Isolation and Characterization of Tumorigenic, Stem-lil Glioblastoma

Cancer Research 64, 7011-7021 DOI: 10.1158/0008-5472.can-04-1364

Citation Report

#	Article	IF	CITATIONS
1	Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 2004, 23, 9392-9400.	2.6	747
2	Identification of human brain tumour initiating cells. Nature, 2004, 432, 396-401.	13.7	6,758
3	Prostate epithelial stem cells. Cell Proliferation, 2005, 38, 363-374.	2.4	99
4	Cancer stem cells in the mammalian central nervous system. Cell Proliferation, 2005, 38, 423-433.	2.4	61
5	The origin of the cancer stem cell: current controversies and new insights. Nature Reviews Cancer, 2005, 5, 899-904.	12.8	520
6	Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell, 2005, 8, 119-130.	7.7	481
7	Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 2005, 8, 211-226.	7.7	1,212
8	Brain as a paradigm of organ growth: Hedgehog-Gli signaling in neural stem cells and brain tumors. Journal of Neurobiology, 2005, 64, 476-490.	3.7	74
9	Bmi1 in development and tumorigenesis of the central nervous system. Journal of Molecular Medicine, 2005, 83, 596-600.	1.7	24
10	Neuro-Oncology in a Nutshell. Journal of Neuro-Oncology, 2005, 71, 1-2.	1.4	0
11	Models and Concepts. , 2005, , 7-19.		7
13	Gene Therapy and Targeted Toxins for Glioma. Current Gene Therapy, 2005, 5, 535-557.	0.9	71
14	Molecular cytogenetic analysis in the study of brain tumors: findings and applications. Neurosurgical Focus, 2005, 19, 1-36.	1.0	25
15	Glioblastoma-Induced Attraction of Endogenous Neural Precursor Cells Is Associated with Improved Survival. Journal of Neuroscience, 2005, 25, 2637-2646.	1.7	200
16	Emx2 Regulates Mammalian Reproduction by Altering Endometrial Cell Proliferation. Molecular Endocrinology, 2005, 19, 2839-2846.	3.7	54
17	PEX-Producing Human Neural Stem Cells Inhibit Tumor Growth in a Mouse Glioma Model. Clinical Cancer Research, 2005, 11, 5965-5970.	3.2	128
18	PBK/TOPK, a Proliferating Neural Progenitor-Specific Mitogen-Activated Protein Kinase Kinase. Journal of Neuroscience, 2005, 25, 10773-10785.	1.7	90
19	Neurofibromin Regulates Neural Stem Cell Proliferation, Survival, and Astroglial Differentiation In Vitro and In Vivo. Journal of Neuroscience, 2005, 25, 5584-5594.	1.7	120

ιτλτιώνι Ρερώ

ARTICLE IF CITATIONS # Genetic characterization of commonly used glioma cell lines in the rat animal model system. 20 1.0 86 Neurosurgical Focus, 2005, 19, 1-9. Stem and Progenitor-Like Cells Contribute to the Aggressive Behavior of Human Epithelial Ovarian 0.4 701 Cancer. Cancer Research, 2005, 65, 3025-3029. Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2a^2 22 0.4 873 Cancer Cells Are Similarly Tumorigenic. Cancer Research, 2005, 65, 6207-6219. A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas. Cancer Research, 2005, 65, 1,200 9328-9337. Isolation and In vitro Propagation of Tumorigenic Breast Cancer Cells with Stem/Progenitor Cell 24 0.4 1,650 Properties. Cancer Research, 2005, 65, 5506-5511. Interference with HH–GLI signaling inhibits prostate cancer. Trends in Molecular Medicine, 2005, 11, 3.5 199-203. Brain tumor stem cells. Biology of Blood and Marrow Transplantation, 2005, 11, 12-13. 26 2.0 16 Neural Stem Cells and the Origin of Gliomas. New England Journal of Medicine, 2005, 353, 811-822. 936 28 Stem-Like Cells in Bone Sarcomas: Implications for Tumorigenesis. Neoplasia, 2005, 7, 967-976. 2.3 426 Cancer Drug Resistance., 2006, , . Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic 31 106 1.3 targets. Carcinogenesis, 2006, 27, 2409-2423. Notch Pathway Inhibition Depletes Stem-like Cells and Blocks Engraftment in Embryonal Brain Tumors. 587 Cancer Research, 2006, 66, 7445-7452. Glioblastoma multiforme: advances in postsurgical management. Community Oncology, 2006, 3, 33 0.2 4 678-683. Notch Signaling Enhances Nestin Expression in Gliomas. Neoplasia, 2006, 8, 1072-IN1. 2.3 184 Recent Advances in the Treatment of Malignant Astrocytoma. Journal of Clinical Oncology, 2006, 24, 35 0.8 285 1253-1265. MOLECULAR PATHOLOGY OF MALIGNANT GLIOMAS. Annual Review of Pathology: Mechanisms of Disease, 566 2006, 1, 97-117. Models of malignant glioma. Drug Discovery Today: Disease Models, 2006, 3, 191-196. 37 1.2 2 Identification of novel genes regulated in the developing human ventral mesencephalon. Experimental Neurology, 2006, 198, 427-437.

#	Article	IF	CITATIONS
39	Asymmetric Segregation of the Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells. Cell, 2006, 124, 1241-1253.	13.5	473
40	Stem cells in the etiology and treatment of cancer. Current Opinion in Genetics and Development, 2006, 16, 60-64.	1.5	126
41	Breast cancer stem cells: An overview. European Journal of Cancer, 2006, 42, 1219-1224.	1.3	126
42	Brain cancer stem-like cells. European Journal of Cancer, 2006, 42, 1237-1242.	1.3	45
43	Neural stem cells as novel cancer therapeutic vehicles. European Journal of Cancer, 2006, 42, 1298-1308.	1.3	45
44	Age dependent and cellular origin (stem versus progenitor) of a selected group of spontaneous brain tumors in humans. Medical Hypotheses, 2006, 67, 1437-1442.	0.8	2
45	Nestin expression in neuroepithelial tumors. Neuroscience Letters, 2006, 400, 80-85.	1.0	37
46	PDGFRα-Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling. Neuron, 2006, 51, 187-199.	3.8	501
47	Targeting Stem Cells in Brain Tumors. Technology in Cancer Research and Treatment, 2006, 5, 251-260.	0.8	5
48	Induction by 7,12-dimethylbenz(a)anthracene of molecular and biochemical alterations in transformed human mammary epithelial stem cells, and protection by N-acetylcysteine. International Journal of Oncology, 2006, 29, 521.	1.4	9
49	Origins of brain tumors—a disease of stem cells?. Nature Clinical Practice Neurology, 2006, 2, 288-289.	2.7	13
50	Stem cells and cancer: an intimate relationship. Journal of Pathology, 2006, 209, 287-297.	2.1	123
51	Scale-Up of Breast Cancer Stem Cell Aggregate Cultures to Suspension Bioreactors. Biotechnology Progress, 2006, 22, 801-810.	1.3	55
52	Redefining Cellular Phenotypy Based on Embryonic, Adult, and Cancer Stem Cell Biology. Brain Pathology, 2006, 16, 169-180.	2.1	11
53	In vitro identification and functional characterization of glial precursor cells in human gliomas. Neuropathology and Applied Neurobiology, 2006, 32, 189-202.	1.8	40
54	Brain tumour stem cells. Nature Reviews Cancer, 2006, 6, 425-436.	12.8	913
55	Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444, 756-760.	13.7	5,600
56	Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 2006, 444, 761-765.	13.7	1,102

# 57	ARTICLE Stem cells and brain cancer. Cell Death and Differentiation, 2006, 13, 5-11.	IF 5.0	CITATIONS
58	Chemotherapy resistance of glioblastoma stem cells. Cell Death and Differentiation, 2006, 13, 1238-1241.	5.0	578
59	Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Research, 2006, 16, 909-915.	5.7	66
60	Target for cancer therapy: proliferating cells or stem cells. Leukemia, 2006, 20, 385-391.	3.3	172
61	Characterization of an imatinib-sensitive subset of high-grade human glioma cultures. Oncogene, 2006, 25, 4913-4922.	2.6	85
62	Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies. Stem Cells, 2006, 24, 2319-2345.	1.4	259
63	Neurosphere Assays: Growth Factors and Hormone Differences in Tumor and Nontumor Studies. Stem Cells, 2006, 24, 2851-2857.	1.4	73
64	Cancer Stem Cells. New England Journal of Medicine, 2006, 355, 1253-1261.	13.9	1,500
65	Unusual malignant glioneuronal tumors of the cerebrum of adults: a clinicopathologic study of three cases. Acta Neuropathologica, 2006, 112, 727-737.	3.9	21
66	Aneuploidy in the normal and diseased brain. Cellular and Molecular Life Sciences, 2006, 63, 2626-2641.	2.4	91
67	Molecular biology of malignant gliomas. Clinical and Translational Oncology, 2006, 8, 635-641.	1.2	30
68	Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 2006, 9, 157-173.	7.7	2,706
69	Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006, 9, 391-403.	7.7	2,056
70	Radiation resistance and stem-like cells in brain tumors. Cancer Cell, 2006, 10, 454-456.	7.7	146
71	Contactin is expressed in human astrocytic gliomas and mediates repulsive effects. Glia, 2006, 53, 1-12.	2.5	29
72	Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia, 2006, 54, 850-860.	2.5	246
73	Intracranial therapy of glioblastoma with the fusion protein DTIL13 in immunodeficient mice. International Journal of Cancer, 2006, 118, 2594-2601.	2.3	31
74	The neurobiology of neurooncology. Annals of Neurology, 2006, 60, 3-11.	2.8	54

#	Article	IF	CITATIONS
75	Identification of Tumor Precursor Cells in the Brains of Primates with Radiation-Induced de novo Glioblastoma Multiforme. Cell Cycle, 2006, 5, 452-456.	1.3	13
76	Brain Tumor Stem Cells. Pediatric Research, 2006, 59, 54R-58R.	1.1	63
77	Brain tumor stem cells: new targets for clinical treatments?. Neurosurgical Focus, 2006, 20, E27.	1.0	17
78	A Prospective on Stem Cell Research. Seminars in Reproductive Medicine, 2006, 24, 289-297.	0.5	13
79	Cell therapies for glioblastoma. Expert Opinion on Biological Therapy, 2006, 6, 739-749.	1.4	26
80	Primary Glioblastomas Express Mesenchymal Stem-Like Properties. Molecular Cancer Research, 2006, 4, 607-619.	1.5	215
81	CXCR4 Inhibition Synergizes with Cytotoxic Chemotherapy in Gliomas. Clinical Cancer Research, 2006, 12, 6765-6771.	3.2	119
83	IQGAP1 Protein Specifies Amplifying Cancer Cells in Glioblastoma Multiforme. Cancer Research, 2006, 66, 9074-9082.	0.4	50
84	Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Research, 2006, 66, 7843-7848.	0.4	1,239
85	Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17402-17407.	3.3	606
86	Genetic alterations associated with acquired temozolomide resistance in SNB-19, a human glioma cell line. Molecular Cancer Therapeutics, 2006, 5, 2182-2192.	1.9	51
87	PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 111-116.	3.3	281
88	Most C6 Cells Are Cancer Stem Cells: Evidence from Clonal and Population Analyses. Cancer Research, 2007, 67, 3691-3697.	0.4	207
89	Glioma. , 2007, , 433-444.		5
90	Resilience to Transformation and Inherent Genetic and Functional Stability of Adult Neural Stem Cells Ex vivo. Cancer Research, 2007, 67, 3725-3733.	0.4	57
91	Cancer stem cells and brain tumors: uprooting the bad seeds. Expert Review of Anticancer Therapy, 2007, 7, 1581-1590.	1.1	14
92	The p75 Neurotrophin Receptor Is a Central Regulator of Glioma Invasion. PLoS Biology, 2007, 5, e212.	2.6	150
93 _	Involvement of Homeobox Genes in Mammalian Sexual Development. Sexual Development, 2007, 1, 12-23.	1.1	27

#	Article	IF	CITATIONS
94	von Hippel-Lindau Disease-Associated Hemangioblastomas Are Derived from Embryologic Multipotent Cells. PLoS Medicine, 2007, 4, e60.	3.9	115
95	N-CoR Pathway Targeting Induces Glioblastoma Derived Cancer Stem Cell Differentiation. Cell Cycle, 2007, 6, 467-470.	1.3	54
96	Cancer stem cell and cancer stemloids: From biology to therapy. Cancer Biology and Therapy, 2007, 6, 1684-1690.	1.5	97
97	Brain tumour stem cells: possibilities of new therapeutic strategies. Expert Opinion on Biological Therapy, 2007, 7, 1129-1135.	1.4	36
98	CD133+ and CD133â ^{~?} Clioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Research, 2007, 67, 4010-4015.	0.4	1,027
99	Bone Marrow Niche and Leukemia. , 2007, , 125-139.		5
100	Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death. Journal of the National Cancer Institute, 2007, 99, 1410-1414.	3.0	268
101	Phosphorylated Pak1 Level in the Cytoplasm Correlates with Shorter Survival Time in Patients with Glioblastoma. Clinical Cancer Research, 2007, 13, 6603-6609.	3.2	59
102	Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro-Oncology, 2007, 9, 424-429.	0.6	354
103	Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes and Development, 2007, 21, 3258-3271.	2.7	59
104	Interplay of distinct growth factors during epithelial–mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Annals of Oncology, 2007, 18, 1605-1619.	0.6	89
105	Universal and Stemness-Related Tumor Antigens: Potential Use in Cancer Immunotherapy. Clinical Cancer Research, 2007, 13, 5675-5679.	3.2	32
106	CD133 Is Not Present on Neurogenic Astrocytes in the Adult Subventricular Zone, but on Embryonic Neural Stem Cells, Ependymal Cells, and Glioblastoma Cells. Cancer Research, 2007, 67, 5727-5736.	0.4	186
107	Bone Morphogenetic Proteins Regulate Tumorigenicity in Human Glioblastoma Stem Cells. , 2007, , 59-81.		50
109	Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3466-3471.	3.3	101
110	Cannabinoids Induce Glioma Stem-like Cell Differentiation and Inhibit Gliomagenesis. Journal of Biological Chemistry, 2007, 282, 6854-6862.	1.6	116
111	Stem cell-like cancer cells in cancer cell lines. Cancer Biomarkers, 2007, 3, 245-250.	0.8	70
112	Establishment of Clonal Colony-Forming Assay for Propagation of Pancreatic Cancer Cells With Stem Cell Properties. Pancreas, 2007, 34, 429-435.	0.5	113

#	Article	IF	CITATIONS
113	Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. World Neurosurgery, 2007, 68, 133-143.	1.3	216
114	Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma. Neuron, 2007, 53, 503-517.	3.8	438
115	Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10158-10163.	3.3	1,961
116	Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 2007, 43, 935-946.	1.3	523
117	A rapid assay for drug sensitivity of glioblastoma stem cells. Biochemical and Biophysical Research Communications, 2007, 358, 908-913.	1.0	27
118	VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochemical and Biophysical Research Communications, 2007, 360, 553-559.	1.0	133
119	Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions. Biochemical and Biophysical Research Communications, 2007, 361, 586-592.	1.0	50
120	The human subventricular zone: A source of new cells and a potential source of brain tumors. Experimental Neurology, 2007, 205, 313-324.	2.0	127
121	Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Letters, 2007, 257, 172-181.	3.2	94
122	Cancer Stem Cells: At the Headwaters of Tumor Development. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 175-189.	9.6	136
123	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984.	0.4	464
124	Identification of Pancreatic Cancer Stem Cells. Cancer Research, 2007, 67, 1030-1037.	0.4	3,017
125	Lung Cancer and Lung Stem Cells. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 547-553.	2.5	165
126	Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 2007, 11, 915-927.	1.5	58
127	Prostatic Stem Cell Marker Identified by cDNA Microarray in Mouse. Journal of Urology, 2007, 178, 686-691.	0.2	12
128	Astrocytic Stem Cells in the Adult Brain. Neurosurgery Clinics of North America, 2007, 18, 21-30.	0.8	21
129	In Search of the Medulloblast: Neural Stem Cells and Embryonal Brain Tumors. Neurosurgery Clinics of North America, 2007, 18, 59-69.	0.8	45
130	Platelet-Derived Growth Factor–Mediated Gliomagenesis and Brain Tumor Recruitment. Neurosurgery Clinics of North America, 2007, 18, 39-58.	0.8	43

#	Article	IF	CITATIONS
131	Identification of a subset of breast carcinomas characterized by expression of cytokeratin 15: Relationship between CK15+ progenitor/amplified cells and preâ€malignant lesions and invasive disease. Molecular Oncology, 2007, 1, 321-349.	2.1	24
132	Spontaneous Transformation of Human Adult Nontumorigenic Stem Cells to Cancer Stem Cells Is Driven by Genomic Instability in a Human Model of Glioblastoma. Stem Cells, 2007, 25, 1478-1489.	1.4	138
133	The Biology of Cancer Stem Cells. Annual Review of Cell and Developmental Biology, 2007, 23, 675-699.	4.0	943
134	Identification of uPAR-positive Chemoresistant Cells in Small Cell Lung Cancer. PLoS ONE, 2007, 2, e243.	1.1	123
135	Neural Stem Cells as Biological Minipumps: A Faster Route to Cell Therapy for the CNS?. Current Stem Cell Research and Therapy, 2007, 2, 13-22.	0.6	24
136	MiRNAs in glioblastoma. , 2007, , 350-362.		0
137	Identification of tumorigenic retinal stem-like cells in human solid retinoblastomas. International Journal of Cancer, 2007, 121, 2125-2131.	2.3	57
138	Developmental signaling pathways in brain tumorâ€derived stemâ€like cells. Developmental Dynamics, 2007, 236, 3297-3308.	0.8	63
139	Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell International, 2007, 7, 9.	1.8	110
140	Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene, 2007, 26, 5752-5761.	2.6	125
141	Glioblastoma multiforme: the role of DSB repair between genotype and phenotype. Oncogene, 2007, 26, 7809-7815.	2.6	27
142	Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chemical Biology, 2007, 3, 268-273.	3.9	153
143	The hunt for cancer-initiating cells: a history stemming from leukemia. Leukemia, 2007, 21, 1619-1627.	3.3	37
144	Stem cells of ependymoma. British Journal of Cancer, 2007, 96, 6-10.	2.9	78
145	Expression of Sox2 in mature and immature teratomas of central nervous system. Modern Pathology, 2007, 20, 742-748.	2.9	35
146	Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Modern Pathology, 2007, 20, 1061-1068.	2.9	58
147	Relevance of combinatorial profiles of intermediate filaments and transcription factors for glioma histogenesis. Neuropathology and Applied Neurobiology, 2007, 33, 431-439.	1.8	30
148	Genetic intratumour heterogeneity in highâ€grade brain tumours is associated with telomereâ€dependent mitotic instability. Neuropathology and Applied Neurobiology, 2007, 33, 440-454.	1.8	11

#	Article	IF	CITATIONS
149	Is cancer a stem cell disease? Theory, evidence and implications. Veterinary and Comparative Oncology, 2007, 5, 76-89.	0.8	12
150	Expression of HOXC9 and E2F2 are up-regulated in CD133+ cells isolated from human astrocytomas and associate with transformation of human astrocytes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 437-442.	2.4	36
151	Cancer initiation and progression: Involvement of stem cells and the microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 283-297.	3.3	85
152	Neural stem cells, tumour stem cells and brain tumours: Dangerous relationships?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1776, 125-137.	3.3	16
153	A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell, 2007, 11, 69-82.	7.7	1,994
154	Bmi1 Controls Tumor Development in an Ink4a/Arf-Independent Manner in a Mouse Model for Glioma. Cancer Cell, 2007, 12, 328-341.	7.7	264
155	HEDGEHOC-GL11 Signaling Regulates Human Glioma Growth, Cancer Stem Cell Self-Renewal, and Tumorigenicity. Current Biology, 2007, 17, 165-172.	1.8	1,006
156	Radioresistant glioma stem cells—Therapeutic obstacle or promising target?. DNA Repair, 2007, 6, 1391-1394.	1.3	35
157	Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. Journal of Cellular and Molecular Medicine, 2007, 11, 981-1011.	1.6	213
158	Systems biology and cancer stem cells. Journal of Cellular and Molecular Medicine, 2008, 12, 97-110.	1.6	22
159	Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy. Journal of Cellular and Molecular Medicine, 2008, 12, 111-125.	1.6	26
160	Glioma stem cells: Evidence and limitation. Seminars in Cancer Biology, 2007, 17, 214-218.	4.3	69
161	Human neuroblastoma stem cells. Seminars in Cancer Biology, 2007, 17, 241-247.	4.3	104
162	Cancer stem cells: A new paradigm for understanding tumor progression and therapeutic resistance. Surgery, 2007, 141, 415-419.	1.0	61
163	Cancer stem cells and "stemness―genes in neuro-oncology. Neurobiology of Disease, 2007, 25, 217-229.	2.1	123
164	Spheres Isolated from 9L Gliosarcoma Rat Cell Line Possess Chemoresistant and Aggressive Cancer Stem-Like Cells. Stem Cells, 2007, 25, 1645-1653.	1.4	132
165	A Novel, Immortal, and Multipotent Human Neural Stem Cell Line Generating Functional Neurons and Oligodendrocytes. Stem Cells, 2007, 25, 2312-2321.	1.4	79
166	Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma. Stem Cells, 2007, 25, 2524-2533.	1.4	578

		CITATION REPORT		
#	Article		IF	CITATIONS
167	Cancer Stem Cells: Models and Concepts. Annual Review of Medicine, 2007, 58, 267-28	34.	5.0	1,184
168	Brain Tumor Stem Cells: Identification and Concepts. Neurosurgery Clinics of North Amo 31-38.	erica, 2007, 18,	0.8	53
169	Notch activation promotes cell proliferation and the formation of neural stem cell-like c human glioma cells. Molecular and Cellular Biochemistry, 2007, 307, 101-108.	olonies in	1.4	121
170	Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of Journal of Neuro-Oncology, 2007, 83, 121-131.	immunotherapy.	1.4	138
171	CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of gliom Biology, 2007, 35, 159-172.	ıa. Brain Cell	3.5	39
172	Ependymomas with neuronal differentiation: a morphologic and immunohistochemical s Neuropathologica, 2007, 113, 313-324.	spectrum. Acta	3.9	66
173	Diffuse glioma growth: a guerilla war. Acta Neuropathologica, 2007, 114, 443-458.		3.9	513
174	Brain tumor stem cells. Current Neurology and Neuroscience Reports, 2007, 7, 215-220		2.0	14
175	Prospective Isolation and Functional Analysis of Stem and Differentiated Cells from the Mammary Gland. Stem Cell Reviews and Reports, 2007, 3, 124-136.	Mouse	5.6	21
176	Stem Cells and Cancer: An Overview. Stem Cell Reviews and Reports, 2007, 3, 249-255.		5.6	59
177	Isolation of side population cells and detection of ABCG2 from SW480. Chinese Journal Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer F 2007, 19, 238-243.	of Cancer Research,	0.7	1
178	Apoptosis in normal and cancer stem cells. Critical Reviews in Oncology/Hematology, 20	008, 66, 42-51.	2.0	80
179	Brain Tumor Stem Cells. Current Problems in Cancer, 2008, 32, 124-142.		1.0	22
180	Cancer stem cells: markers or biomarkers?. Cancer and Metastasis Reviews, 2008, 27, 4	59-470.	2.7	102
181	Limitations of the cancer stem cell theory. Cytotechnology, 2008, 58, 3-9.		0.7	14
182	Expression of stem cell markers in human astrocytomas of different WHO grades. Journ Neuro-Oncology, 2008, 86, 31-45.	al of	1.4	154
183	Stem Cell Markers in Gliomas. Neurochemical Research, 2008, 33, 2407-2415.		1.6	96
184	Tumorstammzellen: Grundlagen, klinische Implikationen und Kontroversen. Onkopipelir 91-100.	ie, 2008, 1,	0.0	1

#	Article	IF	Citations
185	The Emerging Role of Anti-Angiogenic Therapy for Malignant Gliomaâ€. Current Treatment Options in Oncology, 2008, 9, 1-22.	1.3	32
186	Immunotherapeutic Treatment Strategies for Primary Brain Tumors. Current Treatment Options in Oncology, 2008, 9, 32-40.	1.3	12
187	Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cellular and Developmental Biology - Animal, 2008, 44, 280-289.	0.7	57
188	Commentary: "Re-Programming or Selecting Adult Stem Cells?― Stem Cell Reviews and Reports, 2008, 4, 81-88.	5.6	23
189	Glioma Formation, Cancer Stem Cells, and Akt Signaling. Stem Cell Reviews and Reports, 2008, 4, 203-210.	5.6	92
190	In Search of Liver Cancer Stem Cells. Stem Cell Reviews and Reports, 2008, 4, 179-192.	5.6	21
191	Cancer stem cells and brain tumors. Clinical and Translational Oncology, 2008, 10, 262-267.	1.2	27
192	The role of cancer stem cells in neoplasia of the lung: past, present and future. Clinical and Translational Oncology, 2008, 10, 719-725.	1.2	14
193	Brain tumor stem cells as research and treatment targets. Brain Tumor Pathology, 2008, 25, 67-72.	1.1	32
194	The interface between glial progenitors and gliomas. Acta Neuropathologica, 2008, 116, 465-477.	3.9	101
195	Cells in the astroglial lineage are neural stem cells. Cell and Tissue Research, 2008, 331, 179-191.	1.5	137
196	TGF-beta in neural stem cells and in tumors of the central nervous system. Cell and Tissue Research, 2008, 331, 225-241.	1.5	91
197	Stem cells and cancer: a deadly mix. Cell and Tissue Research, 2008, 331, 109-124.	1.5	47
198	Clioblastoma stem cells produce vascular endothelial growth factor by activation of a Gâ€protein coupled formylpeptide receptor FPR. Journal of Pathology, 2008, 215, 369-376.	2.1	68
199	Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. Journal of Neuroscience Research, 2008, 86, 48-60.	1.3	144
200	An identification of stem cellâ€resembling gene expression profiles in highâ€grade astrocytomas. Molecular Carcinogenesis, 2008, 47, 893-903.	1.3	7
201	CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International Journal of Cancer, 2008, 122, 761-768.	2.3	508
202	Haplotypeâ€specific expression of the human <i>PDGFRA</i> gene correlates with the risk of glioblastomas. International Journal of Cancer, 2008, 123, 322-329.	2.3	18

	CITATION	REPORT	
#	Article	IF	CITATIONS
203	Neural Stem Cells in the Mammalian Brain. International Review of Cytology, 2008, 265, 55-109.	6.2	9
204	Enumeration of Neural Stem and Progenitor Cells in the Neural Colony-Forming Cell Assay. Stem Cells, 2008, 26, 988-996.	1.4	192
205	Direct Orthotopic Transplantation of Fresh Surgical Specimen Preserves CD133+ Tumor Cells in Clinically Relevant Mouse Models of Medulloblastoma and Glioma. Stem Cells, 2008, 26, 1414-1424.	1.4	127
206	Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition. Stem Cells, 2008, 26, 3027-3036.	1.4	207
207	The neurosphere assay, a method under scrutiny. Acta Neuropsychiatrica, 2008, 20, 2-8.	1.0	22
208	Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Laboratory Investigation, 2008, 88, 808-815.	1.7	312
209	Cancer stem cells – old concepts, new insights. Cell Death and Differentiation, 2008, 15, 947-958.	5.0	320
210	Mesenchymal differentiation of glioblastoma stem cells. Cell Death and Differentiation, 2008, 15, 1491-1498.	5.0	97
211	Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene, 2008, 27, 2542-2551.	2.6	114
212	Clioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene, 2008, 27, 2897-2909.	2.6	384
213	Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene, 2008, 27, 5169-5181.	2.6	54
214	Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer, 2008, 8, 755-768.	12.8	3,070
215	Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 2008, 15, 504-514.	5.0	1,511
216	Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Therapy, 2008, 15, 136-142.	2.3	78
217	The Evolution of Our Understanding on Glioma. Brain Pathology, 2008, 18, 455-463.	2.1	23
218	The 2007 WHO Classification of Tumors of the Nervous System: Controversies in Surgical Neuropathology. Brain Pathology, 2008, 18, 307-316.	2.1	76
219	Successful isolation and long-term establishment of a cell line with stem cell-like features from an anaplastic medulloblastoma. Neuropathology and Applied Neurobiology, 2008, 34, 306-315.	1.8	16
220	Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma. BMC Neuroscience, 2008, 9, 15.	0.8	58

#	Article	IF	CITATIONS
221	Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer, 2008, 8, 304.	1.1	98
222	miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine, 2008, 6, 14.	2.3	819
223	Mutation and copy number analysis of LNX1 and Numbl in nervous system tumors. Cancer Genetics and Cytogenetics, 2008, 186, 103-109.	1.0	11
224	BMPing Off Glioma Stem Cells. Cancer Cell, 2008, 13, 3-4.	7.7	31
225	Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. Cancer Cell, 2008, 14, 123-134.	7.7	572
226	The Linear-Quadratic Model Is Inappropriate to Model High Dose per Fraction Effects in Radiosurgery. Seminars in Radiation Oncology, 2008, 18, 240-243.	1.0	442
227	Isolation and characterisation of cancer stem cells from canine osteosarcoma. Veterinary Journal, 2008, 175, 69-75.	0.6	95
228	New developments in medulloblastoma treatment: the potential of a cyclopamine–lovastatin combination. Expert Opinion on Investigational Drugs, 2008, 17, 185-195.	1.9	20
229	Brain Tumor Stem Cells: Bringing Order to the Chaos of Brain Cancer. Journal of Clinical Oncology, 2008, 26, 2916-2924.	0.8	164
230	Characterization of Adult Neural Stem Cells and Their Relation to Brain Tumors. Cells Tissues Organs, 2008, 188, 212-224.	1.3	68
231	Cancer stem cells and glioma. Nature Clinical Practice Neurology, 2008, 4, 427-435.	2.7	105
232	Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. Journal of Experimental and Clinical Cancer Research, 2008, 27, 85.	3.5	231
233	Breast cancer stem cells: implications for therapy of breast cancer. Breast Cancer Research, 2008, 10, 210.	2.2	109
234	Adult Neural Stem Cells. Methods in Molecular Biology, 2008, 438, 67-84.	0.4	16
236	Tumor Angiogenesis and the Cancer Stem Cell Model. , 2008, , 249-258.		1
237	Nuclear receptor binding protein 2 is induced during neural progenitor differentiation and affects cell survival. Molecular and Cellular Neurosciences, 2008, 39, 32-39.	1.0	16
238	Glioma Stem Cells: A Midterm Exam. Neuron, 2008, 58, 832-846.	3.8	291
239	Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Letters, 2008, 265, 124-134.	3.2	199

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
240	The new challenge of stem cell: Brain tumour therapy. Cancer Letters, 2008, 272, 1-11.		3.2	15
241	Brain cancer stem-like cell genesis from p53-deficient mouse astrocytes by oncogenic R and Biophysical Research Communications, 2008, 365, 496-502.	as. Biochemical	1.0	30
243	DNA repair and cancer stem-like cells – Potential partners in glioma drug resistance?. Treatment Reviews, 2008, 34, 558-567.	Cancer	3.4	125
244	Recent Advances on the Molecular Mechanisms Involved in the Drug Resistance of Can Novel Targeting Therapies. Clinical Pharmacology and Therapeutics, 2008, 83, 673-691	cer Cells and	2.3	157
245	CD133 Is a Marker of Bioenergetic Stress in Human Glioma. PLoS ONE, 2008, 3, e3655.		1.1	208
247	Abnormal DNA Methylation of <i>CD133</i> in Colorectal and Glioblastoma Tumors. Ca 2008, 68, 8094-8103.	ncer Research,	0.4	153
248	Targeting of the Bmi-1 Oncogene/Stem Cell Renewal Factor by MicroRNA-128 Inhibits C Proliferation and Self-Renewal. Cancer Research, 2008, 68, 9125-9130.	ìlioma	0.4	670
249	Medulloblastoma Stem Cells. Journal of Clinical Oncology, 2008, 26, 2821-2827.		0.8	138
250	Survival of the Fittest: Cancer Stem Cells in Therapeutic Resistance and Angiogenesis. Jo Clinical Oncology, 2008, 26, 2839-2845.	ournal of	0.8	665
251	The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. Journa Endocrinological Investigation, 2008, 31, 809-819.	of	1.8	96
252	Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E a signaling. Genes and Development, 2008, 22, 2028-2033.	nd notch	2.7	120
253	Cancer Stem Cells Are Enriched in the Side Population Cells in a Mouse Model of Glioma Research, 2008, 68, 10051-10059.	a. Cancer	0.4	144
254	Cancer Stem Cell Analysis and Clinical Outcome in Patients with Glioblastoma Multiforr Cancer Research, 2008, 14, 8205-8212.	ne. Clinical	3.2	327
255	Brain Tumour Stem Cells and Neural Stem Cells: Still Explored by the Same Approach?. J International Medical Research, 2008, 36, 890-895.	ournal of	0.4	7
256	Aldehyde Dehydrogenase as a Marker for Stem Cells. Current Stem Cell Research and T 237-246.	nerapy, 2008, 3,	0.6	237
257	MDA-7/IL-24 plus radiation enhance survival in animals with intracranial primary human Cancer Biology and Therapy, 2008, 7, 917-933.	GBM tumors.	1.5	44
258	Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas. Practice Oncology, 2008, 5, 393-404.	Nature Clinical	4.3	47
259	Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth. Cancer Resea 6043-6048.	rch, 2008, 68,	0.4	376

#	Article	IF	CITATIONS
260	Epidermal Growth Factor Plays a Crucial Role in Mitogenic Regulation of Human Brain Tumor Stem Cells. Journal of Biological Chemistry, 2008, 283, 10958-10966.	1.6	149
261	Significance of Epidermal Growth Factor Receptor in the Radiation Resistance of Glioblastoma Tumors. , 2008, , .		Ο
262	Prostate cancer stem cell therapy: hype or hope?. Prostate Cancer and Prostatic Diseases, 2008, 11, 316-319.	2.0	11
263	Targeting Hyaluronan Interactions in Malignant Gliomas and Their Drug-Resistant Multipotent Progenitors. Clinical Cancer Research, 2008, 14, 1804-1813.	3.2	77
264	Inhibition of Glioblastoma Growth in a Highly Invasive Nude Mouse Model Can Be Achieved by Targeting Epidermal Growth Factor Receptor but not Vascular Endothelial Growth Factor Receptor-2. Clinical Cancer Research, 2008, 14, 5447-5458.	3.2	84
265	Molecular Predictors in Glioblastoma. Archives of Neurology, 2008, 65, 877-83.	4.9	62
266	Hyaluronan Regulates Ceruloplasmin Production By Gliomas and Their Treatment-Resistant Multipotent Progenitors. Journal of Child Neurology, 2008, 23, 1221-1230.	0.7	12
267	Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer and Prostatic Diseases, 2008, 11, 32-39.	2.0	61
268	Using Neurofibromatosis-1 to Better Understand and Treat Pediatric Low-Grade Glioma. Journal of Child Neurology, 2008, 23, 1186-1194.	0.7	30
269	Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 139-152.	1.8	67
270	Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development (Cambridge), 2008, 135, 541-557.	1.2	161
271	Molecular and cell biology of brain tumor stem cells: lessons from neural progenitor/stem cells. Neurosurgical Focus, 2008, 24, E25.	1.0	16
272	New strategy for the analysis of phenotypic marker antigens in brain tumor–derived neurospheres in mice and humans. Neurosurgical Focus, 2008, 24, E28.	1.0	23
273	Implications of the cancer stem cell hypothesis for neuro-oncology and neurology. Future Neurology, 2008, 3, 265-273.	0.9	8
274	Cancer stem cells: Models, mechanisms and implications for improved treatment. Cell Cycle, 2008, 7, 1360-1370.	1.3	84
275	Temozolomide Preferentially Depletes Cancer Stem Cells in Glioblastoma. Cancer Research, 2008, 68, 5706-5715.	0.4	269
276	A Stochastic Model for Cancer Stem Cell Origin in Metastatic Colon Cancer. Cancer Research, 2008, 68, 6932-6941.	0.4	144
277	Cannabinoids as potential new therapy for the treatment of gliomas. Expert Review of Neurotherapeutics, 2008, 8, 37-49.	1.4	28

		CITATION REPORT		
#	Article		IF	CITATIONS
278	Anaplastic astrocytomas: biology and treatment. Expert Review of Neurotherapeutics,	2008, 8, 575-586.	1.4	8
279	Cytokines and Extracellular Matrix Remodeling in the Central Nervous System. Neuroln 2008, 6, 167-197.	nmune Biology,	0.2	11
280	The progression of gliomas is associated with cancer stem cell phenotype. Oncology ${\sf R}$	eports, 2008, , .	1.2	7
281	Cancer and Stem Cells. Current Cancer Therapy Reviews, 2008, 4, 168-177.		0.2	1
282	TGF-β Signaling in Gastrointestinal Cancer Stem Cells. Current Cancer Thera 4, 196-200.	apy Reviews, 2008,	0.2	0
283	Sox2 Expression in Brain Tumors: A Reflection of the Neuroglial Differentiation Pathwa Journal of Surgical Pathology, 2008, 32, 103-112.	y. American	2.1	83
284	IDENTIFICATION OF A2B5+CD133â^' TUMOR-INITIATING CELLS IN ADULT HUMAN GLIC 2008, 62, 505-515.	DMAS. Neurosurgery,	0.6	366
285	Notch, Neural Stem Cells, and Brain Tumors. Cold Spring Harbor Symposia on Quantita 2008, 73, 367-375.	itive Biology,	2.0	66
286	Cancer Stem Cells in Brain Tumor Biology. Cold Spring Harbor Symposia on Quantitativ 2008, 73, 411-420.	ve Biology,	2.0	68
287	A COMPARISON BETWEEN STEM CELLS FROM THE ADULT HUMAN BRAIN AND FROM Neurosurgery, 2008, 63, 1022-1034.	BRAIN TUMORS.	0.6	52
288	USE OF HUMAN NEURAL TISSUE FOR THE GENERATION OF PROGENITORS. Neurosurg	ery, 2008, 62, 21-30.	0.6	11
289	Cancer Stem Cell Research: Current Situation and Problems. Cell Transplantation, 2008	8, 17, 19-25.	1.2	14
290	Immortalization of Human Neural Stem Cells with the c-Myc Mutant T58A. PLoS ONE,	2008, 3, e3310.	1.1	37
291	Stem Cells in Gastrointestinal Cancers. Disease Markers, 2008, 24, 217-222.		0.6	1
292	Multimodal Imaging of Neural Progenitor Cell Fate in Rodents. Molecular Imaging, 200 7290.2008.0010.	8, 7,	0.7	49
293	Purification and characterization of cancer stem cells. , 0, , 1-14.			0
294	Phenotypic Characterization of Retinoblastoma for the Presence of Putative Cancer St Markers by Flow Cytometry. , 2009, 50, 1506.	em-like Cell		43
295	The Malignant Pleural Effusion as a Model to Investigate Intratumoral Heterogeneity in PLoS ONE, 2009, 4, e5884.	Lung Cancer.	1.1	54

