
CITATION REPORT List of articles citing

DOI: 10.1016/j.jallcom.2004.03.119 Journal of Alloys and Compounds, 2004, 381, 284-287.

Source: https://exaly.com/paper-pdf/37503427/citation-report.pdf

Version: 2024-04-17

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
454	??????????. 2005, 44, 192-196		
453	Guidelines for Developing Amide-Based Hydrogen Storage Materials. 2005, 46, 2093-2097		39
452	Development of Hydrogen Absorbing Alloy with High Dissociation Pressure. 2005 , 884, 1		1
451	Reversible storage of hydrogen in destabilized LiBH4. 2005 , 109, 3719-22		835
450	Nanotechnological Aspects in Materials for Hydrogen Storage. <i>Advanced Engineering Materials</i> , 2005 , 7, 443-455	3.5	216
449	(LiNH2MgH2): A Viable Hydrogen Storage System 2005 , 36, no		
448	The DOE National Hydrogen Storage Project: Recent Progress in On-Board Vehicular Hydrogen Storage. 2005 , 885, 1		3
447	Chemical activation of MgH2; a new route to superior hydrogen storage materials. 2005, 2823-5		93
446	Hydrogen desorption mechanism in a Li-N-H system by means of the isotopic exchange technique. 2005 , 109, 14855-8		66
445	Mechanism of hydrogenation reaction in the Li-Mg-N-H system. 2005 , 109, 10744-8		71
444	Hydrogen absorption and desorption in Mg園a園田 system. <i>Journal of Alloys and Compounds</i> , 2005 , 395, 209-212	5.7	64
443	Towards a viable hydrogen storage system for transportation application. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 392-395	5.7	81
442	Thermodynamic and kinetic investigations of the hydrogen storage in the LiMgN田 system. <i>Journal of Alloys and Compounds</i> , 2005 , 398, 235-239	5.7	229
441	Hydrogen absorption properties of LiMgN田 system. <i>Journal of Alloys and Compounds</i> , 2005 , 400, 245-24	48 5.7	54
440	Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. 2005 , 109, 22217-21		82
439	Energetics of the Li amide/Li imide hydrogen storage reaction. 2005, 72,		107
438	A first-principles investigation of LiNH(2) as a hydrogen-storage material: effects of substitutions of K and Mg for Li. 2006 , 110, 7139-43		26

(2006-2006)

437	Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. 2006 , 110, 14221-5		103
436	Enhancement of lithium amide to lithium imide transition via mechanical activation. 2006 , 110, 20710-8	3	74
435	Hydrogen absorption and desorption by the Li-Al-N-H system. 2006 , 110, 9632-6		57
434	Improved hydrogen release from LiB0.33N0.67H2.67 with noble metal additions. 2006 , 110, 7967-74		68
433	Hydrogen release from Mg(NH2)2-MgH2 through mechanochemical reaction. 2006 , 110, 14688-92		96
432	Ultrafast Reaction between Li3N and LiNH2To Prepare the Effective Hydrogen Storage Material Li2NH. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4993-4998	3.9	28
431	Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. 2006 , 110, 12964-8		76
430	Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. 2006 , 110, 8769-76		249
429	A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H 2006 , 45, 8749-54		44
428	Hydrogen Storage of Li2NH Prepared by Reacting Li with NH3. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 182-186	3.9	16
427	Thermodynamical stability of calcium borohydride Ca(BH4)2. 2006 , 74,		153
426	Thermodynamic and structural characterization of the Mgli的H hydrogen storage system. Journal of Alloys and Compounds, 2006 , 407, 274-281	5.7	155
425	Investigations on hydrogen storage over LiMgNH complexThe effect of compositional changes. <i>Journal of Alloys and Compounds</i> , 2006 , 417, 190-194	5.7	60
424	Development of metal hydride with high dissociation pressure. <i>Journal of Alloys and Compounds</i> , 2006 , 419, 256-261	5.7	81
423	Hydrogen adsorption and desorption by carbon materials. <i>Journal of Alloys and Compounds</i> , 2006 , 421, 204-208	5.7	67
422	Effects of ball-milling conditions on dehydrogenation of Mg(NH2)2MgH2. 2006 , 159, 120-125		38
421	Hydrogen absorption/desorption behaviors over a quaternary MgfalliNH system. 2006 , 159, 135-138		20
420	Hydrogen releasing reaction between Mg(NH2)2 and CaH2. 2006 , 159, 116-119		32

419	Crystal structure analysis of novel complex hydrides formed by the combination of LiBH4 and LiNH2. 2006 , 83, 277-279	73
418	Recent development on hydrogen storage materials composed of light elements. 2006, 383, 45-48	16
417	Recent development on hydrogen storage properties in metal NH systems. 2006, 159, 126-131	34
416	Investigation on chemical reaction between LiAlH4 and LiNH2. 2006 , 159, 167-170	52
415	Hydrogen storage of metal nitrides by a mechanochemical reaction. 2006 , 159, 81-87	51
414	Synthesis and Structural Characterization of a New Alkaline Earth Imide: MgCa(NH)2. 2006 , 2006, 4368-4373	19
413	Crystal Structure Analysis in the Dehydrogenation Process of Mg(NH2)2-LiH System. 2006, 971, 1	5
412	Recent Progresses on Complex- and Perovskite-Hydrides for Hydrogen Storage. 2006 , 927, 1	
411	The Potential of Binary Lithium Magnesium Nitride - LiMgN for Hydrogen Storage Application. 2007 , 1042, 1	
410	Improved hydrogen storage properties of LiBH4 destabilized by carbon. 2007 , 90, 034106	100
410 409	Improved hydrogen storage properties of LiBH4 destabilized by carbon. 2007 , 90, 034106 Adsorption and dissociation of hydrogen on Li3N surface: A first principles study. 2007 , 90, 084101	100
409	Adsorption and dissociation of hydrogen on Li3N surface: A first principles study. 2007 , 90, 084101	7
409 408	Adsorption and dissociation of hydrogen on Li3N surface: A first principles study. 2007 , 90, 084101 A New Concept of Hydrogen Storage Using Lithium Hydride and Ammonia. 2007 , 1042, 1	7
409 408 407	Adsorption and dissociation of hydrogen on Li3N surface: A first principles study. 2007 , 90, 084101 A New Concept of Hydrogen Storage Using Lithium Hydride and Ammonia. 2007 , 1042, 1 Improvement of the hydrogen-storage performances of LiMgNH system. 2007 , 22, 1339-1345	7 o 37
409 408 407 406	Adsorption and dissociation of hydrogen on Li3N surface: A first principles study. 2007, 90, 084101 A New Concept of Hydrogen Storage Using Lithium Hydride and Ammonia. 2007, 1042, 1 Improvement of the hydrogen-storage performances of LiMgNH system. 2007, 22, 1339-1345 The crystal structure of LiND2 and Mg(ND2)2. Journal of Alloys and Compounds, 2007, 428, 297-301 5.7 Observation of hydrogen absorption/desorption reaction processes in LiMgNH system by in-situ	7 0 37 67
409 408 407 406 405	Adsorption and dissociation of hydrogen on Li3N surface: A first principles study. 2007, 90, 084101 A New Concept of Hydrogen Storage Using Lithium Hydride and Ammonia. 2007, 1042, 1 Improvement of the hydrogen-storage performances of LiMgNH system. 2007, 22, 1339-1345 The crystal structure of LiND2 and Mg(ND2)2. Journal of Alloys and Compounds, 2007, 428, 297-301 5-7 Observation of hydrogen absorption/desorption reaction processes in LiMgNH system by in-situ X-ray diffractmetry. Journal of Alloys and Compounds, 2007, 430, 217-221 5-7 Activation of hydrogen storage materials in the LiMgNH system: Effect on storage properties.	7 0 37 67

(2007-2007)

