CITATION REPORT List of articles citing

The Epochs of Early-Type Galaxy Formation as a Function of Environment

DOI: 10.1086/426932 Astrophysical Journal, 2005, 621, 673-694.

Source: https://exaly.com/paper-pdf/37851036/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1197	Spectroscopic Identification of a Protocluster atz = 2.300: Environmental Dependence of Galaxy Properties at High Redshift. <i>Astrophysical Journal</i> , 2005 , 626, 44-50	4.7	154
1196	Ages, Metallicities, and ⊞lement Enhancement for Galaxies in Hickson Compact Groups. <i>Astronomical Journal</i> , 2005 , 130, 55-64	4.9	33
1195	Mass-to-Light Ratios of Field Early-Type Galaxies atz~ 1 from Ultradeep Spectroscopy: Evidence for Mass-dependent Evolution. <i>Astrophysical Journal</i> , 2005 , 631, 145-162	4.7	153
1194	NOAO Fundamental Plane Survey. II. Age and Metallicity along the Red Sequence from Line-Strength Data. <i>Astrophysical Journal</i> , 2005 , 632, 137-156	4.7	210
1193	Small-Scale Systems of Galaxies. II. Properties of the NGC 4756 Group of Galaxies. <i>Astronomical Journal</i> , 2005 , 129, 1832-1848	4.9	6
1192	Dependence of Galaxy Shape on Environment in the Sloan Digital Sky Survey. <i>Astrophysical Journal</i> , 2005 , 634, 1032-1042	4.7	24
1191	Oxygen and Neon Abundances of Planetary Nebulae in the Elliptical Galaxy NGC 4697. <i>Astrophysical Journal</i> , 2005 , 627, 767-781	4.7	29
1190	The Ages of Elliptical Galaxies from Mid-Infrared Emission. <i>Astrophysical Journal</i> , 2005 , 622, 235-243	4.7	29
1189	Passively Evolving Early-Type Galaxies at 1.4 ?z? 2.5 in the Hubble Ultra Deep Field. <i>Astrophysical Journal</i> , 2005 , 626, 680-697	4.7	665
1188	The Evolution of Early-Type Red Galaxies with the GEMS Survey: Luminosity-Size and Stellar MassBize Relations Sincez = 1. <i>Astrophysical Journal</i> , 2005 , 632, 191-209	4.7	110
1187	Mid-Infrared Emission from Elliptical Galaxies: Sensitivity to Stellar Age. <i>Astrophysical Journal</i> , 2005 , 635, L25-L28	4.7	18
1186	Synthesis of H\(\text{\textit{B}}\)bsorption in old stellar systems: formation of the cluster red sequence by \(\text{downsizing}\)\(\text{Monthly Notices of the Royal Astronomical Society, 2005, 359, 975-984}\)	4.3	9
1185	Dating the stellar population in massive early-type galaxies atz~ 1.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 361, 897-906	4.3	27
1184	Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 362, 799-825	4.3	1438
1183	Hot stars in old stellar populations: a continuing need for intermediate ages. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 362, 2-8	4.3	43
1182	The build-up of the colour-magnitude relation as a function of environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 362, 268-288	4.3	164
1181	The ages and metallicities of galaxies in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 362, 41-58	4.3	748

(2006-2005)

1180	Morphological studies of the Spitzer Wide-Area Infrared Extragalactic survey galaxy population in the UGC 10214 Hubble Space Telescope/Advanced Camera for Surveys field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 364, 47-58	4.3	11
1179	Ultraluminous starbursts from supermassive black hole-induced outflows. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 364, 1337-1342	4.3	108
1178	Photochemical evolution of elliptical galaxies - II. The impact of merging-induced starbursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 365, 1114-1122	4.3	26
1177	VLT spectroscopy of globular cluster systems. Astronomy and Astrophysics, 2005, 439, 997-1011	5.1	127
1176	The rates of type Ia supernovae. Astronomy and Astrophysics, 2005, 441, 1055-1078	5.1	205
1175	Mid-Infrared Spectroscopy of Two Luminous Submillimeter Galaxies at z ~ 2.8. <i>Astrophysical Journal</i> , 2005 , 625, L83-L86	4.7	79
1174	Extragalactic Globular Clusters and Galaxy Formation. 2006 , 44, 193-267		563
1173	Stellar Population Diagnostics of Elliptical Galaxy Formation. 2006 , 44, 141-192		314
1172	Capture rates of compact objects by supermassive black holes. 2006 , 74,		12
1171	Integrated specific star formation rates of galaxies, groups, and clusters: a continuous upper limit with stellar mass?. <i>Astronomy and Astrophysics</i> , 2006 , 451, L13-L16	5.1	12
1170	Mass downsizing and Eop-down lassembly of early-type galaxies. <i>Astronomy and Astrophysics</i> , 2006 , 453, L29-L33	5.1	217
1169	A counter-rotating core in the dwarf elliptical galaxy VCC 510. <i>Astronomy and Astrophysics</i> , 2006 , 445, L19-L22	5.1	17
1168	Measuring the Average Evolution of Luminous Galaxies atzAstrophysical Journal, 2006 , 650, 624-643	4.7	88
1167	Oxygen abundances in the Galactic bulge: evidence for fast chemical enrichment. <i>Astronomy and Astrophysics</i> , 2006 , 457, L1-L4	5.1	122
1166	Cosmic evolution of the galaxy's mass and luminosity functions by morphological type from multi-wavelength data in the CDF-South. <i>Astronomy and Astrophysics</i> , 2006 , 453, 397-421	5.1	78
1165	Extreme Gas Kinematics in thez = 2.2 Powerful Radio Galaxy MRC 1138\(\textit{D}62: Evidence for Efficient Active Galactic Nucleus Feedback in the Early Universe?. \(\textit{Astrophysical Journal, 2006, 650, 693-705} \)	4.7	216
1164	Dynamical Properties of Ultraluminous Infrared Galaxies. II. Traces of Dynamical Evolution and End Products of Local Ultraluminous Mergers. <i>Astrophysical Journal</i> , 2006 , 651, 835-852	4.7	111
1163	The Ages of Elliptical Galaxies from Infrared Spectral Energy Distributions. <i>Astrophysical Journal</i> , 2006 , 647, 265-275	4.7	35

1162	Extremely Enriched Globular Clusters in Early-Type Galaxies: A Step toward the Dawn of Stellar Populations?. <i>Astrophysical Journal</i> , 2006 , 648, 383-388	4.7	33
1161	Quasar Luminosity Functions from Joint Evolution of Black Holes and Host Galaxies. <i>Astrophysical Journal</i> , 2006 , 650, 42-56	4.7	139
1160	Massive Elliptical Galaxies: From Cores to Halos. <i>Astrophysical Journal</i> , 2006 , 648, 826-834	4.7	24
1159	Extremely Red Objects in Two Quasar Fields atz~ 1.4. <i>Astrophysical Journal</i> , 2006 , 650, 706-716	4.7	10
1158	A census of the physical parameters of nearby galaxies. <i>Proceedings of the International Astronomical Union</i> , 2006 , 2,	0.1	
1157	The Cosmic Evolution of Early-type Galaxies. <i>Proceedings of the International Astronomical Union</i> , 2006 , 2, 350-354	0.1	3
1156	AChandraSurvey of Early-Type Galaxies. I. Metal Enrichment in the Interstellar Medium. <i>Astrophysical Journal</i> , 2006 , 639, 136-156	4.7	114
1155	The Lack of Structural and Dynamical Evolution of Elliptical Galaxies since $z\sim 1.5$: Clues from Self-Consistent Hydrodynamic Simulations. <i>Astrophysical Journal</i> , 2006 , 636, L77-L80	4.7	19
1154	The Influence of Mass and Environment on the Evolution of Early-Type Galaxies. <i>Astrophysical Journal</i> , 2006 , 647, L99-L102	4.7	21
1153	Dry Mergers in GEMS: The Dynamical Evolution of Massive Early-Type Galaxies. <i>Astrophysical Journal</i> , 2006 , 640, 241-251	4.7	242
1152	Evolution and Environment of Early-Type Galaxies. Astronomical Journal, 2006, 131, 1288-1317	4.9	145
1151	Properties of Early-Type, Dry Galaxy Mergers and the Origin of Massive Elliptical Galaxies. <i>Astrophysical Journal</i> , 2006 , 636, L81-L84	4.7	244
1150	The Fundamental Plane for z = 0.8-0.9 Cluster Galaxies. <i>Astrophysical Journal</i> , 2006 , 639, L9-L12	4.7	63
1149	On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters. <i>Astrophysical Journal</i> , 2006 , 648, 230-249	4.7	37
1148	Line Strengths in Early-Type Cluster Galaxies atz= 0.33: Implications for ∄Fe, Nitrogen, and the Histories of E/S0s. <i>Astrophysical Journal</i> , 2006 , 653, 159-183	4.7	55
1147	The DEEP2 Galaxy Redshift Survey: Mean Ages and Metallicities of Red Field Galaxies at $z \sim 0.9$ from Stacked Keck DEIMOS Spectra. <i>Astrophysical Journal</i> , 2006 , 651, L93-L96	4.7	56
1146	MAMBO 1.2 mm Observations of B z K -selected Star-forming Galaxies at z ~ 2. <i>Astrophysical Journal</i> , 2006 , 637, L5-L8	4.7	12
1145	A Simple Model for the Size Evolution of Elliptical Galaxies. <i>Astrophysical Journal</i> , 2006 , 648, L21-L24	4.7	214

1144	Extremely compact massive galaxies at z ´1.4. 2006 , 373, L36-L40		204
1143	The SAURON projectV. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 366, 1151-1200	4.3	623
1142	Rejuvenation of spiral bulges. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 366, 510-520	4.3	69
1141	The formation history of elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 366, 499-509	4.3	752
1140	Galaxy bimodality due to cold flows and shock heating. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 368, 2-20	4.3	1166
1139	The SAURON project - VI. Line strength maps of 48 elliptical and lenticular galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 369, 497-528	4.3	145
1138	The NOAO Fundamental Plane Survey - III. Variations in the stellar populations of red-sequence galaxies from the cluster core to the virial radius. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 369, 1419-1436	4.3	52
1137	The star formation history of early-type galaxies as a function of mass and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 702-720	4.3	88
1136	On the origin of stars in bulges and elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 902-910	4.3	107
1135	Central stellar populations of early-type galaxies in low-density environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 1213-1222	4.3	40
1134	Ages and metallicities of early-type galaxies in the Sloan Digital Sky Survey: new insight into the physical origin of the colour-magnitude and the Mg2-IV relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 1106-1124	4.3	287
1133	The dissipative merger progenitors of elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 1445-1453	4.3	49
1132	Shapley Optical Survey - II. The effect of environment on the colour-magnitude relation and galaxy colours?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 371, 55-66	4.3	74
1131	Stellar populations in bulges of spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 371, 583-608	4.3	67
1130	The 2df SDSS LRG and QSO survey: evolution of the luminosity function of luminous red galaxies toz= 0.6. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 372, 537-550	4.3	132
1129	Natural downsizing in hierarchical galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 372, 933-948	4.3	205
1128	Properties of galaxy groups in the Sloan Digital Sky Survey - II. Active galactic nucleus feedback and star formation truncation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 372, 1161-1174	4.3	147
1127	The SAURON project IVIII. OASIS/CFHT integral-field spectroscopy of elliptical and lenticular galaxy centres*. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 373, 906-958	4.3	156

1126	Galaxy bimodality versus stellar mass and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 373, 469-483	4.3	602
1125	A Study of Binary Stellar Population Synthesis of Elliptical Galaxies. 2006 , 6, 669-679		6
1124	The Structure and Star Formation History of Early-Type Galaxies in the Ultra Deep Field/GRAPES Survey. <i>Astrophysical Journal</i> , 2006 , 636, 115-133	4.7	32
1123	A More Fundamental Plane. Astrophysical Journal, 2007, 665, L105-L108	4.7	69
1122	A Fourteen-Band Photometric Study of A2443. 2007 , 7, 71-80		4
1121	The Ages, Metallicities, and Star Formation Histories of Early-Type Galaxies in the SDSS. <i>Astrophysical Journal</i> , 2007 , 669, 947-951	4.7	54
1120	The Star Formation Epoch of the Most Massive Early-Type Galaxies. <i>Astrophysical Journal</i> , 2007 , 655, 30-50	4.7	109
1119	Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies. <i>Astrophysical Journal</i> , 2007 , 660, 1146-1150	4.7	8
1118	Damp Mergers: Recent Gaseous Mergers without Significant Globular Cluster Formation?. <i>Astrophysical Journal</i> , 2007 , 659, 188-194	4.7	8
1117	The Redshift Evolution of Early-Type Galaxies in COSMOS: Do Massive Early-Type Galaxies Form by Dry Mergers?. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 172, 494-510	8	121
1116	Stellar Populations of Globular Clusters in the Elliptical Galaxy NGC 1407. <i>Astronomical Journal</i> , 2007 , 134, 391-410	4.9	46
1115	A Theoretical Interpretation of the Black Hole Fundamental Plane. Astrophysical Journal, 2007, 669, 45-	6.6 .7	145
1114	Probing the Mass Distributions in NGC 1407 and Its Associated Group with the X-Ray Imaging Spectroscopic and Optical Photometric and Line-Strength Indices Data. <i>Astrophysical Journal</i> , 2007 , 656, 805-817	4.7	17
1113	Age and Metallicities of Cluster Galaxies: A1185 and Coma. <i>Astrophysical Journal</i> , 2007 , 658, 929-940	4.7	22
1112	Near-Infrared Observations of Globular Clusters in NGC 4472, NGC 4594, NGC 3585, and NGC 5813 and Implications for Their Ages and Metallicities. <i>Astrophysical Journal</i> , 2007 , 661, 768-778	4.7	25
1111	The Mass Function of Active Black Holes in the Local Universe. Astrophysical Journal, 2007, 667, 131-146	84.7	213
1110	Small-Scale Systems of Galaxies. III. X-Ray-detected Elliptical+Spiral Galaxy Pairs in Low-Density Environments. <i>Astronomical Journal</i> , 2007 , 133, 220-254	4.9	9
1109	Ages and Metallicities of Extragalactic Globular Clusters from Spectral and Photometric Fits of Stellar Population Synthesis Models. <i>Astrophysical Journal</i> , 2007 , 655, 179-211	4.7	30

(2007-2007)

1108	Generalizations of the Tully-Fisher Relation for Early- and Late-Type Galaxies. <i>Astrophysical Journal</i> , 2007 , 659, 1172-1175	4.7	42
1107	Massive Lyman Break Galaxies atz~ 3 in theSpitzerExtragalactic First Look Survey. <i>Astrophysical Journal</i> , 2007 , 669, 749-764	4.7	16
1106	Truncated Star Formation in Compact Groups of Galaxies: A Stellar Population Study. <i>Astronomical Journal</i> , 2007 , 133, 330-346	4.9	37
1105	The X-Ray Evolution of Early-Type Galaxies in the Extended Chandra Deep FieldBouth. <i>Astrophysical Journal</i> , 2007 , 657, 681-699	4.7	56
1104	Galaxy Clusters Associated with Short GRBs. I. The Fields of GRBs 050709, 050724, 050911, and 051221a. <i>Astrophysical Journal</i> , 2007 , 660, 496-503	4.7	26
1103	Star Formation in AEGIS Field Galaxies since $z=1.1$: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion. <i>Astrophysical Journal</i> , 2007 , 660, L47-L50	4.7	342
1102	Star Formation and the Growth of Stellar Mass. Astrophysical Journal, 2007, 663, 834-843	4.7	188
1101	Stellar Populations of Luminous Evolved Galaxies atz~ 1.5. <i>Astrophysical Journal</i> , 2007 , 669, 241-250	4.7	13
1100	The Dependence of Star Formation on Galaxy Stellar Mass. Astrophysical Journal, 2007, 661, L41-L44	4.7	142
1099	The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light sincez= 1. <i>Astrophysical Journal</i> , 2007 , 668, 826-838	4.7	168
1098	Formation of Early-Type Galaxies from Cosmological Initial Conditions. <i>Astrophysical Journal</i> , 2007 , 658, 710-720	4.7	326
1097	A Mid-Infrared Spectroscopic Study of Submillimeter Galaxies: Luminous Starbursts at High Redshift. <i>Astrophysical Journal</i> , 2007 , 660, 1060-1071	4.7	111
1096	Galaxy Luminosity Functions toz~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation. <i>Astrophysical Journal</i> , 2007 , 665, 265-294	4.7	817
1095	Ages and Abundances of Red Sequence Galaxies as a Function of LINER Emission-Line Strength. <i>Astrophysical Journal</i> , 2007 , 671, 243-271	4.7	97
1094	Age and metallicity of the bulges in lenticular galaxies. <i>Proceedings of the International Astronomical Union</i> , 2007 , 3, 277-280	0.1	
1093	Rejuvenation of spiral bulges. <i>Proceedings of the International Astronomical Union</i> , 2007 , 3, 289-292	0.1	
1092	The spatially resolved stellar populations of isolated early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 1772-1784	4.3	39
1091	Simulating the formation and evolution of galaxies: multi-phase description of the interstellar medium, star formation, and energy feedback. <i>Astronomy and Astrophysics</i> , 2007 , 473, 733-745	5.1	22

1090	How young stellar populations affect the ages and metallicities of galaxies. <i>Astronomy and Astrophysics</i> , 2007 , 471, 795-804	5.1	11
1089	The reversal of the star formation-density relation in the distant universe. <i>Astronomy and Astrophysics</i> , 2007 , 468, 33-48	5.1	1113
1088	Oldmetal-rich globular cluster populations: Peak color and peak metallicity trends with mass of host spheroids. 2007 , 328, 551-555		1
1087	Supermassive black holes in local galaxies. 2007 , 8, 16-25		
1086	The Kormendy relation of massive elliptical galaxies at z´1.5: evidence for size evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 614-626	4.3	123
1085	On the interpretation of the age and chemical composition of composite stellar populations determined with line-strength indices. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 769	9 -47 4	116
1084	The build-up of the colour-magnitude relation in galaxy clusters since z´0.8. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 809-822	4.3	181
1083	The morgana model for the rise of galaxies and active nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 375, 1189-1219	4.3	196
1082	Semi-empirical analysis of Sloan Digital Sky Survey galaxies - IV. A nature via nurture scenario for galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 1457-1472	4.3	29
1081	Stellar populations of massive elliptical galaxies in very rich clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 375, 1025-1033	4.3	11
1080	Discovery of a single faint AGN in a large sample of z > 5 Lyman break galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 376, 1393-1398	4.3	16
1079	Spatially resolved spectroscopy of early-type galaxies over a range in mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 759-786	4.3	127
1078	Properties of luminous red galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 787-805	4.3	12
1077	Spatially resolved kinematics and stellar populations of brightest cluster and group galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 1507-1530	4.3	63
1076	The star formation histories of galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 1550-1564	4.3	223
1075	Constraints on the merging time-scale of luminous red galaxies, or, where do all the haloes go?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 379, 1491-1497	4.3	36
1074	The age, metallicity and ´-element abundance of Galactic globular clusters from single stellar population models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 379, 1618-1636	4.3	43
1073	Bursting and quenching in massive galaxies without major mergers or AGNs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 380, 339-352	4.3	162

(2008-2007)

1072	Absorption-line strengths of 18 late-type spiral galaxies observed with SAURON. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 380, 506-540	4.3	57
1071	The different physical mechanisms that drive the star formation histories of giant and dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 7-32	4.3	100
1070	A deep AAOmega survey of low-luminosity galaxies in the Shapley supercluster: stellar population trends. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 1035-1052	4.3	39
1069	The dark haloes of early-type galaxies in low-density environments: XMMNewton and Chandra observations of NGC 57, 7796 and IC 1531*. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 380, 1409-1421	4.3	27
1068	The history of star-forming galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 263-279	4.3	190
1067	Ages of elliptical galaxies: single- versus multi-population interpretation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 1711-1718	4.3	13
1066	Strong size evolution of the most massive galaxies since $z \sim 2$. Monthly Notices of the Royal Astronomical Society, 2007 , 382, 109-120	4.3	374
1065	Reproducing the assembly of massive galaxies within the hierarchical cosmogony. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 903-914	4.3	55
1064	Observational evidence for AGN feedback in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 1415-1431	4.3	476
1063	A census of metals and baryons in stars in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 383, 1439-1458	4.3	117
1062	Uncovering the chemical enrichment and mass-assembly histories of star-forming galaxies. 2007 , 375, L16-L20		79
1061	Distant radio galaxies and their environments. 2008 , 15, 67-144		253
1060	Supernova progenitors and iron density evolution from SN rate evolution measurements. 2008, 13, 606-	618	27
1059	The radial distribution of Type Ia supernovae in early-type galaxies: implications for progenitor scenarios. 2008 , 388, L74-L78		30
1058	Astronomy: elliptical view of galaxies past. 2008 , 451, 253-4		1
1057	Immunology: cascade into clarity. 2008 , 451, 254-5		7
1056	Star formation density and H\(\text{H}\)uminosity function of an emission-line-selected galaxy sample at z~ 0.24. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 383, 339-354	4.3	10
1055	Monolithic or hierarchical star formation? A new statistical analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 384, 1414-1426	4.3	32

1054	Photometric properties of the Local Volume dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 384, 1544-1562	4.3	54
1053	The connection between globular cluster systems and their host galaxy and environment: a case study of the isolated elliptical NGC 821?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 361-380	4.3	57
1052	Colour pairs for constraining the age and metallicity of stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 1270-1278	4.3	11
1051	Gemini/GMOS spectroscopy of the spheroid and globular cluster system of NGC 3923. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 40-52	4.3	48
1050	The relation between stellar populations, structure and environment for dwarf elliptical galaxies from the MAGPOP-ITP. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 1374-1392	4.3	75
1049	On contamination and completeness in zlb Lyman-break galaxy surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 493-510	4.3	30
1048	The early-type galaxies NGC 1407 and NGC 1400 III. Star formation and chemical evolutionary history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 675-686	4.3	38
1047	Near ultravioletIhfrared colours of red-sequence galaxies in local clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 2097-2106	4.3	15
1046	Is AGN feedback necessary to form red elliptical galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 13-30	4.3	104
1045	The stellar population histories of early-type galaxies []II. The Coma cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 386, 715-747	4.3	95
1044	The link between the masses and central stellar populations of S0 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 660-676	4.3	14
1043	The SCUBA Half-Degree Extragalactic Survey (SHADES) IVIII. The nature of faint submillimetre galaxies in SHADES, SWIRE and SXDF surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 247-267	4.3	50
1042	The effects of stellar populations on galaxy scaling relations in the 6dF Galaxy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 386, 1781-1796	4.3	15
1041	Current star formation in early-type galaxies and the KA phenomenon. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 1537-1553	4.3	7
1040	Bimodality in low-luminosity E and S0 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 331-343	4.3	15
1039	Chemical evolution of galaxies I. A composition-dependent SPH model for chemical evolution and cooling. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 39-55	4.3	74
1038	The evolution of the galaxy red sequence in simulated clusters and groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 13-26	4.3	48
1037	The anatomy of the NGC 5044 group - I. Group membership and dynamics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 749-765	4.3	15