# 296	ARTICLE Apoptosis in Carcinogenesis and Chemotherapy. , 2009, , .	IF	Citations
297	The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 2009, 8, 3274-3284.	1.3	708
298	Review Paper: Cancer Stem Cells and Cancer Nonstem Cells: From Adult Stem Cells or from Reprogramming of Differentiated Somatic Cells. Veterinary Pathology, 2009, 46, 176-193.	0.8	79
299	Human Clioblastoma–Derived Cancer Stem Cells: Establishment of Invasive Clioma Models and Treatment with Oncolytic Herpes Simplex Virus Vectors. Cancer Research, 2009, 69, 3472-3481.	0.4	303
300	Identification of Cancer Stem Cells in Ewing's Sarcoma. Cancer Research, 2009, 69, 1776-1781.	0.4	291
301	Preclinical development of cancer stem cell drugs. Expert Opinion on Drug Discovery, 2009, 4, 741-752.	2.5	7
302	AMP-activated Protein Kinase Is Involved in Neural Stem Cell Growth Suppression and Cell Cycle Arrest by 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside and Glucose Deprivation by Down-regulating Phospho-retinoblastoma Protein and Cyclin D. Journal of Biological Chemistry, 2009, 284, 6175-6184.	1.6	45
303	Transformed Human Brain Cells in Culture as a Model for Brain Tumors. , 2009, , 163-180.		1
304	A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics, 2009, 4, 255-264.	1.3	155
305	Possible Involvement of Brain Tumour Stem Cells in the Emergence of a Fast-Growing Malignant Meningioma after Surgical Resection and Radiotherapy of High-Grade Astrocytoma: Case Report and Preliminary Laboratory Investigation. Journal of International Medical Research, 2009, 37, 240-246.	0.4	14
306	Identification of Cancer Stem Cells in Dog Glioblastoma. Veterinary Pathology, 2009, 46, 391-406.	0.8	78
307	The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochimica Et Biophysica Sinica, 2009, 41, 341-351.	0.9	111
308	NDRG4 Is Required for Cell Cycle Progression and Survival in Glioblastoma Cells. Journal of Biological Chemistry, 2009, 284, 25160-25169.	1.6	49
309	Different Response of Human Glioma Tumor-initiating Cells to Epidermal Growth Factor Receptor Kinase Inhibitors. Journal of Biological Chemistry, 2009, 284, 7138-7148.	1.6	117
310	EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro-Oncology, 2009, 11, 9-21.	0.6	79
311	Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Molecular Cancer Therapeutics, 2009, 8, 386-393.	1.9	122
312	CD133+ Glioblastoma Stem-like Cells are Radiosensitive with a Defective DNA Damage Response Compared with Established Cell Lines. Clinical Cancer Research, 2009, 15, 5145-5153.	3.2	161
313	Identifying and enumerating neural stem cells: application to aging and cancer. Progress in Brain Research, 2009, 175, 43-51.	0.9	10

#	Article	IF	CITATIONS
314	Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro-Oncology, 2009, 11, 109-121.	0.6	111
315	Antibodies targeting cancer stem cells: A new paradigm in immunotherapy?. MAbs, 2009, 1, 12-25.	2.6	130
316	Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. International Journal of Oncology, 2009, 35, 731-40.	1.4	46
317	Cancer Stem Cells and the Biology of Brain Tumors. Current Stem Cell Research and Therapy, 2009, 4, 306-313.	0.6	19
318	Cancer Stem Cells: The Emerging Challenge of Drug Targeting. Current Medicinal Chemistry, 2009, 16, 394-416.	1.2	64
319	Hypoxia Helps Glioma to Fight Therapy. Current Cancer Drug Targets, 2009, 9, 381-390.	0.8	96
320	Neuronal Aneuploidy in Health and Disease:A Cytomic Approach to Understand the Molecular Individuality of Neurons. International Journal of Molecular Sciences, 2009, 10, 1609-1627.	1.8	41
321	Detection of Cancer Stem Cells from the C6 Glioma Cell Line. Journal of International Medical Research, 2009, 37, 503-510.	0.4	39
322	Multipotent CD15+ Cancer Stem Cells in <i>Patched-1</i> –Deficient Mouse Medulloblastoma. Cancer Research, 2009, 69, 4682-4690.	0.4	166
323	GFAP-Cre–Mediated Activation of Oncogenic K-ras Results in Expansion of the Subventricular Zone and Infiltrating Clioma. Molecular Cancer Research, 2009, 7, 645-653.	1.5	44
324	Chemokines in neuroectodermal development and their potential implication in cancer stem cell-driven metastasis. Seminars in Cancer Biology, 2009, 19, 68-75.	4.3	10
325	Cancer stem cells and angiogenesis. Seminars in Cancer Biology, 2009, 19, 279-284.	4.3	44
326	Wild-type p53 in cancer cells: When a guardian turns into a blackguard. Biochemical Pharmacology, 2009, 77, 11-20.	2.0	75
327	TGF-β Increases Glioma-Initiating Cell Self-Renewal through the Induction of LIF in Human Glioblastoma. Cancer Cell, 2009, 15, 315-327.	7.7	489
328	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513.	7.7	1,196
329	Expression of Mutant p53 Proteins Implicates a Lineage Relationship between Neural Stem Cells and Malignant Astrocytic Glioma in a Murine Model. Cancer Cell, 2009, 15, 514-526.	7.7	228
330	Potent antitumor effect of SNâ€38â€incorporating polymeric micelle, NK012, against malignant glioma. International Journal of Cancer, 2009, 124, 2505-2511.	2.3	62
331	Limits of CD133 as a marker of glioma selfâ€renewing cells. International Journal of Cancer, 2009, 125, 244-248.	2.3	99

#	Article	IF	CITATIONS
332	Cancer stem/progenitor cells are highly enriched in CD133 ⁺ CD44 ⁺ population in hepatocellular carcinoma. International Journal of Cancer, 2010, 126, 2067-2078.	2.3	348
333	Brainâ€specific 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells with selfâ€renewal and multipotent capacities. Developmental Dynamics, 2009, 238, 302-314.	0.8	51
334	Future use of mitocans against tumourâ€initiating cells?. Molecular Nutrition and Food Research, 2009, 53, 147-153.	1.5	7
335	Identification and targeting of cancer stem cells. BioEssays, 2009, 31, 1038-1049.	1.2	157
336	ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma. Journal of Cancer Research and Clinical Oncology, 2009, 135, 1369-1376.	1.2	68
337	A comparative study of ectonucleotidase and P2 receptor mRNA profiles in C6 cell line cultures and C6 ex vivo glioma model. Cell and Tissue Research, 2009, 335, 331-340.	1.5	17
338	Biology of Glioma Cancer Stem Cells. Molecules and Cells, 2009, 28, 7-12.	1.0	124
339	Emerging functions of microRNAs in glioblastoma. Journal of Neuro-Oncology, 2009, 92, 297-306.	1.4	104
340	Origins and clinical implications of the brain tumor stem cell hypothesis. Journal of Neuro-Oncology, 2009, 93, 49-60.	1.4	32
341	Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. Journal of Neuro-Oncology, 2009, 94, 359-366.	1.4	65
342	Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. Journal of Neuro-Oncology, 2009, 94, 1-19.	1.4	111
343	Engineered herpes simplex viruses efficiently infect and kill CD133+ human glioma xenograft cells that express CD111. Journal of Neuro-Oncology, 2009, 95, 199-209.	1.4	74
344	Brain Tumor Stem Cells. Neurochemical Research, 2009, 34, 2055-2066.	1.6	19
345	Cancer stem/progenitor cell active compound 8-quinolinol in combination with paclitaxel achieves an improved cure of breast cancer in the mouse model. Breast Cancer Research and Treatment, 2009, 115, 269-277.	1.1	42
346	Progress on Potential Strategies to Target Brain Tumor Stem Cells. Cellular and Molecular Neurobiology, 2009, 29, 141-155.	1.7	22
347	Cancer Stem Cell Hierarchy. Stem Cell Reviews and Reports, 2009, 5, 174-174.	5.6	1
348	Tumor initiating cells in malignant gliomas: biology and implications for therapy. Journal of Molecular Medicine, 2009, 87, 363-374.	1.7	80
349	Brain cancer stem cells. Journal of Molecular Medicine, 2009, 87, 1087-1095.	1.7	58

#	Article	IF	CITATIONS
350	Neurosphere Formation Is an Independent Predictor of Clinical Outcome in Malignant Glioma. Stem Cells, 2009, 27, 980-987.	1.4	207
351	Astrocytes Reverted to a Neural Progenitor-like State with Transforming Growth Factor Alpha Are Sensitized to Cancerous Transformation. Stem Cells, 2009, 27, 2373-2382.	1.4	39
352	STAT3 Is Required for Proliferation and Maintenance of Multipotency in Glioblastoma Stem Cells. Stem Cells, 2009, 27, 2383-2392.	1.4	421
353	NOTCH Pathway Blockade Depletes CD133-Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts Â. Stem Cells, 2010, 28, 5-16.	1.4	553
354	Notch Promotes Radioresistance of Glioma Stem Cells Â. Stem Cells, 2010, 28, 17-28.	1.4	505
355	Gliosarcoma Stem Cells Undergo Glial and Mesenchymal Differentiation In Vivo. Stem Cells, 2010, 28, 181-190.	1.4	65
356	<i>DNER</i> , an Epigenetically Modulated Gene, Regulates Glioblastoma-Derived Neurosphere Cell Differentiation and Tumor Propagation. Stem Cells, 2009, 27, 1473-1486.	1.4	84
357	Proliferation of Human Glioblastoma Stem Cells Occurs Independently of Exogenous Mitogens. Stem Cells, 2009, 27, 1722-1733.	1.4	175
358	Adult neural stem cells and their role in brain pathology. Journal of Pathology, 2009, 217, 242-253.	2.1	23
359	Regulation of microRNA biosynthesis and expression in 2102Ep embryonal carcinoma stem cells is mirrored in ovarian serous adenocarcinoma patients. Journal of Ovarian Research, 2009, 2, 19.	1.3	20
360	Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathology and Applied Neurobiology, 2009, 35, 380-393.	1.8	38
361	Characterization of brain cancer stem cells: a mathematical approach. Cell Proliferation, 2009, 42, 529-540.	2.4	30
362	Adult neural stem cells in the mammalian central nervous system. Cell Research, 2009, 19, 672-682.	5.7	284
363	Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 2009, 8, 806-823.	21.5	755
364	Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene, 2009, 28, 2358-2363.	2.6	48
365	Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene, 2009, 28, 3949-3959.	2.6	628
366	Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene, 2009, 28, 1807-1811.	2.6	177
367	The GluR2 subunit inhibits proliferation by inactivating Srcâ€MAPK signalling and induces apoptosis by means of caspase 3/6â€dependent activation in glioma cells. European Journal of Neuroscience, 2009, 30, 25-34.	1.2	32

#	Article	IF	CITATIONS
368	Novel Treatment Strategies for Malignant Gliomas Using Neural Stem Cells. Neurotherapeutics, 2009, 6, 458-464.	2.1	14
369	An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. Journal of Neuroscience Methods, 2009, 176, 192-199.	1.3	143
370	Intra-operatively obtained human tissue: Protocols and techniques for the study of neural stem cells. Journal of Neuroscience Methods, 2009, 180, 116-125.	1.3	44
371	Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. Advances and Technical Standards in Neurosurgery, 2009, 34, 3-35.	0.2	65
372	Cryopreservation of Neurospheres Derived from Human Glioblastoma Multiforme. Stem Cells, 2009, 27, 29-39.	1.4	56
373	<i>SOX2</i> Silencing in Glioblastoma Tumor-Initiating Cells Causes Stop of Proliferation and Loss of Tumorigenicity. Stem Cells, 2009, 27, 40-48.	1.4	521
374	Cliotypic Neural Stem Cells Transiently Adopt Tumorigenic Properties During Normal Differentiation. Stem Cells, 2009, 27, 280-289.	1.4	19
375	Applications of neural and mesenchymal stem cells in the treatment of gliomas. Expert Review of Anticancer Therapy, 2009, 9, 597-612.	1.1	68
376	Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancerThis paper is one of a selection of papers published in this Special Issue, entitled The 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009, 87, 711-746.	0.9	70
377	EZH2 Is Essential for Glioblastoma Cancer Stem Cell Maintenance. Cancer Research, 2009, 69, 9211-9218.	0.4	431
378	How powerful is CD133 as a cancer stem cell marker in brain tumors?. Cancer Treatment Reviews, 2009, 35, 403-408.	3.4	107
379	High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treatment Reviews, 2009, 35, 714-723.	3.4	56
380	CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Letters, 2009, 274, 305-312.	3.2	139
381	Stem cells in melanoma development. Cancer Letters, 2009, 279, 119-125.	3.2	15
382	Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Letters, 2009, 279, 13-21.	3.2	170
383	A novel approach to the identification and enrichment of cancer stem cells from a cultured human glioma cell line. Cancer Letters, 2009, 281, 92-99.	3.2	31
384	Cellular immortality in brain tumours: An integration of the cancer stem cell paradigm. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 280-288.	1.8	13
385	SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell, 2009, 4, 440-452.	5.2	598

#	Article	IF	CITATIONS
386	Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580.	5.2	881
387	Glioma Stem Cells: Better Flat Than Round. Cell Stem Cell, 2009, 4, 466-467.	5.2	30
388	DLL4 Blockade Inhibits Tumor Growth and Reduces Tumor-Initiating Cell Frequency. Cell Stem Cell, 2009, 5, 168-177.	5.2	381
389	Brain Cancer Stem Cells: A Level Playing Field. Cell Stem Cell, 2009, 5, 468-469.	5.2	20
390	Common astrocytic programs during brain development, injury and cancer. Trends in Neurosciences, 2009, 32, 303-311.	4.2	46
391	Squelching glioblastoma stem cells by targeting REST for proteasomal degradation. Trends in Neurosciences, 2009, 32, 559-565.	4.2	30
392	p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience, 2009, 158, 1378-1389.	1.1	84
393	Cell migration in the normal and pathological postnatal mammalian brain. Progress in Neurobiology, 2009, 88, 41-63.	2.8	206
394	Relationship of gliomas to the ventricular walls. Journal of Clinical Neuroscience, 2009, 16, 195-201.	0.8	51
395	Reciprocal effects of conditioned medium on cultured glioma cells and neural stem cells. Journal of Clinical Neuroscience, 2009, 16, 1619-1623.	0.8	8
396	Isolation of neural stem/progenitor cells by using EGF/FGF1 and FGF1B promoter-driven green fluorescence from embryonic and adult mouse brains. Molecular and Cellular Neurosciences, 2009, 41, 348-363.	1.0	36
397	Brain cancer propagating cells: biology, genetics and targeted therapies. Trends in Molecular Medicine, 2009, 15, 519-530.	3.5	96
398	Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Research Reviews, 2009, 8, 94-112.	5.0	75
399	Neurosphere and Neural Colony-Forming Cell Assays. Springer Protocols, 2009, , 1-28.	0.1	8
400	Physiologic Oxygen Concentration Enhances the Stem-Like Properties of CD133+ Human Glioblastoma Cells <i>In vitro</i> . Molecular Cancer Research, 2009, 7, 489-497.	1.5	236
401	Brain Tumor Stem Cell Markers. , 2009, , 713-728.		0
402	Stem Cells and Cell Replacement Therapy for Parkinson's Disease. , 2009, , 287-299.		2
403	Rembrandt: Helping Personalized Medicine Become a Reality through Integrative Translational Research. Molecular Cancer Research, 2009, 7, 157-167.	1.5	380

# 404	ARTICLE Neural Stem Cells Disguised as Astrocytes. , 2009, , 27-47.	IF	CITATIONS 3
405	Enhanced MDR1 Expression and Chemoresistance of Cancer Stem Cells Derived from Glioblastoma. Cancer Investigation, 2009, 27, 901-908.	0.6	119
406	Glioblastoma multiforme: a review of therapeutic targets. Expert Opinion on Therapeutic Targets, 2009, 13, 701-718.	1.5	138
407	Gliomas. Recent Results in Cancer Research, 2009, , .	1.8	15
408	Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opinion on Therapeutic Targets, 2009, 13, 455-468.	1.5	75
409	Potential Molecular Therapeutic Targets in Cancer Stem/Progenitor Cells: Are ATP-Binding Cassette Membrane Transporters Appropriate Targets to Eliminate Cancer-Initiating Cells?. , 2009, , 385-421.		0
410	Cancer Stem Cells. Methods in Molecular Biology, 2009, , .	0.4	6
411	Mechanisms of Brain Tumor Angiogenesis. , 2009, , 461-506.		0
412	BMI1 Sustains Human Glioblastoma Multiforme Stem Cell Renewal. Journal of Neuroscience, 2009, 29, 8884-8896.	1.7	268
413	Recent advances and hurdles in melanoma immunotherapy. Pigment Cell and Melanoma Research, 2009, 22, 711-723.	1.5	43
414	Highly tumorigenic lung cancer CD133 ⁺ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16281-16286.	3.3	733
415	A NEUROSURGEON'S GUIDE TO STEM CELLS, CANCER STEM CELLS, AND BRAIN TUMOR STEM CELLS. Neurosurgery, 2009, 65, 237-250.	0.6	62
416	Brain Tumor Stem Cells From an Adenoid Glioblastoma Multiforme. Neurologia Medico-Chirurgica, 2009, 49, 146-151.	1.0	13
417	Clioblastoma Multiforme Oncogenomics and Signaling Pathways. Clinical Medicine Oncology, 2009, 3, CMO.S1008.	0.2	109
418	Hypoxic Tumor Microenvironment and Cancer Cell Differentiation. Current Molecular Medicine, 2009, 9, 425-434.	0.6	153
419	Notch Inhibitors as a New Tool in the War on Cancer: A Pathway to Watch. Current Pharmaceutical Biotechnology, 2009, 10, 154-160.	0.9	29
420	Brain-Derived Neurotrophic Factor (BDNF) has Proliferative Effects on Neural Stem Cells through the Truncated TRK-B Receptor, MAP Kinase, AKT, and STAT-3 Signaling Pathways. Current Neurovascular Research, 2009, 6, 42-53.	0.4	154
421	Encountering and Advancing Through Antiangiogenesis Therapy for Gliomas. Current Pharmaceutical Design, 2009, 15, 353-364.	0.9	20

Т

#	Article	IF	CITATIONS
422	Cutaneous Melanoma: A Test Field for Immunotherapy and a Medical Challenge. Current Cancer Therapy Reviews, 2010, 6, 229-242.	0.2	0
423	Targeting Cancer Stem Cell Lines as a New Treatment of Human Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2010, 5, 205-218.	0.8	16
424	Targeting the Perpetrator: Breast Cancer Stem Cell Therapeutics. Current Drug Targets, 2010, 11, 1147-1156.	1.0	12
425	Immunohistochemical Expression of Stem Cell, Endothelial Cell, and Chemosensitivity Markers in Primary Glioma Spheroids Cultured in Serum-Containing and Serum-Free Medium. Neurosurgery, 2010, 66, 933-947.	0.6	46
426	Magnetic Resonance Imaging Characteristics of Glioblastoma Multiforme: Implications for Understanding Glioma Ontogeny. Neurosurgery, 2010, 67, 1319-1328.	0.6	58
427	Characterization of primary ovarian cancer cells in different culture systems. Oncology Reports, 2010, 23, 1277-84.	1.2	50
428	New Concepts on the Critical Functions of Cancer- and Metastasis-Initiating Cells in Treatment Resistance and Disease Relapse: Molecular Mechanisms, Signaling Transduction Elements and Novel Targeting Therapies. Cancer Metastasis - Biology and Treatment, 2010, , 175-207.	0.1	0
429	Quantitative Phosphoproteomic Analysis of the STAT3/IL-6/HIF1α Signaling Network: An Initial Study in GSC11 Clioblastoma Stem Cells. Journal of Proteome Research, 2010, 9, 430-443.	1.8	99
430	A hypothesis and theoretical model speculating the possible role of therapy mediated neoplastic cell loss in promoting the process of glioblastoma relapse. Journal of Theoretical Biology, 2010, 266, 496-503.	0.8	2
431	Celecoxib enhances radiosensitivity in medulloblastoma-derived CD133-positive cells. Child's Nervous System, 2010, 26, 1605-1612.	0.6	40
432	Étude de la radiosensibilité intrinsèque des cellules souches cancéreuses (ou cellules souches) Tj ETQqO	0 0 rgBT /	Overlock 10
433	Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein and Cell, 2010, 1, 638-655.	4.8	204
434	CD133+ cells from medulloblastoma and PNET cell lines are more resistant to cyclopamine inhibition of the sonic hedgehog signaling pathway than CD133â^' cells. Tumor Biology, 2010, 31, 381-390.	0.8	21
435	Immune therapeutic targeting of glioma cancer stem cells. Targeted Oncology, 2010, 5, 217-227.	1.7	31
436	Isolation and identification of cancer stem cells from human osteosarcom by serum-free three-dimensional culture combined with anticancer drugs. Journal of Huazhong University of Science and Technology [Medical Sciences], 2010, 30, 81-84.	1.0	14
437	Identification and characterization of side population cells in human lung adenocarcinoma SPC-A1 cells. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2010, 22, 211-217.	0.7	0
438	Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. Journal of Neuro-Oncology, 2010, 96, 359-367.	1.4	86
439	Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC Cancer, 2010, 10, 454.	1.1	26

#	Article	IF	CITATIONS
440	CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer, 2010, 10, 66.	1.1	87
441	Î ³ -Secretase Inhibitor-I Enhances Radiosensitivity of Glioblastoma Cell Lines by Depleting CD133+ Tumor Cells. Archives of Medical Research, 2010, 41, 519-529.	1.5	32
442	New promising drug targets in cancer- and metastasis-initiating cells. Drug Discovery Today, 2010, 15, 354-364.	3.2	38
443	Potential therapeutic implications of cancer stem cells in glioblastoma. Biochemical Pharmacology, 2010, 80, 654-665.	2.0	179
444	Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17, 98-110.	7.7	6,138
445	A Hierarchy of Self-Renewing Tumor-Initiating Cell Types in Glioblastoma. Cancer Cell, 2010, 17, 362-375.	7.7	486
446	Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell, 2010, 17, 510-522.	7.7	2,078
447	PLAGL2 Regulates Wnt Signaling to Impede Differentiation in Neural Stem Cells and Gliomas. Cancer Cell, 2010, 17, 497-509.	7.7	224
448	A Multipronged Approach to the Identification and Study of an Important Oncogene in GBM. Cancer Cell, 2010, 17, 417-418.	7.7	3
449	TGF-β Receptor Inhibitors Target the CD44high/Id1high Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 2010, 18, 655-668.	7.7	534
450	Loss of ATM/Chk2/p53 Pathway Components Accelerates Tumor Development and Contributes toÂRadiation Resistance in Gliomas. Cancer Cell, 2010, 18, 619-629.	7.7	211
451	Clioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies. Cell Biochemistry and Function, 2010, 28, 343-351.	1.4	87
452	Single doublecortin gene therapy significantly reduces glioma tumor volume. Journal of Neuroscience Research, 2010, 88, 304-314.	1.3	15
453	Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology, 2010, 148, 3-15.	1.9	1,376
454	ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target. Cancer Cell International, 2010, 10, 1.	1.8	99
455	Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors. BMC Medical Genomics, 2010, 3, 12.	0.7	14
456	Intratumoral Hypoxic Gradient Drives Stem Cells Distribution and MGMT Expression in Glioblastoma. Stem Cells, 2010, 28, 851-862.	1.4	262
457_	De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid	2.6	142

#	Article	IF	CITATIONS
458	Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 2010, 468, 824-828.	13.7	1,235
460	Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nature Reviews Cancer, 2010, 10, 319-331.	12.8	660
461	A2B5 Cells from Human Glioblastoma have Cancer Stem Cell Properties. Brain Pathology, 2010, 20, 211-221.	2.1	157
462	The Utility and Limitations of Neurosphere Assay, CD133 Immunophenotyping and Side Population Assay in Clioma Stem Cell Research. Brain Pathology, 2010, 20, 877-889.	2.1	62
463	Expression of the Transcription Factor HEY1 in Glioblastoma: A Preliminary Clinical Study. Tumori, 2010, 96, 97-102.	0.6	21
464	Antibodies targeting Cancer stem cells, A novel pattern in Immunotherapy. Nature Precedings, 2010, , .	0.1	0
465	Aberrant signaling pathways in medulloblastomas: a stem cell connection. Arquivos De Neuro-Psiquiatria, 2010, 68, 947-952.	0.3	11
466	Decreasing glioma recurrence through adjuvant cancer stem cell inhibition. Biologics: Targets and Therapy, 2010, 4, 157.	3.0	12
467	Brain Tumor Stem Cells as Therapeutic Targets in Models of Glioma. Yonsei Medical Journal, 2010, 51, 633.	0.9	32
468	Pathology and Molecular Genetics of Common Brain Tumors. Blue Books of Neurology, 2010, 36, 1-36.	0.1	0
469	Transcriptional Profiles of CD133+ and CD133â^' Glioblastoma-Derived Cancer Stem Cell Lines Suggest Different Cells of Origin. Cancer Research, 2010, 70, 2030-2040.	0.4	237
470	The Notch Target Hes1 Directly Modulates Gli1 Expression and Hedgehog Signaling: A Potential Mechanism of Therapeutic Resistance. Clinical Cancer Research, 2010, 16, 6060-6070.	3.2	146
472	Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells. Neuro-Oncology, 2010, 12, 1205-1219.	0.6	86
473	Glioma-Associated Cancer-Initiating Cells Induce Immunosuppression. Clinical Cancer Research, 2010, 16, 461-473.	3.2	212
474	Glioblastoma Cancer-Initiating Cells Inhibit T-Cell Proliferation and Effector Responses by the Signal Transducers and Activators of Transcription 3 Pathway. Molecular Cancer Therapeutics, 2010, 9, 67-78.	1.9	253
475	High-Grade Astrocytomas Show Increased Nestin and Wilms's Tumor Gene (WT1) Protein Expression. International Journal of Surgical Pathology, 2010, 18, 255-259.	0.4	23
476	Rapid and Robust Transgenic High-Grade Glioma Mouse Models for Therapy Intervention Studies. Clinical Cancer Research, 2010, 16, 3431-3441.	3.2	52
477	Establishment of Prognostic Models for Astrocytic and Oligodendroglial Brain Tumors with Standardized Quantification of Marker Gene Expression and Clinical Variables. Biomarker Insights, 2010, 5, BMI.S6167.	1.0	20

#	Article	IF	Citations
478	BMI1 Confers Radioresistance to Normal and Cancerous Neural Stem Cells through Recruitment of the DNA Damage Response Machinery. Journal of Neuroscience, 2010, 30, 10096-10111.	1.7	251
479	Oligodendroglioma cell lines containing t(1;19)(q10;p10). Neuro-Oncology, 2010, 12, 745-755.	0.6	77
480	Brain tumor stem cells. Biological Chemistry, 2010, 391, 607-17.	1.2	9
481	Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro-Oncology, 2010, 12, 1220-1230.	0.6	55
482	Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain, 2010, 133, 1961-1972.	3.7	90
483	Immunobiological Characterization of Cancer Stem Cells Isolated from Glioblastoma Patients. Clinical Cancer Research, 2010, 16, 800-813.	3.2	295
484	Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biology and Therapy, 2010, 9, 949-956.	1.5	98
485	Bioprocessing of Human Glioblastoma Brain Cancer Tissue. Tissue Engineering - Part A, 2010, 16, 1169-1177.	1.6	11
486	The HIF-2α-Driven Pseudo-Hypoxic Phenotype in Tumor Aggressiveness, Differentiation, and Vascularization. Current Topics in Microbiology and Immunology, 2010, 345, 1-20.	0.7	49
487	Cancer stem cell markers: what is their diagnostic value?. Expert Opinion on Medical Diagnostics, 2010, 4, 473-481.	1.6	0
488	Regulation of FGF1 Gene Promoter through Transcription Factor RFX1. Journal of Biological Chemistry, 2010, 285, 13885-13895.	1.6	31
489	The functional role of Notch signaling in human gliomas. Neuro-Oncology, 2010, 12, 199-211.	0.6	105
490	The nuclear receptor tailless induces long-term neural stem cell expansion and brain tumor initiation. Genes and Development, 2010, 24, 683-695.	2.7	121
491	Targeting CREB signalling in neurogenesis. Expert Opinion on Therapeutic Targets, 2010, 14, 869-879.	1.5	79
492	NG2-expressing glial precursor cells are a new potential oligodendroglioma cell initiating population in N -ethyl- N -nitrosourea-induced gliomagenesis. Carcinogenesis, 2010, 31, 1718-1725.	1.3	27
493	Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochimica Et Biophysica Sinica, 2010, 42, 593-602.	0.9	95
494	A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro-Oncology, 2010, 12, 580-594.	0.6	79
495	Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth. PLoS Biology, 2010, 8, e1000319.	2.6	117

#	Article	IF	CITATIONS
496	A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain, 2010, 133, 983-995.	3.7	401
497	Microenvironmental Regulation of Glioblastoma Radioresponse. Clinical Cancer Research, 2010, 16, 6049-6059.	3.2	72
498	Tumor initiating cells: Development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle, 2010, 9, 1194-1206.	1.3	75
499	Epidermal Growth Factor Receptor Expression Identifies Functionally and Molecularly Distinct Tumor-Initiating Cells in Human Glioblastoma Multiforme and Is Required for Gliomagenesis. Cancer Research, 2010, 70, 7500-7513.	0.4	198
500	Erythropoietin Receptor Signaling through STAT3 Is Required for Glioma Stem Cell Maintenance. Genes and Cancer, 2010, 1, 50-61.	0.6	71
501	Establishment of a human glioblastoma stemlike brainstem rodent tumor model. Journal of Neurosurgery: Pediatrics, 2010, 6, 92-97.	0.8	16
502	Harvey Cushing's attempt at the first human pituitary transplantation. Nature Reviews Endocrinology, 2010, 6, 48-52.	4.3	12
503	Novel Therapies Against Aggressive and Recurrent Epithelial Cancers by Molecular Targeting Tumor- and Metastasis-Initiating Cells and Their Progenies. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 137-151.	0.9	11
504	The Telomerase Antagonist, Imetelstat, Efficiently Targets Glioblastoma Tumor-Initiating Cells Leading to Decreased Proliferation and Tumor Growth. Clinical Cancer Research, 2010, 16, 154-163.	3.2	197
505	Bone marrow-derived mesenchymal stem cells undergo JCV T-antigen mediated transformation and generate tumors with neuroectodermal characteristics. Cancer Biology and Therapy, 2010, 9, 286-294.	1.5	15
506	Passive Antibody-Mediated Immunotherapy for the Treatment of Malignant Gliomas. Neurosurgery Clinics of North America, 2010, 21, 67-76.	0.8	13
507	Improving the radiosensitivity of radioresistant and hypoxic glioblastoma. Future Oncology, 2010, 6, 1591-1601.	1.1	48
508	Tumor-Initiating and -Propagating Cells: Cells That We Would to Identify and Control. Neoplasia, 2010, 12, 506-515.	2.3	78
509	Glioma Stem Cell Research for the Development of Immunotherapy. Neurosurgery Clinics of North America, 2010, 21, 159-166.	0.8	35
510	Stem Cells in Normal Development and Cancer. Progress in Molecular Biology and Translational Science, 2010, 95, 113-158.	0.9	57
511	Glioblastoma therapy: going beyond Hercules Columns. Expert Review of Neurotherapeutics, 2010, 10, 507-514.	1.4	44
512	Glioma stem cell signaling: therapeutic opportunities and challenges. Expert Review of Anticancer Therapy, 2010, 10, 709-722.	1.1	34
513	Isolation and Expansion of the Adult Mouse Neural Stem Cells Using the Neurosphere Assay. Journal of Visualized Experiments, 2010, , .	0.2	70

#	Article	IF	CITATIONS
514	The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opinion on Therapeutic Targets, 2010, 14, 621-632.	1.5	80
515	Identification of Cell Surface Glycoprotein Markers for Glioblastoma-Derived Stem-Like Cells Using a Lectin Microarray and LCâ^'MS/MS Approach. Journal of Proteome Research, 2010, 9, 2565-2572.	1.8	71
516	Notch Signaling in Solid Tumors. Current Topics in Developmental Biology, 2010, 92, 411-455.	1.0	98
518	Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Molecular and Cellular Neurosciences, 2010, 43, 51-59.	1.0	76
519	Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1. Cancer Letters, 2010, 291, 150-157.	3.2	55
520	Molecular cytogenetic characterization of stem-like cancer cells isolated from established cell lines. Cancer Letters, 2010, 296, 206-215.	3.2	13
521	New models for cancer research: human cancer stem cell xenografts. Current Opinion in Pharmacology, 2010, 10, 380-384.	1.7	47
522	Human glioblastoma tumours and neural cancer stem cells express the chemokine CX3CL1 and its receptor CX3CR1. European Journal of Cancer, 2010, 46, 3383-3392.	1.3	55
523	Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochemical and Biophysical Research Communications, 2010, 397, 711-717.	1.0	34
524	Primary brain tumors, neural stem cell, and brain tumor cancer cells: Where is the link?. Neuropharmacology, 2010, 58, 903-910.	2.0	53
525	An RNAi Screen Identifies TRRAP as a Regulator of Brain Tumor-Initiating Cell Differentiation. Cell Stem Cell, 2010, 6, 37-47.	5.2	119
526	Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells. Cell Stem Cell, 2010, 6, 141-152.	5.2	493
527	Integrin Alpha 6 Regulates Glioblastoma Stem Cells. Cell Stem Cell, 2010, 6, 421-432.	5.2	597
528	A Subpopulation of CD26+ Cancer Stem Cells with Metastatic Capacity in Human Colorectal Cancer. Cell Stem Cell, 2010, 6, 603-615.	5.2	481
529	Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche. Cell Stem Cell, 2010, 7, 150-161.	5.2	1,346
530	Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology, 2010, 12, 1113-1125.	0.6	530
531	Brain tumor stem cells: The cancer stem cell hypothesis writ large. Molecular Oncology, 2010, 4, 420-430.	2.1	127
532	An Extensive Invasive Intracranial Human Clioblastoma Xenograft Model. American Journal of Pathology, 2010, 176, 3032-3049.	1.9	47

#	Article	IF	CITATIONS
533	Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres. American Journal of Pathology, 2010, 177, 1491-1502.	1.9	306
534	MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells. Journal of Biomedical Research, 2010, 24, 436-443.	0.7	39
536	Cancer Stem Cells in the Central Nervous System – A Critical Review. Cancer Research, 2010, 70, 8255-8258.	0.4	36
537	A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain, 2010, 133, 973-982.	3.7	314
538	Protocols for Neural Cell Culture. Springer Protocols, 2010, , .	0.1	12
540	Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells. Journal of Experimental and Clinical Cancer Research, 2010, 29, 113.	3.5	27
541	Development of clinically relevant orthotopic xenograft mouse model of metastatic lung cancer and glioblastoma through surgical tumor tissues injection with trocar. Journal of Experimental and Clinical Cancer Research, 2010, 29, 84.	3.5	29
542	Heat shock protein–peptide complex in the treatment of glioblastoma. Expert Review of Vaccines, 2011, 10, 721-731.	2.0	23
543	Stem cells in the adult human brain. British Journal of Neurosurgery, 2011, 25, 28-37.	0.4	4
544	Glycoproteomic Analysis of Glioblastoma Stem Cell Differentiation. Journal of Proteome Research, 2011, 10, 330-338.	1.8	31
545	Cisplatin Restores TRAIL Apoptotic Pathway in Glioblastoma-Derived Stem Cells through Up-regulation of DR5 and Down-regulation of c-FLIP. Cancer Investigation, 2011, 29, 511-520.	0.6	63
546	Biology, genetics and imaging of glial cell tumours. British Journal of Radiology, 2011, 84, S90-S106.	1.0	59
547	Role of Telomere Dysfunction in Genetic Intratumor Diversity. Advances in Cancer Research, 2011, 112, 11-41.	1.9	18
548	Histomolecular classification of adult diffuse gliomas: The diagnostic value of immunohistochemical markers. Revue Neurologique, 2011, 167, 683-690.	0.6	26
549	Ablation of Breast Cancer Stem Cells with Radiation. Translational Oncology, 2011, 4, 227-233.	1.7	61
550	Using ABCC2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biology International, 2011, 35, 227-234.	1.4	48
551	Deciphering the signaling pathways of cancer stem cells of glioblastoma multiforme: Role of Akt/mTOR and MAPK pathways. Advances in Enzyme Regulation, 2011, 51, 164-170.	2.9	28
552	Application of Stem Cell Assays for the Characterization of Cancer Stem Cells. , 2011, , 259-282.		1

#	Article	IF	CITATIONS
553	Celecoxib and radioresistant glioblastoma-derived CD133+ cells: improvement in radiotherapeutic effects. Journal of Neurosurgery, 2011, 114, 651-662.	0.9	84
554	Glioma Cell Lines: Role of Cancer Stem Cells. , 2011, , 205-212.		0
555	Organotypic Explant Culture of Glioblastoma Multiforme and Subsequent Single ell Suspension. Current Protocols in Stem Cell Biology, 2011, 19, Unit3.5.	3.0	16
556	Radioresistance of glioma stem cells: Intrinsic characteristic or property of the â€ ⁻ microenvironmentâ€ s tem cell unit'?. Molecular Oncology, 2011, 5, 374-386.	2.1	88
557	Glioma Gene Therapy Using Induced Pluripotent Stem Cell Derived Neural Stem Cells. Molecular Pharmaceutics, 2011, 8, 1515-1524.	2.3	56
558	Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. Journal of Cell Science, 2011, 124, 3084-3094.	1.2	44
559	Cellular Origins of Malignant Glioma: The Cancer Stem Cell Polemic. , 2011, , 45-53.		1
560	Cancer Stem Cells in Solid Tumors. , 2011, , .		7
561	PDGF-B Can Sustain Self-renewal and Tumorigenicity of Experimental Glioma-Derived Cancer-Initiating Cells by Preventing Oligodendrocyte Differentiation. Neoplasia, 2011, 13, 492-IN1.	2.3	48
562	Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2. Cell, 2011, 146, 53-66.	13.5	280
563	Elevated invasive potential of glioblastoma stem cells. Biochemical and Biophysical Research Communications, 2011, 406, 643-648.	1.0	168
564	Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochemical and Biophysical Research Communications, 2011, 412, 175-181.	1.0	58
565	COX-2 regulates the proliferation of glioma stem like cells. Neurochemistry International, 2011, 59, 567-571.	1.9	50
566	p53-mediated regulation of neuronal differentiation via regulation of dual oxidase maturation factor 1. Neuroscience Letters, 2011, 494, 80-85.	1.0	16
567	Glioblastoma cells: A heterogeneous and fatal tumor interacting with the parenchyma. Life Sciences, 2011, 89, 532-539.	2.0	100
568	Energy metabolism in adult neural stem cell fate. Progress in Neurobiology, 2011, 93, 182-203.	2.8	253
569	Cancer Stem Cells in Solid Tumors. Pancreatic Islet Biology, 2011, , 59-76.	0.1	3
571	Breast Cancer Stem Cells. , 2011, , .		0

ARTICLE IF CITATIONS # Three-Dimensional In Vitro Models in Glioma Research - Focus on Spheroids., 2011,,. 572 1 Prognostic Significance of Immunohistochemical Markers in Glioma Patients., 0, , . 573 574 Cancer Stem Cells Promote Tumor Neovascularization., 2011,,. 0 Migration and Invasion of Brain Tumors., 0,,. Glioblastoma Multiforme Stem Cells. Scientific World Journal, The, 2011, 11, 930-958. 576 0.8 27 Glioma Stem Cells: Cell Culture, Markers and Targets for New Combination Therapies., 0, , . 578 Molecular Pathways of Glioblastoma and Glioblastoma Stem Cells., 0,,. 0 The Neural Extracellular Matrix, Cell Adhesion Molecules and Proteolysis in Glioma Invasion and 579 Tumorigenicity., 0,,. 580 Genetics and Biology of Glioblastoma Multiforme., 2011, , . 2 The Role of Sox Transcription Factors in Brain Tumourigenesis., 2011, , . Significance of CD133 as a cancer stem cell markers focusing on the tumorigenicity of pancreatic 582 1.1 38 cancer cell lines. [Chapchi] Journal Taehan Oekwa Hakhoe, 2011, 81, 263. The Three-Layer Concentric Model of Glioblastoma: Cancer Stem Cells, Microenvironmental 0.8 Regulation, and Therapeutic Implications. Scientific World Journal, The, 2011, 11, 1829-1841. Novel Perspectives on p53 Function in Neural Stem Cells and Brain Tumors. Journal of Oncology, 2011, 584 0.6 27 2011, 1-11. Differential Signature of the Centrosomal MARK4 Isoforms in Glioma. Analytical Cellular Pathology, 23 2011, 34, 319-338. Antigenic and Genotypic Similarity between Primary Glioblastomas and Their Derived Neurospheres. 586 0.6 23 Journal of Oncology, 2011, 2011, 1-16. 587 Clioblastoma Stem Cells: A Neuropathologist's View. Journal of Oncology, 2011, 2011, 1-8. 23 Prevalence of Epithelial Ovarian Cancer Stem Cells Correlates with Recurrence in Early-Stage Ovarian 588 0.6 74 Cancer. Journal of Oncology, 2011, 2011, 1-12. 589 Extracellular Matrix Microenvironment in Glioma Progression., 0, , .