401	Investigations on hydrogen desorption from the mixture of Mg(NH2)2 and CaH2. <i>Journal of Alloys and Compounds</i> , 2007 , 432, 298-302	5.7	26
400	Improved hydrogen release from LiB0.33N0.67H2.67 with metal additives: Ni, Fe, and Zn. <i>Journal of Alloys and Compounds</i> , 2007 , 433, 282-291	5.7	56
399	CaNaNH system for reversible hydrogen storage. <i>Journal of Alloys and Compounds</i> , 2007 , 441, 152-156	5.7	27
398	The effect of exposure of the H-storage system (LiNH2+MgH2) to water-saturated air. <i>Journal of Alloys and Compounds</i> , 2007 , 440, L13-L17	5.7	13
397	LiMgNH: Recent investigations and development. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 336-341	5.7	34
396	Dehydriding and rehydriding properties of Mg(NH2)2[IiH systems. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 328-331	5.7	17
395	Phase evolution of Li2ND, LiD and LiND2 in hydriding/dehydriding of Li3N. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 363-367	5.7	10
394	High throughput screening of the ternary LiNH2MgH2IiBH4 phase diagram. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 355-359	5.7	36
393	Development of a high-pressure microbalance for hydrogen storage materials. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 703-706	5.7	2
392	Synthesis and hydrogenation properties of MgB mol%LaNi3 composite prepared under an external magnetic field. 2007 , 15, 61-68		11
391	Stability analysis of doped materials for reversible hydrogen storage in destabilized metal hydrides. 2007 , 76,		25
390	Characterization of NH3 formation in desorption of LiMgNH storage system. <i>Journal of Alloys and Compounds</i> , 2007 , 440, 357-361	5.7	43
389	Complex hydrides for hydrogen storage. 2007 , 107, 4111-32		1769
388	Synthesis and characterization of a new ternary imide-Li2Ca(NH)2. 2007 , 46, 517-21		38
387	First-Principles Investigation of Adsorption and Dissociation of Hydrogen on Mg2Si Surfaces. Journal of Physical Chemistry C, 2007 , 111, 6910-6916	3.8	18
386	Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12129-12134	3.8	54
385	Structural and Compositional Changes during Hydrogenation/Dehydrogenation of the LiMgNH System. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18439-18443	3.8	82
384	Kinetic Improvement in the Mg(NH2)2[iH Storage System by Product Seeding. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6568-6573	3.8	56

383	Large Amount of Hydrogen Desorption from the Mixture of Mg(NH2)2and LiAlH4. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 19161-19164	3.8	28
382	First-principles study of cation and hydrogen arrangements in the Li-Mg-N-H hydrogen storage system. 2007 , 76,		22
381	Mg-Promoted LiHIIiNH2 Hydrogen Storage System Synthesized by Using the Mechanochemical Method. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8389-8396	3.8	7
380	Potential and Reaction Mechanism of LiMgAlNH System for Reversible Hydrogen Storage. Journal of Physical Chemistry C, 2007 , 111, 16686-16692	3.8	23
379	On the structural and energetic properties of the hydrogen absorber Li2Mg(NH)2. 2007 , 91, 091924		14
378	Decomposition of LiAl(NH2)4 and Reaction with LiH for a Possible Reversible Hydrogen Storage. Journal of Physical Chemistry C, 2007 , 111, 2335-2340	3.8	42
377	Metal Amides: New Hydrogen Storage Systems. 2007 , 1-3		
376	Nanotechnological Aspects in Materials for Hydrogen Storage. 2007 ,		
375	Reversible Hydrogen Storage by a LiALNH Complex. 2007, 17, 1137-1142		94
374	First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System. <i>Advanced Materials</i> , 2007 , 19, 3233-3239	24	191
373	Non-hydride systems of the main group elements as hydrogen storage materials. 2007 , 251, 925-935		86
372	Energetics of the lithium-magnesium imidehagnesium amide and lithium hydride reaction for hydrogen storage: An ab initio study. 2007 , 140, 114-122		35
371	Investigation of the processes for reversible hydrogen storage in the LiMgNH system. 2007 , 164, 496-502		49
370	Enhanced hydrogen storage properties of MgH2 co-catalyzed with NbF5 and single-walled carbon nanotubes. 2007 , 56, 765-768		40
369	Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. 2007 , 9, 1438-52		161
368	Phase Boundaries and Reversibility of LiBH4/MgH2 Hydrogen Storage Material. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12881-12885	3.8	161
367	Improved Hydrogen Storage of LiBH4 Catalyzed Magnesium. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12495-12498	3.8	55
366	Improved hydrogen storage performance of LiMgN⊞ materials by optimizing composition and adding single-walled carbon nanotubes. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 1262-1268	6.7	52

365	Decomposition of lithium amide and imide films on nickel. 2007 , 601, 830-836		5
364	A hybrid method for hydrogen storage and generation from water. 2007 , 172, 853-858		12
363	Evaluation of the hydrogen storage behavior of a LiNH2+MgH2 system with 1:1 ratio. 2007 , 172, 376-378	3	34
362	Comparisons between MgH2- and LiH-containing systems for hydrogen storage applications. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 3915-3924	6.7	37
361	Recent progress in hydrogen storage. 2008 , 11, 36-43		422
360	Strategies for the improvement of the hydrogen storage properties of metal hydride materials. 2008 , 9, 2157-62		42
359	A self-catalyzing hydrogen-storage material. 2008 , 47, 882-7		116
358	A Self-Catalyzing Hydrogen-Storage Material. 2008 , 120, 896-901		12
357	Comparative studies of reaction rates of NH3 with MgH2 and LiH. 2008, 180, 535-538		12
356	Hydrogen desorption processes in LiMgNH systems. 2008, 69, 2234-2236		17
355	Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. 2008 , 56, 6257-6263		124
354	Evaluation of enthalpy change due to hydrogen desorption for lithium amide/imide system by differential scanning calorimetry. 2008 , 468, 35-38		23
353	Hydrogen dissociation on oxide covered MgH2 by catalytically active vacancies. 2008, 254, 2377-2384		51
352	Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 6188-6194	6.7	41
351	Simultaneous determination of ammonia emission and hydrogen capacity variation during the cyclic testing for LiNH2IiH hydrogen storage system. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 6201-6204	6.7	13
350	Hydrogen spillover in the context of hydrogen storage using solid-state materials. 2008, 1, 338		116
349	Synthesis of Nanoscale Hydrogen Storage Materials. <i>Green Energy and Technology</i> , 2008 , 455-470	0.6	
348	Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. 2008 , 18, 2321		71

347	Hydrogen Technology. <i>Green Energy and Technology</i> , 2008 ,	0.6	33
346	Hydrogen sorption kinetics of MgH2 catalyzed with NbF5. <i>Journal of Alloys and Compounds</i> , 2008 , 453, 138-142	5.7	73
345	Crystal structure determination and reaction pathway of amideBydride mixtures. <i>Journal of Alloys and Compounds</i> , 2008 , 454, 233-244	5.7	104
344	Crystallite sizes of LiH before and after ball milling and thermal exposure. <i>Journal of Alloys and Compounds</i> , 2008 , 454, 297-305	5.7	20
343	Dehydrogenation reaction of LiMgNH systems studied by in situ synchrotron powder X-ray diffraction and powder neutron diffraction. <i>Journal of Alloys and Compounds</i> , 2008 , 457, 362-367	5.7	36
342	Impregnation method for the synthesis of LiNH systems. <i>Journal of Alloys and Compounds</i> , 2008 , 458, L1-L5	5.7	12
341	A study of the LiNH2MgH2 system for solid state hydrogen storage. <i>Journal of Alloys and Compounds</i> , 2008 , 459, 343-347	5.7	26
340	Enhanced H-storage property in LiCoNH system by promoting ion migration. <i>Journal of Alloys and Compounds</i> , 2008 , 466, L1-L4	5.7	10
339	Materials for hydrogen storage: current research trends and perspectives. 2008, 668-81		563
338	Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system. <i>Journal of Alloys and Compounds</i> , 2008 , 448, 263-271	5.7	53
337	Density functional theory for hydrogen storage materials: successes and opportunities. 2008 , 20, 0642	29	48
336	Structure of ternary imide Li2Ca(NH)2 and hydrogen storage mechanisms in amide-hydride system. 2008 , 130, 6515-22		65
335	Interaction of lithium hydride and ammonia borane in THF. 2008, 5595-7		67
334	Cobalt-catalyzed hydrogen desorption from the LiNH2-LiBH4 system. 2008 , 2395-9		54
333	Hydrogen Storage Properties in (LiNH2)2[liBH4[MgH2)X Mixtures (X = 0.0[l.0). <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4384-4390	3.8	39
332	Investigation on the Properties of the Mixture Consisting of Mg(NH2)2, LiH, and LiBH4 as a Hydrogen Storage Material. 2008 , 20, 7089-7094		41
331	Catalytically Enhanced Hydrogen Storage Properties of Mg(NH2)2 + 2LiH Material by Graphite-Supported Ru Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18280-18285	3.8	38
330	Comparison of the Calculated and Experimental Scenarios for Solid-State Reactions Involving Ca(AlH4)2. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 131-138	3.8	14

