Enamine-Based Organocatalysis with Proline and Diam Catalytic Asymmetric Aldol, Mannich, Michael, and Diel

Accounts of Chemical Research 37, 580-591

DOI: 10.1021/ar0300468

Citation Report

#	Article	IF	CITATIONS
1	In the Golden Age of Organocatalysis. Angewandte Chemie - International Edition, 2004, 43, 5138-5175.	7.2	2,460
2	The Scope of the Direct Proline-Catalyzed Asymmetric Addition of Ketones to Imines. Advanced Synthesis and Catalysis, 2004, 346, 1131-1140.	2.1	123
4	Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Dielsâ€"Alder Reactions. ChemInform, 2004, 35, no.	0.1	1
5	Towards Organo-Click Chemistry: Development of Organocatalytic Multicomponent Reactions Through Combinations of Aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen Cycloaddition Reactions. Chemistry - A European Journal, 2004, 10, 5323-5331.	1.7	267
6	Proline-catalyzed asymmetric aldol reactions of tetrahydro-4H-thiopyran-4-one with aldehydes. Tetrahedron Letters, 2004, 45, 8347-8350.	0.7	89
7	Asymmetric Michael addition promoted by (R,R)-trans-1,2-diaminocyclohexane in ionic liquids. Journal of Organometallic Chemistry, 2005, 690, 3535-3539.	0.8	21
8	Heterogeneous catalysis of the asymmetric aldol reaction by solid-supported proline-terminated peptides. Tetrahedron: Asymmetry, 2005, 16, 2487-2492.	1.8	86
9	Direct, pyrrolidine sulfonamide promoted enantioselective aldol reactions of $\hat{l}\pm,\hat{l}\pm$ -dialkyl aldehydes: synthesis of quaternary carbon-containing \hat{l}^2 -hydroxy carbonyl compounds. Tetrahedron Letters, 2005, 46, 5077-5079.	0.7	78
10	Chiral bis-trifluoromethanesulfonylamide as a chiral BrÃ,nsted acid catalyst for the asymmetric hetero Diels–Alder reaction with Danishefsky's diene. Tetrahedron Letters, 2005, 46, 6355-6358.	0.7	58
11	Direct asymmetric aldol reaction in aqueous media using polymer-supported peptide. Tetrahedron Letters, 2005, 46, 8185-8187.	0.7	127
12	Direct aldol and tandem Mannich reactions in room temperature ammonia solutions. Tetrahedron Letters, 2005, 46, 8685-8689.	0.7	9
13	An unexpected inversion of enantioselectivity in the proline catalyzed intramolecular Baylis–Hillman reaction. Tetrahedron Letters, 2005, 46, 8899-8903.	0.7	126
14	The stereoselective synthesis of \hat{l} ±-substituted \hat{l}^2 -amino secondary alcohols based on the proline-mediated, asymmetric, three-component Mannich reaction and its application to the formal total synthesis of nikkomycins B and Bx. Tetrahedron, 2005, 61, 11393-11404.	1.0	44
16	Practical and Highly Enantioselective Synthesis of \hat{I}^2 -Alkynyl- \hat{I}^2 -amino Esters through Ag-Catalyzed Asymmetric Mannich Reactions of Silylketene Acetals and Alkynyl Imines. Organic Letters, 2005, 7, 2711-2713.	2.4	89
17	Asymmetry on large scale: the roadmap to stereoselective processes. Nature Reviews Drug Discovery, 2005, 4, 685-697.	21.5	85
18	5-(Pyrrolidine-2-yl)tetrazole: Rationale for the Increased Reactivity of the Tetrazole Analogue of Proline in Organocatalyzed Aldol Reactions. European Journal of Organic Chemistry, 2005, 2005, 4287-4295.	1.2	91
19	â€~Five at One Stroke': Proline and Small Peptides in the Stereoselectivede novo Synthesis and Enantiotopic Functionalization of Carbohydrates. Chemistry and Biodiversity, 2005, 2, 825-836.	1.0	33
20	Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie - International Edition, 2005, 44, 1369-1371.	7.2	341

#	Article	IF	Citations
21	Enantioselective Organocatalyzed \hat{l}_{\pm} Sulfenylation of Aldehydes. Angewandte Chemie - International Edition, 2005, 44, 794-797.	7.2	893
22	Design of an Axially Chiral Amino Acid with a Binaphthyl Backbone as an Organocatalyst for a Direct Asymmetric Aldol Reaction. Angewandte Chemie - International Edition, 2005, 44, 3055-3057.	7.2	155
23	Direct Asymmetric \hat{l}_{\pm} -Fluorination of Aldehydes. Angewandte Chemie - International Edition, 2005, 44, 3706-3710.	7.2	315
24	Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie - International Edition, 2005, 44, 4212-4215.	7.2	1,177
25	Catalytic Enantioselective 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides and Alkenes: The Direct Strategy To Prepare Enantioenriched Highly Substituted Proline Derivatives. Angewandte Chemie - International Edition, 2005, 44, 6272-6276.	7.2	285
26	Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance Angewandte Chemie - International Edition. 2005. 44. 6367-6370.	7.2	631
28	Enantioselective Organocatalyzed α Sulfenylation of Aldehydes. Angewandte Chemie, 2005, 117, 804-807.	1.6	367
33	The Direct, Enantioselective, One-Pot, Three-Component, Cross-Mannich Reaction of Aldehydes: The Reason for the Higher Reactivity of Aldimineversus Aldehyde in Proline-Mediated Mannich and Aldol Reactions. Advanced Synthesis and Catalysis, 2005, 347, 1595-1604.	2.1	44
34	L-Prolinethioamides - Efficient Organocatalysts for the Direct Asymmetric Aldol Reaction. Advanced Synthesis and Catalysis, 2005, 347, 1948-1952.	2.1	88
35	Probing the "additive effectâ€in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones. Chirality, 2005, 17, 540-543.	1.3	31
36	Dynamic Structural Change of the Self-Assembled Lanthanum Complex Induced by Lithium Triflate for Direct Catalytic Asymmetric Aldol-Tishchenko Reaction. Chemistry - A European Journal, 2005, 11, 5195-5204.	1.7	57
37	Direct Organocatalytic Asymmetric $\hat{l}\pm$ -Sulfenylation of Activated CH Bonds in Lactones, Lactams, and \hat{l}^2 -Dicarbonyl Compounds. Chemistry - A European Journal, 2005, 11 , 5689-5694.	1.7	91
38	A study on the intramolecular catalytic aldol cyclodehydration of 3,4-disubstituted 1,6-dialdehydes. Journal of Molecular Catalysis A, 2005, 234, 159-167.	4.8	6
39	(1R,2R,2′S)-2-(4-Methylphenylsulfonamido)-1-(pyrrolidine-2′-carboxamido)cyclohexane. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2730-o2732.	0.2	0
40	Enamine-based Reactions Using Organocatalysts: from Aldolase Antibodies to Small Amino Acid and Amine Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2005, 63, 709-721.	0.0	5
41	Recent Advances in Catalytic Asymmetric Addition to Imines and Related C=N Systems. Current Organic Chemistry, 2005, 9, 1315-1392.	0.9	146
42	Transition State Modeling and Catalyst Design for Hydrogen Bond-Stabilized Enolate Formation. Journal of Organic Chemistry, 2005, 70, 7755-7760.	1.7	18
43	Readily Tunable and Bifunctionall-Prolinamide Derivatives:  Design and Application in the Direct Enantioselective Aldol Reactions. Organic Letters, 2005, 7, 4543-4545.	2.4	185

#	ARTICLE	IF	CITATIONS
44	Organocatalysis with proline derivatives: improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Organic and Biomolecular Chemistry, 2005, 3, 84.	1.5	480
45	Asymmetric Aza-Mannich Reactions of Sulfinimines:  Scope and Application to the Total Synthesis of a Bromopyrrole Alkaloid. Organic Letters, 2005, 7, 5905-5907.	2.4	54
46	A Convenient Procedure for the Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes. Organic Letters, 2005, 7, 4569-4572.	2.4	109
47	Nanocrystalline MgO for Asymmetric Henry and Michael Reactions. Journal of the American Chemical Society, 2005, 127, 13167-13171.	6.6	242
48	A General Organocatalyst for Direct α-Functionalization of Aldehydes:  Stereoselective Câ^'C, Câ^'N, Câ^'F, Câ^'Br, and Câ^'S Bond-Forming Reactions. Scope and Mechanistic Insights. Journal of the American Chemical Society, 2005, 127, 18296-18304.	6.6	618
49	Organocatalytic Enantioselective Synthesis of Metabotropic Glutamate Receptor Ligands. Organic Letters, 2005, 7, 3885-3888.	2.4	104
50	Aqueous Enantioselective Organocatalytic Dielsâ^'Alder Reactions Employing Hydrazide Catalysts. A New Scaffold for Organic Acceleration. Organic Letters, 2005, 7, 4141-4144.	2.4	125
51	Highly enantioselective organocatalysis of the Hajos–Parrish–Eder–Sauer–Wiechert reaction by the β-amino acid cispentacin. Chemical Communications, 2005, , 3802.	2.2	95
52	Lewis Base Catalyzed Enantioselective Aldol Addition of Acetaldehyde-Derived Silyl Enol Ether to Aldehydes. Journal of Organic Chemistry, 2005, 70, 10190-10193.	1.7	77
53	Asymmetric direct aldol reaction catalyzed by an l-prolinamide derivative: considerable improvement of the catalytic efficiency in the ionic liquid. Chemical Communications, 2005, , 1450.	2.2	103
54	A Practical Synthesis of (S)-2-Cyclohexyl-2-phenylglycolic Acid via Organocatalytic Asymmetric Construction of a Tetrasubstituted Carbon Center. Organic Letters, 2005, 7, 5103-5105.	2.4	109
55	Organocatalytic Highly Enantioselective Synthesis of Secondary α-Hydroxyphosphonatesâ€. Organic Letters, 2006, 8, 4911-4914.	2.4	65
56	Mannich reaction., 2006,, 361-362.		1
58	Bifunctional transition metal-based molecular catalysts for asymmetric syntheses. Organic and Biomolecular Chemistry, 2006, 4, 393-406.	1.5	626
59	A new asymmetric organocatalytic nitrocyclopropanation reaction. Chemical Communications, 2006, , 4838.	2.2	81
60	Electrostatic repulsion as an additional selectivity factor in asymmetric proline catalysis. Organic and Biomolecular Chemistry, 2006, 4, 2685.	1.5	23
61	The Literature of Heterocyclic Chemistry, Part IX, 2002–2004. Advances in Heterocyclic Chemistry, 2006, , 145-258.	0.9	15
62	Development of drug intermediates by using direct organocatalytic multi-component reactions. Organic and Biomolecular Chemistry, 2006, 4, 1641.	1.5	7 5

#	ARTICLE	IF	CITATIONS
63	Study on guanidine-based task-specific ionic liquids as catalysts for direct aldol reactions without solvent. New Journal of Chemistry, 2006, 30, 736.	1.4	55
64	Scandium triflate catalyzed cycloaddition of imines with 1,1-cyclopropanediesters: efficient and diastereoselective synthesis of multisubstituted pyrrolidines. Organic and Biomolecular Chemistry, 2006, 4, 299-301.	1.5	109
65	The Mannich Reaction of Malonates with Simple Imines Catalyzed by Bifunctional Cinchona Alkaloids: Â Enantioselective Synthesis of \hat{l}^2 -Amino Acids. Journal of the American Chemical Society, 2006, 128, 6048-6049.	6.6	320
66	Pipecolic Acid-Catalyzed Direct Asymmetric Mannich Reactions. Organic Letters, 2006, 8, 811-814.	2.4	92
67	Catalytic asymmetric fluorinations. Organic and Biomolecular Chemistry, 2006, 4, 2065.	1.5	156
68	Asymmetric aldol reactions catalyzed by tryptophan in water. Chemical Communications, 2006, , 2801.	2.2	186
69	Enantioselective Organocatalytic Aminomethylation of Aldehydes: $\hat{a} \in \infty$ A Role for Ionic Interactions and Efficient Access to \hat{l}^2 2-Amino Acids. Journal of the American Chemical Society, 2006, 128, 6804-6805.	6.6	167
70	Double-Mannich Annulation of Cyclic Ketones UsingN,N-Bis(ethoxymethyl)alkylamine Reagents. Organic Letters, 2006, 8, 3399-3401.	2.4	28
71	Divergent Chemical Synthesis of Prolines Bearing Fluorinated One-Carbon Units at the 4-Position via Nucleophilic 5-Endo-TrigCyclizations. Journal of Organic Chemistry, 2006, 71, 8748-8754.	1.7	36
72	In the Arena of Enantioselective Synthesis, Titanium Complexes Wear the Laurel Wreath. Chemical Reviews, 2006, 106, 2126-2208.	23.0	254
73	Substrate-Directed Stereoselectivity in Vicinal Diamine-Catalyzed Synthesis of Warfarin. Organic Letters, 2006, 8, 5239-5242.	2.4	154
74	Organocatalytic Direct Asymmetric Aldol Reactions in Water. Journal of the American Chemical Society, 2006, 128, 734-735.	6.6	642
75	Synthesis of New Chiral Amines with a Cyclic 1,2-Diacetal Skeleton Derived from (2R, 3R)-(+)-Tartaric Acid. Molecules, 2006, 11 , $177-196$.	1.7	9
76	(S)-N-(1H-Tetrazol-5-ylmethyl)pyrrolidine-2-carboxamide dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5927-o5928.	0.2	1
77	Direct asymmetric organocatalytic de novo synthesis of carbohydrates. Tetrahedron, 2006, 62, 329-337.	1.0	100
78	l-Proline amide-catalyzed direct asymmetric aldol reaction of aldehydes with chloroacetone. Tetrahedron, 2006, 62, 346-351.	1.0	79
79	Effect of additives on the proline-catalyzed ketone–aldehyde aldol reactions. Tetrahedron, 2006, 62, 317-328.	1.0	226
80	l-Proline catalysed asymmetric aldol reactions in PEG-400 as recyclable medium and transfer aldol reactions. Tetrahedron, 2006, 62, 338-345.	1.0	117

#	ARTICLE	IF	CITATIONS
81	\hat{l}_{\pm} -Amido sulfones from natural \hat{l}_{\pm} -amino acids and their reaction with carbon nucleophiles. Tetrahedron, 2006, 62, 960-967.	1.0	11
82	Chiral spiroborate esters catalyzed highly enantioselective direct aldol reaction. Tetrahedron, 2006, 62, 5692-5696.	1.0	19
83	Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron, 2006, 62, 7213-7256.	1.0	578
84	Highly enantioselective hydrogenation of exocyclic double bond of N-tosyloxazolidinones catalyzed by a neutral rhodium complex and its synthetic applications. Tetrahedron, 2006, 62, 9237-9246.	1.0	15
85	Enantioselective synthesis of 2-substituted-1,4-diketones from (S)-mandelic acid enolate and $\hat{l}_{\pm},\hat{l}^{2}$ -enones. Tetrahedron, 2006, 62, 9174-9182.	1.0	21
86	Direct asymmetric aldol reaction catalyzed by nanocrystalline magnesium oxide. Tetrahedron, 2006, 62, 9571-9576.	1.0	46
87	BINAM-prolinamides as recoverable catalysts in the direct aldol condensation. Tetrahedron: Asymmetry, 2006, 17, 729-733.	1.8	89
88	(2S,5S)-Pyrrolidine-2,5-dicarboxylic acid, an efficient chiral organocatalyst for direct aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 1537-1540.	1.8	34
89	Synthesis and properties of novel chiral-amine-functionalized ionic liquids. Tetrahedron: Asymmetry, 2006, 17, 2028-2033.	1.8	52
90	(S,S,S)-Perhydroindolic acid: efficient catalyst for direct asymmetric aldol reaction from aromatic aldehydes. Tetrahedron: Asymmetry, 2006, 17, 2187-2190.	1.8	22
91	A novel design of roof-shaped anthracene-fused chiral prolines as organocatalysts for asymmetric Mannich reactions. Tetrahedron: Asymmetry, 2006, 17, 2963-2969.	1.8	38
92	Direct asymmetric aldol reaction catalyzed by simple prolinamide phenols. Tetrahedron: Asymmetry, 2006, 17, 3351-3357.	1.8	94
93	Reductive Mannich-type reaction using the composite reagents of phosphine and Lewis acid. Tetrahedron Letters, 2006, 47, 1973-1975.	0.7	13
94	Asymmetric direct aldol reaction of 1,2-diketones and ketones mediated by proline derivatives. Tetrahedron Letters, 2006, 47, 3383-3386.	0.7	68
95	Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions. Tetrahedron Letters, 2006, 47, 5965-5967.	0.7	67
96	Synthesis of a biphenyl-based axially chiral amino acid as a highly efficient catalyst for the direct asymmetric aldol reaction. Tetrahedron Letters, 2006, 47, 7423-7426.	0.7	68
97	New N-terminal prolyl-dipeptide derivatives as organocatalysts for direct asymmetric aldol reaction. Tetrahedron Letters, 2006, 47, 7793-7796.	0.7	29
98	Direct organocatalytic hydroalkoxylation of \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. Tetrahedron Letters, 2006, 47, 7689-7693.	0.7	42

#	Article	IF	Citations
99	The first organocatalytic addition of 2-trimethylsilyloxyfuran to carbonyl compounds: hydrogen-bond catalysis in \hat{l}^3 -butenolides synthesis. Tetrahedron Letters, 2006, 47, 8507-8510.	0.7	24
100	Design of a C2-symmetric chiral pyrrolidine-based amino sulfonamide: application to anti-selective direct asymmetric Mannich reactions. Tetrahedron Letters, 2006, 47, 8467-8469.	0.7	54
101	Mannich-type reactions in a colloidal solution formed by sodium tetrakis(3,5-trifluoromethylphenyl)borate as a catalyst in water. Tetrahedron Letters, 2006, 47, 9257-9259.	0.7	44
102	Protonated Nâ \in 2-benzyl-Nâ \in 2-prolyl proline hydrazide as highly enantioselective catalyst for direct asymmetric aldol reaction. Chemical Communications, 2006, , 215-217.	2.2	69
103	Design of a Binaphthyl-Based Axially Chiral Amino Acid as an Organocatalyst for Direct Asymmetric Aldol Reactions. Chemistry - an Asian Journal, 2006, 1, 210-215.	1.7	53
104	Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly Acids. Organic Letters, 2006, 8, 2079-2082.	2.4	225
105	Evolution of Pyrrolidine-Type Asymmetric Organocatalysts by "Click―Chemistry. Journal of Organic Chemistry, 2006, 71, 9244-9247.	1.7	114
106	Chemoenzymatic access to all four enantiopure stereoisomers of 1-ferrocenyl-1,3-butanediol. Tetrahedron: Asymmetry, 2006, 17, 778-785.	1.8	11
107	Organocatalyzed direct aldol condensation using l-proline and BINAM-prolinamides: regio-, diastereo-, and enantioselective controlled synthesis of 1,2-diols. Tetrahedron: Asymmetry, 2006, 17, 1027-1031.	1.8	63
108	(R)- or (S)-Bi-2-naphthol assisted, l-proline catalyzed direct aldol reaction. Tetrahedron: Asymmetry, 2006, 17, 1671-1677.	1.8	53
109	Effective and recyclable dendritic catalysts for the direct asymmetric Michael addition of aldehydes to nitrostyrenes. Tetrahedron: Asymmetry, 2006, 17, 2034-2039.	1.8	89
110	A multifunctional proline-based organic catalyst for enantioselective aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 2754-2760.	1.8	64
111	An effective heterogeneous l-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support. Journal of Catalysis, 2006, 241, 319-327.	3.1	107
112	Bifunctional-Thiourea-Catalyzed Diastereo- and Enantioselective Aza-Henry Reaction. Chemistry - A European Journal, 2006, 12, 466-476.	1.7	157
113	From Allylic Alcohols to Aldols through a New Nickel-Mediated Tandem Reaction: Synthetic and Mechanistic Studies. Chemistry - A European Journal, 2006, 12, 3261-3274.	1.7	56
114	Chiral Ytterbium Complex-Catalyzed Direct Asymmetric Aldol-Tishchenko Reaction: Synthesis ofanti-1,3-Diols. Chemistry - A European Journal, 2006, 12, 8158-8167.	1.7	39
115	Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angewandte Chemie - International Edition, 2006, 45, 1520-1543.	7.2	1,737
116	Organocatalytic Sigmatropic Reactions: Development of a [2,3] Wittig Rearrangement through Secondary Amine Catalysis. Angewandte Chemie - International Edition, 2006, 45, 2116-2119.	7.2	58

#	Article	IF	CITATIONS
117	Trichloromethyl Ketones as Synthetically Versatile Donors: Application in Direct Catalytic Mannich-Type Reactions and the Stereoselective Synthesis of Azetidines. Angewandte Chemie - International Edition, 2006, 45, 3146-3150.	7.2	67
118	Asymmetric Synthesis of Chiral Aldehydes by Conjugate Additions with Bifunctional Organocatalysis by Cinchona Alkaloids. Angewandte Chemie - International Edition, 2006, 45, 4301-4305.	7.2	179
119	Organocatalytic Conjugate Addition of Malonates to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes: Asymmetric Formal Synthesis of (\hat{a}^2) -Paroxetine, Chiral Lactams, and Lactones. Angewandte Chemie - International Edition, 2006, 45, 4305-4309.	7.2	312
120	Kinetic Rationalization of Nonlinear Effects in Asymmetric Catalysis Based on Phase Behavior. Angewandte Chemie - International Edition, 2006, 45, 7989-7992.	7.2	56
121	Towards an Understanding of the Polar Diels–Alder Reactions of Nitrosoalkenes with Enamines: A Theoretical Study. European Journal of Organic Chemistry, 2006, 2006, 2570-2580.	1.2	44
122	An Efficient Synthesis of Achiral and Chiral Cyclic Dehydro-α-Amino Acid Derivatives Through Nucleophilic Addition of Amines to \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l} ±-Keto Esters. European Journal of Organic Chemistry, 2006, 2006, 2843-2850.	1.2	64
123	Asymmetric Direct Aldol Reaction Catalysed by L-Prolinethioamides. European Journal of Organic Chemistry, 2006, 2006, 3864-3876.	1.2	70
124	Direct Asymmetric Aldolâ€Tishchenko Reaction. European Journal of Organic Chemistry, 2006, 2006, 4779-4786.	1.2	49
126	Direct Asymmetric α-Sulfamidation of α-Branched Aldehydes: A Novel Approach to Enamine Catalysis. European Journal of Organic Chemistry, 2006, 2006, 5315-5338.	1.2	32
133	Highly Enantioselective Organocatalytic Michael Addition Reactions of Ketones with Chalcones. Advanced Synthesis and Catalysis, 2006, 348, 425-428.	2.1	86
134	Enantioselective Cyclopropanation with TADDOL-Derived Phosphate Ligands. Advanced Synthesis and Catalysis, 2006, 348, 2363-2370.	2.1	46
135	Conceptual, Qualitative, and Quantitative Theories of 1,3-Dipolar and Diels–Alder Cycloadditions Used in Synthesis. Advanced Synthesis and Catalysis, 2006, 348, 2337-2361.	2.1	273
136	4,4′-DisubstitutedL-Prolines as Highly Enantioselective Catalysts for Direct Aldol Reactions. Advanced Synthesis and Catalysis, 2006, 348, 2223-2228.	2.1	47
137	Recent Progress in Chiral Brønsted Acid Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 999-1010.	2.1	868
138	History and Perspective of Chiral Organic Catalysts. , 0, , 313-358.		16
139	An Alternative Chiral Synthesis of Wieland-Miescher Ketone Mediated by (S)-2-(Pyrrolidinylmethyl)pyrrolidine: Remarkable Effects of BrÃ,nsted Acid. Heterocycles, 2007, 74, 637.	0.4	12
140	Chiral Ionic Liquid Containing L-Proline Unit as a Highly Efficient and Recyclable Asymmetric Organocatalyst for Aldol Reaction. Chemistry Letters, 2007, 36, 628-629.	0.7	75
141	Iron-catalyzed Direct-type Hydroxymethylation of 1,3-Dicarbonyl Compounds in Water. Chemistry Letters, 2007, 36, 56-57.	0.7	28

#	Article	IF	CITATIONS
142	Organic Reactions of Anions., 0,, 279-347.		5
143	Functionalized chiral ionic liquid as recyclable organocatalyst for asymmetric Michael addition to nitrostyrenes. Green Chemistry, 2007, 9, 737.	4.6	110
144	Amine-Catalyzed Direct Aldol Addition. Journal of the American Chemical Society, 2007, 129, 7258-7259.	6.6	90
145	A Simple Primaryâ-'Tertiary Diamineâ-'BrÃ, nsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones. Journal of the American Chemical Society, 2007, 129, 3074-3075.	6.6	268
146	Enantioselective desymmetrization of prochiral cyclohexanone derivatives via the organocatalytic direct Aldol reaction. Chemical Communications, 2007, , 736-738.	2.2	57
147	Synthesis of Chiral Benzimidazoleâ€Pyrrolidine Derivatives and their Application in Organocatalytic Aldol and Michael Addition Reactions. Synthetic Communications, 2007, 37, 4289-4299.	1.1	15
148	Organocatalysis. Annual Reports on the Progress of Chemistry Section B, 2007, 103, 90.	0.8	13
149	A highly efficient cycloaddition of vinylarenes with electron-deficient alkynes affording 1,2-disubstituted-3,4-dihydronaphthalenes catalysed by N,N-dimethylformamide dimethyl acetal. Organic and Biomolecular Chemistry, 2007, 5, 1854.	1.5	20
150	Computational approaches to asymmetric synthesis. New Journal of Chemistry, 2007, 31, 333.	1.4	108
151	Lâ€Prolineâ€Catalyzed Asymmetric Direct Aldol Reaction of Heteroaromatic Aldehydes and Acetone: Improvement of Catalytic Efficiency in Ionic Liquid bmim [BF4]. Synthetic Communications, 2007, 37, 4301-4307.	1.1	9
152	Insights on Co-Catalyst-Promoted Enamine Formation between Dimethylamine and Propanal through Ab Initio and Density Functional Theory Study. Journal of Organic Chemistry, 2007, 72, 8202-8215.	1.7	75
153	Lâ€Prolineâ€Catalyzed Michael Addition of Aldehydes and Unmodified Ketones to Nitro Olefins Accelerated by Et3N. Synthetic Communications, 2007, 37, 91-98.	1.1	24
154	Asymmetric Enamine Catalysis. Chemical Reviews, 2007, 107, 5471-5569.	23.0	2,584
155	Evaluating β-amino acids as enantioselective organocatalysts of the Hajos–Parrish–Eder–Sauer–Wiechert reaction. Organic and Biomolecular Chemistry, 2007, 5, 3190.	1.5	67
156	Enantioselective catalytic syntheses of \hat{l}_{\pm} -branched chiral amines. Chemical Communications, 2007, , 1881-1890.	2.2	37
157	Bisoxazoline-Lewis Acid-Catalyzed Direct-Electron Demandoxo-Hetero-Dielsâ^Alder Reactions of N-Oxy-pyridine Aldehyde and Ketone Derivatives. Journal of Organic Chemistry, 2007, 72, 240-245.	1.7	53
158	Asymmetric Aldol Reaction Catalyzed by a Heterogenized Proline on a Mesoporous Support. The Role of the Nature of Solvents. Journal of Organic Chemistry, 2007, 72, 9353-9356.	1.7	106
159	Asymmetric Catalysis Mediated by Synthetic Peptides. Chemical Reviews, 2007, 107, 5759-5812.	23.0	593

#	ARTICLE	IF	CITATIONS
162	Organocatalyzed Highly Enantioselective Direct Aldol Reactions of Aldehydes with Hydroxyacetone and Fluoroacetone in Aqueous Media: The Use of Water To Control Regioselectivity. Chemistry - A European Journal, 2007, 13, 689-701.	1.7	117
163	[(NHC)Aul]-Catalyzed Formation of Conjugated Enones and Enals: An Experimental and Computational Study. Chemistry - A European Journal, 2007, 13, 6437-6451.	1.7	180
164	Highly Diastereo―and Enantioselective Direct Aldol Reactions of Aldehydes and Ketones Catalyzed by Siloxyproline in the Presence of Water. Chemistry - A European Journal, 2007, 13, 10246-10256.	1.7	177
165	The Crystallization Behavior of Proline and Its Role in Asymmetric Organocatalysis. Angewandte Chemie - International Edition, 2007, 46, 494-497.	7.2	41
166	Pd-Catalyzed Cleavage of Benzylic Nitro Bonds: New Opportunities for Asymmetric Synthesis. Angewandte Chemie - International Edition, 2007, 46, 2078-2081.	7.2	34
167	Enantioselective Organocatalytic Conjugate Addition of Nâ€Heterocycles to α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 1983-1987.	7.2	180
168	1,3â€Dipolar Cycloaddition: Click Chemistry for the Synthesis of 5â€Substituted Tetrazoles from Organoaluminum Azides and Nitriles. Angewandte Chemie - International Edition, 2007, 46, 8440-8444.	7.2	163
169	Mimicking Fructose and Rhamnulose Aldolases: Organocatalyticsyn-Aldol Reactions with Unprotected Dihydroxyacetone. Angewandte Chemie - International Edition, 2007, 46, 5572-5575.	7.2	114
170	Enantioselective Radical Reactions: Stereoselective Aldol Synthesis from Cyclic Ketones. Angewandte Chemie - International Edition, 2007, 46, 9231-9234.	7.2	28
177	Design of a Conformationally Rigid Hydrazide Organic Catalyst. Advanced Synthesis and Catalysis, 2007, 349, 441-447.	2.1	65
178	Highly Efficient Threonine-Derived Organocatalysts for Direct Asymmetric Aldol Reactions in Water. Advanced Synthesis and Catalysis, 2007, 349, 812-816.	2.1	207
179	Direct Catalytic Asymmetric Aldol Reactions Assisted by Zinc Complex in the Presence of Water. Advanced Synthesis and Catalysis, 2007, 349, 1041-1046.	2.1	66
180	4,4′â€Disubstitutedâ€ <scp>L</scp> â€proline Catalyzes the Direct Asymmetric Michael Addition of Aldehydes to Nitrostyrenes. Advanced Synthesis and Catalysis, 2007, 349, 1629-1632.	2.1	53
181	Recent Advances in Aldolase-Catalyzed Asymmetric Synthesis. Advanced Synthesis and Catalysis, 2007, 349, 1308-1320.	2.1	209
182	An Improved Protocol for the Direct Asymmetric Aldol Reaction in Ionic Liquids, Catalysed by Onium Ion†agged Prolines. Advanced Synthesis and Catalysis, 2007, 349, 2061-2065.	2.1	113
183	Asymmetric Direct Aldol Reaction of αâ€Keto Esters and Acetone Catalyzed by Bifunctional Organocatalysts. Advanced Synthesis and Catalysis, 2007, 349, 2665-2668.	2.1	63
184	Highly Enantioselective Organocatalytic Conjugate Addition of Nitromethane to α,βâ€Unsaturated Aldehydes: Threeâ€Step Synthesis of Optically Active Baclofen. Advanced Synthesis and Catalysis, 2007, 349, 2660-2664.	2.1	129
185	Chiral Piperazines as Efficient Catalysts for the Asymmetric Michael Addition of Aldehydes to Nitroalkenes. European Journal of Organic Chemistry, 2007, 2007, 178-185.	1.2	69