#	Article	IF	CITATIONS
590	Animal models to study cancer-initiating cells from Glioblastoma. Frontiers in Bioscience - Landmark, 2011, 16, 2243.	3.0	19
591	CD133 negative cancer stem cells in glioblastoma. Frontiers in Bioscience - Elite, 2011, E3, 701-710.	0.9	39
592	Evidence for cancer stem cells contributing to the pathogenesis of ovarian cancer. Frontiers in Bioscience - Landmark, 2011, 16, 368.	3.0	49
593	Cryopreservation of cancer-initiating cells derived from glioblastoma. Frontiers in Bioscience - Scholar, 2011, S3, 698-708.	0.8	7
594	Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression. PLoS ONE, 2011, 6, e20605.	1.1	72
595	Cancer Stem Cell-Like Cells Derived from Malignant Peripheral Nerve Sheath Tumors. PLoS ONE, 2011, 6, e21099.	1.1	43
596	CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway. PLoS ONE, 2011, 6, e24217.	1.1	115
597	Long-Term Sphere Culture Cannot Maintain a High Ratio of Cancer Stem Cells: A Mathematical Model and Experiment. PLoS ONE, 2011, 6, e25518.	1.1	7
598	Matrix Metalloproteinase-10 Promotes Kras-Mediated Bronchio-Alveolar Stem Cell Expansion and Lung Cancer Formation. PLoS ONE, 2011, 6, e26439.	1.1	31
599	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545.	0.6	119
599 600	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545. Evidence for the osteosarcoma stem cell. Current Orthopaedic Practice, 2011, 22, 322-326.	0.6	119 36
599 600 601	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545. Evidence for the osteosarcoma stem cell. Current Orthopaedic Practice, 2011, 22, 322-326. Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Current Pharmaceutical Design, 2011, 17, 2370-2385.	0.6 0.1 0.9	119 36 2
599 600 601 602	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545. Evidence for the osteosarcoma stem cell. Current Orthopaedic Practice, 2011, 22, 322-326. Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Current Pharmaceutical Design, 2011, 17, 2370-2385. Differentially Expressed MicroRNAs in Pancreatic Cancer Stem Cells. Pancreas, 2011, 40, 1180-1187.	0.6 0.1 0.9 0.5	119 36 2 55
599 600 601 602 603	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545. Evidence for the osteosarcoma stem cell. Current Orthopaedic Practice, 2011, 22, 322-326. Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Current Pharmaceutical Design, 2011, 17, 2370-2385. Differentially Expressed MicroRNAs in Pancreatic Cancer Stem Cells. Pancreas, 2011, 40, 1180-1187. The biological characteristics of glioma stem cells in human glioma cell line SHG44. Molecular Medicine Reports, 2011, 5, 552-8.	0.6 0.1 0.9 0.5 1.1	 119 36 2 55 4
 599 600 601 602 603 604 	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545. Evidence for the osteosarcoma stem cell. Current Orthopaedic Practice, 2011, 22, 322-326. Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Current Pharmaceutical Design, 2011, 17, 2370-2385. Differentially Expressed MicroRNAs in Pancreatic Cancer Stem Cells. Pancreas, 2011, 40, 1180-1187. The biological characteristics of glioma stem cells in human glioma cell line SHG44. Molecular Medicine Reports, 2011, 5, 552-8. Advances in Translational Research in Neuro-oncology. Archives of Neurology, 2011, 68, 303-8.	0.6 0.1 0.9 0.5 1.1	 119 36 2 55 4 4
 599 600 601 602 603 604 605 	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545. Evidence for the osteosarcoma stem cell. Current Orthopaedic Practice, 2011, 22, 322-326. Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Current Pharmaceutical Design, 2011, 17, 2370-2385. Differentially Expressed MicroRNAs in Pancreatic Cancer Stem Cells. Pancreas, 2011, 40, 1180-1187. The biological characteristics of glioma stem cells in human glioma cell line SHG44. Molecular Medicine Reports, 2011, 5, 552-8. Advances in Translational Research in Neuro-oncology. Archives of Neurology, 2011, 68, 303-8. Central nervous system. Cancer Biomarkers, 2011, 9, 193-210.	0.6 0.1 0.9 0.5 1.1 4.9	 119 36 2 55 4 4 36
 599 600 601 602 603 604 605 606 	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545. Evidence for the osteosarcoma stem cell. Current Orthopaedic Practice, 2011, 22, 322-326. Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Current Pharmaceutical Design, 2011, 17, 2370-2385. Differentially Expressed MicroRNAs in Pancreatic Cancer Stem Cells. Pancreas, 2011, 40, 1180-1187. The biological characteristics of glioma stem cells in human glioma cell line SHG44. Molecular Medicine Reports, 2011, 5, 552-8. Advances in Translational Research in Neuro-oncology. Archives of Neurology, 2011, 68, 303-8. Central nervous system. Cancer Biomarkers, 2011, 9, 193-210. Isolation and Expansion of Human Glioblastoma Multiforme Tumor Cells Using the Neurosphere Assay. Journal of Visualized Experiments, 2011, e3633.	0.6 0.1 0.9 0.5 1.1 4.9 0.8	 119 36 2 55 4 4 36 42

#	Article	IF	CITATIONS
608	Evaluation of Cancer Stem Cell Migration Using Compartmentalizing Microfluidic Devices and Live Cell Imaging. Journal of Visualized Experiments, 2011, , e3297.	0.2	12
609	World Health Organization Grade II Gliomas and Subventricular Zone: Anatomic, Genetic, and Clinical Considerations. Neurosurgery, 2011, 68, 1293-1299.	0.6	18
610	The presence of stem cell markerâ€expressing cells is not prognostically significant in glioblastomas. Neuropathology, 2011, 31, 494-502.	0.7	71
611	Combination use of anti D133 antibody and SSA lectin can effectively enrich cells with high tumorigenicity. Cancer Science, 2011, 102, 1164-1170.	1.7	17
612	Targeting glioma stem cells: A novel framework for brain tumors. Cancer Science, 2011, 102, 1958-1966.	1.7	93
613	Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPα. Oncogene, 2011, 30, 3328-3335.	2.6	77
614	Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene, 2011, 30, 3454-3467.	2.6	174
615	L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO Journal, 2011, 30, 800-813.	3.5	146
616	Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology, 2011, 59, 763-775.	1.6	159
617	Glioblastoma, Cancer Stem Cells and Hypoxia. Brain Pathology, 2011, 21, 119-129.	2.1	98
618	Complex Oncogenic Signaling Networks Regulate Brain Tumorâ€Initiating Cells and Their Progenies: Pivotal Roles of Wildâ€Type EGFR, EGFRvIII Mutant and Hedgehog Cascades and Novel Multitargeted Therapies. Brain Pathology, 2011, 21, 479-500.	2.1	20
619	Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells. Toxicology and Applied Pharmacology, 2011, 254, 32-40.	1.3	57
620	Molecular Heterogeneity in Glioblastoma: Therapeutic Opportunities and Challenges. Seminars in Oncology, 2011, 38, 243-253.	0.8	69
621	A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies. Experimental Cell Research, 2011, 317, 1049-1059.	1.2	24
622	Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of human glioblastoma multiforme. Experimental Cell Research, 2011, 317, 1513-1526.	1.2	42
623	Brain tumor-initiating cells and cells of origin in glioblastoma. Translational Neuroscience, 2011, 2, .	0.7	3
624	Targeting inflammation-induced transcription factor activation: an open frontier for glioma therapy. Drug Discovery Today, 2011, 16, 1044-1051.	3.2	41
625	Asymmetry-Defective Oligodendrocyte Progenitors Are Glioma Precursors. Cancer Cell, 2011, 20, 328-340.	7.7	200

	Ст	CITATION REPORT	
#	Article	IF	CITATIONS
626	Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCε-dependent downregulation of AKT and XIAP expressions. Cellular Signalling, 2011, 23, 1348-13	57. 1.7	47
627	Twisted tango: brain tumor neurovascular interactions. Nature Neuroscience, 2011, 14, 1375-1381.	7.1	70
628	Molecular Pathogenesis. , 2011, , 27-44.		2
629	YB-1 Bridges Neural Stem Cells and Brain Tumor–Initiating Cells via Its Roles in Differentiation and Cell Growth. Cancer Research, 2011, 71, 5569-5578.	0.4	74
630	Reduced miR-128 in Breast Tumor–Initiating Cells Induces Chemotherapeutic Resistance via Bmi-1 a ABCC5. Clinical Cancer Research, 2011, 17, 7105-7115.	nd 3.2	239
631	Identification of CD133â^'/Telomeraselow Progenitor Cells in Glioblastoma-Derived Cancer Stem Cell Lines. Cellular and Molecular Neurobiology, 2011, 31, 337-343.	1.7	20
632	Brain Tumor Microvesicles: Insights into Intercellular Communication in the Nervous System. Cellular and Molecular Neurobiology, 2011, 31, 949-959.	1.7	93
633	PTEN status is related to cell proliferation and self-renewal independent of CD133 phenotype in the glioma-initiating cells. Molecular and Cellular Biochemistry, 2011, 349, 149-157.	1.4	11
634	IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas. Molecular Biology Reports, 2011, 38, 3585-3591.	1.0	64
635	The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. Journal of Neuro-Oncology, 2011, 102, 353-366.	1.4	30
636	Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. Journal of Neuro-Oncology, 2011, 103, 397-408.	1.4	23
637	Optimization of glioblastoma multiforme stem cell isolation, transfection, and transduction. Journal of Neuro-Oncology, 2011, 104, 509-522.	1.4	16
638	Glioblastoma stem cells. Cell and Tissue Research, 2011, 343, 459-465.	1.5	75
639	Angiogenesis and invasion in glioma. Brain Tumor Pathology, 2011, 28, 13-24.	1.1	226
640	Heterogeneity of primary glioblastoma cells in the expression of caspase-8 and the response to TRAIL-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1150-1164.	2.2	25
641	Seeing is Believing: Are Cancer Stem Cells the Loch Ness Monster of Tumor Biology?. Stem Cell Review and Reports, 2011, 7, 227-237.	S 5.6	28
642	MicroRNAs as Regulators of Neural Stem Cell-Related Pathways in Glioblastoma Multiforme. Molecular Neurobiology, 2011, 44, 235-249.	1.9	48
643	Contribution of cancer stem cells to tumor vasculogenic mimicry. Protein and Cell, 2011, 2, 266-272.	4.8	84
#	Article	IF	CITATIONS
-----	--	--	--------------
644	Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer, 2011, 11, 82.	1.1	75
645	Chemoresistance of glioblastoma cancer stem cells - much more complex than expected. Molecular Cancer, 2011, 10, 128.	7.9	265
646	Cancer stem cell subsets and their relationships. Journal of Translational Medicine, 2011, 9, 50.	1.8	27
647	Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. Journal of Neuroinflammation, 2011, 8, 32.	3.1	102
648	Evolving evidence implicates cytomegalovirus as a promoter of malignant glioma pathogenesis. Herpesviridae, 2011, 2, 10.	2.7	47
649	Doseâ€dependent proteomic analysis of glioblastoma cancer stem cells upon treatment with γâ€secretase inhibitor. Proteomics, 2011, 11, 4529-4540.	1.3	15
650	Differential profiling studies of Nâ€linked glycoproteins in glioblastoma cancer stem cells upon treatment with γâ€secretase inhibitor. Proteomics, 2011, 11, 4021-4028.	1.3	25
651	Krüppel-Like Family of Transcription Factor 9, a Differentiation-Associated Transcription Factor, Suppresses Notch1 Signaling and Inhibits Glioblastoma-Initiating Stem Cells. Stem Cells, 2011, 29, 20-31.	1.4	80
652	Alternative Lengthening of Telomeres in Human Glioma Stem Cells. Stem Cells, 2011, 29, 440-451.	1.4	61
653	FoxO3a Functions as a Key Integrator of Cellular Signals That Control Glioblastoma Stem-like Cell Differentiation and Tumorigenicity. Stem Cells, 2011, 29, 1327-1337.	1.4	89
654	CD133+ Cancer Stem Cell–like Cells Derived from Uterine Carcinosarcoma (Malignant Mixed Müllerian) Tj ET	⁻ Q _£ Q 0 0 r ₁	gBT /Overloc
655	A distinct subset of glioma cell lines with stem cellâ€like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia, 2011, 59, 590-602.	2.5	97
656	Cancer stem cells in gliomas: Identifying and understanding the apex cell in cancer's hierarchy. Glia, 2011, 59, 1148-1154.	2.5	128
657	Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells. Hepatology, 2011, 54, 1259-1272.	3.6	53
658	Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer, 2011, 117, 162-174.	2.0	80
659	STAT3 is essential for the maintenance of neurosphereâ€initiating tumor cells in patients with glioblastomas: A potential for targeted therapy?. International Journal of Cancer, 2011, 128, 826-838.	2.3	94
660	Forced expression of Sox21 inhibits Sox2 and induces apoptosis in human glioma cells. International Journal of Cancer, 2011, 129, 45-60.	2.3	41
661	Induction of autophagy promotes differentiation of gliomaâ€initiating cells and their radiosensitivity. International Journal of Cancer, 2011, 129, 2720-2731.	2.3	153

	CITATION	Report	
#	Article	IF	CITATIONS
662	Co-localization of PCNA, VCAM-1 and caspase-3 with nestin in xenografts derived from human anaplastic astrocytoma and glioblastoma multiforme tumor spheres. Micron, 2011, 42, 793-800.	1.1	7
663	Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain, 2011, 134, 1331-1343.	3.7	151
664	Editorial: glioma subpopulations. Journal of Neurosurgery, 2011, 114, 648-650.	0.9	5
665	Protein kinase D2 is a novel regulator of glioblastoma growth and tumor formation. Neuro-Oncology, 2011, 13, 710-724.	0.6	36
666	Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion. Neuro-Oncology, 2011, 13, 70-83.	0.6	60
667	Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death and Disease, 2011, 2, e200-e200.	2.7	166
668	CD133+ Glioblastoma Stem-Like Cells Induce Vascular Mimicry in Vivo. Current Neurovascular Research, 2011, 8, 210-219.	0.4	52
669	Neural Tumor-Initiating Cells Have Distinct Telomere Maintenance and Can be Safely Targeted for Telomerase Inhibition. Clinical Cancer Research, 2011, 17, 111-121.	3.2	53
670	Insulin Receptor Isoforms and Insulin-Like Growth Factor Receptor in Human Follicular Cell Precursors from Papillary Thyroid Cancer and Normal Thyroid. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 766-774.	1.8	130
672	Aldehyde Dehydrogenase in Combination with CD133 Defines Angiogenic Ovarian Cancer Stem Cells That Portend Poor Patient Survival. Cancer Research, 2011, 71, 3991-4001.	0.4	458
673	Endothelial Cells Create a Stem Cell Niche in Glioblastoma by Providing NOTCH Ligands That Nurture Self-Renewal of Cancer Stem-Like Cells. Cancer Research, 2011, 71, 6061-6072.	0.4	335
674	Blockade of TGF-β Signaling by the TGFβR-I Kinase Inhibitor LY2109761 Enhances Radiation Response and Prolongs Survival in Glioblastoma. Cancer Research, 2011, 71, 7155-7167.	0.4	203
675	A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology and Therapy, 2011, 11, 464-473.	1.5	205
676	BRAF Activation Induces Transformation and Then Senescence in Human Neural Stem Cells: A Pilocytic Astrocytoma Model. Clinical Cancer Research, 2011, 17, 3590-3599.	3.2	167
677	Homozygously deleted gene DACH1 regulates tumor-initiating activity of glioma cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12384-12389.	3.3	40
678	ARTS-based anticancer therapy: taking aim at cancer stem cells. Future Oncology, 2011, 7, 1185-1194.	1.1	8
679	Identification of a SOX2-dependent subset of tumor- and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile. Neuro-Oncology, 2011, 13, 1178-1191.	0.6	75
680	Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells. Cancers, 2011, 3, 621-635.	1.7	23

		CITATION REPORT		
#	Article		IF	Citations
681	Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?. Cancers, 2011	, 3, 1111-1128.	1.7	19
682	Essential Gene Pathways for Glioblastoma Stem Cells: Clinical Implications for Prevention of Recurrence. Cancers, 2011, 3, 1975-1995.	Tumor	1.7	16
683	Temozolomide decreases invasion of glioma stem cells by down-regulating TGF-β2. Oncolog 2011, 26, 901-8.	y Reports,	1.2	11
684	Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway. Neuro-Oncology, 2011, 13, 622-634.		0.6	63
685	Heparanase expression is associated with histone modifications in glioblastoma. Internationa of Oncology, 2011, 40, 494-500.	al Journal	1.4	7
686	Insight into the role of microRNAs in brain tumors (Review). International Journal of Oncolog 40, 605-24.	y, 2011,	1.4	10
687	Maintenance of retinal cancer stem cell-like properties through long-term serum-free culture human retinoblastoma. Oncology Reports, 2011, 26, 135-43.	from	1.2	25
688	An experimental study of dendritic cells transfected with cancer stem-like cells RNA against S tumors. Cancer Biology and Therapy, 2011, 11, 974-980.	€L brain	1.5	12
689	Genetic and Modifying Factors that Determine the Risk of Brain Tumors. Central Nervous Sys Agents in Medicinal Chemistry, 2011, 11, 8-30.	stem	0.5	10
690	Autocrine Endothelin-3/Endothelin Receptor B Signaling Maintains Cellular and Molecular Pro of Glioblastoma Stem Cells. Molecular Cancer Research, 2011, 9, 1668-1685.	operties	1.5	38
691	A Molecular Screening Approach to Identify and Characterize Inhibitors of Glioblastoma Sten Molecular Cancer Therapeutics, 2011, 10, 1818-1828.	n Cells.	1.9	80
692	Dishevelled 2 Signaling Promotes Self-Renewal and Tumorigenicity in Human Gliomas. Cance Research, 2011, 71, 7280-7290.	er	0.4	86
693	c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like p Proceedings of the National Academy of Sciences of the United States of America, 2011, 108	ohenotype. 3, 9951-9956.	3.3	232
694	The oncogenic RNA-binding protein Musashi1 is regulated by tumor suppressor miRNAs. RNA 2011, 8, 817-828.	N Biology,	1.5	64
695	Canine Mammary Cancer Stem Cells are Radio- and Chemo- Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype. Cancers, 2011, 3, 1744-1762.		1.7	43
696	Brain Cancer Stem Cells: Current Status on Glioblastoma Multiforme. Cancers, 2011, 3, 177	7-1797.	1.7	75
697	Human umbilical cord blood-derived mesenchymal stem cells and their effect on gliomas. Ne India, 2011, 59, 226.	urology	0.2	5
698	Fourth Ventricular Schwannoma: Identical Clinicopathologic Features as Schwann Cell-Derive Schwannoma with Unique Etiopathologic Origins. Case Reports in Medicine, 2011, 2011, 1-4	ed 4.	0.3	13

#	Article	IF	CITATIONS
699	Effect of Brain- and Tumor-Derived Connective Tissue Growth Factor on Glioma Invasion. Journal of the National Cancer Institute, 2011, 103, 1162-1178.	3.0	109
700	High levels of PROM1 (CD133) transcript are a potential predictor of poor prognosis in medulloblastoma. Neuro-Oncology, 2011, 13, 500-508.	0.6	37
701	Glioblastoma Stem-Like Cells—Biology and Therapeutic Implications. Cancers, 2011, 3, 2655-2666.	1.7	33
702	Aberrant Signaling Pathways in Glioma. Cancers, 2011, 3, 3242-3278.	1.7	178
703	O6-Methylguanine-Methyltransferase (MGMT) Promoter Methylation Status in Glioma Stem-Like Cells is Correlated to Temozolomide Sensitivity Under Differentiation-Promoting Conditions. International Journal of Molecular Sciences, 2012, 13, 6983-6994.	1.8	47
704	TRAIL and Paclitaxel Synergize to Kill U87 Cells and U87-Derived Stem-Like Cells in Vitro. International Journal of Molecular Sciences, 2012, 13, 9142-9156.	1.8	27
705	Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro-Oncology, 2012, 14, 405-415.	0.6	69
706	Quantification, self-renewal, and genetic tracing of FL1+ tumor-initiating cells in a large cohort of human gliomas. Neuro-Oncology, 2012, 14, 720-735.	0.6	0
707	Endoscopy-verified occult subependymal dissemination of glioblastoma and brain metastasis undetected by MRI: prognostic significance. OncoTargets and Therapy, 2012, 5, 449.	1.0	13
708	CD166/Activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro-Oncology, 2012, 14, 1254-1264.	0.6	47
709	Patient-Derived Xenografts of Non Small Cell Lung Cancer: Resurgence of an Old Model for Investigation of Modern Concepts of Tailored Therapy and Cancer Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	76
710	Novel Delivery Strategies for Glioblastoma. Cancer Journal (Sudbury, Mass), 2012, 18, 89-99.	1.0	109
711	Targeting Glioblastoma Stem Cells: Cell Surface Markers. Current Medicinal Chemistry, 2012, 19, 6050-6055.	1.2	22
712	Anti-DLL4 Has Broad Spectrum Activity in Pancreatic Cancer Dependent on Targeting DLL4-Notch Signaling in Both Tumor and Vasculature Cells. Clinical Cancer Research, 2012, 18, 5374-5386.	3.2	60
713	Immunotherapy of High-Grade Gliomas: Preclinical In Vivo Experiments in Animal Models. Neuromethods, 2012, , 245-273.	0.2	0
714	Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin. Oncology Reports, 2012, 28, 1435-1442.	1.2	43
715	Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes and Development, 2012, 26, 1926-1944.	2.7	370
716	Oncolytic Herpes Simplex Virus Counteracts the Hypoxia-Induced Modulation of Glioblastoma Stem-Like Cells. Stem Cells Translational Medicine, 2012, 1, 322-332.	1.6	33

#	Article	IF	CITATIONS
717	Transdifferentiation of Glioblastoma Stem-Like Cells into Mural Cells Drives Vasculogenic Mimicry in Glioblastomas. Journal of Neuroscience, 2012, 32, 12950-12960.	1.7	150
718	Knockdown of Ubiquitin Ligases in Glioblastoma Cancer Stem Cells Leads to Cell Death and Differentiation. Journal of Biomolecular Screening, 2012, 17, 152-162.	2.6	10
719	CD90 is Identified as a Candidate Marker for Cancer Stem Cells in Primary High-Grade Gliomas Using Tissue Microarrays. Molecular and Cellular Proteomics, 2012, 11, M111.010744.	2.5	122
720	Cancer Stem Cells and Novel Targets for Antitumor Strategies. Current Pharmaceutical Design, 2012, 18, 2838-2849.	0.9	121
721	Gene Signatures Associated with Mouse Postnatal Hindbrain Neural Stem Cells and Medulloblastoma Cancer Stem Cells Identify Novel Molecular Mediators and Predict Human Medulloblastoma Molecular Classification. Cancer Discovery, 2012, 2, 554-568.	7.7	21
722	Targeted Therapy for Brain Tumours: Role of PARP Inhibitors. Current Cancer Drug Targets, 2012, 12, 218-236.	0.8	23
723	Animal model of intramedullary spinal cord glioma using human glioblastoma multiforme neurospheres. Journal of Neurosurgery: Spine, 2012, 16, 315-319.	0.9	12
724	Neural stem cells: Brain building blocks and beyond. Upsala Journal of Medical Sciences, 2012, 117, 132-142.	0.4	60
725	PDGF and PDGF receptors in glioma. Upsala Journal of Medical Sciences, 2012, 117, 99-112.	0.4	142
726	Immunotherapy against the radial glia marker GLAST effectively triggers specific antitumor effectors without autoimmunity. Oncolmmunology, 2012, 1, 884-893.	2.1	19
727	The malignant social network. Cell Adhesion and Migration, 2012, 6, 346-355.	1.1	43
728	Concise Review: Self-Renewal in the Central Nervous System: Neural Stem Cells from Embryo to Adult. Stem Cells Translational Medicine, 2012, 1, 298-308.	1.6	44
729	Advances in Cancer Stem Cell Biology. , 2012, , .		3
730	EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene, 2012, 31, 5132-5143.	2.6	80
731	Fluorescence-guided surgical sampling of glioblastoma identifies phenotypically distinct tumour-initiating cell populations in the tumour mass and margin. British Journal of Cancer, 2012, 107, 462-468.	2.9	99
733	Progenitor-like Traits Contribute to Patient Survival and Prognosis in Oligodendroglial Tumors. Clinical Cancer Research, 2012, 18, 4122-4135.	3.2	16
734	On the origin of glioma. Upsala Journal of Medical Sciences, 2012, 117, 113-121.	0.4	73
735	A microRNA Link to Glioblastoma Heterogeneity. Cancers, 2012, 4, 846-872.	1.7	15

#	Article	IF	CITATIONS
736	Methodology for Anti-Gene Anti-IGF-I Therapy of Malignant Tumours. Chemotherapy Research and Practice, 2012, 2012, 1-12.	1.6	6
737	Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes and Development, 2012, 26, 1247-1262.	2.7	96
738	Durable Complete Remission of a Brainstem Glioma Treated with a Combination of Bevacizumab and Cetuximab. Case Reports in Oncology, 2012, 5, 676-681.	0.3	9
739	Cell of Origin Determines Tumor Phenotype in an Oncogenic Ras/p53 Knockout Transgenic Model of High-Grade Glioma. Journal of Neuropathology and Experimental Neurology, 2012, 71, 729-740.	0.9	21
740	Role of Cancer Stem Cells in Spine Tumors. Neurosurgery, 2012, 71, 117-125.	0.6	11
741	Expression and correlation of Bcl-2 with pathological grades in human glioma stem cells. Oncology Reports, 2012, 28, 155-60.	1.2	18
742	Expression levels of Fas/Fas-L mRNA in human brain glioma stem cells. Molecular Medicine Reports, 2012, 5, 1202-6.	1.1	14
743	Stem Cells in Brain Tumour Development and Therapy- Two-Sides of the Same Coin. Canadian Journal of Neurological Sciences, 2012, 39, 145-156.	0.3	3
744	Gliomatosis Cerebri in Two Dogs. Journal of the American Animal Hospital Association, 2012, 48, 359-365.	0.5	14
745	Differential Expression of 2′,3′-Cyclic-Nucleotide 3′-Phosphodiesterase and Neural Lineage Markers Correlate with Glioblastoma Xenograft Infiltration and Patient Survival. Clinical Cancer Research, 2012, 18, 3628-3636.	3.2	40
746	c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells. Oncogene, 2012, 31, 4655-4666.	2.6	95
747	Characteristic Features of Stem Cells in Glioblastomas: From Cellular Biology to Genetics. Brain Pathology, 2012, 22, 592-606.	2.1	11
748	Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Letters, 2012, 325, 42-53.	3.2	191
749	Notch1 signaling promotes survival of glioblastoma cells via EGFR-mediated induction of anti-apoptotic Mcl-1. Oncogene, 2012, 31, 4698-4708.	2.6	61
750	The Roles of Hypoxia-Inducible Factors in Regulating Neural Stem Cells Migration to Glioma Stem Cells and Determinating Their Fates. Neurochemical Research, 2012, 37, 2659-2666.	1.6	21
751	Unique biology of gliomas: challenges and opportunities. Trends in Neurosciences, 2012, 35, 546-556.	4.2	67
752	Laminin alpha 2 enables glioblastoma stem cell growth. Annals of Neurology, 2012, 72, 766-778.	2.8	151
753	The EphA2 Receptor Drives Self-Renewal and Tumorigenicity in Stem-like Tumor-Propagating Cells from Human Glioblastomas. Cancer Cell, 2012, 22, 765-780.	7.7	179

#	Article	IF	CITATIONS
754	Targeting Clioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas. Cell Reports, 2012, 2, 591-602.	2.9	92
755	miRâ€125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Letters, 2012, 586, 3831-3839.	1.3	77
756	High-Grade Glioma Relationship to the Neural Stem Cell Compartment: A Retrospective Review of 104 Cases. International Journal of Radiation Oncology Biology Physics, 2012, 82, e159-e165.	0.4	10
757	Novel Animal Glioma Models that Separately Exhibit Two Different Invasive and Angiogenic Phenotypes of Human Glioblastomas. World Neurosurgery, 2012, 78, 670-682.	0.7	38
758	Clioblastoma Heterogeneity and More Accurate Representation in Research Models. World Neurosurgery, 2012, 78, 594-596.	0.7	4
759	Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Experimental Cell Research, 2012, 318, 2417-2426.	1.2	153
760	Activation of Multiple ERBB Family Receptors Mediates Glioblastoma Cancer Stem-like Cell Resistance to EGFR-Targeted Inhibition. Neoplasia, 2012, 14, 420-IN13.	2.3	123
761	Stem cells in gliomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 63-73.	1.0	10
762	Angiogenic inhibition in high-grade gliomas: past, present and future. Expert Review of Neurotherapeutics, 2012, 12, 733-747.	1.4	28
763	Chemotherapy sorting can be used to identify cancer stem cell populations. Molecular Biology Reports, 2012, 39, 9955-9963.	1.0	13
764	Identification of Glycoprotein Markers for Pancreatic Cancer CD24 ⁺ CD44 ⁺ Stem-like Cells Using Nano-LC–MS/MS and Tissue Microarray. Journal of Proteome Research, 2012, 11, 2272-2281.	1.8	73
765	Cortical and Subventricular Zone Glioblastoma-Derived Stem-Like Cells Display Different Molecular Profiles and Differential In Vitro and In Vivo Properties. Annals of Surgical Oncology, 2012, 19, 608-619.	0.7	32
766	A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death and Differentiation, 2012, 19, 1644-1654.	5.0	64
767	Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Review of Anticancer Therapy, 2012, 12, 635-642.	1.1	109
768	Quantitative analysis of topoisomerase II alpha and evaluation of its effects on cell proliferation and apoptosis in glioblastoma cancer stem cells. Neuroscience Letters, 2012, 518, 138-143.	1.0	22
769	Human brain glioma stem cells are more invasive than their differentiated progeny cells in vitro. Journal of Clinical Neuroscience, 2012, 19, 130-134.	0.8	21
770	Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertility and Sterility, 2012, 98, 741-751.e6.	0.5	101
771	Genetically engineered mouse models of diffuse gliomas. Brain Research Bulletin, 2012, 88, 72-79.	1.4	22

#	ARTICLE	IF	CITATIONS
772	Cancer stem cells and tumor angiogenesis. Cancer Letters, 2012, 321, 13-17.	3.2	59
773	Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opinion on Investigational Drugs, 2012, 21, 1247-1266.	1.9	50
774	Cancer Stem Cell Models and Role in Drug Discovery. , 2012, , 217-228.		2
775	The synthetic purine reversine selectively induces cell death of cancer cells. Journal of Cellular Biochemistry, 2012, 113, 3207-3217.	1.2	18
776	Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Cancer Cell International, 2012, 12, 41.	1.8	24
777	High Content Screening of Defined Chemical Libraries Using Normal and Glioma-Derived Neural Stem Cell Lines. Methods in Enzymology, 2012, 506, 311-329.	0.4	15
778	The future of glioma treatment: stem cells, nanotechnology and personalized medicine. Future Oncology, 2012, 8, 1149-1156.	1.1	19
779	Immunotherapy targeting glioma stem cells – insights and perspectives. Expert Opinion on Biological Therapy, 2012, 12, 165-178.	1.4	14
780	Notch Signaling and Breast Cancer. Advances in Experimental Medicine and Biology, 2012, 727, 241-257.	0.8	71
781	Notch Signaling and Brain Tumors. Advances in Experimental Medicine and Biology, 2012, 727, 289-304.	0.8	24
782	Glioblastoma cancer stem cells: Basis for a functional hypothesis. Stem Cell Discovery, 2012, 02, 122-131.	0.5	9
783	A novel treatment for glioblastoma: integrin inhibition. Expert Review of Neurotherapeutics, 2012, 12, 421-435.	1.4	34
784	Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/promininâ€1 expression. Cell Biology International, 2012, 36, 29-38.	1.4	23
785	Study of chemoresistant CD133+ cancer stem cells from human glioblastoma cell line U138MG using multiple assays. Cell Biology International, 2012, 36, 1137-1143.	1.4	25

#	Article	IF	CITATIONS
790	The Ultrastructural Difference between CD133-positive U251 Glioma Stem Cells and Normal U251 Glioma Cells. Ultrastructural Pathology, 2012, 36, 404-408.	0.4	11
791	In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-Oncology, 2012, 14, 979-993.	0.6	211
792	Glioblastoma cell line-derived spheres in serum-containing medium versus serum-free medium: A comparison of cancer stem cell properties. International Journal of Oncology, 2012, 41, 1693-1700.	1.4	78
793	CD133 as a Marker for Regulation and Potential for Targeted Therapies in Glioblastoma Multiforme. Neurosurgery Clinics of North America, 2012, 23, 391-405.	0.8	28
794	Cancer Stem Cells in Glioblastoma. , 2012, , 113-120.		2
795	Evaluation of Tyrosine Kinase Inhibitor Combinations for Glioblastoma Therapy. PLoS ONE, 2012, 7, e44372.	1.1	42
796	Overcoming Challenges of Ovarian Cancer Stem Cells: Novel Therapeutic Approaches. Stem Cell Reviews and Reports, 2012, 8, 994-1010.	5.6	51
797	Cell Cycle Activation and Aneuploid Neurons in Alzheimer's Disease. Molecular Neurobiology, 2012, 46, 125-135.	1.9	118
798	Growth Factors from Tumor Microenvironment Possibly Promote the Proliferation of Glioblastoma-Derived Stem-like Cells in Vitro. Pathology and Oncology Research, 2012, 18, 1047-1057.	0.9	9
800	Neural Development and Stem Cells. , 2012, , .		0
801	HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death and Differentiation, 2012, 19, 284-294.	5.0	260
802	Oncolytic Viruses. Methods in Molecular Biology, 2012, , .	0.4	1
804	Stem Cells and Cancer Stem Cells, Volume 4. , 2012, , .		2
805	Glioblastoma and malignant astrocytoma. , 2012, , 384-407.		3
806	Interleukin-1β and transforming growth factor-β cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells. Stem Cell Research and Therapy, 2012, 3, 5.	2.4	49
807	The Inhibition of KCa3.1 Channels Activity Reduces Cell Motility in Glioblastoma Derived Cancer Stem Cells. PLoS ONE, 2012, 7, e47825.	1.1	65
808	A Radial Glia Gene Marker, Fatty Acid Binding Protein 7 (FABP7), Is Involved in Proliferation and Invasion of Glioblastoma Cells. PLoS ONE, 2012, 7, e52113.	1.1	94
809	Aqp 9 and Brain Tumour Stem Cells. Scientific World Journal, The, 2012, 2012, 1-9.	0.8	37

#	Article	IF	CITATIONS
810	Isolation, cultivation and characterization of CD133+ stem cells from human glioblastoma. Einstein (Sao Paulo, Brazil), 2012, 10, 197-202.	0.3	5
811	Current Strategies for Identification of Glioma Stem Cells: Adequate or Unsatisfactory?. Journal of Oncology, 2012, 2012, 1-10.	0.6	75
812	Established and emerging variants of glioblastoma multiforme: review of morphological and molecular features. Folia Neuropathologica, 2012, 4, 301-321.	0.5	80
813	Cellular Organization of the Subventricular Zone in the Adult Human Brain: A Niche of Neural Stem Cells. , 2012, , .		1
814	A simplified and modified procedure to culture brain glioma stem cells from clinical specimens. Oncology Letters, 2012, 3, 50-54.	0.8	13
815	Stem cells and progenitor cell lineages as targets for neoplastic transformation in the central nervous system. , 2012, , 6-35.		1
816	The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, S4, 190-205.	0.8	18
817	The role of microRNAs in glioma initiation and progression. Frontiers in Bioscience - Landmark, 2012, 17, 700.	3.0	94
818	The New Model of Carcinogenesis: The Cancer Stem Cell Hypothesis. , 0, , .		1
819	The Role of Neural Stem Cells in Neurorestoration. , 2012, , .		0
819 820	The Role of Neural Stem Cells in Neurorestoration. , 2012, , . The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, S4, 190.	0.8	0
819 820 821	The Role of Neural Stem Cells in Neurorestoration., 2012, , . The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, S4, 190. Identification and Characterization of Cancer Stem Cells Using Flow Cytometry., 0, , .	0.8	0 4 0
819 820 821 822	The Role of Neural Stem Cells in Neurorestoration., 2012, ,. The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, S4, 190. Identification and Characterization of Cancer Stem Cells Using Flow Cytometry., 0, ,. Heterogeneity of cancer-initiating cells within glioblastoma. Frontiers in Bioscience - Scholar, 2012, S4, 1235-1248.	0.8	0 4 0 19
819 820 821 822 823	The Role of Neural Stem Cells in Neurorestoration., 2012, ,. The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, S4, 190. Identification and Characterization of Cancer Stem Cells Using Flow Cytometry., 0, ,. Heterogeneity of cancer-initiating cells within glioblastoma. Frontiers in Bioscience - Scholar, 2012, S4, 1235-1248. Genomic instability of surgical sample and cancer-initiating cell lines from human glioblastoma. Frontiers in Bioscience - Landmark, 2012, 17, 1469.	0.8	0 4 0 19
 819 820 821 822 823 824 	The Role of Neural Stem Cells in Neurorestoration. , 2012, , , . The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, S4, 190. Identification and Characterization of Cancer Stem Cells Using Flow Cytometry. , 0, , . Heterogeneity of cancer-initiating cells within glioblastoma. Frontiers in Bioscience - Scholar, 2012, S4, 1235-1248. Genomic instability of surgical sample and cancer-initiating cell lines from human glioblastoma. Frontiers in Bioscience - Landmark, 2012, 17, 1469. Molecular biomarkers of glioblastoma: current targets and clinical implications. Current Biomarker Findings, 0, , 63.	0.8 0.8 3.0 0.4	0 4 0 19 10
 819 820 821 822 823 824 825 	The Role of Neural Stem Cells in Neurorestoration., 2012,, The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, S4, 190. Identification and Characterization of Cancer Stem Cells Using Flow Cytometry., 0, ,. Heterogeneity of cancer-initiating cells within glioblastoma. Frontiers in Bioscience - Scholar, 2012, S4, 1235-1248. Genomic instability of surgical sample and cancer-initiating cell lines from human glioblastoma. Frontiers in Bioscience - Landmark, 2012, 17, 1469. Molecular biomarkers of glioblastoma: current targets and clinical implications. Current Biomarker Findings, 0, , 63. Mouse models for brain tumor therapy., 2012, , 316-328.	0.8 0.8 3.0 0.4	0 4 0 19 10 4
 819 820 821 822 823 824 825 826 	The Role of Neural Stem Cells in Neurorestoration. , 2012, , . The potential origin of glioblastoma initiating cells. Frontiers in Bioscience - Scholar, 2012, 54, 190. Identification and Characterization of Cancer Stem Cells Using Flow Cytometry. , 0, , . Heterogeneity of cancer-initiating cells within glioblastoma. Frontiers in Bioscience - Scholar, 2012, 54, 1235-1248. Genomic instability of surgical sample and cancer-initiating cell lines from human glioblastoma. Frontiers in Bioscience - Scholar, 2012, , 34, 1235-1248. Molecular biomarkers of glioblastoma: current targets and clinical implications. Current Biomarker Findings, 0, , 63. Mouse models for brain tumor therapy., 2012, , 316-328. Stemness of the CT-2A Immunocompetent Mouse Brain Tumor Model: Characterization <i>In Vitro</i>	0.8 0.8 3.0 0.4 1.2	0 4 0 19 10 4 4

