Mutations in LRP5 or FZD4 Underlie the Common Fami Locus on Chromosome 11q

American Journal of Human Genetics 74, 721-730 DOI: 10.1086/383202

Citation Report

#	Article	IF	CITATIONS
1	WNT and Î ² -catenin signalling: diseases and therapies. Nature Reviews Genetics, 2004, 5, 691-701.	7.7	1,675
2	Wnt signaling in osteoblasts and bone diseases. Gene, 2004, 341, 19-39.	1.0	724
3	THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE. Annual Review of Cell and Developmental Biology, 2004, 20, 781-810.	4.0	4,672
4	Autosomal Recessive Familial Exudative Vitreoretinopathy Is Associated with Mutations in LRP5. American Journal of Human Genetics, 2004, 75, 878-884.	2.6	174
5	Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Current Opinion in Lipidology, 2005, 16, 207-214.	1.2	47
7	The Wnt Signaling Pathway in Retinal Degenerations. IUBMB Life, 2005, 57, 381-388.	1.5	51
8	Genetic variants of frizzled-4 gene in familial exudative vitreoretinopathy and advanced retinopathy of prematurity. Clinical Genetics, 2005, 67, 363-366.	1.0	49
9	The role of the cysteine-rich domain of Frizzled in Wingless-Armadillo signaling. EMBO Journal, 2005, 24, 3493-3503.	3.5	52
10	LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders. Joint Bone Spine, 2005, 72, 207-214.	0.8	80
11	Cell-surface co-receptors: emerging roles in signaling and human disease. Trends in Biochemical Sciences, 2005, 30, 611-621.	3.7	68
12	Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in theLRP5and/orFZD4genes. Human Mutation, 2005, 26, 104-112.	1.1	134
13	LRP5 : le gène muté dans le syndrome d'ostéoporose avec pseudogliome et le phénotype de masse osseuse ũlevée. Revue Du Rhumatisme (Edition Francaise), 2005, 72, 388-396.	0.0	3
14	Parameters of LRP5 from a Structural and Molecular Perspective. Critical Reviews in Eukaryotic Gene Expression, 2005, 15, 229-242.	0.4	27
15	Genetic Evidence That Drosophila frizzled Controls Planar Cell Polarity and Armadillo Signaling by a Common Mechanism. Genetics, 2005, 171, 1643-1654.	1.2	29
16	Further evidence of genetic heterogeneity in familial exudative vitreoretinopathy; exclusion of EVR1, EVR3, and EVR4 in a large autosomal dominant pedigree. British Journal of Ophthalmology, 2005, 89, 194-197.	2.1	28
17	Osteoporosis and atherosclerosis: biological linkages and the emergence of dual-purpose therapies. QJM - Monthly Journal of the Association of Physicians, 2005, 98, 467-484.	0.2	111
18	Physiological role of collagen XVIII and endostatin. FASEB Journal, 2005, 19, 716-728.	0.2	186
19	Role of the Norrie Disease Pseudoglioma Gene in Sprouting Angiogenesis during Development of the Retinal Vasculature. , 2005, 46, 3372.		129

#	Article	IF	CITATIONS
20	Reduced Affinity to and Inhibition by DKK1 Form a Common Mechanism by Which High Bone Mass-Associated Missense Mutations in LRP5 Affect Canonical Wnt Signaling. Molecular and Cellular Biology, 2005, 25, 4946-4955.	1.1	244
21	Clinical and Molecular Findings in Osteoporosis-Pseudoglioma Syndrome. American Journal of Human Genetics, 2005, 77, 741-753.	2.6	163
22	Genetic disorders of the LRP5–Wnt signalling pathway affecting the skeleton. Trends in Molecular Medicine, 2005, 11, 129-137.	3.5	69
23	The genetics of dominant osteopetrosis. Drug Discovery Today Disease Mechanisms, 2005, 2, 503-509.	0.8	2
24	Genetic Evaluation to Establish the Diagnosis of X-Linked Familial Exudative Vitreoretinopathy. Ophthalmic Genetics, 2006, 27, 75-78.	0.5	16
25	Wnt Signaling as a Therapeutic Target for Cancer. , 2007, 361, 63-92.		65
26	Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone, 2006, 39, 754-766.	1.4	398
27	Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney. Developmental Biology, 2006, 293, 473-483.	0.9	51
28	WNT/Frizzled signaling in eye development and disease. Frontiers in Bioscience - Landmark, 2006, 11, 2442.	3.0	71
29	Wnt/Frizzled Signaling in the Vasculature: New Angiogenic Factors in Sight. Physiology, 2006, 21, 181-188.	1.6	70
30	Human monogenic disorders — a source of novel drug targets. Nature Reviews Genetics, 2006, 7, 249-260.	7.7	81
31	Comment on â€~cosegregation of two unlinked mutant alleles in some cases of autosomal dominant familial exudative vitreoretinopathy'. European Journal of Human Genetics, 2006, 14, 6-7.	1.4	1
32	Phenotypic heterogeneity associated with a novel mutation (Gly112Glu) in the Norrie disease protein. Eye, 2006, 20, 234-241.	1.1	21
33	The Wnt-dependent signaling pathways as target in oncology drug discovery. Investigational New Drugs, 2006, 24, 263-280.	1.2	67
34	Linkage analysis of two families with X-linked recessive congenital motor nystagmus. Journal of Human Genetics, 2006, 51, 76-80.	1.1	20
35	Mutations in the NDP gene: contribution to Norrie disease, familial exudative vitreoretinopathy and retinopathy of prematurity. Clinical and Experimental Ophthalmology, 2006, 34, 682-688.	1.3	76
36	Expression patterns of Wnt genes during development of an anterior part of the chicken eye. Developmental Dynamics, 2006, 235, 496-505.	0.8	60
37	Cultured endothelial cells display endogenous activation of the canonical Wnt signaling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signaling. Developmental Dynamics, 2006, 235, 3110-3120.	0.8	99