#	Article	IF	CITATIONS
186	Organocatalytic Asymmetric Mannich Reactions: New Methodology, Catalyst Design, and Synthetic Applications. European Journal of Organic Chemistry, 2007, 2007, 5797-5815.	1.2	424
187	Hydrophobically Directed Aldol Reactions: Polystyreneâ€Supported <scp>L</scp> â€Proline as a Recyclable Catalyst for Direct Asymmetric Aldol Reactions in the Presence of Water. European Journal of Organic Chemistry, 2007, 2007, 4688-4698.	1.2	150
188	Development of new methods for asymmetric synthesis based on sulfoximines. Heteroatom Chemistry, 2007, 18, 472-481.	0.4	112
189	A new class of chiral pyrrolidine for asymmetric Michael addition reactions. New mechanism via simple 4+2 type attack of the enamine on the trans-nitrostyrene. Tetrahedron, 2007, 63, 740-747.	1.0	37
190	Synthesis of aromatic aldehydes by organocatalytic [4+2] and [3+3] cycloaddition of \hat{l}_{\pm} , \hat{l}_{-}^{2} -unsaturated aldehydes. Tetrahedron, 2007, 63, 2840-2850.	1.0	80
191	Organocatalytic direct aldol and nitroaldol reactions between azetidine-2,3-diones and ketones or nitromethane. Tetrahedron, 2007, 63, 3102-3107.	1.0	14
192	Pyrrolidine as an efficient organocatalyst for direct aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with ketones. Tetrahedron, 2007, 63, 4636-4641.	1.0	19
193	An air-stable chiral Hf-based catalyst for asymmetric Mannich-type reactions. Tetrahedron, 2007, 63, 8425-8429.	1.0	18
194	Prolinamides derived from aminophenols as organocatalysts for asymmetric direct aldol reactions. Tetrahedron, 2007, 63, 10253-10259.	1.0	53
195	Organocatalytic asymmetric aldol reaction of ketones with isatins: straightforward stereoselective synthesis of 3-alkyl-3-hydroxyindolin-2-ones. Tetrahedron, 2007, 63, 10437-10444.	1.0	133
196	Hydrazide-catalyzed 1,3-dipolar nitrone cycloadditions. Tetrahedron, 2007, 63, 11644-11655.	1.0	48
197	Highly stereoselective direct aldol reactions catalyzed by (S)-NOBIN-l-prolinamide. Tetrahedron, 2007, 63, 11886-11892.	1.0	66
198	The search for the chemistry of life's origin. Tetrahedron, 2007, 63, 12821-12844.	1.0	243
199	l-Proline amides catalyze direct asymmetric aldol reactions of aldehydes with methylthioacetone and fluoroacetone. Tetrahedron: Asymmetry, 2007, 18, 237-242.	1.8	35
200	Aqua-organocatalyzed direct asymmetric aldol reaction with acyclic amino acids and organic bases with control of diastereo- and enantioselectivity. Tetrahedron: Asymmetry, 2007, 18, 390-395.	1.8	71
201	Highly diastereo- and enantioselective direct aldol reactions of cycloketones with aldehydes catalyzed by a trans-4-tert-butyldimethylsiloxy-l-proline amide. Tetrahedron: Asymmetry, 2007, 18, 265-270.	1.8	51
202	Synthesis of proline derivatives of bile acids and their evaluation as organocatalysts in the asymmetric direct aldol reaction. Tetrahedron: Asymmetry, 2007, 18, 1364-1375.	1.8	22
203	Direct asymmetric aldol reactions catalyzed by a siloxy serine organocatalyst in water. Tetrahedron: Asymmetry, 2007, 18, 1155-1158.	1.8	54

#	Article	IF	CITATIONS
204	Highly enantioselective Michael addition of ketones to nitroolefins catalyzed by (S)-pyrrolidine arenesulfonamide. Tetrahedron: Asymmetry, 2007, 18, 1443-1447.	1.8	43
205	Enantiomerically pure phosphonate analogues of cis- and trans-4-hydroxyprolines. Tetrahedron: Asymmetry, 2007, 18, 1351-1363.	1.8	14
206	Enantioselective direct aldol reaction: the blossoming of modern organocatalysis. Tetrahedron: Asymmetry, 2007, 18, 2249-2293.	1.8	416
207	Linear polystyrene anchored l-proline, new recyclable organocatalysts for the aldol reaction in the presence of water. Tetrahedron: Asymmetry, 2007, 18, 2649-2656.	1.8	62
208	Methyl 12-[d-prolinoylamino]cholate as a versatile organocatalyst for the asymmetric aldol reaction of cyclic ketones. Tetrahedron: Asymmetry, 2007, 18, 2894-2900.	1.8	30
209	l-Proline catalyzed selective synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles. Tetrahedron Letters, 2007, 48, 69-72.	0.7	126
210	Enantioselective vinylogous aldol reaction of Chan's diene catalyzed by hydrogen-bonding. Tetrahedron Letters, 2007, 48, 891-895.	0.7	29
211	The organocatalytic direct self-trimerization of acrolein: application to the total synthesis of montiporyne F. Tetrahedron Letters, 2007, 48, 1121-1125.	0.7	18
212	Rationally designed organocatalyst for direct asymmetric aldol reaction in the presence of water. Tetrahedron Letters, 2007, 48, 4281-4285.	0.7	89
213	KF/Al2O3 mediated 1,3-dipolar cycloaddition of azomethine ylides: a novel and convenient procedure for the synthesis of highly substituted pyrrolidines. Tetrahedron Letters, 2007, 48, 4535-4537.	0.7	50
214	Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions. Tetrahedron Letters, 2007, 48, 5613-5617.	0.7	149
215	HClO4–SiO2 catalyzed stereoselective synthesis of β-amino ketones via a direct Mannich-type reaction. Tetrahedron Letters, 2007, 48, 6801-6804.	0.7	76
216	Peptidic catalysts developed by combinatorial screening methods. Current Opinion in Chemical Biology, 2007, 11, 269-278.	2.8	84
217	A new class of efficient poly(ethylene-glycol)-supported catalyst based on proline for the asymmetric Michael addition of ketones to nitrostyrenes. Journal of Molecular Catalysis A, 2007, 263, 186-194.	4.8	59
218	L-Proline-catalyzed enantioselective one-pot cross-Mannich reaction of aldehydes. Nature Protocols, 2007, 2, 113-118.	5.5	24
219	Enantioselective organocatalysis. Drug Discovery Today, 2007, 12, 8-27.	3.2	561
220	Multigram Solutionâ€Phase Synthesis of Three Diastereomeric Tripeptidic Secondâ€Generation Dendrons Based on (2 <i>S</i> ,4 <i>S</i>)â€, (2 <i>S</i> ,4 <i>R</i>)â€, and (2 <i>R</i> ,4 <i>S</i>)â€4â€Aminoprolines. Chen an Asian Journal, 2007, 2, 1540-1548.	ni str y	17
221	Bicyclic proline analogues as organocatalysts for stereoselective aldol reactions: an in silico DFT study. Organic and Biomolecular Chemistry, 2007, 5, 1287.	1.5	65

#	Article	IF	CITATIONS
222	Greener Approaches to Organic Synthesis Using Microreactor Technology. Chemical Reviews, 2007, 107, 2300-2318.	23.0	896
223	An asymmetric synthesis of esters and \hat{l}^3 -lactones with simultaneous construction of vicinal stereogenic carbons at the \hat{l}^2 -position starting from optically active 1-chlorovinyl p-tolyl sulfoxides. Tetrahedron: Asymmetry, 2008, 19, 401-406.	1.8	9
224	Preliminary investigation of the yeast-mediated reduction of \hat{l}^2 -keto amides derived from cyclic amines as potential resolution methodology. Tetrahedron: Asymmetry, 2008, 19, 672-681.	1.8	8
225	(S)-Pyrrolidine sulfonamide catalyzed asymmetric direct aldol reactions of aryl methyl ketones with aryl aldehydes. Tetrahedron Letters, 2008, 49, 2681-2684.	0.7	68
226	Synthesis of enantiomerically enriched secondary and tertiary phenylthio- and phenoxy-aldols. Tetrahedron Letters, 2008, 49, 3037-3041.	0.7	16
227	A new synthesis of pyrrolidines via imino-aldol reaction of (2-trimethylsilylmethyl)cyclopropyl ketones with imines. Tetrahedron Letters, 2008, 49, 3212-3215.	0.7	4
228	Asymmetric Aldol Reaction Catalyzed by New Recyclable Polystyrene-supported l-proline in the Presence of Water. Catalysis Letters, 2008, 120, 281-287.	1.4	43
229	Highly Diastereo- and Enantioselective Direct Aldol Reaction Catalyzed by Simple Amphiphilic Proline Derivatives. Catalysis Letters, 2008, 124, 397-404.	1.4	41
230	Novel DNA Catalysts Based on Gâ€Quadruplex Recognition. ChemBioChem, 2008, 9, 1061-1064.	1.3	49
231	On the Origin of the Stereoselectivity in Organocatalysed Reactions with Trimethylsilylâ€Protected Diarylprolinol. Chemistry - A European Journal, 2008, 14, 122-127.	1.7	80
232	Total Syntheses of Carbohydrates: Organocatalyzed Aldol Additions of Dihydroxyacetone. Chemistry - A European Journal, 2008, 14, 40-48.	1.7	76
233	Organocatalytic Enantioselective Synthesis of Highly Functionalized Polysubstituted Pyrrolidines. Chemistry - A European Journal, 2008, 14, 9357-9367.	1.7	45
234	Highly enantioselective organocatalytic conjugate addition of nitromethane to benzylidene acetones. Chirality, 2008, 20, 1120-1126.	1.3	12
235	Synthesis of a Novel Chiral Ionic Liquid and Its Application in Enantioselective Aldol Reactions. Helvetica Chimica Acta, 2008, 91, 53-59.	1.0	27
236	Isolation and Xâ€Ray Structures of Reactive Intermediates of Organocatalysis with Diphenylprolinol Ethers and with Imidazolidinones. Helvetica Chimica Acta, 2008, 91, 1999-2034.	1.0	168
237	2â€[(Imidazolylthio)methyl]pyrrolidine as a Trifunctional Organocatalyst for the Highly Asymmetric Michael Addition of Ketones to Nitroolefins. European Journal of Organic Chemistry, 2008, 2008, 1049-1053.	1.2	60
238	A DFT and AIM Study of the Prolineâ€Catalyzed Asymmetric Crossâ€Aldol Addition of Acetone to Isatins: A Rationalization for the Reversal of Chirality. European Journal of Organic Chemistry, 2008, 2008, 736-744.	1.2	36
239	Applications of Chiral Ionic Liquids. European Journal of Organic Chemistry, 2008, 2008, 3235-3250.	1.2	171

#	Article	IF	CITATIONS
240	The First Prolineâ€Catalyzed Friedlander Annulation: Regioselective Synthesis of 2â€Substituted Quinoline Derivatives. European Journal of Organic Chemistry, 2008, 2008, 2693-2696.	1.2	35
241	Enamine Catalysis in the Synthesis of Chiral Structural Analogues of <i>gem</i> ê€Bisphosphonates Known To Be Biologically Active. European Journal of Organic Chemistry, 2008, 2008, 2525-2529.	1.2	30
242	Organocatalysis Lost: Modern Chemistry, Ancient Chemistry, and an Unseen Biosynthetic Apparatus. Angewandte Chemie - International Edition, 2008, 47, 42-47.	7.2	497
243	A Diarylprolinol in an Asymmetric, Catalytic, and Direct Crossedâ€Aldol Reaction of Acetaldehyde. Angewandte Chemie - International Edition, 2008, 47, 2082-2084.	7.2	194
244	Asymmetric Aminocatalysis—Gold Rush in Organic Chemistry. Angewandte Chemie - International Edition, 2008, 47, 6138-6171.	7.2	1,175
245	Towards Organocatalytic Polyketide Synthases with Diverse Electrophile Scope: Trifluoroethyl Thioesters as Nucleophiles in Organocatalytic Michael Reactions and Beyond. Angewandte Chemie - International Edition, 2008, 47, 4588-4591.	7.2	107
246	Asymmetric Michael Reaction of Acetaldehyde Catalyzed by Diphenylprolinol Silyl Ether. Angewandte Chemie - International Edition, 2008, 47, 4722-4724.	7.2	213
247	Direct Organocatalytic Mannich Reaction of Acetaldehyde: An Improved Catalyst and Mechanistic Insight from a Computational Study. Angewandte Chemie - International Edition, 2008, 47, 9053-9058.	7.2	100
248	Modularly Designed Organocatalytic Assemblies for Direct Nitroâ€Michael Addition Reactions. Angewandte Chemie - International Edition, 2008, 47, 7714-7717.	7.2	179
249	Highly Enantioselective Construction of a Quaternary Carbon Center of Dihydroquinazoline by Asymmetric Mannich Reaction and Chiral Recognition. Advanced Synthesis and Catalysis, 2008, 350, 1360-1366.	2.1	90
250	Base–Base Bifunctional Catalysis: A Practical Strategy for Asymmetric Michael Addition of Malonates to α,βâ€Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2008, 350, 1383-1389.	2.1	55
251	Organocatalytic Asymmetric <i>syn</i> â€Aldol Reactions of Aldehydes with Longâ€Chain Aliphatic Ketones on Water and with Dihydroxyacetone in Organic Solvents. Advanced Synthesis and Catalysis, 2008, 350, 1390-1396.	2.1	77
252	Highly Diastereo―and Enantioselective Direct Aldol Reactions Promoted by Waterâ€Compatible Organocatalysts Bearing Central and Axial Chiral Elements. Advanced Synthesis and Catalysis, 2008, 350, 2199-2204.	2.1	83
253	Highly Efficient Amine Organocatalysts Based on Bispidine for the Asymmetric Michael Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2008, 350, 2001-2006.	2.1	62
254	Prolinamides <i>versus</i> Prolinethioamides as Recyclable Catalysts in the Enantioselective Solventâ€Free Inter―and Intramolecular Aldol Reactions. Advanced Synthesis and Catalysis, 2008, 350, 2467-2472.	2.1	87
255	Efficient Stereoselective Synthesis of Nitrocyclopropanes by the Oxidative Cyclization of Michael Adducts of Nitroolefins with Activated Methylene Compounds. Advanced Synthesis and Catalysis, 2008, 350, 2488-2492.	2.1	57
263	anti-Selective direct asymmetric Mannich reactions catalyzed by chiral pyrrolidine-based amino sulfonamides. Tetrahedron, 2008, 64, 1197-1203.	1.0	59
264	Asymmetric Michael addition reactions of aldehydes with nitrostyrenes catalyzed by functionalized chiral ionic liquids. Tetrahedron, 2008, 64, 5091-5097.	1.0	65

#	Article	IF	CITATIONS
265	Proline-catalyzed stereoselective synthesis of natural and unnatural nocardiolactone. Tetrahedron, 2008, 64, 5861-5865.	1.0	13
266	Proline-based dipeptides with two amide units as organocatalyst for the asymmetric aldol reaction of cyclohexanone with aldehydes. Tetrahedron, 2008, 64, 9585-9591.	1.0	79
267	Protonated arginine and lysine as catalysts for the direct asymmetric aldol reaction in ionic liquids. Tetrahedron, 2008, 64, 9203-9207.	1.0	53
268	Diels–Alder reactions involving CP– functionality. Tetrahedron, 2008, 64, 10945-10976.	1.0	38
269	Chemoenzymatic preparation of functionalized bicyclo[3.2.1]octenone and practical utilization. Tetrahedron: Asymmetry, 2008, 19, 176-185.	1.8	7
270	Theoretical studies of stereoselectivities in the direct anti- and syn-aldol reactions catalyzed by different amino acid derivatives. Tetrahedron: Asymmetry, 2008, 19, 1288-1296.	1.8	20
271	Substrate control by means of the chiral cavity of prolinamide derivatives of cholic acid in the organocatalyzed Michael addition of cyclohexanone to nitroolefins. Tetrahedron: Asymmetry, 2008, 19, 2045-2050.	1.8	16
272	Efficient organocatalysis with a calix[4]pyrrole derivative. Tetrahedron Letters, 2008, 49, 153-155.	0.7	29
273	Pyrrolidine-based chiral pyridinium ionic liquids (ILs) as recyclable and highly efficient organocatalysts for the asymmetric Michael addition reactions. Tetrahedron Letters, 2008, 49, 1249-1252.	0.7	119
274	Direct asymmetric aldol reactions catalyzed by nanocrystalline copper(II) oxide. Tetrahedron Letters, 2008, 49, 1498-1501.	0.7	27
275	Highly chemo- and diastereoselective synthesis of substituted tetrahydropyran-4-ones via organocatalytic oxa-Diels–Alder reactions of acyclic α,β-unsaturated ketones with aldehydes. Tetrahedron Letters, 2008, 49, 1631-1635.	0.7	23
276	Biginelli reactions catalyzed by hydrazine type organocatalyst. Tetrahedron Letters, 2008, 49, 3238-3241.	0.7	47
277	Organocatalytic asymmetric direct Michael addition of aromatic ketones to alkylidenemalononitriles. Tetrahedron Letters, 2008, 49, 3881-3884.	0.7	31
278	A practical synthesis of new S,N-disubstituted derivatives of 5-(4-methylpiperidino)methyl-2-thiouracil. Tetrahedron Letters, 2008, 49, 5319-5321.	0.7	9
279	Camphor-derived sulfonylhydrazines: catalysts for Diels–Alder cycloadditions. Tetrahedron Letters, 2008, 49, 5576-5579.	0.7	32
280	A stereoselective CC free-radical cascade route to optically pure and potentially useful tetracyclic amines. Tetrahedron Letters, 2008, 49, 6111-6114.	0.7	7
281	Noyori's Ts-DPEN ligand: an efficient bifunctional primary amine-based organocatalyst in enantio- and diastereoselective Michael addition of 1,3-dicarbonyl indane compounds to nitroolefins. Tetrahedron Letters, 2008, 49, 6773-6777.	0.7	32
282	Homogeneous silicone modified primary amine-BrÃ,nsted acid salt catalyzed aldol reaction: unexpected synergistic effect of polysiloxane with remarkable improvement of efficiency and stereoselectivity. Tetrahedron Letters, 2008, 49, 7037-7041.	0.7	21

#	Article	IF	CITATIONS
283	Organocatalytic Asymmetric Synthesis Using Proline and Related Molecules. Part 1. Heterocycles, 2008, 75, 493.	0.4	89
284	Direct Acylation of Aryl Bromides with Aldehydes by Palladium Catalysis. Journal of the American Chemical Society, 2008, 130, 10510-10511.	6.6	173
285	Organocatalysed asymmetric Mannich reactions. Chemical Society Reviews, 2008, 37, 29-41.	18.7	536
286	Direct amino acid-catalyzed cascade biomimetic reductive alkylations: application to the asymmetric synthesis of Hajos–Parrish ketone analogues. Organic and Biomolecular Chemistry, 2008, 6, 4176.	1.5	71
287	Enantioselective Copper-Catalyzed 1,3-Dipolar Cycloadditions. Chemical Reviews, 2008, 108, 2887-2902.	23.0	759
288	Synthesis and optical resolution of an inherently chiral calix[4] arene amino acid. New Journal of Chemistry, 2008, 32, 1835.	1.4	7
289	Asymmetric Direct Aldol Reaction of Functionalized Ketones Catalyzed by Amine Organocatalysts Based on Bispidine. Journal of the American Chemical Society, 2008, 130, 5654-5655.	6.6	162
291	d-Glucosamine, a natural aminosugar as organocatalyst for an ecofriendly direct aldol reaction of ketones with aromatic aldehydes in water. Catalysis Communications, 2008, 9, 743-746.	1.6	30
292	Polystyrene-supported proline as recyclable catalyst in the Baylisâ€"Hillman reaction of arylaldehydes and methyl or ethyl vinyl ketone. Catalysis Communications, 2008, 9, 1477-1481.	1.6	26
293	Proline-Catalyzed Direct Inverse Electron Demand Diels–Alder Reactions of Ketones with 1,2,4,5-Tetrazines. Organic Letters, 2008, 10, 1923-1926.	2.4	92
295	Organocatalytic Mannich-Type Reactions of Trifluoroethyl Thioesters. Organic Letters, 2008, 10, 3405-3408.	2.4	64
296	Design of chiral bifunctional secondary amine catalysts for asymmetric enamine catalysis. Chemical Communications, 2008, , 5465.	2.2	70
297	Double cascade reactions based on the Barbas dienamine platform: highly stereoselective synthesis of functionalized cyclohexanes for cardiovascular agents. Organic and Biomolecular Chemistry, 2008, 6, 719.	1.5	57
298	Rational Combination of Two Privileged Chiral Backbones: Highly Efficient Organocatalysts for Asymmetric Direct Aldol Reactions between Aromatic Aldehydes and Acylic Ketones. Journal of Organic Chemistry, 2008, 73, 6006-6009.	1.7	79
299	Synthesis of Chiral Organocatalysts derived from Aziridines: Application in Asymmetric Aldol Reaction. Journal of Organic Chemistry, 2008, 73, 9411-9416.	1.7	93
300	Asymmetric Direct Aldol Reactions of Pyruvic Derivatives. Organic Letters, 2008, 10, 1775-1778.	2.4	95
301	Pyridinium 1,1′-Binaphthyl-2,2′-disulfonates as Highly Effective Chiral BrÃ,nsted Acidâ⁻ʾBase Combined Salt Catalysts for Enantioselective Mannich-Type Reaction. Journal of the American Chemical Society, 2008, 130, 16858-16860.	6.6	168
302	Supported proline and proline-derivatives as recyclable organocatalysts. Chemical Society Reviews, 2008, 37, 1666.	18.7	409

#	Article	IF	CITATIONS
303	Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines. Organic and Biomolecular Chemistry, 2008, 6, 2037.	1.5	476
304	Enamides and Enecarbamates as Nucleophiles in Stereoselective C–C and C–N Bond-Forming Reactions. Accounts of Chemical Research, 2008, 41, 292-301.	7.6	292
305	Phosphine-triggered synthesis of functionalized cyclic compounds. Chemical Society Reviews, 2008, 37, 1140.	18.7	683
306	Silylmethyl-substituted cyclopropyl and other strained ring systems: cycloaddition with dipolarophiles. Chemical Communications, 2008, , 6471.	2.2	116
307	The first example of enamine–Lewis acid cooperative bifunctional catalysis: application to the asymmetric Aldol reaction. Chemical Communications, 2008, , 3879.	2.2	47
308	A chiral thioureido acid as an effective additive for enantioselective organocatalytic Michael additions of nitroolefins. Organic and Biomolecular Chemistry, 2008, 6, 2054.	1.5	66
309	A modular approach to catalyst hydrophobicity for an asymmetric aldol reaction in a biphasic aqueous environment. Organic and Biomolecular Chemistry, 2008, 6, 4224.	1.5	53
310	Stereoselective $[3+2]$ Cycloaddition Reactions of Azomethine Ylides Derived from 5-Methylbenzo $[B]$ thiophene-2,3-dione and Piperidine-2-Carboxylic Acid. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 1168-1180.	0.8	2
311	Atom Economic and Highly <i>Syn</i> â€selective Prolinamide atalyzed Crossâ€aldol Addition of Hydroxyacetone to Aromatic Aldehydes. Synthetic Communications, 2008, 38, 1137-1146.	1.1	8
312	Efficient DMFâ€Promoted Solventless Hydrolysis of Epoxides with Equimolar Amount of H ₂ O, Affording 1,2â€Diols. Synthetic Communications, 2008, 38, 232-238.	1.1	16
313	Direct Asymmetric Aldol Reaction of Aryl Ketones with Aryl Aldehydes Catalyzed by Chiral BINOL-Derived Zincate Catalyst. Journal of Organic Chemistry, 2008, 73, 7398-7401.	1.7	43
314	Asymmetric Synthesis of <i>C</i> ₂ -Symmetric Vicinal Diamines via Reductive Dimerization of <i>N-</i> Acylpyridinium and Related Salts. Organic Letters, 2008, 10, 221-223.	2.4	15
315	Diastereo- and Enantioselective Reductive Aldol Addition of Vinyl Ketones via Catalytic Hydrogenation. Synthesis, 2008, 2008, 2669-2679.	1.2	20
316	A New Chiral Synthesis of a Bicyclic Enedione Containing a Seven-Membered Ring Mediated by a Combination of Chiral Amine and Brønsted Acid. Heterocycles, 2008, 76, 1191.	0.4	10
318	Enantioselective synthesis of tricyclic amino acid derivatives based on a rigid 4-azatricyclo[5.2.1.02,6]decane skeleton. Beilstein Journal of Organic Chemistry, 2009, 5, 81.	1.3	3
320	Enamine-Based Reactions: Strategies for the Development of Organocatalysts and Catalyzed Reactions. Journal of the Society of Japanese Women Scientists, 2009, 10, 1-9.	0.0	0
321	Catalyst Immobilization Strategy: Some General Considerations and a Comparison of the Main Features of Different Supports., 0,, 427-461.		1
323	Highly Efficient Organocatalyzed Direct Asymmetric Aldol Reactions of Hydroxyacetone and Aldehydes. Advanced Synthesis and Catalysis, 2009, 351, 158-162.	2.1	46

#	Article	IF	CITATIONS
324	The Ion Tag Strategy as a Route to Highly Efficient Organocatalysts for the Direct Asymmetric Aldol Reaction. Advanced Synthesis and Catalysis, 2009, 351, 276-282.	2.1	100
325	Water <i>versus</i> Solventâ€Free Conditions for the Enantioselective Inter―and Intramolecular Aldol Reaction Employing <scp>L</scp> â€Prolinamides and <scp>L</scp> â€Prolinethioamides as Organocatalysts. Advanced Synthesis and Catalysis, 2009, 351, 1123-1131.	2.1	89
326	Highly Enantioselective Organocatalytic <i>syn</i> ―and <i>anti</i> â€Aldol Reactions in Aqueous Medium. Advanced Synthesis and Catalysis, 2009, 351, 1284-1288.	2.1	62
327	Highly Efficient Asymmetric Michael Reaction of Aldehydes to Nitroalkenes with Diphenylperhydroindolinol Silyl Ethers as Organocatalysts. Advanced Synthesis and Catalysis, 2009, 351, 2449-2459.	2.1	58
328	4â€Aminothiourea Prolinol <i>tert</i> à€Butyldiphenylsilyl Ether: A Chiral Secondary Amineâ€Thiourea as Organocatalyst for Enantioselective <i>anti</i> à€Mannich Reactions. Advanced Synthesis and Catalysis, 2009, 351, 2288-2294.	2.1	53
329	Effect of Long Chain Fatty Acids on Organocatalytic Aqueous Direct Aldol Reactions. Advanced Synthesis and Catalysis, 2009, 351, 2791-2796.	2.1	54
334	Asymmetric aldol reactions catalyzed by efficient and recyclable silicaâ€supported prolineâ€based peptides. Chirality, 2009, 21, 413-420.	1.3	38
335	Aldol reaction catalyzed by a hydrophilic catalyst in aqueous micelle as an enzyme mimic system. Chirality, 2009, 21, 492-496.	1.3	44
336	An efficient dipeptide atalyzed direct asymmetric aldol reaction of equimolar reactants in solid media. Chirality, 2010, 22, 580-586.	1.3	18
337	Density Functional Study of Prolineâ€Catalyzed Intramolecular Baylis–Hillman Reactions. Chemistry - A European Journal, 2009, 15, 1734-1746.	1.7	34
338	A Designer Axially Chiral Amino Sulfonamide as an Efficient Organocatalyst for Direct Asymmetric ⟨i⟩anti⟨ i⟩â€Selective Mannich Reactions and ⟨i⟩syn⟨ i⟩â€Selective Crossâ€Aldol Reactions. Chemistry - A European Journal, 2009, 15, 6678-6687.	1.7	114
339	Chiral Catalysts Dually Functionalized with Amino Acid and Zn ²⁺ Complex Components for Enantioselective Direct Aldol Reactions Inspired by Natural Aldolases: Design, Synthesis, Complexation Properties, Catalytic Activities, and Mechanistic Study. Chemistry - A European Journal, 2009. 15. 10570-10584.	1.7	43
340	Asymmetric, Regioselective Direct Aldol Coupling of Enones and Aldehydes with Chiral Rhodium(bisâ€oxazolinylphenyl) Catalysts. Chemistry - A European Journal, 2009, 15, 8985-8988.	1.7	27
341	Catalytic Carbanion Reactions: Formation and Reaction of Carbanions from Ester or Amide Equivalents Using Catalytic Amounts of Bases. Chemistry - A European Journal, 2009, 15, 10694-10700.	1.7	45
342	Are Ionic Liquids Suitable Media for Organocatalytic Reactions?. European Journal of Organic Chemistry, 2009, 2009, 321-327.	1.2	93
343	Synthesis of an Inherently Chiral Calix[4]arene Amino Acid and Its Derivatives: Their Application to Asymmetric Reactions as Organocatalysts. European Journal of Organic Chemistry, 2009, 2009, 1916-1924.	1.2	48
344	Transition States of the Asymmetric Michael Reactions of Aldehydes Catalyzed by Trimethylsilylâ€Protected Diphenylprolinol. European Journal of Organic Chemistry, 2009, 2009, 2661-2665.	1.2	21
345	Catalytic Enantioselective Aldol Additions to Ketones. European Journal of Organic Chemistry, 2009, 2009, 3661-3671.	1.2	67