#	Article	IF	CITATIONS
828	Connexin 43 Reverses Malignant Phenotypes of Glioma Stem Cells by Modulating E-Cadherin. Stem Cells, 2012, 30, 108-120.	1.4	79
829	Rai is a New Regulator of Neural Progenitor Migration and Glioblastoma Invasion. Stem Cells, 2012, 30, 817-832.	1.4	32
830	IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 2012, 483, 479-483.	13.7	1,668
831	A Role for Homologous Recombination and Abnormal Cell-Cycle Progression in Radioresistance of Glioma-Initiating Cells. Molecular Cancer Therapeutics, 2012, 11, 1863-1872.	1.9	79
832	The <i>MET</i> Oncogene Is a Functional Marker of a Glioblastoma Stem Cell Subtype. Cancer Research, 2012, 72, 4537-4550.	0.4	120
833	EPHA3 as a novel therapeutic target in the hematological malignancies. Expert Review of Hematology, 2012, 5, 325-340.	1.0	24
834	Stem Cell Pathways in Brain Tumors. , 2012, , 329-349.		0
835	Cancer stem cells and their potential implications for the treatment of solid tumors. Journal of Surgical Oncology, 2012, 106, 209-215.	0.8	36
836	The intrinsic fusogenicity of glioma cells as a factor of transformation and progression in the tumor microenvironment. International Journal of Cancer, 2012, 131, 334-343.	2.3	17
837	<i>In vitro</i> and <i>in vivo</i> characterization of a novel hedgehog signaling antagonist in human glioblastoma cell lines. International Journal of Cancer, 2012, 131, E33-44.	2.3	39
838	Effects of epidermal growth factor receptor blockade on ependymoma stem cells <i>in vitro</i> and in orthotopic mouse models. International Journal of Cancer, 2012, 131, E791-803.	2.3	15
839	The transient receptor potential vanilloidâ€2 cation channel impairs glioblastoma stemâ€like cell proliferation and promotes differentiation. International Journal of Cancer, 2012, 131, E1067-77.	2.3	71
840	Induced pluripotent stem cell-related genes influence biological behavior and 5-fluorouracil sensitivity of colorectal cancer cells. Journal of Zhejiang University: Science B, 2012, 13, 11-19.	1.3	11
841	Sendai virus-based liposomes enable targeted cytosolic delivery of nanoparticles in brain tumor-derived cells. Journal of Nanobiotechnology, 2012, 10, 9.	4.2	13
842	Telomestatin Impairs Glioma Stem Cell Survival and Growth through the Disruption of Telomeric G-Quadruplex and Inhibition of the Proto-oncogene, <i>c-Myb</i> . Clinical Cancer Research, 2012, 18, 1268-1280.	3.2	105
843	Glioblastoma Multiforme: Cryopreservation of Brain Tumor-Initiating Cells (Method). , 2012, , 95-101.		0
844	Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-Oncology, 2012, 14, 132-144.	0.6	185
845	Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. Journal of Cell Science, 2012, 125, 4137-46.	1.2	66

#	Article	IF	CITATIONS
846	Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. Journal of Neuro-Oncology, 2012, 107, 487-501.	1.4	64
847	Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma?. Journal of Neuro-Oncology, 2012, 109, 195-203.	1.4	75
848	Cancer-Initiating Enriched Cell Lines from Human Glioblastoma: Preparing for Drug Discovery Assays. Stem Cell Reviews and Reports, 2012, 8, 288-298.	5.6	10
849	The expression of calcitonin receptor detected in malignant cells of the brain tumour glioblastoma multiforme and functional properties in the cell line A172. Histopathology, 2012, 60, 895-910.	1.6	22
850	Cancer stem cells: an evolving concept. Nature Reviews Cancer, 2012, 12, 133-143.	12.8	1,055
851	Self-Renewal Does Not Predict Tumor Growth Potential in Mouse Models of High-Grade Glioma. Cancer Cell, 2012, 21, 11-24.	7.7	122
852	Spheres without Influence: Dissociating InÂVitro Self-Renewal from Tumorigenic Potential in Glioma. Cancer Cell, 2012, 21, 1-3.	7.7	7
853	Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. European Journal of Pharmacology, 2012, 684, 8-18.	1.7	51
854	Human Glioblastoma Stemâ€Like Cells are More Sensitive to Allogeneic NK and T Cellâ€Mediated Killing Compared with Serumâ€Cultured Glioblastoma Cells. Brain Pathology, 2012, 22, 159-174.	2.1	85
855	Cancer Stem Cells as a Predictive Factor in Radiotherapy. Seminars in Radiation Oncology, 2012, 22, 151-174.	1.0	83
856	Identification of tumour initiating cells in feline head and neck squamous cell carcinoma and evidence for gefitinib induced epithelial to mesenchymal transition. Veterinary Journal, 2012, 193, 46-52.	0.6	21
857	Glioma Stem Cells: Their Role in Chemoresistance. World Neurosurgery, 2012, 77, 237-240.	0.7	27
858	Curcumin promotes differentiation of gliomaâ€initiating cells by inducing autophagy. Cancer Science, 2012, 103, 684-690.	1.7	157
859	Regulation of glioblastoma multiforme stemâ€like cells by inhibitor of <scp>DNA</scp> binding proteins and oligodendroglial lineageâ€associated transcription factors. Cancer Science, 2012, 103, 1028-1037.	1.7	20
860	Insights gained from modelling highâ€grade glioma in the mouse. Neuropathology and Applied Neurobiology, 2012, 38, 254-270.	1.8	19
861	CD44 in human glioma correlates with histopathological grade and cell migration. Pathology International, 2012, 62, 463-470.	0.6	75
862	<i>In vivo</i> metabolic profiling of gliomaâ€initiating cells using proton magnetic resonance spectroscopy at 14.1 Tesla. NMR in Biomedicine, 2012, 25, 506-513.	1.6	17
863	Vaccinia virus expressing bone morphogenetic protein-4 in novel glioblastoma orthotopic models facilitates enhanced tumor regression and long-term survival. Journal of Translational Medicine, 2013, 11, 155.	1.8	26

#	Article	IF	CITATIONS
864	The mood stabilizer valproate activates human <i><scp>FGF</scp>1</i> gene promoter through inhibiting <scp>HDAC</scp> and <scp>GSK</scp> â€3 activities. Journal of Neurochemistry, 2013, 126, 4-18.	2.1	29
865	New Advances on Disease Biomarkers and Molecular Targets in Biomedicine. , 2013, , .		0
867	Cellular Origin of Grade II Gliomas. , 2013, , 75-89.		1
868	Isolation of tumor spheres and mesenchymal stem-like cells from a single primitive neuroectodermal tumor specimen. Child's Nervous System, 2013, 29, 2229-2239.	0.6	14
869	Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Human Pathology, 2013, 44, 2373-2384.	1.1	50
870	Comparative proteomics of glioma stem cells and differentiated tumor cells identifies S100 <scp>A</scp> 9 as a potential therapeutic target. Journal of Cellular Biochemistry, 2013, 114, 2795-2808.	1.2	27
871	Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, 2013, 779, v-vi.	0.8	1
872	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , .	0.4	12
873	Inhibition of GSH synthesis potentiates temozolomide-induced bystander effect in glioblastoma. Cancer Letters, 2013, 331, 68-75.	3.2	25
874	Interleukin-6 is overexpressed and augments invasiveness of human glioma stem cells in vitro. Clinical and Experimental Metastasis, 2013, 30, 1009-1018.	1.7	17
875	Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. Journal of Experimental and Clinical Cancer Research, 2013, 32, 48.	3.5	72
876	Emerging Concepts in Neuro-Oncology. , 2013, , .		0
877	Stem Cells and Cancer Stem Cells, Volume 10. , 2013, , .		0
878	Lung cancer-initiating cells: a novel target for cancer therapy. Targeted Oncology, 2013, 8, 159-172.	1.7	25
879	Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunology, Immunotherapy, 2013, 62, 1499-1509.	2.0	236
880	Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nature Neuroscience, 2013, 16, 1373-1382.	7.1	408
881	Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Research and Therapy, 2013, 4, 18.	2.4	100
882	Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathologica, 2013, 126, 763-780.	3.9	106

#	Article	IF	CITATIONS
883	Neurospheres and Glial Cell Cultures: Immunocytochemistry for Cell Phenotyping. Methods in Molecular Biology, 2013, 1078, 119-132.	0.4	7
884	Transcriptional Differences between Normal and Glioma-Derived Glial Progenitor Cells Identify a Core Set of Dysregulated Genes. Cell Reports, 2013, 3, 2127-2141.	2.9	70
885	An Aberrant Transcription Factor Network Essential for Wnt Signaling and Stem Cell Maintenance in Glioblastoma. Cell Reports, 2013, 3, 1567-1579.	2.9	236
886	The <i>MET</i> Oncogene in Glioblastoma Stem Cells: Implications as a Diagnostic Marker and a Therapeutic Target. Cancer Research, 2013, 73, 3193-3199.	0.4	56
887	Aptamer Identification of Brain Tumor–Initiating Cells. Cancer Research, 2013, 73, 4923-4936.	0.4	57
888	Current Understanding on EGFR and Wnt/Â-Catenin Signaling in Glioma and Their Possible Crosstalk. Genes and Cancer, 2013, 4, 427-446.	0.6	124
889	Tumorigenic Potential of miR-18A* in Glioma Initiating Cells Requires NOTCH-1 Signaling. Stem Cells, 2013, 31, 1252-1265.	1.4	40
890	Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death and Differentiation, 2013, 20, 396-407.	5.0	53
891	Implications of Glioblastoma Stem Cells in Chemoresistance. , 2013, , 435-462.		0
892	Molecular pathways and potential therapeutic targets in glioblastoma multiforme. Expert Review of Anticancer Therapy, 2013, 13, 1307-1318.	1.1	5
893	Na+/K+-ATPase Â2-subunit (AMOG) expression abrogates invasion of glioblastoma-derived brain tumor-initiating cells. Neuro-Oncology, 2013, 15, 1518-1531.	0.6	30
894	Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/Â-catenin pathway. Neuro-Oncology, 2013, 15, 1502-1517.	0.6	64
895	Glioblastoma Multiforme Therapy and Mechanisms of Resistance. Pharmaceuticals, 2013, 6, 1475-1506.	1.7	229
896	Glypican 1 Stimulates S Phase Entry and DNA Replication in Human Glioma Cells and Normal Astrocytes. Molecular and Cellular Biology, 2013, 33, 4408-4421.	1.1	17
897	Isolation and Characterization of Potential Cancer Stem Cells from Solid Human Tumors—Potential Applications. Current Protocols in Pharmacology, 2013, 63, Unit 14.28	4.0	26
898	Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis, 2013, 34, 550-559.	1.3	50
899	Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth. Nature Communications, 2013, 4, 2956.	5.8	56
900	The Fruits of Maclura pomifera Extracts Inhibits Glioma Stem-Like Cell Growth and Invasion. Neurochemical Research, 2013, 38, 2105-2113.	1.6	22

#	Article	IF	CITATIONS
901	Implication of tumor stem-like cells in the tumorigenesis of sporadic paraganglioma. Medical Oncology, 2013, 30, 659.	1.2	3
902	MicroRNA-107 Inhibits U87 Glioma Stem Cells Growth and Invasion. Cellular and Molecular Neurobiology, 2013, 33, 651-657.	1.7	43
903	Inhibition of tumor formation and redirected differentiation of glioblastoma cells in a xenotypic embryonic environment. Developmental Dynamics, 2013, 242, 1078-1093.	0.8	13
904	Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms. Journal of Cellular and Molecular Medicine, 2013, 17, 1218-1235.	1.6	49
905	Fatty acid binding protein 7 as a marker of glioma stem cells. Pathology International, 2013, 63, 546-553.	0.6	35
906	Heterogeneous reovirus susceptibility in human glioblastoma stem-like cell cultures. Cancer Gene Therapy, 2013, 20, 507-513.	2.2	25
907	Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro-Oncology, 2013, 15, 904-920.	0.6	44
908	Chondroitin Sulfate Proteoglycans Potently Inhibit Invasion and Serve as a Central Organizer of the Brain Tumor Microenvironment. Journal of Neuroscience, 2013, 33, 15603-15617.	1.7	112
909	Current and future directions for Phase II trials in high-grade glioma. Expert Review of Neurotherapeutics, 2013, 13, 369-387.	1.4	4
910	The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics, 2013, 53, 232-238.	2.1	61
911	Interleukins in glioblastoma pathophysiology: implications for therapy. British Journal of Pharmacology, 2013, 168, 591-606.	2.7	166
912	DNA Repair Mechanisms in Glioblastoma Cancer Stem Cells. , 2013, , 89-103.		0
913	Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Advances in Biological Regulation, 2013, 53, 202-210.	1.4	47
914	CD133 Is Essential for Glioblastoma Stem Cell Maintenance. Stem Cells, 2013, 31, 857-869.	1.4	199
915	Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 25-41.	1.0	191
916	Loss of miR-204 Expression Enhances Glioma Migration and Stem Cell-like Phenotype. Cancer Research, 2013, 73, 990-999.	0.4	134
917	Changes in the biological characteristics of glioma cancer stem cells after serial in vivo subtransplantation. Child's Nervous System, 2013, 29, 55-64.	0.6	10
918	Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens. Child's Nervous System, 2013, 29, 217-229.	0.6	51

~			~
	ΓΔΤΙ	ON	REDUBL
			KLI OKI

#	Article	IF	CITATIONS
919	Critical multiple angiogenic factors secreted by glioblastoma stemâ€like cells underline the need for combinatorial antiâ€angiogenic therapeutic strategies. Proteomics - Clinical Applications, 2013, 7, 79-90.	0.8	7
920	In Vivo c-Met Pathway Inhibition Depletes Human Glioma Xenografts of Tumor-Propagating Stem-Like Cells. Translational Oncology, 2013, 6, 104-IN1.	1.7	44
921	Marker-independent Method for Isolating Slow-Dividing Cancer Stem Cells in Human Glioblastoma. Neoplasia, 2013, 15, 840-IN39.	2.3	39
923	Circulating Tumor Cell Enrichment Based on Physical Properties. Journal of the Association for Laboratory Automation, 2013, 18, 455-468.	2.8	126
924	Pancreatic neuroendocrine tumors. Current Problems in Surgery, 2013, 50, 509-545.	0.6	49
925	Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicology Letters, 2013, 220, 61-69.	0.4	38
926	Surgical resection of malignant gliomas—role in optimizing patient outcome. Nature Reviews Neurology, 2013, 9, 141-151.	4.9	133
927	<scp>LGR5</scp> is a Marker of Poor Prognosis in Glioblastoma and is Required for Survival of Brain Cancer Stemâ€Like Cells. Brain Pathology, 2013, 23, 60-72.	2.1	80
928	Impact of Genetic Targets on Primary Brain Tumor Therapy: What's Ready for Prime Time?. Advances in Experimental Medicine and Biology, 2013, 779, 267-289.	0.8	11
929	Copper induces cellular senescence in human glioblastoma multiforme cells through downregulation of Bmi-1. Oncology Reports, 2013, 29, 1805-1810.	1.2	31
930	Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. International Journal of Oncology, 2013, 42, 1754-1762.	1.4	30
931	A Distinct Reactive Oxygen Species Profile Confers Chemoresistance in Glioma-Propagating Cells and Associates with Patient Survival Outcome. Antioxidants and Redox Signaling, 2013, 19, 2261-2279.	2.5	25
932	In Vitro Models of Brain Cancer. , 2013, , 75-86.		0
933	The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma. Molecular Aspects of Medicine, 2013, 34, 849-862.	2.7	46
934	STAT Signaling in Glioma Cells. Advances in Experimental Medicine and Biology, 2013, 986, 189-208.	0.8	42
935	The Neurosphere Assay Applied to Neural Stem Cells and Cancer Stem Cells. Methods in Molecular Biology, 2013, 986, 267-277.	0.4	15
936	The cancer stem cell niche(s): The crosstalk between glioma stem cells and their microenvironment. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2496-2508.	1.1	140
937	Stem Cells and Brain Cancer. , 2013, , 61-71.		0

#	Article	IF	CITATIONS
938	Therapeutic strategies targeting cancer stem cells. Cancer Biology and Therapy, 2013, 14, 295-303.	1.5	65
939	Oncogenic effects of miR-10b in glioblastoma stem cells. Journal of Neuro-Oncology, 2013, 112, 153-163.	1.4	151
940	Role of microRNAs in mechanisms of glioblastoma resistance to radio- and chemotherapy. Biochemistry (Moscow), 2013, 78, 325-334.	0.7	20
941	Human Low-Grade Glioma Cultures. , 2013, , 137-163.		3
942	Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies. Expert Review of Neurotherapeutics, 2013, 13, 545-555.	1.4	75
943	Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. British Journal of Cancer, 2013, 108, 2005-2012.	2.9	108
944	The Hematopoietic Stem Cell Regulatory Gene Latexin Has Tumor-Suppressive Properties in Malignant Melanoma. Journal of Investigative Dermatology, 2013, 133, 1827-1833.	0.3	26
945	Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. International Journal of Oncology, 2013, 43, 219-227.	1.4	90
946	Phosphorylation of EZH2 Activates STAT3 Signaling via STAT3 Methylation and Promotes Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Cell, 2013, 23, 839-852.	7.7	665
947	Metformin selectively affects human glioblastoma tumor-initiating cell viability. Cell Cycle, 2013, 12, 145-156.	1.3	154
948	A Minority Subpopulation of <scp>CD</scp> 133 ⁺ / <scp>EGFR</scp> v <scp>III</scp> ⁺ / <scp>EGFR</scp> â^' <br Cells Acquires Stemness and Contributes to Gefitinib Resistance. CNS Neuroscience and Therapeutics, 2013, 19, 494-502.	sup> 1.9	19
949	Increased Subventricular Zone Radiation Dose Correlates With Survival in Glioblastoma Patients After Gross Total Resection. International Journal of Radiation Oncology Biology Physics, 2013, 86, 616-622.	0.4	121
952	Glioblastoma cancer stem cells – From concept to clinical application. Cancer Letters, 2013, 338, 32-40.	3.2	67
953	Cancer Stem Cells. , 2013, , 163-188.		0
954	Isolation and Characterization of Cancer Stem Cells from Dog Glioblastoma. , 2013, , 219-228.		0
955	EphA3 Maintains Tumorigenicity and Is a Therapeutic Target in Glioblastoma Multiforme. Cancer Cell, 2013, 23, 238-248.	7.7	193
956	Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumor Biology, 2013, 34, 2063-2074.	0.8	112
957	The role of the CXCR4 cell surface chemokine receptor in glioma biology. Journal of Neuro-Oncology, 2013, 113, 153-162.	1.4	28

ARTICLE IF CITATIONS Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma 958 1.2 30 stem/progenitor cells in vitro. Radiation Oncology, 2013, 8, 195. Glioblastoma Tumor Initiating Cells: Therapeutic Strategies Targeting Apoptosis and MicroRNA Pathways. Current Molecular Medicine, 2013, 13, 352-357. 960 Cancer stem cells: moving past the controversy. CNS Oncology, 2013, 2, 465-467. 1.2 15 Upregulation of DLX2 Confers a Poor Prognosis in Glioblastoma Patients by Inducing a Proliferative 961 Phenotype. Current Molecular Medicine, 2013, 13, 438-445. Gene Signatures Distinguish Stage-Specific Prostate Cancer Stem Cells Isolated From Transgenic Adenocarcinoma of the Mouse Prostate Lesions and Predict the Malignancy of Human Tumors. Stem 962 20 1.6 Cells Translational Medicine, 2013, 2, 678-689. Human NK Cells Selective Targeting of Colon Cancer–Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules. Journal of Immunology, 2013, 190, 2381-2390. 0.4 224 Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. 964 0.6 166 Neuro-Oncology, 2013, 15, 91-96. Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth. Journal of 965 3.9 110 Clinical Investigation, 2013, 123, 2475-2487. Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncology 966 1.2 69 Reports, 2013, 30, 2733-2740. Nanofiber-mediated inhibition of focal adhesion kinase sensitizes glioma stemlike cells to epidermal growth factor receptor inhibition. Neuro-Oncology, 2013, 15, 319-329. Targeting Metabolism to Induce Cell Death in Cancer Cells and Cancer Stem Cells. International 968 1.0 57 Journal of Cell Biology, 2013, 2013, 1-13. Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets and Therapy, 108 2013, 6, 1207. Biological and clinical implications of cancer stem cells in primary brain tumors. Frontiers in 970 1.3 12 Oncology, 2013, 3, 6. Functional Role of CLIC1 Ion Channel in Glioblastoma-Derived Stem/Progenitor Cells. Journal of the 971 National Cancer Institute, 2013, 105, 1644-1655. Ionizing Radiation in Glioblastoma Initiating Cells. Frontiers in Oncology, 2013, 3, 74. 972 27 1.3 Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance. BioMed Research 28 International, 2013, 2013, 1-10. Serum-free culture success of glial tumors is related to specific molecular profiles and expression of 974 0.6 55 extracellular matrix–associated gene modules. Neuro-Oncology, 2013, 15, 1684-1695. The in-vitro spheroid culture induces a more highly differentiated but tumorigenic population from melanoma cell lines. Melanoma Research, 2013, 23, 254-263.

#	Article	IF	CITATIONS
976	Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures. Cancer Biology and Therapy, 2013, 14, 625-637.	1.5	39
977	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669.	2.7	121
978	Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells. Cancer Discovery, 2013, 3, 198-211.	7.7	78
979	A Tumorigenic MLL-Homeobox Network in Human Glioblastoma Stem Cells. Cancer Research, 2013, 73, 417-427.	0.4	77
980	Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A. Genes and Development, 2013, 27, 1032-1045.	2.7	114
981	Oligodendrocyte/Type-2 Astrocyte Progenitor Cells and Glial-Restricted Precursor Cells Generate Different Tumor Phenotypes in Response to the Identical Oncogenes. Journal of Neuroscience, 2013, 33, 16805-16817.	1.7	10
982	miR-21 in the Extracellular Vesicles (EVs) of Cerebrospinal Fluid (CSF): A Platform for Glioblastoma Biomarker Development. PLoS ONE, 2013, 8, e78115.	1.1	270
983	Prolonged Inhibition of Glioblastoma Xenograft Initiation and Clonogenic Growth following <i>In Vivo</i> Notch Blockade. Clinical Cancer Research, 2013, 19, 3224-3233.	3.2	48
984	Fractionated radiationâ€induced nitric oxide promotes expansion of glioma stemâ€like cells. Cancer Science, 2013, 104, 1172-1177.	1.7	41
985	Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11751-11756.	3.3	222
986	JAK-STAT Signaling in Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 247-267.	0.8	46
987	The regulation of mitochondrial DNA copy number in glioblastoma cells. Cell Death and Differentiation, 2013, 20, 1644-1653.	5.0	110
988	Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. Oncolmmunology, 2013, 2, e24520.	2.1	38
989	Cancer Stem Cells. , 2013, , 1-22.		1
990	Glioblastoma Multiforme: Relationship to Subventricular Zone and Recurrence. Neuroradiology Journal, 2013, 26, 542-547.	0.6	18
991	Glioma Spheroids Obtained via Ultrasonic Aspiration Are Viable and Express Stem Cell Markers. Neurosurgery, 2013, 73, 868-886.	0.6	21
992	Deregulated MicroRNAs Identified in Isolated Glioblastoma Stem Cells: An Overview. Cell Transplantation, 2013, 22, 741-753.	1.2	12
993	Human Glioma–Initiating Cells Show a Distinct Immature Phenotype Resembling but Not Identical to NG2 Glia. Journal of Neuropathology and Experimental Neurology, 2013, 72, 307-324.	0.9	21

#	Article	IF	CITATIONS
994	OCT4 is epigenetically regulated by DNA hypomethylation of promoter and exon in primary gliomas. Oncology Reports, 2013, 30, 201-206.	1.2	19
995	Targeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid. Oncology Reports, 2013, 30, 1645-1650.	1.2	42
996	miR-138: a prosurvival oncomiR for glioma stem cells and its therapeutic implications. Future Neurology, 2013, 8, 119-121.	0.9	2
997	Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics. Scientific Reports, 2013, 3, 1095.	1.6	32
998	Implantation of GL261 neurospheres into C57/BL6 mice: A more reliable syngeneic graft model for research on glioma-initiating cells. International Journal of Oncology, 2013, 43, 477-484.	1.4	15
999	Biological characteristics of CD133+ cells in nasopharyngeal carcinoma. Oncology Reports, 2013, 30, 57-63.	1.2	24
1000	Identification of U251 glioma stem cells and their heterogeneous stem-like phenotypes. Oncology Letters, 2013, 6, 1649-1655.	0.8	18
1001	Anti-cancer Therapies in High Grade Gliomas. Current Proteomics, 2013, 10, 246-260.	0.1	28
1002	Oncogenic and Anti-Oncogenic Effects of Transient Receptor Potential Channels. Current Topics in Medicinal Chemistry, 2013, 13, 344-366.	1.0	33
1003	Enrichment of Prostate Cancer Stem-Like Cells from Human Prostate Cancer Cell Lines by Culture in Serum-Free Medium and Chemoradiotherapy. International Journal of Biological Sciences, 2013, 9, 472-479.	2.6	64
1004	Pituitary Stem/Progenitor Cells: Their Enigmatic Roles in Embryogenesis and Pituitary Neoplasia - A Review Article. Journal of Neurological Disorders, 2013, 02, .	0.1	0
1005	Molecular Culprits Generating Brain Tumor Stem Cells. Brain Tumor Research and Treatment, 2013, 1, 9.	0.4	5
1006	Astrocytes Enhance the Invasion Potential of Glioblastoma Stem-Like Cells. PLoS ONE, 2013, 8, e54752.	1.1	97
1007	Differential Expression of ID4 and Its Association with TP53 Mutation, SOX2, SOX4 and OCT-4 Expression Levels. PLoS ONE, 2013, 8, e61605.	1.1	18
1008	A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1. PLoS ONE, 2013, 8, e77053.	1.1	53
1009	Involvement of miRNAs in the Differentiation of Human Glioblastoma Multiforme Stem-Like Cells. PLoS ONE, 2013, 8, e77098.	1.1	64
1010	Protective Properties of Radio-Chemoresistant Glioblastoma Stem Cell Clones Are Associated with Metabolic Adaptation to Reduced Glucose Dependence. PLoS ONE, 2013, 8, e80397.	1.1	48
1011	microRNA-100 Targets SMRT/NCOR2, Reduces Proliferation, and Improves Survival in Glioblastoma Animal Models. PLoS ONE, 2013, 8, e80865.	1.1	47

#	Article	IF	CITATIONS
1012	Chemotherapy Sensitizes Colon Cancer Initiating Cells to Vγ9Vδ2 T Cell-Mediated Cytotoxicity. PLoS ONE, 2013, 8, e65145.	1.1	41
1013	Extracellular Sphingosine-1-Phosphate: A Novel Actor in Human Glioblastoma Stem Cell Survival. PLoS ONE, 2013, 8, e68229.	1.1	42
1014	VEGF in Tumor Progression and Targeted Therapy. Current Cancer Drug Targets, 2013, 13, 423-443.	0.8	70
1015	Pyruvate Dehydrogenase Kinase as a Potential Therapeutic Target for Malignant Gliomas. Brain Tumor Research and Treatment, 2013, 1, 57.	0.4	45
1016	The adaptive significance of adult neurogenesis: an integrative approach. Frontiers in Neuroanatomy, 2013, 7, 21.	0.9	19
1017	Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy. Frontiers in Oncology, 2013, 3, 28.	1.3	11
1018	Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment. Cancers, 2013, 5, 1049-1071.	1.7	71
1019	Brain Tumor Stemness. , 2013, , .		0
1020	MicroRNAs Regulated Brain Tumor Cell Phenotype and Their Therapeutic Potential. , 2013, , .		0
1021	Overview of Mechanisms of Cancer Stem Cell Drug Resistance. Current Signal Transduction Therapy, 2014, 8, 180-192.	0.3	2
1022	On the Genesis of Neuroblastoma and Glioma. International Journal of Brain Science, 2014, 2014, 1-14.	0.6	10
1023	Investigating Molecular Profiles of Ovarian Cancer: An Update on Cancer Stem Cells. Journal of Cancer, 2014, 5, 301-310.	1.2	39
1024	Enhanced Antitumor Efficacy of an Oncolytic Herpes Simplex Virus Expressing an Endostatin–Angiostatin Fusion Gene in Human Glioblastoma Stem Cell Xenografts. PLoS ONE, 2014, 9, e95872.	1.1	27
1025	Response-Predictive Gene Expression Profiling of Glioma Progenitor Cells In Vitro. PLoS ONE, 2014, 9, e108632.	1.1	14
1026	Transcriptional Profiling of Adult Neural Stem-Like Cells from the Human Brain. PLoS ONE, 2014, 9, e114739.	1.1	15
1027	The taxonomy of brain cancer stem cells: what's in a name?. Oncoscience, 2014, 1, 241-247.	0.9	3
1028	The PGI-KLF4 pathway regulates self-renewal of glioma stem cells residing in the mesenchymal niches in human gliomas. Neoplasma, 2014, 61, 401-410.	0.7	22
1029	In vitro Analysis of Neurospheres Derived from Glioblastoma Primary Culture: A Novel Methodology Paradigm. Frontiers in Neurology, 2014, 4, 214.	1.1	26

	_		
$(IT \Delta T I C$	א אר	FPO	DL

#	Article	IF	CITATIONS
1030	Prognostic and Predictive Biomarkers in Adult and Pediatric Gliomas: Toward Personalized Treatment. Frontiers in Oncology, 2014, 4, 47.	1.3	36
1031	The STAT3-Ser/Hes3 signaling axis in cancer. Frontiers in Bioscience - Landmark, 2014, 19, 718.	3.0	6
1032	Characterization of Cancer Stem-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Transformed by Tumor-Derived Extracellular Vesicles. Journal of Cancer, 2014, 5, 572-584.	1.2	51
1034	Targeting glioblastoma cancer stem cells: the next great hope?. Neurosurgical Focus, 2014, 37, E7.	1.0	13
1035	The NFκB inhibitor, SN50, induces differentiation of glioma stem cells and suppresses their oncogenic phenotype. Cancer Biology and Therapy, 2014, 15, 602-611.	1.5	18
1036	Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature. Cancer Biology and Therapy, 2014, 15, 862-877.	1.5	9
1038	Stem cell niche irradiation in glioblastoma: providing a ray of hope?. CNS Oncology, 2014, 3, 367-376.	1.2	18
1039	Silencing BMI1 eliminates tumor formation of pediatric glioma CD133+ cells not by affecting known targets but by down-regulating a novel set of core genes. Acta Neuropathologica Communications, 2014, 2, 160.	2.4	20
1040	Reprogramming and Carcinogenesis—Parallels and Distinctions. International Review of Cell and Molecular Biology, 2014, 308, 167-203.	1.6	48
1041	Neural Stem Cells and Glioblastoma. Neuroradiology Journal, 2014, 27, 169-174.	0.6	14
1042	Integrin inhibition promotes atypical anoikis in glioma cells. Cell Death and Disease, 2014, 5, e1012-e1012.	2.7	39
1043	PARP inhibitors and IR join forces to strike glioblastoma-initiating cells. Cell Death and Differentiation, 2014, 21, 192-193.	5.0	4
1044	Epiregulin enhances tumorigenicity by activating the ERK/MAPK pathway in glioblastoma. Neuro-Oncology, 2014, 16, 960-970.	0.6	38
1045	Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death and Disease, 2014, 5, e1223-e1223.	2.7	57
1046	Sialidase NEU4 is involved in glioblastoma stem cell survival. Cell Death and Disease, 2014, 5, e1381.	2.7	27
1047	Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential. Cancer Biology and Therapy, 2014, 15, 216-224.	1.5	30
1048	MC3 Mucoepidermoid carcinoma cell line enriched cancer stem-like cells following chemotherapy. Oncology Letters, 2014, 7, 1569-1575.	0.8	5
1049	Enhanced Chemosensitivity by Targeting Nanog in Head and Neck Squamous Cell Carcinomas. International Journal of Molecular Sciences, 2014, 15, 14935-14948.	1.8	27

#	Article	IF	CITATIONS
1050	Cancer stem cell: A rogue responsible for tumor development and metastasis. Indian Journal of Cancer, 2014, 51, 282.	0.2	17
1051	BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma. BioMed Research International, 2014, 2014, 1-8.	0.9	24
1052	Adult Neurogenesis and Glial Oncogenesis: When the Process Fails. BioMed Research International, 2014, 2014, 1-10.	0.9	18
1053	The role of cancer stem cells in glioblastoma. Neurosurgical Focus, 2014, 37, E6.	1.0	97
1054	Kruppel-like Factor-9 (KLF9) Inhibits Glioblastoma Stemness through Global Transcription Repression and Integrin α6 Inhibition. Journal of Biological Chemistry, 2014, 289, 32742-32756.	1.6	67
1055	Extrachromosomal driver mutations in glioblastoma and low-grade glioma. Nature Communications, 2014, 5, 5690.	5.8	74
1056	Cool-1-Mediated Inhibition of c-Cbl Modulates Multiple Critical Properties of Glioblastomas, Including the Ability to Generate Tumors In Vivo. Stem Cells, 2014, 32, 1124-1135.	1.4	11
1057	USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nature Communications, 2014, 5, 3214.	5.8	83
1058	In Vivo Modeling of Malignant Glioma. Advances in Cancer Research, 2014, 121, 261-330.	1.9	21
1059	The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathologica Communications, 2014, 2, 1.	2.4	143
1060	Emerging Roles for Platelets in Inflammation and Disease. Journal of Infectious Disease and Therapy, 2014, 02, .	0.1	12
1061	Glioblastoma stem-like cells: approaches for isolation and characterization. Journal of Cancer Stem Cell Research, 2014, 1, 1.	1.1	12
1062	Angiopep-2-conjugated liposomes encapsulating ^ĵ 3-secretase inhibitor for targeting glioblastoma stem cells. Journal of Pharmaceutical Investigation, 2014, 44, 473-483.	2.7	8
1063	How Stemlike Are Sphere Cultures From Long-term Cancer Cell Lines? Lessons From Mouse Glioma Models. Journal of Neuropathology and Experimental Neurology, 2014, 73, 1062-1077.	0.9	15
1064	Matrix Regulation of Tumor-Initiating Cells. Progress in Molecular Biology and Translational Science, 2014, 126, 243-256.	0.9	5
1065	MicroRNA142-3p Promotes Tumor-Initiating and Radioresistant Properties in Malignant Pediatric Brain Tumors. Cell Transplantation, 2014, 23, 669-690.	1.2	30
1066	Endogenous Stem Cell-Based Brain Remodeling in Mammals. Pancreatic Islet Biology, 2014, , .	0.1	0
1067	Sca1+ murine pituitary adenoma cells show tumor-growth advantage. Endocrine-Related Cancer, 2014, 21, 203-216.	1.6	23

#	Article	IF	CITATIONS
1068	Links Between Injury-Induced Brain Remodeling and Oncogenesis. Pancreatic Islet Biology, 2014, , 199-226.	0.1	0
1069	Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression. Cells, 2014, 3, 112-128.	1.8	48
1070	Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Molecular Aspects of Medicine, 2014, 39, 3-32.	2.7	46
1071	Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner. Oncogene, 2014, 33, 4433-4441.	2.6	60
1072	The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. Oncogene, 2014, 33, 2236-2244.	2.6	34
1073	Brain tumor-targeted drug delivery strategies. Acta Pharmaceutica Sinica B, 2014, 4, 193-201.	5.7	165
1074	BuGZ Is Required for Bub3 Stability, Bub1 Kinetochore Function, and Chromosome Alignment. Developmental Cell, 2014, 28, 282-294.	3.1	64
1075	Implantable controlled release devices for BMP-7 delivery and suppression of glioblastoma initiating cells. Biomaterials, 2014, 35, 2859-2867.	5.7	36
1076	Brain tumor stem cells: Molecular characteristics and their impact on therapy. Molecular Aspects of Medicine, 2014, 39, 82-101.	2.7	164
1077	Heterogeneous phenotype of human glioblastoma: <i>In vitro</i> study. Cell Biochemistry and Function, 2014, 32, 164-176.	1.4	11
1078	Establishment and partial characterization of a human tumor cell line, GBM-HSF, from a glioblastoma multiforme. Human Cell, 2014, 27, 129-136.	1.2	7
1079	The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions. Glia, 2014, 62, 1015-1023.	2.5	53
1080	Glioma stem cells: turpis omen in nomen? (the evil in the name?). Journal of Internal Medicine, 2014, 276, 25-40.	2.7	19
1081	Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Letters, 2014, 349, 1-7.	3.2	156
1082	Thymosin beta 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain, 2014, 137, 433-448.	3.7	44
1083	Cancer Stem Cells Under Hypoxia as a Chemoresistance Factor in the Breast and Brain. Current Pathobiology Reports, 2014, 2, 33-40.	1.6	45
1084	Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of Translational Medicine, 2014, 12, 13.	1.8	87
1085	Inhibitory Activities of Trichostatin A in U87 Glioblastoma Cells and Tumorsphere-Derived Cells. Journal of Molecular Neuroscience, 2014, 54, 27-40.	1.1	14

#	Article	IF	CITATIONS
1086	Smac mimetic promotes glioblastoma cancer stem-like cell differentiation by activating NF-κB. Cell Death and Differentiation, 2014, 21, 735-747.	5.0	44
1087	Molecular Biomarkers of Cancer Stem/Progenitor Cells Associated with Progression, Metastases, and Treatment Resistance of Aggressive Cancers. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 234-254.	1.1	74
1088	Gliomaâ€Associated Stem Cells: A Novel Class of Tumorâ€Supporting Cells Able to Predict Prognosis of Human Lowâ€Grade Gliomas. Stem Cells, 2014, 32, 1239-1253.	1.4	80
1089	¹ H NMR detects different metabolic profiles in glioblastoma stemâ€like cells. NMR in Biomedicine, 2014, 27, 129-145.	1.6	24
1090	Hif- $1\hat{1}\pm$ and Hif- $2\hat{1}\pm$ differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Letters, 2014, 349, 67-76.	3.2	67
1091	Using the molecular classification of glioblastoma to inform personalized treatment. Journal of Pathology, 2014, 232, 165-177.	2.1	214
1092	Downregulation of SCAI enhances glioma cell invasion and stem cell like phenotype by activating Wnt/β-catenin signaling. Biochemical and Biophysical Research Communications, 2014, 448, 206-211.	1.0	37
1093	The Zinc Finger Transcription Factor ZFX Is Required for Maintaining the Tumorigenic Potential of Glioblastoma Stem Cells. Stem Cells, 2014, 32, 2033-2047.	1.4	47
1094	Phage display discovery of novel molecular targets in glioblastoma-initiating cells. Cell Death and Differentiation, 2014, 21, 1325-1339.	5.0	29
1095	A mesenchymal glioma stem cell profile is related to clinical outcome. Oncogenesis, 2014, 3, e91-e91.	2.1	54
1096	The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemotherapy and Pharmacology, 2014, 73, 983-90.	1.1	36
1097	Regulatory Roles of miRNA in the Human Neural Stem Cell Transformation to Glioma Stem Cells. Journal of Cellular Biochemistry, 2014, 115, 1368-1380.	1.2	58
1098	PDGF-induced PI3K-mediated signaling enhances the TGF-β-induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner. International Journal of Molecular Medicine, 2014, 33, 534-542.	1.8	35
1099	Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death and Differentiation, 2014, 21, 258-269.	5.0	152
1100	Glioma Cell Biology. , 2014, , .		3
1101	Signaling Cascades Driving the Malignant Phenotype of Glioma Cells. , 2014, , 47-75.		2
1102	Reprogramming cancer cells to pluripotency. Epigenetics, 2014, 9, 798-802.	1.3	16
1103	Glucose-6–phosphatase Is a Key Metabolic Regulator of Glioblastoma Invasion. Molecular Cancer Research, 2014, 12, 1547-1559.	1.5	64