1036	Downsizing by shutdown in red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 567-584	4.3	97
1035	Stellar populations of bulges in 14 cluster disc galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 341-363	4.3	53
1034	On halo formation times and assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 1419-1426	4.3	111
1033	The clustering and abundance of star-forming and passive galaxies atz~ 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 391, 1301-1307	4.3	44
1032	A MORPHOLOGICAL RE-EVALUATION OF GALAXIES IN COMMON FROM THE CATALOG OF ISOLATED GALAXIES AND THE SLOAN DIGITAL SKY SURVEY (DR6). <i>Astronomical Journal</i> , 2008 , 136, 211	1 5 -213	5 ²⁹
1031	Improved cosmological parameter constraints from CMB andH(z) data. 2008, 2008, 038		4
1030	The role of binary stars in stellar population synthesis. <i>Proceedings of the International Astronomical Union</i> , 2008 , 4, 359-364	0.1	3
1029	Black Holes in Pseudobulges and Spheroidals: A Change in the Black Hole B ulge Scaling Relations at Low Mass. <i>Astrophysical Journal</i> , 2008 , 688, 159-179	4.7	122
1028	Dissipation and the Fundamental Plane: Observational Tests. <i>Astrophysical Journal</i> , 2008 , 689, 17-48	4.7	76
1027	Morphologies of Two Massive Old Galaxies atz~ 2.5. <i>Astrophysical Journal</i> , 2008 , 672, 146-152	4.7	41
1026	Evidence of Cosmic Evolution of the Stellar Initial Mass Function. <i>Astrophysical Journal</i> , 2008 , 674, 29-50	04.7	198
1025	Stellar Age versus Mass of Early-Type Galaxies in the Virgo Cluster. <i>Astrophysical Journal</i> , 2008 , 680, 104	4 2./ 04	819
1024	LINE STRENGTHS OF EARLY-TYPE GALAXIES. Astronomical Journal, 2008, 135, 2424-2445	4.9	37
1023	VLT Spectroscopy of Globular Clusters in Low Surface Brightness Dwarf Galaxies. <i>Astrophysical Journal</i> , 2008 , 674, 909-926	4.7	35
1022	A Cosmological Framework for the Co-evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals. <i>Astrophysical Journal, Supplement Series</i> , 2008 , 175, 390-422	8	282
1021	Unveiling the Important Role of Groups in the Evolution of Massive Galaxies: Insights from an Infrared Passive Sequence at Intermediate Redshift. <i>Astrophysical Journal</i> , 2008 , 680, 1009-1021	4.7	38
1020	Thermal Balance in the Intracluster Medium: Is AGN Feedback Necessary?. <i>Astrophysical Journal</i> , 2008 , 681, 151-166	4.7	54
1019	Adding Environmental Gas Physics to the Semianalytic Method for Galaxy Formation: Gravitational Heating. <i>Astrophysical Journal</i> , 2008 , 680, 54-69	4.7	96

1018	Molecular Gas and Dust in Arp 94: The Formation of a Recycled Galaxy in an Interacting System. <i>Astrophysical Journal</i> , 2008 , 685, 181-193	4.7	17
1017	Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity. <i>Astrophysical Journal</i> , 2008 , 685, 752-766	4.7	118
1016	The SDSS-UKIDSS Fundamental Plane of Early-Type Galaxies. <i>Astrophysical Journal</i> , 2008 , 689, 913-918	4.7	34
1015	AGES AND METALLICITIES OF EARLY-TYPE VOID GALAXIES FROM LINE STRENGTH MEASUREMENTS. <i>Astronomical Journal</i> , 2008 , 136, 1-17	4.9	23
1014	The Age of Cluster Galaxies from Continuum Colors. Astrophysical Journal, 2008, 677, 1019-1032	4.7	16
1013	The ACS Virgo Cluster Survey. XV. The Formation Efficiencies of Globular Clusters in Early-Type Galaxies: The Effects of Mass and Environment. <i>Astrophysical Journal</i> , 2008 , 681, 197-224	4.7	229
1012	Luminosity Function Constraints on the Evolution of Massive Red Galaxies sincez~ 0.9. <i>Astrophysical Journal</i> , 2008 , 682, 919-936	4.7	74
1011	The Contribution of Star Formation and Merging to Stellar Mass Buildup in Galaxies. <i>Astrophysical Journal</i> , 2008 , 680, 41-53	4.7	89
1010	Measuring Ages and Elemental Abundances from Unresolved Stellar Populations: Fe, Mg, C, N, and Ca. <i>Astrophysical Journal, Supplement Series</i> , 2008 , 177, 446-464	8	117
1009	Are dry mergers of ellipticals the way to reconcile model predictions with downsizing?. <i>Astronomy and Astrophysics</i> , 2008 , 486, 763-769	5.1	27
1008	GMASS ultradeep spectroscopy of galaxies atz ~ 2. Astronomy and Astrophysics, 2008 , 479, 417-425	5.1	52
1007	The VIMOS VLT Deep Survey. Astronomy and Astrophysics, 2008, 487, 89-101	5.1	62
1006	The environmental dependence of properties of galaxies around the RDCSJ0910+54 cluster atz = 1.1. <i>Astronomy and Astrophysics</i> , 2008 , 489, 571-581	5.1	33
1005	Star formation histories of early-type galaxies at $z = 1.2$ in cluster and field environments. Astronomy and Astrophysics, 2008 , 488, 853-860	5.1	46
1004	THE STAR FORMATION HISTORIES OF RED-SEQUENCE GALAXIES, MASS-TO-LIGHT RATIOS AND THE FUNDAMENTAL PLANE. <i>Astrophysical Journal</i> , 2009 , 702, 1275-1296	4.7	27
1003	THE EVOLUTION OF THEMBH-IRELATION INFERRED FROM THE AGE DISTRIBUTION OF LOCAL EARLY-TYPE GALAXIES AND ACTIVE GALACTIC NUCLEI EVOLUTION. <i>Astrophysical Journal</i> , 2009 , 694, 867-878	4.7	65
1002	HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs. <i>Astrophysical Journal</i> , 2009 , 696, 891-919	4.7	352
1001	THE RELATION BETWEEN COMPACT, QUIESCENT HIGH-REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GROWTH. Astrophysical Journal 2009, 697, 1290-1298	4.7	361

1000	THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES ATZAstrophysical Journal, 2009 , 700, 1559-1588	4.7	87
999	DRY MERGERS AND THE FORMATION OF EARLY-TYPE GALAXIES: CONSTRAINTS FROM LENSING AND DYNAMICS. <i>Astrophysical Journal</i> , 2009 , 703, 1531-1544	4.7	52
998	LOW-MASS X-RAY BINARIES AND GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES. II. GLOBULAR CLUSTER CANDIDATES AND THEIR MASS-METALLICITY RELATION. <i>Astrophysical Journal</i> , 2009 , 690, 512	-452/5	11
997	ARE DISK GALAXIES THE PROGENITORS OF GIANT ELLIPTICALS?. <i>Astrophysical Journal</i> , 2009 , 690, 1452-	- <u>1</u> .462	52
996	THE DEPENDENCE OF LUMINOSITY AND g [I COLOR ON THE ENVIRONMENT FOR THE SAME MORPHOLOGICAL TYPES. <i>Astrophysical Journal</i> , 2009 , 693, L71-L75	4.7	23
995	OXYGEN METALLICITY DETERMINATIONS FROM OPTICAL EMISSION LINES IN EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2009 , 696, 681-689	4.7	18
994	MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES. <i>Astrophysical Journal</i> , 2009 , 699, L178-L182	4.7	657
993	ON THE SIZE EVOLUTION OF A GALACTIC DISK IN HIERARCHICAL MERGING OF COLD DARK MATTER HALOS. <i>Astrophysical Journal</i> , 2009 , 702, 871-879	4.7	1
992	STELLAR MASSES OF LYMAN BREAK GALAXIES, LyÆMITTERS, AND RADIO GALAXIES IN OVERDENSE REGIONS ATz= 4-6. <i>Astrophysical Journal</i> , 2009 , 704, 548-563	4.7	33
991	Cosmological formation and chemical evolution of an elliptical galaxy. <i>Astronomy and Astrophysics</i> , 2009 , 499, 409-415	5.1	6
990	DISSECTING THE RED SEQUENCE. I. STAR-FORMATION HISTORIES OF QUIESCENT GALAXIES: THE COLOR-MAGNITUDE VERSUS THE COLOR-RELATION. <i>Astrophysical Journal</i> , 2009 , 693, 486-506	4.7	105
989	The diverse X-ray properties of four truly isolated elliptical galaxies: NGC 2954, NGC 6172, NGC 7052, and NGC 7785. <i>Astronomy and Astrophysics</i> , 2009 , 497, 359-370	5.1	23
988	The evolution of the mass-metallicity relation in galaxies of different morphological types. <i>Astronomy and Astrophysics</i> , 2009 , 504, 373-388	5.1	82
987	EVIDENCE FOR INTERMEDIATE-AGE STELLAR POPULATIONS IN EARLY-TYPE GALAXIES FROM K -BAND SPECTROSCOPY. <i>Astrophysical Journal</i> , 2009 , 705, L199-L203	4.7	23
986	Star formation and mass assembly in high redshift galaxies. <i>Astronomy and Astrophysics</i> , 2009 , 504, 751-	75617	263
985	Photometric mass and mass decomposition in early-type lens galaxies. <i>Astronomy and Astrophysics</i> , 2009 , 501, 461-474	5.1	59
984	THE ROLE OF DRY MERGERS FOR THE FORMATION AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES. <i>Astrophysical Journal</i> , 2009 , 696, 1094-1102	4.7	56
983	THE PROPERTIES OF QUASAR HOSTS AT THE PEAK OF THE QUASAR ACTIVITY. <i>Astrophysical Journal</i> , 2009 , 703, 1663-1671	4.7	22

982	THE AGE OF ELLIPTICALS AND THE COLOR-MAGNITUDE RELATION. <i>Astrophysical Journal</i> , 2009 , 699, 1530-1540	4.7	11
981	CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME. Astrophysical Journal, 2009 , 696, 620-635	4.7	383
980	ON THE SIZE AND COMOVING MASS DENSITY EVOLUTION OF EARLY-TYPE GALAXIES. Astrophysical Journal, 2009 , 698, 1232-1243	4.7	120
979	DESTRUCTION OF MOLECULAR GAS RESERVOIRS IN EARLY-TYPE GALAXIES BY ACTIVE GALACTIC NUCLEUS FEEDBACK. <i>Astrophysical Journal</i> , 2009 , 690, 1672-1680	4.7	67
978	DARK MATTER SCALING RELATIONS AND THE ASSEMBLY EPOCH OF COMA EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2009 , 691, 770-782	4.7	60
977	EVOLUTION OF THE COLOR-MAGNITUDE RELATION IN GALAXY CLUSTERS ATz~ 1 FROM THE ACS INTERMEDIATE REDSHIFT CLUSTER SURVEY. <i>Astrophysical Journal</i> , 2009 , 690, 42-68	4.7	153
976	EARLY-TYPE GALAXIES IN THE PEARS SURVEY: PROBING THE STELLAR POPULATIONS AT MODERATE REDSHIFT. <i>Astrophysical Journal</i> , 2009 , 706, 158-169	4.7	38
975	OBSERVATIONAL CONSTRAINTS ON THE CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND GALAXIES. <i>Astrophysical Journal</i> , 2009 , 707, 1566-1577	4.7	39
974	DYNAMICAL MASSES OF EARLY-TYPE GALAXIES AT z \sim 2: ARE THEY TRULY SUPERDENSE?. Astrophysical Journal, 2009 , 704, L34-L39	4.7	135
973	THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2009 , 705, 1099-1115	4.7	197
972	Photo-z optimization for measurements of the BAO radial scale. 2009 , 2009, 008-008		2
971	Stellar ages and metallicities of nearby elliptical galaxies. 2009 , 9, 1215-1229		4
970	THE ENVIRONMENTAL INFLUENCE ON THE EVOLUTION OF LOCAL GALAXIES. <i>Astronomical Journal</i> , 2009 , 137, 3038-3052	4.9	30
969	The evolution of cluster early-type galaxies over the past 8 Gyr. 2009 , 330, 931-936		7
968	Ultraviolet color-magnitude relation of early-type dwarf galaxies in the Virgo cluster. 2009, 330, 1034-	1036	1
967	Supermassive black holes, star formation and downsizing of elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 392, 475-482	4.3	29
966	The mid-infrared colour-magnitude relation of early-type galaxies in the Coma cluster as measured bySpitzer-IRS?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 392, 982-991	4.3	47
965	A spectroscopic survey of dwarf galaxies in the Coma cluster: stellar populations, environment and downsizing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 392, 1265-1294	4.3	80

(2009-2009)

964	Dust biasing of damped Lyman alpha systems: a Bayesian analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 557-568	4.3	37
963	The STAGES view of red spirals and dusty red galaxies: mass-dependent quenching of star formation in cluster infall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 1302-1323	4.3	160
962	The evolution of field early-type galaxies in the FDF and WHDF. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 1467-1492	4.3	24
961	Constraints on the star formation histories of galaxies fromz~ 1 to 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 406-418	4.3	43
960	Stellar mass estimates in early-type galaxies: procedures, uncertainties and models dependence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 774-794	4.3	101
959	Modelling the effects of dust evolution on the SEDs of galaxies of different morphological type. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 2001-2021	4.3	27
958	Stellar population and kinematic profiles in spiral bulges and discs: population synthesis of integrated spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 28-63	4.3	108
957	Probing recent star formation with absorption-line strengths in hierarchical models and observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 608-624	4.3	50
956	A new search for distant radio galaxies in the Southern hemisphere - III. Optical spectroscopy and analysis of the MRCR-SUMSS sample. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 1099	- 1 ₽20	29
955	The anatomy of the NGC 5044 group - II. Stellar populations and star formation histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 2103-2123	4.3	12
954	AGN jet-induced feedback in galaxies - II. Galaxy colours from a multicloud simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 61-77	4.3	39
953	The luminosity and stellar mass Fundamental Plane of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 1171-1185	4.3	108
952	Galaxy Zoo: a sample of blue early-type galaxies at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 818-829	4.3	123
951	Two-phase galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 534-547	4.3	35
950	Relative clustering and the joint halo occupation distribution of red sequence and blue-cloud galaxies in COMBO-17. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 807-831	4.3	26
949	The globular clusters-stellar haloes connection in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 1003-1020	4.3	17
948	The many manifestations of downsizing: hierarchical galaxy formation models confront observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 1776-1790	4.3	288
947	Compact high-redshift galaxies are the cores of the most massive present-day spheroids. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 898-910	4.3	192

946	Abundance ratios in red-sequence galaxies over a wide mass range: the \(\mathbb{N}\)-planes(\(\mathbb{I}\) or magnesium, calcium, carbon and nitrogen. Monthly Notices of the Royal Astronomical Society, 2009, 398, 119-132	4.3	32
945	Stellar populations in the centres of brightest cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 133-156	4.3	54
944	Recent star-forming activity in local elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 1651-1667	4.3	20
943	Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 399, 1191-1205	4.3	355
942	On the role of the post-starburst phase in the buildup of the red sequence of intermediate-redshift clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 68-77	4.3	19
941	Chemical evolution of local galaxies in a hierarchical model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 1347-1365	4.3	65
940	The relationship between substructure in 2D X-ray surface brightness images and weak-lensing mass maps of galaxy clusters: a simulation study. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 705-730	4.3	5
939	Are dry mergers dry, moist or wet?. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1264-	12/832	17
938	Ages and metallicities for quiescent galaxies in the Shapley supercluster: driving parameters of the stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 1690-1705	4.3	37
937	Central mass-to-light ratios and dark matter fractions in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 1132-1150	4.3	104
936	Optical and near-infrared colours as a discriminant of the age and metallicity of stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 695-708	4.3	21
935	How old are SN Ia progenitor systems? New observational constraints on the distribution of time delays fromGALEX. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 717-725	4.3	33
934	The role of black holes in galaxy formation and evolution. 2009 , 460, 213-9		244
933	The history of star formation and mass assembly in early-type galaxies. 2009 , 392, L35-L39		27
932	A different approach to galaxy evolution. 2009 , 398, L58-L62		70
931	Physical Properties and Environments of Nearby Galaxies. 2009 , 47, 159-210		319
930	DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. IV. EVOLUTION IN THE SCALING RELATIONS OF SPHEROIDS. <i>Astrophysical Journal</i> , 2009 , 691, 1424-1458	4.7	203
929	DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. II. LUSPELLIPTICALS. Astrophysical Journal, Supplement Series, 2009 , 181, 135-182	8	187

(2010-2009)

928	STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES. <i>Astrophysical Journal, Supplement Series</i> , 2009 , 182, 216-309	8	688
927	TESTS OF CHEMICAL ENRICHMENT SCENARIOS IN ELLIPTICALS USING CONTINUUM COLORS AND SPECTROSCOPY. <i>Astronomical Journal</i> , 2009 , 137, 528-536	4.9	9
926	DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. III. LORELLIPTICALS AND MISSING LIGHT. Astrophysical Journal, Supplement Series, 2009, 181, 486-532	8	118
925	MODELING THE STAR-FORMING UNIVERSE AT $z=2$: IMPACT OF COLD ACCRETION FLOWS. Astrophysical Journal, 2009 , 700, L21-L24	4.7	42
924	Stellar Populations and Kinematics in Spiral Galaxies. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 172-175	0.1	
923	What have we learned from large spectroscopic surveys?. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 195-204	0.1	
922	Ecology of galaxy stellar populations from optical spectroscopic surveys. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 205-208	0.1	
921	Mass dependent Evolution of Field Early-Type Galaxies Since z=1. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 335-336	0.1	
920	Challenges in Stellar Population Studies. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 3-12	0.1	
919	Stellar population study in early-type galaxies: an approach from the K band. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 85-88	0.1	
918	Stellar populations in brightest cluster galaxies. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 374-375	0.1	
917	The Role of Quasars in Galaxy Formation. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 17-25	0.1	1
916	Hot ISM in young elliptical galaxies. <i>Proceedings of the International Astronomical Union</i> , 2009 , 5, 285-26	850.1	
915	KINEMATIC PROPERTIES AND STELLAR POPULATIONS OF FAINT EARLY-TYPE GALAXIES. II. LINE-STRENGTH MEASUREMENTS OF CENTRAL COMA GALAXIES. <i>Astrophysical Journal</i> , 2009 , 691, 186	52 ⁴ 1878	3 ¹²
914	THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TOzli .2. Astrophysical Journal, 2009 , 701, 787-803	4.7	66
913	THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. I. THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE INITIAL MASS FUNCTION TO THE DERIVED PHYSICAL PROPERTIES OF GALAXIES. <i>Astrophysical Journal</i> , 2009 , 699, 486-506	4.7	949
912	Metallicity Distributions In and Around Galaxies. 2010 , 27, 242-251		3
911	Molecular Gas and Star Formation in Local EarlyEype Galaxies. <i>Proceedings of the International Astronomical Union</i> , 2010 , 6, 55-58	0.1	

910	IntegratedK-band spectra of old and intermediate-age globular clusters in the Large Magellanic Cloud. <i>Astronomy and Astrophysics</i> , 2010 , 510, A19	5.1	19
909	A z = 1.82 ANALOG OF LOCAL ULTRA-MASSIVE ELLIPTICAL GALAXIES. <i>Astrophysical Journal Letters</i> , 2010 , 715, L6-L11	7.9	45
908	zCOSMOS 10k-bright spectroscopic sample. Astronomy and Astrophysics, 2010 , 524, A67	5.1	30
907	THE FORMATION OF MASSIVE CLUSTER GALAXIES. Astrophysical Journal, 2010 , 720, 284-298	4.7	71
906	THE GROWTH OF MASSIVE GALAXIES SINCEz= 2. Astrophysical Journal, 2010, 709, 1018-1041	4.7	571
905	THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2010 , 709, 1195-1202	4.7	298
904	A SPECTROSCOPICALLY CONFIRMED X-RAY CLUSTER AT $z=1.62$ WITH A POSSIBLE COMPANION IN THE SUBARU/ XMM-NEWTON DEEP FIELD. <i>Astrophysical Journal Letters</i> , 2010 , 716, L152-L156	7.9	98
903	GALAXY DOWNSIZING EVIDENCED BY HYBRID EVOLUTIONARY TRACKS. <i>Astrophysical Journal</i> , 2010 , 723, 755-766	4.7	29
902	The environmental dependence of galaxy properties atz´=´2. Astronomy and Astrophysics, 2010 , 518, A1	85.1	32
901	GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES. <i>Astrophysical Journal</i> , 2010 , 711, 284-302	4.7	152
900	DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING LIGHT INITIAL MASS FUNCTIONS. <i>Astrophysical Journal Letters</i> , 2010 , 721, L163-L167	7.9	166
899	DISSECTING THE RED SEQUENCE. III. MASS-TO-LIGHT VARIATIONS IN THREE-DIMENSIONAL FUNDAMENTAL PLANE SPACE. <i>Astrophysical Journal</i> , 2010 , 717, 803-824	4.7	83
898	On the buildup of massive early-type galaxies atz\$la\$ 1. Astronomy and Astrophysics, 2010 , 519, A55	5.1	27
897	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. <i>Astrophysical Journal</i> , 2010 , 721, 193-221	4.7	1214
896	THE ENVIRONMENTAL DEPENDENCE OF THE LUMINOSITYSIZE RELATION FOR GALAXIES. <i>Astrophysical Journal</i> , 2010 , 715, 606-622	4.7	27
895	zCOSMOS 🛮 0k-bright spectroscopic sample. <i>Astronomy and Astrophysics</i> , 2010 , 523, A13	5.1	297
894	DISSECTING THE RED SEQUENCE. IV. THE ROLE OF TRUNCATION IN THE TWO-DIMENSIONAL FAMILY OF EARLY-TYPE GALAXY STAR FORMATION HISTORIES. <i>Astrophysical Journal</i> , 2010 , 721, 278-2	9 4 :7	25
893	THE MASS-METALLICITY RELATION OF GLOBULAR CLUSTERS IN THE CONTEXT OF NONLINEAR COLOR-METALLICTY RELATIONS. <i>Astrophysical Journal</i> , 2010 , 710, 51-63	4.7	30