(2009-2008)

329	Improvement of Hydrogen Storage Properties of the LiMgNH System by Addition of LiBH4. 2008 , 20, 4398-4402	98
328	Discovery of novel hydrogen storage materials: an atomic scale computational approach. 2008 , 20, 064228	64
327	Role of Amino Anion in Metal Amides/Imides for Hydrogen Storage: A First Principle Study. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18264-18269	8
326	Hydrogen Storage in a LiNH2MgH2 (1:1) System. 2008 , 20, 3521-3527	63
325	Thermodynamic analysis of hydrogen sorption reactions in LiMgNH systems. 2008, 92, 021907	22
324	Effect of Pore Size on Dehydrogenation Temperature of Carbon Cryogel-Ammoniaborane Nanocomposites. 2008 , 1098, 1	
323	The structural properties of amides and imides as hydrogen storage materials. 2008, 223, 660-665	13
322	Nanomaterials for Hydrogen Storage Applications: A Review. 2008 , 2008, 1-9	121
321	Imides and amides as hydrogen storage materials. 2008, 450-477	4
320	Low-energy ordered structures of Li2Mg(NH)2. 2008 , 104, 083519	9
319	Synthesis and Characterization of Impregnated Li-N-H Complex Hydride. 2008, 72, 163-167	3
318	Effect of Li3N additive on the hydrogen storage properties of Li-Mg-N-H system. 2009 , 24, 1936-1942	9
317	Ab initio study on the electronic structure and vibration modes of alkali and alkaline-earth amides and alanates. 2009 , 21, 185501	7
316	Reversible hydrogen storage in metal-doped MgIliBH4 composites. 2009 , 60, 667-670	25
315	Improving the Hydrogen Reaction Kinetics of Complex Hydrides. <i>Advanced Materials</i> , 2009 , 21, 3023-302 <u>8</u> 4	53
	improving the riyarogen Reaction Rinetics of Complex Hydrides. Advanced Materials, 2009, 21, 3025-3026	
314	Hydrogen storage mediated by Pd and Pt nanoparticles. 2009 , 10, 2566-76	165
314		

311	Electronic structure, chemical bond and thermal stability of hydrogen absorber Li2MgN2H2. 2009 , 54, 497-503		1
310	The problem of solid state hydrogen storage. 2009 , 34, 2087-2091		157
309	The desorption kinetics of the Mg(NH2)2+LiH mixture. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 1411-1416	.7	27
308	Boron- and nitrogen-based chemical hydrogen storage materials. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 2303-2311	-7	308
307	Hazard assessment of complex hydrides as hydrogen storage materials. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 3210-3218	-7	14
306	Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 8937-8943	-7	26
305	Hydrogen storage in a LiAlN ternary system. International Journal of Hydrogen Energy, 2009, 34, 8101-816.	7	18
304	Thermodynamics of LiN田 system for hydrogen storage: A theoretical and experimental study. 2009 , 404, 3431-3434		11
303	Investigation of H2 storage in a templated carbon derived from zeolite Y and PFA. 2009 , 66, 565-569		31
302	First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. 2009 , 131, 230-7		242
302			179
	Li-Mg-Ca-B-H system. 2009 , 131, 230-7 Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H	.8	
301	Li-Mg-Ca-B-H system. 2009 , 131, 230-7 Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. 2009 , 131, 1862-70 Determination of the Phase Behavior of (LiNH2)c(LiBH4)1 Quaternary Hydrides through in Situ	.8	179
301	Li-Mg-Ca-B-H system. 2009, 131, 230-7 Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. 2009, 131, 1862-70 Determination of the Phase Behavior of (LiNH2)c(LiBH4)18 Quaternary Hydrides through in Situ X-ray Diffraction. Journal of Physical Chemistry C, 2009, 113, 18927-18934		179
301 300 299	Li-Mg-Ca-B-H system. 2009, 131, 230-7 Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. 2009, 131, 1862-70 Determination of the Phase Behavior of (LiNH2)c(LiBH4)1E Quaternary Hydrides through in Situ X-ray Diffraction. Journal of Physical Chemistry C, 2009, 113, 18927-18934 Formation and Stability of Ternary Imides in the LiMgNH Hydrogen Storage System. 2009, 21, 3485-3490 Hydrogen Desorption Behavior of Nickel-Chloride-Catalyzed Stoichiometric Li4BN3H10. Journal of	8	179 23 30
301 300 299 298	Li-Mg-Ca-B-H system. 2009, 131, 230-7 Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. 2009, 131, 1862-70 Determination of the Phase Behavior of (LiNH2)c(LiBH4)1B Quaternary Hydrides through in Situ X-ray Diffraction. Journal of Physical Chemistry C, 2009, 113, 18927-18934 Formation and Stability of Ternary Imides in the LiMgNH Hydrogen Storage System. 2009, 21, 3485-3490 Hydrogen Desorption Behavior of Nickel-Chloride-Catalyzed Stoichiometric Li4BN3H10. Journal of Physical Chemistry C, 2009, 113, 11172-11176 Nature of Ti Species in the LiMgNH System for Hydrogen Storage: A Theoretical and	.8	179 23 30 24
301 300 299 298 297	Li-Mg-Ca-B-H system. 2009, 131, 230-7 Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. 2009, 131, 1862-70 Determination of the Phase Behavior of (LiNH2)c(LiBH4)1 Quaternary Hydrides through in Situ X-ray Diffraction. Journal of Physical Chemistry C, 2009, 113, 18927-18934 Formation and Stability of Ternary Imides in the LiMgNH Hydrogen Storage System. 2009, 21, 3485-3490 Hydrogen Desorption Behavior of Nickel-Chloride-Catalyzed Stoichiometric Li4BN3H10. Journal of Physical Chemistry C, 2009, 113, 11172-11176 Nature of Ti Species in the LiMgNH System for Hydrogen Storage: A Theoretical and Experimental Investigation. Industrial & Dimensional Chemistry Research, 2009, 48, 5250-5254 Enhanced Hydrogen Storage Properties of LiMgNH System Prepared by Reacting Mg(NH2)2	8	179 23 30 24 16

(2010-2009)