#	Article	IF	CITATIONS
1104	Astrocyte Elevated Gene-1 Interacts with Akt Isoform 2 to Control Glioma Growth, Survival, and Pathogenesis. Cancer Research, 2014, 74, 7321-7332.	0.4	56
1105	Hyperdiploid tumor cells increase phenotypic heterogeneity within Glioblastoma tumors. Molecular BioSystems, 2014, 10, 741-758.	2.9	26
1106	Isolation of Neural Progenitor Cells From the Human Adult Subventricular Zone Based on Expression of the Cell Surface Marker CD271. Stem Cells Translational Medicine, 2014, 3, 470-480.	1.6	38
1107	Involvement of autophagy in melatoninâ€induced cytotoxicity in gliomaâ€initiating cells. Journal of Pineal Research, 2014, 57, 308-316.	3.4	43
1108	MiR-152 functions as a tumor suppressor in glioblastoma stem cells by targeting Krüppel-like factor 4. Cancer Letters, 2014, 355, 85-95.	3.2	84
1109	Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. Journal of Controlled Release, 2014, 194, 228-237.	4.8	135
1110	Prognosis of ductal adenocarcinoma of pancreatic head with overexpression of CD44. Formosan Journal of Surgery, 2014, 47, 138-144.	0.1	0
1111	The Polyamine Catabolic Enzyme SAT1 Modulates Tumorigenesis and Radiation Response in GBM. Cancer Research, 2014, 74, 6925-6934.	0.4	48
1112	Molecular Heterogeneity of Glioblastoma and its Clinical Relevance. Pathology and Oncology Research, 2014, 20, 777-787.	0.9	78
1113	Integrated Chromosome 19 Transcriptomic and Proteomic Data Sets Derived from Glioma Cancer Stem-Cell Lines. Journal of Proteome Research, 2014, 13, 191-199.	1.8	27
1114	Selective Release of a Cyclopamine Glucuronide Prodrug toward Stem-like Cancer Cell Inhibition in Glioblastoma. Molecular Cancer Therapeutics, 2014, 13, 2159-2169.	1.9	18
1115	Stem Cells and Tissue Repair. Methods in Molecular Biology, 2014, , .	0.4	3
1116	p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells. Journal of Biological Chemistry, 2014, 289, 8067-8085.	1.6	57
1117	Cancer stem cells and radioresistance. International Journal of Radiation Biology, 2014, 90, 615-621.	1.0	214
1118	Cancer stem cell detection and isolation. Medical Oncology, 2014, 31, 69.	1.2	64
1119	The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro-Oncology, 2014, 16, 29-37.	0.6	81
1120	Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death and Differentiation, 2014, 21, 720-734.	5.0	69
1121	Inhibition of CXCR7 extends survival following irradiation of brain tumours in mice and rats. British Journal of Cancer, 2014, 110, 1179-1188.	2.9	70

# 1122	ARTICLE Proteomic analysis underlines the usefulness of both primary adherent and stem-like cell lines for studying proteins involved in human glioblastoma. Journal of Proteomics, 2014, 110, 7-19.	lF 1,2	Citations 3
1123	PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Advances in Biological Regulation, 2014, 56, 66-80.	1.4	77
1124	Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicology and Applied Pharmacology, 2014, 279, 253-265.	1.3	57
1125	Stem cell characteristics in glioblastoma are maintained by the ecto-nucleotidase E-NPP1. Cell Death and Differentiation, 2014, 21, 929-940.	5.0	58
1126	Aurora-A Inhibition Offers a Novel Therapy Effective against Intracranial Glioblastoma. Cancer Research, 2014, 74, 5364-5370.	0.4	42
1127	New Advances of microRNAs in Glioma Stem Cells, With Special Emphasis on Aberrant Methylation of microRNAs. Journal of Cellular Physiology, 2014, 229, 1141-1147.	2.0	21
1128	Cells Isolated from Human Glioblastoma Multiforme Express Progesterone-Induced Blocking Factor (PIBF). Cellular and Molecular Neurobiology, 2014, 34, 479-489.	1.7	19
1129	microRNA Expression Pattern Modulates Temozolomide Response in GBM Tumors with Cancer Stem Cells. Cellular and Molecular Neurobiology, 2014, 34, 679-692.	1.7	36
1130	Mouse glioma immunotherapy mediated by A2B5+ GL261 cell lysate-pulsed dendritic cells. Journal of Neuro-Oncology, 2014, 116, 497-504.	1.4	25
1131	Relationship between survival and increased radiation dose to subventricular zone in glioblastoma is controversial. Journal of Neuro-Oncology, 2014, 118, 413-419.	1.4	35
1132	Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. European Journal of Cancer, 2014, 50, 137-149.	1.3	57
1133	Stem Cells in Cancer: Should We Believe or Not?. , 2014, , .		2
1134	MicroRNAs in cancer: Glioblastoma and glioblastoma cancer stem cells. Neurochemistry International, 2014, 77, 68-77.	1.9	82
1135	The Clinical Utility of Biomarkers in the Management of Pancreatic Adenocarcinoma. Seminars in Radiation Oncology, 2014, 24, 67-76.	1.0	13
1136	An Epigenetic Biomarker Panel for Glioblastoma Multiforme Personalized Medicine through DNA Methylation Analysis of Human Embryonic Stem Cell-like Signature. OMICS A Journal of Integrative Biology, 2014, 18, 310-323.	1.0	23
1137	BMP Signaling Induces Astrocytic Differentiation of Clinically Derived Oligodendroglioma Propagating Cells. Molecular Cancer Research, 2014, 12, 283-294.	1.5	21
1138	Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide. BMC Cancer, 2014, 14, 151.	1.1	64
1139	Lipid metabolism enzyme ACSVL3 supports glioblastoma stem cell maintenance and tumorigenicity. BMC Cancer, 2014, 14, 401.	1.1	41

#	Article	IF	CITATIONS
1140	In silico modeling predicts drug sensitivity of patient-derived cancer cells. Journal of Translational Medicine, 2014, 12, 128.	1.8	26
1141	Cancer Stem Cells in Brain Tumors. , 2014, , 229-243.		1
1142	Sox2 Is Required to Maintain Cancer Stem Cells in a Mouse Model of High-Grade Oligodendroglioma. Cancer Research, 2014, 74, 1833-1844.	0.4	84
1143	Principles of Surgery for Malignant Astrocytomas. Seminars in Oncology, 2014, 41, 523-531.	0.8	4
1144	Brevican knockdown reduces late-stage glioma tumor aggressiveness. Journal of Neuro-Oncology, 2014, 120, 63-72.	1.4	37
1145	A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene, 2014, 33, 5477-5482.	2.6	57
1147	The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Letters, 2014, 346, 1-5.	3.2	52
1148	Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation. Neoplasia, 2014, 16, 193-206.e25.	2.3	132
1149	Anti-neoplastic activity of low-dose endothelial-monocyte activating polypeptide-II results from defective autophagy and G2/M arrest mediated by PI3K/Akt/FoxO1 axis in human glioblastoma stem cells. Biochemical Pharmacology, 2014, 89, 477-489.	2.0	29
1150	HMMR Maintains the Stemness and Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Research, 2014, 74, 3168-3179.	0.4	101
1151	KIN enhances stem cell-like properties to promote chemoresistance in colorectal carcinoma. Biochemical and Biophysical Research Communications, 2014, 448, 63-69.	1.0	4
1152	Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules. Cell, 2014, 156, 603-616.	13.5	241
1153	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	2.9	76
1154	The Association of Subventricular Zone Involvement at Recurrence with Survival after Repeat Surgery in Patients with Recurrent Glioblastoma. Neurologia Medico-Chirurgica, 2014, 54, 302-309.	1.0	27
1155	Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation. Frontiers in Genetics, 2014, 5, 14.	1.1	33
1156	Mesenchymal stem cells show little tropism for the resting and differentiated cancer stem cell-like glioma cells. International Journal of Oncology, 2014, 44, 1223-1232.	1.4	11
1157	RNAi-mediated knockdown of E2F2 inhibits tumorigenicity of human glioblastoma cells. Oncology Letters, 2014, 8, 1487-1491.	0.8	11
1158	Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry. Journal of Visualized Experiments, 2014, , e51088.	0.2	27

#	Article	IF	CITATIONS
1161	Tanshinone IIA inhibits the growth, attenuates the stemness and induces the apoptosis of human glioma stem cells. Oncology Reports, 2014, 32, 1303-1311.	1.2	32
1162	Neural stem cells preferentially migrate to glioma stem cells and reduce their stemness phenotypes. International Journal of Oncology, 2014, 45, 1989-1996.	1.4	18
1163	Glioblastoma stem cells: new insights in therapeutic strategies. Future Neurology, 2014, 9, 639-653.	0.9	3
1164	Downregulation of VEGF expression attenuates malignant biological behavior of C6 glioma stem cells. International Journal of Oncology, 2014, 44, 1581-1588.	1.4	11
1165	Isolation and characteristics of CD133â^'/A2B5+ and CD133â^'/A2B5â^' cells from the SHG139s cell line. Molecular Medicine Reports, 2015, 12, 7949-7956.	1.1	1
1166	Combination Treatment with All-Trans Retinoic Acid Prevents Cisplatin-Induced Enrichment of CD133+ Tumor-Initiating Cells and Reveals Heterogeneity of Cancer Stem Cell Compartment in Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1027-1036.	0.5	42
1167	Third Ventricular Glioblastoma Multiforme: Case Report and Literature Review. Journal of Neurological Surgery Reports, 2015, 76, e227-e232.	0.3	10
1168	Comparison of low and high grade glioma maps. , 2015, , .		0
1169	Coculture with astrocytes reduces the radiosensitivity of glioblastoma stemâ€like cells and identifies additional targets for radiosensitization. Cancer Medicine, 2015, 4, 1705-1716.	1.3	42
1170	Dedifferentiation of patientâ€derived glioblastoma multiforme cell lines results in a cancer stem cellâ€like state with mitogenâ€independent growth. Journal of Cellular and Molecular Medicine, 2015, 19, 1262-1272.	1.6	47
1173	Elevated Cell Invasion in a Tumor Sphere Culture of RSV-M Mouse Glioma Cells. Neurologia Medico-Chirurgica, 2015, 55, 60-70.	1.0	8
1174	Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells. Molecular Medicine Reports, 2015, 11, 2407-2412.	1.1	24
1175	The proteomic landscape of glioma stem-like cells. EuPA Open Proteomics, 2015, 8, 85-93.	2.5	11
1176	Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma. Clinical Medicine Insights: Oncology, 2015, 9, CMO.S30271.	0.6	42
1177	Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-glioblastoma stem cells to clinically relevant dose of temozolomide. Molecular Cancer, 2015, 14, 189.	7.9	38
1178	The autotaxin-lysophosphatidic acid–lysophosphatidic acid receptor cascade: proposal of a novel potential therapeutic target for treating glioblastoma multiforme. Lipids in Health and Disease, 2015, 14, 56.	1.2	38
1179	Maintenance of Stemlike Glioma Cells and Microglia in an Organotypic Glioma Slice Model. Neurosurgery, 2015, 77, 629-643.	0.6	9
1180	Intratumor heterogeneity and transcriptional profiling in glioblastoma: translational opportunities. Future Neurology, 2015, 10, 369-381.	0.9	1

#	Article	IF	CITATIONS
1181	Inhibition of Neurosphere Formation in Neural Stem/Progenitor Cells by Acrylamide. Cell Transplantation, 2015, 24, 779-796.	1.2	5
1182	Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9â€Epipolygodial against Drugâ€Resistant Cancer Cells. ChemMedChem, 2015, 10, 2014-2026.	1.6	22
1184	Long Non-Coding RNAs: The Key Players in Glioma Pathogenesis. Cancers, 2015, 7, 1406-1424.	1.7	77
1185	Targeting Glioma Stem Cells for Therapy: Perspectives and Challenges. Journal of Cell Science & Therapy, 2015, 06, .	0.3	1
1186	Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anatomy and Cell Biology, 2015, 48, 25.	0.5	49
1187	Cancer Stem Cells: Dynamic Entities in an Ever-Evolving Paradigm. Biology and Medicine (Aligarh), 2015, s2, .	0.3	10
1188	Original article Prognostic significance of the markers IDH1 and YKL40 related to the subventricular zone. Folia Neuropathologica, 2015, 1, 52-59.	0.5	20
1189	Long Non-Coding RNAs Dysregulation and Function in Glioblastoma Stem Cells. Non-coding RNA, 2015, 1, 69-86.	1.3	17
1190	Glioblastoma specific antigens, GD2 and CD90, are not involved in cancer stemness. Anatomy and Cell Biology, 2015, 48, 44.	0.5	17
1191	Proportional Upregulation of CD97 Isoforms in Glioblastoma and Glioblastoma-Derived Brain Tumor Initiating Cells. PLoS ONE, 2015, 10, e0111532.	1.1	19
1192	ROCK Inhibition Facilitates In Vitro Expansion of Glioblastoma Stem-Like Cells. PLoS ONE, 2015, 10, e0132823.	1.1	31
1193	Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells. PLoS ONE, 2015, 10, e0134111.	1.1	44
1194	Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS ONE, 2015, 10, e0141334.	1.1	52
1195	Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE, 2015, 10, e0145393.	1.1	35
1196	MicroRNA Regulation of Brain Tumour Initiating Cells in Central Nervous System Tumours. Stem Cells International, 2015, 2015, 1-15.	1.2	20
1197	<i>EGFR</i> Amplification and Glioblastoma Stem-Like Cells. Stem Cells International, 2015, 2015, 1-11.	1.2	30
1198	Targeting DNA Repair Mechanisms to Treat Glioblastoma. , 0, , .		6
1199	Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells. Oncotarget, 2015, 6, 26192-26215.	0.8	94

		CITATION R	EPORT	
#	ARTICLE	3-362	IF	CITATIONS
1201	Cancer stem cells: a notential target for cancer therapy. Cellular and Molecular Life Scie	nces 2015		2
1202	72, 3411-3424.		2.4	53
1203	Molecular subtypes, stem cells and heterogeneity: Implications for personalised therapy Journal of Clinical Neuroscience, 2015, 22, 1219-1226.	[,] in glioma.	0.8	41
1204	New perspectives in the treatment of adult medulloblastoma in the era of molecular on Critical Reviews in Oncology/Hematology, 2015, 94, 348-359.	cology.	2.0	43
1205	The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme r Expert Review of Neurotherapeutics, 2015, 15, 741-752.	ecurrence.	1.4	221
1206	Pharmacologic Wnt Inhibition Reduces Proliferation, Survival, and Clonogenicity of Glio Cells. Journal of Neuropathology and Experimental Neurology, 2015, 74, 889-900.	blastoma	0.9	54
1207	Differentiation of Glioma Stem Cells and Progenitor Cells into Local Host Cell-Like Cells: Based on Choroidcarcinoma Differentiation of Choroid Plexus of GFP Transgenic Nude N Biotherapy and Radiopharmaceuticals, 2015, 30, 225-232.	A Study Aouse. Cancer	0.7	3
1208	CD15 Expression Does Not Identify a Phenotypically or Genetically Distinct Glioblastom Stem Cells Translational Medicine, 2015, 4, 822-831.	a Population.	1.6	17
1209	The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Subtypes. EBioMedicine, 2015, 2, 1351-1363.	Molecular	2.7	228
1210	CD133 and BMI1 expressions and its prognostic role in primary glioblastoma. Journal of 94, 689-696.	Genetics, 2015,	0.4	4
1211	Standardized orthotopic xenografts in zebrafish reveal glioma cell line specific characte tumor cell heterogeneity. DMM Disease Models and Mechanisms, 2015, 9, 199-210.	ristics and	1.2	42
1212	Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition. Oncology Reports, 2015, 34, 2375-2384.		1.2	28
1213	Aggressive invasion is observed in CD133â^'/A2B5+ glioma-initiating cells. Oncology Let 3399-3406.	ters, 2015, 10,	0.8	15
1214	All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-lik through promoting differentiation. Molecular Medicine Reports, 2015, 12, 165-172.	te cells	1.1	12
1215	Abrogation of radioresistance in glioblastoma stemâ€like cells by inhibition of ATM kina Oncology, 2015, 9, 192-203.	se. Molecular	2.1	108
1216	Pediatric Brain Tumor Cell Lines. Journal of Cellular Biochemistry, 2015, 116, 218-224.		1.2	50
1217	Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from analysis of data from similar DNA chip microarray platforms. Tumor Biology, 2015, 36, 1	comparative 943-1953.	0.8	37
1218	Genetic and Functional Diversity of Propagating Cells in Glioblastoma. Stem Cell Report	s, 2015, 4, 7-15.	2.3	66

		CITATION REPORT		
#	Article		IF	Citations
1219	A niche role for periostin and macrophages in glioblastoma. Nature Cell Biology, 2015,	17, 107-109.	4.6	20
1220	Activity of 2-Aryl-2-(3-indolyl)acetohydroxamates against Drug-Resistant Cancer Cells. Medicinal Chemistry, 2015, 58, 2206-2220.	Journal of	2.9	46
1221	Retinoic acid signaling and neuronal differentiation. Cellular and Molecular Life Science 1559-1576.	es, 2015, 72,	2.4	212
1222	Control of ciliation in embryogenesis. Nature Cell Biology, 2015, 17, 109-111.		4.6	4
1223	Targeting osteopontin suppresses glioblastoma stemâ€like cell character and tumorig vivo. International Journal of Cancer, 2015, 137, 1047-1057.	enicity <i>in</i>	2.3	49
1224	Redox biology in normal cells and cancer: Restoring function of the redox/Fyn/c-Cbl pa cancer cells offers new approaches to cancer treatment. Free Radical Biology and Med 300-323.	thway in icine, 2015, 79,	1.3	15
1225	Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human stem cells by up-regulating miR-152. Cancer Letters, 2015, 359, 75-86.	ı glioblastoma	3.2	321
1226	Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glio Journal of Neuro-Oncology, 2015, 121, 91-100.	blastoma.	1.4	30
1227	Development of a Sox2 reporter system modeling cellular heterogeneity in glioma. Net 2015, 17, 361-371.	uro-Oncology,	0.6	22
1228	Variations of ITSSâ€Morphology and their Relationship to Location and Tumor Volume Glioblastoma. Journal of Neuroimaging, 2015, 25, 1015-1022.	in Patients with	1.0	7
1230	Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AN proteins in tumor development and as novel therapeutic targets. Biochimica Et Biophy Biomembranes, 2015, 1848, 2523-2531.	D CLIC4) sica Acta -	1.4	130
1231	VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGF signaling-dependent manner. Cancer Letters, 2015, 360, 60-67.	βR	3.2	39
1232	Hypoxia-mediated cancer stem cells in pseudopalisades with activation of hypoxia-indu factor-1î±/Akt axis in glioblastoma. Human Pathology, 2015, 46, 1496-1505.	ıcible	1.1	27
1233	Identification of Global DNA Methylation Signatures in Glioblastoma-Derived Cancer S Journal of Genetics and Genomics, 2015, 42, 355-371.	tem Cells.	1.7	47
1234	Chemoresistance and Chemotherapy Targeting Stem-Like Cells in Malignant Glioma. A Experimental Medicine and Biology, 2015, 853, 111-138.	dvances in	0.8	43
1235	Cancer stem cells in glioblastoma. Genes and Development, 2015, 29, 1203-1217.		2.7	1,248
1236	Multicentric Low-Grade Gliomas. World Neurosurgery, 2015, 84, 1045-1050.		0.7	5
1237	Shogaol overcomes TRAIL resistance in colon cancer cells via inhibiting of survivin. Tun 2015, 36, 8819-8829.	nor Biology,	0.8	18

#	Article	IF	CITATIONS
1238	In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Therapy, 2015, 22, 947-959.	2.3	12
1239	Differential Connexin Function Enhances Self-Renewal in Glioblastoma. Cell Reports, 2015, 11, 1031-1042.	2.9	100
1240	Mouse Low-Grade Gliomas Contain Cancer Stem Cells with Unique Molecular and Functional Properties. Cell Reports, 2015, 10, 1899-1912.	2.9	39
1241	Human neural stem cell transplantation in ALS: initial results from a phase I trial. Journal of Translational Medicine, 2015, 13, 17.	1.8	151
1243	Radiation Therapy for Glioma Stem Cells. Advances in Experimental Medicine and Biology, 2015, 853, 85-110.	0.8	14
1244	Mitochondrial control by DRP1 in brain tumor initiating cells. Nature Neuroscience, 2015, 18, 501-510.	7.1	306
1245	Flow-Cytometric Identification and Characterization of Neural Brain Tumor-Initiating Cells for Pathophysiological Study and Biomedical Applications. , 2015, , 199-211.		0
1246	Fluorescent Cancer-Selective Alkylphosphocholine Analogs for Intraoperative Glioma Detection. Neurosurgery, 2015, 76, 115-124.	0.6	60
1247	Radiosensitization of Primary Human Glioblastoma Stem-like Cells with Low-Dose AKT Inhibition. Molecular Cancer Therapeutics, 2015, 14, 1171-1180.	1.9	36
1248	PKCδ maintains phenotypes of tumor initiating cells through cytokine-mediated autocrine loop with positive feedback. Oncogene, 2015, 34, 5749-5759.	2.6	8
1249	Glioblastoma vasculogenic mimicry: signaling pathways progression and potential anti-angiogenesis targets. Biomarker Research, 2015, 3, 8.	2.8	62
1250	Laboratory Models for Central Nervous System Tumor Stem Cell Research. Advances in Experimental Medicine and Biology, 2015, 853, 69-83.	0.8	0
1251	A Cell ELISA for the quantification of MUC1 mucin (CD227) expressed by cancer cells of epithelial and neuroectodermal origin. Cellular Immunology, 2015, 298, 96-103.	1.4	22
1252	Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Molecular Cancer, 2015, 14, 160.	7.9	30
1254	Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis. International Journal of Hyperthermia, 2015, 31, 784-792.	1.1	31
1255	The Dynamics of Interactions Among Immune and Glioblastoma Cells. NeuroMolecular Medicine, 2015, 17, 335-352.	1.8	30
1256	Wittig derivatization of sesquiterpenoid polygodial leads to cytostatic agents with activity against drug resistant cancer cells and capable of pyrrolylation of primary amines. European Journal of Medicinal Chemistry, 2015, 103, 226-237.	2.6	16
1257	Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. Cancer Research, 2015, 75, 4416-4428.	0.4	154

#	Article	IF	CITATIONS
1258	Isolation and Characterization of Stem Cells from Human Central Nervous System Malignancies. Advances in Experimental Medicine and Biology, 2015, 853, 33-47.	0.8	3
1259	Targeting a Plk1-Controlled Polarity Checkpoint in Therapy-Resistant Glioblastoma-Propagating Cells. Cancer Research, 2015, 75, 5355-5366.	0.4	33
1260	From autonomy to community; new perspectives on tumorigenicity and therapy resistance. Cancer Treatment Reviews, 2015, 41, 809-813.	3.4	2
1261	Cancer stem cell markers: premises and prospects. Biomarkers in Medicine, 2015, 9, 1331-1342.	0.6	17
1262	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	7.7	90
1263	Systematic Identification of Single Amino Acid Variants in Glioma Stem-Cell-Derived Chromosome 19 Proteins. Journal of Proteome Research, 2015, 14, 778-786.	1.8	22
1264	Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis, 2015, 36, 177-185.	1.3	184
1265	Tenascin-C: A Novel Candidate Marker for Cancer Stem Cells in Glioblastoma Identified by Tissue Microarrays. Journal of Proteome Research, 2015, 14, 814-822.	1.8	39
1266	A Chemically Cross-Linked Knottin Dimer Binds Integrins with Picomolar Affinity and Inhibits Tumor Cell Migration and Proliferation. Journal of the American Chemical Society, 2015, 137, 6-9.	6.6	63
1267	LncRNAs: New Players in Gliomas, With Special Emphasis on the Interaction of IncRNAs With EZH2. Journal of Cellular Physiology, 2015, 230, 496-503.	2.0	51
1268	Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule. Scientific Reports, 2014, 4, 5546.	1.6	38
1269	EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene, 2015, 34, 558-567.	2.6	139
1270	EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. Journal of Neuro-Oncology, 2015, 121, 41-52.	1.4	89
1271	Isolation and Culture of Primary Clioblastoma Cells from Human Tumor Specimens. Methods in Molecular Biology, 2015, 1235, 263-275.	0.4	34
1273	DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene, 2015, 34, 3994-4004.	2.6	82
1274	miRâ€101 Acts as a Tumor Suppressor by Targeting Kruppelâ€like Factor 6 in Glioblastoma Stem Cells. CNS Neuroscience and Therapeutics, 2015, 21, 40-51.	1.9	48
1275	Transforming growth factor-beta and its implication in the malignancy of gliomas. Targeted Oncology, 2015, 10, 1-14.	1.7	56
1276	The Effects of Histone Deacetylase Inhibitors on Glioblastoma-Derived Stem Cells. Journal of Molecular Neuroscience, 2015, 55, 7-20.	1.1	38

#	Article	IF	CITATIONS
1277	Progranulin promotes Temozolomide resistance of glioblastoma by orchestrating DNA repair and tumor stemness. Oncogene, 2015, 34, 1853-1864.	2.6	51
1278	A Systematic Comparison Identifies an ATP-Based Viability Assay as Most Suitable Read-Out for Drug Screening in Glioma Stem-Like Cells. Stem Cells International, 2016, 2016, 1-10.	1.2	17
1279	RSK2 activity mediates glioblastoma invasiveness and is a potential target for new therapeutics. Oncotarget, 2016, 7, 79869-79884.	0.8	25
1280	Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget, 2016, 7, 593-609.	0.8	66
1281	Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells International, 2016, 2016, 1-16.	1.2	288
1282	Vascular Transdifferentiation in the CNS: A Focus on Neural and Glioblastoma Stem-Like Cells. Stem Cells International, 2016, 2016, 1-13.	1.2	27
1283	Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells International, 2016, 2016, 1-20.	1.2	91
1284	Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells International, 2016, 2016, 1-17.	1.2	131
1285	Do Increased Doses to Stem-Cell Niches during Radiation Therapy Improve Glioblastoma Survival?. Stem Cells International, 2016, 2016, 1-10.	1.2	12
1286	Therapeutic Potential of Curcumin for the Treatment of Brain Tumors. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-14.	1.9	61
1287	Targeting SOX2 as a Therapeutic Strategy in Glioblastoma. Frontiers in Oncology, 2016, 6, 222.	1.3	89
1288	Challenges in Drug Discovery for Neurofibromatosis Type 1-Associated Low-Grade Glioma. Frontiers in Oncology, 2016, 6, 259.	1.3	10
1289	Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis. Biology, 2016, 5, 29.	1.3	18
1290	The Effects of Thermal Preconditioning on Oncogenic and Intraspinal Cord Growth Features of Human Glioma Cells. Cell Transplantation, 2016, 25, 2099-2109.	1.2	11
1291	The availability of the embryonic TGF-β protein Nodal is dynamically regulated during glioblastoma multiforme tumorigenesis. Cancer Cell International, 2016, 16, 46.	1.8	8
1292	High expression of VEGF and PI3K in glioma stem cells provides new criteria for the grading of gliomas. Experimental and Therapeutic Medicine, 2016, 11, 571-576.	0.8	8
1293	Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines. PLoS ONE, 2016, 11, e0150271.	1.1	21
1294	miR-30e Blocks Autophagy and Acts Synergistically with Proanthocyanidin for Inhibition of AVEN and BIRC6 to Increase Apoptosis in Glioblastoma Stem Cells and Glioblastoma SNB19 Cells. PLoS ONE, 2016, 11, e0158537.	1.1	27

#	Article	IF	CITATIONS
1295	Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing. PLoS ONE, 2016, 11, e0162105.	1.1	17
1296	Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Frontiers in Pharmacology, 2016, 7, 395.	1.6	131
1297	Downâ€expression of miRâ€154 suppresses tumourigenesis in CD133 ⁺ glioblastoma stem cells. Cell Biochemistry and Function, 2016, 34, 404-413.	1.4	16
1298	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 2016, 34, 2026-2039.	1.4	189
1300	A novel ligand of calcitonin receptor reveals a potential new sensor that modulates programmed cell death. Cell Death Discovery, 2016, 2, 16062.	2.0	6
1301	GFAP expression is regulated by Pax3 in brain glioma stem cells. Oncology Reports, 2016, 36, 1277-1284.	1.2	12
1302	Let-7g-5p inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes by targeting VSIG4 in glioblastoma. Oncology Reports, 2016, 36, 2967-2975.	1.2	29
1303	Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels. Scientific Reports, 2016, 6, 31915.	1.6	28
1304	<scp>MET</scp> inhibition overcomes radiation resistance of glioblastoma stemâ€like cells. EMBO Molecular Medicine, 2016, 8, 550-568.	3.3	74
1305	BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells. Scientific Reports, 2016, 6, 38723.	1.6	78
1306	Therapeutic potential of targeting micro <scp>RNA</scp> â€10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Molecular Medicine, 2016, 8, 268-287.	3.3	117
1307	Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network. Nature Communications, 2016, 7, 10753.	5.8	23
1308	Stem cells and cancer: A review. Asian Pacific Journal of Tropical Disease, 2016, 6, 406-420.	0.5	1
1309	Inhibition of Nucleotide Synthesis Targets Brain Tumor Stem Cells in a Subset of Glioblastoma. Molecular Cancer Therapeutics, 2016, 15, 1271-1278.	1.9	13
1310	The transcriptional modulator HMGA2 promotes stemness and tumorigenicity in glioblastoma. Cancer Letters, 2016, 377, 55-64.	3.2	50
1311	Optimized dissociation protocol for isolating human glioma stem cells from tumorspheres via fluorescence-activated cell sorting. Cancer Letters, 2016, 377, 105-115.	3.2	24
1312	Activation of Aurora A kinase through the FGF1/FGFR signaling axis sustains the stem cell characteristics of glioblastoma cells. Experimental Cell Research, 2016, 344, 153-166.	1.2	21
1313	The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. International Journal of Biochemistry and Cell Biology, 2016, 81, 174-183.	1.2	79
#	Article	IF	CITATIONS
------	--	-----	-----------
1314	Taking a Toll on Self-Renewal: TLR-Mediated Innate Immune Signaling in Stem Cells. Trends in Neurosciences, 2016, 39, 463-471.	4.2	18
1315	Large-scale assessment of the gliomasphere model system. Neuro-Oncology, 2016, 18, 1367-1378.	0.6	82
1316	Disulfiram when Combined with Copper Enhances the Therapeutic Effects of Temozolomide for the Treatment of Glioblastoma. Clinical Cancer Research, 2016, 22, 3860-3875.	3.2	142
1317	Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells. Neuro-Oncology, 2016, 18, 1413-1424.	0.6	18
1318	Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nature Neuroscience, 2016, 19, 798-806.	7.1	82
1319	Pharmacological Development of Target-Specific Delocalized Lipophilic Cation-Functionalized Carboranes for Cancer Therapy. Pharmaceutical Research, 2016, 33, 1945-1958.	1.7	18
1320	5,10b-Ethanophenanthridine amaryllidaceae alkaloids inspire the discovery of novel bicyclic ring systems with activity against drug resistant cancer cells. European Journal of Medicinal Chemistry, 2016, 120, 313-328.	2.6	16
1321	Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 203-210.	1.7	28
1322	Time-lapse phenotyping of invasive glioma cells ex vivo reveals subtype-specific movement patterns guided by tumor core signaling. Experimental Cell Research, 2016, 349, 199-213.	1.2	18
1323	Apigenin Inhibits Cancer Stem Cellâ€Like Phenotypes in Human Glioblastoma Cells via Suppression of câ€Met Signaling. Phytotherapy Research, 2016, 30, 1833-1840.	2.8	78
1325	A radiosensitizing effect of RAD51 inhibition in glioblastoma stem-like cells. BMC Cancer, 2016, 16, 604.	1.1	49
1326	Development of a Patient-Derived Xenograft Model Using Brain Tumor Stem Cell Systems to Study Cancer. Methods in Molecular Biology, 2016, 1458, 231-245.	0.4	4
1328	Enrichment and Interrogation of Cancer Stem Cells. , 2016, , 59-98.		7
1329	miR-608 inhibits the migration and invasion of glioma stem cells by targeting macrophage migration inhibitory factor. Oncology Reports, 2016, 35, 2733-2742.	1.2	53
1330	Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. Tumor Biology, 2016, 37, 14949-14960.	0.8	12
1331	Therapeutic resistance and cancer recurrence mechanisms: Unfolding the story of tumour coming back. Journal of Biosciences, 2016, 41, 497-506.	0.5	31
1332	Gene knockdown of CENPA reduces sphere forming ability and stemness of glioblastoma initiating cells. Neuroepigenetics, 2016, 7, 6-18.	2.8	16
1334	Biobanking: An Important Resource for Precision Medicine in Glioblastoma. Advances in Experimental Medicine and Biology, 2016, 951, 47-56.	0.8	3

#	Article	IF	Citations
1335	Stem cell markers in glioma progression and recurrence. International Journal of Oncology, 2016, 49, 1899-1910.	1.4	41
1336	Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model. Molecular Cancer Therapeutics, 2016, 15, 3064-3076.	1.9	94
1337	Unique spectral markers discern recurrent Glioblastoma cells from heterogeneous parent population. Scientific Reports, 2016, 6, 26538.	1.6	22
1339	Ultrasonic Surgical Aspirate is a Reliable Source For Culturing Glioblastoma Stem Cells. Scientific Reports, 2016, 6, 32788.	1.6	11
1340	Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device. Biophysical Journal, 2016, 111, 2039-2050.	0.2	72
1341	Topoisomerase IlÎ ² mediates the resistance of glioblastoma stem cells to replication stress-inducing drugs. Cancer Cell International, 2016, 16, 58.	1.8	15
1342	miRNA Manipulation in Modifying Radiation Sensitivity in Glioblastoma Models. Current Clinical Pathology, 2016, , 225-237.	0.0	0
1343	Radiobiology of Glioblastoma. Current Clinical Pathology, 2016, , .	0.0	2
1344	Overexpression of DLX2 is associated with poor prognosis and sorafenib resistance in hepatocellular carcinoma. Experimental and Molecular Pathology, 2016, 101, 58-65.	0.9	20
1345	Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia, 2016, 18, 185-198.	2.3	22
1346	The role of octamer binding transcription factors in glioblastoma multiforme. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 805-811.	0.9	13
1347	MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer, 2016, 16, 115.	1.1	17
1348	Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. International Journal of Oncology, 2016, 49, 509-518.	1.4	56
1349	Preclinical Models of Glioblastoma in Radiobiology: Evolving Protocols and Research Methods. Current Clinical Pathology, 2016, , 255-274.	0.0	0
1350	Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells. Cancer Cell, 2016, 29, 859-873.	7.7	169
1351	Tumor vasculature and glioma stem cells: Contributions to glioma progression. Cancer Letters, 2016, 380, 545-551.	3.2	106
1352	Progenitor/Stem Cell Markers in Brain Adjacent to Glioblastoma: GD3 Ganglioside and NG2 Proteoglycan Expression. Journal of Neuropathology and Experimental Neurology, 2016, 75, 134-147.	0.9	27
1353	Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses. Cancer Letters, 2016, 374, 175-185.	3.2	63

#	Article	IF	CITATIONS
1354	A Supplemented High-Fat Low-Carbohydrate Diet for the Treatment of Glioblastoma. Clinical Cancer Research, 2016, 22, 2482-2495.	3.2	88
1355	MicroRNA and extracellular vesicles in glioblastoma: small but powerful. Brain Tumor Pathology, 2016, 33, 77-88.	1.1	47
1356	MIF Maintains the Tumorigenic Capacity of Brain Tumor–Initiating Cells by Directly Inhibiting p53. Cancer Research, 2016, 76, 2813-2823.	0.4	54
1357	Implications of irradiating the subventricular zone stem cell niche. Stem Cell Research, 2016, 16, 387-396.	0.3	23
1358	Chromosomal Instability Affects the Tumorigenicity of Glioblastoma Tumor-Initiating Cells. Cancer Discovery, 2016, 6, 532-545.	7.7	59
1359	Inflammatory Cells in Tumor Microenvironment. , 2016, , 27-50.		0
1360	A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found <i>In Vivo</i> . Cancer Research, 2016, 76, 2465-2477.	0.4	453
1361	At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology. Cancer Research, 2016, 76, 994-998.	0.4	24
1362	The Role of Microenvironment in the Control of Tumor Angiogenesis. , 2016, , .		3
1363	Presence of neural progenitors in spontaneous canine gliomas: A histopathological and immunohistochemical study of 20 cases. Veterinary Journal, 2016, 209, 125-132.	0.6	19
1364	G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochemical and Biophysical Research Communications, 2016, 471, 75-81.	1.0	30
1365	Core pathway mutations induce de-differentiation of murine astrocytes into glioblastoma stem cells that are sensitive to radiation but resistant to temozolomide. Neuro-Oncology, 2016, 18, 962-973.	0.6	38
1366	Epigenetic modulation of a miR-296-5p:HMGA1 axis regulates Sox2 expression and glioblastoma stem cells. Oncogene, 2016, 35, 4903-4913.	2.6	55
1367	<i>Drosophila</i> Brat and Human Ortholog TRIM3 Maintain Stem Cell Equilibrium and Suppress Brain Tumorigenesis by Attenuating Notch Nuclear Transport. Cancer Research, 2016, 76, 2443-2452.	0.4	49
1368	Short-Term Differentiation of Glioblastoma Stem Cells Induces Hypoxia Tolerance. Neurochemical Research, 2016, 41, 1545-1558.	1.6	5
1369	HDAC7 inhibition resets STAT3 tumorigenic activity in human glioblastoma independently of EGFR and PTEN: new opportunities for selected targeted therapies. Oncogene, 2016, 35, 4481-4494.	2.6	30
1370	Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51. Neuro-Oncology, 2016, 18, 1109-1119.	0.6	42
1371	Wnt inhibition is dysregulated in gliomas and its re-establishment inhibits proliferation and tumor sphere formation. Experimental Cell Research, 2016, 340, 53-61.	1.2	39

#	Article	IF	CITATIONS
1372	A novel drug conjugate, NEO212, targeting proneural and mesenchymal subtypes of patient-derived glioma cancer stem cells. Cancer Letters, 2016, 371, 240-250.	3.2	24
1373	Progestin treatment decreases CD133+ cancer stem cell populations in endometrial cancer. Gynecologic Oncology, 2016, 140, 518-526.	0.6	15
1374	Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling. Neuro-Oncology, 2016, 18, 656-666.	0.6	37
1375	Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells. Cytotechnology, 2016, 68, 1545-1560.	0.7	15
1376	Malignant gliomas: old and new systemic treatment approaches. Radiology and Oncology, 2016, 50, 129-138.	0.6	25
1377	Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro-Oncology, 2016, 18, 507-517.	0.6	102
1378	Glioma invasion mediated by the p75 neurotrophin receptor (p75NTR/CD271) requires regulated interaction with PDLIM1. Oncogene, 2016, 35, 1411-1422.	2.6	47
1379	Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under <scp>BMP4</scp> and Noggin Influence. Brain Pathology, 2016, 26, 43-61.	2.1	18
1380	TLX—Its Emerging Role for Neurogenesis in Health and Disease. Molecular Neurobiology, 2017, 54, 272-280.	1.9	19
1381	Concerted action of histone methyltransferases C9a and PRMT-1 regulates PGC-1α-RIG-I axis in IFNÎ ³ treated glioma cells. Cytokine, 2017, 89, 185-193.	1.4	9
1382	Differential propagation of stroma and cancer stem cells dictates tumorigenesis and multipotency. Oncogene, 2017, 36, 570-584.	2.6	47
1383	Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects. Advances in Biological Regulation, 2017, 64, 39-48.	1.4	102
1384	Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype inÂvitro. Journal of Bioscience and Bioengineering, 2017, 123, 634-641.	1.1	5
1385	Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions. Scientific Reports, 2017, 7, 41597.	1.6	19
1386	Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses. Cancer Research, 2017, 77, 1741-1752.	0.4	21
1387	Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Molecular Aspects of Medicine, 2017, 55, 140-151.	2.7	101
1388	Isolation, Characterization, and Expansion of Cancer Stem Cells. Methods in Molecular Biology, 2017, 1553, 133-143.	0.4	7
1389	Rolipram potentiates bevacizumab-induced cell death in human glioblastoma stem-like cells. Life Sciences, 2017, 173, 11-19.	2.0	32

	CITATION REPORT		
Article		IF	Citations
On glioblastoma and the search for a cure: where do we stand?. Cellular and Molecula 2017, 74, 2451-2466.	r Life Sciences,	2.4	56
Therapeutic Potential for Bone Morphogenetic Protein 4 in Human Malignant Glioma. 19, 261-270.	Neoplasia, 2017,	2.3	25
Cancer stem cells: The root of tumor recurrence and metastases. Seminars in Cancer E 10-24.	3iology, 2017, 44,	4.3	295
What roles do colon stem cells and gap junctions play in the left and right location of colorectal cancers?. Journal of Cell Communication and Signaling, 2017, 11, 79-87.	origin of	1.8	8
Tumor-infiltrating lymphocytes (TILs) from patients with glioma. OncoImmunology, 20)17, 6, e1252894.	2.1	59
High-dose Neural Stem Cell Radiation May Not Improve Survival in Glioblastoma. Clinic 2017, 29, 335-343.	cal Oncology,	0.6	8
Temozolomide increases MHCâ€I expression via NFâ€ÎºB signaling in glioma stem cells International, 2017, 41, 680-690.	:. Cell Biology	1.4	9
Cancer Stem Cells and Tumor Microenvironment in Radiotherapy. Cancer Treatment a 2017, , 191-221.	nd Research,	0.2	0
Dianthin-30 or gelonin versus monomethyl auristatin E, each configured with an anti-c receptor antibody, are differentially potent in vitro in high-grade glioma cell lines derive glioblastoma. Cancer Immunology, Immunotherapy, 2017, 66, 1217-1228.	alcitonin ed from	2.0	15
A Survival Analysis with Identification of Prognostic Factors in a Series of 110 Patients Diagnosed Glioblastoma Before and After Introduction of the Stupp Regimen: A Single Observational Study. World Neurosurgery, 2017, 104, 581-588.	with Newly -Center	0.7	19
Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propaga tumorigenicity of glioma-initiating cells. Journal of Molecular Cell Biology, 2017, 9, 302	tion and 2-314.	1.5	25
The Role of Neurotrophin Signaling in Gliomagenesis. Vitamins and Hormones, 2017, 1	104, 367-404.	0.7	11
Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via u protein response pathway. Oncogene, 2017, 36, 2423-2434.	ınfolded	2.6	71
Targetable T-type Calcium Channels Drive Glioblastoma. Cancer Research, 2017, 77, 3	479-3490.	0.4	79

1405	PNIPAAm-co-Jeffamine® (PNJ) scaffolds as inÂvitro models for niche enrichment of glioblastoma stem-like cells. Biomaterials, 2017, 143, 149-158.	5.7	20
1406	Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma. Cell Stem Cell, 2017, 21, 35-50.e9.	5.2	101
1408	Expression of Epithelial Mesenchymal Transition and Cancer Stem Cell Markers in Circulating Tumor Cells. Advances in Experimental Medicine and Biology, 2017, 994, 205-228.	0.8	34

4.1

45

Enhanced targeting of invasive glioblastoma cells by peptide-functionalized gold nanorods in hydrogel-based 3D cultures. Acta Biomaterialia, 2017, 58, 12-25.