(2010-2010)

892	COSMOLOGICAL SIMULATIONS OF MASSIVE COMPACT HIGH-zGALAXIES. <i>Astrophysical Journal</i> , 2010 , 721, 1755-1764	4.7	14
891	THE ABUNDANCE PATTERN IN THE HOT ISM OF NGC 4472: INSIGHTS AND ANOMALIES. Astrophysical Journal, 2010 , 716, 384-397	4.7	18
890	CHEMODYNAMICS OF COMPACT STELLAR SYSTEMS IN NGC 5128: HOW SIMILAR ARE GLOBULAR CLUSTERS, ULTRA-COMPACT DWARFS, AND DWARF GALAXIES?. <i>Astrophysical Journal</i> , 2010 , 712, 1191	-12708	49
889	THE BUILDUP OF THE HUBBLE SEQUENCE IN THE COSMOS FIELD. <i>Astrophysical Journal Letters</i> , 2010 , 714, L47-L51	7.9	68
888	RR LYRAE VARIABLES IN M32 AND THE DISK OF M31. Astrophysical Journal, 2010 , 708, 817-833	4.7	32
887	COLORMAGNITUDE RELATIONS OF EARLY-TYPE DWARF GALAXIES IN THE VIRGO CLUSTER: AN ULTRAVIOLET PERSPECTIVE. <i>Astrophysical Journal Letters</i> , 2010 , 721, L72-L77	7.9	17
886	THE NUCLEAR X-RAY EMISSION OF NEARBY EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2010 , 717, 640-652	4.7	50
885	Cold gas and young stars in tidally disturbed ellipticals at z= 0. 2010 , 401, L29-L33		36
884	Distinct core and halo stellar populations and the formation history of the bright Coma cluster early-type galaxy NGC 4889. 2010 , 407, L26-L30		73
883	Early-type galaxies at large galactocentric radii - II. Metallicity gradients and the [Z/H]-mass, [Fe]-mass relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 272-292	4.3	109
882	SPIDER III. The Fundamental Plane of early-type galaxies in grizYJHK. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 1335-1360	4.3	48
881	The age-redshift relation for luminous red galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 213-233	4.3	25
880	The SAURON project - XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 97-132	4.3	251
879	Moderate steepening of galaxy cluster dark matter profiles by baryonic pinching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 1998-2007	4.3	20
878	SPIDER - III. Environmental dependence of the Fundamental Plane of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 1361-1386	4.3	41
877	Colours of bulges and discs within galaxy clusters and the signature of disc fading on infall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 405-420	4.3	30
876	Spectroscopy of z~ 5 Lyman break galaxies in the ESO Remote Galaxy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 1155-1171	4.3	26
875	Exploring the star formation history of elliptical galaxies: beyond simple stellar populations with a new line strength estimator. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 447-460	4.3	30

874	Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 173-190	4.3	74
873	A new empirical method to infer the starburst history of the Universe from local galaxy properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 985-1004	4.3	32
872	Galaxy assembly bias on the red sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 1942-1958	4.3	71
871	The quasar relation through cosmic time - II. Evidence for evolution fromz = 3to the present age. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2453-2461	4.3	127
870	Hierarchical models of high-redshift galaxies with thermally pulsing asymptotic giant branch stars: comparison with observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 1749-1758	4.3	29
869	Can galaxy outflows and re-accretion produce a downsizing in the specific star-formation rate of late-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	9
868	Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	98
867	The role of environment on the formation of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	6
866	Polytropic dark haloes of elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 2010,	4.3	8
865	The evolution of luminous red galaxies in the Sloan Digital Sky Survey 7th data release. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	6
864	Clustering properties of galaxies selected in stellar mass: breaking down the link between luminous and dark matter in massive galaxies from z= 0 to z= 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 406, 147-164	4.3	46
863	The central dark matter content of early-type galaxies: scaling relations and connections with star formation histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	29
862	The first gigayear of bulge star formation in Virgo ellipticals: constraints from their globular cluster systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	5
861	Colour and stellar population gradients in galaxies: correlation with mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 144-162	4.3	99
860	Excess AGN activity in the z= 2.30 Protocluster in HS 1700+64. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 846-853	4.3	44
859	A census of nuclear stellar discs in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 969-985	4.3	19
858	A near-IR study of the host galaxies of 2 Jy radio sources at 0.03 ?z? 0.5 - I. The data?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 1739-1766	4.3	33
857	Abundance gradient slopes versus mass in spheroids: predictions by monolithic models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 1347-1359	4.3	63

(2010-2010)

856	The origin of the Hubble sequence in IDM cosmology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 2321-2334	4.3	24
855	Sizes and ages of SDSS ellipticals: comparison with hierarchical galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 117-128	4.3	38
854	Environment and self-regulation in galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	189
853	Empirical calibrations of optical absorption-line indices based on the stellar library MILES. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 406, 165-180	4.3	20
852	A multiscale approach to environment and its influence on the colour distribution of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	17
851	Radially extended kinematics and stellar populations of the massive ellipticals NGC 1600, NGC 4125, and NGC 7619. <i>Astronomy and Astrophysics</i> , 2010 , 516, A4	5.1	30
850	THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS. <i>Astrophysical Journal</i> , 2010 , 718, 1001-1018	4.7	411
849	The inner halo of M 87: a first direct view of the red-giant population. <i>Astronomy and Astrophysics</i> , 2010 , 524, A71	5.1	83
848	The dilution peak, metallicity evolution, and dating of galaxy interactions and mergers. <i>Astronomy and Astrophysics</i> , 2010 , 518, A56	5.1	52
847	STELLAR POPULATIONS OF ELLIPTICAL GALAXIES IN THE LOCAL UNIVERSE. <i>Astrophysical Journal</i> , 2010 , 722, 491-519	4.7	46
846	Nearby early-type galaxies with ionized gas. Astronomy and Astrophysics, 2010, 519, A40	5.1	96
845	STAR FORMATION HISTORIES IN A CLUSTER ENVIRONMENT ATz~ 0.84. <i>Astrophysical Journal</i> , 2010 , 725, 1252-1276	4.7	32
844	GECO: Galaxy Evolution COde IA new semi-analytical model of galaxy formation. <i>Astronomy and Astrophysics</i> , 2010 , 518, A14	5.1	10
843	HUBBLE SPACE TELESCOPE WFC3 GRISM SPECTROSCOPY AND IMAGING OF A GROWING COMPACT GALAXY AT $z=1.9$. Astrophysical Journal Letters, 2010 , 718, L73-L77	7.9	44
842	X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. I. X-RAY LUMINOSITY FUNCTION OF LOW-MASS X-RAY BINARIES. <i>Astrophysical Journal</i> , 2010 , 721, 1523-1530	4.7	49
841	SPIDER. IV. OPTICAL AND NEAR-INFRARED COLOR GRADIENTS IN EARLY-TYPE GALAXIES: NEW INSIGHT INTO CORRELATIONS WITH GALAXY PROPERTIES. <i>Astronomical Journal</i> , 2010 , 140, 1528-1556	4.9	45
840	THE HOMOGENEOUS PROPERTIES OF HEELECTED GALAXIES AT (0.05 . <i>Astronomical Journal</i> , 2010 , 140, 561-576	4.9	1
839	Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations. 2010 , 2010, 1-5		5

838	THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2010 , 724, 511-525	4.7	333
837	INTRINSIC COLORS AND AGES OF EXTREMELY RED ELLIPTICAL GALAXIES AT HIGH REDSHIFT. Astronomical Journal, 2010 , 139, 540-544	4.9	5
836	EMISSION CORRECTIONS FOR HYDROGEN FEATURES OF THE GRAVES ET AL. SLOAN DIGITAL SKY SURVEY AVERAGES OF EARLY-TYPE, NON-LINER GALAXIES. <i>Astronomical Journal</i> , 2010 , 140, 152-156	4.9	9
835	The Abundance Pattern of O, Ne, Mg, and Fe in the Interstellar Medium of S0 Galaxy NGC 4382 Observed with Suzaku. 2010 , 62, 787-796		7
834	THE TWO PHASES OF GALAXY FORMATION. Astrophysical Journal, 2010, 725, 2312-2323	4.7	536
833	Abundance Patterns in the Interstellar Medium of the S0 Galaxy NGC 1316 (Fornax A) Revealed with Suzaku. 2010 , 62, 1435-1443		9
832	Cosmic chronometers: constraining the equation of state of dark energy. I:H(z) measurements. 2010 , 2010, 008-008		613
831	Coupled dark matter-dark energy in light of near universe observations. 2010 , 2010, 029-029		77
830	THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION. <i>Astrophysical Journal</i> , 2010 , 712, 833-857	4.7	551
829	Physical Properties of Galaxies fromz= 2日. 2011 , 49, 525-580		109
829 828	Physical Properties of Galaxies fromz = 2½. 2011, 49, 525-580 Two fossil groups of galaxies at ziù.4 in the Cosmic Evolution Survey: accelerated stellar-mass build-up, different progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011, 417, 2927-2937	. 4.3	109
	Two fossil groups of galaxies at zD.4 in the Cosmic Evolution Survey: accelerated stellar-mass	, 4·3 5.1	
828	Two fossil groups of galaxies at z. at z. at z. at z. at z. accelerated stellar-mass build-up, different progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2927-2937. An optical/NIR survey of globular clusters in early-type galaxies. <i>Astronomy and Astrophysics</i> , 2011 ,		12
828 827	Two fossil groups of galaxies at z. 10.4 in the Cosmic Evolution Survey: accelerated stellar-mass build-up, different progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2927-2937. An optical/NIR survey of globular clusters in early-type galaxies. <i>Astronomy and Astrophysics</i> , 2011 , 525, A20. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf	5.1	12
828 827 826	Two fossil groups of galaxies at z\overline{D}.4 in the Cosmic Evolution Survey: accelerated stellar-mass build-up, different progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2927-2937. An optical/NIR survey of globular clusters in early-type galaxies. <i>Astronomy and Astrophysics</i> , 2011 , 525, A20. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups. <i>Astronomy and Astrophysics</i> , 2011 , 528, A19. An empirical calibration of Lick indices using Milky Way globular clusters. <i>Astronomy and</i>	5.1 5.1	12 40 10
828 827 826 825	Two fossil groups of galaxies at zlū.4 in the Cosmic Evolution Survey: accelerated stellar-mass build-up, different progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2927-2937. An optical/NIR survey of globular clusters in early-type galaxies. <i>Astronomy and Astrophysics</i> , 2011 , 525, A20. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups. <i>Astronomy and Astrophysics</i> , 2011 , 528, A19. An empirical calibration of Lick indices using Milky Way globular clusters. <i>Astronomy and Astrophysics</i> , 2011 , 530, A22	5.1 5.1	12 40 10
828 827 826 825	Two fossil groups of galaxies at zlū.4 in the Cosmic Evolution Survey: accelerated stellar-mass build-up, different progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2927-2937. An optical/NIR survey of globular clusters in early-type galaxies. <i>Astronomy and Astrophysics</i> , 2011 , 525, A20 Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups. <i>Astronomy and Astrophysics</i> , 2011 , 528, A19 An empirical calibration of Lick indices using Milky Way globular clusters. <i>Astronomy and Astrophysics</i> , 2011 , 530, A22 . 2011 , How old are the stars in the halo of NGC 5128 (Centaurus A)?. <i>Astronomy and Astrophysics</i> , 2011 ,	5.15.15.1	12 40 10 4

820	Abundance ratios in the hot ISM of elliptical galaxies. Astronomy and Astrophysics, 2011, 530, A98	5.1	16
819	The star-formation histories of early-type galaxies from ATLAS3D. <i>Proceedings of the International Astronomical Union</i> , 2011 , 7, 244-247	0.1	2
818	REVISITING WITHCHANDRATHE SCALING RELATIONS OF THE X-RAY EMISSION COMPONENTS (BINARIES, NUCLEI, AND HOT GAS) OF EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2011 , 729, 12	4.7	143
817	CHEMICAL ABUNDANCE ANTICORRELATIONS IN GLOBULAR CLUSTER STARS: THE EFFECT ON CLUSTER INTEGRATED SPECTRA. <i>Astrophysical Journal</i> , 2011 , 734, 72	4.7	9
816	CONFIRMATION OF ENHANCED DWARF-SENSITIVE ABSORPTION FEATURES IN THE SPECTRA OF MASSIVE ELLIPTICAL GALAXIES: FURTHER EVIDENCE FOR A NON-UNIVERSAL INITIAL MASS FUNCTION. <i>Astrophysical Journal Letters</i> , 2011 , 735, L13	7.9	95
815	ANATOMY OF A POST-STARBURST MINOR MERGER: A MULTI-WAVELENGTH WFC3 STUDY OF NGC 4150. <i>Astrophysical Journal</i> , 2011 , 727, 115	4.7	28
814	DISCOVERY OF COLD, PRISTINE GAS POSSIBLY ACCRETING ONTO AN OVERDENSITY OF STAR-FORMING GALAXIES AT REDSHIFTz~ 1.6. <i>Astrophysical Journal</i> , 2011 , 743, 95	4.7	46
813	THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2011 , 727, 96	4.7	98
812	ON THE RADIAL STELLAR CONTENT OF EARLY-TYPE GALAXIES AS A FUNCTION OF MASS AND ENVIRONMENT. <i>Astrophysical Journal Letters</i> , 2011 , 740, L41	7.9	20
811	THE EFFECT OF HELIUM-ENHANCED STELLAR POPULATIONS ON THE ULTRAVIOLET-UPTURN PHENOMENON OF EARLY-TYPE GALAXIES. <i>Astrophysical Journal Letters</i> , 2011 , 740, L45	7.9	38
810	THE HISTORY OF STAR FORMATION IN GALAXY DISKS IN THE LOCAL VOLUME AS MEASURED BY THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. <i>Astrophysical Journal Letters</i> , 2011 , 734, L22	7.9	15
809	EARLY-TYPE GALAXIES ATz~ 1.3. III. ON THE DEPENDENCE OF FORMATION EPOCHS AND STAR FORMATION HISTORIES ON STELLAR MASS AND ENVIRONMENT. <i>Astrophysical Journal</i> , 2011 , 732, 94	4.7	37
808	ULTRA-COMPACT DWARFS IN THE COMA CLUSTER. Astrophysical Journal, 2011 , 737, 86	4.7	45
807	THE HUBBLE SEQUENCE IN GROUPS: THE BIRTH OF THE EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2011 , 736, 88	4.7	64
806	Reaching Virgo Cluster Distances and Beyond. 2011 , 135-174		
805	PPAK Wide-field Integral Field Spectroscopy of NGC 628 - I. The largest spectroscopic mosaic on a single galaxy?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 313-340	4.3	63
804	The colour-magnitude relation of elliptical and lenticular galaxies in the ESO Distant Cluster Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 280-292	4.3	24
803	Molecular gas and star formation in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 1197-1222	4.3	94

802	Nearby early-type galaxies with ionized gas: the UV emission from GALEX observations?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 311-331	4.3	49
801	How does galaxy environment matter? The relationship between galaxy environments, colour and stellar mass at 0.4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 929-946	4.3	58
800	Panchromatic averaged stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 1897-1908	4.3	9
799	Star formation in the XMMU J2235.30557 galaxy cluster at z= 1.39. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 2009-2018	4.3	30
798	The PN.S Elliptical Galaxy Survey: a standard IDM halo around NGC 4374??. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 2035-2053	4.3	74
797	The stellar populations of bright coma cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 2558-2585	4.3	19
796	Stellar population trends in S0 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 423-447	4.3	22
795	The galaxy population of Abell 1367: the stellar mass-metallicity relation?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , no-no	4.3	3
794	Mid-infrared colour gradients and the colour-magnitude relation in Virgo early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 2063-2070	4.3	7
793	Flux-calibrated stellar population models of Lick absorption-line indices with variable element abundance ratios. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 2183-2198	4.3	144
792	Constraining the star formation and the assembly histories of normal and compact early-type galaxies at 1 Monthly Notices of the Royal Astronomical Society, 2011 , 412, 2707-2716	4.3	44
791	The stellar evolution of luminous red galaxies, and its dependence on colour, redshift, luminosity and modelling. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 434-460	4.3	32
790	The stellar populations of early-type galaxies - II. The effects of environment and mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 1036-1053	4.3	17
789	Large-scale gas dynamics in the adhesion model: implications for the two-phase massive galaxy formation scenario. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 3022-3038	4.3	9
788	Extending pure luminosity evolution models into the mid-infrared, far-infrared and submillimetre. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 1875-1886	4.3	4
787	The SAURON project - XVIII. The integrated UV-line-strength relations of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 1887-1902	4.3	28
786	Is the metallicity of their host galaxies a good measure of the metallicity of Type Ia supernovae?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 1592-1606	4.3	10
785	The ATLAS3D project - IV. The molecular gas content of early-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 940-967	4.3	296

(2011-2011)

7 ⁸ 4	The spatial distribution and origin of the FUV excess in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 3410-3423	4.3	24
783	Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass function and the distribution of dark matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 545-562	4.3	139
782	Hemitters in z~ 2 protoclusters: evidence for faster evolution in dense environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 2993-3005	4.3	77
781	Does stellar mass assembly history vary with environment?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 2818-2826	4.3	2
7 ⁸ 0	A simple model for AGN feedback in nearby early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 3798-3806	4.3	40
779	An HE earch for overdense regions at $z = 2.23$?. Monthly Notices of the Royal Astronomical Society, 2011 , 416, 2041-2059	4.3	38
778	The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within CDM. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 845-862	4.3	80
777	The relationship between star formation rates, local density and stellar mass up to $z \sim 3$ in the GOODS NICMOS Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 938-948	4.3	32
776	Dating the formation of the counter-rotating stellar disc in the spiral galaxy NGC 5719 by disentangling its stellar populations?. 2011 , 412, L113-L117		57
775	A possible solution to the [拝e]-ゆroblem in early-type galaxies within a hierarchical galaxy formation model. 2011 , 413, L1-L5		12
774	The link between the star formation history and [Fe]. 2011 , 418, L74-L78		54
773	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320	4.3	39
772	Gemini/GMOS imaging of globular cluster systems in five early-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , no-no	4.3	29
771	The formation and evolution of Virgo cluster galaxies III. Stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 1996-2019	4.3	40
770	The SAURON project IXIX. Optical and near-infrared scaling relations of nearby elliptical, lenticular and Sa galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 1787-1816	4.3	61
769	Fitting the integrated spectral energy distributions of galaxies. 2011 , 331, 1-51		209
768	Cosmological insights into fundamental physics. 2011 , 59, 602-617		4
767	Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers. 2011 , 2011, 045-045		35

766	Cosmic Star-Formation Activity at z = 2.2 Probed by H Æmission-Line Galaxies. 2011 , 63, S437-S446		34
765	IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES. <i>Astrophysical Journal, Supplement Series</i> , 2011 , 195, 13	8	121
764	Stellar kinematics and populations out to 1.5 effective radii in the elliptical galaxy NGC 4636. 2011 , 11, 909-923		4
763	Discovery of an Excess of H Emitters around 4C 23.56 at z = 2.48. 2011 , 63, S415-S435		54
762	Galaxy Evolution in a Pilot Survey up toz=1and CDM Halos. 2011 , 2011, 1-13		2
761	A Method of Identifying AGNs Based on Emission-Line Excess and the Nature of Low-Luminosity AGNs in the Sloan Digital Sky Survey. II. The Nature of Low-Luminosity AGNs. 2012 , 64, 37		10
760	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 199, 25	8	556
759	FURTHER EVIDENCE FOR LARGE CENTRAL MASS-TO-LIGHT RATIOS IN EARLY-TYPE GALAXIES: THE CASE OF ELLIPTICALS AND LENTICULARS IN THE A262 CLUSTER. <i>Astronomical Journal</i> , 2012 , 144, 78	4.9	40
758	EVOLUTION OF THE VELOCITY-DISPERSION FUNCTION OF LUMINOUS RED GALAXIES: A HIERARCHICAL BAYESIAN MEASUREMENT. <i>Astronomical Journal</i> , 2012 , 143, 90	4.9	22
757	Formation and evolution of early-type galaxies [III. Dependence of the star formation history on the total mass and initial overdensity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 15:	30 ⁴ 1354	4 ¹⁹
756	UNCOVERING THE FORMATION OF ULTRACOMPACT DWARF GALAXIES BY MULTIVARIATE STATISTICAL ANALYSIS. <i>Astrophysical Journal</i> , 2012 , 750, 91	4.7	13
755	THE GLOBULAR CLUSTER SYSTEM OF NGC 4636 AND FORMATION OF GLOBULAR CLUSTERS IN GIANT ELLIPTICAL GALAXIES. <i>Astrophysical Journal</i> , 2012 , 759, 116	4.7	15
754	THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE. <i>Astrophysical Journal</i> , 2012 , 757, 82	4.7	85
753	THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. <i>Astrophysical Journal</i> , 2012 , 750, 32	4.7	53
752	Constraining the structure and formation of the Galactic bulge from a field in its outskirts. <i>Astronomy and Astrophysics</i> , 2012 , 546, A57	5.1	62
751	STRONG MOLECULAR HYDROGEN EMISSION AND KINEMATICS OF THE MULTIPHASE GAS IN RADIO GALAXIES WITH FAST JET-DRIVEN OUTFLOWS. <i>Astrophysical Journal</i> , 2012 , 747, 95	4.7	85
750	THEHUBBLE SPACE TELESCOPECLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS. <i>Astrophysical Journal</i> , 2012 , 745, 32	4.7	31
749	THE ROLE OF ENVIRONMENT IN LOW-LEVEL ACTIVE GALACTIC NUCLEUS ACTIVITY: NO EVIDENCE FOR CLUSTER ENHANCEMENT. Astrophysical Journal Letters, 2012, 745, L13	7.9	9

(2012-2012)