#	Article	IF	CITATIONS
38	Karyotype–phenotype insights from 11q14.1-q23.2 interstitial deletions:FZD4 haploinsufficiency and exudative vitreoretinopathy in a patient with a complex chromosome rearrangement. American Journal of Medical Genetics, Part A, 2006, 140A, 2721-2729.	0.7	32
39	Molecular Bases of the Regulation of Bone Remodeling by the Canonical Wnt Signaling Pathway. Current Topics in Developmental Biology, 2006, 73, 43-84.	1.0	117
40	Cerebroretinal microangiopathy with calcifications and cysts. Neurology, 2006, 67, 1437-1443.	1.5	65
41	Reduced bone mineral density and hyaloid vasculature remnants in a consanguineous recessive FEVR family with a mutation in LRP5. British Journal of Ophthalmology, 2006, 90, 1163-1167.	2.1	25
42	Asymmetrical Ocular Involvement and Persistent Fetal Vasculature in an Adult With Osteoporosis-Pseudoglioma Syndrome. JAMA Ophthalmology, 2006, 124, 422.	2.6	6
43	Ocular Angiogenesis. , 2006, , .		5
45	Retinal Degenerations. , 2007, , .		7
46	Very Low Density Lipoprotein Receptor, a Negative Regulator of the wnt Signaling Pathway and Choroidal Neovascularization. Journal of Biological Chemistry, 2007, 282, 34420-34428.	1.6	97
47	Mutational Analysis of Norrin-Frizzled4 Recognition. Journal of Biological Chemistry, 2007, 282, 4057-4068.	1.6	94
48	Retinopathy of prematurity: is genetic predisposition an important risk factor?. Expert Review of Ophthalmology, 2007, 2, 275-283.	0.3	3
49	Osteoporosis-Pseudoglioma Syndrome May Not Be Caused by Persistent Fetal Vasculature—Reply. JAMA Ophthalmology, 2007, 125, 433.	2.6	0
50	Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics, 2007, 23, 2203-2209.	1.8	161
51	Osteoporosis-Pseudoglioma Syndrome May Not Be Caused by Persistent Fetal Vasculature. JAMA Ophthalmology, 2007, 125, 432.	2.6	0
52	Severe Form of Familial Exudative Vitreoretinopathy Caused by Homozygous R417Q Mutation in Frizzled-4 Gene. Ophthalmic Genetics, 2007, 28, 220-223.	0.5	23
53	The Wnt/β-Catenin Signaling Pathway as a Target in Drug Discovery. Journal of Pharmacological Sciences, 2007, 104, 293-302.	1.1	123
54	Wnt pathways in angiogenesis. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, 17, 223-238.	0.4	0
55	Structure-based mutation analysis shows the importance of LRP5 β-propeller 1 in modulating Dkk1-mediated inhibition of Wnt signaling. Gene, 2007, 391, 103-112.	1.0	44
56	Influence of an LRP5 cytoplasmic SNP on Wnt signaling and osteoblastic differentiation. Bone, 2007, 40, 57-67.	1.4	10

	Сітатіо	on Report	
#	Article	IF	Citations
57	The A1330V polymorphism of the low-density lipoprotein receptor-related protein 5 gene (LRP5) associates with low peak bone mass in young healthy men. Bone, 2007, 40, 1006-1012.	1.4	65
58	Genetic susceptibility to retinopathy of prematurity: the evidence from clinical and experimental animal studies. British Journal of Ophthalmology, 2007, 91, 1704-1708.	2.1	52
59	Unexplained fractures in infancy: looking for fragile bones. Archives of Disease in Childhood, 2007, 92, 251-256.	1.0	105
60	The Wnt Signaling Pathway in Familial Exudative Vitreoretinopathy and Norrie Disease. Seminars in Ophthalmology, 2007, 22, 211-217.	0.8	73
61	Characterization of Wnt Signaling during Photoreceptor Degeneration. , 2007, 48, 5733.		43
62	Novel Mutations in Norrie Disease Gene in Japanese Patients with Norrie Disease and Familial Exudative Vitreoretinopathy. , 2007, 48, 1276.		50
63	Wnt pathway and breast cancer. Frontiers in Bioscience - Landmark, 2007, 12, 4020.	3.0	54
64	Role of β-Catenin in Endothelial Cell Function. , 2007, , 773-783.		0
65	Seeing the light: New insights into the molecular pathogenesis of retinal diseases. Journal of Cellular Physiology, 2007, 213, 348-354.	2.0	15
66	Regulation of norrin receptor frizzled-4 by Wnt2 in colon-derived cells. BMC Cell Biology, 2007, 8, 12.	3.0	18
67	Wnt signaling and human diseases: what are the therapeutic implications?. Laboratory Investigation, 2007, 87, 97-103.	1.7	170
68	Diseases of Wnt signaling. Reviews in Endocrine and Metabolic Disorders, 2007, 7, 41-49.	2.6	104
69	Development of the retinal vasculature. Angiogenesis, 2007, 10, 77-88.	3.7	438
71	Moderate reduction of Norrin signaling activity associated with the causative missense mutations identified in patients with familial exudative vitreoretinopathy. Human Genetics, 2008, 122, 615-623.	1.8	31
72	Cerebroretinal microangiopathy with calcifications and cysts (CRMCC). American Journal of Medical Genetics, Part A, 2008, 146A, 182-190.	0.7	87
73	Nonâ€conventional Frizzled ligands and Wnt receptors. Development Growth and Differentiation, 2008, 50, 229-243.	0.6	82
74	Vascular changes in the cerebellum of Norrin / <i>Ndph</i> knockout mice correlate with high expression of <i>Norrin</i> and <i>Frizzledâ€4</i> . European Journal of Neuroscience, 2008, 27, 2619-2628.	1.2	16
75	The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology. Journal of Cellular and Molecular Medicine, 2008, 12, 391-408.	1.6	54