#

1390

1391

1392

1394

1396

1398

1399

1400

1401

1402

1403

1404

#	Article	IF	CITATIONS
1409	Identification of T cell target antigens in glioblastoma stem-like cells using an integrated proteomics-based approach in patient specimens. Acta Neuropathologica, 2017, 134, 297-316.	3.9	23
1410	NANOG overexpression and its correlation with stem cell and differentiation markers in meningiomas of different WHO grades. Molecular Carcinogenesis, 2017, 56, 1953-1964.	1.3	27
1411	A Sequentially Priming Phosphorylation Cascade Activates the Gliomagenic Transcription Factor Olig2. Cell Reports, 2017, 18, 3167-3177.	2.9	32
1412	Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Research and Therapy, 2017, 8, 53.	2.4	57
1413	Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer Letters, 2017, 396, 103-109.	3.2	70
1414	Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness. Journal of Experimental and Clinical Cancer Research, 2017, 36, 9.	3.5	21
1415	Association of MRI-classified subventricular regions with survival outcomes in patients with anaplastic glioma. Clinical Radiology, 2017, 72, 426.e1-426.e6.	0.5	8
1416	Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells. Cancer Research, 2017, 77, 996-1007.	0.4	75
1417	Personalized Medicine Through Advanced Genomics. , 2017, , 31-48.		1
1418	Temozolomide resistant human brain tumor stem cells are susceptible to recombinant vesicular stomatitis virus and double-deleted Vaccinia virus in vitro. Biomedicine and Pharmacotherapy, 2017, 95, 1201-1208.	2.5	10
1419	Crizotinib targets in glioblastoma stem cells. Cancer Medicine, 2017, 6, 2625-2634.	1.3	22
1420	Identification of differentially expressed genes in oral squamous cell carcinoma TCA8113 cells. Oncology Letters, 2017, 14, 7055-7068.	0.8	2
1421	MicroRNA-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting tumor suppressor candidate 3 in glioblastoma. International Journal of Molecular Medicine, 2017, 40, 1307-1314.	1.8	24
1422	Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine, 2017, 23, 1352-1361.	15.2	279
1423	Knockdown of SALL4 expression using RNA interference induces cell cycle arrest, enhances early apoptosis, inhibits invasion and increases chemosensitivity to temozolomide in U251 glioma cells. Oncology Letters, 2017, 14, 4263-4269.	0.8	12
1424	Expression Profiling of the MAP Kinase Phosphatase Family Reveals a Role for DUSP1 in the Glioblastoma Stem Cell Niche. Cancer Microenvironment, 2017, 10, 57-68.	3.1	17
1425	Sensitivity to <i>BUB1B</i> Inhibition Defines an Alternative Classification of Glioblastoma. Cancer Research, 2017, 77, 5518-5529.	0.4	38
1426	SHP2 regulates proliferation and tumorigenicity of glioma stem cells. Journal of Neuro-Oncology, 2017, 135, 487-496.	1.4	29

#	Article	IF	CITATIONS
1427	Vascular regulation of glioma stem-like cells: a balancing act. Current Opinion in Neurobiology, 2017, 47, 8-15.	2.0	35
1428	MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor–Initiating Cells. Cancer Research, 2017, 77, 4947-4960.	0.4	91
1429	MicroRNAs as Multifaceted Players in Glioblastoma Multiforme. International Review of Cell and Molecular Biology, 2017, 333, 269-323.	1.6	21
1430	Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	37
1431	GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Reports, 2017, 21, 2183-2197.	2.9	56
1432	The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumor Biology, 2017, 39, 101042831769552.	0.8	44
1433	LC-MS-based metabolomics reveals metabolic signatures related to glioma stem-like cell self-renewal and differentiation. RSC Advances, 2017, 7, 24221-24232.	1.7	10
1434	Disruption of the monocarboxylate transporter-4-basigin interaction inhibits the hypoxic response, proliferation, and tumor progression. Scientific Reports, 2017, 7, 4292.	1.6	55
1435	Elderly patients with newly diagnosed glioblastoma: can preoperative imaging descriptors improve the predictive power of a survival model?. Journal of Neuro-Oncology, 2017, 134, 423-431.	1.4	11
1436	Subventricular Zone Involvement Characterized by Diffusion Tensor Imaging in Glioblastoma. World Neurosurgery, 2017, 105, 697-701.	0.7	9
1437	Vascular Mimicry: A Novel Neovascularization Mechanism Driving Anti-Angiogenic Therapy (AAT) Resistance in Glioblastoma. Translational Oncology, 2017, 10, 650-660.	1.7	110
1438	Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma. Oncogene, 2017, 36, 6006-6019.	2.6	47
1439	Subventricular zones: new key targets for glioblastoma treatment. Radiation Oncology, 2017, 12, 67.	1.2	35
1440	Dual Inhibition of PDK1 and Aurora Kinase A: An Effective Strategy to Induce Differentiation and Apoptosis of Human Glioblastoma Multiforme Stem Cells. ACS Chemical Neuroscience, 2017, 8, 100-114.	1.7	45
1441	Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening. Molecular and Cellular Neurosciences, 2017, 80, 198-207.	1.0	20
1443	Irradiating the Subventricular Zone in Glioblastoma Patients: Is there a Case for a Clinical Trial?. Clinical Oncology, 2017, 29, 26-33.	0.6	26
1444	The Unexpected Roles of Aurora A Kinase in Gliobastoma Recurrences. Targeted Oncology, 2017, 12, 11-18.	1.7	12
1445	Role of STAT3 in Genesis and Progression of Human Malignant Gliomas. Molecular Neurobiology, 2017, 54, 5780-5797.	1.9	52

#	Article	IF	CITATIONS
1446	Hypoxic and Reoxygenated Microenvironment: Stemness and Differentiation State in Glioblastoma. Molecular Neurobiology, 2017, 54, 6261-6272.	1.9	14
1447	Cancer stem cell-targeted therapeutics and delivery strategies. Expert Opinion on Drug Delivery, 2017, 14, 997-1008.	2.4	32
1448	Proteome and Secretome Characterization of Glioblastoma-Derived Neural Stem Cells. Stem Cells, 2017, 35, 967-980.	1.4	40
1449	Pathology and Molecular Pathology of Brain Cancer. , 2017, , 291-311.		2
1450	Yeast display biopanning identifies human antibodies targeting glioblastoma stem-like cells. Scientific Reports, 2017, 7, 15840.	1.6	18
1451	High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis, 2017, 6, 401.	2.1	22
1452	Paeoniflorin exerts antitumor effects by inactivating S phase kinase-associated protein 2 in glioma cells. Oncology Reports, 2017, 39, 1052-1062.	1.2	14
1453	Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy. Frontiers in Pharmacology, 2017, 8, 1.	1.6	429
1454	Thermodynamics in Gliomas: Interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma. Frontiers in Physiology, 2017, 8, 352.	1.3	54
1455	Effects of transforming growth factor-β inhibitor on the proliferation of glioma stem/progenitor cell. Polish Journal of Pathology, 2017, 68, 312-317.	0.1	2
1456	n-Butylidenephthalide Regulated Tumor Stem Cell Genes EZH2/AXL and Reduced Its Migration and Invasion in Glioblastoma. International Journal of Molecular Sciences, 2017, 18, 372.	1.8	21
1457	Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma. International Journal of Oncology, 2018, 52, 241-251.	1.4	14
1458	The Impact of the Tumor Microenvironment on the Properties of Glioma Stem-Like Cells. Frontiers in Oncology, 2017, 7, 143.	1.3	47
1459	Nuclear Receptor TLX in Development and Diseases. Current Topics in Developmental Biology, 2017, 125, 257-273.	1.0	18
1460	Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in <i>Drosophila</i> . BioMed Research International, 2017, 2017, 1-14.	0.9	7
1461	mTOR-Dependent Cell Proliferation in the Brain. BioMed Research International, 2017, 2017, 1-14.	0.9	70
1462	Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma. Cancers, 2017, 9, 57.	1.7	61
1463	Mesenchymal/proangiogenic factor YKL-40 related to glioblastomas and its relationship with the subventricular zone. Folia Neuropathologica, 2017, 1, 14-22.	0.5	7

#	Article	IF	CITATIONS
1464	Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway. PLoS ONE, 2017, 12, e0169854.	1.1	103
1465	Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS ONE, 2017, 12, e0172791.	1.1	109
1466	In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line. BMC Cancer, 2017, 17, 779.	1.1	20
1467	Synergistic inhibition of tumor growth by combination treatment with drugs against different subpopulations of glioblastoma cells. BMC Cancer, 2017, 17, 905.	1.1	19
1468	A novel small molecule inhibitor of p32 mitochondrial protein overexpressed in glioma. Journal of Translational Medicine, 2017, 15, 210.	1.8	23
1469	Stattic and metformin inhibit brain tumor initiating cells by reducing STAT3-phosphorylation. Oncotarget, 2017, 8, 8250-8263.	0.8	57
1470	Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget, 2017, 8, 36137-36148.	0.8	137
1471	Glioma stem cells and their non-stem differentiated glioma cells exhibit differences in mitochondrial structure and function. Oncology Reports, 2017, 39, 411-416.	1.2	8
1472	Salinomycin's potential to eliminate glioblastoma stem cells and treat glioblastoma multiforme (Review). International Journal of Oncology, 2017, 51, 753-759.	1.4	12
1473	The p38 signaling pathway mediates quiescence of glioma stem cells by regulating epidermal growth factor receptor trafficking. Oncotarget, 2017, 8, 33316-33328.	0.8	22
1474	Locoregional Confinement and Major Clinical Benefit of ¹⁸⁸ Re-Loaded CXCR4-Targeted Nanocarriers in an Orthotopic Human to Mouse Model of Glioblastoma. Theranostics, 2017, 7, 4517-4536.	4.6	46
1475	Hitting a Moving Target: Glioma Stem Cells Demand New Approaches in Glioblastoma Therapy. Current Cancer Drug Targets, 2017, 17, 236-254.	0.8	18
1476	RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1. OncoTargets and Therapy, 2017, Volume 10, 791-801.	1.0	5
1477	Human glioma stem-like cells induce malignant transformation of bone marrow mesenchymal stem cells by activating TERT expression. Oncotarget, 2017, 8, 104418-104429.	0.8	11
1478	The Response of Cancer Cell Populations to Therapies. , 2017, , 137-152.		1
1479	Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries?. Oncotarget, 2017, 8, 69185-69197.	0.8	76
1480	Ephrin-B3 supports glioblastoma growth by inhibiting apoptosis induced by the dependence receptor EphA4. Oncotarget, 2017, 8, 23750-23759.	0.8	21
1481	Synergistic and targeted therapy with a procaspase-3 activator and temozolomide extends survival in glioma rodent models and is feasible for the treatment of canine malignant glioma patients. Oncotarget, 2017, 8, 80124-80138.	0.8	33

#	Article	lF	CITATIONS
1482	Inhibition of JMJD6 expression reduces the proliferation, migration and invasion of neuroglioma stem cells. Neoplasma, 2017, 64, 700-708.	0.7	25
1483	Combination therapy with micellarized cyclopamine and temozolomide attenuate glioblastoma growth through Gli1 down-regulation. Oncotarget, 2017, 8, 42495-42509.	0.8	17
1484	Overexpression of miR-29a reduces the oncogenic properties of glioblastoma stem cells by downregulating Quaking gene isoform 6. Oncotarget, 2017, 8, 24949-24963.	0.8	52
1485	Scalable Culturing of Primary Human Glioblastoma Tumor-Initiating Cells with a Cell-Friendly Culture System. Scientific Reports, 2018, 8, 3531.	1.6	27
1486	Targeting UDP-α-d-glucose 6-dehydrogenase inhibits glioblastoma growth and migration. Oncogene, 2018, 37, 2615-2629.	2.6	37
1487	Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma. Clinical Neurology and Neurosurgery, 2018, 168, 12-17.	0.6	8
1488	NFκB activation in differentiating glioblastoma stem-like cells is promoted by hyaluronic acid signaling through TLR4. Scientific Reports, 2018, 8, 6341.	1.6	26
1489	Glioblastoma Model Using Human Cerebral Organoids. Cell Reports, 2018, 23, 1220-1229.	2.9	278
1490	The role of inflammation in subventricular zone cancer. Progress in Neurobiology, 2018, 170, 37-52.	2.8	15
1491	The Urokinase Receptor Induces a Mesenchymal Gene Expression Signature in Glioblastoma Cells and Promotes Tumor Cell Survival in Neurospheres. Scientific Reports, 2018, 8, 2982.	1.6	50
1492	Flow Cytometry-based Drug Screening System for the Identification of Small Molecules That Promote Cellular Differentiation of Glioblastoma Stem Cells. Journal of Visualized Experiments, 2018, , .	0.2	4
1494	lsolation of Glioblastoma Stem Cells with Flow Cytometry. Methods in Molecular Biology, 2018, 1741, 71-79.	0.4	3
1495	Reactive species balance via GTP cyclohydrolase I regulates glioblastoma growth and tumor initiating cell maintenance. Neuro-Oncology, 2018, 20, 1055-1067.	0.6	27
1496	β1,4-Galactosyltransferase V activates Notch1 signaling in glioma stem-like cells and promotes their transdifferentiation into endothelial cells. Journal of Biological Chemistry, 2018, 293, 2219-2230.	1.6	13
1497	MALDI imaging detects endogenous digoxin in glioblastoma cells infected by Zika virus—Would it be the oncolytic key?. Journal of Mass Spectrometry, 2018, 53, 257-263.	0.7	9
1498	ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways. Oncogene, 2018, 37, 286-301.	2.6	28
1499	Anticancer activity of osmium(VI) nitrido complexes in patient-derived glioblastoma initiating cells and inÂvivo mouse models. Cancer Letters, 2018, 416, 138-148.	3.2	29
1500	Large Scale Identification of Variant Proteins in Glioma Stem Cells. ACS Chemical Neuroscience, 2018, 9, 73-79.	1.7	12

#	Article	IF	CITATIONS
1501	Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma. Neuro-Oncology, 2018, 20, 1536-1546.	0.6	39
1502	Opposite Interplay Between the Canonical WNT∫β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neuroscience Bulletin, 2018, 34, 573-588.	1.5	49
1503	Expression and correlation of CD44 and GP73 in cerebroma tissues. Oncology Letters, 2018, 15, 4958-4962.	0.8	4
1504	Modular peptide-functionalized gold nanorods for effective glioblastoma multicellular tumor spheroid targeting. Biomaterials Science, 2018, 6, 1140-1146.	2.6	22
1505	Selfâ€Assembled pHâ€Sensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer. Advanced Functional Materials, 2018, 28, 1707582.	7.8	22
1506	Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 422-432.	2.4	30
1507	Glucocorticoids promote a glioma stem cellâ€like phenotype and resistance to chemotherapy in human glioblastoma primary cells: Biological and prognostic significance. International Journal of Cancer, 2018, 142, 1266-1276.	2.3	27
1508	Predicting the role of microstructural and biomechanical cues in tumor growth and spreading. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2935.	1.0	7
1509	Introduction to Cancer Stem Cells: Past, Present, and Future. Methods in Molecular Biology, 2018, 1692, 1-16.	0.4	16
1510	Xenograft as In Vivo Experimental Model. Methods in Molecular Biology, 2018, 1692, 97-105.	0.4	3
1511	Developmentally regulated signaling pathways in glioma invasion. Cellular and Molecular Life Sciences, 2018, 75, 385-402.	2.4	63
1512	DOCK4 promotes loss of proliferation in glioblastoma progenitor cells through nuclear beta-catenin accumulation and subsequent miR-302-367 cluster expression. Oncogene, 2018, 37, 241-254.	2.6	24
1513	Pediatric glioblastoma cells inhibit neurogenesis and promote astrogenesis, phenotypic transformation and migration of human neural progenitor cells within cocultures. Experimental Cell Research, 2018, 362, 159-171.	1.2	7
1514	Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. , 2018, 184, 13-41.		230
1515	CD133 Expression in Glioblastoma Multiforme: A Literature Review. Cureus, 2018, 10, e3439.	0.2	19
1516	The STAT3 and hypoxia pathways converge on Vasorin to promote stemness and glioblastoma tumorigenesis through Notch1 stabilization. Stem Cell Investigation, 2018, 5, 35-35.	1.3	1
1517	Aberrant neuronal differentiation is common in glioma but is associated neither with epileptic seizures nor with better survival. Scientific Reports, 2018, 8, 14965.	1.6	6
1518	Impact of STAT3 phosphorylation in glioblastoma stem cells radiosensitization and patient outcome. Oncotarget, 2018, 9, 3968-3979.	0.8	25

#	Article	IF	CITATIONS
1519	Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Research, 2018, 46, 5977-5995.	6.5	40
1520	Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Frontiers in Immunology, 2018, 9, 2924.	2.2	171
1521	Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells. JCI Insight, 2018, 3, .	2.3	40
1522	Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule. Cell Death Discovery, 2018, 4, 41.	2.0	30
1523	Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nature Genetics, 2018, 50, 1399-1411.	9.4	145
1524	VDAC2 interacts with PFKP to regulate glucose metabolism and phenotypic reprogramming of glioma stem cells. Cell Death and Disease, 2018, 9, 988.	2.7	48
1525	The regulation of cytokine signaling by retinal determination gene network pathway in cancer. OncoTargets and Therapy, 2018, Volume 11, 6479-6487.	1.0	17
1526	Next-Generation in vivo Modeling of Human Cancers. Frontiers in Oncology, 2018, 8, 429.	1.3	33
1527	Regulating glioma stem cells by hypoxia through the Notch1 and Oct3/4 signaling pathway. Oncology Letters, 2018, 16, 6315-6322.	0.8	9
1528	Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer, 2018, 18, 1025.	1.1	14
1529	Primary cilium and glioblastoma. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591880116.	1.4	23
1530	Microglia induces Gas1 expression in human brain tumor-initiating cells to reduce tumorigenecity. Scientific Reports, 2018, 8, 15286.	1.6	13
1531	Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Medical Sciences (Basel, Switzerland), 2018, 6, 85.	1.3	9
1532	Significance of Glioma Stem-Like Cells in the Tumor Periphery That Express High Levels of CD44 in Tumor Invasion, Early Progression, and Poor Prognosis in Glioblastoma. Stem Cells International, 2018, 2018, 1-15.	1.2	52
1533	Human Fetal Neural Stem Cells for Neurodegenerative Disease Treatment. Results and Problems in Cell Differentiation, 2018, 66, 307-329.	0.2	17
1534	Human Neural Stem Cells. Results and Problems in Cell Differentiation, 2018, , .	0.2	3
1535	Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death and Disease, 2018, 9, 937.	2.7	36
1536	Uterine stem cells: from basic research to advanced cell therapies. Human Reproduction Update, 2018, 24, 673-693.	5.2	83

#	Article	IF	CITATIONS
1537	Combined Modulation of Tumor Metabolism by Metformin and Diclofenac in Glioma. International Journal of Molecular Sciences, 2018, 19, 2586.	1.8	23
1538	Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. Epigenetics and Chromatin, 2018, 11, 53.	1.8	30
1539	Live-Cell Imaging Assays to Study Glioblastoma Brain Tumor Stem Cell Migration and Invasion. Journal of Visualized Experiments, 2018, , .	0.2	7
1540	The developmental origin of brain tumours: a cellular and molecular framework. Development (Cambridge), 2018, 145, .	1.2	97
1541	Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Letters, 2018, 430, 25-33.	3.2	42
1542	Combinatorial Drug Testing in 3D Microtumors Derived from GBM Patient-Derived Xenografts Reveals Cytotoxic Synergy in Pharmacokinomics-informed Pathway Interactions. Scientific Reports, 2018, 8, 8412.	1.6	12
1543	Molecular Imaging of CXCL12 Promoter-driven HSV1-TK Reporter Gene Expression. Biotechnology and Bioprocess Engineering, 2018, 23, 208-217.	1.4	6
1544	Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival. Stem Cells International, 2018, 2018, 1-19.	1.2	30
1545	Apoptosis Pathways and Chemotherapy in Brain Tumors. , 2018, , 291-303.		0
1546	Bioreducible Polymeric Nanoparticles Containing Multiplexed Cancer Stem Cell Regulating miRNAs Inhibit Glioblastoma Growth and Prolong Survival. Nano Letters, 2018, 18, 4086-4094.	4.5	117
1547	From Chemotherapy to Combined Targeted Therapeutics: In Vitro and in Vivo Models to Decipher Intra-tumor Heterogeneity. Frontiers in Pharmacology, 2018, 9, 77.	1.6	21
1548	Challenges in the Treatment of Clioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurgery, 2018, 116, 505-517.	0.7	105
1549	Modeling Microenvironmental Regulation of Glioblastoma Stem Cells: A Biomaterials Perspective. Frontiers in Materials, 2018, 5, .	1.2	19
1550	Advances in Radiotherapy for Glioblastoma. Frontiers in Neurology, 2017, 8, 748.	1.1	103
1551	Fibronectin Promotes the Malignancy of Glioma Stem-Like Cells Via Modulation of Cell Adhesion, Differentiation, Proliferation and Chemoresistance. Frontiers in Molecular Neuroscience, 2018, 11, 130.	1.4	61
1552	Utility of Clioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy. Frontiers in Oncology, 2018, 8, 23.	1.3	89
1553	Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models. International Journal of Molecular Sciences, 2018, 19, 147.	1.8	102
1554	The Adenosine A3 Receptor Regulates Differentiation of Glioblastoma Stem-Like Cells to Endothelial Cells under Hypoxia. International Journal of Molecular Sciences, 2018, 19, 1228.	1.8	32

#	Article	IF	Citations
1555	Stem Cell Therapy of Gliomas. Progress in Neurological Surgery, 2018, 32, 124-151.	1.3	10
1556	Role of Akt Isoforms Controlling Cancer Stem Cell Survival, Phenotype and Self-Renewal. Biomedicines, 2018, 6, 29.	1.4	38
1557	Comparison of glioblastoma (GBM) molecular classification methods. Seminars in Cancer Biology, 2018, 53, 201-211.	4.3	125
1558	Cancer stem cells from peritumoral tissue of glioblastoma multiforme: the possible missing link between tumor development and progression. Oncotarget, 2018, 9, 28116-28130.	0.8	26
1559	The first-in-class alkylating deacetylase inhibitor molecule tinostamustine shows antitumor effects and is synergistic with radiotherapy in preclinical models of glioblastoma. Journal of Hematology and Oncology, 2018, 11, 32.	6.9	24
1560	A Cytotoxic Three-Dimensional-Spheroid, High-Throughput Assay Using Patient-Derived Glioma Stem Cells. SLAS Discovery, 2018, 23, 842-849.	1.4	26
1561	The effects of extra high dose rate irradiation on glioma stem-like cells. PLoS ONE, 2018, 13, e0202533.	1.1	2
1562	The role of interleukin‑6‑STAT3 signalling in glioblastoma (Review). Oncology Letters, 2018, 16, 4095-4104.	0.8	61
1563	Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis. Cell Death and Disease, 2018, 9, 841.	2.7	182
1564	MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells. European Journal of Medicinal Chemistry, 2018, 157, 562-581.	2.6	34
1565	In vivo distribution of U87MG cells injected into the lateral ventricle of rats with spinal cord injury. PLoS ONE, 2018, 13, e0202307.	1.1	6
1566	Promising Targets in Anti-cancer Drug Development: Recent Updates. Current Medicinal Chemistry, 2018, 24, 4729-4752.	1.2	56
1567	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	0.8	88
1568	The Autophagy Status of Cancer Stem Cells in Gliobastoma Multiforme: From Cancer Promotion to Therapeutic Strategies. International Journal of Molecular Sciences, 2019, 20, 3824.	1.8	52
1569	Folate can promote the methionine-dependent reprogramming of glioblastoma cells towards pluripotency. Cell Death and Disease, 2019, 10, 596.	2.7	25
1570	Spermidine/spermine N1-acetyltransferase 1 is a gene-specific transcriptional regulator that drives brain tumor aggressiveness. Oncogene, 2019, 38, 6794-6800.	2.6	25
1571	The Role of Kinase Signaling in Resistance to Bevacizumab Therapy for Glioblastoma Multiforme. Cancer Biotherapy and Radiopharmaceuticals, 2019, 34, 345-354.	0.7	15
1572	The Ig superfamily protein PTGFRN coordinates survival signaling in glioblastoma multiforme. Cancer Letters, 2019, 462, 33-42.	3.2	26

ARTICLE IF CITATIONS Continuous separation of fungal spores in a microfluidic flow focusing device. Analyst, The, 2019, 144, 1573 1.7 6 4962-4971. QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway. 1574 2.1 Cellular Oncology (Dordrecht), 2019, 42, 801-813. High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. Genome 1575 2.4 52 Research, 2019, 29, 1211-1222. Glioblastoma Unique Features Drive the Ways for Innovative Therapies in the Trunk-branch Era. Folia 0.2 Medica, 2019, 61, 7-25. CRISPR-Cas9 Knockdown and Induced Expression of CD133 Reveal Essential Roles in Melanoma Invasion 1577 1.7 23 and Metastasis. Cancers, 2019, 11, 1490. Histone methyltransferase SUV39H2 regulates cell growth and chemosensitivity in glioma via regulation of hedgehog signaling. Cancer Cell International, 2019, 19, 269. 1.8 Therapeutic Targeting of Cancer Stem Cells in Human Glioblastoma by Manipulating the 1579 1.8 27 Renin-Angiotensin System. Cells, 2019, 8, 1364. Emerging intersections between neuroscience and glioma biology. Nature Neuroscience, 2019, 22, 1951-1960. 7.1 99 1581 SLUG Directs the Precursor State of Human Brain Tumor Stem Cells. Cancers, 2019, 11, 1635. 1.7 13 Genomic Balance: Two Genomes Establishing Synchrony to Modulate Cellular Fate and Function. 1.8 Cells, 2019, 8, 1306. Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discovery, 2019, 1583 172 7.79, 1556-1573. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells. 1584 1.3 Therapeutic Implications. Frontiers in Oncology, 2019, 9, 779. MicroRNA-29a inhibits glioblastoma stem cells and tumor growth by regulating the PDGF pathway. 1585 1.4 33 Journal of Neuro-Oncology, 2019, 145, 23-34. Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms. PLoS ONE, 2019, 14, e0221952. 1.1 Overexpression of CD44 is associated with a poor prognosis in grade II/III gliomas. Journal of 1587 23 1.4 Neuro-Oncology, 2019, 145, 201-210. ER stress and UPR activation in glioblastoma: identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation. Cell Death and Disease, 2019, 10, 690. The Drosophila Model in Cancer. Advances in Experimental Medicine and Biology, 2019, , . 1589 0.8 4

CITATION REPORT

1590 Experimental models and tools to tackle glioblastoma. DMM Disease Models and Mechanisms, 2019, 12, . 1.2

#

#		IE	CITATIONS
π	Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug Efficacy. SLAS Technology, 2019, 24,		CHAHONS
1591	28-40.	1.0	14
1592	Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. Journal of Theoretical Biology, 2019, 467, 100-110.	0.8	9
1593	Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. PLoS ONE, 2019, 14, e0210665.	1.1	5
1594	Therapeutic considerations of PARP in stem cell biology: Relevance in cancer and beyond. Biochemical Pharmacology, 2019, 167, 107-115.	2.0	32
1595	<i>BRCA</i> Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. Journal of Cancer, 2019, 10, 2109-2127.	1.2	125
1596	Synergistic Suppression of Glioblastoma Cell Growth by Combined Application of Temozolomide and Dopamine D2 Receptor Antagonists. World Neurosurgery, 2019, 128, e468-e477.	0.7	16
1597	Multilayered Heterogeneity of Glioblastoma Stem Cells: Biological and Clinical Significance. Advances in Experimental Medicine and Biology, 2019, 1139, 1-21.	0.8	14
1598	MicroRNA‑9 enhances chemotherapy sensitivity of glioma to TMZ by suppressing TOPO II via the NF‑κB signaling pathway. Oncology Letters, 2019, 17, 4819-4826.	0.8	6
1599	Cellular Reprogramming as a Therapeutic Target in Cancer. Trends in Cell Biology, 2019, 29, 623-634.	3.6	38
1600	The NFL-TBS.40–63 peptide targets and kills glioblastoma stem cells derived from human patients and also targets nanocapsules into these cells. International Journal of Pharmaceutics, 2019, 566, 218-228.	2.6	8
1601	Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes and Development, 2019, 33, 591-609.	2.7	303
1602	Single-cell RNA sequencing reveals the impact of chromosomal instability on glioblastoma cancer stem cells. BMC Medical Genomics, 2019, 12, 79.	0.7	30
1603	Tumor Biology. , 2019, , 143-152.		0
1604	Metabolic Reprograming Via Silencing of Mitochondrial VDAC1 Expression Encourages Differentiation of Cancer Cells. Molecular Therapy - Nucleic Acids, 2019, 17, 24-37.	2.3	28
1605	Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 201.	3.5	116
1606	Visualization of spatiotemporal dynamics of human glioma stem cell invasion. Molecular Brain, 2019, 12, 45.	1.3	20
1607	Stemness underpinning all steps of human colorectal cancer defines the core of effective therapeutic strategies. EBioMedicine, 2019, 44, 346-360.	2.7	11
1608	Cell membrane protein functionalization of nanoparticles as a new tumorâ€ŧargeting strategy. Clinical and Translational Medicine, 2019, 8, 8.	1.7	37

			0
#	ARTICLE	IF	CITATIONS
1609	glioblastoma. Ageing Research Reviews, 2019, 52, 53-63.	5.0	24
1610	Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers, 2019, 11, 469.	1.7	165
1611	Hedgehog pathway permissive conditions allow generation of immortal cell lines from granule cells derived from cancerous and non-cancerous cerebellum. Open Biology, 2019, 9, 180145.	1.5	3
1612	Glioblastoma Stem-Like Cells, Metabolic Strategy to Kill a Challenging Target. Frontiers in Oncology, 2019, 9, 118.	1.3	98
1613	Zika virus infection induces MiR34c expression in glioblastoma stem cells: new perspectives for brain tumor treatments. Cell Death and Disease, 2019, 10, 263.	2.7	23
1614	Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes and Development, 2019, 33, 498-510.	2.7	74
1615	Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, 2019, , .	0.4	1
1616	The Neurosphere Assay (NSA) Applied to Neural Stem Cells (NSCs) and Cancer Stem Cells (CSCs). Methods in Molecular Biology, 2019, 1953, 139-149.	0.4	6
1617	A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6435-6440.	3.3	23
1618	Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculatureâ€onâ€aâ€Chip System Correlates with Tumor Heterogeneity and Subtypes. Advanced Science, 2019, 6, 1801531.	5.6	69
1619	Harnessing Radiation Biology to Augment Immunotherapy for Glioblastoma. Frontiers in Oncology, 2019, 8, 656.	1.3	32
1620	Spheroid glioblastoma culture conditions as antigen source for dendritic cell-based immunotherapy: spheroid proteins are survival-relevant targets but can impair immunogenic interferon Î ³ production. Cytotherapy, 2019, 21, 643-658.	0.3	7
1621	The Role of SVZ Stem Cells in Glioblastoma. Cancers, 2019, 11, 448.	1.7	53
1622	Identification of stemness in primary retinoblastoma cells by analysis of stem-cell phenotypes and tumorigenicity with culture and xenograft models. Experimental Cell Research, 2019, 379, 110-118.	1.2	12
1623	The landscape of the mesenchymal signature in brain tumours. Brain, 2019, 142, 847-866.	3.7	228
1624	Neural stem cells promote glioblastoma formation in nude mice. Clinical and Translational Oncology, 2019, 21, 1551-1560.	1.2	13
1625	Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. EBioMedicine, 2019, 42, 252-269.	2.7	78
1626	Intravital imaging of glioma border morphology reveals distinctive cellular dynamics and contribution to tumor cell invasion. Scientific Reports, 2019, 9, 2054.	1.6	77

#	Article	IF	CITATIONS
1627	Verteporfin-Loaded Polymeric Microparticles for Intratumoral Treatment of Brain Cancer. Molecular Pharmaceutics, 2019, 16, 1433-1443.	2.3	40
1628	ZNF326 promotes malignant phenotype of glioma by up-regulating HDAC7 expression and activating Wnt pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 40.	3.5	27
1629	HEAD AND NECK CANCER STEM CELL PROTEOMICS. Journal of Cancer & Allied Specialties, 2019, 5, .	0.1	0
1630	EGFR ^{vIII} : An Oncogene with Ambiguous Role. Journal of Oncology, 2019, 2019, 1-20.	0.6	45
1631	Autofluorescence of NADH is a new biomarker for sorting and characterizing cancer stem cells in human glioma. Stem Cell Research and Therapy, 2019, 10, 330.	2.4	28
1632	Emerging Role of Cellular Prion Protein in the Maintenance and Expansion of Glioma Stem Cells. Cells, 2019, 8, 1458.	1.8	11
1633	Verteporfin-Loaded Anisotropic Poly(Beta-Amino Ester)-Based Micelles Demonstrate Brain Cancer-Selective Cytotoxicity and Enhanced Pharmacokinetics. International Journal of Nanomedicine, 2019, Volume 14, 10047-10060.	3.3	18
1634	Secretome analysis of patient-derived GBM tumor spheres identifies midkine as a potent therapeutic target. Experimental and Molecular Medicine, 2019, 51, 1-11.	3.2	28
1635	Radiation Drives the Evolution of Orthotopic Xenografts Initiated from Glioblastoma Stem–like Cells. Cancer Research, 2019, 79, 6032-6043.	0.4	14
1636	The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death and Differentiation, 2019, 26, 1813-1831.	5.0	41
1637	shRNAâ€mediated PPARα knockdown in human glioma stem cells reduces <i>in vitro</i> proliferation and inhibits orthotopic xenograft tumour growth. Journal of Pathology, 2019, 247, 422-434.	2.1	13
1638	Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells Via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor. Cancers, 2019, 11, 22.	1.7	54
1639	A curcumin derivative hydrazinobenzoylcurcumin suppresses stemâ€like features of glioblastoma cells by targeting Ca ²⁺ /calmodulinâ€dependent protein kinase II. Journal of Cellular Biochemistry, 2019, 120, 6741-6752.	1.2	25
1640	In vitro neurosphere formation correlates with poor survival in glioma. IUBMB Life, 2019, 71, 244-253.	1.5	6
1641	The effect of transferrin-targeted, resveratrol-loaded liposomes on neurosphere cultures of glioblastoma: implications for targeting tumour-initiating cells. Journal of Drug Targeting, 2019, 27, 601-613.	2.1	22
1642	Melatonin and its anti-glioma functions: a comprehensive review. Reviews in the Neurosciences, 2019, 30, 527-541.	1.4	22
1643	Activation of Dopamine Receptor 2 Prompts Transcriptomic and Metabolic Plasticity in Glioblastoma. Journal of Neuroscience, 2019, 39, 1982-1993.	1.7	65
1644	An Integrated Stress Response Agent that Modulates DR5-Dependent TRAIL Synergy Reduces Patient-Derived Glioma Stem Cell Viability. Molecular Cancer Research, 2019, 17, 1102-1114.	1.5	7

#	Article	IF	CITATIONS
1645	Glioblastoma's Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers, 2019, 11, 44.	1.7	59
1646	Regulation of human glioma cell migration, tumor growth, and stemness gene expression using a Lck targeted inhibitor. Oncogene, 2019, 38, 1734-1750.	2.6	53
1647	Isolation and Culture of Glioblastoma Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, 1869, 11-21.	0.4	9
1648	Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells. Neoplasma, 2019, 66, 118-127.	0.7	22
1649	Phenotypic and Expressional Heterogeneity in the Invasive Glioma Cells. Translational Oncology, 2019, 12, 122-133.	1.7	25
1650	RNA-Binding Protein HuR Regulates Both Mutant and Wild-Type IDH1 in IDH1-Mutated Cancer. Molecular Cancer Research, 2019, 17, 508-520.	1.5	17
1651	Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines. Pathology and Oncology Research, 2019, 25, 59-69.	0.9	3
1652	Brain-Tumor-Regenerating 3D Scaffold-Based Primary Xenograft Models for Glioma Stem Cell Targeted Drug Screening. ACS Biomaterials Science and Engineering, 2019, 5, 139-148.	2.6	5
1653	Coexpresión de NG2/GFAP tras la diferenciación en células transfectadas con las mutaciones de GFAP y en células procedentes de gliomas indiferenciados. NeurologÃa, 2020, 35, 479-485.	0.3	0
1654	Down-regulation of 14-3-3zeta reduces proliferation and increases apoptosis in human glioblastoma. Cancer Gene Therapy, 2020, 27, 399-411.	2.2	12
1655	Transcriptomic analysis reveals that BMP4 sensitizes glioblastoma tumor-initiating cells to mechanical cues. Matrix Biology, 2020, 85-86, 112-127.	1.5	11
1656	NG2 and GFAP co-expression after differentiation in cells transfected with mutant GFAP and in undifferentiated glioma cells. NeurologÃa (English Edition), 2020, 35, 479-485.	0.2	0
1657	Role and molecular mechanism of stem cells in colorectal cancer initiation. Journal of Drug Targeting, 2020, 28, 1-10.	2.1	13
1658	Prognostic impact of glioblastoma stem cell markers OLIG2 and CCND2. Cancer Medicine, 2020, 9, 1069-1078.	1.3	18
1659	A molecularly distinct subset of glioblastoma requires serumâ€containing media to establish sustainable bona fide glioblastoma stem cell cultures. Glia, 2020, 68, 1228-1240.	2.5	12
1660	Extracellular Vesicle-Mediated Communication between the Glioblastoma and Its Microenvironment. Cells, 2020, 9, 96.	1.8	60
1661	Enhanced SPARCL1 expression in cancer stem cells improves preclinical modeling of glioblastoma by promoting both tumor infiltration and angiogenesis. Neurobiology of Disease, 2020, 134, 104705.	2.1	23
1662	The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Research, 2020, 80, 5-16.	0.4	17

