Recent advances in removing phosphorus from wastew (1997–2003)

Water Research 38, 4222-4246 DOI: 10.1016/j.watres.2004.07.014

Citation Report

#	Article	IF	CITATIONS
1	Calcium-Induced Virulence Factors Associated with the Extracellular Matrix of Mucoid Pseudomonas aeruginosa Biofilms. Journal of Bacteriology, 2005, 187, 4327-4337.	1.0	194
2	Involvement of Gypsum (CaSO4·Â2H2O) in Water Treatment Sludge Dewatering: A Potential Benefit in Disposal and Reuse. Separation Science and Technology, 2006, 41, 2785-2794.	1.3	34
3	Adsorption Behavior of Phosphate on Metal-Ions-Loaded Collagen Fiber. Industrial & Engineering Chemistry Research, 2006, 45, 3896-3901.	1.8	67
4	Phosphorus removal from wastewater by mineral apatite. Water Research, 2006, 40, 2965-2971.	5.3	120
5	Treatment processes for source-separated urine. Water Research, 2006, 40, 3151-3166.	5.3	426
6	Kinetics of struvite to newberyite transformation in the precipitation system MgCl2–NH4H2PO4–NaOH–H2O. Water Research, 2006, 40, 3447-3455.	5.3	53
7	Study of Phosphorus Removal using Zirconium-Sulfate-Surfactant Mesostructured Material. Journal of Japan Society on Water Environment, 2006, 29, 483-487.	0.1	1
8	Dewatered alum sludge: a potential adsorbent for phosphorus removal. Water Science and Technology, 2006, 54, 207-213.	1.2	139
9	Magnetic Removal of Phosphate from Wastewater Using Schwertmannite. Materials Transactions, 2006, 47, 1832-1837.	0.4	45
10	Nitrogen removal from domestic wastewater using the marshland upwelling system. Ecological Engineering, 2006, 27, 22-36.	1.6	16
11	Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 2006, 28, 64-70.	1.6	602
12	Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology, 2006, 38, 190-198.	1.6	138
13	An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 2006, 97, 2211-2216.	4.8	307
14	Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes. Biotechnology and Bioprocess Engineering, 2006, 11, 538-543.	1.4	35
15	Ab Initio Molecular Dynamics Studies of Ionic Dissolution and Precipitation of Sodium Chloride and Silver Chloride in Water Clusters, NaCl(H2O)n and AgCl(H2O)n,n = 6, 10, and 14. Chemistry - A European Journal, 2006, 12, 6382-6392.	1.7	31
16	Composition of Aqueous Extracts of Broiler Litter Treated with Aluminum Sulfate, Ferrous Sulfate, Ferric Chloride and Cypsum. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 989-1000.	0.7	3
17	Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor. Applied and Environmental Microbiology, 2007, 73, 2257-2270.	1.4	111
18	Coagulation and Precipitation as Post-Treatment of Anaerobically Treated Primary Municipal Wastewater. Water Environment Research, 2007, 79, 131-139.	1.3	17

#	Article	IF	CITATIONS
19	Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Research, 2007, 41, 2449-2456.	5.3	76
20	Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere, 2007, 69, 319-324.	4.2	141
21	Constructive Approaches Toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses. Critical Reviews in Environmental Science and Technology, 2007, 37, 129-164.	6.6	346
22	PHOSPHATE SORPTION CHARACTERISTICS OF ZIRCONIUM MESO-STRUCTURE SYNTHESIZED UNDER DIFFERENT CONDITIONS. Environmental Technology (United Kingdom), 2007, 28, 785-792.	1.2	3
23	Greenhouse Evaluation of Struvite and Sludges from Municipal Wastewater Treatment Works as Phosphorus Sources for Plants. Journal of Agricultural and Food Chemistry, 2007, 55, 8206-8212.	2.4	72
24	The Effect of Citrate and Phosphocitrate On Struvite Spontaneous Precipitation. Crystal Growth and Design, 2007, 7, 2705-2712.	1.4	52
25	Struvite Production from Dairy Wastewater and its Potential as a Fertilizer for Organic Production in Calcareous Soils. , 2007, , .		3
26	Development of an Air Sparged Continuous Flow Reactor for Struvite Precipitation from Two Different Liquid Swine Manure Storage Systems. , 2007, , .		2
27	Reaction rystallization of Struvite in a Continuous Liquid Jetâ€Pump DTM MSMPR Crystallizer with Upward Circulation of Suspension in a Mixing Chamber – an SDG Kinetic Approach. Chemical Engineering and Technology, 2007, 30, 1576-1583.	0.9	14
28	Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device. Bioresource Technology, 2007, 98, 1573-1578.	4.8	153
29	Effect of mineral elements on phosphorus release from heated sewage sludge. Bioresource Technology, 2007, 98, 2533-2537.	4.8	15
30	The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresource Technology, 2007, 98, 2163-2169.	4.8	88
31	Phosphate removal from water using lithium intercalated gibbsite. Journal of Hazardous Materials, 2007, 147, 205-212.	6.5	63
32	Comparative study of phosphates removal from aqueous solutions by nanocrystalline akaganéite and hybrid surfactant-akaganéite. Separation and Purification Technology, 2007, 52, 478-486.	3.9	107
33	Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biology and Fertility of Soils, 2007, 43, 805-809.	2.3	153
34	Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. Journal of Applied Phycology, 2007, 19, 43-53.	1.5	85
35	Treatment of mixed domestic–industrial wastewater using cyanobacteria. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1503-1516.	1.4	66
36	Effects of influent C/N ratio, C/P ratio and volumetric exchange ratio on biological phosphorus removal in UniFed SBR process. Journal of Chemical Technology and Biotechnology, 2008, 83, 1587-1595.	1.6	10