#	Article	IF	CITATIONS
76	The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Developmental Biology, 2008, 317, 310-324.	0.9	115
77	Recent Trends in the Management of Rhegmatogenous Retinal Detachment. Survey of Ophthalmology, 2008, 53, 50-67.	1.7	133
78	Osteoporosis-pseudoglioma syndrome: Description of 9 new cases and beneficial response to bisphosphonates. Bone, 2008, 43, 584-590.	1.4	50
79	Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum. Cell, 2008, 135, 825-837.	13.5	751
80	Wnt signaling: an essential regulator of cardiovascular differentiation,morphogenesis and progenitor self-renewal. Development (Cambridge), 2008, 135, 789-798.	1.2	243
82	Wnt signaling in eye organogenesis. Organogenesis, 2008, 4, 60-67.	0.4	142
83	Three Years Follow-up of Pamidronate Therapy in Two Brothers with Osteoporosis-Pseudoglioma Syndrome (OPPG) Carrying an LRP5 Mutation. Journal of Pediatric Endocrinology and Metabolism, 2008, 21, 811-8.	0.4	21
84	A model for familial exudative vitreoretinopathy caused by LPR5 mutations. Human Molecular Genetics, 2008, 17, 1605-1612.	1.4	93
85	Treatment and management of osteoporosis–pseudoglioma syndrome. Expert Review of Endocrinology and Metabolism, 2008, 3, 337-348.	1.2	6
86	TREATMENT OF VASCULARLY ACTIVE FAMILIAL EXUDATIVE VITREORETINOPATHY WITH PEGAPTANIB SODIUM (MACUGEN). Retina, 2008, 28, S8-S12.	1.0	35
87	Wnt Signaling and Bone. , 2008, , 121-137.		3
88	Differential Gene Expression in <i>Ndph</i> -Knockout Mice in Retinal Development. , 2009, 50, 906.		45
89	Clinical and Molecular Evaluation of Probands and Family Members with Familial Exudative Vitreoretinopathy. , 2009, 50, 4379.		68
90	<i>LRP5</i> sequence and polymorphisms in the baboon. Journal of Medical Primatology, 2009, 38, 97-106.	0.3	2
91	Where Wnts Went: The Exploding Field of Lrp5 and Lrp6 Signaling in Bone. Journal of Bone and Mineral Research, 2009, 24, 171-178.	3.1	180
92	Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Developmental Cell, 2009, 17, 9-26.	3.1	4,757
93	Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization. Cell, 2009, 139, 285-298.	13.5	377
94	Familial Exudative Vitreoretinopathy and DiGeorge Syndrome. Ophthalmology, 2009, 116, 1522-1524.	2.5	6

# 95	ARTICLE A mutation of the WFDC1 gene is responsible for multiple ocular defects in cattle. Genomics, 2009, 94, 55-62.	IF 1.3	Citations 18
96	SNPs: Impact on Gene Function and Phenotype. Methods in Molecular Biology, 2009, 578, 3-22.	0.4	407
97	Single Nucleotide Polymorphisms. Methods in Molecular Biology, 2009, , .	0.4	44
98	Phenotypic Overlap of Familial Exudative Vitreoretinopathy (FEVR) with Persistent Fetal Vasculature (PFV) Caused byFZD4Mutations in two Distinct Pedigrees. Ophthalmic Genetics, 2009, 30, 23-30.	0.5	57
99	Mutations in TSPAN12 Cause Autosomal-Dominant Familial Exudative Vitreoretinopathy. American Journal of Human Genetics, 2010, 86, 248-253.	2.6	161
100	The Importance of Wnt Signaling in Cardiovascular Development. Pediatric Cardiology, 2010, 31, 342-348.	0.6	58
101	Overview of the mutation spectrum in familial exudative vitreoretinopathy and Norrie disease with identification of 21 novel variants in FZD4, LRP5, and NDP. Human Mutation, 2010, 31, 656-666.	1.1	126
102	Various types of <i>LRP5</i> mutations in four patients with osteoporosisâ€pseudoglioma syndrome: Identification of a 7.2â€kb microdeletion using oligonucleotide tiling microarray. American Journal of Medical Genetics, Part A, 2010, 152A, 133-140.	0.7	31
103	Sp1 and KLF15 regulate basal transcription of the human LRP5 gene. BMC Genetics, 2010, 11, 12.	2.7	15
104	Differentiation of the brain vasculature: the answer came blowing by the Wnt. Journal of Angiogenesis Research, 2010, 2, 1.	2.9	117
105	LRP5 Is Required for Vascular Development in Deeper Layers of the Retina. PLoS ONE, 2010, 5, e11676.	1.1	52
106	Hereditary Vitreoretinopathies. , 2010, , 233-243.		0
107	De-novo duplication of 5(q13.3q21.1) in a child with vitreo-retinal dysplasia and learning disability. Clinical Dysmorphology, 2010, 19, 73-75.	0.1	0
108	The Role of Wnt Signaling in Physiological and Pathological Angiogenesis. Circulation Research, 2010, 107, 943-952.	2.0	296
109	A Novel Case of Bilateral High Myopia, Cataract, and Total Retinal Detachment Associated with Interstitial 11q Deletion. Ophthalmic Genetics, 2010, 31, 84-88.	0.5	11
110	Novel Frizzled-4 Gene Mutations in Chinese Patients With Familial Exudative Vitreoretinopathy. JAMA Ophthalmology, 2010, 128, 1341.	2.6	33
111	The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends in Molecular Medicine, 2010, 16, 417-425.	3.5	146
112	The Mouse Retina as an Angiogenesis Model. , 2010, 51, 2813.		523

#	Article	IF	CITATIONS
113	Severe retinopathy of prematurity associated with <i>FZD4</i> mutations. Ophthalmic Genetics, 2010, 31, 37-43.	0.5	55
114	Molecular and clinical studies of X-linked deafness among Pakistani families. Journal of Human Genetics, 2011, 56, 534-540.	1.1	11
115	Mutations in the TSPAN12 Gene in Japanese Patients with Familial Exudative Vitreoretinopathy. American Journal of Ophthalmology, 2011, 151, 1095-1100.e1.	1.7	30
116	Structural Basis of Wnt Signaling Inhibition by Dickkopf Binding to LRP5/6. Developmental Cell, 2011, 21, 862-873.	3.1	153
117	Flavonoids: Potential Wnt/beta-catenin signaling modulators in cancer. Life Sciences, 2011, 89, 545-554.	2.0	92
118	Clinical Presentation of Familial Exudative Vitreoretinopathy. Ophthalmology, 2011, 118, 2070-2075.	2.5	154
119	Wnt/β-Catenin Signaling Pathway in Canine Skin Melanoma and a Possibility as a Cancer Model for Human Skin Melanoma. , 0, , .		1
120	Prorenin and the (pro)renin receptor: recent advances and implications for retinal development and disease. Current Opinion in Nephrology and Hypertension, 2011, 20, 69-76.	1.0	13
121	Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG). European Journal of Human Genetics, 2011, 19, 875-881.	1.4	48
122	Cerebroretinal microangiopathy with calcifications and cysts: Characterization of the skeletal phenotype. American Journal of Medical Genetics, Part A, 2011, 155, 1322-1328.	0.7	10
123	The role of Frizzled-4 mutations in familial exudative vitreoretinopathy and Coats disease. British Journal of Ophthalmology, 2011, 95, 574-579.	2.1	55
124	Wnt Signaling Mediates Pathological Vascular Growth in Proliferative Retinopathy. Circulation, 2011, 124, 1871-1881.	1.6	108
125	An Essential Role of the Cysteine-rich Domain of FZD4 in Norrin/Wnt Signaling and Familial Exudative Vitreoretinopathy. Journal of Biological Chemistry, 2011, 286, 10210-10215.	1.6	30
126	A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus Egg Extracts. Journal of Biomolecular Screening, 2011, 16, 995-1006.	2.6	20
127	Frizzled 4 Regulates Arterial Network Organization Through Noncanonical Wnt/Planar Cell Polarity Signaling. Circulation Research, 2012, 110, 47-58.	2.0	61
128	Recessive Mutations in <i>TSPAN12</i> Cause Retinal Dysplasia and Severe Familial Exudative Vitreoretinopathy (FEVR). , 2012, 53, 2873.		64
129	Genetics of familial exudative vitreoretinopathy and its implications for management. Expert Review of Ophthalmology, 2012, 7, 377-386.	0.3	2
130	Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects. Human Molecular Genetics, 2012, 21, 776-783.	1.4	66