#	Article	IF	CITATIONS
346	Chiral Primary Amine–Polyoxometalate Acid Hybrids as Asymmetric Recoverable Iminiumâ€Based Catalysts. European Journal of Organic Chemistry, 2009, 2009, 4486-4493.	1.2	40
347	Organocatalytic Enantioselective Michael Addition of 4â€Hydroxycoumarin to α,βâ€Unsaturated Ketones: A Simple Synthesis of Warfarin. European Journal of Organic Chemistry, 2009, 2009, 5192-5197.	1.2	65
348	Recent Advances in the Chemistry and Biology of Naturally Occurring Antibiotics. Angewandte Chemie - International Edition, 2009, 48, 660-719.	7.2	198
349	5â€(Pyrrolidinâ€2â€yl)tetrazoleâ€Catalyzed Aldol and Mannich Reactions: Acceleration and Lower Catalyst Loading in a Continuousâ€Flow Reactor. Angewandte Chemie - International Edition, 2009, 48, 2699-2702.	7.2	121
350	Enantioselective Intermolecular Crossedâ€Conjugate Additions between Nitroalkenes and α,βâ€Enals through a Dual Activation Strategy. Angewandte Chemie - International Edition, 2009, 48, 1279-1282.	7.2	77
351	Addition Reactions of Sulfonylimidates with Imines Catalyzed by Alkaline Earth Metals. Angewandte Chemie - International Edition, 2009, 48, 5927-5929.	7.2	51
352	Silica-supported l-proline organocatalysts for asymmetric aldolisation. Tetrahedron: Asymmetry, 2009, 20, 2880-2885.	1.8	45
353	Water influences the enantioselectivity in the proline or prolinamide-catalyzed aldol addition of acetone to isatins. Tetrahedron Letters, 2009, 50, 814-817.	0.7	64
354	Adenine as aminocatalyst for green synthesis of diastereoselective Mannich products in aqueous medium. Tetrahedron Letters, 2009, 50, 2384-2388.	0.7	27
355	Highly enantioselective Michael addition reactions in water catalyzed by an insoluble MPS-supported 4-sulfonamidyl prolinol tert-butyldiphenylsilyl ether. Tetrahedron Letters, 2009, 50, 3054-3058.	0.7	47
356	A useful synthetic equivalent of an acetone enolate. Tetrahedron Letters, 2009, 50, 6709-6711.	0.7	9
357	Highly Enantioselective Organocatalytic Addition of Ethyl Trifluoropyruvate to Ketones with Subzero Temperature Microwave Activation. Catalysis Letters, 2009, 131, 432-439.	1.4	25
358	Generation and \hat{l}_{\pm} -hydroxyalkylation of a novel 3-piperidinol N- \hat{l}_{\pm} -carbanion intermediate. Science in China Series B: Chemistry, 2009, 52, 1631-1638.	0.8	8
359	Concise synthesis of ricciocarpin A and discovery of a more potent analogue. Nature Chemistry, 2009, 1, 225-228.	6.6	81
360	Hybrid mesoporous materials containing covalently anchored N-phenylthiazolium salts as organo catalysts. Microporous and Mesoporous Materials, 2009, 121, 145-151.	2.2	18
361	l-Prolinol as a highly enantioselective catalyst for Michael addition of cyclohexanone to nitroolefins. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3915-3918.	1.0	22
362	Hydroxy-α-amino acids modified by ionic liquid moieties: recoverable organocatalysts for asymmetric aldol reactions in the presence of water. Tetrahedron, 2009, 65, 1366-1372.	1.0	69
363	Solvent-free asymmetric vinylogous aldol reaction of Chan's diene with aromatic aldehydes catalyzed by hydrogen bonding. Tetrahedron, 2009, 65, 5571-5576.	1.0	24

#	Article	IF	Citations
364	The state of the art in asymmetric induction: the aldol reaction as a case study. Tetrahedron: Asymmetry, 2009, 20, 131-173.	1.8	232
365	Enantioselective reactions catalyzed by synthetic enzymes. A model for chemical evolution. Tetrahedron: Asymmetry, 2009, 20, 1709-1714.	1.8	32
366	Highly diastereo- and enantioselective direct aldol reactions by 4-tert-butyldimethylsiloxy-substituted organocatalysts derived from N-prolylsulfonamides in water. Tetrahedron: Asymmetry, 2009, 20, 2390-2396.	1.8	37
367	Organocatalytic activity of 4-hydroxy-prolinamide alcohol with different noncovalent coordination sites in asymmetric Michael and direct aldol reactions. Tetrahedron Letters, 2009, 50, 193-197.	0.7	48
368	N-Tosylimidates in highly enantioselective organocatalytic Michael reactions. Tetrahedron Letters, 2009, 50, 145-147.	0.7	19
369	Efficient organocatalyzed solvent-free selective synthesis of conjugated enones. Tetrahedron Letters, 2009, 50, 897-900.	0.7	35
370	Novel enantioselective direct aldol-type reaction promoted by a chiral phosphine oxide as an organocatalyst. Tetrahedron Letters, 2009, 50, 4602-4605.	0.7	57
371	Organocatalytic asymmetric syn-selective direct aldol reactions in water. Tetrahedron Letters, 2009, 50, 4854-4856.	0.7	35
372	Synthesis of \hat{l}^2 -hydroxymalonates: the direct aldol addition of malonates to aldehydes in the presence of SiCl4 and i-Pr2EtN. Tetrahedron Letters, 2009, 50, 7318-7321.	0.7	13
373	New hydroxyproline based methacrylic polybetaines: Synthesis, pH sensitivity and catalytic activity. Polymer, 2009, 50, 4438-4446.	1.8	30
374	Influence of protonation upon the conformations of bipiperidine, bimorpholine, and their derivatives. Chemical Physics Letters, 2009, 471, 92-96.	1.2	4
375	Design, synthesis and evaluation of tetrahydropyran based COX-1/-2 inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 1278-1287.	2.6	18
376	An enantioselective synthesis of (+)-(S)-[n]-gingerols via the l-proline-catalyzed aldol reaction. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3909-3911.	1.0	16
377	2,4-Dinitrophenol as an Effective Cocatalyst: Greatly Improving the Activities and Enantioselectivities of Primary Amine Organocatalysts for Asymmetric Aldol Reactions. Journal of Organic Chemistry, 2009, 74, 2541-2546.	1.7	84
378	Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metalâ°'Organic Porous Materials. Journal of the American Chemical Society, 2009, 131, 7524-7525.	6.6	402
379	Organocatalytic Enantioselective Crossâ€Aldol Reactions of Aldehydes with Isatins: Formation of Two Contiguous Quaternary Centered 3â€6ubstituted 3â€Hydroxyindolâ€2â€ones. Chemistry - an Asian Journal, 2009, 4, 1664-1667.	1.7	81
380	Use of Bifunctional Ureas to Increase the Rate of Proline-Catalyzed α-Aminoxylations. Journal of Organic Chemistry, 2009, 74, 1574-1580.	1.7	52
381	Stereoselective Synthesis of Isoquinuclidinones by Direct Imino-Diels-Alder Type Reaction Catalyzed by L-Proline. Heterocycles, 2009, 78, 2963.	0.4	2

#	ARTICLE The latest and the life of the latest and the lates	IF	CITATIONS
382	Diels-alder reactions with cyclic sulfones: VIII. Organic catalysis in the synthesis of spiro[1-benzothiophene-4,5â \in 2-pyrimidine]-2â \in 2,4â \in 2,6â \in 2-trione 1,1-dioxides and 2â \in 2-thioxospiro[1-benzothiophene-4,5â \in 2-pyrimidine]-4â \in 2,6â \in 2-dione 1,1-dioxides. Russian Journal of Organic Chemistry, 2009, 45, 87-101.	0.3	8
383	Direct Observation of an Enamine Intermediate in Amine Catalysis. Journal of the American Chemical Society, 2009, 131, 18206-18207.	6.6	62
384	Aldol-Type Chirons from Asymmetric Hydrogenations of Trisubstituted Alkenes. Organic Letters, 2009, 11, 2053-2056.	2.4	36
385	Catalytic Asymmetric Synthesis of \hat{l} ±-Alkylidene- \hat{l} 2-hydroxy Esters via Dynamic Kinetic Asymmetric Transformation Involving Ba-Catalyzed Direct Aldol Reaction. Journal of the American Chemical Society, 2009, 131, 10842-10843.	6.6	92
386	Magnesium-Catalyzed Asymmetric Direct Aldol Addition of Ethyl Diazoacetate to Aromatic, Aliphatic, and \hat{l}_{\pm},\hat{l}^2 -Unsaturated Aldehydes. Journal of the American Chemical Society, 2009, 131, 1674-1675.	6.6	124
387	Catalysis in Non-conventional Reaction Media. RSC Green Chemistry, 2009, , 1-79.	0.0	3
388	Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chemical Society Reviews, 2009, 38, 2745.	18.7	745
389	Organocatalytic reactions in water. Chemical Communications, 2009, , 6687.	2.2	277
390	Organocatalytic Approach to Enantioselective One-Pot Synthesis of Pyrrolidine, Hexahydropyrrolizine, and Octahydroindolizine Core Structures. Organic Letters, 2009, 11, 2027-2029.	2.4	74
391	Heterogeneous catalyzed aryl–nitrogen bond formations using a valine derivative bridged metal–organic coordination polymer. Dalton Transactions, 2009, , 6790.	1.6	20
393	A new mild base-catalyzed Mannich reaction of hetero-arylamines in water: highly efficient stereoselective synthesis of \hat{l}^2 -aminoketones under microwave heating. Organic and Biomolecular Chemistry, 2009, 7, 1410.	1.5	38
395	Dendritic Amplification of Stereoselectivity of a Prolinamideâ€Catalyzed Direct Aldol Reaction. Israel Journal of Chemistry, 2009, 49, 119-127.	1.0	8
396	Synthesis of Cyclopentitols by Ring-Closing Approaches. Chemical Reviews, 2009, 109, 6809-6857.	23.0	109
397	Rate Limiting Step Precedes Câ^'C Bond Formation in the Archetypical Proline-Catalyzed Intramolecular Aldol Reaction. Journal of the American Chemical Society, 2009, 131, 1632-1633.	6.6	63
398	A supramolecular hydrogel as a reusable heterogeneous catalyst for the direct aldol reaction. Chemical Communications, 2009, , 7303.	2.2	161
399	$\langle i \rangle N \langle j i \rangle$ -Primary-Amine-Terminal \hat{l}^2 -Turn Tetrapeptides as Organocatalysts for Highly Enantioselective Aldol Reaction. Journal of Organic Chemistry, 2009, 74, 4812-4818.	1.7	64
400	Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-Polyols. Journal of the American Chemical Society, 2009, 131, 18244-18245.	6.6	109
401	Highly Efficient Small Organic Molecules for Enantioselective Direct Aldol Reaction in Organic and Aqueous Media. Journal of Organic Chemistry, 2009, 74, 4289-4297.	1.7	126

#	Article	IF	CITATIONS
402	<i>N</i> -Heterocyclic Carbene-Catalyzed Enantioselective Mannich Reactions with α-Aryloxyacetaldehydes. Journal of the American Chemical Society, 2009, 131, 18028-18029.	6.6	109
403	Amide-based bifunctional organocatalysts in asymmetric reactions. Chemical Communications, 2009, , $6145.$	2.2	193
404	Diastereoselective Synthesis of Polycyclic Acetal-Fused Pyrano[3,2- <i>c</i> pyran-5(2 <i>H</i>)-one Derivatives. Journal of Organic Chemistry, 2009, 74, 2171-2174.	1.7	36
405	Direct catalytic asymmetric aldol reaction of \hat{l}^2 -keto esters with formaldehyde promoted by a dinuclear Ni2-Schiff base complex. Chemical Communications, 2009, , 5138.	2.2	67
406	Recyclable organocatalysis: highly enantioselective Michael addition of b>1,3-diaryl-1,3-propanedione /b>to nitroolefins. Chemical Communications, 2009, , 779-781.	2.2	58
407	$\hat{l}_{\pm}, \hat{l}_{\pm}$ -Diarylprolinols: bifunctional organocatalysts for asymmetric synthesis. Chemical Communications, 2009, , 1452.	2.2	145
408	Dihydropyridine C-glycoconjugates by organocatalytic Hantzsch cyclocondensation. Stereoselective synthesis of \hat{l} ±-threofuranose C-nucleoside enantiomers. Organic and Biomolecular Chemistry, 2009, 7, 1980.	1.5	37
409	Remarkable increase in basicity associated with supramolecular gelation. Organic and Biomolecular Chemistry, 2009, 7, 3091.	1.5	55
410	Chiral Primaryâ^'Tertiary Diamine Catalysts Derived From Natural Amino Acids for <i>syn</i> Aldol Reactions of Hydroxy Ketones. Journal of Organic Chemistry, 2009, 74, 1747-1750.	1.7	92
411	An Efficient Ionic Liquid Additive for Proline-catalyzed Direct Asymmetric Aldol Reactions between Cyclic Ketones and Aromatic Aldehydes. Chemistry Letters, 2009, 38, 576-577.	0.7	9
412	Catalytic Mannich-Type Reactions of Sulfonylimidates. Bulletin of the Chemical Society of Japan, 2009, 82, 1083-1102.	2.0	32
413	Chemistry of Organocatalytic Asymmetric Mannich Reactions. Current Organic Chemistry, 2010, 14, 1989-2006.	0.9	23
414	Development of Highly Selective Organic Reactions Catalyzed by Designed Amine Organocatalysts. Bulletin of the Chemical Society of Japan, 2010, 83, 1421-1438.	2.0	25
415	A General Approach to Chiral Building Blocks via Direct Amino Acid-Catalyzed Cascade Three-Component Reductive Alkylations: Formal Total Synthesis of HIV-1 Protease Inhibitors, Antibiotic Agglomerins, Brefeldin A, and (<i>R</i>)-γ-Hexanolide. Journal of Organic Chemistry, 2010, 75, 74-85.	1.7	67
416	lonic Tags in Catalyst Optimization: Beyond Catalyst Recycling. ChemCatChem, 2010, 2, 135-145.	1.8	55
417	(<i>S</i>)â€Indolineâ€3â€Carboxylic Acid: A New Organocatalyst for the <i>Anti</i> Mannichâ€Type Reaction. ChemCatChem, 2010, 2, 505-508.	1.8	18
418	Supramolecular gels as active media for organic reactions and catalysis. New Journal of Chemistry, 2010, 34, 1044.	1.4	258
419	Enamine Catalysis. Topics in Current Chemistry, 2010, 291, 145-200.	4.0	21

#	Article	IF	CITATIONS
420	Direct catalytic asymmetric aldol reaction of thioamides: a concise asymmetric synthesis of (R)-fluoxetine. Tetrahedron: Asymmetry, 2010, 21, 1688-1694.	1.8	35
421	Direct Mannich reaction mediated by Fe(Cp)2PF6 under solvent-free conditions. Tetrahedron Letters, 2010, 51, 489-494.	0.7	34
422	Synthesis of proline-derived dipeptides and their catalytic enantioselective direct aldol reactions: catalyst, solvent, additive and temperature effects. Amino Acids, 2010, 38, 839-845.	1.2	21
423	Zinc-prolinamide complex catalyzed direct asymmetric aldol reactions in the presence of water. Science China Chemistry, 2010, 53, 2291-2296.	4.2	7
424	Acyclic Amino Acids Catalyzed Direct Asymmetric Aldol Reactions in Aqueous Media Assisted by 2,4-Dinitrophenol. Catalysis Letters, 2010, 137, 163-170.	1.4	18
425	CC Bond Formation Reactions for Biomassâ€Derived Molecules. ChemSusChem, 2010, 3, 1158-1161.	3.6	88
426	Noyori's Tsâ€DPEN Ligand: Simple yet Effective Catalyst for the Highly Enantioselective Michael Addition of Acetone to Nitroalkenes. European Journal of Organic Chemistry, 2010, 2010, 1849-1853.	1.2	55
427	When Organocatalysis Meets Transitionâ€Metal Catalysis. European Journal of Organic Chemistry, 2010, 2010, 2999-3025.	1.2	57 3
428	A Green and Efficient Asymmetric Aldol Reaction Catalyzed by a Chiral Anion Modified Ionic Liquid. European Journal of Organic Chemistry, 2010, 2010, 3672-3677.	1.2	46
429	<i>C</i> ₃ ‧ymmetric Prolineâ€Functionalized Organocatalysts: Enantioselective Michael Addition Reactions. European Journal of Organic Chemistry, 2010, 2010, 6359-6365.	1.2	34
430	Enantioselective Organocatalytic Michael Additions of Oxyacetaldehydes to Nitroolefins. European Journal of Organic Chemistry, 2010, 2010, 6430-6435.	1.2	16
431	Highly Efficient Direct Asymmetric Aldol Reactions Catalyzed by a Prolinethioamide Derivative in Aqueous Media. European Journal of Organic Chemistry, 2010, 2010, 5951-5954.	1.2	61
432	Immobilization of MacMillan Imidazolidinone as Macâ€SILC and its Catalytic Performance on Sustainable Enantioselective Diels–Alder Cycloaddition. Advanced Synthesis and Catalysis, 2010, 352, 909-916.	2.1	63
433	A Novel Polyanilineâ€Silver Nitrateâ€ <i>p</i> â€Toluenesulfonic Acid Salt as Recyclable Catalyst in the Stereoselective Synthesis of βâ€Amino Ketones: "Oneâ€Pot―Synthesis in Water Medium. Advanced Synthes and Catalysis, 2010, 352, 2507-2514.	si 2. 1	29
434	Asymmetric Synthesis of Polyfunctionalized Pyrrolidines <i>via</i> a Thiourea Catalyzed Domino Mannich/Azaâ€Michael Reaction. Advanced Synthesis and Catalysis, 2010, 352, 2863-2868.	2.1	48
437	A novel chiral aliphatic–aromatic diamine promoted direct, highly enantio―and diastereoselective Michael addition of cyclohexanone to nitroolefins under solventâ€free conditions. Chirality, 2010, 22, 855-862.	1.3	9
438	Supramolecular Catalysis with Extended Aggregates and Gels: Inversion of Stereoselectivity Caused by Selfâ€Assembly. Chemistry - A European Journal, 2010, 16, 8480-8486.	1.7	80
439	Enantioselective Rearrangement of Proline Sulfonamides: An Easy Entry to Enantiomerically Pure αâ€Aryl Quaternary Prolines. Chemistry - A European Journal, 2010, 16, 10667-10670.	1.7	32

#	Article	IF	CITATIONS
440	Kinetic Isotope Effects in Asymmetric Reactions. Chemistry - A European Journal, 2010, 16, 10616-10628.	1.7	76
441	Indolineâ€3â€Carboxylic Acid Derived Organocatalysts for the <i>anti</i> å€Mannich Reaction. Chemistry - A European Journal, 2010, 16, 14534-14544.	1.7	6
445	Quinidine Thioureaâ€Catalyzed Aldol Reaction of Unactivated Ketones: Highly Enantioselective Synthesis of 3â€Alkylâ€3â€hydroxyindolinâ€2â€ones. Angewandte Chemie - International Edition, 2010, 49, 9460-9464.	7.2	177
446	Efficient synthesis of 1,3,4â€thiadiazoles using hydrogen bond donor (thio)urea derivatives as organocatalysts. Journal of Heterocyclic Chemistry, 2010, 47, 616-623.	1.4	4
447	An efficient protocol for multicomponent synthesis of spirooxindoles employing <scp>L</scp> â€proline as catalyst at room temperature. Journal of Heterocyclic Chemistry, 2010, 47, 1323-1327.	1.4	27
448	Sustainable, green protocols for heterogenized organocatalysts: N-Phenylthiazolium salts heterogenized on organic–inorganic hybrid mesoporous supports. Journal of Molecular Catalysis A, 2010, 332, 65-69.	4.8	23
449	Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis. Tetrahedron, 2010, 66, 1091-1097.	1.0	219
450	Highly enantioselective Michael addition of isobutyraldehyde to nitroalkenes. Tetrahedron, 2010, 66, 3195-3198.	1.0	27
451	Structure–reactivity relationships of l-proline derived spirolactams and α-methyl prolinamide organocatalysts in the asymmetric Michael addition reaction of aldehydes to nitroolefins. Tetrahedron, 2010, 66, 3525-3536.	1.0	23
452	Enantioselective synthesis of stimulus-responsive amino acid via asymmetric α-amination of aldehyde. Tetrahedron, 2010, 66, 7367-7372.	1.0	26
453	A facile and practical method of preparing optically active α-monosubstituted cycloalkanones by thermodynamically controlled deracemization. Tetrahedron, 2010, 66, 9450-9455.	1.0	7
454	Self-assembly of organocatalysts for the enantioselective Michael addition of aldehydes to nitroalkenes. Tetrahedron: Asymmetry, 2010, 21, 112-115.	1.8	43
455	Camphor-10-sulfonamide-based prolinamide organocatalyst for the direct intermolecular aldol reaction between ketones and aromatic aldehydes. Tetrahedron: Asymmetry, 2010, 21, 775-779.	1.8	28
456	Hydroxyphthalimide allied triazole-pyrrolidine catalyst for asymmetric Michael additions in water. Tetrahedron: Asymmetry, 2010, 21, 2372-2375.	1.8	35
457	One-step, efficient synthesis of combined threonine–surfactant organocatalysts for the highly enantioselective direct aldol reactions of cyclic ketones with aromatic aldehydes in the presence of water. Tetrahedron: Asymmetry, 2010, 21, 2465-2470.	1.8	44
458	Chiral quaternary alkylammonium ionic liquid [Pro-dabco] [BF4]: as a recyclable and highly efficient organocatalyst for asymmetric Michael addition reactions. Tetrahedron: Asymmetry, 2010, 21, 2530-2534.	1.8	62
459	Organocatalytic Michael addition of aldehydes to a \hat{l}^2 -silylmethylene malonate to form intermediates for the enantioselective synthesis of hydroxylated valerolactones and piperidines. Tetrahedron: Asymmetry, 2010, 21, 2696-2702.	1.8	20
460	Experimental and theoretical studies on Mannich-type reactions of chiral non-racemic N-(benzyloxyethyl) nitrones. Tetrahedron: Asymmetry, 2010, 21, 2934-2943.	1.8	13

#	Article	IF	CITATIONS
461	Chemistry of andrographolide: formation of novel di-spiropyrrolidino and di-spiropyrrolizidino-oxindole adducts via one-pot three-component [3+2] azomethine ylide cycloaddition. Tetrahedron Letters, 2010, 51, 1585-1588.	0.7	47
462	Highly enantioselective Michael-cyclization cascade promoted by synergistic asymmetric aminocatalysis and Lewis acid catalysis. Tetrahedron Letters, 2010, 51, 1742-1744.	0.7	45
463	Synthesis and biological evaluation of aminoketones. European Journal of Medicinal Chemistry, 2010, 45, 6090-6094.	2.6	14
464	Autocatalysis and organocatalysis with synthetic structures. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 541-544.	3.3	50
465	Poly(vinyl alcohol)â€ <i>Graft</i> â€Poly(ethylene glycol)â€Supported Hydroxyproline Catalysis of Stereoselective Aldol Reactions. Macromolecular Symposia, 2010, 297, 101-107.	0.4	2
467	Organocatalytic asymmetric assembly reactions for the syntheses of carbohydrate derivatives by intermolecular Michael-Henry reactions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20672-20677.	3.3	79
468	L-Arginine as a Cost-Effective and Recyclable Catalyst for the Synthesis of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Nitriles and Ketones in an Ionic Liquid. Journal of Chemical Research, 2010, 34, 22-24.	0.6	5
470	Asymmetric Intramolecular Aldol Reaction Mediated by (S)-N-Substituted-N-(2-pyrrolidinylmethyl)amine to Prepare Wieland-Miescher Ketone. Heterocycles, 2010, 82, 1727.	0.4	4
471	Asymmetric Intramolecular Aldol Reactions of Substituted 1,7-Dicarbonylic Compounds. A Mechanistic Study. Journal of Organic Chemistry, 2010, 75, 2546-2555.	1.7	14
472	Enantioselective Organocatalytic Mannich Reactions with Autocatalysts and Their Mimics. Journal of Organic Chemistry, 2010, 75, 2403-2406.	1.7	39
473	The Discovery of Catalytic Enantioselective Polyvalent Iodine Mediated Reactions. Australian Journal of Chemistry, 2010, 63, 653.	0.5	116
474	Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C–C bond formation reactions. Organic and Biomolecular Chemistry, 2010, 8, 5262-76.	1.5	322
475	Diversity Oriented Synthesis of Pyrrolidines via Natural Carbohydrate Solid Acid Catalyst. ACS Combinatorial Science, 2010, 12, 458-462.	3.3	37
476	Microreactor Technology as an Efficient Tool for Multicomponent Reactions. Topics in Heterocyclic Chemistry, 2010, , 161-198.	0.2	52
477	Highly Enantioselective and Efficient Organocatalytic Aldol Reaction of Acetone and \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}_2 -Keto Ester. Organic Letters, 2010, 12, 5616-5619.	2.4	67
478	Sequential One-Pot Combination of Multireactions through Multicatalysis: A General Approach to Rapid Assembly of Functionalized Pushâ^'Pull Olefins, Phenols, and 2-Methyl-2H-chromenes. ACS Combinatorial Science, 2010, 12, 855-876.	3.3	21
480	Catalytic Enantioselective Friedlaì nder Condensations: Facile Access to Quinolines with Remote Stereogenic Centers. Organic Letters, 2010, 12, 5064-5067.	2.4	48
481	Synthesis of Axially Chiral Amino Acid and Amino Alcohols via Additiveâ^Ligand-Free Pd-Catalyzed Domino Coupling Reaction and Subsequent Transformations of the Product Amidoaza[5]helicene. Journal of Organic Chemistry, 2010, 75, 7010-7013.	1.7	32

#	Article	IF	CITATIONS
482	Organocatalytic Enantioselective Synthesis of Both Diastereomers of \hat{l}_{\pm} -Hydroxyphosphinates. Journal of Organic Chemistry, 2010, 75, 1101-1106.	1.7	47
483	Organocatalytic Tunable Amino Acid Polymers Prepared by Controlled Radical Polymerization. Macromolecules, 2010, 43, 6374-6380.	2.2	60
484	Bis(η ⁵ :η ¹ -pentafulvene)titanium Complexes: Catalysts for Intramolecular Alkene Hydroamination and Reagents for Selective Reactions with Nâ ⁻ 'H Acidic Substrates. Organometallics, 2010, 29, 1806-1817.	1,1	66
485	Copper-catalyzed one-pot synthesis of \hat{l}_{\pm} -functionalized imidates. Chemical Communications, 2010, 46, 5494.	2.2	53
486	Organocatalysis: Opportunities and Challenges for Polymer Synthesis. Macromolecules, 2010, 43, 2093-2107.	2.2	793
487	The direct catalytic asymmetric aldol reaction. Chemical Society Reviews, 2010, 39, 1600.	18.7	681
488	Synthesis of Chiral 3-Substituted Phthalides by a Sequential Organocatalytic Enantioselective Aldol-Lactonization Reaction. Three-Step Synthesis of $(\langle i \rangle S \langle i \rangle)$ - (\hat{a}°) -3-Butylphthalide. Journal of Organic Chemistry, 2010, 75, 368-374.	1.7	89
489	Bifunctional AgOAc-catalyzed asymmetric reactions. Chemical Communications, 2010, 46, 4043.	2.2	48
490	Brønsted acid-catalyzed efficient Strecker reaction of ketones, amines and trimethylsilyl cyanide. Organic and Biomolecular Chemistry, 2010, 8, 1399.	1.5	68
491	Chiral Bifunctional Thiourea-Catalyzed Enantioselective Michael Addition of Ketones to Nitrodienes. Journal of Organic Chemistry, 2010, 75, 1402-1409.	1.7	101
493	Enantioselective Synthesis of <i>syn</i> /i>/ <i>anti</i> -1,3-Amino Alcohols via Proline-Catalyzed Sequential α-Aminoxylation/α-Amination and Hornerâ°'Wadsworthâ°'Emmons Olefination of Aldehydes. Organic Letters, 2010, 12, 2762-2765.	2.4	50
495	Chiral Primaryâ^'Tertiary Diamineâ^'Brønsted Acid Salt Catalyzed Syn-Selective Cross-Aldol Reaction of Aldehydes. Journal of Organic Chemistry, 2010, 75, 4501-4507.	1.7	53
496	Synthesis of Heterocycles via Multicomponent Reactions I. Topics in Heterocyclic Chemistry, 2010, , .	0.2	29
497	Hybrid materials: versatile matrices for supporting homogeneous catalysts. Journal of Materials Chemistry, 2010, 20, 9322.	6.7	121
498	One-Pot Enantioselective Syntheses of Iminosugar Derivatives Using Organocatalytic <i>anti</i> -Michaelâ^ <i>anti</i> -Aza-Henry Reactions. Organic Letters, 2010, 12, 5250-5253.	2.4	70
499	Theoretical Study on Acidities of ($\langle i \rangle S \langle i \rangle$)-Proline Amide Derivatives in DMSO and Its Implications for Organocatalysis. Journal of Physical Chemistry A, 2010, 114, 1068-1081.	1.1	40
500	Highly Enantio- and Diastereoselective Mannich Reactions of Glycine Schiff Bases with <i>in situ</i> Generated <i>N</i> -Boc-imines Catalyzed by a Cinchona Alkaloid Thiourea. Organic Letters, 2010, 12, 708-711.	2.4	81
501	Chiral bifunctional phase transfer catalysts for asymmetric fluorination of \hat{l}^2 -keto esters. Chemical Communications, 2010, 46, 321-323.	2.2	119