ARTICLE IF CITATIONS # The struviteâ€type compounds <i>M</i> [Mg(H₂0)₆](<i>X</i> O₄), 37 0.6 27 where $\langle i \rangle M \langle i \rangle = Rb$, Tl and $\langle i \rangle X \langle i \rangle = P$, As. Crystal Research and Technology, 2008, 43, 1286-1291. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. 6.5 183 Journal of Hazardous Materials, 2008, 151, 103-110. Use of magnesit as a magnesium source for ammonium removal from leachate. Journal of Hazardous 39 6.5 148 Materials, 2008, 156, 619-623. Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresource Technology, 2008, 99, 164 3787-3793. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment 41 4.8 88 plants. Bioresource Technology, 2008, 99, 4817-4824. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor. Bioresource Technology, 2008, 99, 6488-6493. 4.8 46 A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the 43 4.8 163 process. Bioresource Technology, 2008, 99, 6285-6291. Removal of phosphorus through struvite precipitation using a by-product of magnesium oxide production (BMP): Effect of the mode of BMP preparation. Chemical Engineering Journal, 2008, 136, 44 6.6 54 204-209 Using low intensity ultrasound to improve the efficiency of biological phosphorus removal. 45 3.8 57 Ultrasonics Sonochemistry, 2008, 15, 775-781. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for 4.8 184 removing ammonium from wastewater. Bioresource Technology, 2008, 99, 4980-4989 Nutrient Removal in Wetlands During Intermittent Artificial Aeration. Environmental Engineering 47 17 0.8 Science, 2008, 25, 1279-1290. Biological Wastewater Treatment Systems., 2008, , 426-441. 48 Phosphorus Removal and Recovery from Municipal Wastewaters. Elements, 2008, 4, 109-112. 49 0.5 153 Phosphate ion removal from a solution by soda-lime borosilicate glass. Journal of Non-Crystalline 1.5 Solids, 2008, 354, 5009-5013. Phosphatase activity in anaerobic bioreactors for wastewater treatment. Water Research, 2008, 42, 51 5.343 2796-2802. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Research, 2008, 42, 3275-3284. Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Research, 53 5.333 2008, 42, 4609-4618. Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from 54 4.2 wastewater. Chemosphere, 2008, 72, 290-298.

#	Article	IF	CITATIONS
55	Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 2008, 72, 1621-1635.	4.2	437
56	Chapter 16 Assessment of phosphorus bioavailability from organic wastes in soil. Developments in Soil Science, 2008, 32, 363-411.	0.5	9
57	Influence of wastewater composition on biological nutrient removal in UniFed SBR process. Water Science and Technology, 2008, 58, 803-810.	1.2	13
58	Retention and Removal of Suspended Solids and Total Phosphorus from Water by Riparian Reeds. Journal of Environmental Engineering, ASCE, 2008, 134, 771-777.	0.7	1
59	Use of Laser Microdissection for Phylogenetic Characterization of Polyphosphate-Accumulating Bacteria. Applied and Environmental Microbiology, 2008, 74, 4231-4235.	1.4	16
60	Phosphorus Sorbing Materials: Sorption Dynamics and Physicochemical Characteristics. Journal of Environmental Quality, 2008, 37, 174-181.	1.0	83
61	Study on the Treatment for High Concentration of Ammonia Nitrogen in Piggery Wastewater by MAP. , 2009, , .		2
62	Nitrate and phosphate removal in sulphur-coral stone autotrophic denitrification packed-bed reactorsA paper submitted to the Journal of Environmental Engineering and Science Canadian Journal of Civil Engineering, 2009, 36, 923-932.	0.7	6
63	Selective Precipitation of Phosphate from Semiconductor Wastewater. Journal of Environmental Engineering, ASCE, 2009, 135, 1063-1070.	0.7	23
64	Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal. Journal of Environmental Sciences, 2009, 21, 575-580.	3.2	96
65	Kinetics of Reaction-Crystallization of Struvite in the Continuous Draft Tube Magma Type Crystallizers—Influence of Different Internal Hydrodynamics. Chinese Journal of Chemical Engineering, 2009, 17, 330-339.	1.7	24
66	The removal of phosphorus from reject water in a municipal wastewater treatment plant using iron ore. Journal of Chemical Technology and Biotechnology, 2009, 84, 78-82.	1.6	36
67	The removal of phosphate from wastewater using anoxic reduction of iron ore in the rotating reactor. Biochemical Engineering Journal, 2009, 46, 223-226.	1.8	17
68	Growth and removal of nitrogen and phosphorus by free-living and chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus. Journal of Applied Phycology, 2009, 21, 353-360.	1.5	42
69	Effect and mechanism of carbon sources on phosphorus uptake by microorganisms in sequencing batch reactors with the single-stage oxic process. Science in China Series B: Chemistry, 2009, 52, 2358-2365.	0.8	5
70	Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 2009, 85, 371-381.	1.7	347
71	The probable metabolic relation between phosphate uptake and energy storages formations under single-stage oxic condition. Bioresource Technology, 2009, 100, 4005-4011.	4.8	45
72	Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. Journal of Hazardous Materials, 2009, 161, 608-613.	6.5	65

	CITATION	Report	
#	Article	IF	CITATIONS
73	Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation—A comparative study. Journal of Hazardous Materials, 2009, 166, 248-254.	6.5	74
74	Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution. Journal of Hazardous Materials, 2009, 166, 714-719.	6.5	68
75	Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste. Journal of Hazardous Materials, 2009, 166, 1261-1265.	6.5	86
76	Dose effects of Mg and PO4 sources on the composting of swine manure. Journal of Hazardous Materials, 2009, 169, 801-807.	6.5	86
77	Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers. Journal of Hazardous Materials, 2009, 170, 511-519.	6.5	78
78	Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6. Journal of Hazardous Materials, 2009, 170, 962-968.	6.5	54
79	Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. Journal of Hazardous Materials, 2009, 171, 671-677.	6.5	148
80	Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 2009, 335, 168-174.	5.0	356
81	Investigation of phosphorus desorption from P-saturated alum sludge used as a substrate in constructed wetland. Separation and Purification Technology, 2009, 66, 71-75.	3.9	35
82	Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical Engineering Journal, 2009, 151, 141-148.	6.6	233
83	Characterization and phosphorus removal of poly-silicic-ferric coagulant. Desalination, 2009, 247, 442-455.	4.0	15
84	Phosphorus removal from agricultural runoff by constructed wetland. Ecological Engineering, 2009, 35, 402-409.	1.6	76
85	Performance evaluation of constructed wetlands in a tropical region. Ecological Engineering, 2009, 35, 1529-1537.	1.6	52
86	Micellar Enhanced Ultrafiltration for phosphorus removal in domestic wastewater. Desalination and Water Treatment, 2009, 6, 211-216.	1.0	23
87	Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. European Journal of Soil Biology, 2009, 45, 88-93.	1.4	136
88	A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 2009, 46, 369-375.	2.6	305
89	Removal of phosphorus from solution using biogenic iron oxides. Water Research, 2009, 43, 2029-2035.	5.3	107
90	Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Water Research, 2009, 43, 2969-2976.	5.3	122