293	Catalytically enhanced dehydrogenation of LiMgNH hydrogen storage material by transition metal nitrides. <i>Journal of Alloys and Compounds</i> , 2009 , 468, L21-L24	5.7	31	
292	Enhanced hydrogen storage performance of LiBH4Ni composite. <i>Journal of Alloys and Compounds</i> , 2009 , 479, 545-548	5.7	57	
291	Enhanced hydrogen storage performances of NaBH4MgH2 system. <i>Journal of Alloys and Compounds</i> , 2009 , 479, 619-623	5.7	85	
290	Diffusion controlled hydrogen desorption reaction for the LiBH4/2LiNH2 system. <i>Journal of Alloys and Compounds</i> , 2009 , 481, 473-479	5.7	20	
289	Nanomaterials for Solid State Hydrogen Storage. Fuel Cells and Hydrogen Energy, 2009,		122	
288	Impact of Stoichiometry on the Hydrogen Storage Properties of LiNH2[liBH4MgH2 Ternary Composites. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 2004-2013	3.8	17	
287	Nanoscale Materials For Hydrogen and Energy Storage. 2009 , 270-297		1	
286	First-principles computational discovery of materials for hydrogen storage. 2009 , 180, 012076		10	
285	Hydrogen storage materials: present scenarios and future directions. 2009, 105, 21		80	
284	A computational study of electronic structure, thermodynamics and kinetics of hydrogen desorption from Al- and Si-doped 日日 and EMgH2. 2009 , 19, 4348		29	
283	Effects of triphenyl phosphate on the hydrogen storage performance of the Mg(NH2)2ILiH system. 2009 , 19, 2141		29	
282	Molecular hydrogen carrier with activated nanohydride and ammonia. 2009 , 24, 2185-2190		37	
281	High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. 2010 , 39, 656-75		867	
280	Hydrogen storage properties of Ca(BH4)2-LiNH2 system. 2010 , 5, 1594-9		31	
279	Pressure and Temperature Influence on the Desorption Pathway of the LiBH4MgH2 Composite System. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15212-15217	3.8	114	
278	Synthesis and hydriding properties of Li2Mg(NH)2. 2010 , 195, 1984-1991		15	
277	Hydrogen storage behaviour of Li3N doped with Li2O and Na2O. 2010 , 195, 2003-2007		6	
276	Investigations on the solid state interaction between LiAlH4 and NaNH2. 2010 , 183, 2040-2044		15	

275	Enhancement of Ti-Cr-V BCC alloys on the dehydrogenation kinetics of Li-Mg-N-H hydrogen storage materials. 2010 , 29, 621-624		7
274	Studies on heat capacities and thermal analysis of LiMgN田 hydrogen storage system. 2010 , 100, 701-70	6	5
273	Advanced materials for energy storage. Advanced Materials, 2010, 22, E28-62	24	3687
272	Nanoparticles and 3D Supported Nanomaterials. 2010 , 279-340		1
271	Amides, Imides and Mixtures. 2010 , 159-185		4
270	Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH(2)/MgH(2) system. 2010 , 16, 693-702		39
269	Hydrogen storage properties of Lita NH system with different molar ratios of LiNH2/CaH2. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8317-8321	6.7	27
268	Reaction between magnesium ammine complex compound and lithium hydride. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2058-2062	6.7	13
267	Thermochemical transformations in 2MNH2BMgH2 systems (M = Li or Na). <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 4562-4568	6.7	26
266	In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 5448-5453	6.7	13
265	Hydrogen desorption from LiBH4 destabilized by chlorides of transition metal Fe, Co, and Ni. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7288-7294	6.7	70
264	Improved hydrogen storage performance of the LiNH2MgH2IiBH4 system by addition of ZrCo hydride. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7809-7814	6.7	32
263	Role of additives in LiBH4MgH2 reactive hydride composites for sorption kinetics. 2010 , 58, 3381-3389		170
262	. 2010,		106
261	Structural and Electronic Properties of Li2Mg(NH)2 for Hydrogen Storage: First-principles Study. 2010 , 23, 5-10		4
260	Density functional study of Li4NH and Li1.5NH1.5 as intermediary compounds during hydrogenation of Li3N. 2010 , 81,		15
259	Hydrogen: A future energy vector for sustainable development. 2010 , 224, 539-558		46
258	Reversible Hydrogen Storage in Destabilized LiAlH4MgH2IIiBH4 Ternary-Hydride System Doped with TiF3. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11643-11649	3.8	45

(2011-2010)

257	Enhanced Dehydrogenation Properties of Modified Mg(NH2)2[liBH4 Composites. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 17947-17953	3.8	19
256	Catalytic Effect of Transition Metal Doped in the LiNH System for Hydrogen Storage: A First Principle Investigation. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 5993-5996	3.9	7
255	Tunable Defect Structure in the LiMgN Ternary Phase System: A Powder Neutron Diffraction Study. 2010 , 22, 3174-3182		6
254	Crystal structure and charge density analysis of Ca(BH4)2. <i>Journal of Alloys and Compounds</i> , 2010 , 491, 57-62	5.7	25
253	Synthesis and crystal structure of a novel nitride hydride Sr2LiNH2. <i>Journal of Alloys and Compounds</i> , 2010 , 495, 272-274	5.7	7
252	High capacity hydrogen generation on-demand from (NH3+LiAlH4). <i>Journal of Alloys and Compounds</i> , 2010 , 497, L17-L20	5.7	10
251	Studies of covalent amides for hydrogen storage systems: Structures and bonding of the MAl(NH2)4 phases with M=Li, Na and K. <i>Journal of Alloys and Compounds</i> , 2010 , 503, 194-203	5.7	18
250	Thermodynamic destabilization of LiNH system by Si addition. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 343-347	5.7	2
249	Novel hydrogen storage materials: A review of lightweight complex hydrides. <i>Journal of Alloys and Compounds</i> , 2010 , 503, 303-339	5.7	352
248	Mechanochemically driven nonequilibrium processes in MNH2taH2 systems (M=Li or Na). <i>Journal of Alloys and Compounds</i> , 2010 , 506, 224-230	5.7	4
247	Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. 2010 , 12, 3108-11		22
246	Destabilisation of the Li-N-H hydrogen storage system with elemental Si. 2011 , 13, 17683-8		8
245	Intrinsic defects and dopants in LiNH2: a first-principles study. 2011 , 13, 6043-52		14
244	Local defects enhanced dehydrogenation kinetics of the NaBH(4)-added Li-Mg-N-H system. 2011 , 13, 314-21		31
243	Improving Effects of LiH and Co-Catalyst on the Dehydrogenation of Li4BN3H10. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8840-8844	3.8	17
242	Mitigation of Hydrogen Capacity Losses during Pressure Cycling of the Li3N⊞ System by the Addition of Nitrogen. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14386-14391	3.8	12
241	Improved Dehydrogenation Properties of Calcium Borohydride Combined with Alkaline-Earth Metal Amides. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18035-18041	3.8	20
240	Development of amidoboranes for hydrogen storage. 2011 , 47, 5116-29		129

239	First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the LiMgBNH System. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16681-16687	3.8	21
238	Hydrogen storage and ionic mobility in amide-halide systems. 2011 , 151, 271-84; discussion 285-95		37
237	Solid-state hydrogen storage for mobile applications: Quo Vadis?. 2011 , 4, 2495		91
236	Ternary and higher pnictides; prospects for new materials and applications. 2011 , 40, 4099-118		42
235	Influence of magnesium on hydrogenated ScAl1MMgx alloys: A theoretical study. 2011 , 50, 2848-2853		3
234	Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. 2011 , 40, 8179-86		17
233	Improved reversible dehydrogenation of 2LiBH4+MgH2 system by introducing Ni nanoparticles. 2011 , 26, 1143-1150		16
232	Destabilization of LiBH4 by (Ce, La)(Cl, F)3 for hydrogen storage. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 751-757	5.7	55
231	Hydrogen release and structural transformations in LiNH2MgH2 systems. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S719-S723	5.7	14
230	Crystal structure change in the dehydrogenation process of the LiMgN田 system. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 7553-7558	5.7	6
229	LiMg即H-based combination systems for hydrogen storage. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 7844-7853	5.7	67
228	Hydrogen Desorption from the NaNH2MgH2 System. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8407-8	343.8	28
227	Hydrogen Storage Properties of the Mg(NH3)6Cl2-LiH Combined System. 2011 , 52, 627-634		5
226	Ab initio analysis of the optical, electronic and elastic properties of the hydrogen-storage single crystals LiNH2. 2011 , 130, 685-689		3
225	Synthesis and hydrogenation properties of lithium magnesium nitride. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9714-9718	6.7	6
224	Investigation of the thermochemical transformations in the LiAlH4[IiNH2 system. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 10626-10634	6.7	15
223	Decomposition of Lithium Amide and Lithium Imide with and without Anion Promoter. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 8058-8064	3.9	12
222	Feasibility and performance of the mixture of MgH2 and LiNH2 (1:1) as a hydrogen-storage material. 2011 , 59, 5821-5831		24