#	Article	IF	CITATIONS
502	The role of double hydrogen bonds in asymmetric direct aldol reactions catalyzed by amino amide derivatives. Chemical Communications, 2010, 46, 6437.	2.2	69
503	Novel thiourea-amine bifunctional catalysts for asymmetric conjugate addition of ketones/aldehydes to nitroalkenes: rational structural combination for high catalytic efficiency. Organic and Biomolecular Chemistry, 2010, 8, 1275.	1.5	79
505	Lithiation of Diamine Ligands to Chiral Building Blocks: Syntheses, Selectivities, and Lithiated Intermediates. Organometallics, 2010, 29, 1858-1861.	1.1	22
506	The highly enantioselective Michael addition of ketones to nitrodienes catalyzed by the efficient organocatalyst system of pyrrolidinyl-thioimidazole and chiral thioureido acid. Organic and Biomolecular Chemistry, 2010, 8, 2505.	1.5	40
507	Design, synthesis and biological evaluation of optically pure functionalized spiro[5,5]undecane-1,5,9-triones as HIV-1 inhibitors. Organic and Biomolecular Chemistry, 2011, 9, 7282.	1.5	29
508	In(<scp>iii</scp>)-pybox complex catalyzed enantioselective Mukaiyama aldol reactions between polymeric or hydrated glyoxylates and enolsilanes derived from aryl ketones. Chemical Science, 2011, 2, 349-352.	3.7	35
509	Acid controlled diastereoselectivity in asymmetric aldol reaction of cycloketones with aldehydes using enamine-based organocatalysts. Chemical Communications, 2011, 47, 6716.	2.2	64
510	A highly asymmetric direct aldol reaction catalyzed by chiral proline amide – thiourea bifunctional catalysts. Canadian Journal of Chemistry, 2011, 89, 1312-1318.	0.6	10
512	Palladium-Catalyzed Oxidative Coupling of Trialkylamines with Aryl Iodides Leading to Alkyl Aryl Ketones. Organic Letters, 2011, 13, 2184-2187.	2.4	61
513	Thionyl Chloride-Catalyzed Preparation of Microporous Organic Polymers through Aldol Condensation. Macromolecules, 2011, 44, 6382-6388.	2.2	50
514	A New Class of Structurally Rigid Tricyclic Chiral Secondary Amine Organocatalyst: Highly Enantioselective Organocatalytic Michael Addition of Aldehydes to Vinyl Sulfones. Organic Letters, 2011, 13, 876-879.	2.4	46
515	Thiourea/Proline Derivative-Catalyzed Synthesis of Tetrahydrofuran Derivatives: A Mechanistic View. Journal of Organic Chemistry, 2011, 76, 6503-6517.	1.7	42
516	Direct Catalytic Enantio- and Diastereoselective Aldol Reaction of Thioamides. Journal of the American Chemical Society, 2011, 133, 5554-5560.	6.6	120
517	l̂ ² -Amino Acid Catalyzed Asymmetric Michael Additions: Design of Organocatalysts with Catalytic Acid/Base Dyad Inspired by Serine Proteases. Journal of Organic Chemistry, 2011, 76, 7399-7405.	1.7	78
518	Enantioselective Diels–Alder Reactions of Enals and Alkylidene Diketones Catalyzed by N-Heterocyclic Carbenes. Organic Letters, 2011, 13, 4708-4711.	2.4	129
519	Recent advances in asymmetric catalysis with cinchona alkaloid-based primary amines. Catalysis Science and Technology, 2011, 1, 354.	2.1	152
520	Core-Structure-Motivated Design of a Phosphine-Catalyzed [3 + 2] Cycloaddition Reaction: Enantioselective Syntheses of Spirocyclopenteneoxindoles. Journal of the American Chemical Society, 2011, 133, 4672-4675.	6.6	409
521	1,2-Dihydroquinolines. , 2011, , 103-116.		0

#	Article	IF	CITATIONS
523	<scp> </scp> -Proline Functionalized Polymers Prepared by RAFT Polymerization and Their Assemblies as Supported Organocatalysts. Macromolecules, 2011, 44, 7233-7241.	2.2	111
524	Organocatalytic Functionalization of Carboxylic Acids: Isothiourea-Catalyzed Asymmetric Intra- and Intermolecular Michael Additionâ^Lactonizations. Journal of the American Chemical Society, 2011, 133, 2714-2720.	6.6	255
525	Natural α-Amino Acid L-Lysine–Catalyzed Knoevenagel Condensations of α,β-Unsaturated Aldehydes and 1,3-Dicarbonyl Compounds. Synthetic Communications, 2011, 41, 1617-1628.	1.1	19
526	Biomimetic Organocatalytic Asymmetric Synthesis of 2-Substituted Piperidine-Type Alkaloids and Their Analogues. Organic Letters, 2011, 13, 4546-4549.	2.4	76
527	Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes. Organic and Biomolecular Chemistry, 2011, 9, 5280.	1.5	42
528	Nuclease p1: a new biocatalyst for direct asymmetric aldol reaction under solvent-free conditions. Green Chemistry, 2011, 13, 185-189.	4.6	72
529	Lewis acid-catalyzed formal [3+2] cycloadditions of N-tosyl aziridines with electron-rich alkenes via selective carbon–carbon bond cleavage. Chemical Communications, 2011, 47, 5049.	2.2	62
530	Catalytic Enantioselective Desymmetrization ofmeso-Diamines: A Dual Small-Molecule Catalysis Approach. Journal of the American Chemical Society, 2011, 133, 14538-14541.	6.6	101
531	Simple and practical direct asymmetric aldol reaction of hydroxyacetone catalyzed by 9-amino Cinchona alkaloid tartrates. Green Chemistry, 2011, 13, 1280.	4.6	20
532	Chiral Imprinting with Amino Acids of Ordered Mesoporous Silica Exhibiting Enantioselectivity after Calcination. Chemistry of Materials, 2011, 23, 1280-1287.	3.2	42
533	Highly enantioselective synthesis of syn-aldols of cyclohexanones via chiral primary amine catalyzed asymmetric transfer aldol reactions in ionic liquid. Organic and Biomolecular Chemistry, 2011, 9, 1784.	1.5	21
534	Direct Aldol Reactions Catalyzed by a Heterogeneous Guanidinium Salt/Proline System under Solvent-Free Conditions. Organic Letters, 2011, 13, 3032-3035.	2.4	64
535	Highly Efficient Hydrogen-Bonding Catalysis of the Diels–Alder Reaction of 3-Vinylindoles and Methyleneindolinones Provides Carbazolespirooxindole Skeletons. Journal of the American Chemical Society, 2011, 133, 12354-12357.	6.6	346
536	Catalytic Enantioselective Cycloaddition with Chiral Lewis Bases. Current Organic Chemistry, 2011, 15, 4108-4127.	0.9	11
537	Development of Atom-Economical Catalytic Asymmetric Reactions under Proton Transfer Conditions: Construction of Tetrasubstituted Stereogenic Centers and Their Application to Therapeutics. Chemical and Pharmaceutical Bulletin, 2011, 59, 1-22.	0.6	24
538	Continuous proline catalysis via leaching of solid proline. Beilstein Journal of Organic Chemistry, 2011, 7, 1671-1679.	1.3	23
540	Chiral amine organocatalysts for the syn-aldol reaction involving substituted benzaldehydes and hydroxyacetone. Tetrahedron: Asymmetry, 2011, 22, 1051-1054.	1.8	17
541	Proline-based dipeptides as efficient organocatalysts for asymmetric aldol reactions in brine. Tetrahedron: Asymmetry, 2011, 22, 1074-1080.	1.8	28

#	Article	IF	CITATIONS
542	Advances in the chemistry of proline and its derivatives: an excellent amino acid with versatile applications in asymmetric synthesis. Tetrahedron: Asymmetry, 2011, 22, 1817-1847.	1.8	101
543	Chiral phosphine-prolineamide as an organocatalyst in direct asymmetric aldol reactions. Tetrahedron: Asymmetry, 2011, 22, 2024-2028.	1.8	18
544	A highly enantioselective Dielsâ \in "Alder reaction of 1,2-dihydropyridine using a simple \hat{l}^2 -amino alcohol organocatalyst for a practical synthetic methodology of oseltamivir intermediate. Tetrahedron Letters, 2011, 52, 4745-4748.	0.7	38
545	Intramolecular cyclization strategies toward the synthesis of zoanthamine alkaloids. Tetrahedron Letters, 2011, 52, 4920-4923.	0.7	13
546	A higher energy conformer of (S)-proline is the active catalyst in intermolecular aldol reaction: Evidence from DFT calculations. Journal of Molecular Catalysis A, 2011, 345, 37-43.	4.8	21
547	Fluorous Organocatalysis. Topics in Current Chemistry, 2011, 308, 175-190.	4.0	9
548	Synthesis of <i>C</i> ₁ -Symmetric Chiral Secondary Diamines and Their Applications in the Asymmetric Copper(II)-Catalyzed Henry (Nitroaldol) Reactions. Journal of Organic Chemistry, 2011, 76, 588-600.	1.7	124
549	Cooperative Activation of Alkyne and Thioamide Functionalities; Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to α,βâ€Unsaturated Thioamides. Chemistry - an Asian Journal, 2011, 6, 1778-1790.	1.7	48
550	Highly Enantioselective Synthesis of γâ€Nitroketones Containing a Terminal Alkene Moiety by means of Organocatalyzed Conjugate Addition between Nitroalkene and Enones. ChemCatChem, 2011, 3, 302-304.	1.8	9
551	Organocatalytic enantioselective \hat{l}^2 -functionalization of aldehydes by oxidation of enamines and their application in cascade reactions. Nature Communications, 2011, 2, 211.	5.8	136
552	Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. Organic and Biomolecular Chemistry, 2011, 9, 1277-1300.	1.5	249
553	Novel Primary Amine Organocatalysts Derived from Cinchona Alkaloids for Asymmetric Direct Aldol Reactions in Brine. Catalysis Letters, 2011, 141, 191-197.	1.4	14
554	Simple and Facile l-Prolinamides Derived from Achiral Cycloalkylamines as Organocatalysts for the Highly Efficient Large-Scale Asymmetric Direct Aldol Reactions. Catalysis Letters, 2011, 141, 1156-1163.	1.4	8
555	l-Valine Dipeptide Organocatalysts with Two Amide Units for the Direct Asymmetric Aldol Reaction in Brine. Catalysis Letters, 2011, 141, 872-876.	1.4	20
556	Optimizing the matching between the acid and the base of cooperative catalysis to inhibit dehydration in the aldol condensation. Journal of Colloid and Interface Science, 2011, 362, 625-628.	5.0	19
557	(S)-Threonine \hat{l} ±, \hat{l} ±-(S)-diphenylvalinol-derived chiral ionic liquid: an immobilized organocatalyst for asymmetric syn-aldol reactions. Tetrahedron, 2011, 67, 1948-1954.	1.0	37
558	New simple and recyclable O-acylation serine derivatives as highly enantioselective catalysts for the large-scale asymmetric direct aldol reactions in the presence of water. Tetrahedron, 2011, 67, 4283-4290.	1.0	41
559	Synthesis of polymers bearing proline moieties in the side chains and their application as catalysts for asymmetric induction. Journal of Polymer Science Part A, 2011, 49, 3783-3796.	2.5	36

#	Article	IF	CITATIONS
560	Organocatalytic Multiple Cascade Reactions: A New Strategy for the Construction of Enantioenriched Tetrahydrocarbazoles. Advanced Synthesis and Catalysis, 2011, 353, 617-623.	2.1	69
561	A New Class of Enantioselective Catalytic 2â€Pyrone Diels–Alder Cycloadditions. Advanced Synthesis and Catalysis, 2011, 353, 1135-1145.	2.1	17
562	Organocatalytic Asymmetric Aldol Reaction of Ketones with β,γâ€Unsaturated αâ€Keto Esters: An Efficient Access to Chiral Tertiary Alcohol Skeletons. Advanced Synthesis and Catalysis, 2011, 353, 1179-1184.	2.1	35
563	<i>C</i> ₃ â€Symmetrical Cinchonineâ€Squaramide as New Highly Efficient, and Recyclable Organocatalyst for Enantioselective Michael Addition. Advanced Synthesis and Catalysis, 2011, 353, 2715-2720.	2.1	82
564	Diastereo―and Enantioselective Direct Aldol Reactions in Aqueous Medium: A New Highly Efficient Prolineâ€6ugar Chimeric Catalyst. Advanced Synthesis and Catalysis, 2011, 353, 1443-1446.	2.1	27
566	A Highly Efficient, Largeâ€Scale, Asymmetric Direct Aldol Reaction Employing Simple Threonine Derivatives as Recoverable Organocatalysts in the Presence of Water. European Journal of Organic Chemistry, 2011, 2011, 1291-1299.	1.2	56
567	<scp>L</scp> â€ <i>t</i> à€Leucineâ€Catalyzed Direct Asymmetric Aldol Reaction of Cyclic Ketones. European Journal of Organic Chemistry, 2011, 2011, 993-997.	1.2	34
568	Direct Organocatalytic Asymmetric Approach to Baylis–Hillman‶ype Products Through a Push–Pull Dienamine Platform. European Journal of Organic Chemistry, 2011, 2011, 2599-2605.	1.2	26
569	Metalâ€Free Asymmetric 1,3â€Dipolar Cycloaddition of <i>N</i> â€Arylmaleimides to Azomethine Ylides Catalyzed by Chiral Tertiary Amine Thiourea. European Journal of Organic Chemistry, 2011, 2011, 4472-4478.	1.2	42
570	Chiral Primary Amine Catalyzed Asymmetric Direct Crossâ€Aldol Reaction of Acetaldehyde. European Journal of Organic Chemistry, 2011, 2011, 3347-3352.	1.2	46
571	Enantioselective Synthesis of \hat{I}^2 -Amino Esters Bearing a Benzothiazole Moiety via a Mannich-Type Reaction Catalyzed by a Cinchona Alkaloid Derivative. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	1.2	11
572	Oneâ€Pot Regioselective Doubleâ€Mannich Annulations Affording Azabicyclononanones as a Key Step in the Synthesis of Natural Products. European Journal of Organic Chemistry, 2011, 2011, 5336-5346.	1.2	10
573	Diastereo―and Enantioselective Construction of γâ€Butenolides through Chiral Phosphane atalyzed Allylic Alkylation of Morita–Baylis–Hillman Acetates. European Journal of Organic Chemistry, 2011, 2011, 5146-5155.	1.2	36
574	(1 <i>R</i> ,2 <i>R</i>)â€Bis[(<i>S</i>)â€prolinamido]cyclohexane Modified with Ionic Groups: The First <i>C</i> ₂ â€Symmetric Immobilized Organocatalyst for Asymmetric Aldol Reactions in Aqueous Media. European Journal of Organic Chemistry, 2011, 2011, 6128-6133.	1.2	32
575	Recyclable polyvinyl chlorideâ€supported pyrrolidineâ€thiourea as a bifunctional organocatalyst for direct asymmetric aldol reaction in aqueous medium. Journal of Applied Polymer Science, 2011, 121, 1506-1511.	1.3	16
579	Recent Advances in Direct Catalytic Asymmetric Transformations under Protonâ€Transfer Conditions. Angewandte Chemie - International Edition, 2011, 50, 4760-4772.	7.2	165
580	Chiral Primary Amine Catalyzed Enantioselective Protonation via an Enamine Intermediate. Angewandte Chemie - International Edition, 2011, 50, 11451-11455.	7.2	75
581	Enantioselective Stetter Reactions of Enals and Modified Chalcones Catalyzed by Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2011, 50, 11782-11785.	7.2	110

#	Article	IF	CITATIONS
582	Highly Enantioselective Conjugate Addition of Cyclic Diketones to β,γâ€Unsaturated αâ€Ketoesters Catalyzed by an <i>N</i> , <i>N</i> ,ê≥â€Dioxideâ€Cu(OTf) ₂ Complex. Chemistry - A European Journal, 2011, 17118-1121.	⁷ ,1.7	50
583	Fluorinated Aromatic Ketones as Nucleophiles in the Asymmetric Organocatalytic Formation of CC and CN Bonds: A Facile Route to the Construction of Fluorinated Quaternary Stereogenic Centers. Chemistry - A European Journal, 2011, 17, 3571-3574.	1.7	58
584	In Situ Formed Bifunctional Primary Amine–Imine Catalyst for Asymmetric Aldol Reactions of αâ€Keto Esters. Chemistry - A European Journal, 2011, 17, 8281-8284.	1.7	35
585	Enantioselective Double Aldol Reaction Catalyzed by Chiral Phosphine Oxide. Chemistry - A European Journal, 2011, 17, 7992-7995.	1.7	44
586	Asymmetric Mannich Reaction of Imines Derived from Aliphatic and Aromatic Aldehydes Catalyzed by Diarylprolinol Silyl Ether. Chemistry - A European Journal, 2011, 17, 8273-8276.	1.7	27
587	<scp>L</scp> â€Proline/CoCl ₂ â€Catalyzed Highly Diastereo―and Enantioselective Direct Aldol Reactions. Chemistry - A European Journal, 2011, 17, 11024-11029.	1.7	43
588	Pyrrolidine-linker-camphor assembly: bifunctional organocatalysts for efficient Michael addition of cyclohexanone to nitroolefins under neat conditions. Tetrahedron, 2011, 67, 1171-1177.	1.0	21
589	NH-Isoxazolo-bicycles; new molecular scaffolds for organocatalysis. Tetrahedron, 2011, 67, 2132-2138.	1.0	6
590	A simplified catalytic system for direct catalytic asymmetric aldol reaction of thioamides; application to an enantioselective synthesis of atorvastatin. Tetrahedron, 2011, 67, 6539-6546.	1.0	56
591	The cooperative effect of a hydroxyl and carboxyl group on the catalytic ability of novel β-homoproline derivatives on direct asymmetric aldol reactions. Tetrahedron: Asymmetry, 2011, 22, 226-237.	1.8	10
592	Synthesis of new enantiopure trans-3,4-diaminocaranes from (+)-3-carene. Tetrahedron: Asymmetry, 2011, 22, 603-608.	1.8	8
593	A chiral pyrrolidine-pyrazole catalyst for the enantioselective Michael addition of carbonyls to nitroolefins. Tetrahedron: Asymmetry, 2011, 22, 697-702.	1.8	36
594	A novel trifunctional organocatalyst for the asymmetric aldol reaction: a facile enantioselective synthesis of \hat{l}^2 -hydroxyketones. Tetrahedron: Asymmetry, 2011, 22, 881-886.	1.8	28
595	Simple, inexpensive, and facile l-prolinamide used as a recyclable organocatalyst for highly efficient large-scale asymmetric direct aldol reactions. Tetrahedron: Asymmetry, 2011, 22, 840-850.	1.8	34
596	Direct asymmetric aldol reaction co-catalyzed by l-proline and group 12 elements Lewis acids in the presence of water. Tetrahedron Letters, 2011, 52, 159-162.	0.7	56
597	Toward the optimization of continuous-flow aldol and \hat{l}_{\pm} -amination reactions by means of proline-functionalized silicon packed-bed microreactors. Tetrahedron Letters, 2011, 52, 619-622.	0.7	66
598	Highly effective and enantioselective Michael addition of 4-hydroxycoumarin to $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones promoted by simple chiral primary amine thiourea bifunctional catalysts. Tetrahedron Letters, 2011, 52, 1566-1568.	0.7	43
599	Trichlorosilyl triflate for enantioselective direct-type aldol reaction with chiral phosphine oxide. Tetrahedron Letters, 2011, 52, 2834-2836.	0.7	38

#	Article	IF	CITATIONS
600	Highly efficient bifunctional organocatalysts for the asymmetric Michael addition of ketones to nitroolefins. Tetrahedron Letters, 2011, 52, 3298-3302.	0.7	31
601	Enantioselective organocatalytic aldol reaction of unactivated ketones with isatins. Tetrahedron Letters, 2011, 52, 4080-4083.	0.7	76
602	Recyclable chiral diamine–polyoxometalate (POM) acids catalyzed asymmetric direct aldol reaction of aromatic aldehydes with long-chain aliphatic ketones. Tetrahedron Letters, 2011, 52, 3779-3781.	0.7	18
603	[(1R*,2S*)-N1-Benzyl-2-phenyl-1-(pyridin-2-yl)-N2-(pyridin-2-ylmethyl)ethane-1,2-diamine]dichloridozinc(II). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m337-m338.	0.2	0
604	Developing Novel Organocatalyzed Aldol Reactions for the Enantioselective Synthesis of Biologically Active Molecules. Synthesis, 2011, 2011, 1815-1830.	1.2	12
605	Thiourea Based Fluorous Organocatalyst. Topics in Current Chemistry, 2011, 308, 191-212.	4.0	9
607	Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions. International Journal of Molecular Sciences, 2011, 12, 9083-9094.	1.8	13
608	Organocatalytic tandem Michael addition reactions: A powerful access to the enantioselective synthesis of functionalized chromenes, thiochromenes and 1,2-dihydroquinolines. Beilstein Journal of Organic Chemistry, 2012, 8, 1668-1694.	1.3	103
609	The Synthesis of <i>trans</i> àâ€Perhydroindolic Acids and their Application in Asymmetric Domino Reactions of Aldehyde Esters with β,γâ€Unsaturated αâ€Keto Esters. Advanced Synthesis and Catalysis, 2012, 354, 3311-3325.	2.1	30
610	Active Methylene Compounds in Asymmetric Organocatalytic Synthesis of Natural Products and Pharmaceutical Scaffolds. Current Organic Chemistry, 2012, 16, 2231-2289.	0.9	17
611	Asymmetric organocatalytic decarboxylative Mannich reaction using \hat{l}^2 -keto acids: A new protocol for the synthesis of chiral \hat{l}^2 -amino ketones. Beilstein Journal of Organic Chemistry, 2012, 8, 1279-1283.	1.3	44
612	Asymmetric Aldol Reaction Catalyzed by the Self-assembled Nanostructures of <scp>l</scp> -Proline Containing Amphiphilic Dipeptide: A Morphological Dependence. Chemistry Letters, 2012, 41, 1349-1350.	0.7	11
613	6.3 C–C Bond Formation: Mannich Reaction. , 2012, , 69-96.		4
614	6.22 C–X Bond Formation: Organocatalytic α-Sulfenylation and α-Selenenylation. , 2012, , 518-527.		2
615	Zinc(II) Mediated Imine–Enamine Tautomerization. Organic Letters, 2012, 14, 2698-2701.	2.4	25
616	4.10 Enantioselective Aldol Reactions Catalyzed by Chiral Lewis Bases. , 2012, , 198-209.		1
617	Switching Diastereoselectivity in Proline-Catalyzed Aldol Reactions. Journal of Organic Chemistry, 2012, 77, 10375-10381.	1.7	53
618	Concise Enantioselective Synthesis of Duloxetine via Direct Catalytic Asymmetric Aldol Reaction of Thioamide. Journal of Organic Chemistry, 2012, 77, 4496-4500.	1.7	36

#	Article	IF	CITATIONS
619	Stereodivergence in Amine-Catalyzed Regioselective $[4+2]$ Cycloadditions of \hat{l}^2 -Substituted Cyclic Enones and Polyconjugated Malononitriles. Journal of the American Chemical Society, 2012, 134, 19942-19947.	6.6	107
620	Simple Ionic Liquid Supported <i>C</i> ₂ â€Symmetric Bisprolinamides as Recoverable Organocatalysts for the Asymmetric Aldol Reaction in the Presence of Water. European Journal of Organic Chemistry, 2012, 2012, 7129-7134.	1.2	38
621	TBD/Al2O3: a novel catalytic system for dynamic intermolecular aldol reactions that exhibit complex system behaviour. Organic and Biomolecular Chemistry, 2012, 10, 1976.	1.5	20
622	The roles of benzoic acid and water on the Michael reactions of pentanal and nitrostyrene catalyzed by diarylprolinol silyl ether. Organic and Biomolecular Chemistry, 2012, 10, 6732.	1.5	7
623	Highly efficient asymmetric anti-Mannich reactions of carbonyl compounds with N-carbamoyl imines catalyzed by amino-thiourea organocatalysts. Organic and Biomolecular Chemistry, 2012, 10, 3730.	1.5	19
624	A new synthetic route for axially chiral secondary amines with binaphthyl backbone and their applications in asymmetric Michael reaction of aldehydes to nitroalkenes. Organic and Biomolecular Chemistry, 2012, 10, 3071.	1.5	18
625	New bifunctional organocatalysts based on (R,R)-cyclohexane-1,2-diamine for the asymmetric addition of nucleophiles to aldehydes. Russian Chemical Bulletin, 2012, 61, 51-58.	0.4	2
626	New Hydrazine-Based Organocatalyst for Asymmetric Diels-Alder Reaction of 1,2-Dihydropyridines. Heterocycles, 2012, 84, 1209.	0.4	4
628	A New Family of Conformationally Constrained Bicyclic Diarylprolinol Silyl Ethers as Organocatalysts. Advanced Synthesis and Catalysis, 2012, 354, 3428-3434.	2.1	15
629	Synthesis and Reactions of 2â€[1â€Methylâ€1â€(pyrrolidinâ€2â€yl)ethyl]â€1 <i>H</i> à€pyrrole and Some Deriva Aldehydes: Chiral Structures Combining a Secondaryâ€Amine Group with an 1 <i>H</i> à€Pyrrole Moiety as Excellent Hâ€Bond Donor. Helvetica Chimica Acta, 2012, 95, 2249-2264.	atives with 1.0	2
630	Cloning and characterisation of a new 2-deoxy-d-ribose-5-phosphate aldolase from Rhodococcus erythropolis. Journal of Biotechnology, 2012, 161, 174-180.	1.9	19
631	Chiral-phosphate anion-containing polymers with expanded π-conjugation systems derived from through-space interactions in the piperazinium ring. Reactive and Functional Polymers, 2012, 72, 904-911.	2.0	6
632	A highly active organocatalyst for the asymmetric \hat{l}_{\pm} -aminoxylation of aldehydes and \hat{l}_{\pm} -hydroxylation of ketones. RSC Advances, 2012, 2, 6164.	1.7	11
634	Theoretical Elucidation on the Regio-, Diastereo-, and Enantio-Selectivities of Chiral Primary–Tertiary Diamine Catalyst for Asymmetric Direct Aldol Reactions of Aliphatic Ketones. Journal of Physical Chemistry A, 2012, 116, 7082-7088.	1.1	12
635	Asymmetric Phase-Transfer-Catalyzed Conjugate Addition of Glycine Imine to Exocyclic $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones: Construction of Polycyclic Imines Containing Three Stereocenters. Journal of Organic Chemistry, 2012, 77, 4209-4216.	1.7	26
636	C2-symmetric proline-derived tetraamine as highly effective catalyst for direct asymmetric Michael addition of ketones to chalcones. Organic and Biomolecular Chemistry, 2012, 10, 3721.	1.5	20
637	Gold-Catalyzed Hydrosilyloxylation Driving Tandem Aldol and Mannich Reactions. Organic Letters, 2012, 14, 3912-3915.	2.4	23
638	The direct catalytic asymmetric aldol reaction of \hat{l}_{\pm} -substituted nitroacetates with aqueous formaldehyde under base-free neutral phase-transfer conditions. Organic and Biomolecular Chemistry, 2012, 10, 5753.	1.5	66

#	Article	IF	CITATIONS
639	Proline confined FAU zeolite: heterogeneous hybrid catalyst for the synthesis of spiroheterocycles via a Mannich type reaction. Green Chemistry, 2012, 14, 3344.	4.6	44
640	Chiral alkaline-earth metal catalysts for asymmetric bond-forming reactions. Chemical Science, 2012, 3, 967-975.	3.7	57
641	Pyrrolidine based chiral organocatalyst for efficient asymmetric Michael addition of cyclic ketones to \hat{l}^2 -nitrostyrenes. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4225-4228.	1.0	11
642	Catalytic Asymmetric Synthesis of 3â€Substituted Proline Derivatives by Using Phaseâ€Transferâ€Catalyzed Conjugate Addition. Asian Journal of Organic Chemistry, 2012, 1, 180-186.	1.3	17
644	Highly Efficient Organosuperbaseâ€Catalyzed Mannichâ€type Reactions of Sulfonylimidates with Imines: Successful Use of Aliphatic Imines as Substrates and a Unique Reaction Mechanism. Angewandte Chemie - International Edition, 2012, 51, 9525-9529.	7.2	16
645	Regioselectivityâ€Reversed Asymmetric Aldol Reaction of 1,3â€Dicarbonyl Compounds. Chemistry - A European Journal, 2012, 18, 11899-11903.	1.7	29
646	Asymmetric Aldol Reaction Catalyzed by Modularly Designed Organocatalysts. Chinese Journal of Chemistry, 2012, 30, 2624-2630.	2.6	20
647	(S)-Proline-catalyzed nitro-Michael reactions: towards a better understanding of the catalytic mechanism and enantioselectivity. Organic and Biomolecular Chemistry, 2012, 10, 3229.	1.5	37
648	Silica-supported 5-(pyrrolidin-2-yl)tetrazole: development of organocatalytic processes from batch to continuous-flow conditions. Green Chemistry, 2012, 14, 992.	4.6	68
649	Catalytic asymmetric synthesis of 3-hydroxyoxindole: a potentially bioactive molecule. RSC Advances, 2012, 2, 9748.	1.7	122
650	Acetylphosphonate as a Surrogate of Acetate or Acetamide in Organocatalyzed Enantioselective Aldol Reactions. Organic Letters, 2012, 14, 3174-3177.	2.4	53
651	<i>Anti</i> -Selective Direct Catalytic Asymmetric Aldol Reaction of Thiolactams. Organic Letters, 2012, 14, 3108-3111.	2.4	28
652	Discovery of 2-aminobuta-1,3-enynes in asymmetric organocascade catalysis: construction of drug-like spirocyclic cyclohexanes having five to six contiguous stereocenters. Chemical Communications, 2012, 48, 2252.	2.2	73
653	Stereoselectivities of Histidine-Catalyzed Asymmetric Aldol Additions and Contrasts with Proline Catalysis: A Quantum Mechanical Analysis. Journal of the American Chemical Society, 2012, 134, 6286-6295.	6.6	52
654	Enantioselective Synthesis of 3,4-Dihydropyran Derivatives via Organocatalytic Michael Reaction of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Enones. Journal of Organic Chemistry, 2012, 77, 4136-4142.	1.7	53
655	Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. Chemical Communications, 2012, 48, 5856.	2.2	46
656	Citric acid as a trifunctional organocatalyst for thiocyanation of aromatic and heteroaromatic compounds in aqueous media. Canadian Journal of Chemistry, 2012, 90, 427-432.	0.6	23
657	Synthesis of higher carbon sugars from dihydroxyacetone and d-arabinose: an organocatalytic approach. Tetrahedron: Asymmetry, 2012, 23, 1213-1217.	1.8	8