#	Article	IF	CITATIONS
91	Using diffusive gradients in thin-films for in situ monitoring of dissolved phosphate emissions from freshwater aquaculture. Aquaculture, 2009, 286, 198-202.	1.7	30
92	A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environmental Science & Technology, 2009, 43, 6126-6130.	4.6	412
93	Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 2009, 39, 433-477.	6.6	617
94	Aerobic treatment of wastewater: Removal of nitrogen and phosphorus in the presence of humic substances. Environmental Technology (United Kingdom), 2009, 30, 421-429.	1.2	4
95	Stereochemistry and thermodynamics of the inclusion of aliphatic and aromatic anionic guests in a tetracationic calix[4]arene in acidic and neutral aqueous solutions. New Journal of Chemistry, 2009, 33, 991.	1.4	19
96	Removal of phosphorus from secondary effluents by coagulation and ultrafiltration. Desalination and Water Treatment, 2009, 8, 24-30.	1.0	17
97	Struvite Recovery from Swine Waste Biogas Digester Effluent through a Stainless Steel Device under Constant pH Conditions. Biomedical and Environmental Sciences, 2009, 22, 201-209.	0.2	19
98	Effectiveness of Recovered Magnesium Phosphates as Fertilizers in Neutral and Slightly Alkaline Soils. Agronomy Journal, 2009, 101, 323-329.	0.9	118
99	Phosphate Ion Removal from Aqueous Solution Using an Iron Oxide-Coated Fly Ash Adsorbent. Adsorption Science and Technology, 2009, 27, 603-614.	1.5	13
100	Potential of Phosphate Ion Removal Using an Al ³⁺ -Cross-linked Chitosan- <i>g</i> -Poly(Acrylic Acid)/Vermiculite Ionic Hybrid. Adsorption Science and Technology, 2010, 28, 89-99.	1.5	11
101	Phosphorus Removal by Expanded Clay—Six Years of Pilotâ€Scale Constructed Wetlands Experience. Water Environment Research, 2010, 82, 128-137.	1.3	25
102	Urine Separation - Opportunities for Developing Countries. Water Practice and Technology, 2010, 5, .	1.0	0
103	Growth of Quailbush in Acidic, Metalliferous Desert Mine Tailings: Effect of Azospirillum brasilense Sp6 on Biomass Production and Rhizosphere Community Structure. Microbial Ecology, 2010, 60, 915-927.	1.4	42
104	Phosphate solubilization potentials of soil Acinetobacter strains. Biology and Fertility of Soils, 2010, 46, 707-715.	2.3	51
105	Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process. Separation and Purification Technology, 2010, 74, 329-335.	3.9	122
106	Removal of phosphate by the green seaweed Ulva lactuca in a small-scale sewage treatment plant (los) Tj ETQq1	1 0.78431 1.5	4 rgBT /Ove
107	Electrochemical Production of Ferrate (Iron VI): Application to the Wastewater Treatment on a Laboratory Scale and Comparison with Iron (III) Coagulant. Water, Air, and Soil Pollution, 2010, 209, 483-488.	1.1	26
108	Application of struvite precipitation as a pretreatment in treating swine wastewater. Process Biochemistry, 2010, 45, 563-572.	1.8	58

#	Article	IF	CITATIONS
109	Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. Journal of Colloid and Interface Science, 2010, 342, 427-436.	5.0	104
110	Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. Journal of Colloid and Interface Science, 2010, 350, 538-543.	5.0	61
111	Utilisation of phosphorus nutrient content in industrial scale plasmid DNA production: a waste minimisation study. Journal of Cleaner Production, 2010, 18, 1066-1072.	4.6	1
112	Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater. Journal of Hazardous Materials, 2010, 176, 444-450.	6.5	73
113	Influence of calcination on the adsorptive removal of phosphate by Zn–Al layered double hydroxides from excess sludge liquor. Journal of Hazardous Materials, 2010, 177, 516-523.	6.5	179
114	Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites. Journal of Hazardous Materials, 2010, 179, 244-250.	6.5	306
115	The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 2010, 181, 248-254.	6.5	240
116	Antimicrobial activity of commercial zeolite A on Acinetobacter junii and Saccharomyces cerevisiae. Journal of Hazardous Materials, 2010, 183, 655-663.	6.5	8
117	Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions. Journal of Hazardous Materials, 2010, 184, 226-233.	6.5	38
118	Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk. Waste Management, 2010, 30, 885-892.	3.7	105
119	Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal. Bioresource Technology, 2010, 101, 1049-1053.	4.8	60
120	Macroscopic and microscopic variation in recovered magnesium phosphate materials: Implications for phosphorus removal processes and product re-use. Bioresource Technology, 2010, 101, 877-885.	4.8	18
121	Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 2010, 101, 1611-1627.	4.8	634
122	The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresource Technology, 2010, 101, 3992-3999.	4.8	65
123	EFFICIENCY OF GROWTH AND NUTRIENT UPTAKE FROM WASTEWATER BY HETEROTROPHIC, AUTOTROPHIC, AND MIXOTROPHIC CULTIVATION OF CHLORELLAâ€∫VULGARIS IMMOBILIZED WITH AZOSPIRILLUMâ€∫BRASILE Journal of Phycology, 2010, 46, 800-812.	NSEA.	127
124	Assessment of SCAR markers to design realâ€time PCR primers for rhizosphere quantification of <i>Azospirillum brasilense</i> phytostimulatory inoculants of maize. Journal of Applied Microbiology, 2010, 109, 528-538.	1.4	37
125	Chemical precipitation for controlling nitrogen loss during composting. Waste Management and Research, 2010, 28, 385-394.	2.2	7
126	Phosphates Recovery through Hydroxyapatite Crystallization from Wastewater Using Converter Slag as a Seed Crystal. , 2010, , .		1

