009, , 41-57.		2
114	Development of Hyperspectral Imaging for Mineral Exploration. , 2009, , 83-95.		5
115	Infrared Sensors to Map Soil Carbon in Agricultural Ecosystems. , 2010, , 165-176.		1
116	Comparison of bad pixel replacement techniques for LWIR hyperspectral imagery. , 2018, , .		0
117	Lithologic classification using multilevel spectral characteristics. Journal of Applied Remote Sensing, 2019, 13, 1.	1.3	6
118	The study of mineral mapping in black soil using TASI thermal infrared data, taking the Baiquan area of China as an example. Earth Science Informatics, 0, , 1.	3.2	0
119	Using remote sensing data for geological mapping in semi-arid environment: a machine learning approach. Earth Science Informatics, 2022, 15, 485-496.	3.2	11
120	Factors Influencing Temperature Measurements from Miniaturized Thermal Infrared (TIR) Cameras: A Laboratory-Based Approach. Sensors, 2021, 21, 8466.	3.8	20
121	Structural Control of Gold-Ore Mineralization for the Eastern Slope of the Polar Urals (Russia) Based on Analysis of Multispectral Images of the Landsat 8 Spacecraft. Izvestiya - Atmospheric and Oceanic Physics, 2021, 57, 1762-1773.	0.9	0
122	Remote Detection of Geothermal Alteration Using Airborne Lidar Return Intensity. SSRN Electronic Journal, 0, , .	0.4	0
123	LWIR hyperspectral image classification based on a temperature-emissivity residual network and conditional random field model. International Journal of Remote Sensing, 2022, 43, 3744-3768.	2.9	3
124	Geological mapping by thermal inertia derived from long-term maximum and minimum temperatures of ASTER data. Quarterly Journal of Engineering Geology and Hydrogeology, 0, , .	1.4	0
125	Towards lithology mapping in semi-arid areas using time-series Landsat-8 data. Ore Geology Reviews, 2022, 150, 105163.	2.7	5
126	Project-scale prospectivity analysis for unconformity-related uranium deposits in the Badami Group of the western Kaladgi basin, India. Ore Geology Reviews, 2023, 157, 105407.	2.7	0
127	Comparison between the ASTER and ECOSTRESS global emissivity datasets. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103227.	1.9	1
128	Infrared and terahertz spectrally adaptive filters based on MEMS technologies. , 2023, , .		0
129	Unearthing the Lonar Crater Using Hyperspectral Remote Sensing and Validating Through Non-destructive Approach. , 2023, , 761-773.		0
130	Thermal Infrared Remote Sensing of Stress Responses in Forest Environments: a Review of Developments, Challenges, and Opportunities. Current Forestry Reports, 2024, 10, 56-76.	7.4	2

#	Article	IF	CITATIONS
131	Structural and alteration zones controls on Cu mineralisation in the northwest of Nain (northeastern Isfahan, Iran): A remote sensing perspective. Journal of African Earth Sciences, 2024, 211, 105151.	2.0	0