A Fast and Stable Well-Balanced Scheme with Hydrosta Water Flows

SIAM Journal of Scientific Computing 25, 2050-2065 DOI: 10.1137/s1064827503431090

Citation Report

#	Article	IF	CITATIONS
2	On a hybrid finite-volume-particle method. ESAIM: Mathematical Modelling and Numerical Analysis, 2004, 38, 1071-1091.	0.8	18
3	Central schemes for conservation laws with application to shallow water equations. , 2005, , 225-246.		33
4	Visual simulation of shallow-water waves. Simulation Modelling Practice and Theory, 2005, 13, 716-726.	2.2	55
5	A well-balanced positivity preserving "second-order―scheme for shallow water flows on unstructured meshes. Journal of Computational Physics, 2005, 206, 311-333.	1.9	147
6	Solution of shallow water equations using fully adaptive multiscale schemes. International Journal for Numerical Methods in Fluids, 2005, 49, 417-437.	0.9	30
7	Performance of numerical methods on the non-unique solution to the Riemann problem for the shallow water equations. International Journal for Numerical Methods in Fluids, 2005, 47, 825-831.	0.9	23
8	A non-oscillatory balanced scheme for an idealized tropical climate model. Theoretical and Computational Fluid Dynamics, 2005, 19, 331-354.	0.9	46
9	Steady rotating flows over a ridge. Physics of Fluids, 2005, 17, 116601.	1.6	6
10	Breaking of balanced and unbalanced equatorial waves. Chaos, 2005, 15, 013503.	1.0	24
11	Two Interface-Type Numerical Methods for Computing Hyperbolic Systems with Geometrical Source Terms Having Concentrations. SIAM Journal of Scientific Computing, 2005, 26, 2079-2101.	1.3	49
12	Numerical Solutions to Compressible Flows in a Nozzle with Variable Cross-section. SIAM Journal on Numerical Analysis, 2005, 43, 796-824.	1.1	70
13	Approximation of Hyperbolic Models for Chemosensitive Movement. SIAM Journal of Scientific Computing, 2005, 27, 850-872.	1.3	35
14	On the use of Saint Venant equations to simulate the spreading of a granular mass. Journal of Geophysical Research, 2005, 110, .	3.3	161
15	Numerical methods for nonconservative hyperbolic systems: a theoretical framework SIAM Journal on Numerical Analysis, 2006, 44, 300-321.	1.1	390
16	Inertial Motions during the Transient Adjustment of a Density Anomaly in the Equatorial Ocean with Application to the Western Pacific Warm Pool. Journal of Physical Oceanography, 2006, 36, 2283-2295.	0.7	10
17	Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. Journal of Computational Physics, 2006, 213, 474-499.	1.9	254
18	A steady state capturing and preserving method for computing hyperbolic systems with geometrical source terms having concentrations. Journal of Computational Physics, 2006, 219, 322-390.	1.9	9
19	The generalized Riemann problem method for the shallow water equations with bottom topography. International Journal for Numerical Methods in Engineering, 2006, 65, 834-862.	1.5	52

#	Article	IF	CITATIONS
20	WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE. Mathematical Models and Methods in Applied Sciences, 2007, 17, 2055-2113.	1.7	96
21	Chapter 4 Efficient Numerical Finite Volume Schemes for Shallow Water Models. Edited Series on Advances in Nonlinear Science and Complexity, 2007, 2, 189-256.	0.3	47
22	High-order well-balanced finite-volume schemes for barotropic flows: Development and numerical comparisons. Ocean Modelling, 2007, 18, 53-79.	1.0	9
23	Numerical modeling of self-channeling granular flows and of their levee-channel deposits. Journal of Geophysical Research, 2007, 112, .	3.3	145
24	Transcritical rotating flow over topography. Journal of Fluid Mechanics, 2007, 590, 81-106.	1.4	3
25	On splitting-based mass and total energy conserving arbitrary order shallow-water schemes. Numerical Methods for Partial Differential Equations, 2007, 23, 534-552.	2.0	7
26	Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes. International Journal for Numerical Methods in Fluids, 2007, 53, 867-894.	0.9	84
27	Upwinding of the source term at interfaces for Euler equations with high friction. Computers and Mathematics With Applications, 2007, 53, 361-375.	1.4	37
28	Well-balanced finite volume evolution Galerkin methods for the shallow water equations. Journal of Computational Physics, 2007, 221, 122-147.	1.9	66
29	Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes. Journal of Computational Physics, 2007, 226, 180-203.	1.9	98
30	A sign matrix based scheme for non-homogeneous PDE's with an analysis of the convergence stagnation phenomenon. Journal of Computational Physics, 2007, 226, 1753-1783.	1.9	21
31	On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. Journal of Computational Physics, 2007, 227, 574-601.	1.9	171
32	An asymptotic preserving scheme for hydrodynamics radiative transfer models. Numerische Mathematik, 2007, 108, 199-221.	0.9	46
33	High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. Journal of Computational Physics, 2007, 226, 29-58.	1.9	202
34	High-order balanced CWENO scheme for movable bed shallow water equations. Advances in Water Resources, 2007, 30, 730-741.	1.7	38
35	Space discontinuous Galerkin method for shallow water flows—kinetic and HLLC flux, and potential vorticity generation. Advances in Water Resources, 2007, 30, 998-1015.	1.7	24
36	Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods. Computers and Fluids, 2008, 37, 299-316.	1.3	118
37	Extension of WAF Type Methods to Non-Homogeneous Shallow Water Equations with Pollutant. Journal of Scientific Computing, 2008, 36, 193-217.	1.1	23

#	Article	IF	CITATIONS
38	A large-time-stepping scheme for balance equations. Journal of Engineering Mathematics, 2008, 60, 351-363.	0.6	4
39	Numerical simulations of 3D free surface flows by a multilayer Saintâ€Venant model. International Journal for Numerical Methods in Fluids, 2008, 56, 331-350.	0.9	31
40	Finiteâ€volume multiâ€stage schemes for shallowâ€water flow simulations. International Journal for Numerical Methods in Fluids, 2008, 57, 177-204.	0.9	17
41	A wellâ€balanced Runge–Kutta discontinuous Galerkin method for the shallowâ€water equations with flooding and drying. International Journal for Numerical Methods in Fluids, 2008, 58, 1-25.	0.9	105
42	Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. Journal of Computational Physics, 2008, 227, 3089-3113.	1.9	149
43	Turbidity current modelling on geological time scales. Marine Geology, 2008, 248, 127-150.	0.9	13
44	A consistent intermediate wave speed for a well-balanced HLLC solver. Comptes Rendus Mathematique, 2008, 346, 795-800.	0.1	15
45	Conservative arbitrary order finite difference schemes for shallow-water flows. Journal of Computational and Applied Mathematics, 2008, 218, 579-591.	1.1	11
46	Depth–energy and depth–force relationships in open channel flows: Analytical findings. Advances in Water Resources, 2008, 31, 447-454.	1.7	21
47	A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes. SIAM Journal of Scientific Computing, 2008, 30, 2587-2612.	1.3	55
48	Nonlinear adjustment of a front over escarpment. Physics of Fluids, 2008, 20, .	1.6	5
49	Instability of coupled geostrophic density fronts and its nonlinear evolution. Journal of Fluid Mechanics, 2008, 613, 309-327.	1.4	10
50	An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: Mathematical Modelling and Numerical Analysis, 2008, 42, 683-698.	0.8	71
51	A Roe-type scheme for two-phase shallow granular flows over variable topography. ESAIM: Mathematical Modelling and Numerical Analysis, 2008, 42, 851-885.	0.8	111
52	Remarks on the nonviscous Shallow Water equations. Indiana University Mathematics Journal, 2008, 57, 2969-2998.	0.4	5
53	The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section. ESAIM: Mathematical Modelling and Numerical Analysis, 2008, 42, 425-442.	0.8	44
54	Well-balanced scheme for shallow water equations with arbitrary topography. International Journal of Dynamical Systems and Differential Equations, 2008, 1, 196.	0.2	10
55	On some fast well-balanced first order solvers for nonconservative systems. Mathematics of Computation, 2009, 79, 1427-1472.	1.1	67

# 56	ARTICLE Supercritical rotating flow over topography. Physics of Fluids, 2009, 21, 066601.	IF 1.6	CITATIONS
57	Well-Balanced Bottom Discontinuities Treatment for High-Order Shallow Water Equations WENO Scheme. Journal of Engineering Mechanics - ASCE, 2009, 135, 684-696.	1.6	29
58	Wellâ€balancing issues related to the RKDG2 scheme for the shallow water equations. International Journal for Numerical Methods in Fluids, 2010, 62, 428-448.	0.9	13
59	A wellâ€balanced upstream fluxâ€splitting finiteâ€volume scheme for shallowâ€water flow simulations with irregular bed topography. International Journal for Numerical Methods in Fluids, 2010, 62, 927-944.	0.9	9
60	Shoreline tracking and implicit source terms for a well balanced inundation model. International Journal for Numerical Methods in Fluids, 2010, 63, 1123-1146.	0.9	1
61	Conservative discretization of Coriolis force in a finite volume framework. Journal of Computational Physics, 2009, 228, 2934-2950.	1.9	9
62	A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 2009, 228, 8609-8626.	1.9	93
63	Semi-discrete Entropy Satisfying Approximate Riemann Solvers. The Case of the Suliciu Relaxation Approximation. Journal of Scientific Computing, 2009, 41, 483-509.	1.1	11
64	Two-way interactions between equatorially-trapped waves and the barotropic flow. Chinese Annals of Mathematics Series B, 2009, 30, 539-568.	0.2	19
65	Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes. Computers and Fluids, 2009, 38, 16-36.	1.3	25
66	Improvements of semi-implicit schemes for hyperbolic balance laws applied on open channel flow equations. Computers and Mathematics With Applications, 2009, 58, 292-309.	1.4	9
67	Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 2009, 32, 873-884.	1.7	384
68	A Well-Balanced Approximate Riemann Solver for Variable Cross-Section Compressible Flows. , 2009, , .		7
69	The Riemann Problem for a Nonisentropic Fluid in a Nozzle with Discontinuous Cross-Sectional Area. SIAM Journal on Applied Mathematics, 2009, 69, 1501-1519.	0.8	52
70	Temporal Regularization of the \$P_N\$ Equations. Multiscale Modeling and Simulation, 2009, 7, 1497-1524.	0.6	14
71	A central scheme for shallow water flows along channels with irregular geometry. ESAIM: Mathematical Modelling and Numerical Analysis, 2009, 43, 333-351.	0.8	38
72	Logically rectangular finite volume methods with adaptive refinement on the sphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4483-4496.	1.6	14
73	Instabilities of buoyancy-driven coastal currents and their nonlinear evolution in the two-layer rotating shallow-water model. Part 1. Passive lower layer. Journal of Fluid Mechanics, 2010, 659, 69-93.	1.4	21

#	Article	IF	CITATIONS
74	High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres. Journal of Computational Physics, 2010, 229, 4033-4058.	1.9	23
75	Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Advances in Water Resources, 2010, 33, 1476-1493.	1.7	252
76	Modeling of wetting–drying transitions in free surface flows over complex topographies. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 2281-2304.	3.4	26
77	Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying. Computers and Fluids, 2010, 39, 2040-2050.	1.3	46
78	A new finite volume method for flux-gradient and source-term balancing in shallow water equations. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 3324-3335.	3.4	43
79	A discontinuous Galerkin algorithm for the two-dimensional shallow water equations. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 3356-3368.	3.4	37
80	A simple finite volume method for the shallow water equations. Journal of Computational and Applied Mathematics, 2010, 234, 58-72.	1.1	38
81	Relaxation solvers for ideal MHD equations -a review. Acta Mathematica Scientia, 2010, 30, 621-632.	0.5	10
82	A two-fluid hyperbolic model in a porous medium. ESAIM: Mathematical Modelling and Numerical Analysis, 2010, 44, 1319-1348.	0.8	17
83	Flood Simulation Using a Well-Balanced Shallow Flow Model. Journal of Hydraulic Engineering, 2010, 136, 669-675.	0.7	151
84	A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33, 235-256.	1.0	13
85	A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows. SIAM Journal on Numerical Analysis, 2010, 48, 1733-1758.	1.1	52
86	Multilayer Saint-Venant equations over movable beds. Discrete and Continuous Dynamical Systems - Series B, 2011, 15, 917-934.	0.5	7
87	A 2D shallow flow model for practical dam-break simulations. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 307-316.	0.7	82
88	Numerical solution of the discontinuous-bottom Shallow-water Equations with hydrostatic pressure distribution at the step. Advances in Water Resources, 2011, 34, 1413-1426.	1.7	28
89	Advanced Topics in Sediment Transport Modelling: Non-alluvial Beds and Hyperconcentrated Flows. , 2011, , .		8
90	Approximate Riemann Solvers and Robust High-Order Finite Volume Schemes for Multi-Dimensional Ideal MHD Equations. Communications in Computational Physics, 2011, 9, 324-362.	0.7	29
91	A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45, 169-200.	0.8	74