#	Article	IF	CITATIONS
127	Removal of Phosphate from Wastewater Using Steel Slag Modified by High Temperature Activation. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	2
128	Physico-chemical Treatment Processes. , 2010, , 605-644.		0
129	Removing Phosphorus from Phosphorus-Containing Industrial Wastewater Using Modified Marble Powder as Chemical Precipitant. , 2010, , .		0
130	Removal of Phosphate from Aqueous Solution With Fe-Mn Oxide Formed in Situ by KMnO4-Fe(II) Process. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
131	Contaminant Removal Processes in Subsurface-Flow Constructed Wetlands: A Review. Critical Reviews in Environmental Science and Technology, 2010, 40, 561-661.	6.6	399
132	Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation. Water Science and Technology, 2010, 61, 3228-3234.	1.2	42
133	Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Research, 2010, 44, 2371-2379.	5.3	117
134	Mechanochemical Route for Synthesizing KMgPO ₄ and NH ₄ MgPO ₄ for Application as Slow-Release Fertilizers. Industrial & Engineering Chemistry Research, 2010, 49, 2213-2216.	1.8	39
135	Seed-Mediated Synthesis of Unusual Struvite Hierarchical Superstructures Using Bacterium. Crystal Growth and Design, 2010, 10, 2073-2082.	1.4	37
136	Microscopic solvation of NaBO2 in water: anion photoelectron spectroscopy and ab initio calculations. Physical Chemistry Chemical Physics, 2011, 13, 15865.	1.3	23
137	Effect of a low concentration of aluminum sulfate on the treatment performance of a submerged membrane bioreactor. Desalination and Water Treatment, 2011, 29, 181-186.	1.0	0
138	Effect of Nitrogen and Phosphorus Concentration on Their Removal Kinetic in Treated Urban Wastewater by <i>Chlorella Vulgaris</i> . International Journal of Phytoremediation, 2011, 13, 884-896.	1.7	100
139	Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved?. Environmental Science & Technology, 2011, 45, 7100-7106.	4.6	1,406
140	Biotechnological Methods for Nutrient Removal from Wastewater with Emphasis on the Denitrifying Phosphorus Removal Process. , 2011, , 341-351.		4
141	Bacteria in Agrobiology: Plant Nutrient Management. , 2011, , .		35
142	Basic and Technological Aspects of Phytohormone Production by Microorganisms: Azospirillum sp. as a Model of Plant Growth Promoting Rhizobacteria. , 2011, , 141-182.		9
143	Biologically induced phosphorus precipitation in aerobic granular sludge process. Water Research, 2011, 45, 3776-3786.	5.3	169
144	Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Research, 2011, 45, 4592-4600.	5.3	277

#	Article	IF	Citations
145	Leaching techniques to remove metals and potentially hazardous nutrients from trout farm sludge. Water Research, 2011, 45, 5977-5986.	5.3	31
146	Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(III) oxide. New Carbon Materials, 2011, 26, 299-306.	2.9	86
147	Anaerobic Processes. , 2011, , 615-639.		30
148	Biological Wastewater Treatment Systems. , 2011, , 275-290.		19
149	Phosphorus in Water Quality and Waste Management. , 0, , .		19
150	Source Separation and Decentralization. , 2011, , 203-229.		10
151	Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer. Journal of Agricultural Science, 2011, 3, .	0.1	28
152	Phosphorus removal by blast furnace slag and cement clinker – flow cell studies for estimation of sorptive capacity for use with constructed treatment wetlands. Water Quality Research Journal of Canada, 2011, 46, 300-311.	1.2	2
153	Domestic Wastewater Reclamation Coupled with Biofuel/Biomass Production Based on Microalgae: A Novel Wastewater Treatment Process in the Future. Journal of Water and Environment Technology, 2011, 9, 199-207.	0.3	14
154	Adsorption of Aluminum Ion from Water on Alginate-Modified Polyurethane. Journal of Chemical Engineering of Japan, 2011, 44, 247-255.	0.3	3
155	ORGANIC CARBON SUPPLEMENTATION OF STERILIZED MUNICIPAL WASTEWATER IS ESSENTIAL FOR HETEROTROPHIC GROWTH AND REMOVING AMMONIUM BY THE MICROALGA <i>CHLORELLA VULGARIS</i> ¹ . Journal of Phycology, 2011, 47, 190-199.	1.0	99
156	A high throughput method and culture medium for rapid screening of phosphate accumulating microorganisms. Bioresource Technology, 2011, 102, 8057-8062.	4.8	28
157	Enhancement of rural domestic sewage treatment performance, and assessment of microbial community diversity and structure using tower vermifiltration. Bioresource Technology, 2011, 102, 9462-9470.	4.8	105
158	From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 2011, 29, 972-982.	6.0	125
159	Capturing the lost phosphorus. Chemosphere, 2011, 84, 846-853.	4.2	397
160	Global potential of phosphorus recovery from human urine and feces. Chemosphere, 2011, 84, 832-839.	4.2	258
161	Ni2+ and H2PO4â^' uptake properties of compounds in the CaTiO3–CaFeO2.5 system. Journal of Hazardous Materials, 2011, 185, 1390-1397.	6.5	4
162	Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. Journal of Hazardous Materials, 2011, 186, 2026-2030.	6.5	165

#	ARTICLE Removal of phosphorus from aqueous solution by Posidonia oceanica fibers using continuous	IF	CITATIONS
163	stirring tank reactor. Journal of Hazardous Materials, 2011, 189, 577-585.	6.5	34
164	Adsorption characteristics of phosphorus from aqueous solutions onto phosphate mine wastes. Chemical Engineering Journal, 2011, 169, 157-165.	6.6	64
165	Adsorption removal of ammonium and phosphate from water by fertilizer controlled release agent prepared from wheat straw. Chemical Engineering Journal, 2011, 171, 1209-1217.	6.6	115
166	Economic Feasibility Study for Phosphorus Recovery Processes. Ambio, 2011, 40, 408-416.	2.8	117
167	Application of magnetite modified with aluminum/silica to adsorb phosphate in aqueous solution. Journal of Chemical Technology and Biotechnology, 2011, 86, 1449-1456.	1.6	11
168	Influence of tempereature on Struvite precipitation by CO ₂ â€deagassing method. Crystal Research and Technology, 2011, 46, 255-260.	0.6	18
169	Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions. Crystal Research and Technology, 2011, 46, 443-449.	0.6	35
170	Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresource Technology, 2011, 102, 5824-5830.	4.8	112
171	Biosorption characteristics of ammonium from aqueous solutions onto Posidonia oceanica (L.) fibers. Desalination, 2011, 270, 40-49.	4.0	73
172	Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination, 2011, 271, 265-272.	4.0	82
173	Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination, 2011, 277, 364-369.	4.0	149
174	A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 2011, 36, 876-884.	3.8	218
175	On the zinc sorption by the Serbian natural clinoptilolite and the disinfecting ability and phosphate affinity of the exhausted sorbent. Journal of Hazardous Materials, 2011, 185, 408-415.	6.5	29
176	Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 2011, 190, 501-507.	6.5	471
177	Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. Journal of Hazardous Materials, 2011, 190, 848-855.	6.5	157
178	Mechanochemical synthesis of kaolin–KH2PO4 and kaolin–NH4H2PO4 complexes for application as slow release fertilizer. Powder Technology, 2011, 212, 354-358.	2.1	68
179	Innovative anaerobic/upflow sludge blanket filtration bioreactor for phosphorus removal from wastewater. Environmental Technology (United Kingdom), 2011, 32, 499-506.	1.2	8
180	Phosphate uptake performance of bacteria isolated from a fullâ€scale Izmir municipal wastewater treatment plant. Environmental Technology (United Kingdom), 2011, 32, 543-549.	1.2	4

