Cardiac Preconditioning by Volatile Anesthetic Agents: Mitochondrial Bioenergetics

Antioxidants and Redox Signaling 6, 439-448 DOI: 10.1089/152308604322899512

Citation Report

#	Article	IF	CITATIONS
1	Redox Control of Cardiac Preconditioning. Antioxidants and Redox Signaling, 2004, 6, 321-323.	5.4	3
2	ATP-dependent potassium channels as a key target for the treatment of myocardial and vascular dysfunction. Current Opinion in Critical Care, 2004, 10, 436-441.	3.2	53
3	Ischemic Preconditioning Improves Energy State and Transplantation Survival in Obese Zucker Rat Livers. Anesthesia and Analgesia, 2005, 101, 1577-1583.	2.2	28
4	The Influence of Mitochondrial KATP-Channels in the Cardioprotection of Preconditioning and Postconditioning by Sevoflurane in the Rat In Vivo. Anesthesia and Analgesia, 2005, 101, 1252-1260.	2.2	152
5	Increasing Heart Size and Age Attenuate Anesthetic Preconditioning in Guinea Pig Isolated Hearts. Anesthesia and Analgesia, 2005, 101, 1572-1576.	2.2	31
6	Cardioprotection by volatile anesthetics. Vascular Pharmacology, 2005, 42, 243-252.	2.1	56
7	Treatment of Mitochondrial-Based Cardiac Diseases. Targeting the Organelle. , 2005, , 323-350.		0
8	Integrated pharmacological preconditioning and memory of cardioprotection: role of protein kinase C and phosphatidylinositol 3-kinase. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H761-H767.	3.2	8
9	Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1564-R1572.	1.8	116
10	Cardioprotective anesthesia in patients undergoing coronary surgery: fact or fiction?. Future Cardiology, 2005, 1, 161-165.	1.2	0
11	Ageâ€associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB Journal, 2005, 19, 1-21.	0.5	277
12	Cardioprotection with Volatile Anesthetics: Mechanisms and Clinical Implications. Anesthesia and Analgesia, 2005, 100, 1584-1593.	2.2	195
13	Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice. Anesthesia and Analgesia, 2005, 101, 1275-1287.	2.2	170
14	K channels and preconditioning: A re-examination of the role of mitochondrial K channels and an overview of alternative mechanisms. Journal of Molecular and Cellular Cardiology, 2005, 39, 17-50.	1.9	194
15	Anesthetic Preconditioning: The Role of Free Radicals in Sevoflurane-Induced Attenuation of Mitochondrial Electron Transport in Guinea Pig Isolated Hearts. Anesthesia and Analgesia, 2005, 100, 46-53.	2.2	67
16	Clinical Implications of Mitochondrial Dysfunction. Anesthesiology, 2006, 105, 819-837.	2.5	98
17	Myocardial preconditioning and cardioprotection by volatile anaesthetics. Journal of Cardiovascular Medicine, 2006, 7, 86-95.	1.5	12
18	Preterminal Gasping During Hypoxic Cardiac Arrest Increases Cardiac Function in Immature Rats. Pediatric Research, 2006, 60, 174-179.	2.3	22