# 131	ARTICLE Modulation of Wnt/Â-catenin signaling pathway by bioactive food components. Carcinogenesis, 2012, 33, 483-491.	IF 1.3	CITATIONS
132	Endocytic receptor-mediated control of morphogen signaling. Development (Cambridge), 2012, 139, 4311-4319.	1.2	24
134	Wnt/β-Catenin Signaling and Disease. Cell, 2012, 149, 1192-1205.	13.5	4,658
135	X-linked juvenile retinoschisis: Clinical diagnosis, genetic analysis, and molecular mechanisms. Progress in Retinal and Eye Research, 2012, 31, 195-212.	7.3	259
136	Norrin: Molecular and functional properties of an angiogenic and neuroprotective growth factor. Progress in Retinal and Eye Research, 2012, 31, 243-257.	7.3	66
137	Familial retinal detachment associated with <i>COL2A1</i> exon 2 and <i>FZD4</i> mutations. Clinical and Experimental Ophthalmology, 2012, 40, 476-483.	1.3	9
138	Familial exudative vitreoretinopathy with an anterior segment vasoproliferative mass. Graefe's Archive for Clinical and Experimental Ophthalmology, 2012, 250, 467-468.	1.0	0
139	Antiangiogenic and Antineuroinflammatory Effects of Kallistatin Through Interactions With the Canonical Wnt Pathway. Diabetes, 2013, 62, 4228-4238.	0.3	46
140	Gene networks: Dissecting pathways in retinal development and disease. Progress in Retinal and Eye Research, 2013, 33, 40-66.	7.3	52
141	The way Wnt works: Components and mechanism. Growth Factors, 2013, 31, 1-31.	0.5	197
142	LRP5 and LRP6 in development and disease. Trends in Endocrinology and Metabolism, 2013, 24, 31-39.	3.1	177
143	Retinitis Pigmentosa and Allied Disorders. , 2013, , 761-835.		34
144	Secreted and Transmembrane Wnt Inhibitors and Activators. Cold Spring Harbor Perspectives in Biology, 2013, 5, a015081-a015081.	2.3	507
145	Antagonizing Wnt Pathway in Diabetic Retinopathy. Diabetes, 2013, 62, 3993-3995.	0.3	12
146	<i>ZNF408</i> is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9856-9861.	3.3	144
147	TRACTION RETINAL DETACHMENT UNDER SILICONE OIL TREATED WITH TWO-PORT, 25-GAUGE PARS PLANA VITRECTOMY AND SCISSOR SEGMENTATION IN A CHILD WITH FAMILIAL EXUDATIVE VITREORETINOPATHY. Retinal Cases and Brief Reports, 2013, 7, 183-187.	0.3	1
148	A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/ \hat{l}^2 -catenin Signaling in Humans and Mice. Bone Research, 2013, 1, 27-71.	5.4	109
149	Deletion of LRP5 in VLDLR Knockout Mice Inhibits Retinal Neovascularization. PLoS ONE, 2013, 8, e75186.	1.1	12

#	Article	IF	CITATIONS
150	RENIN ANGIOTENSIN SYSTEM IN THE CONTEXT OF RENIN, PRORENIN, AND THE (PRO)RENIN RECEPTOR. Reviews in Agricultural Science, 2013, 1, 43-60.	0.9	8
151	Whole-exome sequencing reveals <i>LRP5</i> mutations and canonical Wnt signaling associated with hepatic cystogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5343-5348.	3.3	79
152	Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intraâ€familial phenotypic variability. American Journal of Medical Genetics, Part A, 2014, 164, 2996-3002.	0.7	17
153	Familial Exudative Vitreoretinopathy caused by a Homozygous Mutation inTSPAN12in a Cystic Fibrosis Infant. Ophthalmic Genetics, 2014, 35, 184-186.	0.5	14
154	Phenotypic Overlap Between Familial Exudative Vitreoretinopathy and Microcephaly, Lymphedema, and Chorioretinal Dysplasia Caused by <i>KIF11</i> Mutations. JAMA Ophthalmology, 2014, 132, 1393.	1.4	95
156	exomeSuite: Whole exome sequence variant filtering tool for rapid identification of putative disease causing SNVs/indels. Genomics, 2014, 103, 169-176.	1.3	22
157	LRP6 dimerization through its LDLR domain is required for robust canonical Wnt pathway activation. Cellular Signalling, 2014, 26, 1068-1074.	1.7	31
158	III.A. Congenital Vascular Vitreoretinopathies. , 2014, , 223-240.		Ο
159	The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment. Italian Journal of Pediatrics, 2014, 40, 55.	1.0	9
160	Molecular Mechanisms of Angiogenesis. , 2014, , .		5
160 161	Molecular Mechanisms of Angiogenesis. , 2014, , . Nasal chondromesenchymal hamartoma with incomitant esotropia in an infant: a case report. Canadian Journal of Ophthalmology, 2014, 49, e30-e32.	0.4	5
	Nasal chondromesenchymal hamartoma with incomitant esotropia in an infant: a case report.	0.4	
161	Nasal chondromesenchymal hamartoma with incomitant esotropia in an infant: a case report. Canadian Journal of Ophthalmology, 2014, 49, e30-e32. Familial exudative vitreoretinopathy mimicking macular telangiectasia type 1. Canadian Journal of		8
161 162	Nasal chondromesenchymal hamartoma with incomitant esotropia in an infant: a case report. Canadian Journal of Ophthalmology, 2014, 49, e30-e32. Familial exudative vitreoretinopathy mimicking macular telangiectasia type 1. Canadian Journal of Ophthalmology, 2014, 49, e28-e30. Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative	0.4	8
161 162 163	Nasal chondromesenchymal hamartoma with incomitant esotropia in an infant: a case report. Canadian Journal of Ophthalmology, 2014, 49, e30-e32. Familial exudative vitreoretinopathy mimicking macular telangiectasia type 1. Canadian Journal of Ophthalmology, 2014, 49, e28-e30. Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative vitreoretinopathy. Scientific Reports, 2015, 5, 16120.	0.4	8 1 14
161 162 163 164	Nasal chondromesenchymal hamartoma with incomitant esotropia in an infant: a case report. Canadian Journal of Ophthalmology, 2014, 49, e30-e32. Familial exudative vitreoretinopathy mimicking macular telangiectasia type 1. Canadian Journal of Ophthalmology, 2014, 49, e28-e30. Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative vitreoretinopathy. Scientific Reports, 2015, 5, 16120. Familial Exudative Vitreoretinopathy. TÅl/ark Oftalmoloji Dergisi, 2015, 45, 164-168. The Intracellular Loop 2 F328S Frizzled-4 Mutation Implicated in Familial Exudative Vitreoretinopathy	0.4 1.6 0.4	8 1 14 20
161 162 163 164	Nasal chondromesenchymal hamartoma with incomitant esotropia in an infant: a case report. Canadian Journal of Ophthalmology, 2014, 49, e30-e32. Familial exudative vitreoretinopathy mimicking macular telangiectasia type 1. Canadian Journal of Ophthalmology, 2014, 49, e28-e30. Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative vitreoretinopathy. Scientific Reports, 2015, 5, 16120. Familial Exudative Vitreoretinopathy. Türk Oftalmoloji Dergisi, 2015, 45, 164-168. The Intracellular Loop 2 F328S Frizzled-4 Mutation Implicated in Familial Exudative Vitreoretinopathy Impairs Dishevelled Recruitment. Journal of Molecular Signaling, 2015, 10, 5. Molecular Characterization of <i>FZD4 </i>	0.4 1.6 0.4	8 1 14 20 7