#	Article	IF	CITATIONS
181	Notice of Retraction: Comparative Study on Phosphate Removal by Chalybeate and Calcareous Red Mud. , 2011, , .		0
182	Notice of Retraction: Research on Phosphorus Removals from Wastewater by Modified Blast-Furnace Slag (MBFS). , 2011, , .		Ο
183	Treating surface water with low nutrients concentration by mixed substrates constructed wetlands. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 771-776.	0.9	12
184	Notice of Retraction: Modeling Chemical Phosphorus Removal from Municipal Wastewater Using Coagulation. , 2011, , .		0
185	Study on the Treatment of Ammona-Nitrogen Wastewater by Magnesium Ammonium Phosphate. Advanced Materials Research, 2011, 233-235, 528-531.	0.3	1
186	Orthophosphate Adsorption Equilibrium and Breakthrough on Filtration Media for Storm-Water Runoff Treatment. Journal of Irrigation and Drainage Engineering - ASCE, 2011, 137, 244-250.	0.6	19
187	The Phosphorus Removal Characteristics of Grain-Slag as Filter Media. Advanced Materials Research, 0, 306-307, 1488-1491.	0.3	0
188	Conditions Influencing Struvite Precipitation from Anaerobic Sludge Digestion Filtrate in a Batch Reactor. Advanced Materials Research, 2011, 183-185, 1432-1436.	0.3	0
189	Wastewater Treatment for a Sustainable Future: Overview of Phosphorus Recovery. Applied Mechanics and Materials, 0, 110-116, 2043-2048.	0.2	2
190	Notice of Retraction: Study on Chemical Phosphorus Removal from Industry Wastewater. , 2011, , .		0
191	Integrated Physicochemical and Biological Treatment Process for Fluoride and Phosphorus Removal from Fertilizer Plant Wastewater. Water Environment Research, 2011, 83, 731-738.	1.3	17
192	Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater. Water Science and Technology, 2011, 64, 2460-2467.	1.2	92
193	Effect of pH and Coexisting Anions on Removal of Phosphate from Aqueous Solutions by Inorganic-Based Mesostructures. Water Environment Research, 2012, 84, 596-604.	1.3	12
194	Overcoming Challenges to Struvite Recovery from Anaerobically Digested Dairy Manure. Water Environment Research, 2012, 84, 34-41.	1.3	75
195	Comparison of efficacy of two P-inactivation agents on sediments from different regions of Lake Taihu: sediment core incubations. Fundamental and Applied Limnology, 2012, 181, 271-281.	0.4	7
196	Treatment of wastewater from shrimp farms using a combination of fish, photosynthetic bacteria, and vegetation. Desalination and Water Treatment, 2012, 47, 221-227.	1.0	23
197	The characteristics and effect of grain-slag media for the treatment of phosphorus in a biological aerated filter (BAF). Desalination and Water Treatment, 2012, 47, 258-265.	1.0	6
198	Development and First Year Operation of Extended Wastewater Treatment Plant in Dobron. Ecological Chemistry and Engineering S, 2012, 19, 107-115.	0.3	0

#	Article	IF	CITATIONS
199	Sorption of Chromium with Struvite During Phosphorus Recovery. Environmental Science & Technology, 2012, 46, 12493-12501.	4.6	63
200	Strategies for the Exploration and Development of Biofertilizer. , 2012, , 127-139.		3
201	The use of TG/DSC–FT-IR to assess the effect of Cr sorption on struvite stability and composition. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1217-1223.	2.0	27
202	Adsorption of Phosphate from Aqueous Solution Using an Iron–Zirconium Binary Oxide Sorbent. Water, Air, and Soil Pollution, 2012, 223, 4221-4231.	1.1	101
203	Batch and Fixed-Bed Column Performance of Phosphate Adsorption by Lanthanum-Doped Activated Carbon Fiber. Water, Air, and Soil Pollution, 2012, 223, 5893-5902.	1.1	25
204	Effect of C/N ratios on the performance of earthworm eco-filter for treatment of synthetics domestic sewage. Environmental Science and Pollution Research, 2012, 19, 4049-4059.	2.7	22
205	Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide. Chemical Engineering Journal, 2012, 210, 143-149.	6.6	79
206	Preparation and characterization of lanthanum(III) loaded granular ceramic for phosphorus adsorption from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 783-789.	2.7	71
207	Continuous Reaction Crystallization of Struvite from Diluted Aqueous Solutions of Phosphate (V) Ions in DT MSMPR Crystallizer. Procedia Engineering, 2012, 42, 313-322.	1.2	2
208	Reaction Crystallization of Struvite in a Continuous Draft Tube Magma (DTM) Crystallizer with a Jet Pump Driven by Recirculated Mother Solution. Procedia Engineering, 2012, 42, 1540-1551.	1.2	1
209	Uptake of phosphorus from dairy wastewater by heterotrophic cultures of cyanobacteria. Desalination and Water Treatment, 2012, 40, 224-230.	1.0	11
210	Recovery of Struvite Obtained from Semiconductor Wastewater and Reuse as a Slow-Release Fertilizer. Environmental Engineering Science, 2012, 29, 540-548.	0.8	26
211	Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management. Biology and Fertility of Soils, 2012, 48, 763-773.	2.3	28
212	Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1466-1477.	0.9	30
213	Microalgae for Bioremediation of Distillery Effluent. Sustainable Agriculture Reviews, 2012, , 83-109.	0.6	5
214	Carbonated ferric green rust as a new material for efficient phosphate removal. Journal of Colloid and Interface Science, 2012, 384, 121-127.	5.0	65
215	Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor. Chemical Engineering Science, 2012, 77, 165-175.	1.9	49
216	Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 2012, 122, 149-159.	4.8	378