#	Article	IF	CITATIONS
658	Functionalized mesoporous materials as efficient organocatalysts for the syntheses of xanthenes. Journal of Molecular Catalysis A, 2012, 363-364, 254-264.	4.8	55
659	CHIRAL PRIMARY AMINO SILYL ETHER ORGANOCATALYST FOR THE ENANTIOSELECTIVE DIELS-ALDER REACTION OF 1,2-DIHYDROPYRIDINES WITH AIDEHYDES. Heterocycles, 2012, 86, 1379.	0.4	14
660	Structural and morphological studies of the dipeptide based l-Pro-l-Val organocatalytic gels and their rheological behaviour. Soft Matter, 2012, 8, 8865.	1.2	23
661	Biomimetic catalytic enantioselective decarboxylative aldol reaction of \hat{l}^2 -ketoacids with trifluoromethyl ketones. Chemical Communications, 2012, 48, 4308.	2.2	110
663	<scp>I</scp> - and <scp>d</scp> -Proline Adsorption by Chiral Ordered Mesoporous Silica. Langmuir, 2012, 28, 6638-6644.	1.6	24
664	A proline mimetic for enantioselective aldol reaction: a quantum chemical study of a catalytic reaction with a sterically hindered <scp>l</scp> â€prolinamide derivative. Journal of Physical Organic Chemistry, 2012, 25, 971-978.	0.9	3
665	Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions. Chemical Record, 2012, 12, 391-406.	2.9	52
666	Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chemical Society Reviews, 2012, 41, 3511.	18.7	1,204
667	The Diels–Alder Cyclization of Ketenimines. Organic Letters, 2012, 14, 2191-2193.	2.4	8
668	Stereoselective Synthesis of All Stereoisomers of Orthogonally Protected Cyclobutane-1,2-diamine and Some Chemoselective Transformations. Organic Letters, 2012, 14, 2431-2433.	2.4	20
669	Organocatalytic Michael–Knoevenagel–Hetero-Diels–Alder Reactions: An Efficient Asymmetric One-Pot Strategy to Isochromene Pyrimidinedione Derivatives. Organic Letters, 2012, 14, 448-451.	2.4	41
670	New approach to the preparation of bicyclo octane derivatives via the enantioselective cascade reaction catalyzed by chiral diamine-Ni(OAc)2 complex. Organic and Biomolecular Chemistry, 2012, 10, 4767.	1.5	26
671	Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective Diels–Alder reactions. Green Chemistry, 2012, 14, 2626.	4.6	45
672	Cooperative Asymmetric Catalysis Using Thioamides toward Truly Practical Organic Syntheses. Israel Journal of Chemistry, 2012, 52, 604-612.	1.0	19
673	Isoleucine-Catalyzed Direct Asymmetric Aldol Addition of Enolizable Aldehydes. Organic Letters, 2012, 14, 2180-2183.	2.4	37
674	Structureâ€Reactivity Studies of Simple 4â€Hydroxyprolinamide Organocatalysts in the Asymmetric Michael Addition Reaction of Aldehydes to Nitroolefins. Advanced Synthesis and Catalysis, 2012, 354, 1035-1042.	2.1	20
680	Asymmetric Synthesis of Dihydropyranones from Ynones by Sequential Copper(I)â€Catalyzed Direct Aldol and Silver(I)â€Catalyzed Oxyâ€Michael Reactions. Angewandte Chemie - International Edition, 2012, 51, 3932-3935.	7.2	33
681	A Direct Catalytic Asymmetric Aldol Reaction of αâ€Sulfanyl Lactones: Efficient Synthesis of SPT Inhibitors. Angewandte Chemie - International Edition, 2012, 51, 4218-4222.	7.2	33

#	Article	IF	Citations
682	Rationally Designed Amide Donors for Organocatalytic Asymmetric Michael Reactions. Angewandte Chemie - International Edition, 2012, 51, 5381-5385.	7.2	56
683	Imidazolidinoneâ€Derived Enamines: Nucleophiles with Low Reactivity. Angewandte Chemie - International Edition, 2012, 51, 5739-5742.	7.2	54
684	An Unexpected Promiscuous Activity of 4â€Oxalocrotonate Tautomerase: The <i>cis</i> fi>a€" <i>trans</i> lsomerisation of Nitrostyrene. ChemBioChem, 2012, 13, 1869-1873.	1.3	11
685	Highly Enantioselective Prolineâ€Catalysed Direct Aldol Reaction of Chloroacetone and Aromatic Aldehydes. Chemistry - A European Journal, 2012, 18, 5188-5190.	1.7	29
686	Antituberculosis agent diaportheone B: synthesis, absolute configuration assignment, and anti-TB activity of its analogues. Organic and Biomolecular Chemistry, 2012, 10, 5385.	1.5	23
687	Aromatic hydroxyl groupâ€"a hydrogen bonding activator in bifunctional asymmetric organocatalysis. RSC Advances, 2012, 2, 737-758.	1.7	72
688	Copper-catalyzed highly efficient aerobic oxidative synthesis of imines from alcohols and amines. Green Chemistry, 2012, 14, 1016.	4.6	99
689	Highly efficient asymmetric Michael addition of aldehyde to nitroolefin using perhydroindolic acid as a chiral organocatalyst. Organic and Biomolecular Chemistry, 2012, 10, 2840.	1.5	24
690	Intramolecular Oxidative Diamination and Aminohydroxylation of Olefins under Metal-Free Conditions. Organic Letters, 2012, 14, 1424-1427.	2.4	94
691	d-Glucosamine in a chimeric prolinamide organocatalyst for direct asymmetric aldol addition. Carbohydrate Research, 2012, 356, 273-277.	1.1	25
692	Methods for direct alkene diamination, new & Did. Tetrahedron, 2012, 68, 4067-4105.	1.0	136
693	Asymmetric cross aldol addition of isatins with α,β-unsaturated ketones catalyzed by a bifunctional Brønsted acid–Brønsted base organocatalyst. Tetrahedron, 2012, 68, 3843-3850.	1.0	46
694	Enantioselective organocatalytic aldol reaction using small organic molecules. Tetrahedron, 2012, 68, 4541-4580.	1.0	161
695	Remote stereocontrol by the sulfinyl group. Diels–Alder reaction of cyclopentadiene with substituted (S)-[2-(p-tolylsulfinyl)styrenes and (S)-[2-(p-tolylsulfinyl)phenyl] vinyl ketones. Tetrahedron, 2012, 68, 4129-4137.	1.0	2
696	Enantioselective organocatalyzed functionalization of benzothiophene and thiophenecarbaldehyde derivatives. Tetrahedron, 2012, 68, 4773-4781.	1.0	12
697	Organocatalyzed enantioselective aldol reaction of 1H-pyrrole-2,3-diones. Tetrahedron Letters, 2012, 53, 359-362.	0.7	9
698	Chiral sulfamide-catalyzed asymmetric Michael addition of protected 3-hydroxypropanal to \hat{l}^2 -nitrostyrenes. Tetrahedron Letters, 2012, 53, 1878-1881.	0.7	9
699	Core Structureâ€Based Design of Organocatalytic [3+2]â€Cycloaddition Reactions: Highly Efficient and Stereocontrolled Syntheses of 3,3′â€Pyrrolidonyl Spirooxindoles. Chemistry - A European Journal, 2012, 18, 63-67.	1.7	104

#	Article	IF	CITATIONS
700	Enzymatic and Organocatalyzed Asymmetric Aldolization Reactions for the Synthesis of Thiosugar Scaffolds. European Journal of Organic Chemistry, 2012, 2012, 203-210.	1.2	16
701	Dienamine Catalysis: An Emerging Technology in Organic Synthesis. European Journal of Organic Chemistry, 2012, 2012, 865-887.	1.2	234
702	Recent Developments in Asymmetric Organocatalytic Domino Reactions. Advanced Synthesis and Catalysis, 2012, 354, 237-294.	2.1	540
703	Oneâ€pot Chemoenzymatic Synthesis of Chiral 1,3â€Diols Using an Enantioselective Aldol Reaction with Chiral Zn ²⁺ Complex Catalysts and Enzymatic Reduction Using Oxidoreductases with Cofactor Regeneration. Chemistry - an Asian Journal, 2012, 7, 64-74.	1.7	32
704	Bridging between Organocatalysis and Biocatalysis: Asymmetric Addition of Acetaldehyde to βâ€Nitrostyrenes Catalyzed by a Promiscuous Prolineâ€Based Tautomerase. Angewandte Chemie - International Edition, 2012, 51, 1240-1243.	7.2	85
705	Organocatalysis with cysteine derivatives: recoverable and cheap chiral catalyst for direct aldol reactions. Research on Chemical Intermediates, 2012, 38, 195-205.	1.3	12
706	Diastereoselective three-component Mannich reaction catalyzed by silica-supported ferric hydrogensulfate. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2013, 144, 197-203.	0.9	17
707	Application of citric acid as highly efficient and green organocatalyst for multi-component synthesis of indazolo[2,1-b]phthalazine-triones. Journal of the Iranian Chemical Society, 2013, 10, 577-581.	1.2	16
708	A new chiral primary–tertiary diamine-Brønsted acid salt organocatalyst for the highly enantioselective direct anti-aldol and syn-Mannich reactions. Research on Chemical Intermediates, 2013, 39, 1069-1087.	1.3	2
709	A family of novel bifunctional organocatalysts: Highly enantioselective alcoholysis of meso cyclic anhydrides and its application for synthesis of the key intermediate of P2X7 receptor antagonists. Chinese Chemical Letters, 2013, 24, 553-558.	4.8	20
710	An Ecoâ€Friendly Asymmetric Organocatalytic Conjugate Addition of Malonates to α,βâ€Unsaturated Aldehydes: Application on the Synthesis of Chiral Indoles. European Journal of Organic Chemistry, 2013, 2013, 5917-5922.	1.2	21
711	Effect of Phosphorus Amount on the Particle Size and Catalytic Performance of Heterogeneous Nickel(II) Schiff-Base Complex in Aldol Condensation Reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1778-1791.	0.8	1
712	l-Proline: an efficient N,O-bidentate ligand for copper-catalyzed aerobic oxidation of primary and secondary benzylic alcohols at room temperature. Chemical Communications, 2013, 49, 7908.	2,2	63
713	Calixarene-based highly efficient primary amine–thiourea organocatalysts for asymmetric Michael addition of aldehydes to nitrostyrenes. Supramolecular Chemistry, 2013, 25, 292-301.	1.5	29
714	Direct asymmetric aldol addition $\hat{a} \in \hat{a}$ isomerization of $\hat{a} = \hat{a}$ unsaturated \hat{a} butyrolactam with aryl \hat{a} ketoesters: synthesis of MBH-type products. Chemical Communications, 2013, 49, 3300.	2.2	31
715	The Mukaiyama Aldol Reaction: 40â€Years of Continuous Development. Angewandte Chemie - International Edition, 2013, 52, 9109-9118.	7.2	245
716	Electrosteric Activation by using Ionâ€√agged Prolines: A Combined Experimental and Computational Investigation. ChemCatChem, 2013, 5, 2913-2924.	1.8	9
717	l-Proline catalyzed stereoselective synthesis of (E)-methyl-α-indol-2-yl-β-aryl/alkyl acrylates: easy access to substituted carbazoles, γ-carbolines and prenostodione. Organic and Biomolecular Chemistry, 2013, 11, 7084.	1.5	31

#	ARTICLE	IF	CITATIONS
718	Electrostatic Repulsion and Hydrogenâ€Bonding Interactions in a Simple <i>N</i> â€Arylâ€∢scp>Lâ€valinamide Organocatalyst Control the Stereoselectivity in Asymmetric Aldol Reactions. European Journal of Organic Chemistry, 2013, 2013, 6535-6539.	1.2	24
719	Organocatalytic asymmetric cross-aldol reaction of 2-chloroethoxy acetaldehyde: diversity-oriented synthesis of chiral substituted 1,4-dioxanes and morpholines. Tetrahedron: Asymmetry, 2013, 24, 134-141.	1.8	15
720	Synthesis of Specially Designed Probes to Broaden Transketolase Scope. ChemCatChem, 2013, 5, 784-795.	1.8	9
721	Spiro[4,4]â€1,6â€Nonadieneâ€Based Diphosphine Oxides in Lewis Base Catalyzed Asymmetric Doubleâ€Aldol Reactions. Angewandte Chemie - International Edition, 2013, 52, 11054-11058.	7.2	38
724	Deaminative and Decarboxylative Catalytic Alkylation of Amino Acids with Ketones. Angewandte Chemie - International Edition, 2013, 52, 13651-13655.	7.2	29
725	Direct αâ€Vinylidenation of Aldehydes and Subsequent Cascade: Gold and Amine Catalysts Work Synergistically. Angewandte Chemie - International Edition, 2013, 52, 14219-14223.	7.2	74
726	Substituent Effect of Bis(pyridines)iodonium Complexes as Iodinating Reagents: Control of the Iodocyclization/Oxidation Process. Chemistry - A European Journal, 2013, 19, 4992-4996.	1.7	54
727	Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study. Journal of Molecular Structure, 2013, 1049, 149-156.	1.8	6
728	Primary and secondary amine-(thio)ureas and squaramides andÂtheir applications in asymmetric organocatalysis. Tetrahedron, 2013, 69, 10199-10222.	1.0	143
729	Direct catalytic asymmetric addition of acetonitrile to N-thiophosphinoylimines. Chemical Communications, 2013, 49, 11227.	2.2	49
730	Proline-Catalyzed Asymmetric Synthesis of <i>syn</i> and <i>anti</i> -1,3-Diamines. Journal of Organic Chemistry, 2013, 78, 11756-11764.	1.7	22
731	Organocatalytic Reactions of α-Trifluoromethylated Esters with Terminal Alkenes at Room Temperature. Journal of Organic Chemistry, 2013, 78, 12525-12531.	1.7	17
732	A chiral primary-tertiary-1,2-diamine as an efficient catalyst in asymmetric aldehyde–ketone or ketone–ketone aldol reactions. Tetrahedron: Asymmetry, 2013, 24, 1556-1561.	1.8	16
733	Direct asymmetric Michael addition of ketones to chalcones catalyzed by a hydroxyphthalimide derived triazole–pyrrolidine. Tetrahedron: Asymmetry, 2013, 24, 1615-1619.	1.8	20
734	Two-step synthesis and biological evaluation of calyxamines A and B. Tetrahedron Letters, 2013, 54, 6852-6854.	0.7	3
735	Telaprevir fragments as organocatalysts in asymmetric direct aldol reactions of aldehydes. Russian Journal of General Chemistry, 2013, 83, 2447-2452.	0.3	0
736	A Magnetoclick Imidazolidinone Nanocatalyst for Asymmetric 1,3â€Dipolar Cycloadditions. Advanced Synthesis and Catalysis, 2013, 355, 3532-3538.	2.1	38
738	Asymmetric aldol reactions between cyclic ketones and benzaldehyde catalyzed by chiral Zn2+ complexes of aminoacyl 1,4,7,10-tetraazacyclododecane: effects of solvent and additives on the stereoselectivities of the aldol products. Tetrahedron: Asymmetry, 2013, 24, 1583-1590.	1.8	11

#	Article	IF	Citations
739	Synthesis of planar chiral [2.2]paracyclophane-based amino thioureas and their application in asymmetric aldol reactions of ketones with isatins. Tetrahedron: Asymmetry, 2013, 24, 1082-1088.	1.8	23
740	Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angewandte Chemie - International Edition, 2013, 52, 12143-12147.	7.2	107
741	THE REACTION MECHANISMS OF ALDEHYDES AND NITROSTYRENE CATALYZED BY A CHIRAL SILYLATED PYRROLIDINE CATALYST. Journal of Theoretical and Computational Chemistry, 2013, 12, 1350004.	1.8	0
742	Multicomponent Combinatorial Development and Conformational Analysis of Prolyl Peptide–Peptoid Hybrid Catalysts: Application in the Direct Asymmetric Michael Addition. Journal of Organic Chemistry, 2013, 78, 10221-10232.	1.7	40
744	Organocatalytic Activation of Alkylacetic Esters as Enolate Precursors to React with \hat{l}_{\pm},\hat{l}^2 -Unsaturated Imines. Organic Letters, 2013, 15, 4956-4959.	2.4	91
745	Various Polar Tripeptides as Asymmetric Organocatalyst in Direct Aldol Reactions in Aqueous Media. Chirality, 2013, 25, 726-734.	1.3	28
746	<i>In Situ</i> Formed Bifunctional Primary Amineâ€Imine Catalyst: Application to the Construction of Chiral Tertiary Alcohols through Asymmetric Aldolâ€Type Reaction. Advanced Synthesis and Catalysis, 2013, 355, 2029-2036.	2.1	16
747	Tandem Goldâ€Catalyzed Hydrosilyloxylation–Aldol and –Mannich Reaction with Alkynylaryloxysilanols in 6â€ <i>exo</i> Mode. Advanced Synthesis and Catalysis, 2013, 355, 1585-1596.	2.1	12
748	Enantioselective Aldol Reactions Catalyzed by Chiral Phosphine Oxides. Chemical Record, 2013, 13, 362-370.	2.9	40
749	l-Proline catalyzed highly efficient synthesis of Z-5-alkylidene cyclic sulfamidate imines: an easy access to 5-alkyl-substituted cyclic sulfamidate imines. RSC Advances, 2013, 3, 11502.	1.7	17
750	Basic chiral ionic liquids: A novel strategy for acid-free organocatalysis. Catalysis Today, 2013, 200, 80-86.	2,2	29
751	Direct α-Functionalization of Simple Aldehydes via Oxidative N-Heterocyclic Carbene Catalysis. Organic Letters, 2013, 15, 50-53.	2.4	107
752	Asymmetric trienamine catalysis: new opportunities in amine catalysis. Organic and Biomolecular Chemistry, 2013, 11, 709-716.	1.5	131
7 53	Proline Catalyzed α-Aminoxylation Reaction in the Synthesis of Biologically Active Compounds. Accounts of Chemical Research, 2013, 46, 289-299.	7.6	79
754	An effective heterogeneous l-proline catalyst for the direct asymmetric aldol reaction using graphene oxide as support. Journal of Catalysis, 2013, 298, 138-147.	3.1	77
755	Advances in serinals for asymmetric synthesis. Tetrahedron, 2013, 69, 969-1011.	1.0	19
756	Controlled \hat{l}^2 -protonation and [4+2] cycloaddition of enals and chalconesvia N-heterocyclic carbene/acid catalysis: toward substrate independent reaction control. Chemical Communications, 2013, 49, 261-263.	2.2	107
757	Unique properties of chiral biaryl-based secondary aminecatalysts for asymmetric enamine catalysis. Chemical Science, 2013, 4, 907-915.	3.7	39

#	Article	IF	CITATIONS
758	Organocatalytic Direct Asymmetric Crossed-Aldol Reactions of Acetaldehyde in Aqueous Media. Journal of Organic Chemistry, 2013, 78, 2693-2697.	1.7	46
759	Tuning the catalytic activity of <scp>I</scp> -proline functionalized hydrophobic nanogel particles in water. Chemical Science, 2013, 4, 965-969.	3.7	61
760	Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemical Reviews, 2013, 113, 2958-3043.	23.0	324
761	Stereoselective Synthesis of Multiple Stereocenters by Using a Double Aldol Reaction. Angewandte Chemie - International Edition, 2013, 52, 3461-3464.	7.2	48
762	Promiscuous Catalysis of Asymmetric Michaelâ€Type Additions of Linear Aldehydes to βâ€Nitrostyrene by the Prolineâ€Based Enzyme 4â€Oxalocrotonate Tautomerase. ChemBioChem, 2013, 14, 191-194.	1.3	40
763	An expedient domino three-component [3+2]-cycloaddition/annulation protocol: regio- and stereoselective assembly of novel polycyclic hybrid heterocycles with five contiguous stereocentres. Tetrahedron Letters, 2013, 54, 7044-7048.	0.7	11
764	Adsorption of l-phenylalanine onto mesoporous silica. Materials Chemistry and Physics, 2013, 142, 586-593.	2.0	35
766	Antibody-catalyzed decarboxylation and aldol reactions using a primary amine molecule as a functionalized small nonprotein component. Bioorganic and Medicinal Chemistry, 2013, 21, 7011-7017.	1.4	4
767	Four Metalloporphyrinic Frameworks as Heterogeneous Catalysts for Selective Oxidation and Aldol Reaction. Inorganic Chemistry, 2013, 52, 3620-3626.	1.9	78
769	Streamlined Catalytic Asymmetric Synthesis of Atorvastatin. Chemistry - A European Journal, 2013, 19, 3802-3806.	1.7	40
770	Synthesis of the atropurpuran A-ring via an organocatalytic asymmetric intramolecular Michael addition. Tetrahedron, 2013, 69, 3141-3148.	1.0	18
771	Synergistic effects within a C2-symmetric organocatalyst: the potential formation of a chiral catalytic pocket. Organic and Biomolecular Chemistry, 2013, 11, 2951.	1.5	17
772	A Branched Domino Reaction: Asymmetric Organocatalytic Twoâ€Component Fourâ€6tep Synthesis of Polyfunctionalized Cyclohexene Derivatives. Angewandte Chemie - International Edition, 2013, 52, 2977-2980.	7.2	102
773	Thermoresponsive Polymer-Supported <scp>l</scp> -Proline Micelle Catalysts for the Direct Asymmetric Aldol Reaction in Water. ACS Macro Letters, 2013, 2, 327-331.	2.3	128
774	Recent Developments in Amineâ€catalyzed Nonâ€asymmetric Transformations. Asian Journal of Organic Chemistry, 2013, 2, 542-557.	1.3	30
775	A short and enantioselective preparation of taxol A-ring fragment. Tetrahedron Letters, 2013, 54, 1888-1892.	0.7	8
776	Terpeneâ€Derived Bifunctional Thioureas in Asymmetric Organocatalysis. ChemCatChem, 2013, 5, 2756-2773.	1.8	65
777	Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction. ACS Catalysis, 2013, 3, 265-271.	5.5	54

#	Article	IF	CITATIONS
778	Benzoylthiourea–Pyrrolidine as Another Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins. European Journal of Organic Chemistry, 2013, 2013, 2977-2980.	1.2	28
779	cis-Enals in N-heterocyclic carbene-catalyzed reactions: distinct stereoselectivity and reactivity. Chemical Science, 2013, 4, 2613.	3.7	67
780	Density Functional Study of Organocatalytic Cross-Aldol Reactions between Two Aliphatic Aldehydes: Insight into Their Functional Differentiation and Origins of Chemo- and Stereoselectivities. Journal of Physical Chemistry A, 2013, 117, 2862-2872.	1.1	14
781	Asymmetric Michael Reaction Catalyzed by Proline Lithium Salt: Efficient Synthesis of <scp>L</scp> â€Proline and Isoindoloisoquinolinone Derivatives. Chemistry - A European Journal, 2013, 19, 3573-3578.	1.7	50
782	Direct Catalytic Asymmetric Addition of Allylic Cyanides to Aldehydes for Expeditious Access to Enantioenriched Unsaturated Î'â€Valerolactones. Chemistry - an Asian Journal, 2013, 8, 354-358.	1.7	31
784	Direct βâ€Activation of Saturated Aldehydes to Formal Michael Acceptors through Oxidative NHC Catalysis. Angewandte Chemie - International Edition, 2013, 52, 8588-8591.	7.2	142
785	Asymmetric Aldol Reactions between Acetone and Benzaldehydes Catalyzed by Chiral Zn ²⁺ Complexes of Aminoacyl 1,4,7,10â€Tetraazacyclododecane: Fineâ€Tuning of the Aminoâ€Acid Side Chains and a Revised Reaction Mechanism. Chemistry - an Asian Journal, 2013, 8, 2125-2135.	1.7	12
786	l-Proline catalyzed one pot synthesis of α-aminonitriles. Tetrahedron Letters, 2013, 54, 3797-3800.	0.7	14
787	Stoichiometric Reactions of Enamines Derived from Diphenylprolinol Silyl Ethers with Nitro Olefins and Lessons for the Corresponding Organocatalytic Conversions – a Survey. Helvetica Chimica Acta, 2013, 96, 799-852.	1.0	75
788	Organosuperbaseâ€catalyzed Directâ€type Michael Addition Reactions of Sulfonylimidates as Ester Surrogates. Asian Journal of Organic Chemistry, 2013, 2, 303-306.	1.3	1
789	Asymmetric Construction of Spirocyclopentenebenzofuranone Core Structures via Highly Selective Phosphine-Catalyzed [3 + 2] Cycloaddition Reactions. Organic Letters, 2013, 15, 2958-2961.	2.4	47
790	Highly Enantioselective Construction of 3â€Hydroxy Oxindoles through a Decarboxylative Aldol Addition of Trifluoromethyl αâ€Fluorinated <i>gem</i> â€Diols to <i>N</i> â€Benzyl Isatins. Angewandte Chemie - International Edition, 2013, 52, 5566-5570.	7.2	99
791	Organocatalytic Synthesis of Highly Functionalized Pyridines at Room Temperature. Angewandte Chemie - International Edition, 2013, 52, 8584-8587.	7.2	77
792	Multifunctional "Click―Prolinamides: A New Platform for Asymmetric Aldol Reactions in the Presence of Water with Catalyst Recycling. Advanced Synthesis and Catalysis, 2013, 355, 274-280.	2.1	16
793	An organocatalytic approach to stereoselective synthesis of 2-hydroxyazetidines and 2-hydroxypyrrolidines. Tetrahedron Letters, 2013, 54, 3127-3131.	0.7	12
794	Additive-controlled regioselective direct asymmetric aldol reaction of hydroxyacetone and aldehyde. Tetrahedron: Asymmetry, 2013, 24, 533-542.	1.8	10
795	Adsorption of NH ₂ on Graphene in the Presence of Defects and Adsorbates. Journal of Physical Chemistry C, 2013, 117, 2793-2798.	1.5	40
796	Beyond Classical Reactivity Patterns: Shifting from 1,4- to 1,6-Additions in Regio- and Enantioselective Organocatalyzed Vinylogous Reactions of Olefinic Lactones with Enals and 2,4-Dienals. Journal of the American Chemical Society, 2013, 135, 8063-8070.	6.6	147

#	Article	IF	CITATIONS
797	Substituents effect on the electronic structure and molecular properties of bis[organohydrazido(2â^')] molybdenum(VI) complexes. Polyhedron, 2013, 61, 27-32.	1.0	2
798	A facile synthesis of 5,5â€dideuteroâ€4â€dimethyl(phenyl)silylâ€6â€undecylâ€tetrahydropyranâ€2â€one as a deu labeled synthon for (â^²)â€tetrahydrolipstatin and (+)â€Îâ€hexadecanolide. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 649-654.	uterium 0.5	8
799	On the Michael Addition of Water to α,βâ€Unsaturated Ketones Using Amino Acids. European Journal of Organic Chemistry, 2013, 2013, 7697-7704.	1.2	32
801	Chiral Ca-, Sr-, and Ba-Catalyzed Asymmetric Direct-Type Aldol, Michael, Mannich, and Related Reactions. Topics in Organometallic Chemistry, 2013, , 243-270.	0.7	21
802	Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angewandte Chemie, 2013, 125, 12365-12369.	1.6	87
803	Asymmetric Aldol Reaction on Water Using an Organocatalyst Tethered on a Thermoresponsive Block Copolymer. Chemistry Letters, 2013, 42, 1493-1495.	0.7	15
804	40 Jahre Mukaiyamaâ€Aldolreaktion: eine Erfolgsgeschichte. Angewandte Chemie, 2013, 125, 9280-9289.	1.6	65
805	An Organocatalyzed Asymmetric Michael Addition of Cyclic Ketones to 1,3â€Dieneâ€1,1â€dicarboxylates. European Journal of Organic Chemistry, 2013, 2013, 6167-6174.	1.2	10
806	Chiral Primaryâ€Amineâ€Catalyzed Conjugate Addition to αâ€Substituted Vinyl Ketones/Aldehydes: Divergent Stereocontrol Modes on Enamine Protonation. Chemistry - A European Journal, 2013, 19, 15669-15681.	1.7	28
812	Organocatalyzed stereospecific C–C bond formation of β-lactams. Organic and Biomolecular Chemistry, 2013, 11, 8294-8297.	1.5	12
813	A new charge-tagged proline-based organocatalyst for mechanistic studies using electrospray mass spectrometry. Beilstein Journal of Organic Chemistry, 2014, 10, 2027-2037.	1.3	11
814	The Asymmetric Catalytic Mannich Reaction Catalyzed by Organocatalyst ^ ^mdash; A Personal Account ^ ^mdash;. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1228-1238.	0.0	13
818	Asymmetric Organocatalysis at the Service of Medicinal Chemistry. ISRN Organic Chemistry, 2014, 2014, 1-29.	1.0	16
819	Catalytic Generation of \hat{l}_{\pm} -CF ₃ Enolate: Direct Catalytic Asymmetric Mannich-Type Reaction of \hat{l}_{\pm} -CF ₃ Amide. Journal of the American Chemical Society, 2014, 136, 17958-17961.	6.6	90
820	Pyrrolidine-oxyimides: new chiral catalysts for enantioselective Michael addition of ketones to nitroolefins in water. Tetrahedron: Asymmetry, 2014, 25, 1555-1560.	1.8	24
821	Primaryâ€Tertiary Diamine/BrâŠ~nsted Acid Catalyzed <i>α</i> â€Allylation of Carbonyl Compounds with Allylic Alcohols. Chinese Journal of Chemistry, 2014, 32, 673-677.	2.6	2
822	Metal-free synthesis of cyano acrylates via cyanuric chloride-mediated three-component reactions involving a cascade consists of Knoevenagel condensation/cyano hydration/esterification. RSC Advances, 2014, 4, 63997-64000.	1.7	13
823	Enzyme promiscuity: using the dark side of enzyme specificity in white biotechnology. Sustainable Chemical Processes, 2014, 2, .	2.3	31