#	Article	IF	CITATIONS
169	Next-Generation Sequencing and Novel Variant Determination in a Cohort of 92 Familial Exudative Vitreoretinopathy Patients. , 2015, 56, 1937.		84
170	Complex genetics of familial exudative vitreoretinopathy and related pediatric retinal detachments. Taiwan Journal of Ophthalmology, 2015, 5, 56-62.	0.3	25
171	Pathology of the Vitreous. , 2015, , 265-306.		0
172	Familial exudative vitreoretinopathy and related retinopathies. Eye, 2015, 29, 1-14.	1.1	205
173	Haploinsufficiency of <i>RCBTB1</i> is associated with Coats disease and familial exudative vitreoretinopathy. Human Molecular Genetics, 2016, 25, 1637-1647.	1.4	62
174	Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy. American Journal of Pathology, 2016, 186, 2588-2600.	1.9	30
175	A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy. Journal of the Chinese Medical Association, 2016, 79, 633-638.	0.6	3
176	Mutations in Known Monogenic High Bone Mass Loci Only Explain a Small Proportion of High Bone Mass Cases. Journal of Bone and Mineral Research, 2016, 31, 640-649.	3.1	38
177	Mutation spectrum of the FZD-4, TSPAN12 AND ZNF408 genes in Indian FEVR patients. BMC Ophthalmology, 2016, 16, 90.	0.6	28
178	<i>CTNNB1</i> mutation associated with familial exudative vitreoretinopathy (FEVR) phenotype. Ophthalmic Genetics, 2016, 37, 468-470.	0.5	34
179	A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Human Molecular Genetics, 2016, 25, 1382-1391.	1.4	40
180	Potential blindness in children of patients with hereditary bone disease. Osteoporosis International, 2016, 27, 841-844.	1.3	5
181	<i>KIF11</i> mutations are a common cause of autosomal dominant familial exudative vitreoretinopathy. British Journal of Ophthalmology, 2016, 100, 278-283.	2.1	59
182	Retinal findings and a novel <i>TINF2</i> mutation in Revesz syndrome: Clinical and molecular correlations with pediatric retinal vasculopathies. Ophthalmic Genetics, 2017, 38, 51-60.	0.5	17
183	Polymorphism in <i>LRP5</i> (rs556442) is associated with higher TG levels in Iranian children. Annals of Human Biology, 2017, 44, 373-378.	0.4	9
184	Genome-wide analyses identify common variants associated with macular telangiectasia type 2. Nature Genetics, 2017, 49, 559-567.	9.4	105
185	Defects in the Cell Signaling Mediator β-Catenin Cause the Retinal Vascular Condition FEVR. American Journal of Human Genetics, 2017, 100, 960-968.	2.6	74
186	Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 2017, 169, 985-999.	13.5	2,998

#	Article	IF	CITATIONS
187	Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Progress in Retinal and Eye Research, 2017, 59, 53-96.	7.3	85
188	Anatomical and functional outcomes following vitrectomy for advanced familial exudative vitreoretinopathy: a single surgeon's experience. British Journal of Ophthalmology, 2017, 101, 946-950.	2.1	12
189	Assembly and architecture of the Wnt/β atenin signalosome at the membrane. British Journal of Pharmacology, 2017, 174, 4564-4574.	2.7	65
190	Animal models of ocular angiogenesis: from development to pathologies. FASEB Journal, 2017, 31, 4665-4681.	0.2	119
191	The inner blood-retinal barrier: Cellular basis and development. Vision Research, 2017, 139, 123-137.	0.7	192
192	Clinical and next-generation sequencing findings in a Chinese family exhibiting severe familial exudative vitreoretinopathy. International Journal of Molecular Medicine, 2018, 41, 773-782.	1.8	7
193	Mutation Spectrum of the <i>LRP5</i> , <i>NDP</i> , and <i>TSPAN12</i> Genes in Chinese Patients With Familial Exudative Vitreoretinopathy. , 2017, 58, 5949.		35
194	Mutations in <i>LRP5</i> , <i>FZD4</i> , <i>TSPAN12</i> , <i>NDP</i> , <i>ZNF408</i> , or <i>KIF11 </i> Genes Account for 38.7% of Chinese Patients With Familial Exudative Vitreoretinopathy. , 2017, 58, 2623.		58
195	Genotype-Phenotype Characterization of Novel Variants in Six Italian Patients with Familial Exudative Vitreoretinopathy. Journal of Ophthalmology, 2017, 2017, 1-10.	0.6	5
196	The Genetic Causes of Nonsyndromic Congenital Retinal Detachment: A Genetic and Phenotypic Study of Pakistani Families. , 2017, 58, 1028.		15
197	WNT Signaling in Cardiac and Vascular Disease. Pharmacological Reviews, 2018, 70, 68-141.	7.1	260
198	Polygonatum Sibiricum Polysaccharide Promotes Osteoblastic Differentiation Through the ERK/GSK-31²/l²-Catenin Signaling Pathway In Vitro. Rejuvenation Research, 2018, 21, 44-52.	0.9	40
199	Familial Exudative Vitreoretinopathy: Pathophysiology, Diagnosis, and Management. Asia-Pacific Journal of Ophthalmology, 2018, 7, 176-182.	1.3	36
200	Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood–brain barrier and blood–retina barrier development and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11827-E11836.	3.3	105
201	Spectrum of Variants in 389 Chinese Probands With Familial Exudative Vitreoretinopathy. , 2018, 59, 5368.		47
203	Developmental vascular regression is regulated by a Wnt/β-catenin, MYC, P21 (CDKN1A) pathway that controls cell proliferation and cell death. Development (Cambridge), 2018, 145, .	1.2	26
204	Modeling Rare Bone Diseases in Animals. Current Osteoporosis Reports, 2018, 16, 458-465.	1.5	4
205	WNT7A/B promote choroidal neovascularization. Experimental Eye Research, 2018, 174, 107-112.	1.2	12