#	Article	IF	CITATIONS
1663	Primary and Metastatic Pancreatic Cancer Cells Exhibit Differential Migratory Potentials. Pancreas, 2020, 49, 128-134.	0.5	0
1664	Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. Journal of Controlled Release, 2020, 319, 311-321.	4.8	53
1665	Cancer Stem Cells: New Horizons in Cancer Therapies. , 2020, , .		1
1666	Low mitochondrial DNA copy number is associated with poor prognosis and treatment resistance in glioblastoma. Mitochondrion, 2020, 55, 154-163.	1.6	12
1667	Detection of glioblastoma intratumor heterogeneity in radiosensitivity using patient-derived neurosphere cultures. Journal of Neuro-Oncology, 2020, 149, 383-390.	1.4	5
1668	Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Frontiers in Cellular Neuroscience, 2020, 14, 558381.	1.8	38
1669	Targeting the Epithelial-to-Mesenchymal Transition in Cancer Stem Cells for a Better Clinical Outcome of Glioma. Technology in Cancer Research and Treatment, 2020, 19, 153303382094805.	0.8	9
1670	Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme. Oncogene, 2020, 39, 7114-7126.	2.6	17
1671	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nature Communications, 2020, 11, 4997.	5.8	109
1672	Pulsed and Discontinuous Electromagnetic Field Exposure Decreases Temozolomide Resistance in Glioblastoma by Modulating the Expression of O ⁶ -Methylguanine-DNA Methyltransferase, Cyclin-D1, and p53. Cancer Biotherapy and Radiopharmaceuticals, 2021, 36, 579-587.	0.7	4
1673	Calcium Channels in Adult Brain Neural Stem Cells and in Glioblastoma Stem Cells. Frontiers in Cellular Neuroscience, 2020, 14, 600018.	1.8	10
1674	The Organoid Era Permits the Development of New Applications to Study Glioblastoma. Cancers, 2020, 12, 3303.	1.7	24
1675	Cerebral organoids: emerging ex vivo humanoid models of glioblastoma. Acta Neuropathologica Communications, 2020, 8, 209.	2.4	5
1676	Myosin 10 Regulates Invasion, Mitosis, and Metabolic Signaling in Glioblastoma. IScience, 2020, 23, 101802.	1.9	14
1677	Glioblastoma stem cells induce quiescence in surrounding neural stem cells via Notch signaling. Genes and Development, 2020, 34, 1599-1604.	2.7	11
1678	Influence of Lipoxygenase Inhibition on Glioblastoma Cell Biology. International Journal of Molecular Sciences, 2020, 21, 8395.	1.8	13
1679	Cancer stem cell plasticity in glioblastoma multiforme: a perspective on future directions in oncolytic virotherapy. Future Oncology, 2020, 16, 2251-2264.	1.1	2
1680	Exploiting the Complexities of Glioblastoma Stem Cells: Insights for Cancer Initiation and Therapeutic Targeting. International Journal of Molecular Sciences, 2020, 21, 5278.	1.8	20

#	ARTICLE	IF	CITATIONS
1681	EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide. Experimental and Molecular Medicine, 2020, 52, 1326-1340.	3.2	24
1682	Brain Tumor Stem Cell Dependence on Glutaminase Reveals a Metabolic Vulnerability through the Amino Acid Deprivation Response Pathway. Cancer Research, 2020, 80, 5478-5490.	0.4	14
1683	Requirements of LEFTY and Nodal overexpression for tumor cell survival under hypoxia in glioblastoma. Molecular Carcinogenesis, 2020, 59, 1409-1419.	1.3	7
1684	Lipophilic dye-compatible brain clearing technique allowing correlative magnetic resonance/high-resolution fluorescence imaging in rat models of glioblastoma. Scientific Reports, 2020, 10, 17974.	1.6	3
1685	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, , .	0.8	2
1686	Adenovirus infection promotes the formation of glioma stem cells from glioblastoma cells through the TLR9/NEAT1/STAT3 pathway. Cell Communication and Signaling, 2020, 18, 135.	2.7	16
1687	The Alternative Splicing Factor, MBNL1, Inhibits Glioblastoma Tumor Initiation and Progression by Reducing Hypoxia-Induced Stemness. Cancer Research, 2020, 80, 4681-4692.	0.4	12
1688	Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers, 2020, 12, 2511.	1.7	77
1689	mTOR Modulates Intercellular Signals for Enlargement and Infiltration in Glioblastoma Multiforme. Cancers, 2020, 12, 2486.	1.7	13
1690	OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation. Nature Communications, 2020, 11, 4116.	5.8	43
1691	Featuring how calcium channels and calmodulin affect glioblastoma behavior. A review article. Cancer Treatment and Research Communications, 2020, 25, 100255.	0.7	5
1692	Different Calculation Strategies Are Congruent in Determining Chemotherapy Resistance of Brain Tumors In Vitro. Cells, 2020, 9, 2689.	1.8	4
1693	BRAFV600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies. Journal of Experimental and Clinical Cancer Research, 2020, 39, 285.	3.5	14
1694	Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neuro-Oncology Advances, 2020, 2, vdaa138.	0.4	14
1695	BRD4 regulates selfâ€renewal ability and tumorigenicity of gliomaâ€initiating cells by enrichment in the Notch1 promoter region. Clinical and Translational Medicine, 2020, 10, e181.	1.7	21
1696	Prognostic significance of cancer stemnessâ€associated genes in patients with gliomas. Clinical and Translational Medicine, 2020, 10, e186.	1.7	4
1697	Effects of BMPER, CXCL10, and HOXA9 on Neovascularization During Early-Growth Stage of Primary High-Grade Glioma and Their Corresponding MRI Biomarkers. Frontiers in Oncology, 2020, 10, 711.	1.3	6
1698	Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell International, 2020, 20, 167.	1.8	18

#	Article	IF	CITATIONS
1699	Development of a peptide-based delivery platform for targeting malignant brain tumors. Biomaterials, 2020, 252, 120105.	5.7	15
1700	A Primer on Human Brain Organoids for the Neurosurgeon. Neurosurgery, 2020, 87, 620-629.	0.6	7
1701	Recent technological advancements in stem cell research for targeted therapeutics. Drug Delivery and Translational Research, 2020, 10, 1147-1169.	3.0	8
1702	New strategies for managing adult gliomas. Journal of Neurology, 2021, 268, 3666-3674.	1.8	14
1703	Combined Targeting of Glioblastoma Stem-Like Cells by Neutralizing RNA-Bio-Drugs for STAT3. Cancers, 2020, 12, 1434.	1.7	9
1704	Selective toxicity of functionalised graphene oxide to patients-derived glioblastoma stem cells and minimal toxicity to non-cancerous brain tissue cells. 2D Materials, 2020, 7, 045002.	2.0	3
1705	Neuronal signatures in cancer. International Journal of Cancer, 2020, 147, 3281-3291.	2.3	35
1706	Considering the Experimental Use of Temozolomide in Glioblastoma Research. Biomedicines, 2020, 8, 151.	1.4	25
1707	Tumor Cell Invasion in Glioblastoma. International Journal of Molecular Sciences, 2020, 21, 1932.	1.8	154
1708	Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease. Cancers, 2020, 12, 1649.	1.7	3
1709	Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nature Communications, 2020, 11, 3406.	5.8	300
1710			
	Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Glioblastoma: a Report of Two Cases. SN Comprehensive Clinical Medicine, 2020, 2, 836-843.	0.3	7
1711	Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Glioblastoma: a Report of Two Cases. SN Comprehensive Clinical Medicine, 2020, 2, 836-843. Shrimp miR-965 induced the human melanoma stem-like cell apoptosis and inhibited their stemness by disrupting the MCL-1-ER stress-XBP1 feedback loop in a cross-species manner. Stem Cell Research and Therapy, 2020, 11, 248.	0.3	7
1711 1712	Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Glioblastoma: a Report of Two Cases. SN Comprehensive Clinical Medicine, 2020, 2, 836-843.Shrimp miR-965 induced the human melanoma stem-like cell apoptosis and inhibited their stemness by disrupting the MCL-1-ER stress-XBP1 feedback loop in a cross-species manner. Stem Cell Research and Therapy, 2020, 11, 248.Identification of Cancer Stem Cell Subpopulations in Head and Neck Metastatic Malignant Melanoma. Cells, 2020, 9, 324.	0.3 2.4 1.8	7 12 20
1711 1712 1713	Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Glioblastoma: a Report of Two Cases. SN Comprehensive Clinical Medicine, 2020, 2, 836-843.Shrimp miR-965 induced the human melanoma stem-like cell apoptosis and inhibited their stemness by disrupting the MCL-1-ER stress-XBP1 feedback loop in a cross-species manner. Stem Cell Research and Therapy, 2020, 11, 248.Identification of Cancer Stem Cell Subpopulations in Head and Neck Metastatic Malignant Melanoma. Cells, 2020, 9, 324.A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks. Cancer Research, 2020, 80, 1644-1655.	0.3 2.4 1.8 0.4	7 12 20 34
1711 1712 1713 1714	Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Glioblastoma: a Report of Two Cases. SN Comprehensive Clinical Medicine, 2020, 2, 836-843. Shrimp miR-965 induced the human melanoma stem-like cell apoptosis and inhibited their stemness by disrupting the MCL-1-ER stress-XBP1 feedback loop in a cross-species manner. Stem Cell Research and Therapy, 2020, 11, 248. Identification of Cancer Stem Cell Subpopulations in Head and Neck Metastatic Malignant Melanoma. Cells, 2020, 9, 324. A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks. Cancer Research, 2020, 80, 1644-1655. Expression of tert Prevents ALT in Zebrafish Brain Tumors. Frontiers in Cell and Developmental Biology, 2020, 8, 65.	0.3 2.4 1.8 0.4 1.8	7 12 20 34 17
1711 1712 1713 1714 1715	Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Clioblastoma: a Report of Two Cases. SN Comprehensive Clinical Medicine, 2020, 2, 836-843. Shrimp miR-965 induced the human melanoma stem-like cell apoptosis and inhibited their stemness by disrupting the MCL-1-ER stress-XBP1 feedback loop in a cross-species manner. Stem Cell Research and Therapy, 2020, 11, 248. Identification of Cancer Stem Cell Subpopulations in Head and Neck Metastatic Malignant Melanoma. Cells, 2020, 9, 324. A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks. Cancer Research, 2020, 80, 1644-1655. Expression of tert Prevents ALT in Zebrafish Brain Tumors. Frontiers in Cell and Developmental Biology, 2020, 8, 65. Constitutive CHK1 Expression Drives a pSTAT3–CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth. Molecular Cancer Research, 2020, 18, 709-722.	0.3 2.4 1.8 0.4 1.8 1.5	 7 12 20 34 17 15

<u> </u>			<u> </u>	
(1-	ΓΔΤΙ	ON	REDC	лbт
\sim				

#	Article	IF	CITATIONS
1717	The necessity for standardization of glioma stem cell culture: a systematic review. Stem Cell Research and Therapy, 2020, 11, 84.	2.4	15
1718	Glioblastome Multiforme: A Bibliometric Analysis. World Neurosurgery, 2020, 136, 270-282.	0.7	65
1719	DNA damage response and resistance of cancer stem cells. Cancer Letters, 2020, 474, 106-117.	3.2	87
1720	MCT4 regulates de novo pyrimidine biosynthesis in GBM in a lactate-independent manner. Neuro-Oncology Advances, 2020, 2, vdz062.	0.4	2
1721	Metformin as Potential Therapy for High-Grade Glioma. Cancers, 2020, 12, 210.	1.7	52
1722	Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo. Science Advances, 2020, 6, eaaz9664.	4.7	34
1723	Organoid Models of Glioblastoma to Study Brain Tumor Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 220.	1.8	38
1724	Novel Genetic Melanoma Vaccines Based on Induced Pluripotent Stem Cells or Melanosphere-Derived Stem-Like Cells Display High Efficacy in a murine Tumor Rejection Model. Vaccines, 2020, 8, 147.	2.1	10
1725	Multifaceted transforming growth factor-beta (TGFβ) signalling in glioblastoma. Cellular Signalling, 2020, 72, 109638.	1.7	23
1726	Poly(ethylene glycol)–Poly(beta-amino ester)-Based Nanoparticles for Suicide Gene Therapy Enhance Brain Penetration and Extend Survival in a Preclinical Human Glioblastoma Orthotopic Xenograft Model. ACS Biomaterials Science and Engineering, 2020, 6, 2943-2955.	2.6	26
1727	Preferential Expression of B7-H6 in Glioma Stem-Like Cells Enhances Tumor Cell Proliferation via the c-Myc/RNMT Axis. Journal of Immunology Research, 2020, 2020, 1-12.	0.9	15
1728	Establishment and Characterisation of Heterotopic Patient-Derived Xenografts for Glioblastoma. Cancers, 2020, 12, 871.	1.7	9
1729	Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells, 2020, 9, 846.	1.8	24
1730	Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188458.	3.3	34
1731	Alpha 1-antichymotrypsin contributes to stem cell characteristics and enhances tumorigenicity of glioblastoma. Neuro-Oncology, 2021, 23, 599-610.	0.6	23
1732	Trends and challenges in modeling glioma using 3D human brain organoids. Cell Death and Differentiation, 2021, 28, 15-23.	5.0	29
1733	The evolution of the cancer stem cell state in glioblastoma: emerging insights into the next generation of functional interactions. Neuro-Oncology, 2021, 23, 199-213.	0.6	52
1734	PARK7 maintains the stemness of glioblastoma stem cells by stabilizing epidermal growth factor receptor variant III. Oncogene, 2021, 40, 508-521.	2.6	21

#	Article	IF	CITATIONS
1735	Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in glioblastoma. Nature Cancer, 2021, 2, 174-188.	5.7	83
1736	Antiâ€tumour effects of a dual cancerâ€specific oncolytic adenovirus on Breast Cancer Stem cells. Journal of Cellular and Molecular Medicine, 2021, 25, 666-676.	1.6	6
1737	Steroid receptor coactivatorâ€1 enhances the stemness of glioblastoma by activating long noncoding RNA XIST/miRâ€152/KLF4 pathway. Cancer Science, 2021, 112, 604-618.	1.7	14
1738	CD1d expression in glioblastoma is a promising target for NKT cell-based cancer immunotherapy. Cancer Immunology, Immunotherapy, 2021, 70, 1239-1254.	2.0	15
1739	HGF/c-Met Signalling in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1270, 31-44.	0.8	20
1740	In Vitro Methods for the Study of Glioblastoma Stem-Like Cell Radiosensitivity. Methods in Molecular Biology, 2021, 2269, 37-47.	0.4	0
1741	Clinical treatment and progress of pancreatic cancer stem cells. , 2021, , 469-486.		0
1742	Hippo Signaling Pathway in Gliomas. Cells, 2021, 10, 184.	1.8	58
1743	Intracranially injectable multi-siRNA nanomedicine for the inhibition of glioma stem cells. Neuro-Oncology Advances, 2021, 3, vdab104.	0.4	5
1744	Neurospheres and GlialÂCell Cultures; from PlatingÂto Cell Phenotyping. Methods in Molecular Biology, 2021, 2311, 131-145.	0.4	0
1745	Plexin-B2 facilitates glioblastoma infiltration by modulating cell biomechanics. Communications Biology, 2021, 4, 145.	2.0	16
1746	On-chip perivascular <i>niche</i> supporting stemness of patient-derived glioma cells in a serum-free, flowable culture. Lab on A Chip, 2021, 21, 2343-2358.	3.1	19
1747	Label-free imaging of human brain tissue at subcellular resolution for potential rapid intra-operative assessment of glioma surgery. Theranostics, 2021, 11, 7222-7234.	4.6	15
1748	A multidimensional biosensor system to guide LUAD individualized treatment. Journal of Materials Chemistry B, 2021, 9, 7991-8002.	2.9	3
1749	Function of exosomes in neurological disorders and brain tumors. , 2021, 2, 55-79.		8
1750	Overcoming therapeutic resistance in glioblastoma: Moving beyond the sole targeting of the glioma cells. , 2021, , 91-118.		0
1751	The Subventricular Zone, a Hideout for Adult and Pediatric High-Grade Glioma Stem Cells. Frontiers in Oncology, 2020, 10, 614930.	1.3	18
1752	The Role of Microglia in Glioblastoma. Frontiers in Oncology, 2020, 10, 603495.	1.3	37

#	Article	IF	CITATIONS
1753	Genomic imprinting and neurodevelopment. , 2021, , 47-57.		0
1754	Induced pluripotent stem cells in intestinal diseases. , 2021, , 101-122.		0
1755	Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells, 2021, 10, 265.	1.8	50
1756	Other cells of the tumor microenvironment. , 2021, , 113-138.		0
1757	A vasculature-centric approach to developing novel treatment options for glioblastoma. Expert Opinion on Therapeutic Targets, 2021, 25, 87-100.	1.5	9
1758	Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Seminars in Cancer Biology, 2022, 82, 162-175.	4.3	58
1759	Reprogramming Transcription Factors Oct4 and Sox2 Induce a BRD-Dependent Immunosuppressive Transcriptome in GBM-Propagating Cells. Cancer Research, 2021, 81, 2457-2469.	0.4	31
1760	Intracellular Autofluorescence as a New Biomarker for Cancer Stem Cells in Glioblastoma. Cancers, 2021, 13, 828.	1.7	3
1762	Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nature Communications, 2021, 12, 1014.	5.8	81
1765	Three-dimensional model of glioblastoma by co-culturing tumor stem cells with human brain organoids. Biology Open, 2021, 10, .	0.6	18
1766	Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism With Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro. Frontiers in Oncology, 2021, 11, 635472.	1.3	19
1768	Regulatory T cells promote glioma cell stemness through TGF-β–NF-κB–IL6–STAT3 signaling. Cancer Immunology, Immunotherapy, 2021, 70, 2601-2616.	2.0	38
1769	Integrative Analysis of miRNA-mediated Competing Endogenous RNA Network Reveals the IncRNAs-mRNAs Interaction in Glioblastoma Stem Cell Differentiation. Current Bioinformatics, 2021, 15, 1187-1196.	0.7	6
1770	Understanding the Biological Basis of Glioblastoma Patient-derived Spheroids. Anticancer Research, 2021, 41, 1183-1195.	0.5	3
1771	Frondoside A Inhibits an MYC-Driven Medulloblastoma Model Derived from Human-Induced Pluripotent Stem Cells. Molecular Cancer Therapeutics, 2021, 20, 1199-1209.	1.9	10
1772	miRNA-mediated loss of m6A increases nascent translation in glioblastoma. PLoS Genetics, 2021, 17, e1009086.	1.5	22
1773	Decipher the Clioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes, 2021, 12, 445.	1.0	43
1774	Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Reports, 2021, 34, 108787.	2.9	31

#	Article	IF	CITATIONS
1775	Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Research and Therapy, 2021, 12, 206.	2.4	91
1776	Human Cerebrospinal Fluid Modulates Pathways Promoting Glioblastoma Malignancy. Frontiers in Oncology, 2021, 11, 624145.	1.3	11
1777	Targeting Protein Kinase C in Glioblastoma Treatment. Biomedicines, 2021, 9, 381.	1.4	13
1778	Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Current Neuropharmacology, 2021, 19, 513-537.	1.4	40
1779	The white matter is a pro-differentiative niche for glioblastoma. Nature Communications, 2021, 12, 2184.	5.8	37
1780	EGFR Activates a TAZ-Driven Oncogenic Program in Glioblastoma. Cancer Research, 2021, 81, 3580-3592.	0.4	12
1781	MicroRNA Expression Profile Distinguishes Glioblastoma Stem Cells from Differentiated Tumor Cells. Journal of Personalized Medicine, 2021, 11, 264.	1.1	12
1782	An Update on Glioblastoma Biology, Genetics, and Current Therapies: Novel Inhibitors of the G Protein-Coupled Receptor CCR5. International Journal of Molecular Sciences, 2021, 22, 4464.	1.8	8
1783	The Role of Neurodevelopmental Pathways in Brain Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 659055.	1.8	26
1785	Imaging Metformin Efficacy as Add-On Therapy in Cells and Mouse Models of Human EGFR Glioblastoma. Frontiers in Oncology, 2021, 11, 664149.	1.3	8
1786	Auger electron therapy of glioblastoma using [125I]5-iodo-2′-deoxyuridine and concomitant chemotherapy – Evaluation of a potential treatment strategy. Nuclear Medicine and Biology, 2021, 96-97, 35-40.	0.3	2
1787	Revisiting Platinum-Based Anticancer Drugs to Overcome Gliomas. International Journal of Molecular Sciences, 2021, 22, 5111.	1.8	18
1789	Cancer of unknown primary stem-like cells model multi-organ metastasis and unveil liability to MEK inhibition. Nature Communications, 2021, 12, 2498.	5.8	20
1790	In Vitro Clioblastoma Models: A Journey into the Third Dimension. Cancers, 2021, 13, 2449.	1.7	27
1792	Radiation and Adjuvant Drug-Loaded Liposomes target Glioblastoma Stem Cells and Trigger <i>In-situ</i> Immune Response. Neuro-Oncology Advances, 2021, 3, vdab076.	0.4	9
1793	Ventricle contact may be associated with higher 11C methionine PET uptake in glioblastoma. Neuroradiology, 2022, 64, 247-252.	1.1	2
1794	Novel Treatment for Glioblastoma Delivered by a Radiation Responsive and Radiopaque Hydrogel. ACS Biomaterials Science and Engineering, 2021, 7, 3209-3220.	2.6	20
1797	The inverse paradigm and the ancestral cell of IDH-wildtype glioblastoma. Clinical and Translational Oncology, 2021, , 1.	1.2	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1798	Evidence of Reelin Signaling in GBM and Its Derived Cancer Stem Cells. Brain Sciences,	2021, 11, 745.	1.1	3
1799	The Radiosensitizing Effect of AZD0530 in Glioblastoma and Glioblastoma Stem-Like C Cancer Therapeutics, 2021, 20, 1672-1679.	ells. Molecular	1.9	6
1800	DDRugging glioblastoma: understanding and targeting the DNA damage response to in therapies. Molecular Oncology, 2022, 16, 11-41.	nprove future	2.1	16
1801	Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. Journal of Histochemistry Cytochemistry, 2021, 69, 002215542110254.	and	1.3	5
1802	Dual Role of Integrin Alpha-6 in Glioblastoma: Supporting Stemness in Proneural Stem- Inducing Radioresistance in Mesenchymal Stem-Like Cells. Cancers, 2021, 13, 3055.	Like Cells While	1.7	6
1803	Glioblastoma Proximity to the Lateral Ventricle Alters Neurogenic Cell Populations of th Subventricular Zone. Frontiers in Oncology, 2021, 11, 650316.	ne	1.3	7
1804	Molecular Characterization of AEBP1 at Transcriptional Level in Glioma. BioMed Resear International, 2021, 2021, 1-16.	ch	0.9	2
1805	A Fast and Efficient Approach to Obtaining High-Purity Glioma Stem Cell Culture. Front Genetics, 2021, 12, 639858.	iers in	1.1	3
1806	Role and mechanism of neural stem cells of the subventricular zone in glioblastoma. W of Stem Cells, 2021, 13, 877-893.	'orld Journal	1.3	23
1807	Epigenetic modulators for brain cancer stem cells: Implications for anticancer treatmer Journal of Stem Cells, 2021, 13, 670-684.	ıt. World	1.3	7
1808	Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological fu Reports, 2021, 36, 109416.	inction. Cell	2.9	5
1809	Identification of Chemo and Radio-Resistant Sub-Population of Stem Cells in Human Co HeLa Cells. Cancer Investigation, 2021, 39, 661-674.	ervical Cancer	0.6	7
1810	Proteases Regulate Cancer Stem Cell Properties and Remodel Their Microenvironment. Histochemistry and Cytochemistry, 2021, 69, 775-794.	Journal of	1.3	6
1811	Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targ Frontiers in Oncology, 2021, 11, 701291.	eted Therapy.	1.3	38
1812	The Renin–Angiotensin System in the Tumor Microenvironment of Glioblastoma. Car 4004.	ıcers, 2021, 13,	1.7	11
1813	ERK Phosphorylation Regulates the Aml1/Runx1 Splice Variants and the TRP Channels I the Differentiation of Glioma Stem Cell Lines. Cells, 2021, 10, 2052.	Expression during	1.8	7
1814	A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness t neurotrophic factor. Journal of Cell Science, 2021, 134, .	o brain-derived	1.2	10
1815	Functional Characterization of Brain Tumor-Initiating Cells and Establishment of CBM F Models that Incorporate Heterogeneity, Therapy, and Sex Differences. Molecular Cance 2021, 20, 2585-2597.	Preclinical er Therapeutics,	1.9	16

#	Article	IF	CITATIONS
1816	Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. International Journal of Molecular Sciences, 2021, 22, 8289.	1.8	10
1817	The 3.0 Cell Communication: New Insights in the Usefulness of Tunneling Nanotubes for Glioblastoma Treatment. Cancers, 2021, 13, 4001.	1.7	13
1818	WNT Signaling as a Therapeutic Target for Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 8428.	1.8	32
1819	Transcriptional control of brain tumor stem cells by a carbohydrate binding protein. Cell Reports, 2021, 36, 109647.	2.9	18
1820	Isolation and Culture of Neural Stem/Progenitor Cells from the Postnatal Periventricular Region. Methods in Molecular Biology, 2022, 2389, 11-31.	0.4	2
1821	Glioblastoma cell migration is directed by electrical signals. Experimental Cell Research, 2021, 406, 112736.	1.2	8
1822	Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Cells, 2021, 10, 2347.	1.8	2
1823	Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomaterialia, 2021, 132, 401-420.	4.1	9
1824	circMELK promotes glioblastoma multiforme cell tumorigenesis through the miR-593/EphB2 axis. Molecular Therapy - Nucleic Acids, 2021, 25, 25-36.	2.3	20
1825	Evaluation of Comprehensive Gene Expression and NK Cell-Mediated Killing in Glioblastoma Cell Line-Derived Spheroids. Cancers, 2021, 13, 4896.	1.7	12
1826	Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. International Journal of Molecular Sciences, 2021, 22, 9937.	1.8	9
1827	Targeting UDP-α-d-glucose 6-dehydrogenase alters the CNS tumor immune microenvironment and inhibits glioblastoma growth. Genes and Diseases, 2022, 9, 717-730.	1.5	6
1828	Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. , 2022, 231, 107985.		44
1829	Bazedoxifene inhibits sustained STAT3 activation and increases survival in GBM. Translational Oncology, 2021, 14, 101192.	1.7	8
1830	Glioma stem cells, plasticity, and potential therapeutic vulnerabilities. , 2021, , 83-102.		0
1831	Mechanisms of glioblastoma resistance to antiangiogenic agents and reversal approaches. , 2021, , 429-452.		1
1832	Cell surface GRP78 regulates BACE2 via lysosome-dependent manner to maintain mesenchymal phenotype of glioma stem cells. Journal of Experimental and Clinical Cancer Research, 2021, 40, 20.	3.5	17
1833	Novel Magnetic Resonance Imaging and Positron Emission Tomography in the RT Planning and Assessment of Response of Malignant Gliomas. , 2021, , 1031-1048.		2

		CITATION R	EPORT	
# 1834	ARTICLE Intervention of IL-8-CXCR2 axis to reverse the resistance to GBM therapies. , 2021, , 65-8	1.	IF	Citations
1835	The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblaston Cells. Frontiers in Oncology, 2020, 10, 603738.	na-Initiating	1.3	7
1836	Targeting the molecular mechanisms of glioma stem cell resistance to chemotherapy. , 24 $$	021,,587-634.		1
1837	Glioma stem cells and associated molecular mechanisms in Glioblastoma Chemoresistand 135-151.	ce., 2021,,		0
1838	Pancreatic Cancer Stem Cells. , 2010, , 317-331.			1
1839	Adult Neural Stem Cells and Gliomagenesis. , 2010, , 153-165.			2
1841	Biological Horizons for Targeting Brain Malignancy. Advances in Experimental Medicine a 2010, 671, 93-104.	nd Biology,	0.8	3
1842	Generation of Murine Xenograft Models of Brain Tumors from Primary Human Tissue for Analysis of the Brain Tumor-Initiating Cell. Methods in Molecular Biology, 2014, 1210, 37	In Vivo -49.	0.4	5
1843	Introduction to Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, 1869, 1-9.		0.4	7
1844	Cancer Stem Cells Implications for Development of More Effective Therapies. , 2006, , 12	5-136.		3
1845	Neurosphere Culture and Human Organotypic Model to Evaluate Brain Tumor Stem Cells Molecular Biology, 2009, 568, 73-83.	. Methods in	0.4	41
1846	Characterization of Nonmalignant and Malignant Prostatic Stem/Progenitor Cells by Hoe Population Method. Methods in Molecular Biology, 2009, 568, 139-149.	chst Side	0.4	19
1847	Solid Tumor Stem Cells â \in '' Implications for Cancer Therapy. , 2009, , 527-543.			1
1848	Glioma Stem Cells in the Context of Oncogenesis. , 2009, , 115-126.			3
1849	Targeting Brain Tumor Stem Cells with Oncolytic Adenoviruses. Methods in Molecular Bio 797, 111-125.	ology, 2012,	0.4	22
1850	Cancer Stem Cells: Current Concepts and Therapeutic Implications. , 2012, , 227-235.			2
1851	Chemoresistance in Glioma. , 2013, , 243-270.			2
1852	Drosophila melanogaster as a Model System for Human Glioblastomas. Advances in Expe Medicine and Biology, 2019, 1167, 207-224.	rimental	0.8	11

#	Article	IF	CITATIONS
1853	Pathophysiology of Tumor Cell Release into the Circulation and Characterization of CTC. Recent Results in Cancer Research, 2020, 215, 3-24.	1.8	2
1854	STAT Signaling in Glioma Cells. Advances in Experimental Medicine and Biology, 2020, 1202, 203-222.	0.8	62
1855	Tenascin-C Function in Glioma: Immunomodulation and Beyond. Advances in Experimental Medicine and Biology, 2020, 1272, 149-172.	0.8	23
1856	Emerging Strategies for the Treatment of Tumor Stem Cells in Central Nervous System Malignancies. Advances in Experimental Medicine and Biology, 2015, 853, 167-187.	0.8	2
1857	The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 69-87.	0.1	2
1858	Brain Tumor Stem Cells. Recent Results in Cancer Research, 2009, 171, 241-259.	1.8	3
1859	Cancer: A Stem Cell-based Disease?. , 2009, , 185-222.		4
1860	Cell–Cell Fusions and Human Endogenous Retroviruses in Cancer. , 2011, , 395-426.		3
1861	Common Denominators of Self-renewal and Malignancy in Neural Stem Cells and Glioma. , 2012, , 387-418.		1
1862	Histamine in the Neural and Cancer Stem Cell Niches. Stem Cells and Cancer Stem Cells, 2014, , 3-17.	0.1	2
1863	STEM CELL THERAPY FOR BRAIN TUMORS. , 2008, , 145-159.		2
1864	Invasion in Malignant Glioma. , 2011, , 1141-1150.		2
1865	The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Communications, 2020, 2, fcaa150.	1.5	10
1870	Stem Cell Aging and Cancer. Science of Aging Knowledge Environment: SAGE KE, 2006, 2006, pe12-pe12.	0.9	2
1871	Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC. JCI Insight, 2019, 4, .	2.3	30
1872	Epigenetic modulator inhibition overcomes temozolomide chemoresistance and antagonizes tumor recurrence of glioblastoma. Journal of Clinical Investigation, 2020, 130, 5782-5799.	3.9	16
1873	Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. Journal of Clinical Investigation, 2014, 124, 2861-2876.	3.9	83
1874	γ-Secretase inhibitor–resistant glioblastoma stem cells require RBPJ to propagate. Journal of Clinical Investigation, 2016, 126, 2415-2418.	3.9	6

ARTICLE IF CITATIONS Building the case for the calcitonin receptor as a viable target for the treatment of glioblastoma. 1875 1.4 5 Therapeutic Advances in Medical Oncology, 2020, 12, 175883592097811. General pathology of the centralnervous system., 2008, , 1-62. 1877 Tumours., 2008,, 1821-2000. 6 Gamma-Secretase Represents a Therapeutic Target for the Treatment of Invasive Glioma Mediated by the p75 Neurotrophin Receptor. PLoS Biology, 2008, 6, e289. Glial Progenitor-Like Phenotype in Low-Grade Glioma and Enhanced CD133-Expression and Neuronal 1879 1.1 103 Lineage Differentiation Potential in High-Grade Glioma. PLoS ONE, 2008, 3, e1936. Remission of Invasive, Cancer Stem-Like Glioblastoma Xenografts Using Lentiviral Vector-Mediated Suicide Gene Therapy. PLoS ONE, 2009, 4, e6314. 1880 1.1 GSK3Î² Regulates Differentiation and Growth Arrest in Glioblastoma. PLoS ONE, 2009, 4, e7443. 1881 1.1 138 Inhibition of Glioblastoma Growth by the Thiadiazolidinone Compound TDZD-8. PLoS ONE, 2010, 5, 1882 1.1 28 e13879. Determination of Somatic and Cancer Stem Cell Self-Renewing Symmetric Division Rate Using Sphere 1883 1.1 52 Assays. PLoS ONE, 2011, 6, e15844. Analysis of Epithelial and Mesenchymal Markers in Ovarian Cancer Reveals Phenotypic Heterogeneity 1884 1.1 153 and Plasticity. PLoS ONE, 2011, 6, e16186. Clinical Relevance of Tumor Cells with Stem-Like Properties in Pediatric Brain Tumors. PLoS ONE, 2011, 1885 1.1 57 6, e16375. Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant 1886 1.1 Gliomas. PLoS ONE, 2011, 6, e26740. Identification of a Potential Ovarian Cancer Stem Cell Gene Expression Profile from Advanced Stage 1887 1.1 87 Papillary Serous Ovarian Cancer. PLoS ONE, 2012, 7, e29079. Cord Blood Stem Cells Inhibit Epidermal Growth Factor Receptor Translocation to Mitochondria in 1888 1.1 Glioblastoma. PLoS ONE, 2012, 7, e31884. Elevating SOX2 Levels Deleteriously Affects the Growth of Medulloblastoma and Glioblastoma Cells. 1889 49 1.1 PLoS ONE, 2012, 7, e44087. Sphere Culture of Murine Lung Cancer Cell Lines Are Enriched with Cancer Initiating Cells. PLoS ONE, 1890 1.1 2012, 7, e49752. MicroRNA-145 Is Downregulated in Glial Tumors and Regulates Glioma Cell Migration by Targeting 1891 1.1 94 Connective Tissue Growth Factor. PLoS ONE, 2013, 8, e54652. 1892 Prominin 1/CD133 Endothelium Sustains Growth of Proneural Glioma. PLoS ONE, 2013, 8, e62150. 1.1

#	Article	IF	CITATIONS
1893	Tumorspheres but Not Adherent Cells Derived from Retinoblastoma Tumors Are of Malignant Origin. PLoS ONE, 2013, 8, e63519.	1.1	18
1894	Podocalyxin-Like Protein Is Expressed in Glioblastoma Multiforme Stem-Like Cells and Is Associated with Poor Outcome. PLoS ONE, 2013, 8, e75945.	1.1	38
1895	Tumor-Specific Chromosome Mis-Segregation Controls Cancer Plasticity by Maintaining Tumor Heterogeneity. PLoS ONE, 2013, 8, e80898.	1.1	16
1896	BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 Proteins Are Related to Human Glioma Tumor Grade: Immunohistochemistry and Public Microarray Data Meta-Analysis. PLoS ONE, 2013, 8, e83250.	1.1	27
1897	A Novel Berbamine Derivative Inhibits Cell Viability and Induces Apoptosis in Cancer Stem-Like Cells of Human Glioblastoma, via Up-Regulation of miRNA-4284 and JNK/AP-1 Signaling. PLoS ONE, 2014, 9, e94443.	1.1	57
1898	Novel Anti-Apoptotic MicroRNAs 582-5p and 363 Promote Human Glioblastoma Stem Cell Survival via Direct Inhibition of Caspase 3, Caspase 9, and Bim. PLoS ONE, 2014, 9, e96239.	1.1	95
1899	Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells. PLoS ONE, 2014, 9, e115698.	1.1	23
1900	Histological Characterization of the Tumorigenic "Peri-Necrotic Niche―Harboring Quiescent Stem-Like Tumor Cells in Glioblastoma. PLoS ONE, 2016, 11, e0147366.	1.1	55
1901	Anatomical Involvement of the Subventricular Zone Predicts Poor Survival Outcome in Low-Grade Astrocytomas. PLoS ONE, 2016, 11, e0154539.	1.1	35
1902	MERTK Inhibition Induces Polyploidy and Promotes Cell Death and Cellular Senescence in Glioblastoma Multiforme. PLoS ONE, 2016, 11, e0165107.	1.1	23
1903	The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model. PLoS ONE, 2017, 12, e0189670.	1.1	51
1904	Cancer stem cells and autophagy: Facts and Perspectives. Journal of Cancer Stem Cell Research, 2014, 2, 1.	1.1	12
1905	Facilitating tailored therapeutic strategies for glioblastoma through an orthotopic patient-derived xenograft platform. Histology and Histopathology, 2016, 31, 269-83.	0.5	7
1906	Genetic analysis to complement histopathological diagnosis of brain tumors. Histology and Histopathology, 2007, 22, 327-35.	0.5	15
1907	Human Adult Stem Cells as the Target Cells for the Initiation of Carcinogenesis and for the Generation of "Cancer Stem Cells― International Journal of Stem Cells, 2008, 1, 8-26.	0.8	25
1908	Cancer Stem Cells in Brain Tumors and Their Lineage Hierarchy. International Journal of Stem Cells, 2012, 5, 12-15.	0.8	9
1909	Early Differentiating Mouse Astroglial Progenitors Share Common Protein Signatures with GL261 Glioma Cells. Journal of Stem Cell and Regenerative Biology, 2016, 2, 1-15.	0.2	1
1910	VEGF IN NEOPLASTIC ANGIOGENESIS. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2012, 67, 23-34.	0.2	21

#	Article	IF	CITATIONS
1911	Rola autofagii w komórkach nowotworowych: charakterystyka wzajemnych zależności pomiędzy procesami autofagii i apoptozy; modulacja autofagii jako nowa strategia terapeutyczna w leczeniu glejaków. Postepy Biochemii, 2018, 64, 119-128.	0.5	15
1912	Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype. Oncotarget, 2010, 1, 700-9.	0.8	37
1913	RhoGDlÎ \pm suppresses self-renewal and tumorigenesis of glioma stem cells. Oncotarget, 2016, 7, 61619-61629.	0.8	9
1914	Reversibility of glioma stem cells' phenotypes explains their complex <i>in vitro</i> and <i>in vivo</i> behavior: Discovery of a novel neurosphere-specific enzyme, cGMP-dependent protein kinase 1, using the genomic landscape of human glioma stem cells as a discovery tool. Oncotarget, 2016, 7, 63020-63041.	0.8	12
1915	Tumor-initiating cell frequency is relevant for glioblastoma aggressiveness. Oncotarget, 2016, 7, 71491-71503.	0.8	11
1916	Cancer stem cells from human glioblastoma resemble but do not mimic original tumors after <i>in vitro</i> passaging in serum-free media. Oncotarget, 2016, 7, 65888-65901.	0.8	28
1917	Analysis of angiogenesis related factors in glioblastoma, peritumoral tissue and their derived cancer stem cells. Oncotarget, 2016, 7, 78541-78556.	0.8	44
1918	Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget, 2016, 7, 74747-74767.	0.8	12
1919	FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget, 2016, 7, 77365-77377.	0.8	55
1920	CXCR4 increases <i>in-vivo</i> glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget, 2016, 7, 83701-83719.	0.8	75
1921	Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget, 2016, 7, 86406-86419.	0.8	31
1922	ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5. Oncotarget, 2017, 8, 48545-48562.	0.8	19
1923	Radioresistance of mesenchymal glioblastoma initiating cells correlates with patient outcome and is associated with activation of inflammatory program. Oncotarget, 2017, 8, 73640-73653.	0.8	33
1924	RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation. Oncotarget, 2014, 5, 2820-2826.	0.8	49
1925	Glioblastoma and glioblastoma stem cells are dependent on functional MTH1. Oncotarget, 2017, 8, 84671-84684.	0.8	29
1926	Epidermal growth factor receptor activity is elevated in glioma cancer stem cells and is required to maintain chemotherapy and radiation resistance. Oncotarget, 2017, 8, 72494-72512.	0.8	27
1927	Tie2/TEK Modulates the Interaction of Glioma and Brain Tumor Stem Cells with Endothelial Cells and Promotes an Invasive Phenotype. Oncotarget, 2010, 1, 700-709.	0.8	56
1928	Hedgehog signaling sensitizes Glioma stem cells to endogenous nano-irradiation. Oncotarget, 2014, 5, 5483-5493.	0.8	30