#	Article	IF	CITATIONS
92	Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds. Communications in Computational Physics, 2011, 10, 371-404.	0.7	84
93	Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45, 423-446.	0.8	80
94	Central-Upwind Scheme on Triangular Grids for the Saint-Venant System of Shallow Water Equations. AIP Conference Proceedings, 2011, , .	0.3	4
95	A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime. Journal of Computational Physics, 2011, 230, 7631-7660.	1.9	92
96	The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation. European Journal of Mechanics, B/Fluids, 2011, 30, 598-615.	1.2	60
97	A Simple Extension of the Osher Riemann Solver toÂNon-conservative Hyperbolic Systems. Journal of Scientific Computing, 2011, 48, 70-88.	1.1	177
98	A Well-Balanced Path-Integral f-Wave Method forÂHyperbolic Problems with Source Terms. Journal of Scientific Computing, 2011, 48, 209-226.	1.1	23
99	On the Convergence and Well-Balanced Property ofÂPath-Conservative Numerical Schemes for Systems ofÂBalance Laws. Journal of Scientific Computing, 2011, 48, 274-295.	1.1	36
100	Shallow Water Flows in Channels. Journal of Scientific Computing, 2011, 48, 190-208.	1.1	26
101	On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System. Journal of Scientific Computing, 2011, 48, 117-140.	1.1	27
102	Quadtree-adaptive tsunami modelling. Ocean Dynamics, 2011, 61, 1261-1285.	0.9	99
103	Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 2011, 230, 3453-3478.	1.9	40
104	High-order finite volume WENO schemes for the shallow water equations with dry states. Advances in Water Resources, 2011, 34, 1026-1038.	1.7	64
105	A simple two-phase method for the simulation of complex free surface flows. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 1204-1219.	3.4	32
106	Optimal dynamics of soft shapes in shallow waters. Computers and Fluids, 2011, 40, 291-298.	1.3	6
107	A conservative highâ€order discontinuous Galerkin method for the shallow water equations with arbitrary topography. International Journal for Numerical Methods in Engineering, 2011, 86, 47-69.	1.5	26
108	Asymptotic preserving HLL schemes. Numerical Methods for Partial Differential Equations, 2011, 27, 1396-1422.	2.0	41
109	Adaptive finite volume methods with wellâ€balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset damâ€break flood (France, 1959). International Journal for Numerical Methods in Fluids. 2011. 66. 1000-1018.	0.9	74

#	Article	IF	CITATIONS
110	On the approximation of local efflux/influx bed discharge in the shallow water equations based on a wave propagation algorithm. International Journal for Numerical Methods in Fluids, 2011, 66, 1295-1314.	0.9	10
111	A kinetic interpretation of the sectionâ€averaged Saintâ€Venant system for natural river hydraulics. International Journal for Numerical Methods in Fluids, 2011, 67, 914-938.	0.9	14
112	A new wellâ€balanced Hermite weighted essentially nonâ€oscillatory scheme for shallow water equations. International Journal for Numerical Methods in Fluids, 2011, 67, 1135-1159.	0.9	16
113	A Godunov-type scheme for modelling 1D channel flow with varying width and topography. Computers and Fluids, 2011, 46, 88-93.	1.3	7
114	Numerical simulations of a non-hydrostatic shallow water model. Computers and Fluids, 2011, 47, 51-64.	1.3	22
115	An efficient scheme on wet/dry transitions for shallow water equations with friction. Computers and Fluids, 2011, 48, 192-201.	1.3	26
116	Numerical approximation for a Baer–Nunziato model of two-phase flows. Applied Numerical Mathematics, 2011, 61, 702-721.	1.2	23
117	A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers. Journal of Computational Physics, 2011, 230, 515-550.	1.9	26
118	Finite volume schemes for dispersive wave propagation and runup. Journal of Computational Physics, 2011, 230, 3035-3061.	1.9	71
119	A fast adaptive quadtree scheme for a two-layer shallow water model. Journal of Computational Physics, 2011, 230, 4848-4870.	1.9	21
120	Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. Journal of Computational Physics, 2011, 230, 5587-5609.	1.9	121
121	Finite-Volume Multi-Stage Scheme for Advection-Diffusion Modeling in Shallow Water Flows. Journal of Mechanics, 2011, 27, 415-430.	0.7	10
122	VERTICALLY AVERAGED MODELS FOR THE FREE SURFACE NON-HYDROSTATIC EULER SYSTEM: DERIVATION AND KINETIC INTERPRETATION. Mathematical Models and Methods in Applied Sciences, 2011, 21, 459-490.	1.7	19
123	A well-balanced spectral volume scheme with the wetting–drying property for the shallow-water equations. Journal of Hydroinformatics, 2012, 14, 745-760.	1.1	22
124	Comparing different numerical methods for solving arterial 1D flows in networks. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 61-62.	0.9	6
125	Flood Wave Modeling Based on a Two-Dimensional Modified Wave Propagation Algorithm Coupled to a Full-Pipe Network Solver. Journal of Hydraulic Engineering, 2012, 138, 247-259.	0.7	19
126	Minimisation principles for the evolution of a soft sea bed interacting with a shallow sea. International Journal of Computational Fluid Dynamics, 2012, 26, 163-172.	0.5	8
127	Hydrodynamic Investigation and Numerical Simulation of Intermittent and Ephemeral Flows in Semi-Arid Regions: Wadi Mekerra, Algeria. Journal of Hydrology and Hydromechanics, 2012, 60, 125-142.	0.7	9

#	Article	IF	CITATIONS
128	Why many theories of shock waves are necessary: kinetic relations for non-conservative systems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2012, 142, 1-37.	0.8	28
129	Transient Two-Dimensional Simulation of Real Flood Events in a Mediterranean Floodplain. Journal of Hydraulic Engineering, 2012, 138, 629-641.	0.7	10
130	Asymptotic High Order Mass-Preserving Schemes for a Hyperbolic Model of Chemotaxis. SIAM Journal on Numerical Analysis, 2012, 50, 883-905.	1.1	14
131	Port-Hamiltonian discretization for open channel flows. Systems and Control Letters, 2012, 61, 950-958.	1.3	6
132	A robust numerical method for approximating solutions of a model of two-phase flows and its properties. Applied Mathematics and Computation, 2012, 219, 320-344.	1.4	17
133	Dynamically adaptive grid based discontinuous Galerkin shallow water model. Advances in Water Resources, 2012, 37, 23-39.	1.7	32
134	Study of overland flow with uncertain infiltration using stochastic tools. Advances in Water Resources, 2012, 38, 1-12.	1.7	13
135	Well-balanced shallow water flow simulation on quadtree cut cell grids. Advances in Water Resources, 2012, 39, 60-70.	1.7	25
136	A flux-limiter method for dam-break flows over erodible sediment beds. Applied Mathematical Modelling, 2012, 36, 4847-4861.	2.2	38
137	Efficient well-balanced hydrostatic upwind schemes for shallow-water equations. Journal of Computational Physics, 2012, 231, 4993-5015.	1.9	53
138	Numerical treatment of nonconservative terms in resonant regime for fluid flows in a nozzle with variable cross-section. Computers and Fluids, 2012, 66, 130-139.	1.3	8
139	Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Engineering, 2012, 70, 1-20.	1.7	164
140	A well-balanced, third-order-accurate RKDG scheme for SWE on curved boundary domains. Advances in Water Resources, 2012, 46, 31-45.	1.7	10
141	A limitation of the hydrostatic reconstruction technique for Shallow Water equations. Comptes Rendus Mathematique, 2012, 350, 677-681.	0.1	34
142	Analytical Solutions Involving Shock Waves for Testing Debris Avalanche Numerical Models. Pure and Applied Geophysics, 2012, 169, 1847-1858.	0.8	14
143	Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami. Natural Hazards and Earth System Sciences, 2012, 12, 1213-1227.	1.5	55
144	Numerical Schemes for Hyperbolic Balance Laws - Applications to Fluid Flow Problems. , 0, , .		2
145	Accurate numerical discretizations of non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46, 187-206.	0.8	25

#	Article	IF	CITATIONS
146	A well-balanced finite volume scheme for 1D hemodynamic simulations. ESAIM: Proceedings and Surveys, 2012, 35, 222-227.	0.4	1
147	Approximations of the Carrier–Greenspan periodic solution to the shallow water wave equations for flows on a sloping beach. International Journal for Numerical Methods in Fluids, 2012, 69, 763-780.	0.9	15
148	Analysis of a new Kolgan-type scheme motivated by the shallow water equations. Applied Numerical Mathematics, 2012, 62, 489-506.	1.2	12
149	A numerical treatment of wet/dry zones in well-balanced hybrid schemes for shallow water flow. Applied Numerical Mathematics, 2012, 62, 264-277.	1.2	6
150	A new approach to handle wave breaking in fully non-linear Boussinesq models. Coastal Engineering, 2012, 67, 54-66.	1.7	114
151	A Shallow Water model for the numerical simulation of overland flow on surfaces with ridges and furrows. European Journal of Mechanics, B/Fluids, 2012, 31, 44-52.	1.2	11
152	The Slop Flux Method for Numerical Balance in Using Roe's Approximate Riemann Solver. Journal of Hydrodynamics, 2012, 24, 58-64.	1.3	2
153	ADER scheme on unstructured meshes for shallow water: simulation of tsunami waves. Geophysical Journal International, 2012, 189, 1505-1520.	1.0	19
154	Locally Limited and Fully Conserved RKDG2 Shallow Water Solutions with Wetting and Drying. Journal of Scientific Computing, 2012, 50, 120-144.	1.1	39
155	Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes. Journal of Scientific Computing, 2013, 57, 19-41.	1.1	82
156	Wellâ€balanced highâ€order solver for blood flow in networks of vessels with variable properties. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 1388-1411.	1.0	82
157	A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations. Journal of Scientific Computing, 2013, 56, 267-290.	1.1	93
158	A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains. Computers and Fluids, 2013, 82, 132-147.	1.3	59
159	A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment. Advances in Water Resources, 2013, 52, 107-131.	1.7	114
160	The Riemann problem for shallow-water equations on a step: stationary solutions, the quasi-two-layer model and numerics. Physica Scripta, 2013, T155, 014043.	1.2	0
161	Numerical simulation of pollutant transport in a shallow-water system on the Cell heterogeneous processor. Journal of Supercomputing, 2013, 65, 1089-1103.	2.4	2
162	A diffuse interface method for complex three-dimensional free surface flows. Computer Methods in Applied Mechanics and Engineering, 2013, 257, 47-64.	3.4	32
163	A Petrov–Galerkin scheme for modeling 1D channel flow with varying width and topography. Acta Mechanica, 2013, 224, 707-725.	1.1	10

#	Article	IF	CITATIONS
164	Multilevel finite volume methods and boundary conditions for geophysical flows. Computers and Fluids, 2013, 74, 66-90.	1.3	4
165	On the well-balanced numerical discretization of shallow water equations on unstructured meshes. Journal of Computational Physics, 2013, 235, 565-586.	1.9	52
166	A kinetic scheme for the one-dimensional open channel flow equations with applications on networks. Calcolo, 2013, 50, 255-282.	0.6	5
167	Efficient GPU implementation of a two waves TVD-WAF method for the two-dimensional one layer shallow water system on structured meshes. Computers and Fluids, 2013, 80, 441-452.	1.3	63
168	High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields. Journal of Scientific Computing, 2013, 54, 645-662.	1.1	81
169	A 2D local discontinuous Galerkin method for contaminant transport in channel bends. Computers and Fluids, 2013, 88, 629-642.	1.3	7
170	Reliability of first order numerical schemes for solving shallow water system over abrupt topography. Applied Mathematics and Computation, 2013, 219, 9012-9032.	1.4	28
171	A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography. Computer Methods in Applied Mechanics and Engineering, 2013, 257, 126-149.	3.4	80
172	Numerical simulation of wave overtopping at coastal dikes and low-crested structures by means of a shock-capturing Boussinesq model. Coastal Engineering, 2013, 79, 75-88.	1.7	25
173	Upwind residual distribution for shallow-water ocean modelling. Ocean Modelling, 2013, 64, 1-11.	1.0	5
174	High order exactly well-balanced numerical methods for shallow water systems. Journal of Computational Physics, 2013, 246, 242-264.	1.9	66
175	A Weighted Average Flux (WAF) scheme applied to shallow water equations for real-life applications. Advances in Water Resources, 2013, 62, 155-172.	1.7	22
176	Numerical modelling of two-dimensional morphodynamics with applications to river bars and bifurcations. Advances in Water Resources, 2013, 52, 243-260.	1.7	86
177	Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties. Journal of Computational Physics, 2013, 242, 53-85.	1.9	85
178	SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. International Journal for Numerical Methods in Fluids, 2013, 72, 269-300.	0.9	134
179	A â€~wellâ€balanced' finite volume scheme for blood flow simulation. International Journal for Numerical Methods in Fluids, 2013, 72, 177-205.	0.9	42
180	A NEW MODEL FOR SHALLOW VISCOELASTIC FLUIDS. Mathematical Models and Methods in Applied Sciences, 2013, 23, 1479-1526.	1.7	25
181	Early Well-Balanced Derivations for Various Systems. SIMAI Springer Series, 2013, , 63-76.	0.4	0