748	SUBARU SPECTROSCOPY OF THE GLOBULAR CLUSTERS IN THE VIRGO GIANT ELLIPTICAL GALAXY M86. <i>Astrophysical Journal</i> , 2012 , 757, 184	4.7	11
747	THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE. <i>Astrophysical Journal</i> , 2012 , 746, 160	4.7	42
746	LOW-MASS X-RAY BINARIES INDICATE A TOP-HEAVY STELLAR INITIAL MASS FUNCTION IN ULTRACOMPACT DWARF GALAXIES. <i>Astrophysical Journal</i> , 2012 , 747, 72	4.7	73
745	AN IN-DEPTH STUDY OF THE ABUNDANCE PATTERN IN THE HOT INTERSTELLAR MEDIUM IN NGC 4649. <i>Astrophysical Journal</i> , 2012 , 757, 121	4.7	10
744	The stellar populations of massive galaxies in the local Universe. <i>Proceedings of the International Astronomical Union</i> , 2012 , 8, 290-299	0.1	
743	Understanding the growth of massive galaxies via stellar populations. <i>Proceedings of the International Astronomical Union</i> , 2012 , 8, 125-128	0.1	
742	Galaxy formation and evolution with the Dark Energy Survey. <i>Proceedings of the International Astronomical Union</i> , 2012 , 8, 137-140	0.1	
741	FORMING EARLY-TYPE GALAXIES IN IDM SIMULATIONS. I. ASSEMBLY HISTORIES. <i>Astrophysical Journal</i> , 2012 , 754, 115	4.7	123
740	EVIDENCE FOR A MILD STEEPENING AND BOTTOM-HEAVY INITIAL MASS FUNCTION IN MASSIVE GALAXIES FROM SODIUM AND TITANIUM-OXIDE INDICATORS. <i>Astrophysical Journal Letters</i> , 2012 , 753, L32	7.9	143
739	THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ?z Astrophysical Journal, 2012 , 760, 131	4.7	167
738	COUNTING LOW-MASS STARS IN INTEGRATED LIGHT. Astrophysical Journal, 2012 , 747, 69	4.7	172
737	The SLUGGS survey: calcium triplet-based spectroscopic metallicities for over 900 globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1475-1495	4.3	95
736	The growth of galactic bulges through mergers in ICDM haloes revisited II. Present-day properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 1503-1516	4.3	31
735	The galaxy ancestor problem. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1731-1749	4.3	5
734	The similar stellar populations of quiescent spiral and elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 3006-3015	4.3	13
733	SPIDER IVII. Revealing the stellar population content of massive early-type galaxies out to 8Re. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2300-2317	4.3	82
732	The stellar initial mass function in red-sequence galaxies: 1-th spectroscopy of Coma cluster galaxies with Subaru/FMOS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2994-3007	4.3	51
731	Ages and abundances in large-scale stellar discs of nearby S0 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 790-805	4.3	39

730	Secular evolution in action: central values and radial trends in the stellar populations of boxy bulges. 2012 , no-no		3
729	X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. II. ABUNDANCE RATIO IN THE HOT INTERSTELLAR MATTER. <i>Astrophysical Journal</i> , 2012 , 751, 38	4.7	8
728	THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. I. DATA AND EMPIRICAL TRENDS. <i>Astrophysical Journal</i> , 2012 , 760, 70	4.7	87
727	The globular cluster system of NGC 1316. Astronomy and Astrophysics, 2012, 543, A131	5.1	24
726	AMUSE-Field I: NUCLEAR X-RAY PROPERTIES OF LOCAL FIELD AND GROUP SPHEROIDS ACROSS THE STELLAR MASS SCALE. <i>Astrophysical Journal</i> , 2012 , 747, 57	4.7	40
725	THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS. <i>Astrophysical Journal</i> , 2012 , 760, 71	4.7	363
724	A TALE OF DWARFS AND GIANTS: USING Az= 1.62 CLUSTER TO UNDERSTAND HOW THE RED SEQUENCE GREW OVER THE LAST 9.5 BILLION YEARS. <i>Astrophysical Journal</i> , 2012 , 755, 14	4.7	49
723	THE AGE-REDSHIFT RELATION FOR LUMINOUS RED GALAXIES OBTAINED FROM FULL SPECTRUM FITTING AND ITS COSMOLOGICAL IMPLICATIONS. <i>Astrophysical Journal</i> , 2012 , 758, 107	4.7	11
722	Classifying radio emitters from the Sloan Digital Sky Survey. <i>Astronomy and Astrophysics</i> , 2012 , 546, A17	7 5.1	6
721	Dependence of the low-mass X-ray binary population on stellar age. <i>Astronomy and Astrophysics</i> , 2012 , 546, A36	5.1	49
720	Self-gravitating equilibrium models of dwarf galaxies and the minimum mass for star formation. <i>Astronomy and Astrophysics</i> , 2012 , 543, A129	5.1	9
719	The SAURON project - XX. The Spitzer [3.6] [[4.5] colour in early-type galaxies: colours, colour gradients and inverted scaling relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 2031-2053	4.3	24
718	Disentangling galaxy environment and host halo mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 2133-2146	4.3	86
717	The evolution of K* and the halo occupation distribution since z= 1.5: observations versus simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 2821-2835	4.3	15
716	The 6dF Galaxy Survey: stellar population trends across and through the Fundamental Plane. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 2773-2784	4.3	23
715	Herschel?-ATLAS/GAMA: dusty early-type galaxies and passive spirals. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 2545-2578	4.3	90
714	Environmental quenching and hierarchical cluster assembly: evidence from spectroscopic ages of red-sequence galaxies in Coma. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 3167-3180) ^{4.3}	79
713	Small-scale structures of dark matter and flux anomalies in quasar gravitational lenses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 3414-3425	4.3	37

712	A WFC3 study of globular clusters in NGC 4150: an early-type minor merger. 2012, 422, L96-L100		6
711	Constraining stellar assembly and active galactic nucleus feedback at the peak epoch of star formation. 2012 , 425, L96-L100		10
710	Photometric and spectroscopic study of Abell 0671. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	
709	Evolution of the most massive galaxies to $z=0.6\mathrm{II}$. A new method for physical parameter estimation. Monthly Notices of the Royal Astronomical Society, 2012 , no-no	4.3	71
708	Chemical element ratios of Sloan Digital Sky Survey early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 1908-1926	4.3	83
707	The Sydney-AAO Multi-object Integral field spectrograph. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	196
706	The ATLAS3D project IXI. Dense molecular gas properties of CO-luminous early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 1298-1314	4.3	64
705	Gas and stellar metallicities in H ii galaxies. Monthly Notices of the Royal Astronomical Society, 2012, no-	∙ nథ .3	
704	The globular cluster kinematics and galaxy dark matter content of NGC 3923. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 1485-1498	4.3	26
703	What drives the ultraviolet colours of passive galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 2982-2997	4.3	29
702	On the central stellar mass density and the inside-out growth of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 3107-3117	4.3	34
701	Data and two-dimensional scaling relations for galaxies in Abell 1689: a hint of size evolution at z~0.2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 256-283	4.3	17
700	Recovering galaxy stellar population properties from broad-band spectral energy distribution fitting. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 3285-3326	4.3	159
699	Globular cluster systems of early-type galaxies in low-density environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 3591-3610	4.3	23
698	Star formation activities in early-type brightest cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 422-436	4.3	49
697	Structure and dynamics of galaxies with a low surface-brightness disc - II. Stellar populations of bulges?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 962-982	4.3	30
696	Suppression of star formation in the central 200 kpc of a z= 1.4 galaxy cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 3652-3662	4.3	20
695	The progenitors of present-day massive red galaxies up to z D .7 - finding passive galaxies using SDSS-I/II and SDSS-III. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 136-156	4.3	30

694	Integrated spectral energy distributions of binary star composite stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 874-883	4.3	12
693	The chemical composition of ultracompact dwarf galaxies in the Virgo and Fornax clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 325-337	4.3	34
692	Building galaxies by accretion and in situ star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 641-656	4.3	110
691	Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. 2013 , 51, 511-653		2099
690	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013 , 51, 393-455		447
689	Cosmic chronometers in the Rh´= ct Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 2669-2675	4.3	70
688	STRONTIUM AND BARIUM IN EARLY-TYPE GALAXIES. Astrophysical Journal Letters, 2013 , 763, L25	7.9	14
687	Near-infrared spectroscopy of post-starburst galaxies: a limited impact of TP-AGB stars on galaxy spectral energy distributions?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1479-1497	4.3	80
686	SPIDER VIII Dronstraints on the stellar initial mass function of early-type galaxies from a variety of spectral features. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 3017-3047	4.3	193
685	Characterizing the satellites of massive galaxies up to $z \sim 2$: young populations to build the outskirts of nearby massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 792-	7 9 8	13
684	Evolutionary paths among different red galaxy types at 0.3 Monthly Notices of the Royal Astronomical Society, 2013 , 428, 999-1019	4.3	26
683	The ATLAS3D project IXIX. The hot gas content of early-type galaxies: fast versus slow rotators. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 1845-1861	4.3	44
682	Properties of Type Ia supernovae inside rich galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 1443-1459	4.3	6
681	The cosmic evolution of the IMF under the Jeans conjecture with implications for massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2892-2906	4.3	23
680	Dwarf elliptical galaxies as ancient tidal dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 1858-1871	4.3	46
679	ISM chemistry in metal-rich environments: molecular tracers of metallicity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 1659-1674	4.3	12
678	Dry minor mergers and size evolution of high-z compact massive early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 641-657	4.3	39
677	The effect of environment on discs and bulges. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 2141-2162	4.3	27

676	Detecting massive galaxies at high redshift using the Dark Energy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 296-312	4.3	5
675	Colour gradients of high-redshift early-type galaxies from hydrodynamical monolithic models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 786-797	4.3	8
674	The outer halo of the nearest giant elliptical: a VLT/VIMOS survey of the resolved stellar populations in Centaurus A to 85 kpc?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 832	2- 8 47	30
673	The ATLAS3D project IXX. Masssize and massidistributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 1862-1893	4.3	401
672	Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 1383-1397	4.3	148
671	The star-forming progenitors of massive red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 686-698	4.3	9
670	The (galaxy-wide) IMF in giant elliptical galaxies: from top to bottom. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 2274-2280	4.3	62
669	The ATLAS3D project IXXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 1894-19	9 4 3	63
668	An empirical prediction for stellar metallicity distributions in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1766-1773	4.3	17
667	CORRELATIONS AMONG GALAXY PROPERTIES FROM THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2013, 207, 8	8	2
666	THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET DPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2013 , 776, 37	4.7	14
665	THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS. <i>Astrophysical Journal</i> , 2013 , 776, 64	4.7	64
664	HST/WFC3 NEAR-INFRARED SPECTROSCOPY OF QUENCHED GALAXIES ATz~ 1.5 FROM THE WISP SURVEY: STELLAR POPULATION PROPERTIES. <i>Astrophysical Journal</i> , 2013 , 778, 126	4.7	18
663	GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCEz= 1.6. <i>Astrophysical Journal</i> , 2013 , 769, 31	4.7	25
662	GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847. <i>Astrophysical Journal</i> , 2013 , 774, 124	4.7	21
661	WFC3 GRISM CONFIRMATION OF THE DISTANT CLUSTER Cl J1449+0856 AT <z> = 2.00: QUIESCENT AND STAR-FORMING GALAXY POPULATIONS. <i>Astrophysical Journal</i>, 2013, 776, 9</z>	4.7	72
660	THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TOz= 1:SPITZERINFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY. <i>Astronomical Journal</i> , 2013 , 146, 84	4.9	36
659	EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS. <i>Astrophysical Journal</i> , 2013 , 770, 155	4.7	11

658	THE LICK-INDEX CALIBRATION OF THE GEMINI MULTI-OBJECT SPECTROGRAPHS. Astronomical Journal, 2013 , 145, 164	4.9	4
657	ON THE FORMATION TIMESCALE OF MASSIVE CLUSTER ELLIPTICALS BASED ON DEEP NEAR-INFRARED SPECTROSCOPY ATz~ 2. Astrophysical Journal, 2013 , 772, 113	4.7	36
656	GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER ATz~ 2. <i>Astrophysical Journal</i> , 2013 , 772, 118	4.7	90
655	STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OFz= 0.5 D .9 GALAXY CLUSTERS. <i>Astronomical Journal</i> , 2013 , 145, 77	4.9	54
654	The effect of metal enrichment and galactic winds on galaxy formation in cosmological zoom simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2929-2949	4.3	69
653	THE DUST PROPERTIES OFz~ 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS. <i>Astrophysical Journal</i> , 2013 , 768, 178	4.7	3
652	The high-redshift (z > 3) active galactic nucleus population in the 4-Ms Chandra Deep Field-South. Monthly Notices of the Royal Astronomical Society, 2013 , 428, 354-369	4.3	36
651	Newborn spheroids at high redshift: when and how did the dominant, old stars in today's massive galaxies form?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 925-934	4.3	38
650	CANDELS OBSERVATIONS OF THE ENVIRONMENTAL DEPENDENCE OF THE COLOR-MASS-MORPHOLOGY RELATION ATz= 1.6. <i>Astrophysical Journal</i> , 2013 , 770, 58	4.7	52
649	GREEN GALAXIES IN THE COSMOS FIELD. Astrophysical Journal, 2013, 776, 14	4.7	20
648	A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES. <i>Astrophysical Journal</i> , 2013 , 776, 63	4.7	194
647	CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES ATz= 1.62. <i>Astrophysical Journal</i> , 2013 , 773, 154	4.7	50
646	HIGH-RESOLUTION NEAR-INFRARED IMAGING OF SUBMILLIMETER GALAXIES. <i>Astrophysical Journal</i> , 2013 , 768, 164	4.7	18
645	YONSEI EVOLUTIONARY POPULATION SYNTHESIS (YEPS) MODEL. I. SPECTROSCOPIC EVOLUTION OF SIMPLE STELLAR POPULATIONS. <i>Astrophysical Journal, Supplement Series</i> , 2013 , 204, 3	8	33
644	EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS. <i>Astrophysical Journal Letters</i> , 2013 , 778, L24	7.9	14
643	DEMOGRAPHICS OF SLOAN DIGITAL SKY SURVEY GALAXIES ALONG THE HUBBLE SEQUENCE. Astronomical Journal, 2013 , 146, 151	4.9	6
642	ON THE NATURE OF SODIUM EXCESS OBJECTS. I. DATA AND OBSERVED TRENDS. <i>Astrophysical Journal, Supplement Series</i> , 2013 , 208, 7	8	34
641	METALLICITY EFFECT ON LOW-MASS X-RAY BINARY FORMATION IN GLOBULAR CLUSTERS. Astrophysical Journal, 2013, 764, 98	4.7	26

(2014-2013)

640	Investigating the relationship between AGN activity and stellar mass in zCOSMOS galaxies at 0 . <i>Astronomy and Astrophysics</i> , 2013 , 556, A11	5.1	11
639	Galaxy And Mass Assembly (GAMA): linking star formation histories and stellar mass growth. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 209-221	4.3	69
638	Spectroscopic evidence of distinct stellar populations in the counter-rotating stellar disks of NGC 3593 and NGC 4550. <i>Astronomy and Astrophysics</i> , 2013 , 549, A3	5.1	37
637	The external origin of the polar gaseous disk of the SO galaxy IC 5181. <i>Astronomy and Astrophysics</i> , 2013 , 560, A14	5.1	5
636	Low-mass X-ray binary populations in galaxy outskirts: Globular clusters and supernova kicks. <i>Astronomy and Astrophysics</i> , 2013 , 556, A9	5.1	14
635	Fueling the central engine of radio galaxies. Astronomy and Astrophysics, 2013, 549, A58	5.1	17
634	CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES. <i>Astrophysical Journal</i> , 2013 , 763, 136	4.7	8
633	Stellar populations. 353-418		5
632	THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION. <i>Astrophysical Journal</i> , 2013 , 762, 39	4.7	93
631	Rapidly growing black holes and host galaxies in the distant Universe from theHerschelRadio Galaxy Evolution Project. <i>Astronomy and Astrophysics</i> , 2014 , 566, A53	5.1	65
630	Polymer amide as an early topology. 2014 , 9, e103036		2
629	ASpitzer-IRS view of early-type galaxies with cuspy/core nuclei and fast/slow rotation. <i>Astronomy and Astrophysics</i> , 2014 , 565, A50	5.1	3
628	Fueling the central engine of radio galaxies. Astronomy and Astrophysics, 2014, 564, A128	5.1	15
627	The X-shooter Spectral Library (XSL). Astronomy and Astrophysics, 2014, 565, A117	5.1	71
626	RX J0848.6+4453: THE EVOLUTION OF GALAXY SIZES AND STELLAR POPULATIONS IN Az= 1.27 CLUSTER. <i>Astronomical Journal</i> , 2014 , 148, 117	4.9	21
625	CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCEz= 0.7. Astrophysical Journal, 2014 , 788, 72	4.7	101
624	THE INSIDE-OUT GROWTH OF THE MOST MASSIVE GALAXIES AT 0.3 . <i>Astrophysical Journal</i> , 2014 , 789, 134	4.7	17
623	A new library of theoretical stellar spectra with scaled-solar and Eenhanced mixtures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 1027-1043	4.3	90

622	An isolated, compact early-type galaxy with a diffuse stellar component: merger origin??. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 446-453	4.3	19
621	The hard X-ray luminosity function of high-redshift (3´. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 3557-3574	4.3	63
620	Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 1545-1559	4.3	142
619	The Atacama Cosmology Telescope: dusty star-forming galaxies and active galactic nuclei in the Southern survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1556-1574	4.3	37
618	Age and metallicity gradients support hierarchical formation for M87?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 990-1002	4.3	33
617	SPIDER IX. Environmental effects in central and satellite early-type galaxies through the stellar fossil record. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1977-1996	4.3	28
616	A semi-analytic model comparison: testing cooling models against hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 2058-2077	4.3	18
615	PPAK Wide field Integral Field Spectroscopy of NGC 628 III. Stellar population properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1534-1548	4.3	24
614	Spectral detection of multiple stellar populations in z \sim 1 early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2014 , 444, 2048-2064	4.3	14
613	Ionized gas discs in elliptical and S0 galaxies at z Monthly Notices of the Royal Astronomical Society , 2014 , 440, 3491-3502	4.3	10
612	A FIRST SITE OF GALAXY CLUSTER FORMATION: COMPLETE SPECTROSCOPY OF A PROTOCLUSTER ATz= 6.01. <i>Astrophysical Journal</i> , 2014 , 792, 15	4.7	32
611	TRACING THE MASS GROWTH AND STAR FORMATION RATE EVOLUTION OF MASSIVE GALAXIES FROMZ~ 6 TOZ~ 1 IN THE HUBBLE ULTRA-DEEP FIELD. <i>Astrophysical Journal</i> , 2014 , 780, 34	4.7	20
610	EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT OBSERVED WITHHUBBLE SPACE TELESCOPEWFC3: PERSPECTIVES ON RECENT STAR FORMATION. <i>Astrophysical Journal</i> , 2014 , 796, 101	4.7	4
609	CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS. <i>Astrophysical Journal Letters</i> , 2014 , 792, L37	7.9	33
608	STAR FORMATION BIMODALITY IN EARLY-TYPE GALAXIES. Astrophysical Journal, 2014, 783, 135	4.7	32
607	Herschel-ATLAS: modelling the first strong gravitational lenses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2013-2025	4.3	44
606	Investigating the star formation histories of the brightest cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 808-826	4.3	12
605	Connection between dynamically derived IMF normalisation and stellar populations. <i>Proceedings of the International Astronomical Union</i> , 2014 , 10, 49-52	0.1	

604	Element abundance ratios in stellar population modelling. <i>Proceedings of the International Astronomical Union</i> , 2014 , 10, 63-68	0.1	
603	The KMOS Galaxy Clusters Project. <i>Proceedings of the International Astronomical Union</i> , 2014 , 10, 110-11	5 .1	
602	Dynamical Mass Determinations and Scaling Relations of Early-Type Galaxies. <i>Proceedings of the International Astronomical Union</i> , 2014 , 10, 20-30	0.1	1
601	IFU spectroscopy of 10 early-type galactic nuclei []I. Nuclear emission line properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2442-2456	4.3	15
600	Regrowth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-WI. <i>Proceedings of the International Astronomical Union</i> , 2014 , 10, 81-84	0.1	
599	Stellar Populations and the Star Formation Histories of LSB Galaxies: III. Stellar Population Models. 2014 , 31,		43
598	THE PROGENITORS OF LOCAL ULTRA-MASSIVE GALAXIES ACROSS COSMIC TIME: FROM DUSTY STAR-BURSTING TO QUIESCENT STELLAR POPULATIONS. <i>Astrophysical Journal</i> , 2014 , 794, 65	4.7	75
597	SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES. <i>Astrophysical Journal</i> , 2014 , 782, 68	4.7	186
596	THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. V. PROPERTIES AND FREQUENCY OF MERGING SATELLITES AND CENTRALS IN DIFFERENT ENVIRONMENTS. <i>Astrophysical Journal</i> , 2014 , 797, 127	4.7	11
595	A TALE OF A RICH CLUSTER ATz~ 0.8 AS SEEN BY THE STAR FORMATION HISTORIES OF ITS EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2014 , 797, 136	4.7	13
594	THE MASSIVE SURVEY. I. A VOLUME-LIMITED INTEGRAL-FIELD SPECTROSCOPIC STUDY OF THE MOST MASSIVE EARLY-TYPE GALAXIES WITHIN 108 Mpc. <i>Astrophysical Journal</i> , 2014 , 795, 158	4.7	127
593	OBSERVATIONS OF ENVIRONMENTAL QUENCHING IN GROUPS IN THE 11 GYR SINCEz= 2.5: DIFFERENT QUENCHING FOR CENTRAL AND SATELLITE GALAXIES. <i>Astrophysical Journal</i> , 2014 , 789, 164	₁ 4·7	60
592	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. I.HUBBLE SPACE TELESCOPE/WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS. <i>Astrophysical Journal</i> , 2014 , 789, 147	4.7	286
591	CANDELS+3D-HST: COMPACT SFGs ATz~ 2-3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES. <i>Astrophysical Journal</i> , 2014 , 791, 52	4.7	129
590	THE ASSEMBLY HISTORIES OF QUIESCENT GALAXIES SINCEz= 0.7 FROM ABSORPTION LINE SPECTROSCOPY. <i>Astrophysical Journal</i> , 2014 , 792, 95	4.7	103
589	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES ATz~ 1.6. II. THE MASS-METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION. <i>Astrophysical Journal</i> , 2014 , 792, 75	4.7	120
588	ABUNDANCE PATTERNS IN THE INTERSTELLAR MEDIUM OF EARLY-TYPE GALAXIES OBSERVED WITHSUZAKU. <i>Astrophysical Journal</i> , 2014 , 783, 8	4.7	9
587	EVOLUTION OF COLD STREAMS AND THE EMERGENCE OF THE HUBBLE SEQUENCE. <i>Astrophysical Journal Letters</i> , 2014 , 789, L21	7.9	19