#	Article	IF	Citations
824	Silanolâ€Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. ChemCatChem, 2014, 6, 255-264.	1.8	48
825	An easy route to exotic 9-epimers of 9-amino-(9-deoxy) cinchona alkaloids with (8S, 9R) and (8R,) Tj ETQq1 1 0.78 557-560.	4314 rgB7 4.8	「/Overlock 7
826	Uncatalyzed synthesis of 3-amino-1,5-dihydro-2H-pyrrol-2-ones. Research on Chemical Intermediates, 2014, 40, 2059-2074.	1.3	5
827	Phthalimido-prolinamide: a new chiral catalyst for solvent free enantioselective aldol reactions. Tetrahedron: Asymmetry, 2014, 25, 457-461.	1.8	25
828	l-Proline catalyzed multicomponent one-pot synthesis of gem-diheteroarylmethane derivatives using facile grinding operation under solvent-free conditions at room temperature. RSC Advances, 2014, 4, 7380.	1.7	65
829	Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Brønsted Acid. Angewandte Chemie - International Edition, 2014, 53, 3684-3687.	7.2	114
830	Asymmetric Henry reaction catalysed by Lâ€proline derivatives in the presence of Cu(OAc) ₂ : isolation and characterization of an ⟨i⟩in situ⟨/i⟩ formed Cu(II) complex. Applied Organometallic Chemistry, 2014, 28, 290-297.	1.7	20
831	Sugar amide-pyrrolidine catalyst for the asymmetric Michael addition of ketones to nitroolefins. Tetrahedron: Asymmetry, 2014, 25, 473-477.	1.8	26
832	A Baseâ€Free Neutral Phaseâ€Transfer Reaction System. Chemistry - an Asian Journal, 2014, 9, 1586-1593.	1.7	36
833	Tailoring the Cooperative Acid–Base Effects in Silicaâ€Supported Amine Catalysts: Applications in the Continuous Gasâ€Phase Selfâ€Condensation of <i>n</i>	1.8	28
834	A Designed Amide as an Aldol Donor in the Direct Catalytic Asymmetric Aldol Reaction. Angewandte Chemie - International Edition, 2014, 53, 6150-6154.	7.2	59
835	Highly efficient asymmetric organocatalytic Michael addition of $\hat{l}\pm,\hat{l}\pm$ -disubstituted aldehydes to nitroolefins under solvent-free conditions. Tetrahedron Letters, 2014, 55, 3030-3032.	0.7	17
836	Catalysis by metal–organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions. RSC Advances, 2014, 4, 13093-13107.	1.7	66
837	<i>N</i> -Bromosuccinimide-Induced Aminocyclization–Aziridine Ring-Expansion Cascade: An Asymmetric and Highly Stereoselective Approach toward the Synthesis of Azepane. Organic Letters, 2014, 16, 2134-2137.	2.4	37
838	Cyclic Aldimines as Superior Electrophiles for Cu-Catalyzed Decarboxylative Mannich Reaction of \hat{l}^2 -Ketoacids with a Broad Scope and High Enantioselectivity. Organic Letters, 2014, 16, 2542-2545.	2.4	85
839	Stereospecific Synthesis of Pyrrolidines with Varied Configurations via 1,3-Dipolar Cycloadditions to Sugar-Derived Enones. Journal of Organic Chemistry, 2014, 79, 4992-5006.	1.7	18
841	Design of Peptidyl Thiourea Derivatives as Organocatalysts for the Asymmetric Ring Opening of <i>meso</i> å∈€tilbene Oxides. Asian Journal of Organic Chemistry, 2014, 3, 700-705.	1.3	12
842	Physicochemical and sorption properties of multi-walled carbon nanotubes decorated with silver nanoparticles. Chemical Engineering Journal, 2014, 250, 295-302.	6.6	11

#	Article	IF	CITATIONS
843	Enantioselective Copper(I/II)â€Catalyzed Conjugate Addition of Nitro Esters to β,γâ€Unsaturated αâ€Ketoesters. Chemistry - A European Journal, 2014, 20, 979-982.	1.7	43
844	Organocatalytic Asymmetric Assembly Reactions: Synthesis of Spirooxindoles via Organocascade Strategies. ACS Catalysis, 2014, 4, 743-762.	5.5	735
845	Immobilization of Proline onto Al-SBA-15 for C–C Bond-Forming Reactions. ACS Sustainable Chemistry and Engineering, 2014, 2, 925-933.	3.2	29
846	2-Arylacetic anhydrides as ammonium enolate precursors. Organic and Biomolecular Chemistry, 2014, 12, 624-636.	1.5	50
847	Chiral Metal–Organic Frameworks Bearing Free Carboxylic Acids for Organocatalyst Encapsulation. Angewandte Chemie - International Edition, 2014, 53, 13821-13825.	7.2	88
848	Thiol-Promoted Selective Addition of Ketones to Aldehydes. Organic Letters, 2014, 16, 5922-5925.	2.4	13
849	Convenient synthesis of \hat{l} ±-nitrooximes mediated by OXONE ^{\hat{A}®} . RSC Advances, 2014, 4, 59726-59732.	1.7	7
850	Recent advances in the synthesis of naturally occurring pyrrolidines, pyrrolizidines and indolizidine alkaloids using proline as a unique chiral synthon. RSC Advances, 2014, 4, 5405.	1.7	127
851	Catalyzed formation of \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones or aldehydes from propargylic acetates by a recoverable and recyclable nanocluster catalyst. Nanoscale, 2014, 6, 5714.	2.8	30
852	Upper rim-functionalized calix[4]arene-based l-proline as organocatalyst for direct asymmetric aldol reactions in water and organic media. Tetrahedron, 2014, 70, 9307-9313.	1.0	27
853	Exploring the Aldol Reaction using Catalytic Antibodies and "OnÂWater―Organocatalysts from QM/MM Calculations. Journal of the American Chemical Society, 2014, 136, 147-156.	6.6	22
854	Organocatalytic stereoselective approach to the total synthesis of (â^')-halosaline. RSC Advances, 2014, 4, 3238-3244.	1.7	17
856	Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation. Chemical Science, 2014, 5, 1988.	3.7	91
857	Chiral primary amine catalysed asymmetric conjugate addition of azoles to α-substituted vinyl ketones. Organic Chemistry Frontiers, 2014, 1, 68-72.	2.3	29
858	The effects of interactions between proline and carbon nanostructures on organocatalysis in the Hajos–Parrish–Eder–Sauer–Wiechert reaction. Nanoscale, 2014, 6, 11141-11146.	2.8	3
859	Enantioselective Diels–Alder Reaction of 1,2-Dihydropyridines with Aldehydes Using β-Amino Alcohol Organocatalyst. Journal of Organic Chemistry, 2014, 79, 9500-9511.	1.7	38
860	Carlos F. Barbas III (1964–2014): Visionary at the Interface of Chemistry and Biology. ACS Chemical Biology, 2014, 9, 1645-1646.	1.6	O
861	Part I: Nitroalkenes in the synthesis of heterocyclic compounds. RSC Advances, 2014, 4, 48022-48084.	1.7	106

#	Article	IF	CITATIONS
862	Asymmetric Diels–Alder Reaction of 3-Olefinic Benzofuran-2-ones and Polyenals: Construction of Chiral Spirocyclic Benzofuran-2-ones. Organic Letters, 2014, 16, 114-117.	2.4	47
863	Peptidomimetic organocatalysts: efficient Michael addition of ketones onto nitroolefins with very low catalyst loading. RSC Advances, 2014, 4, 30325-30331.	1.7	24
864	Exclusive Selectivity in the One-Pot Formation of C–C and C–Se Bonds Involving Ni-Catalyzed Alkyne Hydroselenation: Optimization of the Synthetic Procedure and a Mechanistic Study. Journal of Organic Chemistry, 2014, 79, 12111-12121.	1.7	22
865	Exploring the Activation Modes of a Rotaxane-Based Switchable Organocatalyst. Journal of the American Chemical Society, 2014, 136, 15775-15780.	6.6	105
866	An efficient three-component synthesis of highly functionalized tetrahydroacenaphtho [1,2-\$\$b\$\$ b]indolone derivatives catalyzed by L-proline. Molecular Diversity, 2014, 18, 727-736.	2.1	15
867	Enantioselective aldol reactions of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones with trifluoroacetophenone catalyzed by a chiral primary amine. Tetrahedron: Asymmetry, 2014, 25, 949-955.	1.8	22
868	Iterative Direct Aldol Strategy for Polypropionates: Enantioselective Total Synthesis of (a^')-Membrenone A and B. Organic Letters, 2014, 16, 5301-5303.	2.4	17
869	Chiral Counteranion Strategy for Asymmetric Oxidative C(sp ³)H/C(sp ³)H Coupling: Enantioselective ݱâ€Allylation of Aldehydes with Terminal Alkenes. Angewandte Chemie - International Edition, 2014, 53, 12218-12221.	7.2	211
870	6.18 Eliminations to Form Alkenes, Allenes, and Alkynes and Related Reactions. , 2014, , 802-841.		1
871	2.16 The Bimolecular and Intramolecular Mannich and Related Reactions. , 2014, , 629-681.		9
872	AZT-prolinamide: the nucleoside derived pyrrolidine catalysts for asymmetric aldol reactions using water as solvent. Tetrahedron: Asymmetry, 2014, 25, 1340-1345.	1.8	16
873	Organocatalytic aldol and domino Michael-aldol reactions of $\hat{l}_{\pm},\hat{l}_{\pm}$ -difluoro- \hat{l}_{\pm} -keto esters with acetone. Journal of Fluorine Chemistry, 2014, 165, 61-66.	0.9	4
874	The Lewis acid-catalyzed $[3+1+1]$ cycloaddition of azomethine ylides with isocyanides. Tetrahedron, 2014, 70, 6623-6629.	1.0	34
875	Highly Enantioselective Crossâ€Aldol Reactions of Acetaldehyde Mediated by a Dual Catalytic System Operating under Site Isolation. Chemistry - A European Journal, 2014, 20, 13089-13093.	1.7	23
876	Asymmetric Michael addition of aldehydes to nitroolefins catalyzed by a pyrrolidine–pyrazole. Tetrahedron: Asymmetry, 2014, 25, 1286-1291.	1.8	12
877	Enantioselective Michael addition of $\hat{l}\pm,\hat{l}\pm$ -disubstituted aldehydes to nitroolefins catalyzed by a pyrrolidine-pyrazole. Tetrahedron: Asymmetry, 2014, 25, 1129-1132.	1.8	14
878	Transition-Metal-Free Coupling Reactions. Chemical Reviews, 2014, 114, 9219-9280.	23.0	903
879	Asymmetric Michael addition of ketones to nitroolefins: pyrrolidinyl-oxazole-carboxamides as new efficient organocatalysts. Organic and Biomolecular Chemistry, 2014, 12, 8008-8018.	1.5	24

#	Article	IF	CITATIONS
880	Organocatalytic Asymmetric Mannich Cyclization of Hydroxylactams with Acetals: Total Syntheses of (â°)â€Epilupinine, (â°)â€Tashiromine, and (â°)â€Trachelanthamidine. Angewandte Chemie - International Edition, 2014, 53, 13196-13200.	7.2	52
881	New class of bifunctional thioureas from l-proline: highly enantioselective Michael addition of 1,3-dicarbonyls to nitroolefins. Tetrahedron: Asymmetry, 2014, 25, 568-577.	1.8	34
882	<scp>I</scp> -Proline-Grafted Mesoporous Silica with Alternating Hydrophobic and Hydrophilic Blocks to Promote Direct Asymmetric Aldol and Knoevenagel–Michael Cascade Reactions. ACS Catalysis, 2014, 4, 2566-2576.	5. 5	66
883	Highly efficient asymmetric Michael addition of aldehydes to nitroalkenes with 4,5-methano-l-proline as organocatalysts. Tetrahedron, 2014, 70, 8380-8384.	1.0	25
884	î±-Ketophosphonates as Ester Surrogates: Isothiourea-Catalyzed Asymmetric Diester and Lactone Synthesis. Organic Letters, 2014, 16, 2506-2509.	2.4	47
885	Quantum mechanical investigations on the role of neutral and negatively charged enamine intermediates in organocatalyzed reactions. Chemical Physics, 2014, 434, 30-36.	0.9	9
886	Theoretical investigation on the chemo- and stereoselectivities of isoleucine-catalyzed cross-aldol reactions between two enolizable aldehydes involving isobutyraldehyde and contrasts with proline catalysis. Tetrahedron: Asymmetry, 2014, 25, 418-428.	1.8	2
887	Synthesis and Characterization of Binary-Complex Models of Ureas and 1,3-Dicarbonyl Compounds: Deeper Insights into Reaction Mechanisms Using Snap-Shot Structural Analysis. Journal of Organic Chemistry, 2014, 79, 1805-1817.	1.7	36
888	Proline-catalyzed asymmetric Diels–Alder reactions of an o-quinodimethane. Tetrahedron Letters, 2014, 55, 4095-4097.	0.7	7
889	A Greener, Efficient Approach to Michael Addition of Barbituric Acid to Nitroalkene in Aqueous Diethylamine Medium. Molecules, 2014, 19, 1150-1162.	1.7	19
893	Construction of Diverse and Functionalized 2 <i>H</i> à€Chromenes by Organocatalytic Multicomponent Reactions. European Journal of Organic Chemistry, 2015, 2015, 5212-5220.	1.2	23
894	Prolineâ€Catalyzed Cyclization Reaction for the Synthesis of Naphthostyrils: Application to the Total Synthesis of Prioline. Advanced Synthesis and Catalysis, 2015, 357, 3197-3205.	2.1	5
896	Silyloxy Amino Alcohol Organocatalyst for Enantioselective 1,3â€Dipolar Cycloaddition of Nitrones to α,βâ€Unsaturated Aldehydes. European Journal of Organic Chemistry, 2015, 2015, 7292-7300.	1.2	28
897	A Modularly Designed Supramolecular Organocatalyst as an Effective Stimulant for the Highly Asymmetric Michael Addition of Ketones to Nitro Olefins. European Journal of Organic Chemistry, 2015, 2015, 6413-6418.	1.2	20
898	A New Strategy for Enantioselective Construction of Multisubstituted Fiveâ€Membered Oxygen Heterocycles via a Domino Michael/Hemiketalization Reaction. Chemistry - A European Journal, 2015, 21, 11994-11998.	1.7	57
899	Crossâ€Aldol Reaction of Isatin with Acetone Catalyzed by Leucinol: A Mechanistic Investigation. Chemistry - A European Journal, 2015, 21, 12026-12033.	1.7	15
902	Chiral Primary Amino Amide Alcohol Organocatalyst for the Asymmetric Michael Addition of 4-Hydroxycoumarin with \hat{l}_{\pm},\hat{l}^2 -Unsaturated Ketones. Heterocycles, 2015, 90, 1124.	0.4	8
903	Synthesis and properties of novel helical 3-vinylpyridine polymers containing proline moieties for asymmetric aldol reaction. RSC Advances, 2015, 5, 52410-52419.	1.7	13

#	Article	IF	CITATIONS
904	Catalytic Upgrading of Biomassâ€Derived Methyl Ketones to Liquid Transportation Fuel Precursors by an Organocatalytic Approach. Angewandte Chemie - International Edition, 2015, 54, 4673-4677.	7.2	63
905	Highly modular dipeptide-like organocatalysts for direct asymmetric aldol reactions in brine. RSC Advances, 2015, 5, 39557-39564.	1.7	18
906	Direct Catalytic Asymmetric Mannich-Type Reaction of \hat{l}_{\pm} - and \hat{l}_{\pm} -Fluorinated Amides. Journal of the American Chemical Society, 2015, 137, 15929-15939.	6.6	109
907	Design of a Simple Organocatalysts for Asymmetric Direct Aldol Reactions in Aqueous Medium. Catalysis Letters, 2015, 145, 1750-1755.	1.4	7
908	Aldol reactions of 1,2-diketones catalyzed by amines to afford furanose derivatives. Tetrahedron Letters, 2015, 56, 735-738.	0.7	4
909	Functionalized \hat{l}_{\pm} -oximinoketones as building blocks for the construction of imidazoline-based potential chiral auxiliaries. Tetrahedron: Asymmetry, 2015, 26, 230-246.	1.8	7
910	Homochiral l-prolinamido-sulfonamides and their use as organocatalysts in aldol reactions. Tetrahedron: Asymmetry, 2015, 26, 163-172.	1.8	17
911	ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes. Accounts of Chemical Research, 2015, 48, 688-701.	7.6	170
912	Equilibrium Acidities of Proline Derived Organocatalysts in DMSO. Organic Letters, 2015, 17, 1196-1199.	2.4	25
913	Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 2015, 137, 1706-1725.	6.6	271
914	Remote Substituent Effects on the Stereoselectivity and Organocatalytic Activity of Densely Substituted Unnatural Proline Esters in Aldol Reactions. European Journal of Organic Chemistry, 2015, 2015, 2503-2516.	1.2	23
915	Optically active, magnetic microspheres: Constructed by helical substituted polyacetylene with pendent prolineamide groups and applied as catalyst for Aldol reaction. Reactive and Functional Polymers, 2015, 93, 10-17.	2.0	9
916	Organocatalyzed synthesis of $(\hat{a}^{"})$ -4-epi-fagomine and the corresponding pipecolic acids. Tetrahedron, 2015, 71, 6784-6789.	1.0	8
917	One-pot synthesis of functionalized 4-hydroxy-3-thiomethylcoumarins: detection and discrimination of Co ²⁺ and Ni ²⁺ ions. RSC Advances, 2015, 5, 57749-57756.	1.7	13
918	An Efficient Entry to <i>syn</i> - and <i>anti</i> -Selective Isoindolinones via an Organocatalytic Direct Mannich/Lactamization Sequence. Organic Letters, 2015, 17, 2102-2105.	2.4	61
919	Diastereoselective Synthesis of 1-Deoxygalactonojirimycin, 1-Deoxyaltronojirimycin, and $\langle i\rangle N\langle i\rangle$ -Boc- $(2\langle i\rangle S\langle i\rangle S\langle i\rangle)$ -3-Hydroxypipecolic Acid via Proline Catalyzed $\hat{I}\pm$ -Aminoxylation of Aldehydes. Journal of Organic Chemistry, 2015, 80, 4776-4782.	1.7	20
920	Enantioselective synthesis of chiral heterocycles containing both chroman and pyrazolone derivatives catalysed by a chiral squaramide. Organic and Biomolecular Chemistry, 2015, 13, 5636-5645.	1.5	34
922	Hyperbranched polyethylene-supported <scp>l</scp> -proline: a highly selective and recyclable organocatalyst for asymmetric aldol reactions. Catalysis Science and Technology, 2015, 5, 3798-3805.	2.1	16

#	Article	IF	CITATIONS
923	Proline-catalyzed aldol reaction of acetone with (R)- and (S)-2,3-O-alkylideneglyceraldehydes. Russian Journal of Organic Chemistry, 2015, 51, 566-568.	0.3	0
924	Ferrite-supported glutathione: an efficient, green nano-organocatalyst for the synthesis of pyran derivatives. New Journal of Chemistry, 2015, 39, 5636-5642.	1.4	27
925	Proline catalyzed, one-pot three component Mannich reaction and sequential cyclization toward the synthesis of 2-substituted piperidine and pyrrolidine alkaloids. Tetrahedron Letters, 2015, 56, 2023-2026.	0.7	12
926	Catalytic Asymmetric Direct-Type 1,4-Addition Reactions of Simple Amides. Journal of the American Chemical Society, 2015, 137, 4336-4339.	6.6	98
927	DMAP-catalyzed Dielsâ€"Alder reaction of 3-hydroxy-2-pyrone and methyleneindolinones for the synthesis of spirocyclic oxindoles. Tetrahedron, 2015, 71, 3903-3908.	1.0	15
928	Organocatalytic asymmetric synthesis of highly functionalized pyrrolizidines via cascade Michael/hemi-aminalization reactions of isoindolinones. Tetrahedron Letters, 2015, 56, 2787-2790.	0.7	21
930	Direct Catalytic Asymmetric Aldol Reaction of an αâ€Azido Amide. Angewandte Chemie - International Edition, 2015, 54, 6236-6240.	7.2	68
931	Cooperative Guanidinium/Proline Organocatalytic Systems. Topics in Heterocyclic Chemistry, 2015, , 1-26.	0.2	0
932	α-Quaternary Proline Derivatives by Intramolecular Diastereoselective Arylation of <i>N</i> -Carboxamido Proline Ester Enolates. Journal of Organic Chemistry, 2015, 80, 10757-10768.	1.7	21
933	Highly Enantioselective Construction of Fluoroalkylated Quaternary Stereocenters via Organocatalytic Dehydrated Mannich Reaction of Unprotected Hemiaminals with Ketones. Organic Letters, 2015, 17, 5036-5039.	2.4	50
934	Enantioselective Functionalization of Inactive sp ³ Câ€"H Bonds Remote to Functional Group by Metal/Organo Cooperative Catalysis. Organic Letters, 2015, 17, 5120-5123.	2.4	24
935	Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chemistry, 2015, 7, 905-912.	6.6	1,206
936	Chiral Bimetallic Lewis Acids. Topics in Organometallic Chemistry, 2015, , 27-50.	0.7	0
937	Pyrrolidine $\hat{a}\in \hat{b}$ oxyimide catalyzed asymmetric Michael addition of $\hat{l}\pm \hat{l}\pm \hat{b}$ -disubstituted aldehydes to nitroolefins. Tetrahedron: Asymmetry, 2015, 26, 907-911.	1.8	13
938	Managing the retro-pathway in direct catalytic asymmetric aldol reactions of thioamides. Chemical Science, 2015, 6, 6124-6132.	3.7	22
939	Cinchona alkaloid-based chiral catalysts act as highly efficient multifunctional organocatalysts for the asymmetric conjugate addition of malonates to nitroolefins. Organic and Biomolecular Chemistry, 2015, 13, 10216-10225.	1.5	23
940	(1,2-Diaminoethane-1,2-diyl)bis(N-methylpyridinium) Salts as a Prospective Platform for Designing Recyclable Prolinamide-Based Organocatalysts. Journal of Organic Chemistry, 2015, 80, 9570-9577.	1.7	26
941	Broad Spectrum Enolate Equivalent for Catalytic Chemo-, Diastereo-, and Enantioselective Addition to <i>N</i> -Boc Imines. Journal of the American Chemical Society, 2015, 137, 15940-15946.	6.6	41

#	Article	IF	CITATIONS
942	Chiral primary amino alcohol organobase catalysts for the asymmetric Diels–Alder reactions of anthrones with maleimides. Tetrahedron: Asymmetry, 2015, 26, 1423-1429.	1.8	23
943	Fabrication of optically active microparticles constructed by helical polymer/quinine and their application to asymmetric Michael addition. Polymer, 2015, 80, 115-122.	1.8	18
944	Aminocatalytic Crossâ€Coupling Approach via Iminium Ions to Different CC Bonds. Chemistry - A European Journal, 2015, 21, 2954-2960.	1.7	45
945	Expanding the toolbox of asymmetric organocatalysis by continuous-flow process. Chemical Communications, 2015, 51, 3708-3722.	2.2	66
946	Selecting reactions and reactants using a switchable rotaxane organocatalyst with two different active sites. Chemical Science, 2015, 6, 140-143.	3.7	129
947	Proline-induced enantioselective heterogeneous catalytic hydrogenation of isophorone on basic polymer-supported Pd catalysts. Catalysis Science and Technology, 2015, 5, 716-723.	2.1	22
948	Applied Enantioselective Aminocatalysis: αâ€Heteroatom Functionalization Reactions on the Carbapenem (Î²â€Łactam Antibiotic) Core. European Journal of Organic Chemistry, 2015, 2015, 638-646.	1.2	8
949	Synthetic study on dolastatin 16: concise and scalable synthesis of two unusual amino acid units. Tetrahedron Letters, 2015, 56, 168-171.	0.7	9
950	Towards Reaction Control: An Expeditious Access to Racemic 5â€Substituted Tetramates and 5â€Substituted Tetramic Acids from Malimides. Chinese Journal of Chemistry, 2015, 33, 655-662.	2.6	2
951	Direct asymmetric aldol reactions in aqueous media catalyzed by a β-cyclodextrin–proline conjugate with a urea linker. Tetrahedron Letters, 2015, 56, 243-246.	0.7	23
952	Organocatalyzed Asymmetric Aldol Reactions of Ketones and \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}_\pm -Ketoesters and Phenylglyoxal Hydrates. Journal of Organic Chemistry, 2015, 80, 806-815.	1.7	27
953	The Role of Hydroxyl Group Acidity on the Activity of Silicaâ€Supported Secondary Amines for the Selfâ€Condensation of <i>n</i> hhhhhhh	3.6	30
954	Reaction-dependent heteroatom modification of acid–base catalytic cooperativity in aminosilica materials. Applied Catalysis A: General, 2015, 504, 429-439.	2.2	28
955	Bifunctional Catalysts Based on <i>m</i> Ài>â€Phenyleneâ€Bridged Porphyrin Dimer and Trimer Platforms: Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. Angewandte Chemie - International Edition, 2015, 54, 134-138.	7.2	273
956	Linear dialdehydes as promising substrates for aminocatalyzed transformations. Organic and Biomolecular Chemistry, 2015, 13, 1280-1293.	1.5	23
957	Synthetic application of pipecolic acid. Research on Chemical Intermediates, 2015, 41, 4545-4553.	1.3	4
959	Interfacial catalysis of aldol reactions by prolinamide surfactants in reverse micelles. Organic and Biomolecular Chemistry, 2015, 13, 770-775.	1.5	6
960	Structural insight into the aggregation of <scp>l</scp> -prolyl dipeptides and its effect on organocatalytic performance. Organic and Biomolecular Chemistry, 2015, 13, 592-600.	1.5	9

#	Article	IF	Citations
961	An Efficient Synthesis of Polyfunctionalized Indole Derivatives via Threeâ€component Domino Reaction Catalyzed by ⟨i⟩L⟨/i⟩â€Proline. Journal of Heterocyclic Chemistry, 2015, 52, 1075-1081.	1.4	6
962	Rh-Catalyzed reductive Mannich-type reaction and its application towards the synthesis of $(\hat{A}\pm)$ -ezetimibe. Beilstein Journal of Organic Chemistry, 2016, 12, 1608-1615.	1.3	9
963	Airâ€Assisted 2â€Oxoâ€Driven Dehydrogenative α,αâ€Diamination of 2â€Oxo Aldehydes to 2â€Oxo Acetamidi European Journal of Organic Chemistry, 2016, 2016, 3344-3348.	nes. 1:2	11
965	Diastereo―and Enantioselective Synthesis of Spiroâ€Pyrrolidineâ€PyrÂazolones by Squaramideâ€Catalyzed Cascade Azaâ€Michael/Michael Reactions. European Journal of Organic Chemistry, 2016, 2016, 2492-2499.	1.2	52
966	Copper-catalyzed retro-aldol reaction of \hat{l}^2 -hydroxy ketones or nitriles with aldehydes: chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles. Organic and Biomolecular Chemistry, 2016, 14, 7282-7294.	1.5	22
967	Enantioselective Silver-Catalyzed Transformations. Chemical Reviews, 2016, 116, 14868-14917.	23.0	113
968	Nano-ferrite supported glutathione as a reusable nano-organocatalyst for the synthesis of phthalazine-trione and dione derivatives under solvent-free conditions. RSC Advances, 2016, 6, 54768-54776.	1.7	21
969	trans-4-Hydroxy-l-prolinamide as an efficient catalyst for direct asymmetric aldol reaction of acetone with isatins. Tetrahedron: Asymmetry, 2016, 27, 463-466.	1.8	15
970	Direct Catalytic Asymmetric Mannich-Type Reaction of Alkylamides. Organic Letters, 2016, 18, 2391-2394.	2.4	45
971	Stereoselective Synthesis of Hydroxy Diamino Acid Derivatives and the Caprolactam Unit of Bengamide A through Organocatalytic αâ€Hydroxylation and Reductive Amination of Aldehydes. European Journal of Organic Chemistry, 2016, 2016, 5502-5510.	1.2	2
972	Direct asymmetric aldol reaction of acetophenones with aromatic aldehydes catalyzed by chiral Al/Zn heterobimetallic compounds. Russian Journal of General Chemistry, 2016, 86, 1922-1930.	0.3	2
973	Polymer coated magnetically separable organocatalyst for C N bond formation via aza-Michael addition. Tetrahedron Letters, 2016, 57, 5026-5032.	0.7	4
974	γ′â€Selective Functionalization of Cyclic Enones: Construction of a Chiral Quaternary Carbon Center by [4+2] Cycloaddition/Retroâ€Mannich Reaction with 3â€Substituted Maleimides. Angewandte Chemie - International Edition, 2016, 55, 14257-14261.	7.2	23
975	Pyrrolidine-HOBt: an oxytriazole catalyst for the enantioselective Michael addition of cyclohexanone to nitroolefins in water. Tetrahedron: Asymmetry, 2016, 27, 1133-1138.	1.8	14
976	Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid atalyzed Aldol Reaction. Chirality, 2016, 28, 599-605.	1.3	8
978	Binaphthyl-based chiral bifunctional organocatalysts for water mediated asymmetric List–Lerner–Barbas aldol reactions. Organic and Biomolecular Chemistry, 2016, 14, 9021-9032.	1.5	12
979	Nucleophilic and Electrophilic Activation of Nonâ€Heteroaromatic Amides in Atomâ€Economical Asymmetric Catalysis. Chemistry - A European Journal, 2016, 22, 15192-15200.	1.7	37
980	<i>C</i> ₂ -Symmetric Chiral Bisoxazolines as Hydrogen-Bond-Acceptor Catalysts in Enantioselective Aldol Reaction of \hat{I}^2 -Carbonyl Acids with Trifluoroacetaldehyde Hemiacetals. Organic Letters, 2016, 18, 6364-6367.	2.4	32