#	Article	IF	CITATIONS
182	Topography discretization techniques for Godunov-type shallow water numerical models: a comparative study. Journal of Hydraulic Research/De Recherches Hydrauliques, 2013, 51, 351-367.	0.7	24
183	Numerical treatment in resonant regime for shallow water equations with discontinuous topography. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 417-433.	1.7	9
184	A STUDY OF WELL-BALANCED FINITE VOLUME METHODS AND REFINEMENT INDICATORS FOR THE SHALLOW WATER EQUATIONS. Bulletin of the Australian Mathematical Society, 2013, 88, 351-352.	0.3	15
185	A 2D model for hydrodynamics and biology coupling applied to algae growth simulations. ESAIM: Mathematical Modelling and Numerical Analysis, 2013, 47, 1387-1412.	0.8	14
186	Robust a Simulation for Shallow Flows with Friction on Rough Topography. Numerical Mathematics, 2013, 6, 384-407.	0.6	2
187	FullSWOF Paral: Comparison of two parallelization strategies (MPI and SKELGIS) on a software designed for hydrology applications. ESAIM: Proceedings and Surveys, 2013, 43, 59-79.	0.4	11
188	Parallelization of a relaxation scheme modelling the bedload transport of sediments in shallow water flow. ESAIM: Proceedings and Surveys, 2013, 43, 80-94.	0.4	2
189	A new model for shallow viscoelastic free-surface flows forced by gravity on rough inclined bottom. ESAIM Proceedings and Surveys, 2014, 45, 108-117.	0.5	1
190	TESTING IMPROVEMENTS OF A WELL-BALANCED METHOD FOR THE MODEL OF A FLUID IN A NOZZLE WITH VARIABLE CROSS-SECTION. Taiwanese Journal of Mathematics, 2014, 18, .	0.2	2
191	Effective coastal boundary conditions for tsunami wave run-up over sloping bathymetry. Nonlinear Processes in Geophysics, 2014, 21, 987-1005.	0.6	4
192	Non-negative depth reconstruction for a two-dimensional partial inertial inundation model. Journal of Hydroinformatics, 2014, 16, 1158-1177.	1.1	3
193	Development of a Cell-Centered Godunov-Type Finite Volume Model for Shallow Water Flow Based on Unstructured Mesh. Mathematical Problems in Engineering, 2014, 2014, 1-15.	0.6	7
194	A positivity preserving central scheme for shallow water flows in channels with wet-dry states. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, 48, 665-696.	0.8	12
195	A fast finite volume solver for multi-layered shallow water flows with mass exchange. Journal of Computational Physics, 2014, 272, 23-45.	1.9	21
196	Building fast well-balanced two-stage numerical schemes for a model of two-phase flows. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 1836-1858.	1.7	7
197	Extreme scenarios for the evolution of a soft bed interacting with a fluid using the Value at Risk of the bed characteristics. Computers and Fluids, 2014, 89, 78-87.	1.3	6
198	Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow. Computer Methods in Applied Mechanics and Engineering, 2014, 270, 113-149.	3.4	28
199	A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes. Applied Mathematics and Computation, 2014, 234, 623-644.	1.4	53

#	Article	IF	CITATIONS
200	Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numerische Mathematik, 2014, 127, 595-639.	0.9	46
201	The Linearized 2D Inviscid Shallow Water Equations in a Rectangle: Boundary Conditions and Well-Posedness. Archive for Rational Mechanics and Analysis, 2014, 211, 1027-1063.	1.1	14
202	Well-balanced schemes for the Euler equations with gravitation. Journal of Computational Physics, 2014, 259, 199-219.	1.9	105
203	Modeling Rapid Flood Propagation Over Natural Terrains Using a Well-Balanced Scheme. Journal of Hydraulic Engineering, 2014, 140, .	0.7	11
204	An improved hydrostatic reconstruction method for shallow water model. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 432-439.	0.7	15
205	Relation between PVM schemes and simple Riemann solvers. Numerical Methods for Partial Differential Equations, 2014, 30, 1315-1341.	2.0	10
206	Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms. Computers and Fluids, 2014, 101, 88-104.	1.3	27
207	Closure to "Two-dimensional depth-averaged finite volume model for unsteady turbulent flow― Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 150-151.	0.7	0
208	On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows. International Journal for Numerical Methods in Fluids, 2014, 76, 69-94.	0.9	20
209	A 2D reconstruction for the transverse coupling of shallow water models. International Journal for Numerical Methods in Fluids, 2014, 75, 775-799.	0.9	2
210	GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations. Environmental Modelling and Software, 2014, 57, 60-75.	1.9	102
211	Well-Balanced Adaptive Mesh Refinement for shallow water flows. Journal of Computational Physics, 2014, 257, 937-953.	1.9	23
212	Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. Journal of Computational Physics, 2014, 257, 536-553.	1.9	86
213	A Broad-crested Weir Boundary Condition in Finite Volume Shallow-water Numerical Models. Procedia Engineering, 2014, 70, 353-362.	1.2	10
214	Rankine–Hugoniot–Riemann solver for steady multidimensional conservation laws with source terms. Computers and Fluids, 2014, 101, 1-14.	1.3	1
215	IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows. Communications in Computational Physics, 2014, 16, 307-347.	0.7	38
216	Discontinuous Galerkin flood model formulation: Luxury or necessity?. Water Resources Research, 2014, 50, 6522-6541.	1.7	23
217	Critical control in transcritical shallow-water flow over two obstacles. Journal of Fluid Mechanics, 2015, 780, 480-502.	1.4	5

#	Article	IF	CITATIONS
218	A two-dimensional depth-integrated non-hydrostatic numerical model for nearshore wave propagation. Ocean Modelling, 2015, 96, 187-202.	1.0	20
219	A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations. Mathematics of Computation, 2015, 85, 1281-1307.	1.1	42
220	Impacts of tides on tsunami propagation due to potential <scp>N</scp> ankai <scp>T</scp> rough earthquakes in the <scp>S</scp> eto <scp>I</scp> nland <scp>S</scp> ea, <scp>J</scp> apan. Journal of Geophysical Research: Oceans, 2015, 120, 6865-6883.	1.0	19
221	Uncertainty related to high resolution topographic data use for flood event modeling over urban areas: toward a sensitivity analysis approach. ESAIM Proceedings and Surveys, 2015, 48, 385-399.	0.5	4
222	A robust and wellâ€balanced scheme for the 2D Saintâ€Venant system on unstructured meshes with friction source term. International Journal for Numerical Methods in Fluids, 2015, 78, 89-121.	0.9	10
223	Wellâ€balanced positivity preserving centralâ€upwind scheme for the shallow water system with friction terms. International Journal for Numerical Methods in Fluids, 2015, 78, 355-383.	0.9	70
224	Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization. Geoscientific Model Development, 2015, 8, 3891-3909.	1.3	12
225	Modeling of Breaching Due to Overtopping Flow and Waves Based on Coupled Flow and Sediment Transport. Water (Switzerland), 2015, 7, 4283-4304.	1.2	10
226	Convergence Improved Lax-Friedrichs Scheme Based Numerical Schemes and Their Applications in Solving the One-Layer and Two-Layer Shallow-Water Equations. Mathematical Problems in Engineering, 2015, 2015, 1-10.	0.6	1
227	Consistent Weighted Average Flux of Well-Balanced TVD-RK Discontinuous Galerkin Method for Shallow Water Flows. Modelling and Simulation in Engineering, 2015, 2015, 1-11.	0.4	3
228	DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility. Geoscientific Model Development, 2015, 8, 3131-3150.	1.3	49
229	A faster numerical scheme for a coupled system modeling soil erosion and sediment transport. Water Resources Research, 2015, 51, 987-1005.	1.7	15
230	Well-Balanced Central Schemes on Overlapping Cells with Constant Subtraction Techniques for the Saint-Venant Shallow Water System. Journal of Scientific Computing, 2015, 63, 678-698.	1.1	12
231	A well-balanced finite difference WENO scheme for shallow water flow model. Applied Mathematics and Computation, 2015, 265, 1-16.	1.4	14
232	A well-balanced solver for the Saint Venant equations with variable cross-section. Journal of Numerical Mathematics, 2015, 23, .	1.8	1
233	Artificial boundary layers in discontinuous Galerkin solutions to shallow water equations in channels. Journal of Computational Physics, 2015, 299, 597-612.	1.9	7
234	Modified Shallow Water Equations With Application for Horizontal Centrifugal Casting of Rolls. Journal of Fluids Engineering, Transactions of the ASME, 2015, 137, .	0.8	2
235	An efficient unstructured MUSCL scheme for solving the 2D shallow water equations. Environmental Modelling and Software, 2015, 66, 131-152.	1.9	80

#	Article	IF	CITATIONS
236	A two-dimensional coupled flow-mass transport model based on an improved unstructured finite volume algorithm. Environmental Research, 2015, 139, 65-74.	3.7	6
237	A Godunov-type scheme for the isentropic model of a fluid flow in a nozzle with variable cross-section. Applied Mathematics and Computation, 2015, 256, 602-629.	1.4	23
238	An efficient splitting technique for two-layer shallow-water model. Numerical Methods for Partial Differential Equations, 2015, 31, 1396-1423.	2.0	5
239	Contradiction between the Câ€property and mass conservation in adaptive grid based shallow flow models: cause and solution. International Journal for Numerical Methods in Fluids, 2015, 78, 17-36.	0.9	13
240	A Numerical Comparison Between Degenerate Parabolic and Quasilinear Hyperbolic Models of Cell Movements Under Chemotaxis. Journal of Scientific Computing, 2015, 63, 654-677.	1.1	10
242	Stochastic-deterministic modeling of bed load transport in shallow water flow over erodible slope: Linear stability analysis and numerical simulation. Advances in Water Resources, 2015, 83, 36-54.	1.7	33
243	Well-balanced numerical modelling of non-uniform sediment transport in alluvial rivers. International Journal of Sediment Research, 2015, 30, 117-130.	1.8	35
244	A robust and well-balanced numerical model for solving the two-layer shallow water equations over uneven topography. Comptes Rendus - Mecanique, 2015, 343, 429-442.	2.1	10
245	From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. Journal of Computational Physics, 2015, 295, 114-146.	1.9	36
246	Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations. Journal of Computational Physics, 2015, 290, 188-218.	1.9	27
247	Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes. Journal of Computational Physics, 2015, 287, 184-206.	1.9	21
248	Overland Flow Modeling with the Shallow Water Equations Using a Well-Balanced Numerical Scheme: Better Predictions or Just More Complexity. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	12
249	A new class of fully nonlinear and weakly dispersive Green–Naghdi models for efficient 2D simulations. Journal of Computational Physics, 2015, 282, 238-268.	1.9	73
250	A conservative finite volume scheme with time-accurate local time stepping for scalar transport on unstructured grids. Advances in Water Resources, 2015, 86, 217-230.	1.7	15
251	A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography. Journal of Computational Physics, 2015, 301, 357-376.	1.9	26
252	Benchmarking a multiresolution discontinuous Galerkin shallow water model: Implications for computational hydraulics. Advances in Water Resources, 2015, 86, 14-31.	1.7	18
253	Upscaling the shallow water model with a novel roughness formulation. Environmental Earth Sciences, 2015, 74, 7371-7386.	1.3	21
254	Finite volume schemes and residual distribution schemes for pollutant transport on unstructured grids. Environmental Earth Sciences, 2015, 74, 7337-7356.	1.3	3

#	Article	IF	CITATIONS
255	Hydrostatic relaxation scheme for the 1D shallow water - Exner equations in bedload transport. Computers and Fluids, 2015, 121, 44-50.	1.3	22
256	A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case. Advances in Water Resources, 2015, 85, 1-13.	1.7	40
257	A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. Journal of Computational Physics, 2015, 302, 336-358.	1.9	188
258	Analysis of an open source quadtree grid shallow water flow solver for flood simulation. Quaternary International, 2015, 384, 118-128.	0.7	12
259	A Roe type energy balanced solver for 1D arterial blood flow and transport. Computers and Fluids, 2015, 117, 149-167.	1.3	16
260	RKDG2 shallow-water solver on non-uniform grids with local time steps: Application to 1D and 2D hydrodynamics. Applied Mathematical Modelling, 2015, 39, 1317-1340.	2.2	20
261	A twoâ€dimensional numerical scheme of dry/wet fronts for the Saintâ€Venant system of shallow water equations. International Journal for Numerical Methods in Fluids, 2015, 77, 159-182.	0.9	28
262	A high resolution finite volume model for 1D debris flow. Journal of Hydro-Environment Research, 2015, 9, 145-155.	1.0	11
263	A numerical model for the simulation of debris flow triggering, propagation and arrest. Natural Hazards, 2015, 75, 1403-1433.	1.6	15
264	A well-balanced finite volume scheme for the Euler equations with gravitation. Astronomy and Astrophysics, 2016, 587, A94.	2.1	59
265	Novel Slope Source Term Treatment for Preservation of Quiescent Steady States in Shallow Water Flows. Water (Switzerland), 2016, 8, 488.	1.2	2
266	A well-balanced scheme for the shallow-water equations with topography. Computers and Mathematics With Applications, 2016, 72, 568-593.	1.4	39
267	A mass conservative wellâ€balanced reconstruction at wet/dry interfaces for the Godunovâ€ŧype shallow water model. International Journal for Numerical Methods in Fluids, 2016, 82, 893-908.	0.9	1
268	Parametric Investigation of Breaking Solitary Wave Over Fringing Reef Based on Shock-Capturing Boussinesq Model. Coastal Engineering Journal, 2016, 58, 1650007-1-1650007-21.	0.7	7
269	Wellâ€balanced finite difference weighted essentially nonâ€oscillatory schemes for the blood flow model. International Journal for Numerical Methods in Fluids, 2016, 82, 607-622.	0.9	14
270	Secondâ€order finite volume with hydrostatic reconstruction for tsunami simulation. Journal of Advances in Modeling Earth Systems, 2016, 8, 1691-1713.	1.3	13
271	Centered-Potential Regularization for the Advection Upstream Splitting Method. SIAM Journal on Numerical Analysis, 2016, 54, 3083-3104.	1.1	14
272	A multilayer shallow model for dry granular flows with the -rheology: application to granular collapse on erodible beds. Journal of Fluid Mechanics, 2016, 798, 643-681.	1.4	41