586	Constraints on the merging channel of massive galaxies since z´~´1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 906-918	4.3	43
585	DWARF GALAXY DARK MATTER DENSITY PROFILES INFERRED FROM STELLAR AND GAS KINEMATICS. <i>Astrophysical Journal</i> , 2014 , 789, 63	4.7	93
584	Chemodynamical Simulations of Dwarf Galaxy Evolution. 2014 , 2014, 1-30		12
583	Massive compact galaxies with high-velocity outflows: morphological analysis and constraints on AGN activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 3417-3443	4.3	53
582	VELOCITY DISPERSIONS AND DYNAMICAL MASSES FOR A LARGE SAMPLE OF QUIESCENT GALAXIES ATz> 1: IMPROVED MEASURES OF THE GROWTH IN MASS AND SIZE. <i>Astrophysical Journal</i> , 2014 , 783, 117	4.7	97
581	THE DISTRIBUTION OF ALPHA ELEMENTS IN ANDROMEDA DWARF GALAXIES. <i>Astrophysical Journal</i> , 2014 , 790, 73	4.7	42
580	VARIATIONS OF THE STELLAR INITIAL MASS FUNCTION IN THE PROGENITORS OF MASSIVE EARLY-TYPE GALAXIES AND IN EXTREME STARBURST ENVIRONMENTS. <i>Astrophysical Journal</i> , 2014 , 796, 75	4.7	91
579	The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1483-1499	4.3	119
578	A BUDGET AND ACCOUNTING OF METALS ATz~ 0: RESULTS FROM THE COS-HALOS SURVEY. Astrophysical Journal, 2014 , 786, 54	4.7	217
577	Dependence of Some Properties of Groups on Group Local Number Density. 2014 , 57, 424-433		
576	EARLY-TYPE GALAXY ARCHEOLOGY: AGES, ABUNDANCE RATIOS, AND EFFECTIVE TEMPERATURES FROM FULL-SPECTRUM FITTING. <i>Astrophysical Journal</i> , 2014 , 780, 33	4.7	159
575	Tracing mass and light in the Universe: where is the dark matter?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 2505-2514	4.3	34
574	Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 Monthly Notices of the Royal Astronomical Society, 2014 , 441, 203-223	4.3	62
573	Evidence for two modes of black hole accretion in massive galaxies at z~2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 3630-3644	4.3	17
572	Seeding black holes in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 2751-2767	4.3	31
571	EARLY-TYPE GALAXIES IN THECHANDRACOSMOS SURVEY. Astrophysical Journal, 2014 , 790, 16	4.7	14
570	What Regulates Galaxy Evolution? Open questions in our understanding of galaxy formation and evolution. 2014 , 62-63, 1-14		11
569	Regrowth of stellar discs in mature galaxies: the two-component nature of NGC 7217 revisited with VIRUS-W. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 2212-2229	4.3	19

568	Dusty star-forming galaxies at high redshift. 2014 , 541, 45-161		440
567	The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 1503-1512	4.3	56
566	Lick-index entanglement and biased diagnostic of stellar populations in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 296-315	4.3	1
565	Star formation in semi-analytic galaxy formation models with multiphase gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 4338-4368	4.3	89
564	A TEST OF COSMOLOGICAL MODELS USING HIGH-ZMEASUREMENTS OFH(z). <i>Astronomical Journal</i> , 2015 , 150, 119	4.9	33
563	X-RAY SCALING RELATIONS OF LORELAND LORELESSE AND SO GALAXIES. <i>Astrophysical Journal</i> , 2015 , 812, 127	4.7	34
562	FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF UVJ -SELECTED QUIESCENT GALAXIES AT 1.5 Astrophysical Journal Letters, 2015 , 804, L4	7.9	32
561	IMFMETALLICITY: A TIGHT LOCAL RELATION REVEALED BY THE CALIFA SURVEY. <i>Astrophysical Journal Letters</i> , 2015 , 806, L31	7.9	76
560	Revisiting the original morphologydensity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 3427-3436	4.3	17
559	The SLUGGS survey: combining stellar and globular cluster metallicities in the outer regions of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2625-2639	4.3	18
558	Study of the stellar population properties in the discs of ten spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1128-1139	4.3	17
557	Old age and supersolar metallicity in a massivez~ 1.4 early-type galaxy from VLT/X-Shooter spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 3912-3919	4.3	29
556	The stellar accretion origin of stellar population gradients in massive galaxies at large radii. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 528-550	4.3	73
555	The triggering of local AGN and their role in regulating star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 774-783	4.3	27
554	Observed trend in the star formation history and the dark matter fraction of galaxies at redshiftz 10 .8. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1332-1357	4.3	20
553	P-MaNGA: full spectral fitting and stellar population maps from prototype observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 328-360	4.3	65
552	The Ongoing Growth of the M87 Halo through Accretion Events. 2015 , 3, 212-219		1
551	Exceptional AGN-driven turbulence inhibits star formation in the 3C 326N radio galaxy. <i>Astronomy and Astrophysics</i> , 2015 , 574, A32	5.1	44

550	Abundance patterns in early-type galaxies: is there a lineelin the [Fe/H] vs. [Fe] relation?. <i>Astronomy and Astrophysics</i> , 2015 , 582, A46	5.1	34
549	Further evidence for a time-dependent initial mass function in massive early-type galaxies. 2015 , 448, L82-L86		32
548	The response of dark matter haloes to elliptical galaxy formation: a new test for quenching scenarios. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 2448-2465	4.3	21
547	Measuring galaxy environments in large-scale photometric surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 660-679	4.3	20
546	The ATLAS3D Project IXXX. Star formation histories and stellar population scaling relations of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 3484-3513	4.3	263
545	The X-Shooter Lens Survey []I. Sample presentation and spatially-resolved kinematics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2434-2444	4.3	9
544	Multiscattering-enhanced absorption spectroscopy. 2015 , 87, 1536-43		11
543	Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation. 2015 , 93, 169-202		98
542	Environmental dependence of the stellar velocity dispersion at fixed parameters or for different galaxy families in the main galaxy sample of SDSS DR10. 2015 , 70, 51-63		1
541	THE STELLAR INITIAL MASS FUNCTION AT 0.9 Astrophysical Journal Letters, 2015 , 798, L4	7.9	21
540	THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES ATz~ 2. <i>Astrophysical Journal</i> , 2015 , 800, 21	4.7	23
539	THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR. Astrophysical Journal, 2015 , 799, 130	4.7	85
538	Galaxy formation in the Planck cosmology II. Matching the observed evolution of star formation rates, colours and stellar masses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2663-268	3 4 ·3	371
537	An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z´>´2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 666-680	4.3	46
536	Early-type galaxy star formation histories in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 1383-1397	4.3	9
535	H-ATLAS/GAMA and HeViCS dusty early-type galaxies in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 3815-3835	4.3	13
534	GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR R ADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. <i>Astrophysical Journal</i> , 2015 , 807, 141	4.7	148
533	GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang. 2015 , 349, 168-71		44

(2015-2015)

532	A framework for empirical galaxy phenomenology: the scatter in galaxy ages and stellar metallicities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1430-1445	4.3	14	
531	Simple stellar population modelling of low S/N galaxy spectra and quasar host galaxy applications. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 1638-1660	4.3	1	
530	Stellar population synthesis models between 2.5 and 5 fb based on the empirical IRTF stellar library. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 2853-2874	4.3	41	
529	The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 369-390	4.3	27	
528	Chemoarchaeological downsizing in a hierarchical universe: impact of a top-heavy IGIMF. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 3820-3841	4.3	55	
527	Equilibrium model constraints on baryon cycling across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1184-1200	4.3	54	
526	The effects of AGN feedback on present-day galaxy properties in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1835-1846	4.3	45	
525	Beyond the halo: redefining environment with unbound matter inN-body simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1779-1791	4.3	2	
524	The influence of environment on galaxy age, stellar velocity dispersion, and stellar mass in the LOWZ sample of the SDSS-III. 2015 , 41, 252-259			
523	The initial mass function of early-type galaxies: no correlation with [Mg/Fe]. 2015 , 449, L137-L141		29	
522	KINEMATICS AND STELLAR POPULATIONS IN ISOLATED LENTICULAR GALAXIES. <i>Astronomical Journal</i> , 2015 , 150, 24	4.9	26	
521	Physical Models of Galaxy Formation in a Cosmological Framework. 2015 , 53, 51-113		667	
520	Astrophysics: The slow death of red galaxies. 2015 , 521, 164-5		1	
519	The stellar populations in the low-luminosity, early-type galaxy NGC 59. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1338-1348	4.3	O	
518	EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708. <i>Astrophysical Journal</i> , 2015 , 798, 133	4.7	9	
517	How well can cold dark matter substructures account for the observed radio flux-ratio anomalies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 3189-3206	4.3	80	
516	Galaxy And Mass Assembly (GAMA): massBize relations of z Monthly Notices of the Royal Astronomical Society, 2015 , 447, 2603-2630	4.3	148	
515	The star formation history of galaxies: the role of galaxy mass, morphology and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 2749-2763	4.3	42	

514	Dissecting galactic bulges in space and time []. The importance of early formation scenarios versus secular evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 2837-2860	4.3	23
513	SPECTROSCOPIC CONFIRMATION OF AN ULTRAMASSIVE AND COMPACT GALAXY ATz= 3.35: A DETAILED LOOK AT AN EARLY PROGENITOR OF LOCAL GIANT ELLIPTICALS. <i>Astrophysical Journal</i> , 2015 , 801, 133	4.7	32
512	THE SINS/zC-SINF SURVEY OFz~ 2 GALAXY KINEMATICS: REST-FRAME MORPHOLOGY, STRUCTURE, AND COLORS FROM NEAR-INFRAREDHUBBLE SPACE TELESCOPEIMAGING. <i>Astrophysical Journal</i> , 2015 , 802, 101	4.7	44
511	STAR-FORMING BLUE ETGS IN TWO NEWLY DISCOVERED GALAXY OVERDENSITIES IN THE HUDF ATz= 1.84 AND 1.9: UNVEILING THE PROGENITORS OF PASSIVE ETGS IN CLUSTER CORES. Astrophysical Journal, 2015, 804, 117	4.7	28
510	STRUCTURE AND FORMATION OF cD GALAXIES: NGC 6166 IN ABELL 2199. <i>Astrophysical Journal</i> , 2015 , 807, 56	4.7	48
509	THE AGES, METALLICITIES, AND ELEMENT ABUNDANCE RATIOS OF MASSIVE QUENCHED GALAXIES AT \$zsimeq 1.6\$. <i>Astrophysical Journal</i> , 2015 , 808, 161	4.7	70
508	Evolutionary stellar population synthesis with MILES III. Scaled-solar and Eenhanced models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 1177-1214	4.3	170
507	STELLAR POPULATIONS OF BARRED QUIESCENT GALAXIES. Astrophysical Journal, 2015 , 807, 36	4.7	9
506	THREE CANDIDATE CLUSTERS AROUND HIGH REDSHIFT RADIO-LOUD SOURCES: MG1 J04426+0202, 3C 068.2, AND MS 1426.9+1052. <i>Astronomical Journal</i> , 2015 , 150, 46	4.9	1
505	CIRCUMSTELLAR DUST AROUND AGB STARS AND IMPLICATIONS FOR INFRARED EMISSION FROM GALAXIES. <i>Astrophysical Journal</i> , 2015 , 806, 82	4.7	37
504	THE MASSIVE SURVEY. II. STELLAR POPULATION TRENDS OUT TO LARGE RADIUS IN MASSIVE EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2015 , 807, 11	4.7	89
503	THE INFORMATION CONTENT OF STELLAR HALOS: STELLAR POPULATION GRADIENTS AND ACCRETION HISTORIES IN EARLY-TYPE ILLUSTRIS GALAXIES. <i>Astrophysical Journal</i> , 2016 , 833, 158	4.7	37
502	MINOR MERGERS OR PROGENITOR BIAS? THE STELLAR AGES OF SMALL AND LARGE QUENCHED GALAXIES. <i>Astrophysical Journal</i> , 2016 , 831, 173	4.7	47
501	THE MASSIVE SURVEY. IV. THE X-RAY HALOS OF THE MOST MASSIVE EARLY-TYPE GALAXIES IN THE NEARBY UNIVERSE. <i>Astrophysical Journal</i> , 2016 , 826, 167	4.7	70
500	THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES. <i>Astrophysical Journal</i> , 2016 , 832, 79	4.7	72
499	THE ROLE OF QUENCHING TIME IN THE EVOLUTION OF THE MASSBIZE RELATION OF PASSIVE GALAXIES FROM THE WISP SURVEY. <i>Astrophysical Journal</i> , 2016 , 824, 68	4.7	9
498	CHANDRAACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES. <i>Astrophysical Journal</i> , 2016 , 829, 20	4.7	14
497	MULTI-WAVELENGTH LENS RECONSTRUCTION OF APLANCKANDHERSCHEL-DETECTED STAR-BURSTING GALAXY. <i>Astrophysical Journal</i> , 2016 , 829, 21	4.7	8

(2016-2016)

496	BUILDUP OF THE QUIESCENT GALAXY POPULATION AT 0.5 Astrophysical Journal Letters, 2016 , 817, L21	7.9	40	
495	THE ALHAMBRA SURVEY: EVOLUTION OF GALAXY SPECTRAL SEGREGATION. <i>Astrophysical Journal</i> , 2016 , 818, 174	4.7	6	
494	Quiescent luminous red galaxies as cosmic chronometers: on the significance of mass and environmental dependence. <i>Astronomy and Astrophysics</i> , 2016 , 585, A52	5.1	7	
493	Size growth of red-sequence early-type galaxies in clusters in the last 10 Gyr. <i>Astronomy and Astrophysics</i> , 2016 , 593, A2	5.1	17	
492	THE SFRM*RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 . <i>Astrophysical Journal</i> , 2016 , 817, 118	4.7	184	
49 ¹	Effect of the star formation histories on the SFR-M*relation atzl2. <i>Astronomy and Astrophysics</i> , 2016 , 593, A9	5.1	19	
490	Isolated elliptical galaxies in the local Universe. Astronomy and Astrophysics, 2016, 588, A79	5.1	20	
489	THE INFLUENCE OF ENVIRONMENT ON THE CHEMICAL EVOLUTION IN LOW-MASS GALAXIES. Astrophysical Journal Letters, 2016 , 829, L26	7.9	7	
488	Evolution of galaxy habitability. Astronomy and Astrophysics, 2016, 592, A96	5.1	13	
487	A massive, quiescent, population II galaxy at a redshift of 2.1. 2016 , 540, 248-251		57	
486	THE MAIN SEQUENCES OF STAR-FORMING GALAXIES AND ACTIVE GALACTIC NUCLEI AT HIGH REDSHIFT. <i>Astrophysical Journal</i> , 2016 , 833, 152	4.7	32	
485	Self-similarity in the chemical evolution of galaxies and the delay-time distribution of SNe Ia. <i>Astronomy and Astrophysics</i> , 2016 , 594, A61	5.1	11	
484	Inferring the star-formation histories of the most massive and passive early-type galaxies atz Astronomy and Astrophysics, 2016 , 592, A19	5.1	37	
483	ELM: AN ALGORITHM TO ESTIMATE THE ALPHA ABUNDANCE FROM LOW-RESOLUTION SPECTRA. <i>Astrophysical Journal</i> , 2016 , 817, 78	4.7	3	
482	Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 2405-2422	4.3	6	
481	Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 atz= 1.39. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 3181-3209	4.3	32	
480	Nitrogen and oxygen abundances in the Local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 3466-3477	4.3	65	
479	Is the stellar initial mass function universal?. 2016 , 57, 2.32-2.36		3	

478	A 6% measurement of the Hubble parameter atz~0.45: direct evidence of the epoch of cosmic re-acceleration. 2016 , 2016, 014-014		404
477	The fundamental plane of early-type galaxies in different environmentsPeer review under responsibility of National Research Institute of Astronomy and Geophysics.View all notes. 2016 , 5, 277	-288	3
476	Time evolution of galaxy scaling relations in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2465-2479	4.3	25
475	SDSS IV MaNGA: the global and local stellar mass assemby histories of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2799-2818	4.3	69
474	MERGERS AND STAR FORMATION: THE ENVIRONMENT AND STELLAR MASS GROWTH OF THE PROGENITORS OF ULTRA-MASSIVE GALAXIES SINCEZ= 2. <i>Astrophysical Journal</i> , 2016 , 816, 86	4.7	24
473	The high-mass end of the red sequence atz~ 0.55 from SDSS-III/BOSS: completeness, bimodality and luminosity function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1131-1153	4.3	17
472	mufasa: galaxy formation simulations with meshless hydrodynamics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 3265-3284	4.3	178
471	DISCOVERY OF A GALAXY CLUSTER WITH A VIOLENTLY STARBURSTING CORE ATz= 2.506. Astrophysical Journal, 2016 , 828, 56	4.7	111
470	STELLAR POPULATIONS ACROSS THE BLACK HOLE MASSIFELOCITY DISPERSION RELATION. <i>Astrophysical Journal Letters</i> , 2016 , 832, L11	7.9	18
469	The realm of the galaxy protoclusters. 2016 , 24, 1		119
469 468	The realm of the galaxy protoclusters. 2016 , 24, 1 Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016 , 54, 597-665		119 254
. ,		4.7	
468	Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016 , 54, 597-665 IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. <i>Astrophysical Journal</i> , 2016 ,	4.7	254
468 467	Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016 , 54, 597-665 IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. <i>Astrophysical Journal</i> , 2016 , 828, 110 EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING.		²⁵⁴
468 467 466	Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016 , 54, 597-665 IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. <i>Astrophysical Journal</i> , 2016 , 828, 110 EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING. <i>Astrophysical Journal</i> , <i>Supplement Series</i> , 2016 , 223, 7 RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN	8	254 31 8
468 467 466 465	Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016, 54, 597-665 IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. Astrophysical Journal, 2016, 828, 110 EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING. Astrophysical Journal, Supplement Series, 2016, 223, 7 RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE. Astrophysical Journal, 2016, 832, 7 RADIAL TRENDS IN IMF-SENSITIVE ABSORPTION FEATURES IN TWO EARLY-TYPE GALAXIES:	8 4.7	254 31 8 51
468 467 466 465 464	Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016, 54, 597-665 IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. Astrophysical Journal, 2016, 828, 110 EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING. Astrophysical Journal, Supplement Series, 2016, 223, 7 RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE. Astrophysical Journal, 2016, 832, 7 RADIAL TRENDS IN IMF-SENSITIVE ABSORPTION FEATURES IN TWO EARLY-TYPE GALAXIES: EVIDENCE FOR ABUNDANCE-DRIVEN GRADIENTS. Astrophysical Journal, 2016, 821, 39 EVIDENCE FOR THE RAPID FORMATION OF LOW-MASS EARLY-TYPE GALAXIES IN DENSE	8 4·7 4·7	254 31 8 51 38

460	Modelling the UV spectrum of SDSS-III/BOSS galaxies: hints towards the detection of the UV upturn at high-z. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 766-793	4.3	14	
459	Galaxy assembly, stellar feedback and metal enrichment: the view from the gaea model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1760-1785	4.3	89	
458	A multiwavelength photometric census of AGN and star formation activity in the brightest cluster galaxies of X-ray selected clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 560-57	74.3	16	
457	Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2001-2010	4.3	8	
456	WITNESSING THE BIRTH OF THE RED SEQUENCE: ALMA HIGH-RESOLUTION IMAGING OF [C II] AND DUST IN TWO INTERACTING ULTRA-RED STARBURSTS ATz= 4.425. <i>Astrophysical Journal</i> , 2016 , 827, 34	4.7	62	
455	STAR FORMATION IN INTERMEDIATE REDSHIFT 0.2 . Astrophysical Journal, 2016 , 833, 224	4.7	17	
454	Understanding the internal dynamics of elliptical galaxies without non-baryonic dark matter. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 463, 1865-1880	4.3	17	
453	A low redshift perspective on galaxies. 2016,			
452	COLORS OF ELLIPTICALS FROMGALEXTOSPITZER. <i>Astronomical Journal</i> , 2016 , 152, 214	4.9	15	
451	Comparisons of the galaxy age, stellar velocity dispersion and K-band luminosity distributions between grouped galaxies and isolated ones. 2016 , 361, 1			
450	The AIMSS Project [III. The stellar populations of compact stellar systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 617-632	4.3	37	
449	The BaLROG project [II. Quantifying the influence of bars on the stellar populations of nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3784-3828	4.3	17	
448	The diversity of growth histories of Milky Way-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 1929-1945	4.3	14	
447	Revisiting the classics: is [Mg/Fe] a good proxy for galaxy formation time-scales?. 2016 , 456, L104-L108		16	
446	Dependence of the clustering properties of galaxies on galaxy age. 2016 , 54, 263-268		1	
445	Mass and size growth of early-type galaxies by dry mergers in cluster environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 300-313	4.3	11	
444	Pathways to quiescence: SHARDS view on the star formation histories of massive quiescent galaxies at 1.0′. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 3743-3768	4.3	29	
443	Boxy H⊕mission profiles in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 3861-3867	4.3	О	

