Kinematics of the Subaxial Cervical Spine in Rotation In

Spine 29, 2826-2831 DOI: 10.1097/01.brs.0000147806.31675.6b

Citation Report

#	Article	IF	CITATIONS
1	Intervertebral Neck Injury Criterion for Prediction of Multiplanar Cervical Spine Injury Due to Side Impacts. Traffic Injury Prevention, 2005, 6, 387-397.	0.6	14
2	Predicting Multiplanar Cervical Spine Injury Due to Head-Turned Rear Impacts Using IV-NIC. Traffic Injury Prevention, 2006, 7, 264-275.	0.6	13
3	C1 lateral mass screws for posterior segmental stabilization of the upper cervical spine and a new method of three-point rigid fixation of the C1-C2 complex. Arquivos De Neuro-Psiquiatria, 2006, 64, 762-767.	0.3	17
4	CT Imaging Techniques for Describing Motions of the Cervicothoracic Junction and Cervical Spine During Flexion, Extension, and Cervical Traction. Spine, 2006, 31, 44-50.	1.0	24
5	Kinematics of the Cervical Spine in Lateral Bending. Spine, 2006, 31, 155-160.	1.0	127
7	Reproducibility of Measuring the Shape and Three-Dimensional Position of Cervical Vertebrae in Upright Position Using the EOS Stereoradiography System. Spine, 2007, 32, 2569-2572.	1.0	43
8	Rotation Axes of the Head During Positioning, Head Shaking, and Locomotion. Journal of Neurophysiology, 2007, 98, 3095-3108.	0.9	13
9	In vivo three-dimensional skeletal alignment analysis of the hindfoot valgus deformity in patients with rheumatoid arthritis. Journal of Orthopaedic Research, 2007, 25, 330-339.	1.2	15
10	Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imaging. European Spine Journal, 2007, 16, 1867-1874.	1.0	79
11	2008 ArgoSpine thesis award Cervical disc arthroplasty: biomechanical analysis. ArgoSpine News and Journal, 2008, 18, 66-67.	0.1	0
12	Anatomie et biomécanique du rachis cervical. Revue Du Rhumatisme (Edition Francaise), 2008, 75, 707-711.	0.0	4
13	Biomechanical studies on cervical total disc arthroplasty: A literature review. Clinical Biomechanics, 2008, 23, 1095-1104.	0.5	73
14	Axial and Coronal Orientation of Subaxial Cervical Zygapophysial Joints and Their Effect on Axial Rotation and Lateral Bending. Spine, 2008, 33, 2409-2414.	1.0	4
15	Head-Turned Postures Increase the Risk of Cervical Facet Capsule Injury During Whiplash. Spine, 2008, 33, 1643-1649.	1.0	27
16	The role of the carotid sinus in the reduction of arterial wall stresses due to head movements—potential implications for cervical artery dissection. Journal of Biomechanics, 2009, 42, 755-761.	0.9	8
17	Biomechanical Analysis of the Range of Motion After Placement of a Two-Level Cervical ProDisc-C Versus Hybrid Construct. Spine, 2010, 35, 1769-1776.	1.0	53
18	Mobilité tridimensionnelle in vivo du rachis. Kinesitherapie, 2010, 10, 19-21.	0.0	0
19	Three-dimensional assessment of the intervertebral kinematics after Mobi-C total disc replacement at the cervical spine in vivo using the EOS stereoradiography system. SAS Journal, 2011, 5, 63-68.	1.3	5