221	Kinetic rate-limiting steps in dehydrogenation of LiNH and LiNgNH systems Effects of elemental Si and Al. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 8335-8343	6.7	26
220	Theoretical study of the interaction between LiNH2 and HMgH. 2011 , 111, 675-681		6
219	Hydrogen storage properties of the CeH2 doped Li-Mg-N-H/NaAlH4 system. 2011 , 29, 599-603		6
218	Hydrogen sorption from the Mg(NH2)2-KH system and synthesis of an amide-imide complex of KMg(NH)(NH2). 2011 , 4, 1622-8		33
217	Enhanced dehydrogenation/hydrogenation kinetics of the Mg(NH2)2\(\mathbb{I}\)LiH system with NaOH additive. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 2137-2144	6.7	38
216	Enhanced hydrogen storage performance of LiAlH4MgH2IIiF3 composite. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 5369-5374	6.7	51
215	An investigation on the thermodynamics and kinetics of magnesium hydride decomposition based on isotope effects. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 8351-8357	6.7	19
214	Cyclic properties and ammonia by-product emission of Li/MgNH hydrogen storage material. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 8373-8380	6.7	13
213	Order and disorder in Ca2ND0.90H0.10A structural and thermal study. 2011 , 184, 2088-2096		4
212	First-principles prediction of high-capacity, thermodynamically reversible hydrogen storage reactions based on (NH4)2B12H12. 2011 , 83,		12
211	Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH2/MgH2 Mixture. <i>Energies</i> , 2011 , 4, 826-844	3.1	10
2 10	RECENT PROGRESS IN BORON- AND NITROGEN-BASED CHEMICAL HYDROGEN STORAGE. 2012 , 05, 1230001		67
209	Hydrogen storage materials discovery via high throughput ball milling and gas sorption. 2012 , 14, 352-8	3	12
208	Reaction Pathways for Hydrogen Uptake of the LiMgN-Based Hydrogen Storage System. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13551-13558	3.8	13
207	Structure and diffusion in liquid complex hydrides via ab initio molecular dynamics. 2012, 86,		6
206	Additive Effects of LiBH4 and ZrCoH3 on the Hydrogen Sorption of the Li-Mg-N-H Hydrogen Storage System. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20246-20253	3.8	25
205	Materials design and modification on amide-based composites for hydrogen storage. 2012 , 22, 550-560)	35
204	Enhanced hydrogen storage properties of NaAlH4 co-catalysed with niobium fluoride and single-walled carbon nanotubes. 2012 , 2, 1569-1576		20

203	Hydrogen Storage Properties of 3Mg(NH2)2Li3AlH6. Journal of Physical Chemistry C, 2012, 116, 1485-149	2 2	5
202	Intermediate species and kinetics of lithium imide decomposition. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 10467-10472	7	9
201	Mechanochemical transformations in NaNH2-MgH2 mixtures. <i>Journal of Alloys and Compounds</i> , 2012 , 513, 324-327	7	15
200	From the computer to the laboratory: materials discovery and design using first-principles calculations. <i>Journal of Materials Science</i> , 2012 , 47, 7317-7340	.3	129
199	Li-Na ternary amidoborane for hydrogen storage: experimental and first-principles study. 2012 , 41, 4754-6	54	16
198	Hydrogen Storage. 2012 , 157-177		1
197	Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide. 2012 , 14, 1596-606	5	31
196	On the feasibility of developing hydrogen storages capable of developing hydrogen both in its molecular and atomic states. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 18061-18073	7	20
195	Hydrogen storage properties and mechanisms of the Mg(BH4)2NaAlH4 system. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 17137-17145	7	32
194	Enhanced dehydrogenation of nanoscale MgH2 confined by ordered mesoporous silica. 2012 , 136, 146-150	0	23
193	High capacity hydrogen storage: Basic aspects, new developments and milestones. 2012 , 1, 566-589		167
192	Development of Novel Polymer Nanostructures and Nanoscale Complex Hydrides for Reversible Hydrogen Storage. 2012 ,		1
191	Catalytic Influence of Various Cerium Precursors on the Hydrogen Sorption Properties of NaAlH4. 2012 , 2, 560-568		34
190	Effect of MgCl2 additives on the H-desorption properties of LiNH system. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 903-907	7	20
189	Studies on the de/re-hydrogenation characteristic of Mg(NH2)2/LiH mixture admixed with carbon nanofibres. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 3705-3711	7	16
188	System modeling methodology and analyses for materials-based hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 2874-2884	7	19
187	Acceptability envelope for metal hydride-based hydrogen storage systems. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 2812-2824	7	44
186	Desorption kinetics of lithium amide/magnesium hydride systems at constant pressure thermodynamic driving forces. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 3298-3304	7	30

185	New insights into the mechanism of activation and hydrogen absorption of (2LiNH2MgH2). <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 6646-6652	6.7	45
184	Hydrogen storage: beyond conventional methods. 2013 , 49, 8735-51		355
183	Hydrogen Storage Materials. 2013 , 99-136		5
182	Hydrogen Storage Materials. 2013 , 377-405		4
181	Playing Hardball with Hydrogen: Metastable Mechanochemical Hydrogenation of Magnesium Nitride. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1237-1246	3.8	10
180	Binary and Complex Main-Group Hydrides for Hydrogen Storage. 2013 , 1251-1275		
179	Reversible hydrogen storage in the LiMgNH system The effects of Ru doped single walled carbon nanotubes on NH3 emission and kinetics. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 100	039-10	0049
178	Theoretical study on the structure and dehydrogenation mechanism of mixed metal amidoborane, Na[Li(NH2BH3)]2. <i>Journal of Alloys and Compounds</i> , 2013 , 581, 59-65	5.7	9
177	The chemistry of ternary and higher lithium nitrides. 2013 , 257, 1978-2014		44
176	First-principles study of hydrogen vacancies in lithium amide doped with titanium and niobium. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 11303-11312	6.7	8
175	A solidBolid reaction enhanced by an inhomogeneous catalyst in the (de)hydrogenation of a lithiumBydrogenBitrogen system. 2013 , 3, 6311		9
174	Effects of Al-based additives on the hydrogen storage performance of the Mg(NH2)2-2LiH system. 2013 , 42, 5524-31		25
173	Understanding the role of K in the significantly improved hydrogen storage properties of a KOH-doped LiMg№ system. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5031	13	44
172	Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2. 2013 , 42, 3802-	11	58
171	Remarkable decrease in dehydrogenation temperature of LiBNH hydrogen storage system with CoO additive. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 13318-13327	6.7	17
170	Releasing 9.6lwt% of H2 from Mg(NH2)2BLiHNH3BH3 through mechanochemical reaction. International Journal of Hydrogen Energy, 2013 , 38, 10446-10452	6.7	7
169	Improved hydrogen storage performance of Mg(NH2)2/LiH mixture by addition of carbon nanostructured materials. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 8863-8871	6.7	15
168	Microstructure and hydrogen desorption characteristics of hydrogenated ScH2MBn (MI⊒IMg and Ca) systems synthesized by mechanical milling. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 6744	-6 7 49	