#	Article	IF	CITATIONS
273	New prospects for computational hydraulics by leveraging high-performance heterogeneous computing techniques. Journal of Hydrodynamics, 2016, 28, 977-985.	1.3	20
274	Finite Volume Morphodynamic Model Useful in Coastal Environment. Procedia Engineering, 2016, 161, 1887-1892.	1.2	7
275	Well-balanced finite difference WENO schemes for the Ripa model. Computers and Fluids, 2016, 134-135, 1-10.	1.3	15
276	High order finite volume WENO schemes for the shallow water flows through channels with irregular geometry. Journal of Computational and Applied Mathematics, 2016, 299, 229-244.	1.1	24
277	On the Accuracy of WENO and CWENO Reconstructions of Third Order on Nonuniform Meshes. Journal of Scientific Computing, 2016, 67, 1219-1246.	1.1	75
278	Application of positivity-preserving well-balanced discontinuous Galerkin method in computational hydrology. Computers and Fluids, 2016, 139, 112-119.	1.3	6
279	Conventional versus pre-balanced forms of the shallow-water equations solved using finite-volume method. Ocean Modelling, 2016, 101, 113-120.	1.0	7
280	Efficiency and accuracy of Lateralized HLL, HLLS and Augmented Roe's scheme with energy balance for river flows in irregular channels. Applied Mathematical Modelling, 2016, 40, 7427-7446.	2.2	11
281	High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics, 2016, 316, 145-163.	1.9	38
282	Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity. Journal of Hydrology, 2016, 541, 1165-1184.	2.3	52
283	Discretizing singular point sources in hyperbolic wave propagation problems. Journal of Computational Physics, 2016, 321, 532-555.	1.9	27
284	High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models. Journal of Computational Physics, 2016, 327, 678-699.	1.9	12
285	High-resolution Modelling With Bi-dimensional Shallow Water Equations Based Codes – High-Resolution Topographic Data Use for Flood Hazard Assessment Over Urban and Industrial Environments. Procedia Engineering, 2016, 154, 853-860.	1.2	8
286	Well-Balanced Unstaggered Central Schemes for the Euler Equations with Gravitation. SIAM Journal of Scientific Computing, 2016, 38, B773-B807.	1.3	24
287	Optimization of parallel WAF for two-dimensional shallow water model with CUDA. , 2016, , .		0
288	A central-upwind scheme with artificial viscosity for shallow-water flows in channels. Advances in Water Resources, 2016, 96, 323-338.	1.7	18
289	Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics. Advances in Water Resources, 2016, 97, 11-24.	1.7	25
290	Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system. Mathematics of Computation, 2016, 85, 2815-2837.	1.1	17

#	Article	IF	Citations
291	Shallow-water simulations by a well-balanced WAF finite volume method: a case study to the great flood in 2011, Thailand. Computational Geosciences, 2016, 20, 1269-1285.	1.2	6
292	A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations. Advances in Water Resources, 2016, 98, 70-96.	1.7	38
293	A Newton multigrid method for steady-state shallow water equations with topography and dry areas. Applied Mathematics and Mechanics (English Edition), 2016, 37, 1441-1466.	1.9	3
294	Well-balanced schemes to capture non-explicit steady states: Ripa model. Mathematics of Computation, 2016, 85, 1571-1602.	1.1	32
295	Wave transformation and shoreline water level on <scp>F</scp> unafuti <scp>A</scp> toll, <scp>T</scp> uvalu. Journal of Geophysical Research: Oceans, 2016, 121, 311-326.	1.0	52
296	NUMERICAL EXPERIMENTS FOR IMPACTS OF TIDES ON TSUNAMI PROPAGATIONS IN THE SETO INLAND SEA. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2016, 72, I_325-I_330.	0.0	0
297	Central-upwind scheme for shallow water equations with discontinuous bottom topography. Bulletin of the Brazilian Mathematical Society, 2016, 47, 91-103.	0.3	7
298	Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Computers and Fluids, 2016, 136, 193-206.	1.3	30
299	Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations. Bulletin of the Brazilian Mathematical Society, 2016, 47, 117-130.	0.3	4
300	A comparison between bottom-discontinuity numerical treatments in the DG framework. Applied Mathematical Modelling, 2016, 40, 7516-7531.	2.2	13
301	An interface condition to compute compressible flows in variable cross section ducts. Comptes Rendus Mathematique, 2016, 354, 323-327.	0.1	3
302	A Well-Balanced Finite Volume Scheme for a Mixed Hyperbolic/Parabolic System to Model Chemotaxis. Journal of Scientific Computing, 2016, 67, 618-643.	1.1	5
303	Depth-averaged non-hydrostatic numerical modeling of nearshore wave propagations based on the FORCE scheme. Coastal Engineering, 2016, 114, 208-219.	1.7	6
304	High-order finite volume WENO schemes for Boussinesq modelling of nearshore wave processes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2016, 54, 646-662.	0.7	5
305	The structure of well-balanced schemes for Friedrichs systems with linear relaxation. Applied Mathematics and Computation, 2016, 272, 440-459.	1.4	17
306	A path-conservative Osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes. Applied Numerical Mathematics, 2016, 105, 47-63.	1.2	17
307	Well-Balanced High Order 1D Schemes on Non-uniform Grids and Entropy Residuals. Journal of Scientific Computing, 2016, 66, 1052-1076.	1.1	10
308	A numerical approach for analysing the performance of a sewage screening chamber. Urban Water Journal, 2016, 13, 360-371.	1.0	2

#	Article	IF	CITATIONS
309	Spatial Global Sensitivity Analysis of High Resolution classified topographic data use in 2D urban flood modelling. Environmental Modelling and Software, 2016, 77, 183-195.	1.9	62
310	A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions. Applied Mathematics and Computation, 2016, 272, 259-273.	1.4	21
311	A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation. Comptes Rendus - Mecanique, 2016, 344, 42-51.	2.1	1
312	Well-Balanced Discontinuous Galerkin Methods for the Euler Equations Under Gravitational Fields. Journal of Scientific Computing, 2016, 67, 493-513.	1.1	28
313	Second order discontinuous Galerkin scheme for compound natural channels with movable bed. Applications for the computation of rating curves. Advances in Water Resources, 2016, 93, 89-104.	1.7	6
314	A discontinuous Galerkin method for two-layer shallow water equations. Mathematics and Computers in Simulation, 2016, 120, 12-23.	2.4	13
315	Numerical simulation of dam-break flow and bed change considering the vegetation effects. International Journal of Sediment Research, 2017, 32, 105-120.	1.8	25
316	Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation. Journal of Computational Physics, 2017, 335, 222-248.	1.9	49
317	A well-balanced scheme for the shallow-water equations with topography or Manning friction. Journal of Computational Physics, 2017, 335, 115-154.	1.9	27
318	Simulation of Surface Runoff Using Hydrodynamic Model. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	24
319	Numerical Methods for the Nonlinear Shallow Water Equations. Handbook of Numerical Analysis, 2017, , 361-384.	0.9	12
320	Well-Balanced Schemes and Path-Conservative Numerical Methods. Handbook of Numerical Analysis, 2017, , 131-175.	0.9	42
321	An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resources Research, 2017, 53, 3730-3759.	1.7	123
322	Well balancing of the SWE schemes for moving-water steady flows. Journal of Computational Physics, 2017, 342, 85-116.	1.9	13
323	A New Hydrostatic Reconstruction Scheme Based on Subcell Reconstructions. SIAM Journal on Numerical Analysis, 2017, 55, 758-784.	1.1	46
324	Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties. Journal of Computational Physics, 2017, 331, 108-136.	1.9	16
325	A well-balanced path conservative SPH scheme for nonconservative hyperbolic systems with applications to shallow water and multi-phase flows. Computers and Fluids, 2017, 154, 102-122.	1.3	15
326	A multi well-balanced scheme for the shallow water MHD system with topography. Numerische Mathematik, 2017, 136, 875-905.	0.9	5

#	Article	IF	CITATIONS
327	High performance shallow water kernels for parallel overland flow simulations based on FullSWOF2D. Computers and Mathematics With Applications, 2017, 74, 110-125.	1.4	11
328	An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. Journal of Computational Physics, 2017, 340, 200-242.	1.9	75
329	Building a Godunov-type numerical scheme for a model of two-phase flows. Computers and Fluids, 2017, 148, 69-81.	1.3	12
330	Constructing a Godunov-type scheme for the model of a general fluid flow in a nozzle with variable cross-section. Applied Mathematics and Computation, 2017, 305, 136-160.	1.4	6
331	Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM - International Journal on Geomathematics, 2017, 8, 85-133.	0.7	27
332	Momentum balance in the shallow water equations on bottom discontinuities. Advances in Water Resources, 2017, 100, 1-13.	1.7	14
333	The MOOD method for the non-conservative shallow-water system. Computers and Fluids, 2017, 145, 99-128.	1.3	16
334	Three-dimensional shallow water system: A relaxation approach. Journal of Computational Physics, 2017, 333, 160-179.	1.9	5
335	A new vertex-based limiting approach for nodal discontinuous Galerkin methods on arbitrary unstructured meshes. Computers and Fluids, 2017, 159, 316-326.	1.3	13
336	Well-balanced methods for the shallow water equations in spherical coordinates. Computers and Fluids, 2017, 157, 196-207.	1.3	12
337	A Hybrid Method to Solve Shallow Water Flows with Horizontal Density Gradients. Journal of Scientific Computing, 2017, 73, 753-782.	1.1	4
338	Residual equilibrium schemes for time dependent partial differential equations. Computers and Fluids, 2017, 156, 329-342.	1.3	14
339	A well-balanced van Leer-type numerical scheme for shallow water equations with variable topography. Advances in Computational Mathematics, 2017, 43, 1197-1225.	0.8	9
340	Uncertainty quantification in littoral erosion. Computers and Fluids, 2017, 143, 120-133.	1.3	1
341	Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling. Computer Methods in Applied Mechanics and Engineering, 2017, 314, 102-125.	3.4	32
342	Parallel processing for simulating 2D radial dambreak using FVM HLLE flux on OpenMP. , 2017, , .		4
343	Computing two-layer SWE for simulating submarine avalanches on OpenMP. , 2017, , .		10
344	Parallel processing for simulating surface gravity waves by non-hydrostatic model using arakawa grid. , 2017, , .		4

#	Article	IF	CITATIONS
345	Comparison of depth-averaged concentration and bed load flux sediment transport models of dam-break flow. Water Science and Engineering, 2017, 10, 287-294.	1.4	3
346	Well-Balanced Second-Order Approximation of the Shallow Water Equation with Continuous Finite Elements. SIAM Journal on Numerical Analysis, 2017, 55, 3203-3224.	1.1	15
347	Dynamics of an idealized fluid model for investigating convective-scale data assimilation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2017, 69, 1369332.	0.8	5
348	OpenMP architecture to simulate 2D water oscillation on paraboloid. , 2017, , .		13
349	CWENO: Uniformly accurate reconstructions for balance laws. Mathematics of Computation, 2018, 87, 1689-1719.	1.1	65
350	High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields. East Asian Journal on Applied Mathematics, 2017, 7, 697-713.	0.4	0
351	Morphodynamic Model Suitable for River Flow and Wave-Current Interaction. IOP Conference Series: Materials Science and Engineering, 2017, 245, 062005.	0.3	5
353	A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes. Engineering Geology, 2018, 234, 174-191.	2.9	35
354	Finite volume method with reconstruction and bottom modification for open channel flows: An application to Yom River, Thailand. International Journal for Computational Methods in Engineering Science and Mechanics, 2018, 19, 227-239.	1.4	0
355	A highâ€order PIC method for advectionâ€dominated flow with application to shallow water waves. International Journal for Numerical Methods in Fluids, 2018, 87, 583-600.	0.9	3
356	ADER-DG with a-posteriori finite-volume limiting to simulate tsunamis in a parallel adaptive mesh refinement framework. Computers and Fluids, 2018, 173, 299-306.	1.3	17
357	The solution of the dam-break problem in the Porous Shallow water Equations. Advances in Water Resources, 2018, 114, 83-101.	1.7	20
358	Comment on "An Efficient and Stable Hydrodynamic Model With Novel Source Term Discretization Schemes for Overland Flow and Flood Simulations―by Xilin Xia et al Water Resources Research, 2018, 54, 621-627.	1.7	7
359	Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes. Journal of Computational Physics, 2018, 358, 36-52.	1.9	57
360	Reply to Comment by Lu et al. on "An Efficient and Stable Hydrodynamic Model With Novel Source Term Discretization Schemes for Overland Flow and Flood Simulations― Water Resources Research, 2018, 54, 628-630.	1.7	1
361	A well-balanced meshless tsunami propagation and inundation model. Advances in Water Resources, 2018, 115, 273-285.	1.7	8
362	A van Leer-Type Numerical Scheme for the Model of a General Fluid Flow in a Nozzle with Variable Cross Section. Acta Mathematica Vietnamica, 2018, 43, 503-547.	0.2	0
363	Reprint of: Well-balanced methods for the shallow water equations in spherical coordinates. Computers and Fluids, 2018, 169, 129-140.	1.3	2