TION RED

#	Article	IF	CITATIONS
19	Relationship between oxidative stress, lipid peroxidation, and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion. Cardiovascular Research, 2007, 73, 710-719.	3.8	64
20	Effect of Propofol, Sevoflurane and Desflurane on Systemic Redox Balance. International Journal of Immunopathology and Pharmacology, 2007, 20, 585-593.	2.1	19
21	Cellular Pathways and Molecular Events in Cardioprotection. , 2007, , 281-315.		0
22	Isoflurane Activates Human Cardiac Mitochondrial Adenosine Triphosphate-Sensitive K+ Channels Reconstituted in Lipid Bilayers. Anesthesia and Analgesia, 2007, 105, 926-932.	2.2	29
23	Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. Neuroscience, 2007, 145, 1097-1107.	2.3	47
24	Volatile anesthetic-induced cardiac preconditioning. Journal of Anesthesia, 2007, 21, 212-219.	1.7	55
25	Mitochondrial iron accumulation with age and functional consequences. Aging Cell, 2008, 7, 706-716.	6.7	99
26	Neuroprotective antioxidant STAZN protects against myocardial ischemia/reperfusion injury. Biochemical Pharmacology, 2008, 75, 448-456.	4.4	10
27	Differential Increase of Mitochondrial Matrix Volume by Sevoflurane in Isolated Cardiac Mitochondria. Anesthesia and Analgesia, 2008, 106, 1049-1055.	2.2	15
28	Ischemic Preconditioning: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants and Redox Signaling, 2008, 10, 207-248.	5.4	85
29	Anaesthesia and myocardial ischaemia/reperfusion injury. British Journal of Anaesthesia, 2009, 103, 89-98.	3.4	94
30	Effects of desflurane and propofol on electrophysiological parameters during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience, 2009, 160, 140-148.	2.3	14
31	In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. Journal of Molecular and Cellular Cardiology, 2009, 46, 960-968.	1.9	69
32	Levosimendan Facilitates Weaning From Cardiopulmonary Bypass in Patients Undergoing Coronary Artery Bypass Grafting With Impaired Left Ventricular Function. Annals of Thoracic Surgery, 2009, 87, 448-454.	1.3	115
33	Sevoflurane Versus Propofol for Myocardial Protection in Patients Undergoing Coronary Artery Bypass Grafting Surgery: a Meta-analysis of Randomized Controlled Trials. Chinese Medical Sciences Journal, 2009, 24, 133-141.	0.4	42
34	Sevoflurane preconditioning reverses impairment of hippocampal long-term potentiation induced by myocardial ischaemia–reperfusion injury. European Journal of Anaesthesiology, 2009, 26, 961-968.	1.7	20
36	Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury: the role of radical oxygen species, extracellular signal-related kinases 1/2 and mitochondrial permeability transition pore. Molecular Biology Reports, 2010, 37, 2439-2446.	2.3	44
37	Low Concentrations of Methamphetamine Can Protect Dopaminergic Cells against a Larger Oxidative Stress Injury: Mechanistic Study. PLoS ONE, 2011, 6, e24722.	2.5	32

CITATION REPORT

	C	CITATION REPORT	
# 38	ARTICLE Clinical pharmacology of inhaled anesthetics. , 0, , 397-419.	IF	Citations 2
39	The Comparative Myocardial Protection by Propofol and Isoflurane in an In Vivo Model of Ischemia Reperfusion. Seminars in Cardiothoracic and Vascular Anesthesia, 2011, 15, 56-65.	1.0	7
40	Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. Journal of Experimental Medicine, 2012, 209, 855-869.	8.5	177
41	Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane mitochondria. European Journal of Pharmacology, 2012, 690, 149-157.	in 3.5	27
42	Anesthesia in Minimally Invasive Cardiac Surgery. , 2012, , 383-400.		0
43	Metabotropic actions of the volatile anaesthetic sevoflurane increase protein kinase Mζ synthesis an induce immediate preconditioning protection of rat hippocampal slices. Journal of Physiology, 2012, 590, 4093-4107.	d 2.9	16
44	Effects of sevoflurane postconditioning on cell death, inflammation and TLR expression in human endothelial cells exposed to LPS. Journal of Translational Medicine, 2013, 11, 87.	4.4	36
45	Targeting the Mitochondria in Cardiovascular Diseases. , 2013, , 431-452.		О
46	Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Frontiers in Physiology, 2014, 5, 341.	2.8	28
47	Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 354-365.	1.0	30
48	Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion. Cardiovascular Research, 2014, 101, 57-68.	3.8	80
49	Neuroprotective gases – Fantasy or reality for clinical use?. Progress in Neurobiology, 2014, 115, 210-245.	5.7	104
50	Mortality associated with using medetomidine and ketamine for general anesthesia in pregnant and nonpregnant Wistar rats. Lab Animal, 2014, 43, 208-214.	0.4	9
51	Sevoflurane. F1000Research, 2015, 4, 626.	1.6	69
52	Nitrite Confers Preconditioning and Cytoprotection After Ischemia/Reperfusion Injury Through the Modulation of Mitochondrial Function. Antioxidants and Redox Signaling, 2015, 23, 307-327.	5.4	20
53	Controlled Reperfusion Strategies Improve Cardiac Hemodynamic Recovery after Warm Global Ischemia in an Isolated, Working Rat Heart Model of Donation after Circulatory Death (DCD). Frontiers in Physiology, 2016, 7, 543.	2.8	14
54	Hyperbaric oxygen preconditioning ameliorates hypoxia–ischemia brain damage by activating Nrf2 expression <i>in vivo</i> and <i>in vitro</i> . Free Radical Research, 2016, 50, 454-466.	3.3	18
55	The Mitochondrion: A Physiological Target of Nitrite. , 2017, , 53-68.		1