#	Article	IF	CITATIONS
981	Design of Seleniumâ€Based Chiral Chemical Probes for Simultaneous Enantio―and Chemosensing of Chiral Carboxylic Acids with Remote Stereogenic Centers by NMR Spectroscopy. Chemistry - A European Journal, 2016, 22, 15458-15467.	1.7	10
982	Synthesis of Magnetic Nanoparticles and Polymer Supported Imidazolidinone Catalysts for Enantioselective Friedelâ€Crafts Alkylation of Indoles. ChemistrySelect, 2016, 1, 4386-4391.	0.7	7
983	Enantioselective Organocatalyzed Transformations of \hat{l}^2 -Ketoesters. Chemical Reviews, 2016, 116, 9375-9437.	23.0	105
984	Fiber-Supported Acid–Base Bifunctional Catalysts for Efficient Nucleophilic Addition in Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 4296-4304.	3.2	30
985	Influence of a remote sulfinyl group on l-proline-catalyzed direct asymmetric aldol addition of acetone. Tetrahedron, 2016, 72, 5414-5419.	1.0	6
986	ĵ³â€²â€§elective Functionalization of Cyclic Enones: Construction of a Chiral Quaternary Carbon Center by [4+2] Cycloaddition/Retroâ€Mannich Reaction with 3‧ubstituted Maleimides. Angewandte Chemie, 2016, 128, 14469-14473.	1.6	6
987	1,3â€Diamineâ€Derived Bifunctional Organocatalyst Prepared from Camphor. Advanced Synthesis and Catalysis, 2016, 358, 3786-3796.	2.1	32
988	Four-Component Reaction of \hat{l} ±-naphthol, an Arylglyoxal, Aniline and a Dialkyl Acetylenedicarboxylate: A Michael Addition of Enamines to \hat{l} ±, \hat{l} 2-unsaturated \hat{l} 3-dicarbonyl Compounds. Journal of Chemical Research, 2016, 40, 640-642.	0.6	0
989	Highly enantioselective Michael addition of cyclohexanone to nitroolefins catalyzed by pyrrolidineâ€based bifunctional benzoylthiourea in water. Chirality, 2016, 28, 721-727.	1.3	8
990	Old tricks, new dogs: organocatalytic dienamine activation of \hat{l}_{\pm},\hat{l}^2 -unsaturated aldehydes. Chemical Society Reviews, 2016, 45, 6812-6832.	18.7	140
991	Computational Insights into the Central Role of Nonbonding Interactions in Modern Covalent Organocatalysis. Accounts of Chemical Research, 2016, 49, 1279-1291.	7.6	56
992	Synthesis, structure and antiproliferative activity of chiral polyamines based on a 2-azanorbornane skeleton. Tetrahedron: Asymmetry, 2016, 27, 753-758.	1.8	10
993	Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews, 2016, 45, 5635-5671.	18.7	983
994	Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery. Australian Journal of Chemistry, 2016, 69, 705.	0.5	24
995	N-Arylprolinamide as an organocatalyst for the direct asymmetric aldol reaction of acetone with isatin. Tetrahedron: Asymmetry, 2016, 27, 123-129.	1.8	19
996	Trichloromethanesulfonyl Chloride: A Chlorinating Reagent for Aldehydes. Journal of Organic Chemistry, 2016, 81, 1251-1255.	1.7	24
997	Urea-Functionalized Self-Assembled Molecular Prism for Heterogeneous Catalysis in Water. Journal of the American Chemical Society, 2016, 138, 1668-1676.	6.6	203
998	Rawal's catalyst as an effective stimulant for the highly asymmetric Michael addition of \hat{l}^2 -keto esters to functionally rich nitro-olefins. Organic and Biomolecular Chemistry, 2016, 14, 5494-5499.	1.5	15

#	Article	IF	CITATIONS
999	Molecular Iodine-Mediated Chemoselective Synthesis of Multisubstituted Pyridines through Catabolism and Reconstruction Behavior of Natural Amino Acids. Organic Letters, 2016, 18, 24-27.	2.4	97
1000	Proline Functionalized UiO-67 and UiO-68 Type Metal–Organic Frameworks Showing Reversed Diastereoselectivity in Aldol Addition Reactions. Chemistry of Materials, 2016, 28, 2573-2580.	3.2	148
1001	N-Pyrrolidine-based $\hat{l}\pm \hat{l}^2$ -peptides incorporating ABOC, a constrained bicyclic \hat{l}^2 -amino acid, for asymmetric aldol reaction catalysis. Tetrahedron, 2016, 72, 1706-1715.	1.0	13
1002	Tertiary amino thiourea-catalyzed asymmetric cross aldol reaction of aryl methyl ketones with aryl trifluoromethyl ketones. Tetrahedron Letters, 2016, 57, 1220-1223.	0.7	18
1003	Nano-FGT: a green and sustainable catalyst for the synthesis of spirooxindoles in aqueous medium. RSC Advances, 2016, 6, 20994-21000.	1.7	25
1004	Direct Catalytic Asymmetric Mannich Reactions for the Construction of Quaternary Carbon Stereocenters. Journal of the American Chemical Society, 2016, 138, 3659-3662.	6.6	67
1005	Eco-friendly construction of highly functionalized chromenopyridinones by an organocatalyzed solid-state melt reaction and their optical properties. Green Chemistry, 2016, 18, 1488-1494.	4.6	43
1006	Advances in Asymmetric Diastereodivergent Catalysis. Advanced Synthesis and Catalysis, 2017, 359, 534-575.	2.1	183
1007	Phosphataseâ€Stable Phosphoamino Acid Mimetics That Enhance Binding Affinities with the Poloâ€Box Domain of Poloâ€like Kinaseâ€1. ChemMedChem, 2017, 12, 202-206.	1.6	16
1008	A Highly Active Polymer-Supported Catalyst for Asymmetric Robinson Annulations in Continuous Flow. ACS Catalysis, 2017, 7, 1383-1391.	5.5	59
1009	Experimental and DFT Studies of Organocatalytic Microwaveâ€Assisted Reaction of Isatin Derivatives with Dinitrotoluenes. Asian Journal of Organic Chemistry, 2017, 6, 575-582.	1.3	1
1010	Direct Catalytic Asymmetric Aldol Reaction of α-Alkylamides. Organic Letters, 2017, 19, 710-713.	2.4	38
1011	Asymmetric Aziridination of <i>N</i> -Sulphonyl Ketimines with Unfunctionalized Ketones: A One-pot Approach to Multisubstituted Fused Aziridines. Journal of Organic Chemistry, 2017, 82, 2399-2406.	1.7	29
1012	Oligo- and Polyfluorenes Meet Cellulose Alkyl Esters: Retention, Inversion, and Racemization of Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD) via Intermolecular C–H/O╀ Interactions. Macromolecules, 2017, 50, 1778-1789.	2.2	35
1013	Immobilisation of catalytically active proline on H2N-MIL-101(Al) accompanied with reversal in enantioselectivity. Catalysis Communications, 2017, 95, 12-15.	1.6	26
1014	Asymmetric Michael addition in an aqueous environment with the assistance of optically active hyperbranched polymers. Polymer Chemistry, 2017, 8, 1771-1777.	1.9	9
1015	One-pot synthesis of $\hat{l}\pm,\hat{l}^2$ -epoxy ketones through domino reaction between alkenes and aldehydes catalyzed by proline based chiral organocatalysts. Organic and Biomolecular Chemistry, 2017, 15, 2551-2561.	1.5	19
1016	Enantioselective Michael addition of aldehydes to nitroolefins catalyzed by pyrrolidine-HOBt. Tetrahedron: Asymmetry, 2017, 28, 401-409.	1.8	7

#	ARTICLE	IF	CITATIONS
1017	Catalytic asymmetric synthesis of CF $<$ sub $>3<$ /sub $>-$ substituted tertiary propargylic alcohols via direct aldol reaction of $\hat{l}\pm N<$ sub $>3<$ /sub $>$ amide. Chemical Science, 2017, 8, 3260-3269.	3.7	62
1018	Organocatalyzed Direct Aldol Reaction of Silyl Glyoxylates for the Synthesis of α-Hydroxysilanes. Organic Letters, 2017, 19, 2282-2285.	2.4	27
1019	Palladium-catalyzed sequential monoarylation/amidation of C(sp ³)â€"H bonds: stereoselective synthesis of α-amino-β-lactams and anti-α,β-diamino acid. Chemical Communications, 2017, 53, 6351-6354.	2.2	40
1020	Functionalized SBA-15 material with grafted CO2H group as an efficient heterogeneous acid catalyst for the fixation of CO2 on epoxides under atmospheric pressure. Molecular Catalysis, 2017, 434, 25-31.	1.0	29
1021	Enantioselective magnesium-catalyzed transformations. Organic and Biomolecular Chemistry, 2017, 15, 4750-4782.	1.5	45
1022	Carbon–Nitrogen Bond Formation via the Vanadium Oxo Catalyzed Sigmatropic Functionalization of Allenols. Organic Letters, 2017, 19, 2630-2633.	2.4	17
1023	Mechanism of the Piperidine-Catalyzed Knoevenagel Condensation Reaction in Methanol: The Role of Iminium and Enolate Ions. Journal of Physical Chemistry B, 2017, 121, 5300-5307.	1,2	76
1024	Asymmetric Supramolecular Organocatalysis: A Complementary Upgrade to Organocatalysis. European Journal of Organic Chemistry, 2017, 2017, 5460-5483.	1.2	24
1025	Multivariate Chiral Covalent Organic Frameworks with Controlled Crystallinity and Stability for Asymmetric Catalysis. Journal of the American Chemical Society, 2017, 139, 8277-8285.	6.6	249
1026	The Role of Water in the Catalystâ€Free Aldol Reaction of Waterâ€Insoluble <i>N</i> â€Methylâ€2,4â€thiazolidinedione with <i>N</i> â€Methylisatin from QM/MM Monte Carlo Simulations. ChemPhysChem, 2017, 18, 2123-2131.	1.0	3
1027	Switchable Access to Different Spirocyclopentane Oxindoles by Nâ∈Heterocyclic Carbene Catalyzed Reactions of Isatinâ€Derived Enals and Nâ€Sulfonyl Ketimines. Angewandte Chemie - International Edition, 2017, 56, 8516-8521.	7.2	94
1028	Switchable Access to Different Spirocyclopentane Oxindoles by Nâ€Heterocyclic Carbene Catalyzed Reactions of Isatinâ€Derived Enals and Nâ€Sulfonyl Ketimines. Angewandte Chemie, 2017, 129, 8636-8641.	1.6	31
1029	Selfâ€Assembled Chiral Nanostructures as Scaffolds for Asymmetric Reactions. Chemistry - A European Journal, 2017, 23, 9439-9450.	1.7	48
1030	A short stereoselective synthesis of (+)-aza-galacto-fagomine (AGF). Tetrahedron, 2017, 73, 2629-2632.	1.0	3
1031	Solvent free, fast and asymmetric Michael additions of ketones to nitroolefins using chiral pyrrolidine–pyridone conjugate bases as organocatalysts. Tetrahedron: Asymmetry, 2017, 28, 511-515.	1.8	19
1032	Iron-catalyzed or iodine-induced intramolecular halocyclization of N-vinyl-tethered methylenecyclopropanes: facile access to halogenated 1,2-dihydroquinolines. Organic Chemistry Frontiers, 2017, 4, 1294-1298.	2.3	8
1034	Iron Catalysis for Modular Pyrimidine Synthesis through \hat{l}^2 -Ammoniation/Cyclization of Saturated Carbonyl Compounds with Amidines. Journal of Organic Chemistry, 2017, 82, 1145-1154.	1.7	55
1035	An efficient method for the synthesis of gem-difluoroolefins. Tetrahedron Letters, 2017, 58, 482-485.	0.7	10

#	Article	IF	CITATIONS
1037	Organocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolyses. Chemical Communications, 2017, 53, 13192-13204.	2.2	38
1038	Bifunctional organic sponge photocatalyst for efficient cross-dehydrogenative coupling of tertiary amines to ketones. Chemical Communications, 2017, 53, 12536-12539.	2.2	44
1039	Catalytic Asymmetric Mannich Reaction with N arbamoyl Imine Surrogates of Formaldehyde and Glyoxylate. Angewandte Chemie, 2017, 129, 14002-14006.	1.6	11
1040	Metal catalysed versus organocatalysed stereoselective synthesis: The concrete case of myrtucommulones. Tetrahedron, 2017, 73, 6614-6623.	1.0	7
1041	Catalytic Asymmetric Mannich Reaction with N arbamoyl Imine Surrogates of Formaldehyde and Glyoxylate. Angewandte Chemie - International Edition, 2017, 56, 13814-13818.	7.2	50
1042	Phosphine-Catalyzed Diastereo- and Enantioselective Michael Addition of \hat{l}^2 -Carbonyl Esters to \hat{l}^2 -Trifluoromethyl and \hat{l}^2 -Ester Enones: Enhanced Reactivity by Inorganic Base. Organic Letters, 2017, 19, 5102-5105.	2.4	38
1044	Dynamic Covalent Chemistry of Aldehyde Enamines: Bi ^{III} ―and Sc ^{III} â€Catalysis of Amine–Enamine Exchange. Chemistry - A European Journal, 2017, 23, 11908-11912.	1.7	14
1045	Organocatalytic enantioselective construction of isatin-derived N-alkoxycarbonyl 1,3-aminonaphthols via sterically encumbered hydrocarbon-substituted quinine-based squaramide. New Journal of Chemistry, 2017, 41, 9192-9202.	1.4	31
1046	Total Syntheses of Pyroclavine, Festuclavine, Lysergol, and Isolysergol via a Catalytic Asymmetric Nitroâ€Michael Reaction. Chemistry - A European Journal, 2017, 23, 11234-11238.	1.7	24
1047	o-Phthalaldehyde catalyzed hydrolysis of organophosphinic amides and other P(î€O)–NH containing compounds. Chemical Communications, 2017, 53, 8667-8670.	2.2	14
1048	Origins of Stereoselectivity of Enamine–Iminium-Activated Nazarov Cyclizations by Vicinal Diamines. Journal of Organic Chemistry, 2017, 82, 8186-8190.	1.7	7
1049	Determination of Relative Frequency of Carbanion Formation at α-Positions of Ketones under Aldol Reaction Catalysis Conditions. Organic Letters, 2017, 19, 3803-3806.	2.4	12
1050	Applications of Chiral Thioureaâ€Amine/Phosphine Organocatalysts in Catalytic Asymmetric Reactions. ChemCatChem, 2017, 9, 718-727.	1.8	63
1051	Asymmetric Aldol Synthesis: Choice of Organocatalyst and Conditions. Chemistry - an Asian Journal, 2017, 12, 41-44.	1.7	10
1052	Achieving elusive transformations with organocatalysis: direct \$eta \$-carbon activation of saturated carbonyl compounds. Turkish Journal of Chemistry, 2017, 41, 601-618.	0.5	3
1053	Hybrid mesoporous organosilicas with molecularly imprinted cavities: towards extended exposure of active amino groups in the framework wall. Dalton Transactions, 2018, 47, 4508-4517.	1.6	4
1054	Ionic Liquids in Asymmetric Synthesis: An Overall View from Reaction Media to Supported Ionic Liquid Catalysis. ChemCatChem, 2018, 10, 3173-3205.	1.8	117
1055	Aromatic Aminocatalysis. Chemistry - an Asian Journal, 2018, 13, 740-753.	1.7	14

#	ARTICLE	IF	CITATIONS
1056	Aminocatalytic Privileged Diversityâ€Oriented Synthesis (ApDOS): An Efficient Strategy to Populate Relevant Chemical Spaces. European Journal of Organic Chemistry, 2018, 2018, 1835-1851.	1.2	10
1057	Direct Catalytic Asymmetric Aldol Reaction of α-Vinyl Acetamide. Journal of Organic Chemistry, 2018, 83, 5851-5858.	1.7	25
1058	Prolinate Salt as a Catalyst in the <i>syn</i> -Selective, Asymmetric Mannich Reaction of Alkynyl Imine. Organic Letters, 2018, 20, 2391-2394.	2.4	27
1059	Recent Advances in Supramolecular Gels and Catalysis. Chemistry - an Asian Journal, 2018, 13, 712-729.	1.7	112
1061	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie, 2018, 130, 2196-2200.	1.6	19
1062	Recent Developments and Perspectives in the Asymmetric Mannich Reaction. Asian Journal of Organic Chemistry, 2018, 7, 613-633.	1.3	73
1063	Glucose-containing imidazolium salt-catalyzed cross-aldol reaction of isatins and unactivated ketones. Research on Chemical Intermediates, 2018, 44, 2561-2570.	1.3	3
1064	Visible Light Promoted βâ€C—H Alkylation of βâ€Ketocarbonyls <i>via</i> a βâ€Enaminyl Radical Intermediate. Chinese Journal of Chemistry, 2018, 36, 311-320.	2.6	13
1065	Chiral Functionalization of a Zirconium Metal–Organic Framework (DUT-67) as a Heterogeneous Catalyst in Asymmetric Michael Addition Reaction. Inorganic Chemistry, 2018, 57, 1483-1489.	1.9	76
1066	Catalytic asymmetric enamine protonation reaction. Organic and Biomolecular Chemistry, 2018, 16, 510-520.	1.5	19
1067	Accessing substituted pyrrolidines via formal [3+2] cycloaddition of 1,3,5-triazinanes and donor-acceptor cyclopropanes. Tetrahedron Letters, 2018, 59, 715-718.	0.7	25
1068	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2174-2178.	7.2	53
1069	Direct Catalytic Asymmetric Aldol Reaction of Thioamide with an αâ€Vinyl Appendage. Chemistry - A European Journal, 2018, 24, 2598-2601.	1.7	27
1070	Solid-Phase Synthesis of \hat{l}^2 -Amino Ketones Via DNA-Compatible Organocatalytic Mannich Reactions. ACS Combinatorial Science, 2018, 20, 55-60.	3.8	12
1071	Ru–Prolinamideâ€Catalyzed Asymmetric Transfer Hydrogenation of Racemic βâ€Heterosubstituted Cycloalkanones Driven by Dynamic Kinetic Resolution. Asian Journal of Organic Chemistry, 2018, 7, 346-349.	1.3	10
1072	Brief History of Applied Theoretical Organic Chemistry. , 2018, , 69-95.		O
1073	Direct enolization chemistry of 7-azaindoline amides: A case study of bis(tetrahydrophosphole)-type ligands. Tetrahedron, 2018, 74, 3301-3305.	1.0	12
1074	Highly efficient organocatalysts for the asymmetric aldol reaction. New Journal of Chemistry, 2018, 42, 7416-7421.	1.4	15

#	Article	IF	Citations
1075	Solid-Phase Synthesis of \hat{l}^2 -Hydroxy Ketones Via DNA-Compatible Organocatalytic Aldol Reactions. ACS Combinatorial Science, 2018, 20, 277-281.	3.8	13
1076	Synthesis of Mainâ€Chain Ionic Polymers of Chiral Imidazolidinone Organocatalysts and Their Application to Asymmetric Diels–Alder Reactions. Advanced Synthesis and Catalysis, 2018, 360, 112-123.	2.1	16
1077	Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chemical Reviews, 2018, 118, 4485-4540.	23.0	976
1078	The first protection-free synthesis of magnetic bifunctional l-proline as a highly active and versatile artificial enzyme: Synthesis of imidazole derivatives. Journal of Colloid and Interface Science, 2018, 511, 222-232.	5.0	73
1079	Journey Heading towards Enantioselective Synthesis Assisted by Organocatalysis. Chemical Record, 2018, 18, 137-153.	2.9	12
1080	Biomimetic Total Syntheses of Clavine Alkaloids. Organic Letters, 2018, 20, 288-291.	2.4	18
1081	Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357, 144-172.	9.5	277
1082	Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol. Catalysis Science and Technology, 2018, 8, 5835-5847.	2.1	12
1083	Differentiation between enamines and tautomerizable imines in the oxidation reaction with TEMPO. Nature Communications, 2018, 9, 5002.	5.8	40
1084	Catalytic Asymmetric Mannich Type Reaction with Tri-/Difluoro- or Trichloroacetaldimine Precursors. Organic Letters, 2018, 20, 7137-7140.	2.4	19
1085	Asymmetric Organocatalytic Aziridination: Recent Advances. Asian Journal of Organic Chemistry, 2018, 7, 2357-2367.	1.3	21
1086	Homochiral Metal Organic Frameworks and Their Usage for the Enantioâ€Purification of Racemic Drugs. ChemistrySelect, 2018, 3, 10434-10438.	0.7	6
1087	Amine functionalization of cellulose nanocrystals for acid–base organocatalysis: surface chemistry, cross-linking, and solvent effects. Cellulose, 2018, 25, 6495-6512.	2.4	28
1088	Highly Enantioselective One-Pot Synthesis of Chiral β-Heterosubstituted Alcohols via Ruthenium–Prolinamide-Catalyzed Asymmetric Transfer Hydrogenation. ACS Omega, 2018, 3, 12737-12745.	1.6	8
1089	Water-controlled nitro-oximation of alkenes under catalyst-free conditions. Tetrahedron Letters, 2018, 59, 4272-4275.	0.7	10
1090	Organocatalytic and Regiodivergent Mannich Reaction of Ketones with Benzoxazinones. Advanced Synthesis and Catalysis, 2018, 360, 4464-4469.	2.1	18
1091	Novel binaphthyl and biphenyl \hat{l}_{\pm} - and \hat{l}^2 -amino acids and esters: organocatalysis of asymmetric Dielsâ \in "Alder reactions. A combined synthetic and computational study. Organic and Biomolecular Chemistry, 2018, 16, 7400-7416.	1.5	5
1092	Metal-Free Dehydrogenative Diels–Alder Reactions of Prenyl Derivatives with Dienophiles via a Thermal Reversible Process. Organic Letters, 2018, 20, 5774-5778.	2.4	8

#	Article	IF	CITATIONS
1093	Chiral Cyclodimeric Zinc(II) Complexes: Enantio-recognition via Differential Pulse Voltammetry. Crystal Growth and Design, 2018, 18, 6266-6272.	1.4	6
1094	Alkyl Propiolates Participated [3+2] Annulation for the Switchable Synthesis of 1,5―and 1,4â€Disubstituted 1,2,3â€₹riazoles Containing Ester Side Chain. ChemCatChem, 2018, 10, 5007-5011.	1.8	23
1095	Chiral phosphoric acid-catalyzed enantioselective three-component Mannich reaction of acyclic ketones, aldehydes and anilines. Tetrahedron, 2018, 74, 5143-5149.	1.0	9
1096	Highly diastereoselective boron and titanium mediated aldol reactions of a mannitol derived 2,3-butanediacetal ethyl ketone. Tetrahedron, 2018, 74, 5319-5329.	1.0	2
1097	Solvent-Free Enantioselective Michael Reactions Catalyzed by a Calixarene-Based Primary Amine Thiourea. Journal of Organic Chemistry, 2018, 83, 10318-10325.	1.7	20
1098	Triethylamine — A Versatile Organocatalyst in Organic Transformations: A Decade Update. Synthesis, 2018, 50, 4145-4164.	1.2	14
1099	Applications of Selenonium Cations as Lewis Acids in Organocatalytic Reactions. Angewandte Chemie - International Edition, 2018, 57, 12869-12873.	7.2	65
1100	Towards click chemistry: Multicomponent reactions via combinations of name reactions. Tetrahedron, 2018, 74, 3391-3457.	1.0	50
1101	Applications of Selenonium Cations as Lewis Acids in Organocatalytic Reactions. Angewandte Chemie, 2018, 130, 13051-13055.	1.6	16
1102	Toward a Predictive Understanding of Phosphine-Catalyzed [3 + 2] Annulation of Allenoates with Acrylate or Imine. Journal of Organic Chemistry, 2018, 83, 9729-9740.	1.7	22
1103	Chiral Gating for Size- and Shape-Selective Asymmetric Catalysis. Journal of the American Chemical Society, 2019, 141, 13749-13752.	6.6	30
1104	Phosphine Oxide-Catalyzed Asymmetric Aldol Reactions and Double Aldol Reactions. Chemical and Pharmaceutical Bulletin, 2019, 67, 519-526.	0.6	8
1105	Insights into the role of zirconium in proline functionalized metal-organic frameworks attaining high enantio- and diastereoselectivity. Journal of Catalysis, 2019, 377, 41-50.	3.1	33
1106	Development of bifunctional organocatalysts and application to asymmetric total synthesis of naucleofficine I and II. Nature Communications, 2019, 10, 3394.	5.8	37
1107	A Novel Catalystâ€Free Synthesis of 2,2â€Diaryl Enamides from Stilbenes via a Nitrene Transfer Reaction. European Journal of Organic Chemistry, 2019, 2019, 5720-5724.	1.2	6
1108	l-Proline functionalized metal-organic framework PCN-261 as catalyst for aldol reaction. Inorganic Chemistry Communication, 2019, 107, 107448.	1.8	13
1109	Organocatalysis: Trends of Drug Synthesis in Medicinal Chemistry. Current Organocatalysis, 2019, 6, 92-105.	0.3	19
1110	Vanadium-Catalyzed Synthesis of Geometrically Defined Acyclic Tri- and Tetrasubstituted Olefins from Propargyl Alcohols. ACS Catalysis, 2019, 9, 1584-1594.	5.5	31

#	Article	IF	CITATIONS
1111	The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis. International Journal of Molecular Sciences, 2019, 20, 5507.	1.8	23
1112	Catalystâ€Free and Selective Ring Openings of <i>N</i> â€Tosylaziridines: Good Approaches to βâ€Amino Sulfones, βâ€Bis(amino)thioethers, 1,2â€Azide Amines and 1,2â€Diamines. ChemistrySelect, 2019, 4, 11879-118	85. ⁷	4
1113	Enantiodivergence by minimal modification of an acyclic chiral secondary aminocatalyst. Nature Communications, 2019, 10, 5182.	5.8	35
1114	Alternating Multilayer Structural Epoxy Composite Coating for Corrosion Protection of Steel. Macromolecular Materials and Engineering, 2019, 304, 1900374.	1.7	71
1115	Palladiumâ€Catalyzed Construction of Quaternary Stereocenters by Enantioselective Arylation of γâ€Lactams with Aryl Chlorides and Bromides. Angewandte Chemie - International Edition, 2019, 58, 4297-4301.	7.2	36
1116	New chiral morpholine-pyrrolidine ligands affecting asymmetric selectivity in copper catalyzed Henry reaction. Tetrahedron Letters, 2019, 60, 653-659.	0.7	6
1117	Novel chiral proline-based organocatalysts with amide and thiourea–amine units for highly efficient asymmetric aldol reaction in saturated brine without additives. Canadian Journal of Chemistry, 2019, 97, 352-359.	0.6	3
1118	Synergistic Catalytic Mechanism of Acidic Silanol and Basic Alkylamine Bifunctional Groups Over SBA-15 Zeolite toward Aldol Condensation. Journal of Physical Chemistry C, 2019, 123, 4903-4913.	1.5	20
1119	Inter- and Intramolecular Cooperativity Effects in Alkanolamine-Based Acid–Base Heterogeneous Organocatalysts. ACS Omega, 2019, 4, 1110-1117.	1.6	6
1120	Organocatalytic Asymmetric Addition of Aldehyde to Nitroolefin by H- <scp>d</scp> -Pro-Pro-Glu-NH ₂ : A Mechanistic Study. ACS Omega, 2019, 4, 8862-8873.	1.6	4
1121	The [4 + 2] Cycloaddition of 2â€Pyrone in Total Synthesis. Chinese Journal of Chemistry, 2019, 37, 946-9	97266	38
1122	The asymmetric vinylogous Mannich reaction of noncyclic dicyanoolefins catalyzed by a bifunctional thiourea–ammonium salt phase transfer catalyst. New Journal of Chemistry, 2019, 43, 10012-10016.	1.4	3
1123	Asymmetric Synthesis Using Thioamides. , 2019, , 103-125.		0
1124	Prolinamideâ€Catalysed Asymmetric Organic Transformations. ChemistrySelect, 2019, 4, 5591-5618.	0.7	24
1125	Chemical composition of DNA-encoded libraries, past present and future. Organic and Biomolecular Chemistry, 2019, 17, 4676-4688.	1.5	83
1126	Stability of Immobilization of Bipyridineâ€proline on Znâ€Modified Bimodal Mesoporous Silicas and Recyclable Catalytic Performance in Asymmetric Aldol Reaction. ChemistrySelect, 2019, 4, 3105-3112.	0.7	4
1127	Synthesis of 1,2-Diamine Bifunctional Catalysts for the Direct Aldol Reaction Through Probing the Remote Amide Hydrogen. Current Organocatalysis, 2019, 6, 171-176.	0.3	1
1128	Palladiumâ€Catalyzed Construction of Quaternary Stereocenters by Enantioselective Arylation of γâ€Lactams with Aryl Chlorides and Bromides. Angewandte Chemie, 2019, 131, 4341-4345.	1.6	14

#	Article	IF	CITATIONS
1129	Optimized Cellulose Nanocrystal Organocatalysts Outperform Silica-Supported Analogues: Cooperativity, Selectivity, and Bifunctionality in Acid–Base Aldol Condensation Reactions. ACS Catalysis, 2019, 9, 3266-3277.	5.5	28
1130	Caged Proline in Photoinitiated Organocatalysis. Journal of Organic Chemistry, 2019, 84, 5236-5244.	1.7	11
1131	Autocatalyzed three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and alkyl amines: a novel approach to 3-alkylamino-5-hydroxy-5-polyfluoroalkylcyclohex-2-en-1-ones. Organic and Biomolecular Chemistry, 2019, 17, 4273-4280.	1.5	11
1132	Mechanism and stereoselectivity in NHC-catalyzed \hat{l}^2 -functionalization of saturated carboxylic ester. RSC Advances, 2019, 9, 7635-7644.	1.7	9
1133	DFT study on the mechanistic details of the hydrolysis of dicyan using acetaldehyde as the first organocatalyst. Computational and Theoretical Chemistry, 2019, 1154, 37-43.	1.1	3
1134	Recyclable helical poly(phenylacetylene)â€supported catalyst for asymmetric aldol reaction in aqueous media. Journal of Polymer Science Part A, 2019, 57, 1024-1031.	2.5	27
1135	A Concise Asymmetric Total Synthesis of (+)-Epilupinine. Organic Letters, 2019, 21, 2620-2624.	2.4	6
1136	Au/NiO Composite: A Catalyst for One-Pot Cascade Conversion of Furfural. ACS Applied Energy Materials, 2019, 2, 2654-2661.	2.5	28
1137	Prospect of Thiazoleâ€based γâ€Peptide Foldamers in Enamine Catalysis: Exploration of the Nitroâ€Michael Addition. Chemistry - A European Journal, 2019, 25, 7396-7401.	1.7	14
1138	Asymmetric Catalysis Under 1D/2D Nanostructured Carbon Materials. Journal of Nanoscience and Nanotechnology, 2019, 19, 5074-5088.	0.9	3
1140	Studies on catalytic activity of MIL-53(Al) and structure analogue DUT-5(Al) using bdc- and bpdc-ligands functionalized with l-proline in a solid-solution mixed-linker approach. Molecular Catalysis, 2019, 467, 70-77.	1.0	18
1141	Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for Modified Mannich-Type Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4878-4888.	3.2	46
1142	Chiral coordination frameworks constructed by a pyridine-based alanine derivative with semi-rigid and asymmetrical configuration: Structure, photocatalysis and selective luminescent sensing. Journal of Solid State Chemistry, 2019, 273, 53-61.	1.4	7
1143	Primary amine catalyzed diastereo- and enantioselective Michael reaction of thiazolones and \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. Organic and Biomolecular Chemistry, 2019, 17, 9305-9312.	1.5	5
1144	Dienolates of Cycloalkenones and α,βâ€Unsaturated Esters Form Diels–Alder Adducts by a Michael/Michaelâ€Tandem Reaction Rather Than in One Step. European Journal of Organic Chemistry, 2019, 2019, 562-573.	1.2	5
1145	Highly regioselective \hat{l} -alkylation of \hat{l} +, \hat{l}^2 , \hat{l}^3 , \hat{l} -unsaturated aldehydes. Organic and Biomolecular Chemistry, 2019, 17, 1714-1717.	1.5	3
1146	Catalytic asymmetric borylative aldol reaction of 5,6-dihydro-2H-pyran-2-one and ketones. Tetrahedron, 2019, 75, 1676-1681.	1.0	6
1147	Catalysis of Hydrogen–Deuterium Exchange Reactions by 4-Substituted Proline Derivatives. Journal of Organic Chemistry, 2019, 84, 1247-1256.	1.7	9