#	Article	IF	CITATIONS
20	Rotational stress: Role in development of ossification of posterior longitudinal ligament and ligamentum flavum. Medical Hypotheses, 2011, 76, 73-76.	0.8	20
21	Kinematic Analysis of the Lumbar Spine by Digital Videofluoroscopy in 18 Asymptomatic Subjects and 9 Patients With Herniated Nucleus Pulposus. Journal of Manipulative and Physiological Therapeutics, 2011, 34, 221-230.	0.4	9
22	Validation of a Noninvasive Technique to Precisely Measure In Vivo Three-Dimensional Cervical Spine Movement. Spine, 2011, 36, E393-E400.	1.0	84
23	In Vivo Three-Dimensional Kinematics of the Cervical Spine During Head Rotation in Patients With Cervical Spondylosis. Spine, 2011, 36, 778-783.	1.0	31
24	Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads. Scientia Iranica, 2011, 18, 1237-1245.	0.3	30
25	Axial head rotation increases facet joint capsular ligament strains in automotive rear impact. Medical and Biological Engineering and Computing, 2011, 49, 153-161.	1.6	13
26	Three-dimensional motion of the uncovertebral joint during head rotation. Journal of Neurosurgery: Spine, 2012, 17, 327-333.	0.9	10
27	Development of a Clinical Prediction Rule to Identify Patients With Neck Pain Likely to Benefit From Thrust Joint Manipulation to the Cervical Spine. Journal of Orthopaedic and Sports Physical Therapy, 2012, 42, 577-592.	1.7	82
28	Finite element modelling of the spine. , 2012, , 144-234e.		4
29	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611.	0.9	12
29 30	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611. Variability of manual lumbar spine segmentation. International Journal of Spine Surgery, 2012, 6, 167-173.	0.9 0.7	12 9
29 30 31	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611. Variability of manual lumbar spine segmentation. International Journal of Spine Surgery, 2012, 6, 167-173. Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. Journal of Headache and Pain, 2012, 13, 39-44.	0.9 0.7 2.5	12 9 18
29 30 31 32	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611. Variability of manual lumbar spine segmentation. International Journal of Spine Surgery, 2012, 6, 167-173. Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. Journal of Headache and Pain, 2012, 13, 39-44. InÂvivo 3D kinematics of the cervical spine segments during pre-manipulative positioning at the C4/C5 level. Manual Therapy, 2013, 18, 321-326.	0.9 0.7 2.5 1.6	12 9 18 15
29 30 31 32 33	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611. Variability of manual lumbar spine segmentation. International Journal of Spine Surgery, 2012, 6, 167-173. Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. Journal of Headache and Pain, 2012, 13, 39-44. InÂvivo 3D kinematics of the cervical spine segments during pre-manipulative positioning at the C4/C5 level. Manual Therapy, 2013, 18, 321-326. InÂvivo three-dimensional kinematics of the cervical spine during maximal axial rotation. Manual Therapy, 2013, 18, 339-344.	0.9 0.7 2.5 1.6	12 9 18 15
29 30 31 32 33 34	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611. Variability of manual lumbar spine segmentation. International Journal of Spine Surgery, 2012, 6, 167-173. Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. Journal of Headache and Pain, 2012, 13, 39-44. InÂvivo 3D kinematics of the cervical spine segments during pre-manipulative positioning at the C4/C5 level. Manual Therapy, 2013, 18, 321-326. InÂvivo three-dimensional kinematics of the cervical spine during maximal axial rotation. Manual Therapy, 2013, 18, 339-344. Three-dimensional kinematic stress magnetic resonance image analysis shows promise for detecting altered anatomical relationships of tissues in the cervical spine associated with painful radiculopathy. Medical Hypotheses, 2013, 81, 738-744.	0.9 0.7 2.5 1.6 1.6 0.8	12 9 18 15 44 2
29 30 31 32 33 34	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611. Variability of manual lumbar spine segmentation. International Journal of Spine Surgery, 2012, 6, 167-173. Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. Journal of Headache and Pain, 2012, 13, 39-44. InÂvivo 3D kinematics of the cervical spine segments during pre-manipulative positioning at the C4/C5 level. Manual Therapy, 2013, 18, 321-326. InÂvivo three-dimensional kinematics of the cervical spine during maximal axial rotation. Manual Therapy, 2013, 18, 339-344. Three-dimensional kinematic stress magnetic resonance image analysis shows promise for detecting altered anatomical relationships of tissues in the cervical spine associated with painful radiculopathy. Medical Hypotheses, 2013, 81, 738-744. Six-Degrees-of-Freedom Cervical Spine Range of Motion During Dynamic Flexion-Extension After Single-Level Anterior Arthrodesis. Journal of Bone and Joint Surgery - Series A, 2013, 95, 497-506.	0.9 0.7 2.5 1.6 1.6 0.8	12 9 18 15 44 2
 29 30 31 32 33 34 35 36 	Physiologic Imaging of the Spine. Radiologic Clinics of North America, 2012, 50, 599-611. Variability of manual lumbar spine segmentation. International Journal of Spine Surgery, 2012, 6, 167-173. Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. Journal of Headache and Pain, 2012, 13, 39-44. InÂvivo 3D kinematics of the cervical spine segments during pre-manipulative positioning at the C4/C5 level. Manual Therapy, 2013, 18, 321-326. InÂvivo three-dimensional kinematics of the cervical spine during maximal axial rotation. Manual Therapy, 2013, 18, 339-344. Three-dimensional kinematic stress magnetic resonance image analysis shows promise for detecting altered anatomical relationships of tissues in the cervical spine associated with painful radiculopathy. Medical Hypotheses, 2013, 81, 738-744. Six-Degrees-of-Freedom Cervical Spine Range of Motion During Dynamic Flexion-Extension After Single-Level Anterior Arthrodesis. Journal of Bone and Joint Surgery - Series A, 2013, 95, 497-506. Intervertebral anticollision constraints improve outà€ofâ€plane translation accuracy of a singleâ€plane fluoroscopyå€toâ€CT registration method for measuring spinal motion. Medical Physics, 2013, 40, 031912.	0.9 0.7 2.5 1.6 0.8 1.4 1.6	12 9 18 15 44 2 40 22