#	Article	IF	CITATIONS
364	Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction. Journal of Computational Physics, 2018, 362, 425-448.	1.9	29
365	Reprint of: Residual equilibrium schemes for time dependent partial differential equations. Computers and Fluids, 2018, 169, 141-154.	1.3	0
366	A well-balanced element-free Galerkin method for the nonlinear shallow water equations. Applied Mathematics and Computation, 2018, 331, 46-53.	1.4	5
367	Well-balanced mesh-based and meshless schemes for the shallow-water equations. BIT Numerical Mathematics, 2018, 58, 579-598.	1.0	2
368	Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 2018, 115, 172-184.	1.7	12
369	Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics, 2018, 352, 445-462.	1.9	36
370	Wellâ€balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries. International Journal for Numerical Methods in Fluids, 2018, 86, 491-508.	0.9	11
371	The validity of flow approximations when simulating catchment-integrated flash floods. Journal of Hydrology, 2018, 556, 674-688.	2.3	58
372	2D granular flows with the \hat{l} /4(I) rheology and side walls friction: A well-balanced multilayer discretization. Journal of Computational Physics, 2018, 356, 192-219.	1.9	38
373	Well-balanced schemes for the shallow water equations with Coriolis forces. Numerische Mathematik, 2018, 138, 939-973.	0.9	28
374	A local time stepping algorithm for GPU-accelerated 2D shallow water models. Advances in Water Resources, 2018, 111, 274-288.	1.7	32
375	Completing a well-balanced numerical method for a model of two-phase flows by computing correctors. Applied Mathematics and Computation, 2018, 322, 6-29.	1.4	1
376	Dynamic simulation of a mountain disaster chain: landslides, barrier lakes, and outburst floods. Natural Hazards, 2018, 90, 757-775.	1.6	47
377	râ^'adaptation for Shallow Water flows: conservation, well balancedness, efficiency. Computers and Fluids, 2018, 160, 175-203.	1.3	19
378	High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations. Journal of Computational and Applied Mathematics, 2018, 340, 546-560.	1.1	23
379	Numerical Models of Surface Tension. Annual Review of Fluid Mechanics, 2018, 50, 49-75.	10.8	325
380	Congested shallow water model: roof modeling in free surface flow. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 1679-1707.	0.8	15
381	A New Well-Balanced Reconstruction Technique for the Numerical Simulation of Shallow Water Flows with Wet/Dry Fronts and Complex Topography. Water (Switzerland), 2018, 10, 1661.	1.2	5

#	Article	IF	CITATIONS
382	A Numerical Simulation of the Shallow Water Flow on a Complex Topography. , 0, , .		8
383	Numerical investigation of a sandbar formation and evolution in a tide-dominated estuary using a hydro-morphodynamic model. Coastal Engineering Journal, 2018, 60, 466-483.	0.7	14
384	Well-Balanced Second-Order Finite Element Approximation of the Shallow Water Equations with Friction. SIAM Journal of Scientific Computing, 2018, 40, A3873-A3901.	1.3	17
385	Multicore runup simulation by under water avalanche using two-layer 1D shallow water equations. Journal of Physics: Conference Series, 2018, 971, 012026.	0.3	7
386	OpenMP performance for benchmark 2D shallow water equations using LBM. Journal of Physics: Conference Series, 2018, 971, 012033.	0.3	4
387	A Fully Well-Balanced LagrangeProjection-Type Scheme for the Shallow-Water Equations. SIAM Journal on Numerical Analysis, 2018, 56, 3071-3098.	1.1	10
388	Landslide damage incurred to buildings: A case study of Shenzhen landslide. Engineering Geology, 2018, 247, 69-83.	2.9	30
389	Towards district scale flood simulations using conventional and anisotropic porosity shallow water models with high-resolution topographic information. Houille Blanche, 2018, 104, 90-98.	0.3	0
390	A well balanced diffuse interface method for complex nonhydrostatic free surface flows. Computers and Fluids, 2018, 175, 180-198.	1.3	24
391	A Non-Equilibrium Sediment Transport Model for Dam Break Flow over Moveable Bed Based on Non-Uniform Rectangular Mesh. Water (Switzerland), 2018, 10, 616.	1.2	11
392	Estimating Time of Concentration for Overland Flow on Pervious Surfaces by Particle Tracking Method. Water (Switzerland), 2018, 10, 379.	1.2	13
393	A Second-Order Well-Balanced Scheme for the Shallow Water Equations with Topography. Springer Proceedings in Mathematics and Statistics, 2018, , 165-177.	0.1	0
394	Well-Balanced Central-Upwind Schemes for \$\$2,imes ,2\$\$ Systems of Balance Laws. Springer Proceedings in Mathematics and Statistics, 2018, , 345-361.	0.1	11
395	Wave–Current Interaction: A 2DH Model for Turbulent Jet and Bottom-Friction Dissipation. Water (Switzerland), 2018, 10, 392.	1.2	18
396	A Novel Multislope MUSCL Scheme for Solving 2D Shallow Water Equations on Unstructured Grids. Water (Switzerland), 2018, 10, 524.	1.2	0
397	Lagoon Sediment Dynamics: A Coupled Model to Study a Medium-Term Silting of Tidal Channels. Water (Switzerland), 2018, 10, 569.	1.2	32
398	Finite-volume schemes for shallow-water equations. Acta Numerica, 2018, 27, 289-351.	6.3	61
399	A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations. Advances in Water Resources, 2018, 117, 87-97.	1.7	58

#	Article	IF	CITATIONS
400	Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2251-2275.	1.6	41
401	A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography. Journal of Hydrodynamics, 2018, 30, 618-631.	1.3	5
402	Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system. Journal of Computational Physics, 2018, 374, 213-236.	1.9	23
403	A simple fully well-balanced and entropy preserving scheme for the shallow-water equations. Applied Mathematics Letters, 2018, 86, 284-290.	1.5	5
404	A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions. Environmental Modelling and Software, 2018, 109, 272-292.	1.9	73
405	Numerical Modelling of Cohesive Bank Migration. Water (Switzerland), 2018, 10, 961.	1.2	17
406	Improved multislope MUSCL reconstruction on unstructured grids for shallow water equations. International Journal for Numerical Methods in Fluids, 2018, 87, 401-436.	0.9	5
407	Analysis of modified Godunov type schemes for the two-dimensional linear wave equation with Coriolis source term on cartesian meshes. Journal of Computational Physics, 2018, 373, 91-129.	1.9	6
408	High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Computational and Applied Mathematics, 2018, 37, 5775-5794.	1.3	7
409	A new numerical treatment of moving wet/dry fronts in dam-break flows. Journal of Applied Mathematics and Computing, 2019, 59, 489-516.	1.2	4
410	A two-dimensional layer-averaged numerical model for turbidity currents. Geological Society Special Publication, 2019, 477, 439-454.	0.8	6
411	A Two-Layer Hydrostatic-Reconstruction Method for High-Resolution Solving of the Two-Layer Shallow-Water Equations over Uneven Bed Topography. Mathematical Problems in Engineering, 2019, 2019, 1-14.	0.6	2
412	Enhanced flood forecasting through ensemble data assimilation and joint state-parameter estimation. Journal of Hydrology, 2019, 577, 123924.	2.3	24
413	High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry. Applied Mathematics and Computation, 2019, 363, 124587.	1.4	3
414	Accident Trend Prediction of Heavy Metal Pollution in the Heshangshan Drinking Water Source Area Based on Integrating a Two-Dimensional Water Quality Model and GIS. Sustainability, 2019, 11, 3998.	1.6	8
415	A limiterâ€based wellâ€balanced discontinuous Galerkin method for shallowâ€water flows with wetting and drying: Triangular grids. International Journal for Numerical Methods in Fluids, 2019, 91, 395-418.	0.9	19
416	Flood propagation modeling with the Local Inertia Approximation: Theoretical and numerical analysis of its physical limitations. Advances in Water Resources, 2019, 133, 103422.	1.7	14
417	The role of the Rankine-Hugoniot relations in staggered finite difference schemes for the shallow water equations. Computers and Fluids, 2019, 192, 104274.	1.3	8

#	Article	IF	CITATIONS
418	Performance of Staggered Grid Implementation of 2D Shallow Water Equations using CUDA Architecture. , 2019, , .		0
419	Entropyâ€ s atisfying scheme for a hierarchy of dispersive reduced models of free surface flow. International Journal for Numerical Methods in Fluids, 2019, 91, 509-531.	0.9	9
420	Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53, 959-985.	0.8	29
421	Robust explicit relaxation technique for solving the Green-Naghdi equations. Journal of Computational Physics, 2019, 399, 108917.	1.9	9
422	Simulating the Xinmo landslide runout considering entrainment effect. Environmental Earth Sciences, 2019, 78, 1.	1.3	21
423	Hybrid Artificial Viscosity–Central-Upwind Scheme for Recirculating Turbulent Shallow Water Flows. Journal of Hydraulic Engineering, 2019, 145, 04019041.	0.7	9
424	Flood inundation modeling in urbanized areas: A mesh-independent porosity approach with anisotropic friction. Advances in Water Resources, 2019, 125, 98-113.	1.7	33
425	Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage. Hydrology and Earth System Sciences, 2019, 23, 1281-1304.	1.9	19
426	A well-balanced numerical scheme for a model of two-phase flows with treatment of nonconservative terms. Advances in Computational Mathematics, 2019, 45, 2701-2719.	0.8	2
427	Improvement of the Hydrostatic Reconstruction Scheme to Get Fully Discrete Entropy Inequalities. Journal of Scientific Computing, 2019, 80, 924-956.	1.1	9
428	Evaluating Curb Inlet Efficiency for Urban Drainage and Road Bioretention Facilities. Water (Switzerland), 2019, 11, 851.	1.2	12
429	Comparison of Shallow Water Solvers: Applications for Dam-Break and Tsunami Cases with Reordering Strategy for Efficient Vectorization on Modern Hardware. Water (Switzerland), 2019, 11, 639.	1.2	16
430	A new model of shoaling and breaking waves. Part 2. Run-up and two-dimensional waves. Journal of Fluid Mechanics, 2019, 867, 146-194.	1.4	11
431	A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. Advances in Water Resources, 2019, 127, 89-108.	1.7	36
432	Computationally efficient modeling of hydro-sediment-morphodynamic processes using a hybrid local time step/global maximum time step. Advances in Water Resources, 2019, 127, 26-38.	1.7	34
433	Arbitrary Order Finite Volume Well-Balanced Schemes for the Euler Equations with Gravity. SIAM Journal of Scientific Computing, 2019, 41, A695-A721.	1.3	37
434	A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations. Journal of Scientific Computing, 2019, 80, 538-554.	1.1	35
435	Parallel Flood Simulations for Wet–Dry Problems Using Dynamic Load Balancing Concept. Journal of Computing in Civil Engineering, 2019, 33, .	2.5	15

#	Article	IF	CITATIONS
436	Application of an efficient hydraulic model for surface water flows. , 2019, , .		0
437	Spatio-Temporal Variation of Heavy Metal Pollution during Accidents: A Case Study of the Heshangshan Protected Water Area, China. Sustainability, 2019, 11, 6919.	1.6	4
438	Numerical approximation of the 3D hydrostatic Navier–Stokes system with free surface. ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53, 1981-2024.	0.8	3
439	NUMERICAL ENTROPY PRODUCTION AS SMOOTHNESS INDICATOR FOR SHALLOW WATER EQUATIONS. ANZIAM Journal, 2019, 61, 398-415.	0.3	0
440	A novel well-balanced scheme for spatial and temporal bed evolution in rapidly varying flow. Journal of Hydro-Environment Research, 2019, 27, 87-101.	1.0	5
441	Computing UDCHR Scheme for simulating underwater sediment movement using OpenMP. , 2019, , .		4
442	The Riemann problem for the shallow water equations with discontinuous topography: The wet–dry case. Journal of Computational Physics, 2019, 378, 344-365.	1.9	12
443	High-order well-balanced finite volume schemes for the Euler equations with gravitation. Journal of Computational Physics, 2019, 378, 324-343.	1.9	26
444	Central-upwind scheme for 2D turbulent shallow flows using high-resolution meshes with scalable wall functions. Computers and Fluids, 2019, 179, 394-421.	1.3	18
445	A new model of shoaling and breaking waves: one-dimensional solitary wave on a mild sloping beach. Journal of Fluid Mechanics, 2019, 862, 552-591.	1.4	14
446	An improved multislope MUSCL scheme for solving shallow water equations on unstructured grids. Computers and Mathematics With Applications, 2019, 77, 576-596.	1.4	10
447	Estimation of the area of sediment deposition by debris flow using a physical-based modeling approach. Quaternary International, 2019, 503, 59-69.	0.7	11
448	Advancing Dynamical Cores of Oceanic Models across All Scales. Bulletin of the American Meteorological Society, 2019, 100, ES109-ES115.	1.7	3
449	Well-Balanced Numerical Schemes for Shallow Water Equations with Horizontal Temperature Gradient. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 783-807.	0.4	3
450	Beyond Shallow Water: Appraisal of a numerical approach to hydraulic jumps based upon the Boundary Layer theory. European Journal of Mechanics, B/Fluids, 2020, 79, 233-246.	1.2	10
451	Building a van Leer-type numerical scheme for a model of two-phase flows. Applied Mathematics and Computation, 2020, 366, 124748.	1.4	1
452	Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 738-754.	0.7	5
453	Energy-stable staggered schemes for the Shallow Water equations. Journal of Computational Physics, 2020, 401, 109051.	1.9	6