#	Article	IF	CITATIONS
206	An FEVR-associated mutation in ZNF408 alters the expression of genes involved in the development of vasculature. Human Molecular Genetics, 2018, 27, 3519-3527.	1.4	14
207	Early vitrectomy to reverse macular dragging in a one-month-old boy with familial exudative vitreoretinopathy. American Journal of Ophthalmology Case Reports, 2019, 15, 100493.	0.4	3
208	Frizzled 4 regulates ventral blood vessel remodeling in the zebrafish retina. Developmental Dynamics, 2019, 248, 1243-1256.	0.8	8
209	A start codon mutation of the <i>TSPAN12</i> gene in Chinese families causes clinical heterogeneous familial exudative vitreoretinopathy. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e00948.	0.6	9
210	Whole-Exome Sequencing Analysis Identified Novel Mutations in the <i>TSPAN12</i> Gene in Chinese Families with Familial Exudative Vitreoretinopathy. Genetic Testing and Molecular Biomarkers, 2019, 23, 722-727.	0.3	1
211	Clinical and Molecular Characterization of Familial Exudative Vitreoretinopathy Associated With Microcephaly. American Journal of Ophthalmology, 2019, 207, 87-98.	1.7	20
212	Genetic variants of TSPAN12 gene in patients with retinopathy of prematurity. Journal of Cellular Biochemistry, 2019, 120, 14544-14551.	1.2	4
213	Correlating Changes in the Macular Microvasculature and Capillary Network to Peripheral Vascular Pathologic Features in Familial Exudative Vitreoretinopathy. Ophthalmology Retina, 2019, 3, 597-606.	1.2	19
214	Role of Î ² -Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes, 2019, 10, 176.	1.0	28
215	LRP5, Bone Density, and Mechanical Stress: A Case Report and Literature Review. Frontiers in Endocrinology, 2019, 10, 184.	1.5	16
216	Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy. Nature Communications, 2019, 10, 5243.	5.8	54
217	A Novel Mutation in the <i>NDP</i> Gene is Associated with Familial Exudative Vitreoretinopathy in a Southern Chinese Family. Genetic Testing and Molecular Biomarkers, 2019, 23, 850-856.	0.3	3
218	Familial Exudative Vitreoretinopathy-Related Disease-Causing Genes and Norrin/ <i>β</i> -Catenin Signal Pathway: Structure, Function, and Mutation Spectrums. Journal of Ophthalmology, 2019, 2019, 1-24.	0.6	28
219	FEVR phenotype associated with septo-optic dysplasia. Ophthalmic Genetics, 2019, 40, 449-452.	0.5	2
220	Germline Mutations in CTNNB1 Associated With Syndromic FEVR or Norrie Disease. , 2019, 60, 93.		26
221	Wnt Signaling in vascular eye diseases. Progress in Retinal and Eye Research, 2019, 70, 110-133.	7.3	130
222	Exome sequencing revealed Notch ligand JAG1 as a novel candidate gene for familial exudative vitreoretinopathy. Genetics in Medicine, 2020, 22, 77-84.	1.1	34
223	Neogenin-loss in neural crest cells results in persistent hyperplastic primary vitreous formation. Journal of Molecular Cell Biology, 2020, 12, 17-31.	1.5	12

# 224	ARTICLE Novel variants in familial exudative vitreoretinopathy patients with KIF11 mutations and the Genotype–Phenotype correlation. Experimental Eye Research, 2020, 199, 108165.	IF 1.2	CITATIONS 8
225	A novel splice-site mutation in the LRP5 gene causing Familial Exudative Vitreoretinopathy. Gene Reports, 2020, 21, 100801.	0.4	3
226	Low-Density Lipoprotein Receptor–Related Protein 5–Deficient Rats Have Reduced Bone Mass and Abnormal Development of the Retinal Vasculature. CRISPR Journal, 2020, 3, 284-298.	1.4	10
227	Identification of Novel Mutations in the <i>FZD4</i> and <i>NDP</i> Genes in Patients with Familial Exudative Vitreoretinopathy in South India. Genetic Testing and Molecular Biomarkers, 2020, 24, 92-98.	0.3	6
228	Role of cell polarity and planar cell polarity (PCP) proteins in spermatogenesis. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 71-87.	2.3	8
229	Novel mutation in <i>CTNNB1</i> causes familial exudative vitreoretinopathy (FEVR) and microcephaly: case report and review of the literature. Ophthalmic Genetics, 2020, 41, 63-68.	0.5	19
230	The spectrum of genetic mutations in patients with asymptomatic mild familial exudative vitreoretinopathy. Experimental Eye Research, 2020, 192, 107941.	1.2	15
231	Characterization of a novel pathogenic variation c.1237T>G in the FZD4 gene presenting new inheritance from an Iranian individual suffering vitreoretinopathy. Intractable and Rare Diseases Research, 2020, 9, 48-53.	0.3	1
232	Coats-like Exudative Vitreoretinopathy in Retinitis Pigmentosa. Ophthalmology Retina, 2021, 5, 86-96.	1.2	12
233	Novel Norrie disease gene mutations in Chinese patients with familial exudative vitreoretinopathy. BMC Ophthalmology, 2021, 21, 84.	0.6	4
234	Ophthalmic phenotypes associated with biallelic lossâ€ofâ€function <scp><i>PCDH12</i></scp> variants. American Journal of Medical Genetics, Part A, 2021, 185, 1275-1281.	0.7	9
235	β-catenin in adrenal zonation and disease. Molecular and Cellular Endocrinology, 2021, 522, 111120.	1.6	9
236	Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling. Journal of Clinical Investigation, 2021, 131, .	3.9	37
237	Serpiginous Intraretinal Lesions Associated With Familial Exudative Vitreoretinopathy. Ophthalmic Surgery Lasers and Imaging Retina, 2021, 52, 155-159.	0.4	0
239	Whole-Exome Sequencing Reveals Novel <i>TSPAN12</i> Variants in Autosomal Dominant Familial Exudative Vitreoretinopathy. Genetic Testing and Molecular Biomarkers, 2021, 25, 399-404.	0.3	4
240	Retinal Features of Family Members With Familial Exudative Vitreoretinopathy Caused By Mutations in <i>KIF11</i> Gene. Translational Vision Science and Technology, 2021, 10, 18.	1.1	6
241	Novel mutation in <i>TSPAN12</i> associated with familial exudative vitreoretinopathy in a Chinese pedigree. Ophthalmic Genetics, 2022, 43, 104-109.	0.5	1
242	Reaching a FEVR Pitch: A Case Series of Familial Exudative Vitreoretinopathy in Northern Ireland. Journal of Pediatric Ophthalmology and Strabismus, 2021, , 1-8.	0.3	0