ARTICLE IF CITATIONS # In vivo 3D kinematic changes in the cervical spine after laminoplasty for cervical spondylotic 38 0.9 13 myelopathy. Journal of Neurosurgery: Spine, 2014, 21, 417-424. In vivo 3D kinematics of the upper cervical spine during head rotation in rheumatoid arthritis. Journal 9 of Neurosurgery: Spine, 2014, 20, 404-410. Cervical Arterial Dissections and Association With Cervical Manipulative Therapy. Stroke, 2014, 45, 40 1.0 171 3155-3174. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach. Journal of Biomechanics, 0.9 2014, 47, 3310-3317. A history of spine biomechanics. Der Unfallchirurg, 2015, 118, 80-92. 42 1.3 8 Artificial disc and vertebra system: a novel motion preservation device for cervical spinal disease after vertebral corpectomy. Clinics, 2015, 70, 493-499. Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic 44 0.9 68 functional loading. Journal of Biomechanics, 2015, 48, 1286-1293. Sacroiliac joint motion in patients with degenerative lumbar spine disorders. Journal of Neurosurgery: Spine, 2015, 23, 209-216. Individual characteristics of reliable lumbar coupling motions. European Spine Journal, 2015, 24, 1.0 12 46 1917-1925. Narrative review of the in vivo mechanics of the cervical spine after anterior arthrodesis as revealed 1.2 by dynamic biplane radiography. Journal of Orthopaedic Research, 2016, 34, 22-30. Biomechanics of the Cervical Spine. The Japanese Journal of Rehabilitation Medicine, 2016, 53, 746-749. 48 0.0 1 Use of the alpha shape to quantify finite helical axis dispersion during simulated spine movements. 49 Journal of Biomechanics, 2016, 49, 112-118. Examination and Treatment of Cervical Spine Disorders., 2016,, 301-376. 50 0 Three-dimensional intervertebral range of motion in the cervical spine: Does the method of 0.8 calculation matter?. Medical Engineering and Physics, 2017, 41, 109-115. Changes in the axial orientation of the zygapophyseal joint in the subaxial cervical spine from childhood to middle-age, and the biomechanical implications of these changes. Journal of Clinical 52 0.8 2 Neuroscience, 2017, 44, 335-339. Dynamic in vivo 3D atlantoaxial spine kinematics during upright rotation. Journal of Biomechanics, 2017, 60, 110-115. 3D Motion of the Human Joint : The Body Motion Diversity Composed by the Motion Uniformity of Each 54 0.0 0 Joint. The Japanese Journal of Rehabilitation Medicine, 2017, 54, 297-301. Mechanical testing of orthopedic implants., 2017, , 63-98.