167	Preparation, scale-up and testing of nanoscale, doped amide systems for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 1439-1449	6.7	11
166	Recent process and development of metal aminoborane. 2013 , 8, 1076-89		28
165	Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. 2013 , 113, 231101		170
164	Combined effects of molar ratio and ball milling energy on the phase transformations and mechanical dehydrogenation in the lithium amide-magnesium hydride (LiNH2 + nMgH2)(n = 0.5\overline{\mathbb{Q}}.0) nanocomposites. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 8313-8327	6.7	21
163	Recent advances in the theory of hydrogen storage in complex metal hydrides. 2013 , 38, 462-472		11
162	Mechanistic investigations on significantly improved hydrogen storage performance of the Ca(BH4)2-added 2LiNH2/MgH2 system. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 5030-5038	6.7	26
161	Amides and borohydrides for high-capacity solid-state hydrogen storagethaterials design and kinetic improvements. 2013 , 38, 480-487		42
160	First-Principles Studies on Hydrogen Desorption Mechanism of MgnH2n (n = 3, 4). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8099-8104	3.8	6
159	Metathesis Reaction-Induced Significant Improvement in Hydrogen Storage Properties of the KF-Added Mg(NH2)2 LiH System. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 866-875	3.8	54
158	Rubidium Hydride: An Exceptional Dehydrogenation Catalyst for the Lithium Amide/Magnesium Hydride System. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6554-6560	3.8	29
157	Progress in Hydrogen Storage in Complex Hydrides. 2013 , 293-332		7
156	Solid-Solid heterogeneous catalysis: the role of potassium in promoting the dehydrogenation of the Mg(NH(2))(2)/2 LiH composite. 2013 , 6, 2181-9		23
155	Improved hydrogen-storage thermodynamics and kinetics for an RbF-doped Mg(NH2)2-2 LiH system. 2013 , 8, 2136-43		29
154	Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system. 2013 , 8, 374-84		37
153	Effect of CO on hydrogen storage performance of 2LiNH2 + MgH2 system. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 9288-9292	6.7	7
152	Effect of lanthanum hydride on microstructures and hydrogen storage performances of 2LiNH2-MgH2 system. 2014 , 32, 429-433		6
151	A Theoretical Study of the Effect of Zr-, Nb-Doped and Vacancy-like Defects on H Desorption on MgH2 (110) Surface. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 4231-4237	3.8	17
150	The enhanced hydrogen storage performance of (MgBNH)-doped Mg(NH2)ILiH system. International Journal of Hydrogen Energy, 2014 , 39, 1710-1718	6.7	18

149	Structural transitions of ternary imide Li2Mg(NH)2 for hydrogen storage. 2014 , 105, 083909		8
148	Effects of compaction pressure and graphite content on hydrogen storage properties of Mg(NH 2) 2 LiH hydride. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 19656-19661	6.7	12
147	Compositional effects on the hydrogen storage properties of Mg(NH2)2-2LiH-xKH and the activity of KH during dehydrogenation reactions. 2014 , 43, 2369-77		33
146	In situ formation of lithium fast-ion conductors and improved hydrogen desorption properties of the LiNH2MgH2 system with the addition of lithium halides. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3155	13	36
145	Effect of gas back pressure on hydrogen storage properties and crystal structures of Li 2 Mg(NH) 2. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 17754-17764	6.7	12
144	Effects of additives on the microstructure and hydrogen storage properties of the Li3NMgH2 mixture. <i>Journal of Alloys and Compounds</i> , 2014 , 613, 199-203	5.7	16
143	Thermal dehydrogenation behaviors and mechanisms of Mg(BH4)2BNH3-xLiH combination systems. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 11999-12006	6.7	8
142	Effective thermodynamic alteration to Mg(NH2)2liH system: achieving near ambient-temperature hydrogen storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15816-15822	13	35
141	Improved kinetics of the Mg(NH2)20LiH system by addition of lithium halides. 2014 , 4, 32555		22
140	Hydrogen storage systems from waste Mg alloys. 2014 , 270, 554-563		60
140	Hydrogen storage systems from waste Mg alloys. 2014 , 270, 554-563 Effect of CO on hydrogen storage performance of KF doped 2LiNH2+ MgH2 material. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 47-50	5.7	60 7
<u> </u>	Effect of CO on hydrogen storage performance of KF doped 2LiNH2+ MgH2 material. <i>Journal of</i>	5·7 3.8	
139	Effect of CO on hydrogen storage performance of KF doped 2LiNH2+ MgH2 material. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 47-50 Microstructures and Hydrogen Desorption Properties of the MgH2AlH3 Composite with NbF5		7
139	Effect of CO on hydrogen storage performance of KF doped 2LiNH2+ MgH2 material. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 47-50 Microstructures and Hydrogen Desorption Properties of the MgH2AlH3 Composite with NbF5 Addition. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18908-18916 NH3 Mediated or Ion Migration Reaction: The Case Study on HalideAmide System. <i>Journal of</i>	3.8	7
139 138 137	Effect of CO on hydrogen storage performance of KF doped 2LiNH2+ MgH2 material. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 47-50 Microstructures and Hydrogen Desorption Properties of the MgH2AlH3 Composite with NbF5 Addition. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18908-18916 NH3 Mediated or Ion Migration Reaction: The Case Study on HalideAmide System. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2344-2349 Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb	3.8	7 22 22
139 138 137	Effect of CO on hydrogen storage performance of KF doped 2LiNH2+ MgH2 material. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 47-50 Microstructures and Hydrogen Desorption Properties of the MgH2AlH3 Composite with NbF5 Addition. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18908-18916 NH3 Mediated or Ion Migration Reaction: The Case Study on HalideAmide System. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2344-2349 Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb cocatalyzed Mg(NH(2))(2)-2LiH system. <i>ACS Applied Materials & Composite With NbF5</i> High-temperature failure behaviour and mechanism of K-based additives in LiMgNH hydrogen	3.8 3.8 9.5	7 22 22 30
139 138 137 136	Effect of CO on hydrogen storage performance of KF doped 2LiNH2+ MgH2 material. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 47-50 Microstructures and Hydrogen Desorption Properties of the MgH2AlH3 Composite with NbF5 Addition. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18908-18916 NH3 Mediated or Ion Migration Reaction: The Case Study on HalideAmide System. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2344-2349 Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb cocatalyzed Mg(NH(2))(2)-2LiH system. <i>ACS Applied Materials & Design Systems</i> , 2014 , 6, 17024-33 High-temperature failure behaviour and mechanism of K-based additives in LiMgNH hydrogen storage systems. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7345-7353 Density function theory investigation on the thermodynamic properties of the LiNH system. 2014	3.8 3.8 9.5	7 22 22 30 23

131	Hydrogen storage in MgIliBH4 composites catalyzed by FeF3. 2014 , 267, 799-811		33
130	Hydrogen Energy. 2015 , 1-38		
129	Hydriding and dehydriding kinetics of RbH-doped 2LiNH2/MgH2 hydrogen storage system. <i>Journal of Alloys and Compounds</i> , 2015 , 645, S496-S499	5.7	9
128	Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture. 2015 , 1		3
127	Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates. 2015 , 8, 3777-82		12
126	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. 2015 , 8, 2789-825		236
125	Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage. 2015 , 8, 4180-8		19
124	The improved Hydrogen Storage Performances of the Multi-Component Composite: 2Mg(NH2)2BLiHLiBH4. <i>Energies</i> , 2015 , 8, 6898-6909	3.1	17
123	Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System. <i>Materials</i> , 2015 , 8, 3896-3909	3.5	6
122	A Li-Mg-N-H composite as H2 storage material: a case study with Mg(NH2)2-4LiH-LiNH2. 2015 , 51, 100°	18-21	15
121	Insights into the dehydrogenation reaction process of a K-containing Mg(NH2)2-2LiH system. 2015 , 44, 18012-8		16
120	Potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 2266-2273	6.7	32
119	Evaluation of the enthalpy change due to hydrogen desorption for MNH (M = Li, Mg, Ca) systems by differential scanning calorimetry. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 1516-1522	6.7	10
118	Synthesis and characterization of two new amide chloride compounds: Potential H2 storage materials. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 3001-3005	6.7	9
117	Comparison of the thermochemical and mechanochemical transformations in the 2NaNH 2 MgH 2 system. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 1829-1835	6.7	9
116	Reaction Behavior of the Li-N-H Hydrogen Storage System with Boron Nitride as an Additive. 2015 , 2, 50-57		
115	Microstructural evolution and improved hydrogen storage properties for the Li3NMgH2 system by addition of LiNH2 during the hydrogenation/dehydrogenation. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 9298-9305	6.7	14
114	Hydrogen storage properties of LiNH 2 🛭 iH system with MgH 2 , CaH 2 and TiH 2 added. International Journal of Hydrogen Energy, 2015 , 40, 9335-9346	6.7	23