CITATION REPORT

#	Article	IF	CITATIONS
56	Neuroprotective effects of 2,4-dinitrophenol in an acute model of Parkinson's disease. Brain Research, 2017, 1663, 184-193.	2.2	23
57	Short-term consumption of Ilex paraguariensis extracts protects isolated hearts from ischemia/reperfusion injury and contradicts exercise-mediated cardioprotection. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1149-1157.	1.9	7
58	Isoflurane Impairs Motor Function Recovery by Increasing Neuroapoptosis and Degeneration During Spinal Ischemia–Reperfusion Injury in Rats. Anesthesia and Analgesia, 2017, 124, 254-261.	2.2	5
59	Acute exhaustive aerobic exercise training impair cardiomyocyte function and calcium handling in Sprague-Dawley rats. PLoS ONE, 2017, 12, e0173449.	2.5	19
60	Argon preconditioning enhances postischaemic cardiac functional recovery following cardioplegic arrest and global cold ischaemiaâ€. European Journal of Cardio-thoracic Surgery, 2018, 54, 539-546.	1.4	8
61	Strategies for Blood Product Management, Reducing Transfusions, and Massive Blood Transfusion. , 2019, , 257-280.e13.		5
62	Inhalation vs Total Intravenous Anesthesia in Cancer Surgery: Where is the «Pendulum» Now? (Meta-Analysis and Review). Obshchaya Reanimatologiya, 2021, 16, 91-104.	1.0	9
63	Neuromuscular Disorders and Malignant Hyperthermia. , 2010, , 1171-1195.		17
64	Strategies for Blood Product Management and Reducing Transfusions. , 2009, , 195-219.		3
65	Mitochondrial oxidative and structural damage in ischemia-reperfusion in human myocardium. Current knowledge and future directions. Frontiers in Bioscience - Landmark, 2007, 12, 1124.	3.0	7
66	Conditioning Strategies Limit Cellular Injury?. World Journal of Cardiovascular Diseases, 2014, 04, 539-547.	0.2	7
67	The Effect of Sevoflurane on Myocardial Function and Coronary Flow in an Isolated-Heart Rat Model. Daehan Macwi'gwa Haghoeji, 2005, 48, 642.	0.2	1
68	Anesthetics and cardioprotection. Signa Vitae, 2007, 2, 6.	0.3	0
69	Miokardo pažeidimas kardiochirurginių operacijų metu ir galimi apsaugos būdai. Health Sciences, 2015, 25, 119-123.	0.0	Ο
70	Targeting Mitochondria for Therapy of Cardiovascular Disease. , 2019, , 671-686.		0
71	Ischemic preconditioning and diazoxide limit mitochondrial Ca overload during ischemia/reperfusion: Role of reactive oxygen species. Experimental and Clinical Cardiology, 2005, 10, 96-103.	1.3	5
72	Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomedicine and Pharmacotherapy, 2022, 155, 113751.	5.6	10
73	Effects of sevoflurane on left ventricular function by speckle-tracking echocardiography in coronary bypass patients: A randomized trial. Journal of Biomedical Research, 2023, 37, 1.	1.6	0