On the choice of spatial and categorical scale in remote

Remote Sensing of Environment 96, 62-77

DOI: 10.1016/j.rse.2005.01.016

Citation Report

#	Article	IF	CITATIONS
1	VHR image region-based classification potential in the framework of the control with remote sensing of the European CAP., 2005, 5976, 180.		1
2	On scales and dynamics in observing the environment. International Journal of Remote Sensing, 2006, 27, 2123-2140.	1.3	58
3	Analysis of some key issues in selecting suitable scales in monitoring land use in the Tarim River Basin, Xinjiang, China., 2007,,.		O
4	Change detection for updates of vector database through region-based classification of VHR satellite data. Proceedings of SPIE, 2007, , .	0.8	1
5	High Spatial and Temporal Resolution FORMOSAT-2 Images: First Results and Perspectives for Land Cover Mapping of Semi-arid Areas (Marrakech/Al Haouz plain)., 2007,,.		2
6	An Automated GIS Procedure for Delineating River and Lake Boundaries. Transactions in GIS, 2007, 11, 213-231.	1.0	19
7	Modeling grain-size dependent bias in estimating forest area: a regional application. Landscape Ecology, 2008, 23, 1119-1132.	1.9	7
8	A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sensing of Environment, 2008, 112, 708-719.	4.6	84
9	A GIS model for settlement suitability regarding disaster mitigation, a case study in Bolu Turkey. Engineering Geology, 2008, 96, 126-140.	2.9	25
10	Harshness in image classification accuracy assessment. International Journal of Remote Sensing, 2008, 29, 3137-3158.	1.3	269
11	Agrometerological study of semiâ€arid areas: an experiment for analysing the potential of time series of FORMOSATâ€2 images (Tensiftâ€Marrakech plain). International Journal of Remote Sensing, 2008, 29, 5291-5299.	1.3	34
12	A Hybrid Approach for Land Use/Land Cover Classification. GIScience and Remote Sensing, 2009, 46, 365-387.	2.4	9
13	Handling uncertainties in image mining for remote sensing studies. International Journal of Remote Sensing, 2009, 30, 5365-5382.	1.3	26
14	Quantifying scaling effects on satelliteâ€derived forest area estimates for the conterminous USA. International Journal of Remote Sensing, 2009, 30, 3097-3114.	1.3	8
15	Context inclusive function evaluation: a case study with EM-based multi-scale multi-granular image classification. Knowledge and Information Systems, 2009, 21, 231-247.	2.1	4
16	Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sensing of Environment, 2009, 113, 771-780.	4.6	38
17	A method for choice of optimum scale on land use monitoring in Tarim River Basin. Journal of Chinese Geography, 2009, 19, 340-350.	1.5	7
18	Landscape as a continuum: an examination of the urban landscape structures and dynamics of Indianapolis City, 1991–2000, by using satellite images. International Journal of Remote Sensing, 2009, 30, 2547-2577.	1.3	51