(2016-2015)

113	Hydrogen absorption and lithium ion conductivity in Li6NBr3. <i>Journal of Alloys and Compounds</i> , 2015 , 645, S174-S177	5.7	3
112	Effect of N2, CH4 and O2 on hydrogen storage performance of 2LiNH2 + MgH2 system. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 6173-6179	6.7	8
111	Hydrogen storage properties of the mixtures MgH2[ii3N with different molar ratios. <i>Journal of Alloys and Compounds</i> , 2015 , 645, S464-S467	5.7	8
110	Hydrogen Storage Materials. 2015 , 205-239		4
109	On the synthesis, characterization and hydrogen storage behavior of ZrFe2 catalyzed LiMgNH hydrogen storage material. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 12294-12302	6.7	31
108	Kinetic improvement on the CaH2-catalyzed Mg(NH2)2+ 2LiH system. <i>Journal of Alloys and Compounds</i> , 2015 , 645, S284-S287	5.7	12
107	Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2\(\mathbb{I}\)LiH composite. 2015 , 5, 68542-68550		15
106	Thermodynamics, kinetics and modeling studies of KH- RbH- and CsH-doped 2LiNH2/MgH2 hydrogen storage systems. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 12336-12342	6.7	12
105	Enhancing ionic conductivity in lithium amide for improved energy storage materials. 2015 , 6, 015005		3
104	Hierarchical porous LiMg(NH)@C nanowires with long cycle life towards stable hydrogen storage. 2014 , 4, 6599		10
103	Metal Amides: New Hydrogen Storage Systems. 2016 ,		
102	Hydrogen Storage by Reversible Metal Hydride Formation. 2016 , 763-790		5
101	Two-Peak Mystery of LiNH2NaH Dehydrogenation Is Solved? A Study of the Analogous Sodium Amide/Lithium Hydride System. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27903-27909	3.8	11
100	The remarkable ability of anions to bind dihydrogen. 2016 , 18, 14588-602		18
99	Improvement of hydrogen storage property of three-component Mg(NH)-LiNH-LiH composites by additives. 2016 , 45, 15374-15381		21
98	Mechanochemical synthesis in the Li-Mg-N-D system under deuterium gas: a neutron diffraction study. 2016 , 18, 23944-53		3
97	Hydrogen Storage. 2016 , 567-638		
96	Effective participation of Li4(NH2)3BH4 in the dehydrogenation pathway of the Mg(NH2)2-2LiH composite. 2016 , 18, 17997-8005		15

95	Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications. 2016 , 16, 189-204	49
94	The interactions of Li3FeN2 with H2 and NH3. International Journal of Hydrogen Energy, 2016 , 41, 14171-d. \$ 17	7 ₄
93	Metal Hydrides. 2016 , 149-161	
92	Hydrogen carriers. 2016 , 1,	394
91	Synthesis of CsH and its effect on the hydrogen storage properties of the Mg(NH2)2-2LiH system. International Journal of Hydrogen Energy, 2016 , 41, 11264-11274 6.7	14
90	Li4(NH2)3Cl amide-chloride: a new synthesis route, and hydrogen storage kinetic and thermodynamic properties. 2016 , 6, 15622-15629	4
89	Enhancement of Hydrogen Storage in Destabilized LiNH2 with KMgH3 by Quick Conveyance of N-Containing Species. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 1415-1420	23
88	Synthesis and decomposition of Li3Na(NH2)4 and investigations of Li-Na-N-H based systems for hydrogen storage. 2016 , 18, 1735-42	10
87	Complex and liquid hydrides for energy storage. 2016 , 122, 1	64
86	A new potassium-based intermediate and its role in the desorption properties of the K-Mg-N-H system. 2016 , 18, 3910-20	8
85	Thermal decomposition of sodium amide. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 5213-52196.7	12
84	Hydrogen storage properties of LiMg即由/ZrCoH3 composite with different ball-milling atmospheres. 2017 , 1	1
83	Near Ambient Condition Hydrogen Storage in a Synergized Tricomponent Hydride System. 2017 , 7, 1602456	25
82	Enhanced hydrogen sorption in a Li-Mg-N-H system by the synergistic role of Li(NH)BH and ZrFe. 2017 , 19, 9444-9456	15
81	Enhanced hydrogen storage properties of 2LiNH2/MgH2 through the addition of Mg(BH4)2. Journal of Alloys and Compounds, 2017 , 704, 44-50	14
80	The effect of Sr(OH) on the hydrogen storage properties of the Mg(NH)-2LiH system. 2017 , 19, 8457-8464	13
79	Effects of Stoichiometry on the H -Storage Properties of Mg(NH) -LiH-LiBH Tri-Component Systems. 2017 , 12, 1758-1764	11
78	The mechanism of H2 and H2O desorption from bridging hydroxyls of a TiO2(110) surface. 2017 , 7, 251-264	10

(2018-2017)

77	Air-stable hydrogen generation materials and enhanced hydrolysis performance of MgH 2 -LiNH 2 composites. 2017 , 359, 427-434		69
76	Preparation of Li-Mg-N-H hydrogen storage materials for an auxiliary power unit. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 17144-17148	6.7	9
75	Nanostructured Materials for Next-Generation Energy Storage and Conversion. 2017,		4
74	The milled LiBH4/h-BN composites exhibiting unexpected hydrogen storage kinetics and reversibility. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 15790-15798	6.7	17
73	Recent advances in improving performances of the lightweight complex hydrides Li-Mg-N-H system. 2017 , 27, 21-33		45
72	Improved overall hydrogen storage properties of a CsH and KH co-doped Mg(NH2)2/2LiH system by forming mixed amides of LiK and CsMg. 2017 , 7, 30357-30364		5
71	Light metal borohydrides/amides combined hydrogen storage systems: composition, structure and properties. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25112-25130	13	34
70	Kinetic alteration of the 6Mg(NH)-9LiH-LiBH system by co-adding YCl and LiN. 2017 , 19, 32105-32115		8
69	Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage. <i>Energies</i> , 2017 , 10, 1645	3.1	104
68	Improved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6. <i>Metals</i> , 2017 , 7, 34	2.3	11
67	Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 701	2.6	O
66	Hydrogen production, storage, transportation and key challenges with applications: A review. 2018 , 165, 602-627		477
65	Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. 2018 , 6, 445-458		104
64	Enhanced thermal diffusivity and dehydrogenation of 2LiNH2MgH2 by doping with super activated carbon. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 13975-13980	6.7	7
63	In situ formation of Al3Ti, MgF2 and Al and their superior synergetic effects on reversible hydrogen storage of MgH2. 2018 , 318, 107-112		20
62	Introduction to metal-N-H systems for hydrogen storage. 2018 , 308-308		
61	Layers of Nanocrystalline SiC as a New Type of Solid-State Hydrogen Storage. 2018 , 2018, 1-6		2
60	. 2018,		3

Synthesis of a new functionalized surface precursor of lithium hagnesium lirea solid blend ball milled with tracers from ordered-mesoporous-blumina for high-performance hydrogen storage. **2018**, 16, 276-281