#	Article	IF	CITATIONS
454	Comparison of Fast Shallow-Water Schemes on Real-World Floods. Journal of Hydraulic Engineering, 2020, 146, 05019005.	0.7	9
455	On integral and differential porosity models for urban flooding simulation. Advances in Water Resources, 2020, 136, 103455.	1.7	15
456	An effect non-staggered central scheme based on new hydrostatic reconstruction. Applied Mathematics and Computation, 2020, 372, 124992.	1.4	5
457	CHAMELEON: Reactive Load Balancing for Hybrid MPI+OpenMP Task-Parallel Applications. Journal of Parallel and Distributed Computing, 2020, 138, 55-64.	2.7	34
458	Extension of artificial viscosity technique for solving 2D non-hydrostatic shallow water equations. European Journal of Mechanics, B/Fluids, 2020, 80, 92-111.	1.2	8
459	Reconstructing the Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya: Evolution, process and impacts. Geomorphology, 2020, 370, 107393.	1.1	29
460	Moving-Water Equilibria Preserving Partial Relaxation Scheme for the Saint-Venant System. SIAM Journal of Scientific Computing, 2020, 42, A2206-A2229.	1.3	6
461	Learning extreme wave run-up conditions. Applied Ocean Research, 2020, 105, 102400.	1.8	3
462	A Well-Balanced and Positivity-Preserving Numerical Model for Shallow Water Flows in Channels with Wet–Dry Fronts. Journal of Scientific Computing, 2020, 85, 1.	1.1	7
463	A fully well-balanced scheme for the 1D blood flow equations with friction source term. Journal of Computational Physics, 2020, 421, 109750.	1.9	17
464	Interactive Multi Resolution 2D Cellular Automata Model for Tsunami Wave Propagation. Journal of Physics: Conference Series, 2020, 1489, 012010.	0.3	1
465	Development of Two-Dimensional Non-Hydrostatic Wave Model Based on Central-Upwind Scheme. Journal of Marine Science and Engineering, 2020, 8, 505.	1.2	2
466	An adaptive well-balanced positivity preserving central-upwind scheme on quadtree grids for shallow water equations. Computers and Fluids, 2020, 208, 104633.	1.3	7
467	A simple method to evaluate the performance of an intercept dam for debris-flow mitigation. Engineering Geology, 2020, 276, 105771.	2.9	19
468	Well-balanced finite volume schemes for nearly steady adiabatic flows. Journal of Computational Physics, 2020, 423, 109805.	1.9	14
469	Urban Flood Modeling Using 2D Shallow-Water Equations in Ouagadougou, Burkina Faso. Water (Switzerland), 2020, 12, 2120.	1.2	10
470	On the solution of the slope beach problem in the context of shallow-water code benchmarking: Why non-linearization of the initial waveforms is essential. Advances in Water Resources, 2020, 145, 103751.	1.7	1
471	A vertically-Lagrangian, non-hydrostatic, multilayer model for multiscale free-surface flows. Journal of Computational Physics, 2020, 418, 109609.	1.9	16

#	ARTICLE	IF	CITATIONS
472	shallow-water model. Advances in Water Resources, 2020, 140, 103581.	1.7	11
473	A gradient-robust well-balanced scheme for the compressible isothermal Stokes problem. Computer Methods in Applied Mechanics and Engineering, 2020, 367, 113069.	3.4	4
474	A robust central scheme for the shallow water flows with an abrupt topography based on modified hydrostatic reconstructions. Mathematical Methods in the Applied Sciences, 2020, 43, 9024-9045.	1.2	3
475	Entropy Stable and Well-Balanced Discontinuous Galerkin Methods for the Nonlinear Shallow Water Equations. Journal of Scientific Computing, 2020, 83, 1.	1.1	12
476	A Second-Order Well-Balanced Finite Volume Scheme for the Multilayer Shallow Water Model with Variable Density. Mathematics, 2020, 8, 848.	1.1	9
477	A shallow water eventâ€driven approach to simulate turbidity currents at stratigraphic scale. International Journal for Numerical Methods in Fluids, 2020, 92, 1290-1321.	0.9	0
478	Well-balanced and shock-capturing solving of 3D shallow-water equations involving rapid wetting and drying with a local 2D transition approach. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112897.	3.4	7
479	Comprehensive modelling of runoff-generated debris flow from formation to propagation in a catchment. Landslides, 2020, 17, 1529-1544.	2.7	23
480	A well-balanced central-upwind scheme for the thermal rotating shallow water equations. Journal of Computational Physics, 2020, 411, 109414.	1.9	18
481	Well-Balanced Finite-Volume Schemes for Hydrodynamic Equations with General Free Energy. Multiscale Modeling and Simulation, 2020, 18, 502-541.	0.6	10
482	Numerical approximation of blood flow in arteries using kinetic flux-vector splitting (KFVS) scheme. European Physical Journal Plus, 2020, 135, 1.	1.2	1
483	Weak Local Residuals as Smoothness Indicators in Adaptive Mesh Methods for Shallow Water Flows. Symmetry, 2020, 12, 345.	1.1	1
484	Numerical modeling of the propagation and morphological changes of turbidity currents using a cost-saving strategy of solution updating. International Journal of Sediment Research, 2020, 35, 587-599.	1.8	7
485	Internal boundary conditions for a GPU-accelerated 2D shallow water model: Implementation and applications. Advances in Water Resources, 2020, 137, 103525.	1.7	23
486	Modeling the effects of sediment concentration on the propagation of flash floods in an Andean watershed. Natural Hazards and Earth System Sciences, 2020, 20, 221-241.	1.5	13
487	A GPU-Accelerated Shallow-Water Scheme for Surface Runoff Simulations. Water (Switzerland), 2020, 12, 637.	1.2	23
488	Well-Balanced High-Order Finite Volume Methods for Systems of Balance Laws. Journal of Scientific Computing, 2020, 82, 1.	1.1	46
489	Moving mesh version of wave propagation algorithm based on augmented Riemann solver. Applied Mathematics and Computation, 2020, 375, 125087.	1.4	2

#	Article	IF	CITATIONS
490	Finite volume model for the simulation of 1D unsteady river flow and water quality based on the WASP. Journal of Hydroinformatics, 2020, 22, 327-345.	1.1	14
491	Stochastic Galerkin Finite Volume Shallow Flow Model: Well-Balanced Treatment over Uncertain Topography. Journal of Hydraulic Engineering, 2020, 146, 04020005.	0.7	4
492	High Order Still-Water and Moving-Water Equilibria Preserving Discontinuous Galerkin Methods for the Ripa Model. Journal of Scientific Computing, 2020, 82, 1.	1.1	6
493	A robust second-order surface reconstruction for shallow water flows with a discontinuous topography and a Manning friction. Advances in Computational Mathematics, 2020, 46, 1.	0.8	8
494	Well-balanced discontinuous Galerkin methods for the one-dimensional blood flow through arteries model with man-at-eternal-rest and living-man equilibria. Computers and Fluids, 2020, 203, 104493.	1.3	15
495	Discontinuous Galerkin well-balanced schemes using augmented Riemann solvers with application to the shallow water equations. Journal of Hydroinformatics, 2020, 22, 1038-1058.	1.1	6
496	A reliable second-order hydrostatic reconstruction for shallow water flows with the friction term and the bed source term. Journal of Computational and Applied Mathematics, 2020, 376, 112871.	1.1	4
497	Exactly wellâ€balanced positivity preserving nonstaggered central scheme for openâ€channel flows. International Journal for Numerical Methods in Fluids, 2021, 93, 273-292.	0.9	4
498	A wellâ€balanced positivityâ€preserving centralâ€upwind scheme for oneâ€dimensional blood flow models. International Journal for Numerical Methods in Fluids, 2021, 93, 369-395.	0.9	3
499	Modeling the landslide-generated debris flow from formation to propagation and run-out by considering the effect of vegetation. Landslides, 2021, 18, 43-58.	2.7	34
500	Development of an efficient wetting and drying treatment for shallowâ€water modeling using the quadratureâ€free Rungeâ€Kutta discontinuous Galerkin method. International Journal for Numerical Methods in Fluids, 2021, 93, 314-338.	0.9	4
501	Well-balanced high-order finite difference methods for systems of balance laws. Journal of Computational Physics, 2021, 425, 109880.	1.9	11
502	High-order well-balanced methods for systems of balance laws: a control-based approach. Applied Mathematics and Computation, 2021, 394, 125820.	1.4	10
503	Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law. Journal of Computational Physics, 2021, 429, 110011.	1.9	6
504	Filling oceans on a spherical multiple-cell grid. Ocean Modelling, 2021, 157, 101729.	1.0	4
505	A new second-order modified hydrostatic reconstruction for the shallow water flows with a discontinuous topography. Applied Numerical Mathematics, 2021, 161, 408-424.	1.2	5
506	Wellâ€balanced nonstaggered central schemes based on hydrostatic reconstruction for the shallow water equations with Coriolis forces and topography. Mathematical Methods in the Applied Sciences, 2021, 44, 1358-1376.	1.2	4
507	An approximate wellâ€balanced upgrade of Godunovâ€type schemes for the isothermal Euler equations and the drift flux model with laminar friction and gravitation. International Journal for Numerical Methods in Fluids, 2021, 93, 1110-1142.	0.9	0

#	Article	IF	CITATIONS
508	Comparison of different numerical schemes for 1D conservation laws. Journal of Interdisciplinary Mathematics, 2021, 24, 537-552.	0.4	0
510	A Weakly Non-hydrostatic Shallow Model for Dry Granular Flows. Journal of Scientific Computing, 2021, 86, 1.	1.1	11
511	High-Order Well-Balanced Finite-Volume Schemes for Hydrodynamic Equations With Nonlocal Free Energy. SIAM Journal of Scientific Computing, 2021, 43, A828-A858.	1.3	5
512	Hyperbolicity-Preserving and Well-Balanced Stochastic Galerkin Method for Shallow Water Equations. SIAM Journal of Scientific Computing, 2021, 43, A929-A952.	1.3	6
513	A well-balanced high-order scheme on van Leer-type for the shallow water equations with temperature gradient and variable bottom topography. Advances in Computational Mathematics, 2021, 47, 1.	0.8	0
514	Numerical study of dam-break fluid flow using volume of fluid (VOF) methods for different angles of inclined planes. Simulation, 2021, 97, 717-737.	1.1	3
515	A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Applied Mathematics and Computation, 2021, 395, 125848.	1.4	7
516	High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws. Computers and Fluids, 2021, 219, 104858.	1.3	30
517	A simplified depth-averaged debris flow model with Herschel-Bulkley rheology for tracking density evolution: a finite volume formulation. Bulletin of Engineering Geology and the Environment, 2021, 80, 5331-5346.	1.6	4
518	A MOOD-MUSCL Hybrid Formulation for the Non-conservative Shallow-Water System. Journal of Scientific Computing, 2021, 88, 1.	1.1	2
519	Speculative Parallel Execution for Local Timestepping. , 2021, , .		2
520	A High-Order Well-Balanced Positivity-Preserving Moving Mesh DG Method for the Shallow Water Equations With Non-Flat Bottom Topography. Journal of Scientific Computing, 2021, 87, 1.	1.1	9
521	Pressure-balanced Saint–Venant equations for improved asymptotic modelling of pipe flow. Journal of Hydro-Environment Research, 2021, 37, 46-46.	1.0	1
522	A Computationally Efficient Shallow Water Model for Mixed Cohesive and Non-Cohesive Sediment Transport in the Yangtze Estuary. Water (Switzerland), 2021, 13, 1435.	1.2	1
523	Urban surface water flood modelling – a comprehensive review of current models and future challenges. Hydrology and Earth System Sciences, 2021, 25, 2843-2860.	1.9	88
524	A hybrid shallow water solver for overland flow modelling in rural and urban areas. Journal of Hydrology, 2021, 598, 126262.	2.3	7
525	Porous Shallow Water Modeling for Urban Floods in the Zhoushan City, China. Frontiers in Earth Science, 2021, 9, .	0.8	2
526	Positivity-Preserving Well-Balanced Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Methods for the Shallow Water Equations. Journal of Scientific Computing, 2021, 88, 1.	1.1	10