#	Article	IF	CITATIONS
217	Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 2012, 126, 247-253.	4.8	186
218	Phosphorus: a limiting nutrient for humanity?. Current Opinion in Biotechnology, 2012, 23, 833-838.	3.3	259
219	Biologically and chemically mediated adsorption and precipitation of phosphorus from wastewater. Current Opinion in Biotechnology, 2012, 23, 890-896.	3.3	86
220	Performance of a novel Circular-Flow Corridor wetland toward the treatment of simulated high-strength swine wastewater. Ecological Engineering, 2012, 49, 1-9.	1.6	28
221	Bio-contact oxidation and greenhouse-structured wetland system for rural sewage recycling in cold regions: A full-scale study. Ecological Engineering, 2012, 49, 249-253.	1.6	33
222	Synthesis of Struvite Crystals by Using Bacteria <i>Proteus mirabilis</i> . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 445-448.	0.6	8
223	N, P, and K Budgets and Changes in Selected Topsoil Nutrients over 10 Years in a Long-Term Experiment with Conventional and Organic Crop Rotations. Applied and Environmental Soil Science, 2012, 2012, 1-17.	0.8	19
224	Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus in Dairy Lagoons. Journal of Environmental Quality, 2012, 41, 1166-1174.	1.0	48
225	Phosphate pollution control in waste waters using new bio-sorbents. International Journal of Water Resources and Environmental Engineering, 2012, 4, .	0.2	5
226	Inducing mechanism of biological phosphorus removal driven by the aerobic/extendedâ€idle regime. Biotechnology and Bioengineering, 2012, 109, 2798-2807.	1.7	47
227	Reuse potential of phosphorus-rich filter materials from subsurface flow wastewater treatment filters for forest soil amendment. Hydrobiologia, 2012, 692, 145-156.	1.0	14
228	Aqueous phosphate removal using nanoscale zero-valent iron. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	141
229	Removal of phosphate from aqueous solutions by iron nano-particle resin Lewatit (FO36). Korean Journal of Chemical Engineering, 2012, 29, 473-477.	1.2	21
230	Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chemical Engineering Journal, 2012, 185-186, 160-167.	6.6	224
231	Efficient and controllable phosphate removal on hydrocalumite by multi-step treatment based on pH-dependent precipitation. Chemical Engineering Journal, 2012, 185-186, 219-225.	6.6	22
232	NaCS–PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 2012, 187, 185-192.	6.6	42
233	Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24. Desalination, 2012, 286, 242-247.	4.0	15
234	Removal of high-concentration phosphate by calcite: Effect of sulfate and pH. Desalination, 2012, 289, 66-71.	4.0	115

#	Article	IF	CITATIONS
235	Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environmental and Experimental Botany, 2012, 75, 65-73.	2.0	66
236	Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. Journal of Environmental Sciences, 2012, 24, 596-601.	3.2	129
237	Microalgae for phosphorus removal and biomass production: a six species screen for dualâ€purpose organisms. GCB Bioenergy, 2012, 4, 485-495.	2.5	36
238	Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment. Separation and Purification Technology, 2012, 95, 16-25.	3.9	93
239	Competitive adsorption characteristics of fluoride and phosphate on calcined Mg–Al–CO3 layered double hydroxides. Journal of Hazardous Materials, 2012, 213-214, 100-108.	6.5	125
240	Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. Journal of Applied Phycology, 2012, 24, 267-276.	1.5	94
241	Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis, 2013, 60, 143-154.	1.2	39
242	Phosphate Removal from Aqueous Solution by an Effective Clay Composite Material. Journal of Solution Chemistry, 2013, 42, 691-704.	0.6	19
243	Removal of phosphorus from aqueous solution by Iranian natural adsorbents. Chemical Engineering Journal, 2013, 223, 328-339.	6.6	115
244	An electrochemically modified novel tablet porous material developed as adsorbent for phosphate removal from aqueous solution. Chemical Engineering Journal, 2013, 220, 367-374.	6.6	25
245	Removal of monoethanolamine and phosphate from thin-film transistor liquid crystal display (TFT-LCD) wastewater by the fluidized-bed Fenton process. Chemical Engineering Journal, 2013, 222, 128-135.	6.6	36
246	Confinement of Chemisorbed Phosphates in a Controlled Nanospace with Threeâ€Đimensional Mesostructures. Chemistry - A European Journal, 2013, 19, 5578-5585.	1.7	16
247	Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Applied Microbiology and Biotechnology, 2013, 97, 9847-9858.	1.7	85
248	Performance of hybrid vertical up- and downflow subsurface flow constructed wetlands in treating synthetic high-strength wastewater. Environmental Science and Pollution Research, 2013, 20, 4886-4894.	2.7	7
249	Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaledup study. Frontiers of Environmental Science and Engineering, 2013, 7, 435-441.	3.3	27
250	Simultaneous removal of carbon, nitrogen and phosphorus in a multiâ€zone wastewater treatment system. Journal of Chemical Technology and Biotechnology, 2013, 88, 1136-1143.	1.6	4
251	Feasibility of iron loaded â€~okara' for biosorption of phosphorous in aqueous solutions. Bioresource Technology, 2013, 150, 42-49.	4.8	50
252	Sorption of dissolved inorganic and organic phosphorus compounds onto iron-doped ceramic sand. Ecological Engineering, 2013, 58, 286-295.	1.6	12

#	Article	IF	CITATIONS
253	Phosphorus removal from wastewater using natural pyrrhotite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427, 13-18.	2.3	35
254	The role of phosphorus on eutrophication: a historical review and future perspectives. Environmental Technology Reviews, 2013, 2, 117-127.	2.1	48
255	Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber. Chemical Engineering Journal, 2013, 215-216, 859-867.	6.6	265
256	Phosphate recovery as concentrated solution from treated wastewater by a PAO-enriched biofilm reactor. Water Research, 2013, 47, 2025-2032.	5.3	58
257	Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 2013, 47, 5018-5026.	5.3	396
258	Simulation and experimental validation of multiple phosphate precipitates in a saline industrial wastewater. Separation and Purification Technology, 2013, 118, 81-88.	3.9	28
259	Bio-P release in the final clarifiers of a large WWTP with co-precipitation: Key factors and troubleshooting. Chemical Engineering Journal, 2013, 230, 195-201.	6.6	13
260	Biological phosphorus removal from real wastewater in a sequencing batch reactor operated as aerobic/extended-idle regime. Biochemical Engineering Journal, 2013, 77, 147-153.	1.8	18
261	Influencing Factors of the <i>In Situ</i> Formed Iron Hydroxide (FeO _x H _y) on the Removal of Phosphate by Coagulation and Adsorption. Advanced Materials Research, 2013, 864-867, 1772-1778.	0.3	1
262	Evaluation of the feasibility of alcohols serving as external carbon sources for biological phosphorus removal induced by the oxic/extendedâ€idle regime. Biotechnology and Bioengineering, 2013, 110, 827-837.	1.7	38
263	Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. Journal of Chemical Technology and Biotechnology, 2013, 88, 181-189.	1.6	141
264	Quantifying benefits of resource recovery from sanitation provision inÂa developing world setting. Journal of Environmental Management, 2013, 131, 7-15.	3.8	59
265	Effects of Fe(II)/P ratio and pH on phosphorus removal by ferrous salt and approach to mechanisms. Separation and Purification Technology, 2013, 118, 801-805.	3.9	32
266	Thermodynamic study on phosphorus removal from tungstate solution via magnesium salt precipitation method. Transactions of Nonferrous Metals Society of China, 2013, 23, 3440-3447.	1.7	34
267	Phosphorus removal from wastewater by ionic exchange using a surface-modified Al alloy filter. Journal of Industrial and Engineering Chemistry, 2013, 19, 744-747.	2.9	17
268	A novel tablet porous material developed as adsorbent for phosphate removal and recycling. Journal of Colloid and Interface Science, 2013, 396, 197-204.	5.0	39
269	Novel adsorbent of removal phosphate from TFT LCD wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 61-66.	2.7	17
270	Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs). Water Research, 2013, 47, 2251-2259.	5.3	108