#	Article	IF	CITATIONS
19	Effects of satellite image spatial aggregation and resolution on estimates of forest land area. International Journal of Remote Sensing, 2009, 30, 1913-1940.	1.3	40
20	Scaling Effect on the Relationship between Landscape Pattern and Land Surface Temperature. Photogrammetric Engineering and Remote Sensing, 2009, 75, 291-304.	0.3	103
21	A Dynamic Graph Automata Approach to Modeling Landscape Change in the Andes and the Amazon. Environment and Planning B: Planning and Design, 2009, 36, 300-318.	1.7	5
22	Vegetation recovery and landscape change assessment at Chiufenershan landslide area caused by Chichi earthquake in central Taiwan. Natural Hazards, 2010, 53, 175-194.	1.6	12
24	Research on the categorical scale in remote sensing classification. , 2010, , .		0
25	Propagating error in land-cover-change analyses: impact of temporal dependence under increased thematic complexity. International Journal of Geographical Information Science, 2010, 24, 1043-1060.	2.2	18
26	Texture-based classification of sub-Antarctic vegetation communities on Heard Island. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 138-149.	1.4	92
27	While Boolean sets non-gently rip: A theoretical framework on fuzzy sets for mapping landscape patterns. Ecological Complexity, 2010, 7, 125-129.	1.4	22
28	Multi-resolution and temporal characterization of land-use classes in a Mediterranean wetland with land-cover fractions. International Journal of Remote Sensing, 2010, 31, 5365-5389.	1.3	10
29	Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged <i>Eucalyptus</i> plantation forests. International Journal of Remote Sensing, 2011, 32, 4141-4154.	1.3	42
30	Development of a satellite-based multi-scale land use classification system for land and water management in Uzbekistan and Kazakhstan. Proceedings of SPIE, 2011, , .	0.8	2
31	Detecting an Optimal Scale Parameter in Object-Oriented Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, 890-895.	2.3	25
32	Formalized interpretation of compound land use objects – Mapping historical summer farms from a single satellite image. Journal of Land Use Science, 2012, 7, 89-107.	1.0	1
33	Bayesian multi-resolution spatial analysis with applications to marketing. Quantitative Marketing and Economics, 2012, 10, 419-452.	0.7	18
34	Land Cover Classification Using Local Softened Affine Hull. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 4369-4383.	2.7	0
35	Qualitative satellite image analysis: Mapping spatial distribution of farming types in Ethiopia. Applied Geography, 2012, 32, 465-476.	1.7	6
36	Object-based land cover change detection for cross-sensor images. International Journal of Remote Sensing, 2013, 34, 6723-6737.	1.3	45
37	Analyst variation associated with land cover image classification of Landsat ETM + data for the assessment of coarse spatial resolution regional/global land cover products. GIScience and Remote Sensing, 2013, 50, 604-622.	2.4	7

#	ARTICLE	IF	CITATIONS
38	Forefronting the Socio-Ecological in Savanna Landscapes through Their Spatial and Temporal Contingencies. Land, 2013, 2, 452-471.	1.2	8
39	Defining the Spatial Resolution Requirements for Crop Identification Using Optical Remote Sensing. Remote Sensing, 2014, 6, 9034-9063.	1.8	63
42	Combining per-pixel and object-based classifications for mapping land cover over large areas. International Journal of Remote Sensing, 2014, 35, 738-753.	1.3	28
43	On the nature of models for time-sensitive remote sensing. International Journal of Remote Sensing, 2014, 35, 6815-6841.	1.3	12
44	Information Content., 2014,, 241-278.		1
46	Einfluss der thematischen und rĤmlichen AuflĶsung auf die überwachte, fernerkundungsbasierte Feldfrucht-Klassifizierung Photogrammetrie, Fernerkundung, Geoinformation, 2015, 2015, 7-20.	1.2	4
47	EUROSPEC: at the interface between remote-sensing and ecosystem CO ₂ flux measurements in Europe. Biogeosciences, 2015, 12, 6103-6124.	1.3	47
48	Use of Landsat TM/ETM+ to monitor the spatial and temporal extent of spring breakup floods in the Lena River, Siberia. International Journal of Remote Sensing, 2015, 36, 719-733.	1.3	27
49	Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images. Journal of Applied Remote Sensing, 2015, 9, 096095.	0.6	46
50	Large-area spatial disaggregation of a mosaic of conventional soil maps: evaluation over Western Australia. Soil Research, 2015, 53, 865.	0.6	34
51	Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors, 2016, 16, 340.	2.1	9
52	Geospatial knowledge-based verification and improvement of GlobeLand30. Science China Earth Sciences, 2016, 59, 1709-1719.	2.3	15
53	Using a multiscale, probabilistic approach to identify spatial-temporal wetland gradients. Remote Sensing of Environment, 2016, 184, 522-538.	4.6	23
54	Using remote sensing products to classify landscape. A multi-spatial resolution approach. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 95-105.	1.4	20
55	The impact of land use/land cover scale on modelling urban ecosystem services. Landscape Ecology, 2016, 31, 1509-1522.	1.9	130
56	Analyzing spatial variations in land use/cover distributions: A case study of Nanchang area, China. Ecological Indicators, 2017, 76, 52-63.	2.6	5
57	Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation. International Journal of Applied Earth Observation and Geoinformation, 2017, 57, 177-189.	1.4	12
58	Using mixed objects in the training of object-based image classifications. Remote Sensing of Environment, 2017, 190, 188-197.	4.6	46