ARTICLE IF CITATIONS # Taitoko, an advanced code for tsunami propagation, developed at the French Tsunami Warning 527 1.2 13 Centers. European Journal of Mechanics, B/Fluids, 2021, 88, 72-88. Collocation Methods for High-Order Well-Balanced Methods for Systems of Balance Laws. 528 1.1 9 Mathematics, 2021, 9, 1799 Well-balanced treatment of gravity in astrophysical fluid dynamics simulations at low Mach numbers. 529 2.111 Astronomy and Astrophysics, 2021, 652, A53. Visual platform for water quality prediction and pre-warning of drinking water source area in the Three Gorges Reservoir Area. Journal of Cleaner Production, 2021, 309, 127398. A Well-Balanced SPH-ALE Scheme for Shallow Water Applications. Journal of Scientific Computing, 531 1.1 3 2021, 88, 1. A two-layer model for landslide generated impulse wave: Simulation of the 1958 Lituya bay landslide impact wave from generation to long–duration transport. Advances in Water Resources, 2021, 154, 1.7 103989. Second-order well-balanced Lagrange-projection schemes for blood flow equations. Calcolo, 2021, 58, 533 0.6 3 1 A well-balanced positivity-preserving numerical scheme for shallow water models with variable density. Computers and Fluids, 2021, 231, 105156. 534 1.3 A fully well-balanced and asymptotic preserving scheme for the shallow-water equations with a 535 2 0.6 generalized Manning friction source term. Calcolo, 2021, 58, 1. HLLC-type methods for compressible two-phase flow in ducts with discontinuous area changes. 1.3 Computers and Fluids, 2021, 227, 105023. A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along 537 0.8 0 channels. ESAIM: Mathematical Modelling and Numerical Analysis, 0, , . Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems. Journal of Computational Physics, 2021, 444, 110547. A two-dimensional high-order well-balanced scheme for the shallow water equations with 539 1.3 4 topography and Manning friction. Computers and Fluids, 2021, 230, 105152. High order sign-preserving and well-balanced exponential Runge-Kutta discontinuous Galerkin methods for the shallow water equations with friction. Journal of Computational Physics, 2021, 444, 540 1.9 110543. Flood-Modeling and Risk Map Simulation for Mae Suai Dam-Break, Northern Thailand. Pertanika 541 0.30 Journal of Science and Technology, 2021, 29, . Uniformly High-Order Structure-Preserving Discontinuous Galerkin Methods for Euler Equations with Gravitation: Positivity and Well-Balancedness. SIAM Journal of Scientific Computing, 2021, 43, 542 1.3 14 A472-A510. A Generalised Serre-Green-Naghdi Equations for Variable Rectangular Open Channel Hydraulics and Its 543 0.4 0 Finite Volume Approximation. SEMA SIMAI Springer Series, 2021, , 251-268. 544 Tracer Transport During the Geostrophic Adjustment in the Equatorial Ocean., 2005, , 413-429.

#	Article	IF	CITATIONS
545	A Conservative Well-Balanced Hybrid SPH Scheme for the Shallow-Water Model. Springer Proceedings in Mathematics and Statistics, 2014, , 817-825.	0.1	1
546	Well-Balanced Inundation Modeling for Shallow-Water Flows with Discontinuous Galerkin Schemes. Springer Proceedings in Mathematics and Statistics, 2014, , 965-973.	0.1	8
547	A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential. Springer Proceedings in Mathematics and Statistics, 2014, , 217-226.	0.1	10
548	Integration of FULLSWOF2D and PeanoClaw: Adaptivity and Local Time-Stepping for Complex Overland Flows. Lecture Notes in Computational Science and Engineering, 2015, , 181-195.	0.1	2
549	Comparison of Wetting and Drying Between a RKDG2 Method and Classical FV Based Second-Order Hydrostatic Reconstruction. Springer Proceedings in Mathematics and Statistics, 2017, , 237-245.	0.1	5
550	3D Free Surface Flows Simulations Using a Multilayer Saint-Venant Model. Comparisons with Navier-Stokes Solutions. , 2006, , 181-189.		4
551	How to Solve Systems of Conservation Laws Numerically Using the Graphics Processor as a High-Performance Computational Engine. , 2007, , 211-264.		8
552	A Simple Well-Balanced Model for Two-Dimensional Coastal Engineering Applications. , 2008, , 271-283.		3
554	High-Resolution Methods and Adaptive Refinement for Tsunami Propagation and Inundation. , 2008, , 541-549.		6
555	A Central-Upwind Scheme for Nonlinear Water Waves Generated by Submarine Landslides. , 2008, , 635-642.		5
556	Hydrostatic Upwind Schemes for Shallow–Water Equations. Springer Proceedings in Mathematics, 2011, , 97-105.	0.5	3
557	Dispersive wave runup on non-uniform shores. Springer Proceedings in Mathematics, 2011, , 389-397.	0.5	6
558	Preservation of the Discrete Geostrophic Equilibrium in Shallow Water Flows. Springer Proceedings in Mathematics, 2011, , 59-67.	0.5	4
559	An Adaptive Artificial Viscosity Method for the Saint-Venant System. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 125-141.	0.2	3
560	FullSWOF: A Software for Overland Flow Simulation. , 2014, , 221-231.		23
561	Global sensitivity analysis with 2d hydraulic codes: applied protocol and practical tool. Houille Blanche, 2015, , 16-22.	0.3	2
562	Geometrically intrinsic modeling of shallow water flows. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54, 2125-2157.	0.8	9
564	A SIMPLE AND EFFICIENT WELL-BALANCED MODEL FOR 2DH BORE PROPAGATION AND RUN-UP OVER A SLOPING BEACH. , 2007, , .		1

#	Article	IF	CITATIONS
565	Godunov-type Numerical Scheme for the Shallow Water Equations with Horizontal Temperature Gradient. Taiwanese Journal of Mathematics, 2020, 24, .	0.2	3
566	On the best quantity reconstructions for a well balanced finite volume method used to solve the shallow water wave equations with a wet/dry interface. ANZIAM Journal, 0, 51, 48.	0.0	12
567	A new analytical solution for testing debris avalanche numerical models. ANZIAM Journal, 0, 51, 349.	0.0	6
568	Numerical entropy production for shallow water flows. ANZIAM Journal, 0, 51, 1.	0.0	11
569	A well balanced scheme for the shallow water wave equations in open channels with (discontinuous) varying width and bed. ANZIAM Journal, 0, 52, 967.	0.0	3
570	Well-balanced computations of weak local residuals for the shallow water equations. ANZIAM Journal, 0, 55, 128.	0.0	1
571	Global Dissipation Models for Simulating Tsunamis at Far-Field Coasts up to 60 hours Post-Earthquake: Multi-Site Tests in Australia. Frontiers in Earth Science, 2020, 8, .	0.8	4
572	Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method. Journal of Korea Water Resources Association, 2011, 44, 511-522.	0.3	4
573	Applicability Evaluation of Flood Inundation Analysis using Quadtree Grid-based Model. Journal of Korea Water Resources Association, 2013, 46, 655-666.	0.3	4
574	A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - Series B, 2010, 13, 739-758.	0.5	42
575	A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11, 1-27.	0.5	12
576	Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11, 145-162.	0.5	6
577	A shallow water with variable pressure model for blood flow simulation. Networks and Heterogeneous Media, 2016, 11, 69-87.	0.5	11
578	WELL-BALANCED ROE-TYPE NUMERICAL SCHEME FOR A MODEL OF TWO-PHASE COMPRESSIBLE FLOWS. Journal of the Korean Mathematical Society, 2014, 51, 163-187.	0.4	3
579	A Survey of High Order Schemes for the Shallow Water Equations. Journal of Mathematical Study, 2014, 47, 221-249.	0.6	68
580	A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System. Communications in Mathematical Sciences, 2007, 5, 133-160.	0.5	303
581	A well-balanced numerical scheme for a one-dimensional quasilinear hyperbolic model of chemotaxis. Communications in Mathematical Sciences, 2014, 12, 13-39.	0.5	14
582	Data assimilation for hyperbolic conservation laws: A Luenberger observer approach based on a kinetic description. Communications in Mathematical Sciences, 2015, 13, 587-622.	0.5	5

ARTICLE IF CITATIONS Moving-water equilibria preserving central-upwind schemes for the shallow water equations. 583 0.5 21 Communications in Mathematical Sciences, 2016, 14, 1643-1663. Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based 584 1.5 on numerical modelling. Natural Hazards and Earth System Sciences, 2020, 20, 59-72. A two-dimensional method for a family of dispersive shallow water models. SMAI Journal of 585 0.0 6 Computational Mathematics, 0, 6, 187-226. SERRE GREEN-NAGHDI MODELLING OF WAVE TRANSFORMATION BREAKING AND RUN-UP USING A 586 0.1 HIGH-ORDER FINITE-VOLUME FINITE-DIFFERENCE SCHEME. Coastal Engineering Proceedings, 2011, 1, 13. Wintertime Extreme Storm Waves in the East Sea: Estimation of Extreme Storm Waves and 587 Wave-Structure Interaction Study in the Fushiki Port, Toyama Bay. Journal of Korean Society of 0.1 6 Coastal and Ocean Engineers, 2013, 25, 335-347. Urban Stormwater Modeling with Local Inertial Approximation Form of Shallow Water Equations: A 1.3 Comparative Study. International Journal of Disaster Risk Science, 2021, 12, 745-763. Dimensional Splitting Well-Balanced Schemes on Cartesian Mesh for 2D Shallow Water Equations 589 0.4 0 with Variable Topography. Bulletin of the Iranian Mathematical Society, 0, , 1. Numerical Aspects of Parabolic Regularization for Resonant Hyperbolic Balance Laws., 2008, , 695-702. 590 591 Resonance and Nonlinearities., 2008, , 113-124. 1 A simple hybrid well-balanced method for a 2D viscous shallow water model., 2009, , 261-266. A numerical correction of the \$M1\$-model in the diffusive limit. Discrete and Continuous Dynamical 594 0.6 1 Systems - Series S, 2012, 5, 245-255. The DG Scheme on Triangular Grids with Adaptive Modal and Variational Filtering Routines Applied to Shallow Water Flows. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, 253-266. Modeling Hazardous, Free-Surface Geophysical Flows with Depth-Averaged Hyperbolic Systems and 596 0.5 0 Adaptive Numerical Methods. The IMA Volumes in Mathematics and Its Applications, 2013, , 25-48. Use of Standard 2D Numerical Modeling Tools to Simulate Surface Runoff Over an Industrial Site: Feasibility and Comparative Performance Survey Over a Test Case., 2014, , 19-33. Positivity Preserving Implicit and Partially Implicit Time Integration Methods in the Context of the DG Scheme Applied to Shallow Water Flows. Springer Proceedings in Mathematics and Statistics, 2014, , 598 0.1 0 431-438. Multiscale Numerical Methods in Atmospheric Science., 2015, , 1002-1006. Numerical Scheme for a Viscous Shallow Water System Including New Friction Laws of Second Order: 601 0.2 0 Validation and Application. Springer Water, 2016, , 227-239. The Saint-Venant model for tsunami propagation simulation: Application to the 2011 Tohoku event., 0,,

#	Article	IF	CITATIONS
604	Analysis of Apparent Topography Scheme forÂthe Linear Wave Equation with Coriolis Force. Springer Proceedings in Mathematics and Statistics, 2017, , 209-217.	0.1	1
605	Dynamically Adaptive Tree Grid Modeling of Flood Inundation Based on Shallow Water Equations. , 2017, , 15-25.		0
606	A Well-Balanced Scheme for the Euler Equations with Gravitation. Springer INdAM Series, 2017, , 229-241.	0.4	1
607	A Godunov-Type Scheme for Shallow Water Equations Dedicated to Simulations of Overland Flows on Stepped Slopes. Springer Proceedings in Mathematics and Statistics, 2017, , 275-283.	0.1	0
608	Comparison of Shallow Water Models for Rapid Channel Flows. Springer Proceedings in Mathematics and Statistics, 2018, , 605-616.	0.1	0
609	A physically-based approach for evaluating the hydraulic invariance in urban transformations. International Journal of Safety and Security Engineering, 2018, 8, 536-546.	0.5	2
610	Flood Simulation by a Well-Balanced Finite Volume Method in Tapi River Basin, Thailand, 2017. Modelling and Simulation in Engineering, 2019, 2019, 1-13.	0.4	7
611	Stability of stationary solutions of singular systems of balance laws. Confluentes Mathematici, 2018, 10, 93-112.	0.2	0
612	Numerical entropy production as smoothness indicator for shallow water equations. ANZIAM Journal, 0, 61, 398-415.	0.0	0
613	A 1D shallow-flow model for two-layer flows based on FORCE scheme with wet–dry treatment. Journal of Hydroinformatics, 2020, 22, 1015-1037.	1.1	4
614	Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography. Mathematics of Computation, 2020, 90, 1119-1153.	1.1	1
615	Source Terms. Applied Mathematical Sciences (Switzerland), 2021, , 627-747.	0.4	0
616	Multi-GPU implementation of a time-explicit finite volume solver using CUDA and a CUDA-Aware version of OpenMPI with application to shallow water flows. Computer Physics Communications, 2022, 271, 108190.	3.0	7
617	Study of the 1D Saint-Venant Equations and Application to the Simulation of a Flood Problem. Journal of Applied Mathematics and Physics, 2020, 08, 1193-1206.	0.2	2
619	An efficient covariant frame for the spherical shallow water equations: Well balanced DG approximation and application to tsunami and storm surge. Ocean Modelling, 2022, 169, 101915.	1.0	6
620	A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation. Computers and Fluids, 2022, 233, 105248.	1.3	1
621	Well-Balancing via Flux Globalization: Applications to Shallow Water Equations with Wet/Dry Fronts. Journal of Scientific Computing, 2022, 90, 1.	1.1	9
622	B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement. Geoscientific Model Development, 2021, 14, 7117-7132.	1.3	8