#	Article	IF	CITATIONS
271	Removal of phosphorus using NZVI derived from reducing natural goethite. Chemical Engineering Journal, 2013, 234, 80-87.	6.6	65
272	Temperature-dependent phosphorus precipitation and chromium removal from struvite-saturated solutions. Journal of Colloid and Interface Science, 2013, 392, 343-348.	5.0	17
273	Simultaneous removal of phosphorus and nitrogen from sewage using a novel combo system of fluidized bed reactor–membrane bioreactor (FBR–MBR). Bioresource Technology, 2013, 149, 276-285.	4.8	38
274	Simultaneous crystallization of phosphate and potassium as magnesium potassium phosphate using bubble column reactor with draught tube. Journal of Environmental Chemical Engineering, 2013, 1, 1154-1158.	3.3	20
275	Preparation and phosphorus recovery performance of porous calcium–silicate–hydrate. Ceramics International, 2013, 39, 1385-1391.	2.3	49
276	Separation of Struvite from Mineral Fertilizer Industry Wastewater. Procedia Environmental Sciences, 2013, 18, 766-775.	1.3	24
277	Application of magnetite modified with polyacrylamide to adsorb phosphate in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 45-51.	2.7	53
278	Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. Journal of Applied Phycology, 2013, 25, 855-865.	1.5	127
279	Gas-liquid Jet Pump Crystallizer in Phosphorus Recycling Technology – neural Network Model. Procedia Environmental Sciences, 2013, 18, 756-765.	1.3	2
280	Evaluation of manure-derived struvite as a phosphorus source for canola. Canadian Journal of Plant Science, 2013, 93, 419-424.	0.3	58
281	Innovative Strategies to Achieve Low Total Phosphorus Concentrations in High Water Flows. Critical Reviews in Environmental Science and Technology, 2013, 43, 409-441.	6.6	64
282	Molybdenum recovery from oxygen pressure water leaching residue of Ni–Mo ore. Rare Metals, 2013, 32, 208-212.	3.6	17
283	Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water Research, 2013, 47, 3635-3643.	5.3	96
284	Comparison between acetate and propionate as carbon sources for phosphorus removal in the aerobic/extended-idle regime. Biochemical Engineering Journal, 2013, 70, 151-157.	1.8	18
285	Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technology, 2013, 233, 146-154.	2.1	268
286	Preparation and characterization of ferric-impregnated granular ceramics (FGCs) for phosphorus removal from aqueous solution. Clean Technologies and Environmental Policy, 2013, 15, 375-382.	2.1	5
287	Analysis of Ion Exchange Isothermal Supersaturation Process for Struvite Production. Industrial & Engineering Chemistry Research, 2013, 52, 10276-10283.	1.8	8
288	Removal of nutrients from hydroponic greenhouse effluent by alkali precipitation and algae cultivation method. Journal of Chemical Technology and Biotechnology, 2013, 88, 858-863.	1.6	37

#	Article	IF	CITATIONS
289	Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, 2013, 49, 465-479.	2.3	240
290	Simultaneous Removal of NH ₄ ⁺ and PO ₄ ³⁻ at Low Concentrations from Aqueous Solution by Modified Converter Slag. Water Environment Research, 2013, 85, 530-538.	1.3	8
291	Synthesis and Enhanced Phosphate Recovery Property of Porous Calcium Silicate Hydrate Using Polyethyleneglycol as Pore-Generation Agent. Materials, 2013, 6, 2846-2861.	1.3	35
292	Effect of Operating Conditions on the Chemical Phosphate Removal Using during Ferrous Iron Oxidation. Advanced Materials Research, 2013, 807-809, 478-485.	0.3	1
293	Experimental Study of Diatomite Static Adsorption on TP Removal in Bovine Urine Wastewater. Materials Science Forum, 0, 743-744, 531-538.	0.3	1
294	Performance and Influencing Factors of Phosphorus Removal in Two BAFs with Artificial Crystal Seed Media. Advanced Materials Research, 0, 777, 112-116.	0.3	1
295	Effectiveness and Mechanism of the <i>In Situ</i> Formed Iron Hydroxide (FeO _x H _y) towards the Removal of Phosphate by Coagulation and Adsorption. Advanced Materials Research, 2013, 807-809, 1251-1257.	0.3	2
296	Simultaneous removal of colour, phosphorus and disinfection from treated wastewater using an agent synthesized from amorphous silica and hydrated lime. Environmental Technology (United) Tj ETQq1 1 0.784	4 3.1 24 rgBT	/@verlock
297	An Electrochemically Surface-modified Porous Granule Developed for Phosphate Removal from Aqueous Solution. Chemistry Letters, 2013, 42, 307-309.	0.7	1
298	Nitrate and phosphate removal in sulphur-coral stone autotrophic denitrification packed-bed reactors. Journal of Environmental Engineering and Science, 2013, 8, 267-276.	0.3	3
299	Granulation of Boehmite without a Binder and its Capacity for Phosphate Adsorption in Aqueous Solution. Journal of Water and Environment Technology, 2013, 11, 225-234.	0.3	2
300	Phosphorus Uptake by Potato from Biochar Amended with Anaerobic Digested Dairy Manure Effluent. Agronomy Journal, 2013, 105, 989-998.	0.9	9
301	Adsorption of Phosphate by Calcinated Mg-Fe Layered Double Hydroxide. Journal of Water and Environment Technology, 2013, 11, 111-120.	0.3	8
302	Near-Stoichiometric Adsorption of Phosphate by Silica Gel Supported Nanosized Hematite. ISRN Inorganic Chemistry, 2013, 2013, 1-10.	0.2	2
303	A tecnologia de remoção de fÃ3sforo: gerenciamento do elemento em resÃduos industriais. Revista Ambiente & Ãgua, 2014, 9, .	0.1	11
304	Using Chlorella vulgaris to Decrease the Environmental Effect of Garbage Dump Leachates. Journal of Bioremediation & Biodegradation, 2014, 05, .	0.5	8
305	Wastewater Constituents. , 2014, , 7-29.		4
306	A NOVEL PROCESS FOR NUTRIENTS REMOVAL AND PHOSPHORUS RECOVERY FROM DOMESTIC WASTEWATER BY COMBINING BNR WITH INDUCED CRYSTALLIZATION. Journal of Environmental Engineering and Landscape Management, 2014, 22, 274-283.	0.4	9