#	Article	IF	CITATIONS
1148	Asymmetric Synthesis of Cαâ€6ubstituted Prolines through Curtin–Hammettâ€Controlled Diastereoselective Nâ€Alkylation. Chemistry - A European Journal, 2019, 25, 2447-2451.	1.7	15
1149	Pyrrolidine-Oxadiazolone Conjugates as Organocatalysts in Asymmetric Michael Reaction. Journal of Organic Chemistry, 2019, 84, 1053-1063.	1.7	19
1150	Highly Diastereoselective Synthesis of a HCV NS5B Nucleoside Polymerase Inhibitor. Journal of Organic Chemistry, 2019, 84, 4780-4795.	1.7	5
1151	Tuning the Reactivity of Ketones through Unsaturation: Construction of Cyclic and Acyclic Quaternary Stereocenters via Zn-ProPhenol Catalyzed Mannich Reactions. ACS Catalysis, 2019, 9, 1549-1557.	5.5	37
1152	Unraveling the Role of Supramolecular Additives in a Prolineâ€Catalyzed Reaction. European Journal of Organic Chemistry, 2019, 2019, 188-198.	1.2	0
1153	Copper(II)-catalyzed enantioselective conjugate addition of nitro esters to 2-enoyl-pyridine N-oxides. Chinese Chemical Letters, 2019, 30, 569-572.	4.8	8
1154	Synthesis of 2′-aminouridine derivatives as an organocatalyst for Diels-Alder reaction. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 365-383.	0.4	1
1155	An efficient and eco-friendly method for the thiol-Michael addition in aqueous solutions using amino acid ionic liquids (AAILs) as organocatalysts. Pure and Applied Chemistry, 2020, 92, 97-106.	0.9	1
1156	Zweikernige Metallâ€ProPhenolâ€Katalysatoren: Entwicklung und Anwendungen in der Synthese. Angewandte Chemie, 2020, 132, 4268-4291.	1.6	13
1157	Dinuclear Metalâ€ProPhenol Catalysts: Development and Synthetic Applications. Angewandte Chemie - International Edition, 2020, 59, 4240-4261.	7.2	68
1158	Density Functional Theory Study of ZnIn ₂ S ₄ and CdIn ₂ S ₄ Polymorphs Using Fullâ€Potential Linearized Augmented Plane Wave Method and Modified Becke–Johnson Potential. Physica Status Solidi (B): Basic Research, 2020, 257, 1900485.	0.7	19
1159	Postsynthetic functionalization of covalent organic frameworks. National Science Review, 2020, 7, 170-190.	4.6	142
1160	Basicities and Nucleophilicities of Pyrrolidines and Imidazolidinones Used as Organocatalysts. Journal of the American Chemical Society, 2020, 142, 1526-1547.	6.6	43
1161	Multi-responsive nanocomposite membranes of cellulose nanocrystals and poly(N-isopropyl) Tj ETQq1 1 0.784314	1 ggBT /Ov	erjąck 10 T
1162	β-lsocupreidinateâ€'CaAl-layered double hydroxide compositesâ€"heterogenized catalysts for asymmetric Michael addition. Molecular Catalysis, 2020, 482, 110675.	1.0	7
1163	<i>Z</i> -Enolate Geometry in the Thioamide Aldol Reaction Illuminated by the 7-Azaindoline Auxiliary. Organic Letters, 2020, 22, 791-794.	2.4	4
1164	Synthesis of 3â€[(1Hâ€Benzimidazolâ€2â€ylsulfanyl)(aryl)methyl]â€4â€hydroxycoumarin Derivatives as Potent Bioactive Molecules. ChemistrySelect, 2020, 5, 178-184.	0.7	16
1165	A Bispidine-Based Chiral Amine Catalyst for Asymmetric Mannich Reaction of Ketones with Isatin Ketimines. Organic Letters, 2020, 22, 8708-8713.	2.4	17

#	Article	IF	Citations
1166	Proline-based organocatalyst-mediated asymmetric aldol reaction of acetone with substituted aromatic aldehydes: an experimental and theoretical study. Turkish Journal of Chemistry, 2020, 44, 335-351.	0.5	1
1167	Configurational and Constitutional Dynamics of Enamine Molecular Switches. Chemistry - A European Journal, 2020, 26, 15654-15663.	1.7	8
1168	QTAIM and IRC studies for the evaluation of activation energy on the C=P, C=N and C=O Diels-Alder reaction. Heliyon, 2020, 6, e04655.	1.4	10
1169	Catalytically Generated Vanadium Enolates Formed via Interruption of the Meyer–Schuster Rearrangement as Useful Reactive Intermediates. Accounts of Chemical Research, 2020, 53, 1568-1579.	7.6	30
1170	Catalytic Gels for a Prebiotically Relevant Asymmetric Aldol Reaction in Water: From Organocatalyst Design to Hydrogel Discovery and Back Again. Journal of the American Chemical Society, 2020, 142, 4379-4389.	6.6	60
1171	Mannich reaction derived phthalocyanine polymer for electrochemical detection of salicylic acid. Inorganica Chimica Acta, 2020, 512, 119895.	1.2	10
1172	Self-Assembled Bio-Organometallic Nanocatalysts for Highly Enantioselective Direct Aldol Reactions. Langmuir, 2020, 36, 13735-13742.	1.6	3
1173	Zn-ProPhenol Catalyzed Enantioselective Mannich Reaction of 2 <i>H</i> -Azirines with Alkynyl Ketones. Organic Letters, 2020, 22, 9683-9687.	2.4	15
1174	L-proline functionalized pillar-layered MOF as a heterogeneous catalyst for aldol addition reaction. Inorganic Chemistry Communication, 2020, 119, 108052.	1.8	12
1175	Silver-catalyzed multicomponent reactions for the construction of \hat{I}^3 -carbonyl- \hat{I}^\pm -amino acid derivatives. Tetrahedron Letters, 2020, 61, 152318.	0.7	5
1176	Direct Catalytic Asymmetric Addition of αâ€Fluoronitriles to Aldehydes. Chemistry - A European Journal, 2020, 26, 15524-15527.	1.7	9
1177	Synthesis of Extended Bipyridineâ€proline Chiral Catalysts and Resulting Effects on the Asymmetric Aldol Reactions of Bulkier Aldehyde Derivatives with Cyclohexanone. ChemistrySelect, 2020, 5, 10996-11003.	0.7	3
1178	Revisiting the role of acids and hydrogen bond acceptors in enamine formation. Organic and Biomolecular Chemistry, 2020, 18, 6849-6852.	1.5	2
1179	Regioselective Crossed Aldol Reactions under Mild Conditions via Synergistic Gold-Iron Catalysis. CheM, 2020, 6, 1420-1431.	5.8	23
1180	Deciphering the role of acid additives in chiral diamine-catalyzed asymmetric aldol reactions of cyclohexanones with aldehydes. Molecular Catalysis, 2020, 486, 110881.	1.0	0
1181	Catalytic synthesis of methacrolein <i>via</i> the condensation of formaldehyde and propionaldehyde with <scp>I</scp> -proline. Green Chemistry, 2020, 22, 4222-4230.	4.6	12
1182	A Simple and Efficient Protocol for Proline-Catalysed Asymmetric Aldol Reaction. Catalysts, 2020, 10, 649.	1.6	12
1183	NHC-Catalyzed Cascade Reaction between \hat{l}^2 -Methyl Enals and Dienones for Quick Construction of Complex Multicyclic Lactones. Organic Letters, 2020, 22, 2595-2599.	2.4	23

#	Article	IF	CITATIONS
1184	Regio―and Enantioselective α,γâ€Dialkylation of α,βâ€Unsaturated Aldehydes Through Cascade Organocataly European Journal of Organic Chemistry, 2020, 2020, 2720-2724.	sis. 1.2	3
1185	Enantioselective three-component aminomethylation of $\hat{l}\pm$ -diazo ketones with alcohols and 1,3,5-triazines. Nature Communications, 2020, 11, 1511.	5.8	62
1186	Catalyst-Free Three-Component Synthesis, Antibacterial, Antifungal, and Docking Studies of Spiroindoline Derivatives. Polycyclic Aromatic Compounds, 2022, 42, 517-533.	1.4	2
1187	Catalytic Foldamers: When the Structure Guides the Function. Catalysts, 2020, 10, 700.	1.6	22
1188	Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews, 2020, 120, 4707-4765.	23.0	189
1189	Innovative catalysis in Michael addition reactions for C-X bond formation. Molecular Catalysis, 2020, 485, 110814.	1.0	28
1190	Catalytic Enantioselective Direct Aldol Addition of Aryl Ketones to αâ€Fluorinated Ketones. Angewandte Chemie, 2020, 132, 5397-5402.	1.6	12
1191	α-Amino Radicals via Photocatalytic Single-Electron Reduction of Imine Derivatives. ACS Catalysis, 2020, 10, 2009-2025.	5.5	107
1192	Catalytic Enantioselective Direct Aldol Addition of Aryl Ketones to αâ€Fluorinated Ketones. Angewandte Chemie - International Edition, 2020, 59, 5359-5364.	7.2	41
1193	Practical Synthesis of Highâ€Performance Amino Tfâ€Amide Organocatalysts for Asymmetric Aldol Reactions. Asian Journal of Organic Chemistry, 2020, 9, 206-209.	1.3	5
1194	Enantio- and Diastereoselective Double Mannich Reaction between Ketones and Imines Catalyzed by Zn-ProPhenol. Organic Letters, 2020, 22, 1675-1680.	2.4	17
1195	New 1D chiral Zr-MOFs based on in situ imine linker formation as catalysts for asymmetric C C coupling reactions. Journal of Catalysis, 2020, 386, 106-116.	3.1	23
1196	Organocatalyzed α-aminooxylation/amination of aldehydes and their sequential reactions: A versatile tool for the synthesis of bioactive molecules. Studies in Natural Products Chemistry, 2020, , 417-465.	0.8	0
1197	Enabling protein-hosted organocatalytic transformations. RSC Advances, 2020, 10, 16147-16161.	1.7	5
1198	Construction of chiral \hat{l}_{\pm} - <i>tert</i> -amine scaffolds <i>via</i> amine-catalyzed asymmetric Mannich reactions of alkyl-substituted ketimines. Chemical Science, 2021, 12, 1445-1450.	3.7	13
1199	Cyclopropanes in organocatalytic transformations. Tetrahedron, 2021, 82, 131760.	1.0	12
1200	Nitro-Substituted Benzaldehydes in the Generation of Azomethine Ylides and Retro-1,3-Dipolar Cycloadditions. Journal of Organic Chemistry, 2021, 86, 547-558.	1.7	3
1201	Carbeneâ€Catalyzed Enantioselective Aldol Reaction: Postâ€Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angewandte Chemie, 2021, 133, 161-167.	1.6	3

#	Article	IF	CITATIONS
1202	Carbeneâ€Catalyzed Enantioselective Aldol Reaction: Postâ€Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angewandte Chemie - International Edition, 2021, 60, 159-165.	7.2	15
1203	Bifunctional amino sulfonamide-catalyzed asymmetric conjugate addition to alkenyl alkynyl ketimines as enone surrogates. Chemical Communications, 2021, 57, 2808-2811.	2.2	9
1204	<scp>Rhâ€Catalyzed</scp> Kinetic <scp>Resolutionâ€Based</scp> Enantioselective [4+2]â€ <scp>Cycloadditionâ€Isomerization</scp> of Alleneâ€1,3â€dienes. Chinese Journal of Chemistry, 2021, 3559-565.	392.6	6
1205	Electric field modulated peptide based hydrogel nanocatalysts. Soft Matter, 2021, 17, 9725-9735.	1.2	15
1206	Ionic liquids as alternative greener solvents and catalysts in organic transformations. , 2021, , 359-404.		1
1207	Benzene-1,3-diol derivatives as the inhibitors of butyrylcholinesterase: An emergent target of Alzheimer's disease. Journal of the Serbian Chemical Society, 2022, 87, 293-306.	0.4	1
1208	Enantioselective "organocatalysis in disguise―by the ligand sphere of chiral metal-templated complexes. Chemical Society Reviews, 2021, 50, 9715-9740.	18.7	31
1209	Conjugated ynones in catalytic enantioselective reactions. Organic and Biomolecular Chemistry, 2021, 19, 2110-2145.	1.5	19
1210	Enantio- and diastereoselective double Mannich reaction of malononitrile with <i>N</i> -Boc imines using quinine-derived bifunctional organoiodine catalyst. Organic and Biomolecular Chemistry, 2021, 19, 6969-6973.	1.5	4
1211	Power of Biocatalysis for Organic Synthesis. ACS Central Science, 2021, 7, 55-71.	5.3	186
1212	Asymmetric Organocatalysis with Chiral Covalent Organic Frameworks. Organic Materials, 2021, 03, 245-253.	1.0	5
1213	Enamine Organocatalysts for the Thiol-Michael Addition Reaction and Cross-Linking Polymerizations. Macromolecules, 2021, 54, 1693-1701.	2.2	7
1214	Synthesis Strategies for α― β― î³â€•and δâ€Carbolines. Asian Journal of Organic Chemistry, 2021, 10, 429-452	2.1.3	16
1215	Metalâ€Free Reductive Aldol Reactions. Asian Journal of Organic Chemistry, 2021, 10, 680-691.	1.3	8
1216	Recent Applications of Asymmetric Organocatalytic Methods in Total Synthesis. ChemistrySelect, 2021, 6, 2252-2280.	0.7	8
1217	Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis. Current Organocatalysis, 2021, 8, 126-146.	0.3	6
1218	A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catalysis, 2021, 11, 6316-6324.	5.5	23
1219	Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts, 2021, 11, 712.	1.6	16

#	Article	IF	CITATIONS
1220	Synthesis and Spectroscopic Study of Si, Ti, Mg, and Zn Oxides Modified by L-Proline. Journal of Applied Spectroscopy, 2021, 88, 519-527.	0.3	1
1221	Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction. Molecules, 2021, 26, 4190.	1.7	2
1222	Supramolecular assembly of l-Lysine on ZSM-5 zeolites with different Si/Al ratio. Microporous and Mesoporous Materials, 2021, 323, 111183.	2.2	2
1223	Additive and Emergent Catalytic Properties of Dimeric Unnatural Amino Acid Derivatives: Aldol and Conjugate Additions. Chemistry - A European Journal, 2021, 27, 15671-15687.	1.7	5
1224	Organocatalysis for the Asymmetric Michael Addition of Cycloketones and \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Nitroalkenes. Catalysts, 2021, 11, 1004.	1.6	5
1225	Cross-Linked Porous Polymers as Heterogeneous Organocatalysts for Task-Specific Applications in Biomass Transformations, CO ₂ Fixation, and Asymmetric Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 12431-12460.	3.2	40
1226	Applications of 2-Oxoaldehydes., 2022,, 63-171.		0
1228	Proline and proline-derived organocatalysts in the synthesis of heterocycles. , 2021, , 215-251.		1
1229	Recent advances in applications of Mannich reaction in total synthesis of alkaloids., 2021,, 153-190.		0
1231	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	10.1	129
1232	(S)-2-(Iodomethyl)-1-tosylpyrrolidine. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o56-o56.	0.2	2
1233	Subcritical Water Assisted Clean Cross-Aldol Reactions. Journal of Chemical Engineering of Japan, 2011, 44, 577-582.	0.3	4
1234	Competitive ways for three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and amino alcohols. Pure and Applied Chemistry, 2020, 92, 1265-1275.	0.9	10
1235	(S)-5-prolylamide-triazole Organocatalyst for Direct Asymmetric Aldol Reactions. Current Organic Chemistry, 2013, 17, 1563-1568.	0.9	4
1236	Enantioselective Organocatalytic Reactions with Isatin. Current Organic Chemistry, 2013, 17, 1957-1985.	0.9	23
1237	Recent Application of Polystyrene-supported Triphenylphosphine in Solid-Phase Organic Synthesis. Current Organic Chemistry, 2019, 23, 643-678.	0.9	1
1238	Modified 3-Hydroxypipecolic Acid Derivatives as an Organocatalyst. Heterocycles, 2009, 77, 635.	0.4	6
1239	A New Chiral Synthesis of Wieland-Miescher Ketone Catalyzed by a Combination of (S)-N-Benzyl-N-(2-pyrrolidinylmethyl)amine Derivative and Brnsted Acid. Heterocycles, 2009, 77, 1065.	0.4	10

#	Article	IF	CITATIONS
1240	Sugar Based \hat{l}^3 -Amino Alcohol Organocatalyst for Asymmetric Michael Addition of \hat{l}^2 -Keto Esters with Nitroolefins. Heterocycles, 2019, 98, 1536.	0.4	4
1241	L-Proline as an Efficient Catalyst for the Synthesis of 2,4,5-Triaryl-1H-Imidazoles. Bulletin of the Korean Chemical Society, 2009, 30, 1963-1966.	1.0	16
1242	Organocatalytic and Enantioselective Mannich Reaction of Dicyanoolefins with \hat{l}_{\pm} -Amido Sulfones. Bulletin of the Korean Chemical Society, 2012, 33, 3175-3176.	1.0	7
1243	Asymmetric Michael Addition of Ketones to Nitroolefins Catalyzed by a Novel Chiral Pyrrolidine-Thiourea in the Ionic Liquid. Bulletin of the Korean Chemical Society, 2013, 34, 3179-3180.	1.0	6
1244	Development of Asymmetric Cycloaddition Reaction Using Amino Alcohol and its Derivative as an Organocatalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 720-731.	0.0	4
1245	Can Primary Arylamines Form Enamine? Evidence, $\hat{l}\pm$ -Enaminone, and [3+3] Cycloaddition Reaction. Journal of Organic Chemistry, 2021, 86, 14617-14626.	1.7	2
1247	(2R,3R)-2-[(4-Chlorophenyl)hydroxymethyl]cyclopentanone. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o164-o165.	0.2	0
1250	One-Pot Synthesis of Aldol Adduct Catalyzed by Immobilized Picolylamine on Zirconia. Modern Research in Catalysis, 2014, 03, 1-5.	1.2	0
1251	CHAPTER 8. Enantioselective Nickel-Catalysed Aldol-Type and Mannich-Type Reactions. RSC Catalysis Series, 2016, , 279-298.	0.1	0
1252	Advances in the Study of Microwave Irradiation Efficient Construction of Heterocyclic Compounds with Enaminone or Enamino Ester as Building Blocks. Journal of Organic Chemistry Research, 2017, 05, 164-174.	0.1	0
1253	Asymmetric cross-Aldol Reactions between Two Carbonyl Compounds Catalyzed by Chiral Phosphine Oxides. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1163-1173.	0.0	2
1254	Peptide Self-assembly Applied to Catalytic Asymmetric Aldol Reactions. RSC Soft Matter, 2020, , 126-173.	0.2	1
1255	Synthesis of Axially Chiral Binaphthothiophene Î'-Amino Acid Derivatives Bearing Chalcogen Bonds. Heterocycles, 2020, 101, 328.	0.4	3
1257	Primary Amine Catalyzed Activation of Carbonyl Compounds: A Study on Reaction Pathways and Reactive Intermediates by Mass Spectrometry. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
1258	Formation of C-C Bonds via Catalytic Hydrogenation and Transfer Hydrogenation: Vinylation, Allylation, and Enolate Addition of Carbonyl Compounds and Imines. Aldrichimica Acta, 2008, 41, 95-104.	4.0	66
1260	Orthogonal Catalysis for an Enantioselective Domino Inverseâ€Electron Demand Dielsâ° Alder/Substitution Reaction. Chemistry - A European Journal, 2022, 28, .	1.7	8
1261	Enantioselective Cooperative Catalysis within Frustrated Lewis Pair Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1065-1072.	0.0	2
1262	Development of fructose-1,6-bisphosphate aldolase enzyme peptide mimics as biocatalysts in direct asymmetric aldol reactions. RSC Advances, 2021, 11, 36670-36681.	1.7	2

#	Article	IF	CITATIONS
1263	Organocatalysts based on natural and modified amino acids for asymmetric reactions. ChemistrySelect, 2022, 7, 429-467.	0.7	1
1264	Critical trends in synthetic organic chemistry in terms of organocatalysis. ChemistrySelect, 2022, 7, 325-344.	0.7	O
1265	A Molecular-Wide and Electron Density-Based Approach in Exploring Chemical Reactivity and Explicit Dimethyl Sulfoxide (DMSO) Solvent Molecule Effects in the Proline Catalyzed Aldol Reaction. Molecules, 2022, 27, 962.	1.7	2
1266	Visible-light-induced N-heterocyclic carbene mediated cascade transformation of N-alkenoxypyridinium salts. Chinese Chemical Letters, 2022, 33, 4298-4302.	4.8	13
1267	Design and Synthesis of Phenylcyclopropane-based Chiral Amine Catalysts and Their Application in Asymmetric Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 92-102.	0.0	0
1268	Application of Proline-Derived (Thio)squaramide Organocatalysts in Asymmetric Diels–Alder and Conjugate Addition Reactions. Synthesis, 2022, 54, 3823-3830.	1.2	4
1269	Synthetic drives for useful drug molecules through organocatalytic methods. ChemistrySelect, 2022, 7, 373-410.	0.7	0
1270	Metal-Mediated Organocatalysis in Water: Serendipitous Discovery of Aldol Reaction Catalyzed by the [Ru(bpy) ₂ (nornicotine) ₂] ²⁺ Complex. Journal of Organic Chemistry, 2022, 87, 5412-5418.	1.7	1
1271	Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. Catalysis Reviews - Science and Engineering, 2024, 66, 1-118.	5.7	9
1272	Asymmetric Organocatalysis Enables Rapid Assembly of Portimine Precursor Chains. Organic Letters, 2022, 24, 2607-2612.	2.4	3
1273	Novel diastereoselective trans 2, 3-dihydrobenzofuran derivatives: Tandem synthesis, crystal structure, antioxidant and anticancer activity. Journal of Molecular Structure, 2022, 1261, 132899.	1.8	6
1275	Fractal Features of the Catalytic Performances of Bimodal Mesoporous Silicaâ€Supported Organocatalysts Derived from Bipyridineâ€Proline for Asymmetric Aldol Reaction. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	5
1276	Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones. Chinese Journal of Organic Chemistry, 2022, 42, 698.	0.6	6
1277	The synthesis of sutezolid and eperezolid using proline catalyzed α-aminoxylation of an aldehyde. Journal of Chemical Sciences, 2022, 134, 1.	0.7	1
1278	CHAPTER 1. Introduction to Dienamine Chemistry. RSC Catalysis Series, 0, , 1-9.	0.1	0
1279	CHAPTER 10. Trienamine-catalyzed Stereoselective Cycloadditions and Other Remote Functionalizations of Polyconjugated Enals/Enones. RSC Catalysis Series, 0, , 158-193.	0.1	0
1280	CHAPTER 11. Tetraenamine-catalyzed Stereoselective Cycloadditions of Polyunsaturated Carbonyl Compounds. RSC Catalysis Series, 0, , 194-198.	0.1	0
1281	CHAPTER 3. Asymmetric Domino Reactions Based on the Use of Chiral Organocatalysts. RSC Catalysis Series, 0, , 251-467.	0.1	0

#	Article	IF	CITATIONS
1282	Sonochemistry in an organocatalytic domino reaction: an expedient multicomponent access to structurally functionalized dihydropyrano[3,2- <i>b</i>)pyrans, spiro-pyrano[3,2- <i>b</i>)pyrans, and spiro-indenoquinoxaline-pyranopyrans under ambient conditions. RSC Advances, 2022, 12, 12843-12857.	1.7	20
1283	Cooperative Pd/Cu-catalyzed diastereodivergent coupling of allenamides and aldimine esters to access the Mannich-type motifs. Chem Catalysis, 2022, 2, 1428-1439.	2.9	23
1284	Pickering interfacial catalysts for asymmetric organocatalysis Catalysis Science and Technology, 0, , .	2.1	1
1285	Lightâ€Mediated Aminocatalysis: The Dualâ€Catalytic Ability Enabling New Enantioselective Route. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
1286	Evolving Trends for Câ^'C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect, 2022, 7, .	0.7	6
1287	New Sugar Based \hat{I}^3 -Amino Silyl Ether Organocatalysts for Asymmetric Michael Addition of \hat{I}^2 -Keto Esters with Nitroolefins. Heterocycles, 2022, 105, 369.	0.4	2
1288	Diastereoselective Synthesis of Spiro[benzopyrrolothiazole-thioazlactone] Derivatives from Erlenmeyer Thioazlactones and Azomethine Ylides. Synthesis, 2022, 54, 4615-4621.	1.2	2
1289	Recent advancements on the synthesis and biological significance of pipecolic acid and its derivatives. Journal of Molecular Structure, 2022, 1268, 133719.	1.8	5
1290	Highlights of the Recent Patent Literature: Focus on Asymmetric Organocatalysis. Organic Process Research and Development, 2022, 26, 2224-2239.	1.3	8
1291	L-Proline: A Versatile Organo-Catalyst in Organic Chemistry. Combinatorial Chemistry and High Throughput Screening, 2023, 26, 1108-1140.	0.6	5
1292	Electrospinning strategy for the preparation of nanoâ€porous fibers as modifier for inducing the network structure and enhancing mechanical properties of <scp>SBS</scp> â€modified asphalt. Polymer Composites, 2022, 43, 6505-6520.	2.3	7
1293	Organocatalysis: A Versatile Tool for Asymmetric Green Organic Syntheses. , 2022, , 261-315.		1
1294	Recent progress in the chemistry of \hat{l}^2 -aminoketones. RSC Advances, 2022, 12, 24681-24712.	1.7	9
1295	Insights into α-Alkynylation and α-Allenylation of Aldehydes under the Synergisitic Catalysis of Gold/Amine: A DFT Study. Journal of Organic Chemistry, 2022, 87, 13102-13110.	1.7	3
1296	(S)-(1-Pyrrolidin-2-ylmethyl)quinuclidin-1-ium Bromide. MolBank, 2022, 2022, M1494.	0.2	0
1297	Enantio- and Diastereoselective Michael Addition of Cyclic Ketones/Aldehydes to Nitroolefins in Water as Catalyzed by Proline-Derived Bifunctional Organocatalysts. Journal of Organic Chemistry, 2022, 87, 16532-16541.	1.7	4
1298	Catalytic Efficiency of Primary α-Amino Amides as Multifunctional Organocatalysts in Recent Asymmetric Organic Transformations. Catalysts, 2022, 12, 1674.	1.6	4
1299	Construction of tetrasubstituted stereocenters via asymmetric catalysis using chiral acyclic secondary amines. Cell Reports Physical Science, 2022, 3, 101182.	2.8	3

#	Article	IF	Citations
1301	Poly($\hat{l}\mu$ -caprolactones) Initiated by Chiral Compounds: A New Protocol to Support Organocatalysts. Catalysts, 2023, 13, 164.	1.6	2
1302	New boro amino amide organocatalysts for asymmetric cross aldol reaction of ketones with carbonyl compounds. RSC Advances, 2023, 13, 888-894.	1.7	2
1303	Enantio- and Diastereoselective De Novo Synthesis of 3-Substituted Proline Derivatives via Cooperative Photoredox/BrÃ,nsted Acid Catalysis and Epimerization. Journal of the American Chemical Society, 2023, 145, 2779-2786.	6.6	17
1304	Highly regioselective synthesis of lactams $\langle i \rangle$ via $\langle j \rangle$ cascade reaction of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones, ketoamides, and DBU as a catalyst. RSC Advances, 2023, 13, 4782-4786.	1.7	1
1305	Thiourea fused \hat{I}^3 -amino alcohol organocatalysts for asymmetric Mannich reaction of \hat{I}^2 -keto active methylene compounds with imines. RSC Advances, 2023, 13, 3715-3722.	1.7	4
1306	Polymeric Networks Containing Amine Derivatives as Organocatalysts for Knoevenagel Reaction within Continuously Driven Microfluidic Reactors. Gels, 2023, 9, 171.	2.1	0
1307	Wittig and Wittig–Horner Reactions under Sonication Conditions. Molecules, 2023, 28, 1958.	1.7	1
1308	Chiral Amine Catalyzed Reductive Aldol/Reductive Michael Addition Cascade Towards Enantioselective Synthesis of Benzannulated Diquinanes. European Journal of Organic Chemistry, 2023, 26, .	1.2	2
1309	Synthesis and Characterization of Some Azole Derivatives as Potential Biological and Anticancer Agents. ChemistrySelect, 2023, 8, .	0.7	0
1310	Fischer's base-triggered formal (3+2) cycloadditions with 3-isothiocyanato oxindoles as acceptor–donor synthons. Chemical Communications, 2023, 59, 4652-4655.	2.2	0
1311	4.1.3.4. Stereoselective Synthesis of <i>meso</i> -1-Allyl-2,6-diphenylpiperidin-4-one., 2016, , 298-300.		0
1312	The effect of <i>S</i> -alkylation on organocatalytic enamine activation through imidazolidine-4-thiones. Chemical Communications, 2023, 59, 8091-8094.	2.2	2
1323	Enantioselective C–C, C–halogen and C–H bond forming reactions promoted by organocatalysts based on non-proteinogenic α-amino acid derivatives. Advances in Catalysis, 2023, , .	0.1	0