#	ARTICLE Frizzled receptors (FZD) play multiple cellular roles in development, in diseases, and as potential	IF	CITATIONS
243	therapeutic targets. Journal of King Saud University - Science, 2021, 33, 101613.	1.6	3
244	Chapter 57. Juvenile Osteoporosis. , 0, , 264-267.		4
246	Clinical and biochemical response to neridronate treatment in a patient with osteoporosis-pseudoglioma syndrome (OPPC). Osteoporosis International, 2017, 28, 3277-3280.	1.3	5
247	Retinitis Pigmentosa and Allied Disorders. , 2006, , 395-498.		20
248	Hereditary Vitreoretinal Degenerations. , 2006, , 519-538.		5
249	How rare bone diseases have informed our knowledge of complex diseases. BoneKEy Reports, 2016, 5, 839.	2.7	7
251	Single gene mutations and variations affecting bone turnover and strength: a selective 2006 update. BoneKEy Osteovision, 2006, 3, 11-29.	0.6	3
252	Regulation of bone mass by Wnt signaling. Journal of Clinical Investigation, 2006, 116, 1202-1209.	3.9	1,211
253	Retinal Expression of Wnt-Pathway Mediated Genes in Low-Density Lipoprotein Receptor-Related Protein 5 (Lrp5) Knockout Mice. PLoS ONE, 2012, 7, e30203.	1.1	56
254	Relating Diseases by Integrating Gene Associations and Information Flow through Protein Interaction Network. PLoS ONE, 2014, 9, e110936.	1.1	18
255	Critical Endothelial Regulation by LRP5 during Retinal Vascular Development. PLoS ONE, 2016, 11, e0152833.	1.1	20
256	Oligodendrocytes Development and Wnt Signaling Pathway. International Journal of Human Anatomy, 2018, 1, 17-35.	0.2	11
258	Wnt Signaling in Angiogenesis. Current Drug Targets, 2008, 9, 558-564.	1.0	54
259	Wnt and the Wnt signaling pathway in bone development and disease. Frontiers in Bioscience - Landmark, 2014, 19, 379.	3.0	190
260	Asymmetry of Familial Exudative Vitreoretinopathy. Journal of Pediatric Ophthalmology and Strabismus, 2012, 49, e5-8.	0.3	1
261	Simultaneous Novel Mutations of LRP5 and TSPAN12 in a Case of Familial Exudative Vitreoretinopathy. Journal of Pediatric Ophthalmology and Strabismus, 2016, 53, e1-5.	0.3	11
262	Familial Exudative Vitreoretinopathy With a Novel LRP5 Mutation. Journal of Pediatric Ophthalmology and Strabismus, 2016, 53, e39-42.	0.3	9
263	Bevacizumab for the Treatment of Pediatric Retinal and Choroidal Diseases. Ophthalmic Surgery Lasers and Imaging Retina, 2010, 41, 582-592.	0.4	27

		CITATION REPORT		
#	Article		IF	CITATIONS
264	Retinopathy of Prematurity Versus Familial Exudative Vitreoretinopathy: Report on Clir Angiographic Findings. Ophthalmic Surgery Lasers and Imaging Retina, 2016, 47, 14-1	nical and 9.	0.4	50
265	Macular Microvascular Findings in Familial Exudative Vitreoretinopathy on Optical Coh Tomography Angiography. Ophthalmic Surgery Lasers and Imaging Retina, 2019, 50, 3	erence 22-329.	0.4	23
266	Detection of FZD4, LRP5 and TSPAN12 genes variants in Malay premature babies with prematurity. Journal of Ophthalmic and Vision Research, 2019, 14, 171.	retinopathy of	0.7	6
267	An association between subclinical familial exudative vitreoretinopathy and rod-cone c Arquivos Brasileiros De Oftalmologia, 2014, 77, 327-329.	ystrophy.	0.2	1
269	Signaling in Bone. , 2006, , 259-271.			0
270	Wnt Signaling in Bone. , 2008, , 467-490.			0
271	FAMILIAL EXUDATIVE VITREORETINOPATHY 743.51 (Criswick–Schepens Syndrome)	, 2008, , 659-660.		0
274	Hereditary Chorioretinal Dystrophies. , 2010, , 7-182.			1
276	Vitréorétinopathie exsudative familiale. , 2011, , 500-505.			0
277	Inherited Vascular Disorders. , 2016, , 353-357.			0
278	FEVR-like Presentation in an 11q Deletion Syndrome and 16p13.11 Microdeletion. Jour Ophthalmology and Strabismus, 2017, 54, e71-e74.	nal of Pediatric	0.3	1
279	Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metab Membranes, 2021, 11, 844.	olic Diseases.	1.4	12
281	Wnt Signaling and Transcriptional Regulation. , 2006, , 519-532.			0
282	Genetics of Ocular Vascular Disease. , 2006, , 173-188.			0
283	X-Linked Juvenile Retinoschisis. , 2007, , 119-135.			0
284	Vascular Abnormalities. , 2007, , 528-581.			1
285	Familial Exudative Vitreoretinopathy With Neurodevelopmental Delay and Hypoplasia Callosum. Ophthalmic Surgery Lasers and Imaging Retina, 2020, 51, 588-591.	of the Corpus	0.4	0
287	Genetic screening of Wnt signaling factors in advanced retinopathy of prematurity. Mo 2010, 16, 2572-7.	blecular Vision,	1.1	35