#	Article	IF	CITATIONS
1929	The EZH2 inhibitor GSK343 suppresses cancer stem-like phenotypes and reverses mesenchymal transition in glioma cells. Oncotarget, 2017, 8, 98348-98359.	0.8	57
1930	A molecular view of the radioresistance of gliomas. Oncotarget, 2017, 8, 100931-100941.	0.8	67
1931	CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression. Oncotarget, 2014, 5, 6756-6769.	0.8	37
1932	The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells. Oncotarget, 2018, 9, 10497-10509.	0.8	18
1933	Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth <i>in vivo</i> . Oncotarget, 2014, 5, 10934-10948.	0.8	43
1934	WNK1 kinase and its partners Akt, SGK1 and NBC-family Na+/HCO3â^' cotransporters are potential therapeutic targets for glioblastoma stem-like cells linked to Bisacodyl signaling. Oncotarget, 2018, 9, 27197-27219.	0.8	5
1935	Association of Notch-1, osteopontin and stem-like cells in ENU-glioma malignant process. Oncotarget, 2018, 9, 31330-31341.	0.8	4
1936	Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget, 2015, 6, 1157-1170.	0.8	39
1937	EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis. Oncotarget, 2020, 11, 759-774.	0.8	11
1938	Lateral inhibition of Notch signaling in neoplastic cells. Oncotarget, 2015, 6, 1666-1677.	0.8	24
1939	Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget, 2015, 6, 8167-8184.	0.8	68
1940	Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1. Oncotarget, 2011, 2, 1028-1042.	0.8	65
1941	CDC20 maintains tumor initiating cells. Oncotarget, 2015, 6, 13241-13254.	0.8	53
1942	The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis. Oncotarget, 2015, 6, 22653-22665.	0.8	46
1943	Aberrant mesenchymal differentiation of glioma stem-like cells: implications for therapeutic targeting. Oncotarget, 2015, 6, 31007-31017.	0.8	24
1944	Disulfiram, a drug widely used to control alcoholism, suppresses self-renewal of glioblastoma and overrides resistance to temozolomide. Oncotarget, 2012, 3, 1112-1123.	0.8	123
1945	Atracurium Besylate and other neuromuscular blocking agents promote astroglial differentiation and deplete glioblastoma stem cells. Oncotarget, 2016, 7, 459-472.	0.8	24
1946	Molecular heterogeneity of glioblastomas: does location matter?. Oncotarget, 2016, 7, 902-913.	0.8	15

#	Article	IF	CITATIONS
1947	Nuclear factor one B (<i>NFIB</i>) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget, 2016, 7, 29306-29320.	0.8	34
1948	Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget, 2016, 7, 30626-30641.	0.8	55
1949	Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget, 2016, 7, 38638-38657.	0.8	53
1950	HMGA2 sustains self-renewal and invasiveness of glioma-initiating cells. Oncotarget, 2016, 7, 44365-44380.	0.8	22
1951	MET: roles in epithelial-mesenchymal transition and cancer stemness. Annals of Translational Medicine, 2017, 5, 5-5.	0.7	69
1952	Emerging Variant Glioma: Glioblastoma with a Primitive Neuro-Ectodermal Tumor(PNET) Component. The Nerve, 1970, 1, 40-43.	0.2	4
1953	Role of ATP-Binding Cassette Transporter Proteins in CNS Tumors: Resistance- Based Perspectives and Clinical Updates. Current Pharmaceutical Design, 2020, 26, 4747-4763.	0.9	7
1954	Oncolytic Adenovirus: Preclinical and Clinical Studies in Patients with Human Malignant Gliomas. Current Gene Therapy, 2009, 9, 422-427.	0.9	99
1955	Feasibility of Targeting Glioblastoma Stem Cells: From Concept to Clinical Trials. Current Topics in Medicinal Chemistry, 2020, 19, 2974-2984.	1.0	9
1956	The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research. Current Immunology Reviews, 2010, 6, 137-148.	1.2	85
1957	Cancer Stem Cells in Pediatric Brain Tumors. Current Stem Cell Research and Therapy, 2009, 4, 298-305.	0.6	16
1958	Gliomagenesis and the Use of Neural Stem Cells in Brain Tumor Treatment. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 121-130.	0.9	34
1959	Angiogenesis and Hypoxia in Glioblastoma: A Focus on Cancer Stem Cells. CNS and Neurological Disorders - Drug Targets, 2012, 11, 878-883.	0.8	24
1960	Regulation of the Expression of Cytoplasmic Polyadenylation Element Binding Proteins for the Treatment of Cancer. Anticancer Research, 2016, 36, 5673-5680.	0.5	24
1961	Cancer Stem Cell Gene Variants in CD44 Predict Outcome in Stage II and Stage III Colon Cancer Patients. Anticancer Research, 2017, 37, 2011-2018.	0.5	13
1962	Stem cells and models of astrocytomas. Clinical and Investigative Medicine, 2009, 32, 166.	0.3	4
1963	Accelerated cancer aggressiveness by viral oncomodulation: New targets and newer natural treatments for cancer control and treatment. , 2019, 10, 199.		6
1964	Molecular diagnosis of pancreatic cancer where do we stand. Frontiers in Bioscience - Scholar, 2010, S2, 578-590.	0.8	2

#	Article	IF	CITATIONS
1965	Ventricle contact is associated with lower survival and increased peritumoral perfusion in glioblastoma. Journal of Neurosurgery, 2019, 131, 717-723.	0.9	15
1966	Differential signature of the centrosomal MARK4 isoforms in glioma. Analytical Cellular Pathology, 2011, 34, 319-38.	0.7	13
1967	Genomic Imprinting and the Regulation of Postnatal Neurogenesis. Brain Plasticity, 2017, 3, 89-98.	1.9	12
1968	Effect of radiation dose to the periventricular zone and subventricular zone on survival in anaplastic gliomas. Ecancermedicalscience, 2019, 13, 956.	0.6	1
1969	Prospective study to assess the survival outcomes of planned irradiation of ipsilateral subventricular and periventricular zones in glioblastoma. Ecancermedicalscience, 2020, 14, 1021.	0.6	7
1971	Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Frontiers in Bioengineering and Biotechnology, 2020, 8, 558375.	2.0	13
1972	Therapeutic Targeting of Cancer Stem Cells. Frontiers in Oncology, 2011, 1, 10.	1.3	22
1973	Rapalink-1 Targets Glioblastoma Stem Cells and Acts Synergistically with Tumor Treating Fields to Reduce Resistance against Temozolomide. Cancers, 2020, 12, 3859.	1.7	20
1974	Nanomedicine: A Useful Tool against Glioma Stem Cells. Cancers, 2021, 13, 9.	1.7	24
1975	Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma. World Journal of Gastroenterology, 2008, 14, 3903.	1.4	51
1976	Glioblastoma Unique Features Drive the Ways for Innovative Therapies in the Trunk-branch Era. Folia Medica, 2019, 61, 7-22.	0.2	3
1977	The top cited articles on glioma stem cells in Web of Science. Neural Regeneration Research, 2013, 8, 1431-8.	1.6	12
1978	The Impact of Neural Stem Cell Biology on CNS Carcinogenesis and Tumor Types. Pathology Research International, 2011, 2011, 1-4.	1.4	2
1979	Mapping theme trends and knowledge structures for human neural stem cells: a quantitative and co-word biclustering analysis for the 2013–2018 period. Neural Regeneration Research, 2019, 14, 1823.	1.6	18
1980	Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control. , 2015, 6, 92.		52
1981	Assessment Effects of Resveratrol on Human Telomerase Reverse Transcriptase Messenger Ribonucleic Acid Transcript in Human Glioblastoma. Advanced Biomedical Research, 2017, 6, 73.	0.2	9
1982	Convergence of normal stem cell and cancer stem cell developmental stage: Implication for differential therapies. World Journal of Stem Cells, 2011, 3, 83.	1.3	8
1983	Role of nestin in glioma invasion. World Journal of Translational Medicine, 2015, 4, 78.	3.5	3
#	Article	IF	CITATIONS
------	---	-----	-----------
1984	New Insight on the Role of Transient Receptor Potential (TRP) Channels in Driven Gliomagenesis Pathways. , 0, , .		1
1985	Subventricular Zone Radiation Dose and Outcome for Glioblastoma Treated Between 2006 and 2012. Cureus, 2018, 10, e3618.	0.2	6
1986	Zika Virus: A New Therapeutic Candidate for Glioblastoma Treatment. International Journal of Molecular Sciences, 2021, 22, 10996.	1.8	14
1987	Opportunities and challenges of glioma organoids. Cell Communication and Signaling, 2021, 19, 102.	2.7	19
1988	Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. Journal of Experimental Medicine, 2021, 218, .	4.2	9
1989	MRI radiomics to differentiate between low grade glioma and glioblastoma peritumoral region. Journal of Neuro-Oncology, 2021, 155, 181-191.	1.4	29
1990	Breaking Bad: Autophagy Tweaks the Interplay Between Glioma and the Tumor Immune Microenvironment. Frontiers in Immunology, 2021, 12, 746621.	2.2	4
1991	Three-dimensionalÂculture models to study glioblastoma — current trends and future perspectives. Current Opinion in Pharmacology, 2021, 61, 91-97.	1.7	11
1992	Cell and Molecular Biology of Cancer of the Brain. , 2005, , 403-430.		0
1993	Cell Origin of Tumors and the Persistence of Cancer Propagating Cells in Tumor Lesions. The Open Pathology Journal, 2008, 2, 6-12.	1.0	2
1994	Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathology and Applied Neurobiology, 2008, 35, no-no.	1.8	33
1995	Cancer Stem Cells in Solid Tumors. , 2009, , 295-326.		1
1996	Critical Roles of Tumorigenic and Migrating Cancer Stem/Progenitor Cells in Cancer Progression and their Therapeutic Implications. , 2009, , 287-308.		0
1997	Stem Cells and Lung Cancer. , 2009, , 193-222.		0
1998	Herpes Simplex Virus 1 (HSV-1) for Glioblastoma Multiforme Therapy. , 2009, , 1105-1136.		0
1999	Targeting Brain Cancer Stem Cells in the Clinic. , 2009, , 275-286.		1
2000	Lineage Relationships Connecting Germinal Regions to Brain Tumors. , 2009, , 269-286.		1
2001	Molecular Biology of Malignant Gliomas. , 2009, , 1-22.		0

		ITATION REPORT	
#	Article	IF	CITATIONS
2002	Brain Cancer Stem Cells as Targets of Novel Therapies. , 2009, , 1057-1075.		2
2003	Implications of Cancer Stem Cells for Tumor Metastasis. , 2009, , 443-453.		0
2004	Cancer Stem Cells and Skin Cancer. , 2009, , 251-267.		1
2005	Therapeutic Approaches to Target Cancer Stem Cells. , 2009, , 545-560.		1
2006	Molecular Mechanisms of Pathogenesis in Glioblastoma and Current Therapeutic Strategies. , 2010, 85-93.	3	0
2007	Chemokines and Primary Brain Tumors. , 2010, , 253-270.		0
2009	The stem cell connection of primary brain tumors. Biomedical Reviews, 2014, 20, 31.	0.6	0
2010	Efficient Derivation and Propagation of Glioblastoma Stem-Like Cells Under Serum-Free Conditions Using the Cambridge Protocol. , 2011, , 191-204.		Ο
2011	The Potential of Selectively Cultured Adult Stem Cells Re-implanted in Tissues. , 2011, , 79-117.		0
2012	MicroRNAs in Brain Tumors. , 2011, , 343-371.		0
2014	Cellular Immortality in Brain Tumors: An Overview. , 2011, , 21-32.		0
2015	Vasculogenic Mimicry in Glioma. , 2011, , 93-101.		0
2016	Primary Glioma Spheroids: Advantage of Serum-Free Medium. , 2012, , 83-91.		0
2017	Molecular targeting of cancer stem cells. , 2011, , 202-216.		0
2018	Glioblastoma-Derived Cancer Stem Cells: Treatment with Oncolytic Viruses. , 2012, , 121-128.		0
2019	Cancer Stem Cells in Medulloblastoma. , 2012, , 129-139.		0
2020	Cancer Stem Cells and Glioblastoma Multiforme: Pathophysiological and Clinical Aspects. , 2012, , 123-140.		0
2021	Genetic Diversity of Glioblastoma Multiforme: Impact on Future Therapies. , 0, , .		0

#	Article	IF	CITATIONS
2024	Antisense Oligonucleotides in the Treatment of Malignant Gliomas. , 2012. , 215-246.		1
			-
2025	Colorectal Liver Metastasis: Current Management. , 0, , .		0
2026	Clinical Flow Cytometry - Emerging Applications. , 2012, , .		10
2027	Introduction to Cancer Stem Cells. , 2013, , 1-18.		0
2028	Progenitores de los tumores cerebrales Revista Colombiana De Hematologi ìa Y Oncologi ìa , 2012, 1, 36-50.	0.0	0
2031	Dendritic Cells Pulsed with Viral Oncolysate. , 2013, , 425-441.		0
2032	TGF-β in Cancer Stem Cells. , 2013, , 93-112.		0
2033	Animal Models for Low-Grade Gliomas. , 2013, , 165-175.		0
2036	Immunotherapy of Malignant Tumors Using Antisense Anti-IGF-I Approach: Case of Glioblastoma. Journal of Cancer Therapy, 2014, 05, 685-705.	0.1	2
2037	Experimental Models of Glioma. , 2014, , 399-431.		0
2039	Insight into Cancer Stem Cell Niche; Lessons from Cancer Stem Cell Models Generated In Vitro. Pancreatic Islet Biology, 2015, , 211-226.	0.1	0
2040	Image Guidance in Stem Cell Therapeutics: Unfolding the Blindfold. Current Drug Targets, 2015, 16, 658-671.	1.0	0
2041	Cancer Stem Cells Recapitulates the Heterogeneity of Glioblastomas. Journal of Stem Cell Research & Therapeutics, 2015, 1, .	0.1	0
2042	Brain tumor stem cells: phenotypic characterization and directed therapeutic approaches. Cell and Organ Transplantology, 2015, 3, 177-183.	0.2	1
2043	Cancer Stem Cell Microenvironment in Canine Glioblastoma Development: Animal Model for Human Disease. International Journal of Pathology and Clinical Research, 2015, 1, .	0.1	0
2044	Signalling Pathways in Glioma-Propagating Cells. Cell Biology: Research & Therapy, 0, s1, .	0.2	0
2046	Mesenchymal Stem/Stromal Cell Recruitment by Central Nervous System Tumors. , 2017, , 227-251.		0
2047	What Are Positive Results of Stem Cell Therapies?. , 2017, , 141-161.		0

#	Article	IF	CITATIONS
2048	Lysophosphatidic Acid Signalling Enhances Glioma Stem Cell Properties. Pancreatic Islet Biology, 2017, , 171-189.	0.1	0
2051	Immunohistochemical expression of nucleostemin and P53 in glioma. Egyptian Journal of Pathology, 2017, 37, 165-170.	0.0	0
2053	High-Grade Cliomas. , 2018, , 83-102.		0
2054	Notch Signaling in Lung Cancer Initiation and Development. , 2018, , 141-149.		0
2055	Glioblastoma Multiforma Tedavisinde Kanser Kök Hücrelerinin Temozolomide Karşı Oluşturdukları Direnç. Sakarya Medical Journal, 2018, 8, 379-387.	0.1	0
2059	Wnt-signaling pathway in pathogenesis of glioblastoma multiforme. Uspehi Molekularnoj Onkologii, 2019, 5, 94-103.	0.1	1
2062	SLUG and Truncated TAL1 Reduce Glioblastoma Stem Cell Growth Downstream of Notch1 and Define Distinct Vascular Subpopulations in Glioblastoma Multiforme. Cancers, 2021, 13, 5393.	1.7	10
2063	Drug Repositioning Screen on a New Primary Cell Line Identifies Potent Therapeutics for Glioblastoma. Frontiers in Neuroscience, 2020, 14, 578316.	1.4	1
2064	Three-dimensional organoid culture unveils resistance to clinical therapies in adult and pediatric glioblastoma. Translational Oncology, 2022, 15, 101251.	1.7	27
2065	Transcriptional and epigenetic regulatory mechanisms in glioblastoma stem cells. , 2020, , 231-255.		1
2066	miR-425-5p, a SOX2 target, regulates the expression of FOXJ3 and RAB31 and promotes the survival of GSCs. Archives of Clinical and Biomedical Research, 2020, 04, 221-238.	0.1	6
2068	Three-dimensional models of human brain development. , 2020, , 257-278.		2
2069	Immunopathology and Immunotherapy of Central Nervous System Cancer. , 2020, , 379-425.		0
2070	Stem Cell Approaches and Small Molecules. , 2020, , 945-961.		0
2071	Antifungal Agent Luliconazole Inhibits the Growth of Mouse Glioma-initiating Cells in Brain Explants. Keio Journal of Medicine, 2020, 69, 97-104.	0.5	1
2072	Angiogenesis in glioblastoma: Molecular and cellular mechanisms and clinical applications. Acta Facultatis Medicae Naissensis, 2020, 37, 211-230.	0.1	1
2073	How the Hedgehog Outfoxed the Crab. , 2006, , 1-22.		1
2074	Molecular Targets in Gastric Cancer and Apoptosis. , 2009, , 157-192.		2

#	Article	IF	CITATIONS
2077	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2078	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2079	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2080	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2081	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2082	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2083	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2084	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.	0.8	0
2090	New advances on critical implications of tumor- and metastasis-initiating cells in cancer progression, treatment resistance and disease recurrence. Histology and Histopathology, 2010, 25, 1057-73.	0.5	37
2091	A translational approach to lung cancer research: From EGFRs to Wnt and cancer stem cells. Annals of Thoracic and Cardiovascular Surgery, 2009, 15, 213-20.	0.3	9
2094	Prostate cancer stem cell biology. Minerva Urologica E Nefrologica = the Italian Journal of Urology and Nephrology, 2012, 64, 19-33.	3.9	29
2097	What is the clinical value of cancer stem cell markers in gliomas?. International Journal of Clinical and Experimental Pathology, 2013, 6, 334-48.	0.5	59
2098	Effects of Zeng Sheng Ping/ACAPHA on malignant brain tumor growth and Notch signaling. Anticancer Research, 2012, 32, 2689-96.	0.5	7
2099	Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures. International Journal of Clinical and Experimental Pathology, 2013, 6, 546-60.	0.5	30
2101	Potential clinical role of telomere length in human glioblastoma. Translational Medicine @ UniSa, 2011, 1, 243-70.	0.8	6
2102	Targeting of cancer stem/progenitor cells plus stem cell-based therapies: the ultimate hope for treating and curing aggressive and recurrent cancers. Panminerva Medica, 2008, 50, 3-18.	0.2	28
2103	Role of SOX family of transcription factors in central nervous system tumors. American Journal of Cancer Research, 2014, 4, 312-24.	1.4	42
2104	Chemotherapy targeting cancer stem cells. American Journal of Cancer Research, 2015, 5, 880-93.	1.4	27

#	Article	IF	CITATIONS
2105	Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research. Comparative Medicine, 2017, 67, 300-314.	0.4	18
2106	Characterizing the Genomic Profile in High-Grade Gliomas: From Tumor Core to Peritumoral Brain Zone, Passing through Glioma-Derived Tumorspheres. Biology, 2021, 10, 1157.	1.3	9
2107	MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells. Cancers, 2021, 13, 5943.	1.7	6
2108	Protein kinase $C\hat{l}^1$ and SRC signaling define reciprocally related subgroups of glioblastoma with distinct therapeutic vulnerabilities. Cell Reports, 2021, 37, 110054.	2.9	6
2109	Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. PLoS Computational Biology, 2021, 17, e1009596.	1.5	12
2110	Local Delivery and Glioblastoma: Why Not Combining Sustained Release and Targeting?. Frontiers in Medical Technology, 2021, 3, 791596.	1.3	13
2111	Culture and Phenotyping of Glial Cell Cultures, , and. Methods in Molecular Biology, 2022, 2422, 217-232.	0.4	0
2114	Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: Results of a phase I clinical trial. Journal of Clinical Neuroscience, 2022, 95, 48-54.	0.8	17
2115	MV1035 Overcomes Temozolomide Resistance in Patient-Derived Glioblastoma Stem Cell Lines. Biology, 2022, 11, 70.	1.3	5
2116	Matrix Stiffness Potentiates Stemness of Liver Cancer Stem Cells Possibly via the Yes-Associated Protein Signal. ACS Biomaterials Science and Engineering, 2022, 8, 598-609.	2.6	10
2117	The Heterogeneous Cellular States of Glioblastoma Stem Cells Revealed by Single Cell Analysis. SSRN Electronic Journal, 0, , .	0.4	0
2119	Glioblastoma Cells Counteract PARP Inhibition through Pro-Survival Induction of Lipid Droplets Synthesis and Utilization. Cancers, 2022, 14, 726.	1.7	1
2120	Childhood Medulloblastoma: An Overview. Methods in Molecular Biology, 2022, 2423, 1-12.	0.4	5
2121	Sox2 induces glioblastoma cell stemness and tumor propagation by repressing TET2 and deregulating 5hmC and 5mC DNA modifications. Signal Transduction and Targeted Therapy, 2022, 7, 37.	7.1	38
2124	Upregulation of Cathepsin X in Glioblastoma: Interplay with Î ³ -Enolase and the Effects of Selective Cathepsin X Inhibitors. International Journal of Molecular Sciences, 2022, 23, 1784.	1.8	9
2125	ASCL1 phosphorylation and ID2 upregulation are roadblocks to glioblastoma stem cell differentiation. Scientific Reports, 2022, 12, 2341.	1.6	18
2126	Optimal control model of tumor treatment in the context of cancer stem cell. Mathematical Biosciences and Engineering, 2022, 19, 4627-4642.	1.0	1
2127	Employing CRISPR-Cas9 to Generate CD133 Synthetic Lethal Melanoma Stem Cells. International Journal of Molecular Sciences, 2022, 23, 2333.	1.8	4

#	Article	IF	CITATIONS
2128	Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 2607.	1.8	13
2129	Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity. Biology, 2022, 11, 313.	1.3	12
2130	Slow-Cycling Cells in Glioblastoma: A Specific Population in the Cellular Mosaic of Cancer Stem Cells. Cancers, 2022, 14, 1126.	1.7	4
2131	Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines, 2022, 10, 427.	1.4	6
2132	Effects of Ultra-Short Pulsed Electric Field Exposure on Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 3001.	1.8	7
2133	Inhibition of GLI-Mediated Transcription by Cyclic Pyrrole-Imidazole Polyamide in Cancer Stem Cells. Bulletin of the Chemical Society of Japan, 2022, 95, 693-699.	2.0	10
2134	The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Frontiers in Oncology, 2022, 12, 790976.	1.3	11
2135	A simple agent-based model to simulate 3D tumor-induced angiogenesis considering the evolution of the hypoxic conditions of the cells. Engineering With Computers, 2022, 38, 4115-4133.	3.5	4
2137	Histone Deacetylase Inhibitors Impair Glioblastoma Cell Motility and Proliferation. Cancers, 2022, 14, 1897.	1.7	11
2138	The epigenetic–metabolic interplay in gliomagenesis. Open Biology, 2022, 12, 210350.	1.5	2
2139	Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells.		5
	Neoplasia, 2022, 28, 100790.	2.3	
2140	Neoplasia, 2022, 28, 100790. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. Aging and Cancer, 2021, 2, 137-159.	2.3 0.5	3
2140 2141	Neoplasia, 2022, 28, 100790. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. Aging and Cancer, 2021, 2, 137-159. A Novel Role of BIRC3 in Stemness Reprogramming of Glioblastoma. International Journal of Molecular Sciences, 2022, 23, 297.	2.3 0.5 1.8	3
2140 2141 2142	Neoplasia, 2022, 28, 100790. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. Aging and Cancer, 2021, 2, 137-159. A Novel Role of BIRC3 in Stemness Reprogramming of Glioblastoma. International Journal of Molecular Sciences, 2022, 23, 297. LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 2021, 13, eabf7036.	2.3 0.5 1.8 5.8	3 10 18
2140 2141 2142 2142	Neoplasia, 2022, 28, 100790. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. Aging and Cancer, 2021, 2, 137-159. A Novel Role of BIRC3 in Stemness Reprogramming of Glioblastoma. International Journal of Molecular Sciences, 2022, 23, 297. LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 2021, 13, eabf7036. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro-Oncology, 2022, 24, 669-682.	2.3 0.5 1.8 5.8 0.6	3 10 18 77
2140 2141 2142 2143 2144	Neoplasia, 2022, 28, 100790. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. Aging and Cancer, 2021, 2, 137-159. A Novel Role of BIRC3 in Stemness Reprogramming of Glioblastoma. International Journal of Molecular Sciences, 2022, 23, 297. LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 2021, 13, eabf7036. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro-Oncology, 2022, 24, 669-682. Self-assembled ruthenium and osmium nanosystems display potent anticancer profile by interfering with metabolic activity. Inorganic Chemistry Frontiers, 0, .	 2.3 0.5 1.8 5.8 0.6 3.0 	3 10 18 77
2140 2141 2142 2143 2144 2145	Neoplasia, 2022, 28, 100790. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. Aging and Cancer, 2021, 2, 137-159. A Novel Role of BIRC3 in Stemness Reprogramming of Glioblastoma. International Journal of Molecular Sciences, 2022, 23, 297. LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 2021, 13, eabf7036. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro-Oncology, 2022, 24, 669-682. Self-assembled ruthenium and osmium nanosystems display potent anticancer profile by interfering with metabolic activity. Inorganic Chemistry Frontiers, 0, . Subcellular fractionation of brain tumor stem cells. Methods in Cell Biology, 2022, , 47-58.	2.3 0.5 1.8 5.8 0.6 3.0	3 10 18 77 1

#	Article	IF	CITATIONS
2147	Crosstalk between β-Catenin and CCL2 Drives Migration of Monocytes towards Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 4562.	1.8	11
2148	Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cellular and Molecular Neurobiology, 2023, 43, 585-603.	1.7	7
2162	Brain tumor stem cell dancing. Annali Dell'Istituto Superiore Di Sanita, 2014, 50, 286-90.	0.2	2
2163	LASS2 impairs proliferation of glioma stem cells and migration and invasion of glioma cells mainly via inhibition of EMT and apoptosis promotion. Journal of Cancer, 2022, 13, 2281-2292.	1.2	3
2164	A2B5 Expression in Central Nervous System and Gliomas. International Journal of Molecular Sciences, 2022, 23, 4670.	1.8	4
2165	Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell International, 2022, 22, 169.	1.8	5
2166	MEOX2 Regulates the Growth and Survival of Glioblastoma Stem Cells by Modulating Genes of the Glycolytic Pathway and Response to Hypoxia. Cancers, 2022, 14, 2304.	1.7	2
2167	Nanomedicines Targeting Glioma Stem Cells. ACS Applied Materials & Interfaces, 2023, 15, 158-181.	4.0	13
2168	Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers, 2022, 14, 2296.	1.7	11
2169	Novel therapeutics and drug-delivery approaches in the modulation of glioblastoma stem cell resistance. Therapeutic Delivery, 0, , .	1.2	4
2170	Disruption of \hat{l}^2 -catenin-mediated negative feedback reinforces cAMP-induced neuronal differentiation in glioma stem cells. Cell Death and Disease, 2022, 13, .	2.7	5
2171	Evaluation of miRNA Expression in Glioblastoma Stem-Like Cells: A Comparison between Normoxia and Hypoxia Microenvironment. Onco, 2022, 2, 113-128.	0.2	2
2172	Comparative single-cell RNA-sequencing profiling of BMP4-treated primary glioma cultures reveals therapeutic markers. Neuro-Oncology, 2022, 24, 2133-2145.	0.6	8
2173	Nanobody-based retargeting of an oncolytic herpesvirus for eliminating CXCR4+ GBM cells: A proof of principle. Molecular Therapy - Oncolytics, 2022, 26, 35-48.	2.0	5
2174	Stemness and clinical features in relation to the subventricular zone in diffuse lower-grade glioma: an exploratory study. Neuro-Oncology Advances, 2022, 4, .	0.4	1
2175	Differentiated glioma cell-derived fibromodulin activates integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth. ELife, 0, 11, .	2.8	6
2176	Evaluation of CD98 light chain-LAT1 as a potential marker of cancer stem-like cells in glioblastoma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119303.	1.9	2
2178	Activation of STAT3 through combined SRC and EGFR signaling drives resistance to a mitotic kinesin inhibitor in glioblastoma. Cell Reports, 2022, 39, 110991.	2.9	5

#	Article	IF	CITATIONS
2179	Targeting Acid Ceramidase Inhibits Glioblastoma Cell Migration through Decreased AKT Signaling. Cells, 2022, 11, 1873.	1.8	9
2180	Targeting CXCR4 to suppress gliomaâ€initiating cells and chemoresistance in glioma. Cell Biology International, 2022, 46, 1519-1529.	1.4	4
2181	Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Frontiers in Oncology, 0, 12, .	1.3	6
2182	Call the Eckols: Present and Future Potential Cancer Therapies. Marine Drugs, 2022, 20, 387.	2.2	8
2183	Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacological Research, 2022, 182, 106308.	3.1	9
2184	A Comprehensive Clinical Review of Adult-Type Diffuse Clioma Incorporating the 2021 World Health Organization Classification. Neurographics, 2022, 12, 43-70.	0.0	3
2185	Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cellular Oncology (Dordrecht), 2022, 45, 527-541.	2.1	8
2186	The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas. Frontiers in Oncology, 0, 12, .	1.3	4
2187	Identification of Stem Cell Related Gene Expression from the Osteosarcoma Cell Core Side. Journal of Cancer Prevention, 2022, 27, 122-128.	0.8	0
2188	Glioblastoma disrupts the ependymal wall and extracellular matrix structures of the subventricular zone. Fluids and Barriers of the CNS, 2022, 19, .	2.4	7
2189	PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	20
2190	Interferon-beta inhibits human glioma stem cell growth by modulating immune response and cell cycle related signaling pathways. Cell Regeneration, 2022, 11, .	1.1	3
2191	CD95 gene deletion may reduce clonogenic growth and invasiveness of human glioblastoma cells in a CD95 ligand-independent manner. Cell Death Discovery, 2022, 8, .	2.0	7
2193	Inhibition of the Sonic Hedgehog Pathway Using Small Molecule Inhibitors: Targeting Colon Cancer Stem Cells. Current Cancer Therapy Reviews, 2022, 18, .	0.2	0
2194	The modulation of ion channels in cancer chemo-resistance. Frontiers in Oncology, 0, 12, .	1.3	4
2195	A SOX2-engineered epigenetic silencer factor represses the glioblastoma genetic program and restrains tumor development. Science Advances, 2022, 8, .	4.7	6
2196	FMRP modulates the Wnt signalling pathway in glioblastoma. Cell Death and Disease, 2022, 13, .	2.7	11
2197	Pathway-based Approach Reveals Differential Sensitivity to E2F1 Inhibition in Glioblastoma. Cancer Research Communications, 2022, 2, 1049-1060.	0.7	1

#	Article	IF	CITATIONS
2198	PDPN marks a subset of aggressive and radiation-resistant glioblastoma cells. Frontiers in Oncology, 0, 12, .	1.3	2
2199	Using quantitative MRI to study the association of isocitrate dehydrogenase (IDH) status with oxygen metabolism and cellular structure changes in glioma. European Journal of Radiology, 2022, 155, 110502.	1.2	0
2200	Targeting extracellular matrix remodeling sensitizes glioblastoma to ionizing radiation. Neuro-Oncology Advances, 2022, 4, .	0.4	1
2201	Differential dependency of human glioblastoma cells on vascular endothelial growth factor‑A signaling via neuropilin‑1. International Journal of Oncology, 2022, 61, .	1.4	3
2202	Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
2203	Non-coding RNAs and glioma: Focus on cancer stem cells. Molecular Therapy - Oncolytics, 2022, 27, 100-123.	2.0	11
2204	Melatonin and cancer suppression: insights into its effects on DNA methylation. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	15
2205	PFKFB4 interacts with FBXO28 to promote HIF- $1\hat{l}\pm$ signaling in glioblastoma. Oncogenesis, 2022, 11, .	2.1	5
2206	WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	9
2208	Noxa and Mcl-1 expression influence the sensitivity to BH3-mimetics that target Bcl-xL in patient-derived glioma stem cells. Scientific Reports, 2022, 12, .	1.6	3
2209	Lrig1 regulates the balance between proliferation and quiescence in glioblastoma stem cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
2210	Preservation of the Hypoxic Transcriptome in Glioblastoma Patient-Derived Cell Lines Maintained at Lowered Oxygen Tension. Cancers, 2022, 14, 4852.	1.7	0
2211	Targeting Key Signaling Pathways in Glioblastoma Stem Cells for the Development of Efficient Chemo- and Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 12919.	1.8	3
2212	Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma. Cells, 2022, 11, 3467.	1.8	2
2213	Signaling pathways governing glioma cancer stem cells behavior. Cellular Signalling, 2023, 101, 110493.	1.7	8
2214	Human models as new tools for drug development and precision medicine. , 2023, , 155-171.		0
2216	DHODH inhibition impedes glioma stem cell proliferation, induces DNA damage, and prolongs survival in orthotopic glioblastoma xenografts. Oncogene, 2022, 41, 5361-5372.	2.6	5
2217	Identification of glioblastoma-specific antigens expressed in patient-derived tumor cells as candidate targets for chimeric antigen receptor T cell therapy. Neuro-Oncology Advances, 2023, 5, .	0.4	1

#	Article	IF	CITATIONS
2219	Synergistic Anticancer Effect of a Combination of Berbamine and Arcyriaflavin A against Glioblastoma Stem-like Cells. Molecules, 2022, 27, 7968.	1.7	2
2223	Aberrant L-Fucose Accumulation and Increased Core Fucosylation Are Metabolic Liabilities in Mesenchymal Glioblastoma. Cancer Research, 2023, 83, 195-218.	0.4	5
2225	TRPML2 Mucolipin Channels Drive the Response of Glioma Stem Cells to Temozolomide and Affect the Overall Survival in Glioblastoma Patients. International Journal of Molecular Sciences, 2022, 23, 15356.	1.8	2
2226	Roadmap toward subtype-specific vulnerabilities in adult glioma. , 2022, 1, .		0
2227	Glioblastoma stem cells express nonâ€canonical proteins and exclusive mesenchymalâ€like or nonâ€mesenchymalâ€like protein signatures. Molecular Oncology, 0, , .	2.1	3
2228	Oncolytic HSV-1 suppresses cell invasion through downregulating Sp1 in experimental glioblastoma. Cellular Signalling, 2023, 103, 110581.	1.7	1
2229	Pre-clinical models for evaluating glioma targeted immunotherapies. Frontiers in Immunology, 0, 13, .	2.2	4
2230	Cell of Origin of Brain and Spinal Cord Tumors. Advances in Experimental Medicine and Biology, 2023, , 85-101.	0.8	0
2231	Anticancer Properties of Hexosamine Analogs Designed to Attenuate Metabolic Flux through the Hexosamine Biosynthetic Pathway. ACS Chemical Biology, 2023, 18, 151-165.	1.6	3
2232	Culturing and Imaging Glioma Stem Cells in 3D Collagen Matrices. Current Protocols, 2023, 3, .	1.3	Ο
2233	Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Frontiers in Oncology, 0, 12, .	1.3	2
2234	Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. , 2023, 1, 177-194.		2
2235	Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma. Advances in Biological Regulation, 2023, 88, 100946.	1.4	3
2236	The Heterogeneous Cellular States of Glioblastoma Stem Cells Revealed by Single-Cell Analysis. Stem Cells, 2023, 41, 111-125.	1.4	3
2237	Insights into the Cancer Stem Cell Model of Glioma Tumorigenesis. Annals of the Academy of Medicine, Singapore, 2007, 36, 352-357.	0.2	23
2238	Natural killer cells in the treatment of glioblastoma: Diverse antitumor functions and potential clinical applications. , 2023, , 335-367.		1
2239	The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. Biochemistry (Moscow), 2023, 88, S21-S38.	0.7	0
2240	Tissue clearing to examine glioma complexity in 3 dimensions. Journal of Neuropathology and Experimental Neurology, 2023, 82, 376-389.	0.9	1

#	Article	IF	CITATIONS
2241	Natural Killer Cell-Based Immunotherapy against Glioblastoma. International Journal of Molecular Sciences, 2023, 24, 2111.	1.8	4
2242	The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Frontiers in Oncology, 0, 12, .	1.3	12
2243	Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. Journal of Integrative Medicine, 2023, 21, 120-129.	1.4	1
2244	Brain network mapping and glioma pathophysiology. Brain Communications, 2023, 5, .	1.5	2
2248	Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clinical Epigenetics, 2023, 15, .	1.8	4
2249	Exploring Novel Therapeutic Opportunities for Glioblastoma Using Patient-Derived Cell Cultures. Cancers, 2023, 15, 1562.	1.7	6
2250	Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles?. International Journal of Molecular Sciences, 2023, 24, 4883.	1.8	3
2251	Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	11
2252	Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. International Journal of Molecular Sciences, 2023, 24, 5665.	1.8	2
2253	A Self-Propagating c-Met–SOX2 Axis Drives Cancer-Derived IgG Signaling That Promotes Lung Cancer Cell Stemness. Cancer Research, 2023, 83, 1866-1882.	0.4	2
2254	TCF12 Deficiency Impairs the Proliferation of Glioblastoma Tumor Cells and Improves Survival. Cancers, 2023, 15, 2033.	1.7	0
2255	Neural Stem Cells as Potential Glioblastoma Cells of Origin. Life, 2023, 13, 905.	1.1	10
2256	Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer and Metastasis Reviews, 0, , .	2.7	0
2257	Bromodomain and Extraterminal Domain (BET) Protein Inhibition Hinders Clioblastoma Progression by Inducing Autophagy-Dependent Differentiation. International Journal of Molecular Sciences, 2023, 24, 7017.	1.8	2
2258	Preclinical Studies with Glioblastoma Brain Organoid Co-Cultures Show Efficient 5-ALA Photodynamic Therapy. Cells, 2023, 12, 1125.	1.8	3
2263	Establishing Brain Tumor Stem Cell Culture from Patient Brain Tumors and Imaging Analysis of Patient-Derived Xenografts. Methods in Molecular Biology, 2023, , .	0.4	1
2273	Neuronal Activity in Brain Tumor Pathogenesis: Adding to the Complexities of Central Nervous System Neoplasia. , 2023, , 3-25.		0
2276	Detection and Isolation of Cancer Stem Cells. , 2023, , 45-69.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
2289	CLIC1 regulation of cancer stem cells in glioblastoma. Current Topics in Membranes, 2023, , 9	9-123.	0.5	1
2302	Glioma. , 2024, , 184-192.			0
2311	A systematic review of immunotherapy in high-grade glioma: learning from the past to shape t perspectives. Neurological Sciences, 0, , .	uture	0.9	0