442	The diversity of thick galactic discs. 2016 , 460, L89-L93		16
441	On the depletion and accretion time-scales of cold gas in local early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 272-280	4.3	33
440	An extensive catalogue of early-type galaxies in the nearby Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 4492-4512	4.3	17
439	Modelling galactic conformity with the colourfialo age relation in the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 185-198	4.3	31
438	Towards a census of supercompact massive galaxies in the Kilo Degree Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2845-2854	4.3	26
437	Nuclear discs as clocks for the assembly history of early-type galaxies: the case of NGC 4458. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1804-1812	4.3	5
436	In and out star formation inz ~ 1.5 quiescent galaxies from rest-frame UV spectroscopy and the far-infrared. <i>Astronomy and Astrophysics</i> , 2017 , 599, A95	5.1	16
435	Log-normal Star Formation Histories in Simulated and Observed Galaxies. <i>Astrophysical Journal</i> , 2017 , 839, 26	4.7	39
434	Near-infrared Spectroscopy of Five Ultra-massive Galaxies at 1.7 . Astrophysical Journal, 2017, 838, 57	4.7	7
	The extended epoch of galaxy formation: Age dating of ~3600 galaxies with 2 Astronomy and		
433	Astrophysics, 2017 , 602, A35	5.1	21
433		5.1	285
	Astrophysics, 2017 , 602, A35		
432	Astrophysics, 2017 , 602, A35 Theoretical Challenges in Galaxy Formation. 2017 , 55, 59-109		285
432	Astrophysics, 2017, 602, A35 Theoretical Challenges in Galaxy Formation. 2017, 55, 59-109 A Spectroscopic Follow-up Program of Very Massive Galaxies at 3 . <i>Astrophysical Journal</i> , 2017, 842, 21 Velocity Dispersion, Size, Sfsic Index, and Dn4000: The Scaling of Stellar Mass with Dynamical Mass	4.7	285
43 ² 43 ¹ 43 ⁰	Astrophysics, 2017, 602, A35 Theoretical Challenges in Galaxy Formation. 2017, 55, 59-109 A Spectroscopic Follow-up Program of Very Massive Galaxies at 3. Astrophysical Journal, 2017, 842, 21 Velocity Dispersion, Size, SEsic Index, and Dn4000: The Scaling of Stellar Mass with Dynamical Mass for Quiescent Galaxies. Astrophysical Journal, 2017, 841, 32 The Mass, Color, and Structural Evolution of Today Massive Galaxies Sincez~ 5. Astrophysical	4.7	285 22 28
43 ² 43 ¹ 43 ⁰ 429	Astrophysics, 2017, 602, A35 Theoretical Challenges in Galaxy Formation. 2017, 55, 59-109 A Spectroscopic Follow-up Program of Very Massive Galaxies at 3. Astrophysical Journal, 2017, 842, 21 Velocity Dispersion, Size, Sisic Index, and Dn4000: The Scaling of Stellar Mass with Dynamical Mass for Quiescent Galaxies. Astrophysical Journal, 2017, 841, 32 The Mass, Color, and Structural Evolution of Today Massive Galaxies Sincez~ 5. Astrophysical Journal, 2017, 837, 147 Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central	4·7 4·7	285 22 28 35
43 ² 43 ¹ 43 ⁰ 429 428	Astrophysics, 2017, 602, A35 Theoretical Challenges in Galaxy Formation. 2017, 55, 59-109 A Spectroscopic Follow-up Program of Very Massive Galaxies at 3 . Astrophysical Journal, 2017, 842, 21 Velocity Dispersion, Size, SEsic Index, andDn4000: The Scaling of Stellar Mass with Dynamical Mass for Quiescent Galaxies. Astrophysical Journal, 2017, 841, 32 The Mass, Color, and Structural Evolution of Today Massive Galaxies Sincez~ 5. Astrophysical Journal, 2017, 837, 147 Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5 . Astrophysical Journal, 2017, 838, 19 THE QUENCHED MASS PORTION OF STAR-FORMING GALAXIES AND THE ORIGIN OF THE STAR	4·7 4·7 4·7	285 22 28 35 68

(2017-2017)

Do the stellar populations of the brightest two group galaxies depend on the magnitude gap?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4593-4610	4.3	17	
Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. <i>Astrophysical Journal</i> , 2017 , 847, 13	4.7	15	
Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies. <i>Astrophysical Journal</i> , 2017 , 846, 26	4.7	35	
The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses. <i>Astrophysical Journal</i> , 2017 , 835, 254	4.7	23	
Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846. <i>Astrophysical Journal</i> , 2017 , 844, 5	4.7	13	
Active galactic nuclei feedback, quiescence and circumgalactic medium metal enrichment in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 751-768	4.3	32	
Integral field spectroscopy of the inner kpc of the elliptical galaxy NGC 5044. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1703-1717	4.3	7	
The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4 . <i>Astrophysical Journal</i> , 2017 , 846, 120	4.7	26	
ISOPHOTE SHAPES OF EARLY-TYPE GALAXIES IN MASSIVE CLUSTERS ATz~ 1 AND 0. <i>Astrophysical Journal</i> , 2017 , 834, 109	4.7	5	
Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?. <i>Astrophysical Journal</i> , 2017 , 850, 15	4.7	10	
Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift ~1.2:Massive Compact Galaxies Are Older than More Extended Ones. <i>Astrophysical Journal</i> , 2017 , 838, 94	4.7	30	
Quenching or Bursting: Star Formation Acceleration New Methodology for Tracing Galaxy Evolution. <i>Astrophysical Journal</i> , 2017 , 842, 20	4.7	6	
A Unique View of AGN-driven Molecular Outflows: The Discovery of a Massive Galaxy Counterpart to aZ= 2.4 High-metallicity Damped LyAbsorber. <i>Astrophysical Journal</i> , 2017 , 843, 98	4.7	17	
The hELENa project II. Stellar populations of early-type galaxies linked with local environment and galaxy mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 815-838	4.3	17	
Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?. <i>Astrophysical Journal</i> , 2017 , 843, 105	4.7	19	
Impact of supermassive black hole growth on star formation. <i>Nature Astronomy</i> , 2017 , 1,	12.1	116	
Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 228-247	4.3	19	
Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 3533-3541	4.3	12	
	Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. <i>Astrophysical Journal</i> , 2017 , 847, 13 Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies. <i>Astrophysical Journal</i> , 2017 , 846, 26 The Grism Lens-amplified Survey from Space (Glass), IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses. <i>Astrophysical Journal</i> , 2017 , 835, 254 Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846. <i>Astrophysical Journal</i> , 2017 , 844, 5 Active galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 751-768 Integral field spectroscopy of the inner kpc of the elliptical galaxy NGC 5044. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1703-1717 The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4. <i>Astrophysical Journal</i> , 2017 , 846, 120 ISOPHOTE SHAPES OF EARLY-TYPE GALAXIES IN MASSIVE CLUSTERS ATz~ 1 AND 0. <i>Astrophysical Journal</i> , 2017 , 834, 109 Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?. <i>Astrophysical Journal</i> , 2017 , 850, 15 Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift ~1.2:Massive Compact Galaxies Are Older than More Extended Ones. <i>Astrophysical Journal</i> , 2017 , 838, 94 Quenching or Bursting: Star Formation Acceleration® New Methodology for Tracing Galaxy Evolution. <i>Astrophysical Journal</i> , 2017 , 842, 20 A Unique View of AGN-driven Molecular Outflows: The Discovery of a Massive Galaxy Counterpart to aZ= 2.4 High-metallicity Damped Ly&bsorber. <i>Astrophysical Journal</i> , 2017 , 843, 98 The hELENa project II. Stellar populations of early-type galaxies linked with local environment and galaxy mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 815-838 Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?. <i>Astrophysical Journal</i> , 2017 , 843, 105	Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. Astrophysical Journal, 2017, 847, 13 Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies. Astrophysical Journal, 2017, 846, 26 4.7 The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses. Astrophysical Journal, 2017, 835, 254 4.7 Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846. Astrophysical Journal, 2017, 844, 5 Active galactic nuclei feedback, quiescence and circumgalactic medium metal enrichment in early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 751-768 4.3 Integral field spectroscopy of the inner kpc of the elliptical galaxy NGC 5044. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1703-1717 The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4. Astrophysical Journal, 2017, 846, 120 ISOPHOTE SHAPES OF EARLY-TYPE GALAXIES IN MASSIVE CLUSTERS ATz~1 AND 0. Astrophysical Journal, 2017, 834, 109 Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?. Astrophysical Journal, 2017, 830, 94 4.7 Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift ~1.2:Massive Compact Galaxies Are Older than More Extended Ones. Astrophysical Journal, 2017, 838, 94 4.7 Quenching or Bursting: Star Formation Accelerationia New Methodology for Tracing Galaxy Evolution. Astrophysical Journal, 2017, 842, 20 4.7 A Unique View of AGN-driven Molecular Outflows: The Discovery of a Massive Galaxy Counterpart to a2–2.4 High-metallicity Damped LyAbsorber. Astrophysical Journal, 2017, 843, 98 4.7 The hELENa project IJ. Stellar populations of early-type galaxies linked with local environment and galaxy mass. Monthly Notices of the Royal Astronomical Society, 2017, 470, 815-838 4.7 Impact of supermassive black hole growth on star formation. Nature	Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. Astrophysical Journal, 2017, 847, 13 Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies. Astrophysical Journal, 2017, 846, 26 47 The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses. Astrophysical Journal, 2017, 835, 254 47 Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846. Astrophysical Journal, 2017, 844, 5 Active galaxies and Revealed by New Structural Analyses. Astrophysical Journal, 2017, 845, 751-768 43 32 Integral field spectroscopy of the inner kpc of the elliptical galaxy NGC 5044. Monthly Notices of the Royal Astronomical Society, 2017, 468, 751-768 Integral field spectroscopy of the inner kpc of the elliptical galaxy NGC 5044. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1703-1717 The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4. Astrophysical Journal, 2017, 846, 120 ISOPHOTE SHAPES OF EARLY-TYPE GALAXIES IN MASSIVE CLUSTERS ATz- 1 AND 0. Astrophysical Journal, 2017, 834, 109 Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?. Astrophysical Journal, 2017, 850, 15 Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift -1.2:Massive Compact Galaxies Are Older than More Extended Ones. Astrophysical Journal, 2017, 838, 94 Quenching or Bursting: Star Formation Acceleration® New Methodology for Tracing Galaxy 47 The hELENa project IJ. Stellar populations of early-type galaxies linked with local environment and galaxy mass. Monthly Notices of the Royal Astronomical Society, 2017, 470, 815-838 Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?. Astrophysical Journal, 2017, 843, 105 Impact of supermassive black hole growth on star formation. Nature Astronomy, 2017, 1, 121 Testing galaxy quenching theories with sca

406	The structural and dynamical properties of compact elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 4216-4245	4.3	31
405	The morphological transformation of red sequence galaxies in clusters since z´~´1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 254-272	4.3	9
404	The Stripe 82 Massive Galaxy Project. III. A Lack of Growth among Massive Galaxies. <i>Astrophysical Journal</i> , 2017 , 851, 34	4.7	14
403	The MASSIVE Survey IVII. The relationship of angular momentum, stellar mass and environment of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1428-1445	4.3	55
402	Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4005-4026	4.3	22
401	The SAMI Galaxy Survey: global stellar populations on the sizehass plane. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2833-2855	4.3	51
400	Detection of Prominent Stellar Disks in the Progenitors of Present-day Massive Elliptical Galaxies. <i>Astrophysical Journal</i> , 2017 , 836, 75	4.7	5
399	The Evolution of Bulge-dominated Field Galaxies fromz to the Present. <i>Astrophysical Journal</i> , 2017 , 847, 20	4.7	4
398	Cosmic Star Formation: A Simple Model of the SFRD(z). Astrophysical Journal, 2017, 851, 44	4.7	12
397	Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 949-965	4.3	64
396	Galaxy Populations in Massivez= 0.20.9 Clusters. I. Analysis of Spectroscopy. <i>Astronomical Journal</i> , 2017 , 154, 251	4.9	19
395	Stellar populations of shell galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2889-	2 <u>9</u> 95	8
394	How to quench a galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 547-558	4.3	68
393	Cluster and field elliptical galaxies atz~ 1.3. Astronomy and Astrophysics, 2017 , 597, A122	5.1	19
392	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2017, 597, A107	5.1	24
391	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2017, 605, A4	5.1	32
390	Insights on star-formation histories and physical properties of 1.2 ②? 4 Herschel-detected galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 605, A29	5.1	9
389	On the robustness of the HLick index as a cosmic clock in passive early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1747-1759	4.3	8

(2018-2017)

388	The Next Generation Virgo Cluster Survey (NGVS). XXIV. The Red Sequence to ~106L?and Comparisons with Galaxy Formation Models. <i>Astrophysical Journal</i> , 2017 , 836, 120	4.7	35	
387	Major mergers are not significant drivers of star formation or morphological transformation around the epoch of peak cosmic star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2895-2900	4.3	44	
386	Planck dusty GEMS. Astronomy and Astrophysics, 2017, 600, L3	5.1	12	
385	The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1427-1450	4.3	12	
384	The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population. <i>Astrophysical Journal</i> , 2018 , 855, 142	4.7	47	
383	SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 580-600	4.3	37	
382	Metal Deficiency in Two Massive Dead Galaxies at z ~ 2. <i>Astrophysical Journal Letters</i> , 2018 , 856, L4	7.9	10	
381	Black-hole-regulated star formation in massive galaxies. 2018 , 553, 307-309		34	
380	The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies. <i>Astrophysical Journal</i> , 2018 , 857, 22	4.7	33	
379	The Origin of Molecular Clouds in Central Galaxies. <i>Astrophysical Journal</i> , 2018 , 853, 177	4.7	49	
378	Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems. <i>Astrophysical Journal</i> , 2018 , 854, 139	4.7	78	
377	The Gemini/ HST Galaxy Cluster Project: Redshift 0.2¶.0 Cluster Sample, X-Ray Data, and Optical Photometry Catalog. <i>Astrophysical Journal, Supplement Series</i> , 2018 , 235, 29	8	4	
376	The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 969-983	4.3	16	
375	Exploring the Limits of AGN Feedback: Black Holes and the Star Formation Histories of Low-mass Galaxies. <i>Astrophysical Journal Letters</i> , 2018 , 855, L20	7.9	35	
374	Counting black holes: The cosmic stellar remnant population and implications for LIGO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1186-1194	4.3	42	
373	Dust in the Wind: Composition and Kinematics of Galaxy Outflows at the Peak Epoch of Star Formation. <i>Astrophysical Journal</i> , 2018 , 863, 191	4.7	20	
372	Detecting Radio AGN Signatures in Red Geysers. Astrophysical Journal, 2018, 869, 117	4.7	14	
371	The Next Generation Fornax Survey (NGFS). IV. Mass and Age Bimodality of Nuclear Clusters in the Fornax Core Region. <i>Astrophysical Journal</i> , 2018 , 860, 4	4.7	26	

370	The first sample of spectroscopically confirmed ultra-compact massive galaxies in the Kilo Degree Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 4728-4752	4.3	16
369	SDSS-IV MaNGA: the formation sequence of S0 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 5580-5591	4.3	38
368	The large-scale effect of environment on galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3136-3144	4.3	2
367	Star Formation Histories of z ~ 1 Galaxies in LEGA-C. <i>Astrophysical Journal</i> , 2018 , 861, 13	4.7	26
366	The Grism Lens-amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at z > 1. <i>Astronomical Journal</i> , 2018 , 156, 29	4.9	6
365	Forward modeling of spectroscopic galaxy surveys: application to SDSS. 2018 , 2018, 015-015		5
364	The Gemini/Hubble Space Telescope Galaxy Cluster Project: Stellar Populations in the Low-redshift Reference Cluster Galaxies. <i>Astronomical Journal</i> , 2018 , 156, 224	4.9	5
363	Revealing the Environmental Dependence of Molecular Gas Content in a Distant X-Ray Cluster at z = 2.51. <i>Astrophysical Journal Letters</i> , 2018 , 867, L29	7.9	23
362	The Next Generation Virgo Cluster Survey (NGVS). XXXI. The Kinematics of Intracluster Globular Clusters in the Core of the Virgo Cluster. <i>Astrophysical Journal</i> , 2018 , 864, 36	4.7	19
361	Setting the Stage for Cosmic Chronometers. I. Assessing the Impact of Young Stellar Populations on Hubble Parameter Measurements. <i>Astrophysical Journal</i> , 2018 , 868, 84	4.7	29
360	Morphological Type and Color Indices of the SDSS DR9 Galaxies at 0.02 2018, 34, 290-301		4
359	The fate of the Antennae galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3934-3	39 <u>4</u> .8	17
358	The KMOS Cluster Survey (KCS). II. The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.39 . <i>Astrophysical Journal</i> , 2018 , 856, 8	4.7	12
357	Enrichment of the Hot Intracluster Medium: Observations. 2018 , 214, 1		37
356	Origins of ultradiffuse galaxies in the Coma cluster III. Constraints from their stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 4891-4906	4.3	49
355	Chemical abundances of globular clusters in NGC 5128 (Centaurus A). <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5189-5215	4.3	6
354	Mapping the Kinematically Decoupled Core in NGC 1407 with MUSE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 3215-3223	4.3	7
353	MUSE observations of M87: radial gradients for the stellar initial-mass function and the abundance of sodium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 4084-4100	4.3	48

352	Star formation quenching in massive galaxies. <i>Nature Astronomy</i> , 2018 , 2, 695-697	12.1	37
351	Ultra-red Galaxies Signpost Candidate Protoclusters at High Redshift. <i>Astrophysical Journal</i> , 2018 , 862, 96	4.7	13
350	Upper Limits on the Presence of Central Massive Black Holes in Two Ultra-compact Dwarf Galaxies in Centaurus A. <i>Astrophysical Journal</i> , 2018 , 858, 20	4.7	21
349	Downsizing of star formation measured from the clustered infrared background correlated with quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 149-181	4.3	5
348	A 3.5 million Solar masses black hole in the centre of the ultracompact dwarf galaxy fornax UCD3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 4856-4865	4.3	39
347	On the formation mechanisms of compact elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1819-1840	4.3	12
346	MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at z´=´2.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1977-1999	4.3	27
345	Identifying the progenitors of present-day early-type galaxies in observational surveys: correcting progenitor bias using the Horizon-AGN simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 3140-3151	4.3	11
344	Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed. 2018 , 363, 1		2
343	Comparison of stellar population model predictions using optical and infrared spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 4698-4721	4.3	22
342	The new galaxy evolution paradigm revealed by the Herschel surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 3507-3524	4.3	30
341	Tracing the assembly history of NGC 1395 through its Globular Cluster System. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 4302-4321	4.3	9
340	Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3700-3729	4.3	44
339	The nuclear activity and central structure of the elliptical galaxy NGC 5322. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4670-4682	4.3	8
338	Abundance ratios in dwarf elliptical galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3453-3466	4.3	4
337	UV SEDs of early-type cluster galaxies: a new look at the UV upturn. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 1010-1020	4.3	13
336	Dissolved Massive Metal-rich Globular Clusters Can Cause the Range of UV Upturn Strengths Found among Early-type Galaxies. <i>Astrophysical Journal</i> , 2018 , 857, 16	4.7	13
335	An Excess of Low-mass X-Ray Binaries in the Outer Halo of NGC 4472. <i>Astrophysical Journal</i> , 2018 , 853, 13	4.7	2

334	Tackling the Saturation of Oxygen: The Use of Phosphorus and Sulfur as Proxies within the Neutral Interstellar Medium of Star-forming Galaxies. <i>Astrophysical Journal</i> , 2018 , 853, 124	4.7	5
333	The hELENa project []I. Abundance distribution trends of early-type galaxies: from dwarfs to giants. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 4501-4509	4.3	4
332	SDSS-IV MaNGA: the spatially resolved stellar initial mass function in ~400 early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society,</i> 2018 , 477, 3954-3982	4.3	59
331	The massEnetallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 1143-1164	4.3	24
330	SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars Iradially dependent metal outflow versus IMF. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 3883-3901	4.3	29
329	Multiple populations within globular clusters in early-type galaxies exploring their effect on stellar initial mass function estimates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 2368-2387	4.3	4
328	Coordinated Assembly of Brightest Cluster Galaxies. <i>Astrophysical Journal Letters</i> , 2018 , 862, L18	7.9	11
327	The influence of galaxy environment on the stellar initial mass function of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5233-5252	4.3	13
326	The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). Astronomy and Astrophysics, 2018, 611, A42	5.1	13
325	Detailed abundance analysis of globular clusters in the Local Group. <i>Astronomy and Astrophysics</i> , 2018 , 613, A56	5.1	18
324	Starburst to Quiescent fromHST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies atz~ 4.5. <i>Astrophysical Journal</i> , 2018 , 856, 121	4.7	42
323	The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies. <i>Astrophysical Journal</i> , 2018 , 856, 64	4.7	22
322	Colors of Dwarf Ellipticals fromGALEXtoWISE. Astronomical Journal, 2018, 155, 69	4.9	3
321	The Fornax Deep Survey (FDS) with VST. Astronomy and Astrophysics, 2019, 625, A143	5.1	32
320	Self-consistent Predictions for LIER-like Emission Lines from Post-AGB Stars. <i>Astronomical Journal</i> , 2019 , 158, 2	4.9	19
319	Stochastic modelling of star-formation histories I: the scatter of the star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3845-3869	4.3	34
318	Star formation quenching imprinted on the internal structure of naked red nuggets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 4939-4950	4.3	9
317	SDSS-IV MaNGA: effects of morphology in the global and local star formation main sequences. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 3929-3948	4.3	39

316	Assembly bias evidence in close galaxy pairs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 435-443	4.3	3
315	The Brightest UV-selected Galaxies in Protoclusters at $z\sim4$: Ancestors of Brightest Cluster Galaxies?. Astrophysical Journal, 2019 , 878, 68	4.7	12
314	Quenching by gas compression and consumption. Astronomy and Astrophysics, 2019, 624, A81	5.1	9
313	Young stellar populations in early-type dwarf galaxies. <i>Astronomy and Astrophysics</i> , 2019 , 625, A94	5.1	13
312	The evolution of brightest cluster galaxies in the nearby Universe II. Colours and stellar masses from the Sloan Digital Sky Survey and Wide Infrared Survey Explorer. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3759-3775	4.3	13
311	Exploring a new definition of the green valley and its implications. 2019 , 488, L99-L103		9
310	Chemical evolution of elliptical galaxies with a variable IMF. Astronomy and Astrophysics, 2019, 629, A93	5.1	12
309	The SAMI galaxy survey: stellar population radial gradients in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 608-622	4.3	22
308	The Rest-frame H-band Luminosity Function of Red-sequence Galaxies in Clusters at 1.0 Astrophysical Journal, 2019 , 880, 119	4.7	9
307	Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the green valley [Monthly Notices of the Royal Astronomical Society, 2019, 489, 1265-1290]	4.3	21
306	Galaxy properties as revealed by MaNGA []. Constraints on IMF and M*/L gradients in ellipticals. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 5612-5632	4.3	24
305	Oxygen yields as a constraint on feedback processes in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 868-888	4.3	5
304	The impact of black hole seeding in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 4640-4648	4.3	5
303	Galaxy properties as revealed by MaNGA II. Differences in stellar populations of slow and fast rotator ellipticals and dependence on environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 5633-5652	4.3	18
302	Resolved and Integrated Stellar Masses in the SDSS-iv/MaNGA Survey. I. PCA Spectral Fitting and Stellar Mass-to-light Ratio Estimates. <i>Astrophysical Journal</i> , 2019 , 883, 82	4.7	8
301	The SLUGGS survey: measuring globular cluster ages using both photometry and spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 491-501	4.3	17
300	Red and dead CANDELS: massive passive galaxies at the dawn of the Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3309-3328	4.3	31
299	Spatially Resolved Studies of Local Massive Red Spiral Galaxies. <i>Astrophysical Journal Letters</i> , 2019 , 883, L36	7.9	16