#	Article	IF	CITATIONS
288	Novel TSPAN12 mutations in patients with familial exudative vitreoretinopathy and their associated phenotypes. Molecular Vision, 2011, 17, 1128-35.	1.1	27
289	Pediatric cataract, myopic astigmatism, familial exudative vitreoretinopathy and primary open-angle glaucoma co-segregating in a family. Molecular Vision, 2011, 17, 2118-28.	1.1	5
290	Identification of FZD4 and LRP5 mutations in 11 of 49 families with familial exudative vitreoretinopathy. Molecular Vision, 2012, 18, 2438-46.	1.1	28
291	Genetic variants of FZD4 and LRP5 genes in patients with advanced retinopathy of prematurity. Molecular Vision, 2013, 19, 476-85.	1.1	44
292	Identification of two novel LRP5 mutations in families with familial exudative vitreoretinopathy. Molecular Vision, 2014, 20, 395-409.	1.1	22
295	Novel mutations in the TSPAN12 gene in Chinese patients with familial exudative vitreoretinopathy. Molecular Vision, 2014, 20, 1296-306.	1.1	16
296	Mutation spectrum of the Norrie disease pseudoglioma (NDP) gene in Indian patients with FEVR. Molecular Vision, 2016, 22, 491-502.	1.1	14
297	Novel mutations in FZD4 and phenotype-genotype correlation in Chinese patients with familial exudative vitreoretinopathy. Molecular Vision, 2016, 22, 917-32.	1.1	20
298	A mutagenesis-derived mouse mutant with abnormal retinal vasculature and low bone mineral density. Molecular Vision, 2017, 23, 140-148.	1.1	7
299	Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy. Molecular Vision, 2017, 23, 605-613.	1.1	9
300	Variable reduction in Norrin signaling activity caused by novel mutations in identified in patients with familial exudative vitreoretinopathy. Molecular Vision, 2019, 25, 60-69.	1.1	3
301	Identification of a novel mutation in with functional analysis in a cohort of 516 familial patients with exudative vitreoretinopathy. Molecular Vision, 2021, 27, 528-541.	1.1	0
302	Osteoporosis-pseudoglioma syndrome in four new patients: identification of two novel LRP5 variants and insights on patients' management using bisphosphonates therapy. Osteoporosis International, 2022, 33, 1501-1510.	1.3	6
303	The timing of auditory sensory deficits in Norrie disease has implications for therapeutic intervention. JCI Insight, 2022, 7, .	2.3	6
304	Heterozygote lossâ€ofâ€function variants in the <i>LRP5</i> gene cause familial exudative vitreoretinopathy. Clinical and Experimental Ophthalmology, 2022, 50, 441-448.	1.3	5
305	LMBR1L regulates the proliferation and migration of endothelial cells through Norrin/β-catenin signaling. Journal of Cell Science, 2022, 135, .	1.2	5
306	Possible Role of Wnt Signaling Pathway in Diabetic Retinopathy. Current Drug Targets, 2022, 23, 1372-1380.	1.0	3
307	Novel truncating variants in <i>CTNNB1</i> cause familial exudative vitreoretinopathy. Journal of Medical Genetics, 2023, 60, 174-182.	1.5	10

#	Article	IF	CITATIONS
308	The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. Zygote, 2022, 30, 536-542.	0.5	6
309	Familial exudative vitreoretinopathy in a 4 generations family of South-East Asian Descendent with FZD4 mutation (c.1501_1502del). International Journal of Retina and Vitreous, 2022, 8, 30.	0.9	0
310	LRP5 biallelic mutations cause a higher incidence of severe phenotype compared to LRP5 monoallelic mutation. Retina, 2022, Publish Ahead of Print, .	1.0	2
311	CTNND1 variants cause familial exudative vitreoretinopathy through the Wnt/cadherin axis. JCI Insight, 2022, 7, .	2.3	17
312	Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Current Hypertension Reports, 2022, 24, 499-507.	1.5	5
313	Effect of bone marrow mesenchymal stem cells-derived exosomes on diabetes-induced retinal injury: Implication of Wnt/ b-catenin signaling pathway. Biomedicine and Pharmacotherapy, 2022, 154, 113554.	2.5	11
314	A boy with amblyopia and familial exudative vitreoretinopathy harboring a new mutation of LRP5 and OPA1: A case report. Frontiers in Genetics, 0, 13, .	1.1	0
315	Hereditary Metabolic Bone Diseases: A Review of Pathogenesis, Diagnosis and Management. Genes, 2022, 13, 1880.	1.0	13
316	Clinical characteristics and mutation spectrum in 33 Chinese families with familial exudative vitreoretinopathy. Annals of Medicine, 2022, 54, 3285-3297.	1.5	6
317	Familial exudative vitreoretinopathy (FEVR) in a child with novel microarray-defined deletion of 11q14 previously diagnosed as retinopathy of prematurity (ROP). Ophthalmic Genetics, 0, , 1-5.	0.5	0
318	A comprehensive functional analysis on the pathogenesis of novel <scp><i>TSPAN12</i></scp> and <scp><i>NDP</i></scp> variants in familial exudative vitreoretinopathy. Clinical Genetics, 2023, 103, 320-329.	1.0	3
319	Kinesin-5 Eg5 is essential for spindle assembly, chromosome stability and organogenesis in development. Cell Death Discovery, 2022, 8, .	2.0	3
320	18p Deletion Syndrome With Concurrent Frizzled-4 Mutation: Surgical Management of Bilateral Stage 5 Traction Retinal Detachment. Ophthalmic Surgery Lasers and Imaging Retina, 0, , 1-7.	0.4	0
321	Wnt/β-catenin Signaling Inhibitors. Current Topics in Medicinal Chemistry, 2023, 23, 880-896.	1.0	7
322	<scp><i>Lrp5</i></scp> p. <scp>Val667Met</scp> Variant Compromises Bone Mineral Density and Matrix Properties in Osteoporosis. JBMR Plus, 2023, 7, .	1.3	0
323	An SNX31 variant underlies dominant familial exudative vitreoretinopathy-like pathogenesis. JCI Insight, 2023, 8, .	2.3	4

Hereditary Vitreoretinopathies. , 2024, , .