#	Article	IF	CITATIONS
59	Urban Impervious Surfaces Estimation From Optical and SAR Imagery: A Comprehensive Comparison. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 4010-4021.	2.3	22
60	The Impact of Mapping Error on the Performance of Upscaling Agricultural Maps. Remote Sensing, 2017, 9, 901.	1.8	7
61	Linking animal movement and remote sensing $\hat{a}\in$ mapping resource suitability from a remote sensing perspective. Remote Sensing in Ecology and Conservation, 2018, 4, 211-224.	2.2	19
62	Improving the Upscaling of Land Cover Maps by Fusing Uncertainty and Spatial Structure Information. Photogrammetric Engineering and Remote Sensing, 2018, 84, 87-100.	0.3	4
63	Thematic resolution influence in spatial analysis. An application to Land Use Cover Change (LUCC) modelling calibration. Computers, Environment and Urban Systems, 2019, 78, 101375.	3.3	17
64	How Land Cover Spatial Resolution Affects Mapping of Urban Ecosystem Service Flows. Frontiers in Environmental Science, 2019, 7, .	1.5	21
65	The impact of landscape characteristics on the performance of upscaled maps. Geocarto International, 2021, 36, 1905-1922.	1.7	2
67	Quantitative spatial upscaling of categorical information: The multiâ€dimensional gridâ€point scaling algorithm. Methods in Ecology and Evolution, 2019, 10, 2090-2104.	2.2	5
69	How up-scaling of remote-sensing images affects land-cover classification by comparison with multiscale satellite images. International Journal of Remote Sensing, 2019, 40, 2784-2810.	1.3	21
70	Comparison of upscaling cropland and non-cropland map using uncertainty weighted majority rule-based and the majority rule-based aggregation methods. Geocarto International, 2019, 34, 149-163.	1.7	2
71	Is Indonesian peatland loss a cautionary tale for Peru? A two-country comparison of the magnitude and causes of tropical peatland degradation. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 591-623.	1.0	35
72	Extracting impervious surfaces from full polarimetric SAR images in different urban areas. International Journal of Remote Sensing, 2020, 41, 4644-4663.	1.3	14
73	A Semiphysical Approach of Haze Removal for Landsat Image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7410-7421.	2.3	1
74	Land-use and land-cover classification using Sentinel-2 data and machine-learning algorithms: operational method and its implementation for a mountainous area of Nepal. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	23
75	A Study on the Impact of Scale-Dependent Factors on the Classification of Landcover Maps., 2008,, 215-328.		2
79	Bayesian Multi-Resolution Spatial Analysis with Applications to Marketing. SSRN Electronic Journal, 0,	0.4	0
80	Analysis of Land Cover Classification in Arid Environment: A Comparison Performance of Four Classifiers. , 0 , , .		0
81	Quantifying Resolution Sensitivity of Spatial Autocorrelation: A Resolution Correlogram Approach. Lecture Notes in Computer Science, 2012, , 132-145.	1.0	2

#	Article	IF	CITATION
83	Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping. Remote Sensing, 2022, 14, 2703.	1.8	5
84	Scaling of classification systems—effects of class precision on detection accuracy from medium resolution multispectral data. Landscape Ecology, 2023, 38, 659-687.	1.9	3
85	Tree species classification in an extensive forest area using airborne hyperspectral data under varying light conditions. Journal of Forestry Research, 2023, 34, 1359-1377.	1.7	3