298	The AGN fuelling/feedback cycle in nearby radio galaxies III. Kinematics of the molecular gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 3739-3757	4.3	9
297	Gas accretion as fuel for residual star formation in Galaxy Zoo elliptical galaxies. 2019 , 489, L108-L113		8
296	New Analytic Solutions for Galaxy Evolution: Gas, Stars, Metals, and Dust in Local ETGs and Their High-zStar-forming Progenitors. <i>Astrophysical Journal</i> , 2019 , 880, 129	4.7	17
295	Merging Rates of Compact Binaries in Galaxies: Perspectives for Gravitational Wave Detections. <i>Astrophysical Journal</i> , 2019 , 881, 157	4.7	32
294	Redshift measurement through star formation. Astronomy and Astrophysics, 2019, 629, A7	5.1	
293	Simple interpolation functions for the galaxy-wide stellar initial mass function and its effects in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 848-867	4.3	3
292	MUSE sneaks a peek at extreme ram-pressure stripping events IV. Hydrodynamic and gravitational interactions in the Blue Infalling Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 2212-2228	4.3	21
291	Transition of BH feeding from the quiescent regime into star-forming cold disc regime. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 5377-5390	4.3	13
290	Environmental effects on the UV upturn in local clusters of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3021-3028	4.3	6
289	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. <i>Astrophysical Journal</i> , 2019 , 877, 140	4.7	84
288	Massive Dead Galaxies at $z \sim 2$ with HST Grism Spectroscopy. I. Star Formation Histories and Metallicity Enrichment. <i>Astrophysical Journal</i> , 2019 , 877, 141	4.7	26
287	Combining stellar populations with orbit-superposition dynamical modelling: the formation history of the lenticular galaxy NGC 3115. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3776-37	7 9 6	29
286	The submillimetre view of massive clusters at z \sim 0.8 $\rlap{\text{\'l}}$.6. Monthly Notices of the Royal Astronomical Society, 2019 , 486, 3047-3058	4.3	6
285	MOSFIRE Spectroscopy of Quiescent Galaxies at 1.5 Astrophysical Journal, 2019 , 874, 17	4.7	72
284	Age, metallicity, and star formation history of spheroidal galaxies in cluster at z \sim 1.2. Monthly Notices of the Royal Astronomical Society, 2019 , 484, 2281-2295	4.3	9
283	Comparing IMF-sensitive indices of intermediate-mass quiescent galaxies in various environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 3788-3804	4.3	3
282	Feedback by supermassive black holes in galaxy evolution: impacts of accretion and outflows on the star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1509-1522	4.3	9
281	Spatially Resolved [C ii] Emission in SPT0346-52: A Hyper-starburst Galaxy Merger at z ~ 5.7. Astrophysical Journal, 2019 , 870, 80	4.7	31

280	CLEAR. I. Ages and Metallicities of Quiescent Galaxies at 1.0 Astrophysical Journal, 2019 , 870, 133	4.7	34
279	Structural Analogs of the Milky Way Galaxy: Stellar Populations in the Boxy Bulges of NGC 4565 and NGC 5746. <i>Astrophysical Journal</i> , 2019 , 872, 106	4.7	11
278	The MASSIVE Survey. XII. Connecting Stellar Populations of Early-type Galaxies to Kinematics and Environment. <i>Astrophysical Journal</i> , 2019 , 874, 66	4.7	23
277	Sub-Eddington Supermassive Black Hole Activity in Fornax Early-type Galaxies. <i>Astrophysical Journal</i> , 2019 , 874, 77	4.7	4
276	The Imprint of Element Abundance Patterns on Quiescent Galaxy Spectral Energy Distributions. <i>Astrophysical Journal</i> , 2019 , 872, 136	4.7	3
275	How to Measure Galaxy Star Formation Histories. II. Nonparametric Models. <i>Astrophysical Journal</i> , 2019 , 876, 3	4.7	107
274	Stellar spectral models compared with empirical data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1814-1832	4.3	6
273	SDSS-IV MaNGA: local and global chemical abundance patterns in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3420-3436	4.3	24
272	SDSS-IV MaNGA: stellar initial mass function variation inferred from Bayesian analysis of the integral field spectroscopy of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 5256-5275	4.3	20
271	The origin of the mass scales for maximal star formation efficiency and quenching: the critical role of supernovae. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 3446-3456	4.3	22
270	A Census of Galaxy Constituents in a Coma Progenitor Observed at z > 3. <i>Astrophysical Journal</i> , 2019 , 871, 83	4.7	12
269	The Fe ii/Mg ii Flux Ratio of Low-luminosity Quasars at z ~ 3. <i>Astrophysical Journal</i> , 2019 , 874, 22	4.7	19
268	The origin of scatter in the star formation ratelltellar mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 915-932	4.3	57
267	HST F160W Imaging of Very Massive Galaxies at 1.5 Astrophysical Journal, 2019 , 871, 201	4.7	7
266	SDSS-IV MaNGA: Environmental Dependence of the Mgb/\${boldsymbol{langle }}{bf{Fe}}{boldsymbol{rangle }}\$\\${\text{boldsymbol}{\sigma }}}_{\text{boldsymbol}{\sigma }}}\$\ Galaxies. Astrophysical Journal, 2019 , 873, 63	4.7	9
265	De re metallica: the cosmic chemical evolution of galaxies. 2019 , 27, 1		203
264	Extreme chemical abundance ratio suggesting an exotic origin for an ultradiffuse galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3425-3433	4.3	31
263	The properties of the kinematically distinct components in NGC 448 and NGC 4365. <i>Astronomy and Astrophysics</i> , 2019 , 623, A87	5.1	9

262	Constraining nuclear star cluster formation using MUSE-AO observations of the early-type galaxy FCC 47. <i>Astronomy and Astrophysics</i> , 2019 , 628, A92	5.1	18
261	Massive galaxies on the road to quenching: ALMA observations of powerful high redshift radio galaxies. <i>Astronomy and Astrophysics</i> , 2019 , 621, A27	5.1	19
260	NLTE modelling of integrated light spectra. Astronomy and Astrophysics, 2019, 627, A40	5.1	8
259	The most massive, passive, and oldest galaxies at 0.5 Astronomy and Astrophysics, 2019 , 630, A145	5.1	4
258	The XXL Survey. Astronomy and Astrophysics, 2019, 625, A112	5.1	12
257	Stellar populations of galaxies in the ALHAMBRA survey up to z \sim 1. Astronomy and Astrophysics, 2019 , 631, A158	5.1	12
256	Signatures of Stellar Accretion in MaNGA Early-type Galaxies. Astrophysical Journal, 2019, 880, 111	4.7	18
255	Stellar populations of galaxies in the ALHAMBRA survey up to $z\sim 1$. Astronomy and Astrophysics, 2019 , 631, A157	5.1	4
254	A few StePS forward in unveiling the complexity of galaxy evolution: light-weighted stellar ages of intermediate-redshift galaxies with WEAVE. <i>Astronomy and Astrophysics</i> , 2019 , 632, A9	5.1	9
253	Fornax 3D project: a two-dimensional view of the stellar initial mass function in the massive lenticular galaxy FCC 167. <i>Astronomy and Astrophysics</i> , 2019 , 626, A124	5.1	18
252	Stellar Velocity Dispersion of a Massive Quenching Galaxy at z = 4.01. <i>Astrophysical Journal Letters</i> , 2019 , 885, L34	7.9	35
251	Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective. 2019 , 215, 1		45
250	SDSS-IV MaNGA lan archaeological view of the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 1557-1586	4.3	40
249	Candidate massive galaxies atz´~´4 in the Dark Energy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3060-3081	4.3	14
248	To use or not to use synthetic stellar spectra in population synthesis models?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 2025-2042	4.3	18
247	Sub one per cent mass fractions of young stars in red massive galaxies. <i>Nature Astronomy</i> , 2020 , 4, 252-	2 52 1	19
246	Stellar population properties of individual massive early-type galaxies at 1.4 < z < 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 326-351	4.3	8
245	The Fundamental Plane of cluster spheroidal galaxies at $z \sim 1.3$: evidence for mass-dependent evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 1777-1794	4.3	6

(2020-2020)

244	A Catalog of Holes and Shells in the Interstellar Medium of the LITTLE THINGS Dwarf Galaxies. Astronomical Journal, 2020 , 160, 66	4.9	4
243	. 2020 , 8, 107912-107926		1
242	SDSS-IV MaNGA: the [ÆFe] of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 3011-3025	4.3	4
241	Age and metallicity of galaxies in different environments of the Coma supercluster. 2020 , 81, 101417		3
24 0	The stellar mass assembly of low-redshift, massive, central galaxies in SDSS and the TNG300 simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 4262-4275	4.3	2
239	Surrogate modelling the Baryonic Universe II. The colour of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 2088-2104	4.3	11
238	Star-Forming Galaxies at Cosmic Noon. 2020 , 58, 661-725		29
237	Stellar population models based on the SDSS-IV MaStar library of stellar spectra []. Intermediate-age/old models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 2962-2997	4.3	17
236	SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1958-1977	4.3	18
235	How well can we determine ages and chemical abundances from spectral fitting of integrated light spectra?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2327-2339	4.3	5
234	Stellar initial mass function variation in massive early-type galaxies: the potential role of the deuterium abundance. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4051-4059	4.3	1
233	The GOGREEN survey: post-infall environmental quenching fails to predict the observed age difference between quiescent field and cluster galaxies at z´>´1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 5317-5342	4.3	14
232	Study of central intensity ratio of early-type galaxies from low-density environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 1343-1349	4.3	1
231	VIS3COS. Astronomy and Astrophysics, 2020 , 633, A70	5.1	7
230	Spatially Resolved Spectroscopic Properties of Low-Redshift Star-Forming Galaxies. 2020 , 58, 99-155		65
229	One Hundred SMUDGes in S-PLUS: Ultra-diffuse Galaxies Flourish in the Field. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 247, 46	8	16
228	Formation channels of slowly rotating early-type galaxies. <i>Astronomy and Astrophysics</i> , 2020 , 635, A129	5.1	13
227	Galaxy properties as revealed by MaNGA [III. Kinematic profiles and stellar population gradients in S0s. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 2894-2908	4.3	14

226	Growth of Supermassive Black Hole Seeds in ETG Star-forming Progenitors: Multiple Merging of Stellar Compact Remnants via Gaseous Dynamical Friction and Gravitational-wave Emission. <i>Astrophysical Journal</i> , 2020 , 891, 94	4.7	13
225	Both starvation and outflows drive galaxy quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5406-5434	4.3	37
224	Quiescent Galaxies 1.5 Billion Years after the Big Bang and Their Progenitors. <i>Astrophysical Journal</i> , 2020 , 889, 93	4.7	63
223	Anisotropic infall in the outskirts of OmegaWINGS galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 4950-4959	4.3	5
222	An excessively massive thick disc of the enormous edge-on lenticular galaxy NGC 7572. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5464-5478	4.3	7
221	An ALMA survey of the SCUBA-2 cosmology legacy survey UKIDSS/UDS field: Dust attenuation in high-redshift Lyman-break galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 4927-	4 9 44	3
220	Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology. <i>Astrophysical Journal</i> , 2020 , 889, 8	4.7	36
219	Temperature profiles of hot gas in early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2095-2118	4.3	4
218	Formation of S0s in extreme environments I: clues from kinematics and stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2955-2972	4.3	15
217	Modelling the quenching of star formation activity from the evolution of the colour-magnitude relation in VIPERS. 2021 , 84, 101515		2
216	The MAGPI survey: Science goals, design, observing strategy, early results and theoretical framework. 2021 , 38,		4
215	What does (not) drive the variation of the low-mass end of the stellar initial mass function of early-type galaxies. <i>Astronomy and Astrophysics</i> , 2021 , 645, L1	5.1	7
214	Modelling intergalactic low ionization metal absorption line systems near the epoch of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 888-903	4.3	
213	INSPIRE: INvestigating Stellar Population In RElics. Astronomy and Astrophysics, 2021 , 646, A28	5.1	8
212	The Fundamental Plane of Massive Quiescent Galaxies at z ~ 2. <i>Astrophysical Journal</i> , 2021 , 908, 135	4.7	1
211	Dark matter haloes of massive elliptical galaxies at $z \sim 0.2$ are well described by the Navarro Brenk White profile. Monthly Notices of the Royal Astronomical Society, 2021 , 503, 2380-2405	4.3	11
210	Galaxy evolution across environments as probed by the ages, stellar metallicities, and [PFe] of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 4457-4478	4.3	13
209	SDSS-IV MaNGA: radial gradients in stellar population properties of early-type and late-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 5508-5527	4.3	2

(2021-2021)

-	208	Globular cluster systems of relic galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 2406-2422	4.3	2	
:	207	Evolution of Galaxy Star Formation and Metallicity: Impact on Double Compact Object Mergers. <i>Astrophysical Journal</i> , 2021 , 907, 110	4.7	13	
į	206	The stellar halos of ETGs in the IllustrisTNG simulations. Astronomy and Astrophysics, 2021, 647, A95	5.1	7	
	205	The Buildup of the Intracluster Light of A85 as Seen by Subarull Hyper Suprime-Cam. <i>Astrophysical Journal</i> , 2021 , 910, 45	4.7	11	
:	204	Low-mass compact elliptical galaxies: spatially resolved stellar populations and kinematics with the Keck Cosmic Web Imager. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 5455-5472	4.3	4	
:	203	Exploring the relation between dust mass and galaxy properties using Dusty SAGE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 1005-1016	4.3	3	
;	202	Unravelling stellar populations in the Andromeda Galaxy. <i>Astronomy and Astrophysics</i> , 2021 , 647, A131	5.1	О	
2	201	The Fornax3D project: Assembly histories of lenticular galaxies from a combined dynamical and population orbital analysis. <i>Astronomy and Astrophysics</i> , 2021 , 647, A145	5.1	8	
;	2 00	Fingerprints of stellar populations in the near-infrared: an optimized set of spectral indices in the JHK bands 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 2190-2223	4.3	3	
	199	sMILES: a library of semi-empirical MILES stellar spectra with variable [#Fe] abundances. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 2286-2311	4.3	4	
·	198	Accelerated Galaxy Growth and Environmental Quenching in a Protocluster at $z=3.24$. Astrophysical Journal, 2021 , 911, 46	4.7	3	
:	197	The SAMI Galaxy Survey: stellar population and structural trends across the Fundamental Plane. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 5098-5130	4.3	11	
	196	Evolution of the chemical enrichment and the massmetallicity relation in CALIFA galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 3478-3493	4.3	7	
:	195	Optical emission lines in the most massive galaxies: Morphology, kinematics, and ionisation properties. <i>Astronomy and Astrophysics</i> , 2021 , 649, A63	5.1	2	
·	194	The evolution of compact massive quiescent and star-forming galaxies derived from the ReRh and MstarMh relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 4555-4570	4.3	8	
	193	Mild radial variations of the stellar IMF in the bulge of M31. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 415-434	4.3	2	
	192	A Duality in the Origin of Bulges and Spheroidal Galaxies. <i>Astrophysical Journal</i> , 2021 , 913, 125	4.7	4	
	191	The effects of the initial mass function on Galactic chemical enrichment. <i>Astronomy and Astrophysics</i> , 2021 , 650, A203	5.1	2	

190	Investigation of the Environmental Dependence of Galaxy Age in the CMASS Galaxy Sample of SDSS DR12. 2021 , 64, 150-159		
189	A study of the central stellar populations of galaxies in SDSS-IV MaNGA: identification of a subsample with unusually young and massive stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 727-740	4.3	1
188	Total mass density slopes of early-type galaxies using Jeans dynamical modelling at redshifts 0.29 Monthly Notices of the Royal Astronomical Society,	4.3	О
187	The puzzling origin of massive compact galaxies in MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 300-317	4.3	
186	Elemental Abundances in M31: Gradients in the Giant Stellar Stream*. <i>Astronomical Journal</i> , 2021 , 162, 45	4.9	3
185	Fornax 3D project: Assessing the diversity of IMF and stellar population maps within the Fornax Cluster. <i>Astronomy and Astrophysics</i> ,	5.1	1
184	Downsizing revised: Star formation timescales for elliptical galaxies with an environment-dependent IMF and a number of SNIa. <i>Astronomy and Astrophysics</i> ,	5.1	5
183	INSPIRE: INvestigating Stellar Population In RElics. II. First Data Release (DR1). <i>Astronomy and Astrophysics</i> ,	5.1	1
182	[Æe] traced by H II regions from the CALIFA survey. Astronomy and Astrophysics, 2021, 652, L10	5.1	2
181	Compact Elliptical Galaxies Hosting Active Galactic Nuclei in Isolated Environments. <i>Astrophysical Journal Letters</i> , 2021 , 917, L9	7.9	Ο
180	HST grism spectroscopy of $z \sim 3$ massive quiescent galaxies. Astronomy and Astrophysics, 2021 , 653, A32	2 5.1	3
179	Nonlinear ColorMetallicity Relations of Globular Clusters. X. Subaru/FOCAS Multiobject Spectroscopy of M87 Globular Clusters. <i>Astrophysical Journal, Supplement Series</i> , 2021 , 256, 29	8	Ο
178	Running on fumes. Nature Astronomy,	12.1	
177	Quenching of star formation from a lack of inflowing gas to galaxies. 2021 , 597, 485-488		6
176	An Exquisitely Deep View of Quenching Galaxies through the Gravitational Lens: Stellar Population, Morphology, and Ionized Gas. <i>Astrophysical Journal</i> , 2021 , 919, 20	4.7	2
175	ZFIRE: The Beginning of the End for Massive Galaxies at $z\sim 2$ and Why Environment Matters. Astrophysical Journal, 2021 , 919, 57	4.7	1
174	Dynamical modelling of the twisted galaxy PGC 046832. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
173	Elliptical Galaxies and Bulges of Disc Galaxies: Summary of Progress and Outstanding Issues. <i>Astrophysics and Space Science Library</i> , 2016 , 431-477	0.3	41

172	Stellar Populations of Bulges at Low Redshift. Astrophysics and Space Science Library, 2016, 127-159	0.3	4
171	The Impact of Surveys. Astrophysics and Space Science Library, 2016 , 381-477	0.3	2
170	And the Winner Is: Galaxy Mass. Thirty Years of Astronomical Discovery With UKIRT, 2011, 89-94	0.3	1
169	The [#Fe] Ratios in Dwarf Galaxies: Evidence for a Non-universal Stellar Initial Mass Function?. <i>Thirty Years of Astronomical Discovery With UKIRT</i> , 2012 , 151-154	0.3	1
168	GMASS ultradeep spectroscopy of galaxies at z ~ 2. <i>Astronomy and Astrophysics</i> , 2009 , 504, 331-346	5.1	85
167	The age of blue LSB galaxies. Astronomy and Astrophysics, 2009, 505, 483-495	5.1	17
166	GALICS. II: the [#Fe] -mass relation in elliptical galaxies. <i>Astronomy and Astrophysics</i> , 2009 , 505, 1075-10	85 .1	45
165	The chemical evolution of galaxies within the IGIMF theory: the [#Fe] ratios and downsizing. <i>Astronomy and Astrophysics</i> , 2009 , 499, 711-722	5.1	54
164	Multiwavelength observations of a rich galaxy cluster at z \$thicksim\$ 1. <i>Astronomy and Astrophysics</i> , 2009 , 501, 49-60	5.1	32
163	On the survival of metallicity gradients to major dry-mergers. <i>Astronomy and Astrophysics</i> , 2009 , 499, 427-437	5.1	85
162	Building merger trees from cosmologicalN-body simulations. <i>Astronomy and Astrophysics</i> , 2009 , 506, 647-660	5.1	156
161	Quasar induced galaxy formation: a new paradigm?. Astronomy and Astrophysics, 2009, 507, 1359-1374	5.1	37
160	The chemical evolution of elliptical galaxies with stellar and QSO dust production. <i>Astronomy and Astrophysics</i> , 2011 , 525, A61	5.1	62
159	The Na D profiles of nearby low-power radio sources: jets powering outflows. <i>Astronomy and Astrophysics</i> , 2011 , 532, L3	5.1	29
158	GMASS ultradeep spectroscopy of galaxies atz´~´2. Astronomy and Astrophysics, 2013 , 549, A63	5.1	76
157	A six-parameter space to describe galaxy diversification. <i>Astronomy and Astrophysics</i> , 2012 , 545, A80	5.1	23
156	Stripped gas as fuel for newly formed H ii regions in the encounter between VCC 1249 and M 49: a unified picture from NGVS and GUViCS. <i>Astronomy and Astrophysics</i> , 2012 , 543, A112	5.1	49
155	F-VIPGI: a new adapted version of VIPGI for FORS2 spectroscopy. <i>Astronomy and Astrophysics</i> , 2013 , 550, A9	5.1	3

154	Detailed abundance analysis from integrated high-dispersion spectroscopy: globular clusters in the Fornax dwarf spheroidal. <i>Astronomy and Astrophysics</i> , 2012 , 546, A53	5.1	65
153	The star formation histories of Hickson compact group galaxies. <i>Astronomy and Astrophysics</i> , 2012 , 546, A48	5.1	13
152	The VIMOS Public Extragalactic Redshift Survey (VIPERS):. Astronomy and Astrophysics, 2014, 563, A92	5.1	47
151	Isolated elliptical galaxies and their globular cluster systems. <i>Astronomy and Astrophysics</i> , 2015 , 574, A21	5.1	13
150	Subaru and e-Merlin observations of NGC 3718. Astronomy and Astrophysics, 2015, 580, A11	5.1	9
149	Stellar populations of galaxies in the ALHAMBRA survey up toz´~´1. <i>Astronomy and Astrophysics</i> , 2015 , 582, A14	5.1	25
148	The CALIFA survey across the Hubble sequence. Astronomy and Astrophysics, 2015, 581, A103	5.1	175
147	The Hydra I cluster core. Astronomy and Astrophysics, 2016 , 589, A139	5.1	17
146	Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample. <i>Astronomy and Astrophysics</i> , 2017 , 598, A50	5.1	14
145	The cosmic epoch dependence of environmental effects on size evolution of red-sequence early-type galaxies. <i>Astronomy and Astrophysics</i> , 2018 , 617, A53	5.1	8
144	Kinematics of the outer halo of M 87 as mapped by planetary nebulae. <i>Astronomy and Astrophysics</i> , 2018 , 620, A111	5.1	27
143	Color gradients reflect an inside-out growth in early-type galaxies of the cluster MACS J1206.2-0847. <i>Astronomy and Astrophysics</i> , 2018 , 617, A34	5.1	4
142	GOODS-ALMA: Optically dark ALMA galaxies shed light on a cluster in formation at $z=3.5$. Astronomy and Astrophysics, 2020 , 642, A155	5.1	12
141	The stellar halos of ETGs in the IllustrisTNG simulations: The photometric and kinematic diversity of galaxies at large radii. <i>Astronomy and Astrophysics</i> , 2020 , 641, A60	5.1	13
140	Massive molecular gas reservoir around the central AGN in the CARLA J1103 \pm 3449 cluster at z = 1.44. <i>Astronomy and Astrophysics</i> , 2020 , 641, A22	5.1	2
139	The evolution of the gas fraction of quiescent galaxies modeled as a consequence of their creation rate. <i>Astronomy and Astrophysics</i> , 2020 , 644, L7	5.1	2
138	The sensitivity of Lick indices to abundance variations. <i>Astronomy and Astrophysics</i> , 2005 , 438, 685-704	5.1	104
137	Peculiarities and populations in elliptical galaxies. <i>Astronomy and Astrophysics</i> , 2006 , 449, 519-532	5.1	9