ARTICLE IF CITATIONS A Well-Balanced Positivity-Preserving Quasi-Lagrange Moving Mesh DG Method for the Shallow Water 623 0.7 7 Equations. Communications in Computational Physics, 2022, 31, 94-130. A Well Balanced Finite Volume Scheme for General Relativity. SIAM Journal of Scientific Computing, 624 1.3 2021, 43, B1226-B1251. On the Active Flux Scheme for Hyperbolic PDEs with Source Terms. SIAM Journal of Scientific 625 1.3 3 Computing, 2021, 43, A4015-A4042. A robust hybrid unstaggered central and Godunov-type scheme for Saint-Venant–Exner equations with wet/dry fronts. Computers and Fluids, 2022, 235, 105284. 1.3 A posteriori Finite-Volume local subcell correction of high-order discontinuous Galerkin schemes 627 1.9 3 for the nonlinear shallow-water equations. Journal of Computational Physics, 2022, 452, 110902. Well-balanced numerical resolution of the two-layer shallow water equations under rigid-lid with wetâ \in dry fronts. Computers and Fluids, 2022, 235, 105277. 1.3 Exploring different possibilities for secondâ€order wellâ€balanced Lagrangeâ€projection numerical schemes applied to shallow water Exner equations. International Journal for Numerical Methods in Fluids, 2022, 94, 505-535. 629 0.9 3 Hyperbolic Discretization of simplified Euler EquationÂvia Riemann Invariants. Applied Mathematical Modelling, 2022, , . An adaptive centralâ€upwind scheme on quadtree grids for variable density shallow water equations. 631 0.9 0 International Journal for Numerical Methods in Fluids, 0, , . A structure-preserving algorithm for surface water flows with transport processes. Advances in 0.8 Computational Mathematics, 2022, 48, 1. A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations 633 1.2 14 at all Froude numbers. Applied Numerical Mathematics, 2022, 175, 108-132. An Idealized $1 \hat{A}^{1\!/}_2$ -Layer Isentropic Model with Convection and Precipitation for Satellite Data 634 0.6 Assimilation Research. Part I: Model Dynamics. Journals of the Atmospheric Sciences, 2022, 79, 859-873. A GPU-Accelerated and LTS-Based Finite Volume Shallow Water Model. Water (Switzerland), 2022, 14, 635 1.2 2 922. Novel variable reconstruction and friction term discretisation schemes for hydrodynamic modelling 1.7 of overland flow and surface water flooding. Advances in Water Resources, 2022, 163, 104187. An Arbitrary High Order Well-Balanced ADER-DG Numerical Scheme for the Multilayer Shallow-Water 637 1.1 4 Model with Variable Density. Journal of Scientific Computing, 2022, 90, 1. Well-Balanced High-Order Discontinuous Galerkin Methods for Systems of Balance Laws. 1.1 Mathematics, 2022, 10, 15. Parallel Algorithms of Well-Balanced and Weighted Average Flux for Shallow Water Model Using 639 0.4 1 CUDA. Modelling and Simulation in Engineering, 2021, 2021, 1-18. On the Efficiency of Staggered C-Grid Discretization for the Inviscid Shallow Water Equations from 640 1.1 the Perspective of Nonstandard Calculus. Mathematics, 2022, 10, 1387.

#	Article	IF	CITATIONS
641	A Simple Deposition Model for Debris Flow Simulation Considering the Erosion–Entrainment–Deposition Process. Remote Sensing, 2022, 14, 1904.	1.8	6
642	Steady states and well-balanced schemes for shallow water moment equations with topography. Applied Mathematics and Computation, 2022, 427, 127166.	1.4	0
643	Energy conserving and well-balanced discontinuous Galerkin methods for the Euler–Poisson equationsÂin spherical symmetry. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
644	Positivity-preserving well-balanced central discontinuous Galerkin schemes for the Euler equations under gravitational fields. Journal of Computational Physics, 2022, 463, 111297.	1.9	2
645	High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers. Journal of Computational Physics, 2022, 463, 111255.	1.9	11
646	Adaptive total variation stable local timestepping for conservation laws. Journal of Computational Physics, 2022, 463, 111176.	1.9	1
647	High order well-balanced conservative finite difference AWENO scheme with hydrostatic reconstruction for the Euler equations under gravitational fields. Applied Numerical Mathematics, 2022, 180, 1-15.	1.2	2
649	Evaluation of different erosion–entrainment models in debris-flow simulation. Landslides, 2022, 19, 2075-2090.	2.7	8
650	Finite Volume Models andÂEfficient Simulation Tools (EST) forÂShallow Flows. Forum for Interdisciplinary Mathematics, 2022, , 67-137.	0.8	3
651	A Well-Balanced Moving Mesh Discontinuous Galerkin Method for the Ripa Model on Triangular Meshes. SSRN Electronic Journal, 0, , .	0.4	0
652	Efficient GPU Implementation of Multidimensional Incomplete Riemann Solvers for Hyperbolic Nonconservative Systems: Applications to Shallow Water Systems with Topography and Dry Areas. Journal of Scientific Computing, 2022, 92, .	1.1	3
653	A well-balanced Runge-Kutta discontinuous Galerkin method for the Euler equations in isothermal hydrostatic state under gravitational field. Computers and Mathematics With Applications, 2022, 119, 340-350.	1.4	1
654	A new two-phase shallow water hydro-sediment-morphodynamic model based on the HLLC solver and the hybrid LTS/GMaTS approach. Advances in Water Resources, 2022, 166, 104254.	1.7	3
655	High-Order Fully Well-Balanced Numerical Methods for One-Dimensional Blood Flow with Discontinuous Properties. SSRN Electronic Journal, 0, , .	0.4	0
656	Well-Balanced Second-Order Convex Limiting Technique for Solving the Serre–Green–Naghdi Equations. Water Waves, 0, , .	0.3	1
657	A unified surface-gradient and hydrostatic reconstruction scheme for the shallow water equations. Journal of Computational Physics, 2022, 467, 111463.	1.9	5
658	High-order well-balanced and positivity-preserving finite-difference AWENO scheme with hydrostatic reconstruction for shallow water equations. Applied Numerical Mathematics, 2022, 181, 483-502.	1.2	3
659	A High-Order Velocity-Based Discontinuous Galerkin Scheme for the Shallow Water Equations: Local Conservation, Entropy Stability, Well-Balanced Property, and Positivity Preservation. Journal of Scientific Computing, 2022, 92, .	1.1	2

#	Article	IF	CITATIONS
660	Mathematical Analysis and Numerical Simulation of Hyperbolic Sediment Transport Models (Hstm). SSRN Electronic Journal, 0, , .	0.4	0
661	A new well-balanced spectral volume method for solving shallow water equations over variable bed topography with wetting and drying. Engineering With Computers, 0, , .	3.5	0
662	Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains. Geoscientific Model Development, 2022, 15, 6085-6113.	1.3	4
663	Positivity-Preserving and Well-Balanced Adaptive Surface Reconstruction Schemes for Shallow Water Equations with Wet-Dry Fronts. Journal of Scientific Computing, 2022, 92, .	1.1	0
664	A Very Easy High-Order Well-Balanced Reconstruction for Hyperbolic Systems with Source Terms. SIAM Journal of Scientific Computing, 2022, 44, A2506-A2535.	1.3	3
665	An Oscillation-free Discontinuous Galerkin Method for Shallow Water Equations. Journal of Scientific Computing, 2022, 92, .	1.1	3
666	An integrated GPU-accelerated modeling framework for high-resolution simulations of rural and urban flash floods. Environmental Modelling and Software, 2022, 156, 105480.	1.9	31
667	A general vertical decomposition of Euler equations: Multilayer-moment models. Applied Numerical Mathematics, 2023, 183, 236-262.	1.2	3
668	Simulation of the Alex Storm Flash-Flood in the Vésubie Catchment (South Eastern France) Using Telemac-2D Hydraulic Code. Springer Water, 2022, , 847-863.	0.2	0
669	Modelling Culverts in Basilisk. Springer Water, 2022, , 121-137.	0.2	0
670	Well-Balanced Fifth-Order Finite Difference Hermite Weno Scheme for the Shallow Water Equations. SSRN Electronic Journal, 0, , .	0.4	0
671	Performance Analysis of Speculative Parallel Adaptive Local Timestepping for Conservation Laws. ACM Transactions on Modeling and Computer Simulation, 2022, 32, 1-30.	0.6	0
672	Well-Balanced and Positivity-Preserving Surface Reconstruction Schemes Solving Ripa Systems With Nonflat Bottom Topography. SIAM Journal of Scientific Computing, 2022, 44, A3098-A3129.	1.3	0
673	A Class of Boundary Conditions for Time-Discrete GreenNaghdi Equations with Bathymetry. SIAM Journal on Numerical Analysis, 2022, 60, 2681-2712.	1.1	2
674	Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws. Applied Numerical Mathematics, 2023, 184, 18-48.	1.2	4
675	A fully well-balanced scheme for shallow water equations with Coriolis force. Communications in Mathematical Sciences, 2022, 20, 1875-1900.	0.5	5
676	Surface reconstruction schemes for shallow water equations with a nonconservative product source term. Journal of Computational Physics, 2023, 473, 111738.	1.9	1
677	Well-balanced methods for computational astrophysics. Living Reviews in Solar Physics, 2022, 8, .	5.0	1

#	Article	IF	CITATIONS
678	Well balanced finite volume schemes for shallow water equationsÂon manifolds. Applied Mathematics and Computation, 2023, 441, 127676.	1.4	2
679	Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equations. Journal of Computational Physics, 2023, 473, 111758.	1.9	1
680	Efficient Numerical Computations of Long-Wave Run-Up and Their Sensitivity to Grid Nesting. Water Waves, 0, , .	0.3	0
681	Wetting andÂDryingÂProcedures forÂShallow Water Simulations. Mathematics of Planet Earth, 2022, , 287-314.	0.1	0
682	On well-balanced implicit-explicit Lagrange-projection schemes for two-layer shallow water equations. Applied Mathematics and Computation, 2023, 442, 127702.	1.4	2
683	A mass conservative, well balanced and positivity-preserving central scheme for shallow water equations. Applied Mathematics and Computation, 2023, 443, 127778.	1.4	1
684	Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system. Applied Mathematics and Computation, 2023, 443, 127784.	1.4	2
685	Variational Water-Wave Modeling: From Deep Water toÂBeaches. Mathematics of Planet Earth, 2022, , 103-134.	0.1	1
686	Investigation of the Ripa Model via NHRS Scheme with Its Wide-Ranging Applications. Fractal and Fractional, 2022, 6, 745.	1.6	5
687	Well-balanced unstaggered central schemes based on the continuous approximation of the bottom topography. International Journal of Computational Methods, 0, , .	0.8	0
688	High-order fully well-balanced numerical methods for one-dimensional blood flow with discontinuous properties. Journal of Computational Physics, 2023, 475, 111869.	1.9	3
689	Well-balanced fifth-order finite difference Hermite WENO scheme for the shallow water equations. Journal of Computational Physics, 2023, 475, 111860.	1.9	2
690	Fifth-order well-balanced positivity-preserving finite difference AWENO scheme with hydrostatic reconstruction for hyperbolic chemotaxis models. Applied Numerical Mathematics, 2023, 186, 41-56.	1.2	0
692	A flux globalization based well-balanced path-conservativeÂcentral-upwind scheme for the shallow water flows in channels. , 0, , .		0
693	A new riemann solver for modelling bridges in flood flows - Development and experimental validation. Applied Mathematics and Computation, 2023, 447, 127870.	1.4	3
694	Droplet solidification: Physics and modelling. Applied Thermal Engineering, 2023, 228, 120515.	3.0	6
695	A staggered projection scheme for viscoelastic flows. , 2023, 57, 1747-1793.		1
696	An efficient semi-implicit friction source term treatment for modeling overland flow. Advances in Water Resources, 2023, 173, 104391.	1.7	2

#	Article	IF	CITATIONS
697	Fast Modeling of Vegetated Flow and Sediment Transport Over Mobile Beds Using Shallow Water Equations With Anisotropic Porosity. Water Resources Research, 2023, 59, .	1.7	0
698	Adaptive central-upwind scheme on triangular grids for the Saint–Venant system. Communications in Mathematical Sciences, 2023, 21, 671-708.	0.5	0
699	Moving Water Equilibria Preserving Discontinuous Galerkin Method for the Shallow Water Equations. Journal of Scientific Computing, 2023, 95, .	1.1	0
700	A GPU-Accelerated Two-Dimensional Hydrodynamic Model for Unstructured Grids. Water (Switzerland), 2023, 15, 1300.	1.2	0
701	A Well-Balanced Active Flux Method for the Shallow Water Equations with Wetting and Drying. Communications on Applied Mathematics and Computation, 0, , .	0.7	0
702	Cartesianâ€MUSCLâ€like faceâ€value reconstruction algorithm for solving the depthâ€averaged 2D shallowâ€water equations. International Journal for Numerical Methods in Fluids, 0, , .	0.9	0