	2016, 10, 270-201		
58	Air-stable metal hydride-polymer composites of Mg(NH2)2[IiH and TPX[I] <i>Materials Today Energy</i> , 2018 , 10, 98-107	7	12
57	Enhanced reversible hydrogen desorption properties and mechanism of Mg(BH4)2-AlH3-LiH composite. <i>Journal of Alloys and Compounds</i> , 2018 , 762, 548-554	5.7	9
56	Improvements in the hydrogen storage properties of the Mg(NH)-LiH composite by KOH addition. 2018 , 20, 15358-15367		6
55	Kinetics and hydrogen storage performance of Li-Mg-N-H systems doped with Al and AlCl3. <i>Journal of Alloys and Compounds</i> , 2018 , 765, 635-643	5.7	3
54	Nitrogen-Based Hydrogen Storage Systems: A Detailed Overview. 2018 , 39-88		
53	The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 16092-16106	6.7	5
52	Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage. <i>Energies</i> , 2018 , 11, 1027	3.1	33
51	Phase Transformations in the Mixed Lithium-Magnesium Imide Li2Mg(NH)2. <i>Russian Physics Journal</i> , 2019 , 61, 2244-2252	0.7	1
50	Understanding the Decomposition Mechanisms of LiNH2, Mg(NH2)2, and NaNH2: A Joint Experimental and Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 18180-18186	3.8	6
49	Comprehensive study of the physical properties of Ba3Pn2 (Pn=N, P, As, Sb and Bi) through first principles technique. <i>Materials Research Express</i> , 2019 , 6, 095902	1.7	1
48	Complex Hydrides for Energy Storage, Conversion, and Utilization. <i>Advanced Materials</i> , 2019 , 31, e190	27:5:7	58
47	Mechanochemistry of Metal Hydrides: Recent Advances. <i>Materials</i> , 2019 , 12,	3.5	41
46	Hydrogen storage materials for hydrogen and energy carriers. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 18179-18192	6.7	100
45	High capacity conversion anodes in Li-ion batteries: A review. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 10852-10905	6.7	62
44	Amphoteric behavior of hydrogen (H+1 and Hfl) in complex hydrides from van der Waals interaction-including ab initio calculations. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6228-6240	13	4
43	Catalytic effects of Mg(BH4)2 on the desorption properties of 2LiNH2-MgH2 mixture. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 19294-19301	6.7	7
42	Mg-Mg2X (X=Cu, Sn) eutectic alloy for the Mg2X nano-lamellar compounds to catalyze hydrolysis reaction for H2 generation and the recycling of pure X metals from the reaction wastes. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 489-498	5.7	24

(2021-2020)

41	Functionalized graphene materials for hydrogen storage. Journal of Materials Science, 2020, 55, 1865-19	9.433	63
40	High pressure phase transitions and physical properties of Li2MgH4; implications for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 4720-4730	6.7	15
39	Magnesium-Based Materials for Hydrogen Storage-A Scope Review. <i>Materials</i> , 2020 , 13,	3.5	21
38	Thermochemical transformation and reversible performance of Mg(NH2)2NaMgH3 system. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 23069-23075	6.7	4
37	Nanomaterials in the advancement of hydrogen energy storage. <i>Heliyon</i> , 2020 , 6, e04487	3.6	20
36	Computationally Predicted High-Throughput Free-Energy Phase Diagrams for the Discovery of Solid-State Hydrogen Storage Reactions. <i>ACS Applied Materials & Discovery (19</i> , 12, 48553-48564)	1 ^{9.5}	3
35	A Comprehensive Review on Hydrogen Absorption Behaviour of Metal Alloys Prepared through Mechanical Alloying. <i>Metals</i> , 2020 , 10, 562	2.3	13
34	The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane. <i>Molecular Catalysis</i> , 2020 , 492, 110971	3.3	12
33	In situ measurement technologies on solid-state hydrogen storage materials: a review. <i>Materials Today Energy</i> , 2020 , 17, 100463	7	22
32	Hydrogen Pressure-Dependent Dehydrogenation Performance of the Mg(NH)-2LiH-0.07KOH System. <i>ACS Applied Materials & Dehydrogenation</i> 12, 15255-15261	9.5	4
31	Reversible Hydrogen Storage Using Nanocomposites. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 4618	2.6	7
30	A Review of the MSCA ITN ECOSTORENovel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity. <i>Inorganics</i> , 2020 , 8, 17	2.9	26
29	Conversion of magnesium waste into a complex magnesium hydride system: Mg(NH2)2[liH. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 1915-1923	5.8	12
28	Mild-condition synthesis of A2ZnH4 (A៤K, Rb, Cs) and their effects on the hydrogen storage properties of 2LiH-Mg(NH2)2. <i>Journal of Energy Chemistry</i> , 2020 , 50, 358-364	12	3
27	On-Board and Off-Board Technologies for Hydrogen Storage. <i>Advances in Computer and Electrical Engineering Book Series</i> , 2021 , 139-165	0.3	
26	A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. <i>Industrial & Descriptions of the Engineering Chemistry Research</i> , 2021 , 60, 2737-2771	3.9	12
25	Mg-based materials for hydrogen storage. <i>Journal of Magnesium and Alloys</i> , 2021 , 9, 1837-1837	8.8	18
24	High Hydrogen Mobility in an Amide B orohydride Compound Studied by Quasielastic Neutron Scattering. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100620	3.5	Ο

23	The Roles of Alkali/Alkaline Earth Metals in the Materials Design and Development for Hydrogen Storage. <i>Accounts of Materials Research</i> , 2021 , 2, 726-738	7.5	1
22	Hydrogen and ethanol: Production, storage, and transportation. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 27330-27348	6.7	30
21	An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 31674-31698	6.7	9
20	Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 149, 111311	16.2	50
19	Hydrogen Storage. <i>Green Energy and Technology</i> , 2008 , 81-128	0.6	5
18	Hydrogen Storage Technologies. 2017 , 117-142		3
17	In Situ X-ray Diffraction Studies on the De/rehydrogenation Processes of the K2[Zn(NH2)4]-8LiH System. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1546-1551	3.8	10
16	Materials for hydrogen storage and the Na-Mg-B-H system. AIMS Energy, 2015, 3, 75-100	1.8	5
15	Hydrogen storage properties and reaction mechanisms of K2Mn(NH2)4 B LiH system. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 40196-40196	6.7	1
14	Complex Hydrides. Fuel Cells and Hydrogen Energy, 2009 , 195-290		
13	Hydrogen storage in Li-Mg-N-H ternary system. 2018 , 318-323		
12	Overview of hydrogen storage properties of metallic amides and imides. 2018 , 331-332		
11	From Nanomaterials and Nanotechnologies to the Alternative Energy. <i>Progress in Physics of Metals</i> , 2018 , 19, 442-486	1.6	О
10	Nanostructured advanced materials for hydrogen storage. 2020 , 97-163		1
9	De-hydrogenation/Rehydrogenation Properties and Reaction Mechanism of AmZn(NH2)n-2nLiH Systems (A = Li, K, Na, and Rb). <i>Sustainability</i> , 2022 , 14, 1672	3.6	2
8	Effect of the particle size evolution on the hydrogen storage performance of KH doped Mg(NH2)2 + 2LiH. <i>Journal of Materials Science</i> ,	4.3	
7	Hydrogen Storage: Liquid and Chemical. 2012 , 144-165		О
6	Pseudo-Binary Phase Diagram of LiNH2-MH (M = Na, K) Eutectic Mixture. <i>Molecules</i> , 2022 , 27, 4093	4.8	O

CITATION REPORT

5	Challenges to developing materials for the transport and storage of hydrogen. 2022 , 14, 1214-1223	5
4	Improved hydrogen storage properties of Li-Mg-N-H system by lithium vanadium oxides. 2023 , 931, 167603	0
3	Synergistic Catalytic Effects of AlH3IIiF3 Composites on the Hydrogen Storage Performance of MgH2.	О
2	Amorphous alloys for hydrogen storage. 2023 , 941, 168945	1
1	Effects of Metal Borohydrides on the Dehydrogenation Kinetics of the LiMgNH Hydrogen-Storage System. 2023 , 127, 5255-5261	О