(2007-2006)

136	The near-infrared luminosity function of cluster galaxies beyond redshift one. <i>Astronomy and Astrophysics</i> , 2006 , 450, 909-923	5.1	47
135	The stellar masses of 25 000 galaxies at 0.2 ½ 🗓 .0 estimated by the COMBO-17 survey. <i>Astronomy and Astrophysics</i> , 2006 , 453, 869-881	5.1	245
134	The elliptical galaxies NGC 1052 and NGC 7796. Astronomy and Astrophysics, 2007, 469, 89-113	5.1	9
133	Nearby early-type galaxies with ionized gas. Astronomy and Astrophysics, 2007, 463, 455-479	5.1	119
132	Stellar populations of early-type galaxies in different environments. <i>Astronomy and Astrophysics</i> , 2006 , 457, 787-808	5.1	96
131	Stellar populations of early-type galaxies in different environments. <i>Astronomy and Astrophysics</i> , 2006 , 457, 809-821	5.1	155
130	Relations between Interstellar medium tracers in galaxies. <i>Astronomy and Astrophysics</i> , 2007 , 462, 495	-5 9 £	1
129	Downsizing of star-forming galaxies by gravitational processes. <i>Astronomy and Astrophysics</i> , 2006 , 459, 371-374	5.1	8
128	The formation of S0 galaxies: evidence from globular clusters. <i>Astronomy and Astrophysics</i> , 2007 , 470, 173-178	5.1	34
127	Kinematics and stellar populations of low-luminosity early-type galaxies in the Abell 496 cluster. <i>Astronomy and Astrophysics</i> , 2008 , 486, 85-97	5.1	48
126	Stellar populations, neutral hydrogen, and ionised gas in field early-type galaxies. <i>Astronomy and Astrophysics</i> , 2008 , 483, 57-69	5.1	38
125	Indications for 3 Mpc-scale large-scale structure associated with an X-ray luminous cluster of galaxies at $z = 0.95$. Astronomy and Astrophysics, 2008 , 481, L73-L77	5.1	11
124	The origin of the \$langlemu_{mathsf e}rangle\$-MB and Kormendy relations in dwarf elliptical galaxies. <i>Astronomy and Astrophysics</i> , 2008 , 489, 1015-1022	5.1	58
123	Stellar Populations in Nearby Lenticular Galaxies. <i>Astrophysical Journal</i> , 2006 , 641, 229-240	4.7	49
122	The Modulated Emission of the Ultraluminous X-Ray Source in NGC 3379. <i>Astrophysical Journal</i> , 2006 , 650, 879-884	4.7	18
121	Diffuse Stellar Component in Galaxy Clusters and the Evolution of the Most Massive Galaxies at [FORMULA][F]z?1[/F][/FORMULA]. <i>Astrophysical Journal</i> , 2006 , 652, L89-L92	4.7	76
120	Old and Young Bulges in Late-Type Disk Galaxies. <i>Astrophysical Journal</i> , 2007 , 658, 960-979	4.7	65
119	Population Synthesis in the Blue. IV. Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 171, 146-205	8	262

118	Far-InfraredSpitzerObservations of Elliptical Galaxies: Evidence for Extended Diffuse Dust. <i>Astrophysical Journal</i> , 2007 , 660, 1215-1231	4.7	90
117	A Keck Spectroscopic Survey of MS 105403 (z= 0.83): Forming the Red Sequence. <i>Astrophysical Journal</i> , 2007 , 661, 750-767	4.7	65
116	GALEX UV Color Relations for Nearby Early-Type Galaxies. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 173, 597-606	8	68
115	The Co-Formation of Spheroids and Quasars Traced in their Clustering. <i>Astrophysical Journal</i> , 2007 , 662, 110-130	4.7	85
114	A Spectrophotometric Search for Galaxy Clusters in SDSS. <i>Astrophysical Journal, Supplement Series</i> , 2008 , 176, 414-423	8	41
113	How Binary Interactions Affect Spectral Stellar Population Synthesis. <i>Astrophysical Journal</i> , 2008 , 685, 225-234	4.7	24
112	DISSECTING THE RED SEQUENCE. II. STAR FORMATION HISTORIES OF EARLY-TYPE GALAXIES THROUGHOUT THE FUNDAMENTAL PLANE. <i>Astrophysical Journal</i> , 2009 , 698, 1590-1608	4.7	116
111	CAN DRY MERGING EXPLAIN THE SIZE EVOLUTION OF EARLY-TYPE GALAXIES?. <i>Astrophysical Journal</i> , 2009 , 706, L86-L90	4.7	101
110	THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION ATz~ 1. <i>Astrophysical Journal</i> , 2012 , 746, 188	4.7	234
109	DISCOVERY OF A PROTOCLUSTER ATz~ 6. Astrophysical Journal, 2012 , 750, 137	4.7	58
108	DISK ASSEMBLY AND THEMBH-BRELATION OF SUPERMASSIVE BLACK HOLES. <i>Astrophysical Journal</i> , 2013 , 765, 23	4.7	20
107	MAMMOTH: confirmation of two massive galaxy overdensities at $z = 2.24$ with Hemitters. Monthly Notices of the Royal Astronomical Society, 2020 , 500, 4354-4364	4.3	3
106	emerge Lempirical constraints on the formation of passive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4748-4767	4.3	11
105	The stellar metallicity distribution function of galaxies in the CALIFA survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4838-4853	4.3	7
104	Evaluating hydrodynamical simulations with green valley galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3685-3702	4.3	4
103	Young stellar population gradients in central cluster galaxies from NUV and optical spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3368-3381	4.3	3
102	Revealing the relation between black hole growth and host-galaxy compactness among star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 4989-5008	4.3	8
101	THE ENVIRONMENTAL DEPENDENCE OF THE AGE OF ACTIVE GALAXIES AND THE DEPENDENCE OF THE CLUSTERING PROPERTIES OF ACTIVE GALAXIES ON AGE. Revista Mexicana De Astronomia Y Astrofisica, 2020, 56, 87-95	0.4	3

(2020-2016)

	ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES ATZ? 3.3 FROM NEAR-IR SPECTROSCOPY. <i>Astrophysical Journal</i> , 2016 , 822, 42	4.7	91
99	THE LOST DWARFS OF CENTAURUS A AND THE FORMATION OF ITS DARK GLOBULAR CLUSTERS. Astrophysical Journal, 2016 , 832, 88	4.7	5
98	HIERARCHICAL GALAXY GROWTH AND SCATTER IN THE STELLAR MASSHALO MASS RELATION. <i>Astrophysical Journal</i> , 2016 , 833, 2	4.7	32
97	Spatially Resolved Stellar Populations and Kinematics with KCWI: Probing the Assembly History of the Massive Early-type Galaxy NGC 1407. <i>Astrophysical Journal</i> , 2019 , 878, 129	4.7	5
96	The Coevolution of Massive Quiescent Galaxies and Their Dark Matter Halos over the Last 6 Billion Years. <i>Astrophysical Journal</i> , 2019 , 878, 158	4.7	7
95	Evolution of the Stellar MassMetallicity Relation. II. Constraints on Galactic Outflows from the Mg Abundances of Quiescent Galaxies. <i>Astrophysical Journal</i> , 2019 , 885, 100	4.7	12
94	Automated Mining of the ALMA Archive in the COSMOS Field (A3COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6. <i>Astrophysical Journal</i> , 2019 , 887, 235	4.7	46
93	Discovery of Protoclusters at $z \sim 3.7$ and 4.9: Embedded in Primordial Superclusters. <i>Astrophysical Journal</i> , 2020 , 888, 89	4.7	8
92	Recovering AgeMetallicity Distributions from Integrated Spectra: Validation with MUSE Data of a Nearby Nuclear Star Cluster. <i>Astrophysical Journal</i> , 2020 , 896, 13	4.7	4
91	The SAMI Galaxy Survey: Stellar Population Gradients of Central Galaxies. <i>Astrophysical Journal</i> , 2020 , 896, 75	4.7	15
	Gravitational Potential and Surface Density Drive Stellar Populations. II. Star-forming Galaxies.		-
90	Astrophysical Journal, 2020 , 898, 62	4.7	5
90 89		4·7 4·7	10
	Astrophysical Journal, 2020 , 898, 62 Toward an Understanding of the Massive Red Spiral Galaxy Formation. Astrophysical Journal, 2020 ,		
89	Astrophysical Journal, 2020, 898, 62 Toward an Understanding of the Massive Red Spiral Galaxy Formation. Astrophysical Journal, 2020, 897, 162 The Black Hole MassColor Relations for Early- and Late-type Galaxies: Red and Blue Sequences.	4.7	10
89 88	Astrophysical Journal, 2020, 898, 62 Toward an Understanding of the Massive Red Spiral Galaxy Formation. Astrophysical Journal, 2020, 897, 162 The Black Hole MassColor Relations for Early- and Late-type Galaxies: Red and Blue Sequences. Astrophysical Journal, 2020, 898, 83 CLEAR. II. Evidence for Early Formation of the Most Compact Quiescent Galaxies at High Redshift.	4.7	10
89 88 87	Toward an Understanding of the Massive Red Spiral Galaxy Formation. <i>Astrophysical Journal</i> , 2020, 897, 162 The Black Hole Massitolor Relations for Early- and Late-type Galaxies: Red and Blue Sequences. <i>Astrophysical Journal</i> , 2020, 898, 83 CLEAR. II. Evidence for Early Formation of the Most Compact Quiescent Galaxies at High Redshift. <i>Astrophysical Journal</i> , 2020, 898, 171 The UV Luminosity Function of Protocluster Galaxies at z ~ 4: The Bright-end Excess and the	4·7 4·7	10 8
89 88 87 86	Toward an Understanding of the Massive Red Spiral Galaxy Formation. <i>Astrophysical Journal</i> , 2020 , 897, 162 The Black Hole MassColor Relations for Early- and Late-type Galaxies: Red and Blue Sequences. <i>Astrophysical Journal</i> , 2020 , 898, 83 CLEAR. II. Evidence for Early Formation of the Most Compact Quiescent Galaxies at High Redshift. <i>Astrophysical Journal</i> , 2020 , 898, 171 The UV Luminosity Function of Protocluster Galaxies at z ~ 4: The Bright-end Excess and the Enhanced Star Formation Rate Density. <i>Astrophysical Journal</i> , 2020 , 899, 5	4·7 4·7 4·7	10 8 21 5

82	Measuring the Stellar Population Parameters of the Early-type Galaxy NGC 3923: The Challenging Measurement of the Initial Mass Function*. <i>Astrophysical Journal</i> , 2020 , 902, 12	4.7	3
81	The Massive Ancient Galaxies at z > 3 NEar-infrared (MAGAZ3NE) Survey: Confirmation of Extremely Rapid Star Formation and Quenching Timescales for Massive Galaxies in the Early Universe. <i>Astrophysical Journal</i> , 2020 , 903, 47	4.7	22
80	X-Ray Binary Luminosity Function Scaling Relations in Elliptical Galaxies: Evidence for Globular Cluster Seeding of Low-mass X-Ray Binaries in Galactic Fields. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 248, 31	8	9
79	Resolved Multi-element Stellar Chemical Abundances in the Brightest Quiescent Galaxy at $z\sim 2$. Astrophysical Journal Letters, 2020 , 897, L42	7.9	13
78	The Role of Active Galactic Nuclei in the Quenching of Massive Galaxies in the SQuIGG\$vec{L}\$E Survey. <i>Astrophysical Journal Letters</i> , 2020 , 899, L9	7.9	10
77	Lessons on Star-forming Ultra-diffuse Galaxies from the Stacked Spectra of the Sloan Digital Sky Survey. <i>Astrophysical Journal Letters</i> , 2020 , 899, L12	7.9	5
76	HISTORY OF STAR FORMATION OF EARLY TYPE GALAXIES FROM INTEGRATED LIGHT: STELLAR AGES AND ABUNDANCES. <i>Publications of the Korean Astronomical Society</i> , 2010 , 25, 83-90		3
75	SDSS-IV MaNGA: drivers of stellar metallicity in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 4844-4857	4.3	1
74	The Role of HST in the Study of Near- and Mid-infrared-selected Galaxies. <i>Thirty Years of Astronomical Discovery With UKIRT</i> , 2010 , 243-246	0.3	
73	THE GALAXY-BLACK HOLE CONNECTION IN THE LOCAL UNIVERSE. <i>Publications of the Korean Astronomical Society</i> , 2010 , 25, 77-82		
72	Modeling the High-z Universe: Probing Galaxy Formation. 87-95		
71	The Fundamental Plane of Early-Type Galaxies: Environmental Dependence from g Through K. <i>Thirty Years of Astronomical Discovery With UKIRT</i> , 2011 , 79-84	0.3	
70	Abundances and Abundance Ratios in Stars and Hot Gas in Elliptical Galaxies. <i>Astrophysics and Space Science Library</i> , 2012 , 163-206	0.3	
69	Stellar Population Diagnostics of Galaxies. 133-169		
68	References. 269-318		
67	Morphological type and color indices of galaxies SDSS DR9 at 0.02 Kinematika I Fizika Nebesnykh Tel, 2018 , 34, 22-40	О	
66	THE ENVIRONMENTAL DEPENDENCE OF GALAXY AGE AND STELLAR MASS IN THE REDSHIFT REGION 0.6 12 10.75. Revista Mexicana De Astronomia Y Astrofisica, 2019, 55, 185-191	0.4	
65	The star formation timescale of elliptical galaxies. <i>Astronomy and Astrophysics</i> , 2019 , 632, A110	5.1	4

64	Reconstructing the mass accretion histories of nearby red nuggets with their globular cluster systems. <i>Proceedings of the International Astronomical Union</i> , 2020 , 15, 381-385	0.1	
63	Near UV Properties of EarlyType Galaxies at z ~ 1. <i>Thirty Years of Astronomical Discovery With UKIRT</i> , 2009 , 1-5	0.3	
62	STELLAR POPULATIONS IN BULGES OF SPIRAL GALAXIES. 2007, 47-52		
61	Stellar Populations in Compact Group Elliptical Galaxies. 2007 , 175-179		
60	Powerful Radio Galaxies at z=2-3: Signposts of AGN Feedback in the Early Universe. 2007 , 416-421		
59	AGN Feedback at High Redshift: Shaping the Most Massive Galaxies?. <i>Globular Clusters - Guides To Galaxies</i> , 2007 , 393-395		
58	Past, Present, and Future of the Scaling Relations of Galaxies and Active Galactic Nuclei. <i>Frontiers in Astronomy and Space Sciences</i> , 2021 , 8,	3.8	2
57	Relative effect of nodes and filaments of the cosmic web on the quenching of galaxies and the orientation of their spin. <i>Astronomy and Astrophysics</i> ,	5.1	1
56	The SAMI Galaxy Survey: the drivers of gas and stellar metallicity differences in galaxies <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О
55	The chemical composition of globular clusters in the Local Group. Astronomy and Astrophysics,	5.1	O
54	On the Variation in Stellar Enhancements of Star-forming Galaxies in the EAGLE Simulation. <i>Astrophysical Journal</i> , 2022 , 924, 73	4.7	
53	SDSS-IV MaStar: Data-driven Parameter Derivation for the MaStar Stellar Library. <i>Astronomical Journal</i> , 2022 , 163, 56	4.9	2
52	Deriving ages and horizontal branch properties of integrated stellar populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 341-355	4.3	1
51	Quenching Timescales in the IllustrisTNG Simulation. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2
50	Now You See It, Now You Dont Star Formation Truncation Precedes the Loss of Molecular Gas by \sim 100 Myr in Massive Poststarburst Galaxies at z \sim 0.6. <i>Astrophysical Journal</i> , 2022 , 925, 153	4.7	2
49	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	1
48	Spectroscopic Confirmation of a Protocluster at $z=3.37$ with a High Fraction of Quiescent Galaxies. <i>Astrophysical Journal</i> , 2022 , 926, 37	4.7	1
47	The dark side of galaxy stellar populations I: The stellar-to-halo mass relation and the velocity dispersion - halo mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О

46	The cosmic environment overtakes the local density in shaping galaxy star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3071-3084	4.3	1
45	The Number Densities and Stellar Populations of Massive Galaxies at 3 < z < 6: A Diverse, Rapidly Forming Population in the Early Universe. 2022 , 924, 25		3
44	Fast, Slow, Early, Late: Quenching Massive Galaxies at z ~ 0.8. <i>Astrophysical Journal</i> , 2022 , 926, 134	4.7	7
43	A combined VANDELS and LEGA-C study: the evolution of quiescent galaxy size, stellar mass, and age from $z = 0.6$ to $z = 1.3$. Monthly Notices of the Royal Astronomical Society, 2022 , 512, 1262-1274	4.3	3
42	The LEGA-C of Nature and Nurture in Stellar Populations at $z \sim 0.61.0$: D n 4000 and HIReveal Different Assembly Histories for Quiescent Galaxies in Different Environments. <i>Astrophysical Journal</i> , 2022 , 926, 117	4.7	0
41	Toward a Better Understanding of Cosmic Chronometers: Stellar Population Properties of Passive Galaxies at Intermediate Redshift. <i>Astrophysical Journal</i> , 2022 , 927, 164	4.7	2
40	The faint light in groups and clusters of galaxies. <i>Nature Astronomy</i> , 2022 , 6, 308-316	12.1	6
39	Stellar Mass-to-light Ratios: Composite Bulge+Disk Models and the Baryonic TullyEisher Relation. <i>Astronomical Journal</i> , 2022 , 163, 154	4.9	1
38	NIHAO-LG: The uniqueness of local group dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	0
37	Molecular gas properties of Planck-selected protocluster candidates at z 1.3-3. <i>Astronomy and Astrophysics</i> ,	5.1	O
36	Stellar Population and Elemental Abundance Gradients of Early-type Galaxies*. <i>Astrophysical Journal</i> , 2021 , 923, 65	4.7	1
35	COSMOS2020: Ubiquitous AGN Activity of Massive Quiescent Galaxies at 0 < z < 5 Revealed by X-Ray and Radio Stacking. <i>Astrophysical Journal</i> , 2022 , 929, 53	4.7	O
34	The physical connection between central stellar surface density and stellar spin in SAMI and MaNGA nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	0
33	NIHAO IXXVIII. Collateral effects of AGN on dark matter concentration and stellar kinematics. Monthly Notices of the Royal Astronomical Society,	4.3	O
32	BUDDI-MaNGA II: The Star-Formation Histories of Bulges and Discs of S0s. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
31	The Next Generation Virgo Cluster Survey. XXXIII. Stellar Population Gradients in the Virgo Cluster Core Globular Cluster System. <i>Astrophysical Journal</i> , 2022 , 931, 120	4.7	O
30	Constraining f(R) models with cosmic chronometers and the H îi galaxy Hubble diagram. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	0
29	The MASSIVE Survey. XVI. The Stellar Initial Mass Function in the Center of MASSIVE Early-type Galaxies. <i>Astrophysical Journal</i> , 2022 , 932, 103	4.7	1

28	The Physical Properties of Star-forming Galaxies with Strong [O iii] Lines at z = 3.25. <i>Astrophysical Journal</i> , 2022 , 933, 50	
27	SDSS-IV MaNGA: How the Stellar Populations of Passive Central Galaxies Depend on Stellar and Halo Mass. <i>Astrophysical Journal</i> , 2022 , 933, 88	О
26	The Black Hole Mass Function across Cosmic Time. II. Heavy Seeds and (Super)Massive Black Holes. 2022 , 934, 66	
25	On the accretion of a new group of galaxies on to Virgo II. The effect of pre-processing on the stellar population content of dEs. 2022 , 515, 4622-4638	1
24	Still at Odds with Conventional Galaxy Evolution: The Star Formation History of Ultra-Diffuse Galaxy Dragonfly 44.	1
23	The SAMI galaxy survey: galaxy size can explain the offset between star-forming and passive galaxies in the mass-metallicity relationship.	2
22	The miniJPAS survey. Galaxy populations in the most massive cluster in miniJPAS: mJPC2470-1771.	О
21	The formation of early-type galaxies through monolithic collapse of gas clouds in Milgromian gravity.	О
20	Non-solar abundance ratios trends of dEs in the Fornax Cluster using newly defined high-resolution indices. 2022 , 515, 3472-3491	
19	Lack of influence of the environment in the earliest stages of massive galaxy formation.	О
18	Probing the magaparsec-scale environment of hyperluminous infrared galaxies.	O
17	SDSS-IV MaStar: [唐e] for the MaNGA Stellar Library from synthetic model spectra. 2022 , 517, 4275-4290	О
16	The impact of environment on the lives of disc galaxies as revealed by SDSS-IV MaNGA. 2022, 517, 3723-3731	O
15	Surveys of the Cosmic X-Ray Background. 2022 , 1-35	О
14	Constraining the multi-scale dark-matter distribution in CASSOWARY 31 with strong gravitational lensing and stellar dynamics.	O
13	Stellar population analysis of MaNGA early-type galaxies: IMF dependence and systematic effects.	О
12	The dark side of galaxy stellar populations []I. The dependence of star-formation histories on halo mass and on the scatter of the main sequence. 2022 , 518, 6325-6339	О
11	The galaxy mass-size relation in CARLA clusters and proto-clusters at 1:4 < z < 2:8: Larger cluster galaxy sizes.	O

10	Star Formation History and Transition Epoch of Cluster Galaxies Based on the Horizon-AGN Simulation. 2022 , 941, 5	O
9	Kinematics of the diffuse intragroup and intracluster light in groups and clusters of galaxies in the local universe within 100 Mpc distance. 9,	O
8	The nature and origins of the low surface brightness outskirts of massive, central galaxies in Subaru HSC.	0
7	REQUIEM-2D: A Diversity of Formation Pathways in a Sample of Spatially Resolved Massive Quiescent Galaxies at $z \sim 2$. 2023 , 943, 179	O
6	Relaxed blue ellipticals: accretion-driven stellar growth is a key evolutionary channel for low mass elliptical galaxies. 2023 , 520, 2109-2120	0
5	The entropy of galaxy spectra: how much information is encoded?. 2023 , 2, 78-90	O
4	Late growth of early-type galaxies in low-z massive clusters. 2023 , 521, 1221-1232	0
3	Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST. 2023 , 944, L58	O
2	The connection between stellar mass, age, and quenching time-scale in massive quiescent galaxies at z ? 1. 2023 , 521, 5400-5409	0
1	SDSS-IV MaNGA: The Effect of Stellar Mass and Halo Mass on the Assembly Histories of Satellite Galaxies. 2023 , 947, 13	O