CITATION REPORT

#	Article	lF	CITATIONS
56	FRANK., 2017,, 413-447.		22
57	Biomechanics of the Growing Cervical Spine. , 2018, , 15-25.		0
58	Three-dimensional kinematics of the cervical spine using an electromagnetic tracking device. Differences between healthy subjects and subjects with non-specific neck pain and the effect of age. Clinical Biomechanics, 2018, 54, 111-117.	0.5	12
59	Cervical Disc Arthroplasty: A Comprehensive Review of Single-Level, Multilevel, and Hybrid Procedures. Global Spine Journal, 2018, 8, 78-83.	1.2	42
60	Asymmetric Thickness of Oblique Capitis Inferior and Cervical Kinesthesia in Patients With Unilateral Cervicogenic Headache. Journal of Manipulative and Physiological Therapeutics, 2018, 41, 680-690.	0.4	5
61	A modelâ€based tracking method for measuring 3D dynamic joint motion using an alternating biplane xâ€ray imaging system. Medical Physics, 2018, 45, 3637-3649.	1.6	15
62	The Cervical Spine. , 2018, , 11-34.		2
63	Measurement of three-dimensional cervical segmental kinematics: Reliability of whole vertebrae and facet-based approaches. Musculoskeletal Science and Practice, 2019, 44, 102039.	0.6	2
64	In vivo three-dimensional kinematics of the cervical spine during maximal active head rotation. PLoS ONE, 2019, 14, e0215357.	1.1	19
65	Biomechanical Comparison of C1 Lateral Mass—C2 Short Pedicle Screw—C3 Lateral Mass Screw-Rod Construct Versus Goel-Harms Fixation for Atlantoaxial Instability. Spine, 2019, 44, E393-E399.	1.0	10
66	Quantifying the ranges of relative motions of the intervertebral discs and facet joints in the normal cervical spine. Journal of Biomechanics, 2020, 112, 110023.	0.9	14
67	Spontaneous regression of a subaxial cervical facet cyst. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2021, 23, 100952.	0.2	1
68	In vivo 3-Dimensional Kinematics Study of the Healthy Cervical Spine Based on CBCT Combined with 3D-3D Registration Technology. Spine, 2021, 46, E1301-E1310.	1.0	3
69	An Electromyographically Driven Cervical Spine Model in OpenSim. Journal of Applied Biomechanics, 2021, 37, 481-493.	0.3	7
70	A Technique for the In Vivo Study of Three-dimensional Cervical Segmental Motion Characteristics After Anterior Screw Fixation for Odontoid Process Fractures. Spine, 2021, 46, E433-E442.	1.0	4
71	Biomechanical evaluation of two alternative techniques to the Goel-Harms technique for atlantoaxial fixation: C1 lateral mass–C2 bicortical translaminar screw fixation and C1 lateral mass–C2/3 transarticular screw fixation. Journal of Neurosurgery: Spine, 2020, 32, 682-688.	0.9	12
72	Locating the Instant Center of Rotation in the Subaxial Cervical Spine with Biplanar Fluoroscopy during In Vivo Dynamic Flexion-Extension. Clinics in Orthopedic Surgery, 2019, 11, 482.	0.8	7
73	Cervical Single-Level Pincer Stenosis Causing Myelopathy: A Technical Note and Medium-term Results of a One-Session Microsurgical 360-Degree Treatment. Journal of Neurological Surgery, Part A: Central European Neurosurgery, 2022, 83, 187-193.	0.4	1

#	Article	IF	CITATIONS
75	Effects of Visual Biofeedback on Movement Patterns of Neck Lateral Bending and Muscle Activation of Sternocleidomastoid During Neck Rotation in Adults with Forward Head Posture. Journal of the Korean Society of Physical Medicine, 2014, 9, 425-432.	0.1	2
76	Let's Use the Knowledge of the Joint Kinematics for Rehabilitation. The Japanese Journal of Rehabilitation Medicine, 2018, 55, 589-596.	0.0	0
	Analysis of human cervical spine motion using multibody simulation (2 nd Report:) Tj ETQq0 0 0 rgBT	/Overlock	k 10 Tf 50 66 0
77	Transactions of the JSME (in Japanese), 2020, 86, 20-00123-20-00123.	0.1	
78	Cervical disc prostheses need a variable center of rotation for flexion / extension below disc level, plus a separate COR for lateral bending above disc level to more closely replicate in-vivo motion: MRI-based biomechanical in-vivo study. BMC Musculoskeletal Disorders, 2022, 23, 227.	0.8	2
79	Validation and application of a novel in vivo cervical spine kinematics analysis technique. Scientific Reports, 2021, 11, 24266.	1.6	5
80	Kinematics of the Cervical Spine Under Healthy and Degenerative Conditions: A Systematic Review. Annals of Biomedical Engineering, 2022, 50, 1705-1733.	1.3	6

CITATION REPORT