#	Article	IF	CITATIONS
307	Removal of phosphorus ions from aqueous solutions using manganese-oxide-coated sand and brick. Desalination and Water Treatment, 2014, 52, 2282-2292.	1.0	15
308	Optimization for the removal of orthophosphate from aqueous solution by chemical precipitation using ferrous chloride. Environmental Technology (United Kingdom), 2014, 35, 1668-1675.	1.2	40
309	<i>AlgaeSim</i> : A Model for Integrated Algal Biofuel Production and Wastewater Treatment. Water Environment Research, 2014, 86, 163-176.	1.3	8
310	Application of Taguchi experimental design methodology in optimization for adsorption of phosphorus onto Al/Ca-impregnated granular clay material. Desalination and Water Treatment, 0, , 1-11.	1.0	2
311	Engineered Wetland for the Treatment of Wastewater from Fertilizer Plant. Advanced Materials Research, 0, 1051, 500-504.	0.3	0
312	Removal and retention of phosphorus by periphyton from wastewater with high organic load. Water Science and Technology, 2014, 70, 62-69.	1.2	8
313	Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates. BioMed Research International, 2014, 2014, 1-10.	0.9	9
314	Phosphorus removal and recovery from polytetrahydrofuran wastewater by solventing-out crystallization. Desalination and Water Treatment, 0, , 1-6.	1.0	0
315	Optimization of struvite crystallization to recover nutrients from raw swine wastewater. Desalination and Water Treatment, 0, , 1-7.	1.0	3
316	Phosphorus removal by a fixed-bed hybrid polymer nanocomposite biofilm reactor. Chemistry and Ecology, 2014, 30, 428-439.	0.6	2
317	Hydrothermal Synthesis and Characterization of Hexagonal Mg(OH) ₂ Flame Retardant with Bischofite and NH ₃ . Advanced Materials Research, 0, 936, 919-928.	0.3	0
318	Study on Removing Ammonium Nitrogen from Wastewater Using Magnesium Hydroxide. Advanced Materials Research, 0, 955-959, 2550-2553.	0.3	1
319	Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides. Chemical Engineering Journal, 2014, 235, 124-131.	6.6	164
320	Treatment of wastewaters from phosphate fertilizer industry. Environmental Progress and Sustainable Energy, 2014, 33, 463-471.	1.3	8
321	Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chemical Engineering Journal, 2014, 235, 207-214.	6.6	138
322	Incorporation of fish by-product into the semi-continuous anaerobic co-digestion of pre-treated lignocellulose and cow manure, with recovery of digestate's nutrients. Renewable Energy, 2014, 66, 550-558.	4.3	29
323	Valorization of Bones to Liquid Phosphorus Fertilizer by Microbial Solubilization. Waste and Biomass Valorization, 2014, 5, 265-272.	1.8	33
324	Removal of phosphorus from water using scallop shell synthesized ceramic biomaterials. Environmental Earth Sciences, 2014, 71, 2133-2142.	1.3	18

#	Article	IF	CITATIONS
325	Removal and Recovery of Phosphate From Water Using Sorption. Critical Reviews in Environmental Science and Technology, 2014, 44, 847-907.	6.6	474
326	Effects of different influent C/N ratios on the performance of various earthworm eco-filter systems: nutrient removal and greenhouse gas emission. World Journal of Microbiology and Biotechnology, 2014, 30, 109-118.	1.7	20
327	Phosphorus removal in a sulfur–limestone autotrophic denitrification (SLAD) biofilter. Environmental Science and Pollution Research, 2014, 21, 972-978.	2.7	15
328	Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 2014, 378, 1-33.	1.8	827
329	Adsorption of ammonium and phosphate by feather protein based semi-interpenetrating polymer networks hydrogel as a controlled-release fertilizer. Environmental Technology (United Kingdom), 2014, 35, 446-455.	1.2	18
330	Pilot-Scale Test for a Phosphate Treatment Using Sulfate-Coated Zeolite at a Sewage Disposal Facility. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	9
331	Optimization of struvite fertilizer formation from baker's yeast wastewater: growth and nutrition of maize and tomato plants. Environmental Science and Pollution Research, 2014, 21, 3264-3274.	2.7	72
332	Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresource Technology, 2014, 155, 373-378.	4.8	81
333	Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: A new prospective chemical technology for phosphorus pollution control. Water Research, 2014, 49, 426-433.	5.3	20
334	High-Performance Removal of Phosphate from Water by Graphene Nanosheets Supported Lanthanum Hydroxide Nanoparticles. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	26
335	Capacitive deionization (CDI) for removal of phosphate from aqueous solution. Desalination and Water Treatment, 2014, 52, 759-765.	1.0	43
336	Phosphate removal through crystallization using hydrothermal modified steel slag-based material as seed crystal. Desalination and Water Treatment, 2014, 52, 384-389.	1.0	7
337	Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor. Water Research, 2014, 55, 12-20.	5.3	59
338	Powdered marble wastes reuse as a low-cost material for phosphorus removal from aqueous solutions under dynamic conditions. Desalination and Water Treatment, 2014, 52, 1705-1715.	1.0	11
339	Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater. Bioresource Technology, 2014, 154, 178-184.	4.8	71
340	A ³¹ P NMR and TG/DSC-FTIR Investigation of the Influence of Initial pH on Phosphorus Recovery as Struvite. ACS Sustainable Chemistry and Engineering, 2014, 2, 816-822.	3.2	44
341	Marine Carbohydrates of Wastewater Treatment. Advances in Food and Nutrition Research, 2014, 73, 103-143.	1.5	18
342	Phosphate removal from aqueous solution by an adsorption ultrafiltration system. Separation and Purification Technology, 2014, 132, 487-495.	3.9	25

#	Article	IF	CITATIONS
343	Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater. Environmental Technology (United Kingdom), 2014, 35, 2752-2759.	1.2	12
344	Removal of Phosphate and Fluoride from Industrial Wastewater – A Short Review. Applied Mechanics and Materials, 0, 625, 805-808.	0.2	8
345	Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Science of the Total Environment, 2014, 496, 551-562.	3.9	271
346	Treatment of high strength pharmaceutical wastewaters in a Thermophilic Aerobic MembraneÂReactor (TAMR). Water Research, 2014, 63, 190-198.	5.3	36
347	A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 2014, 257, 45-55.	6.6	45
348	Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward Osmosis–Membrane Distillation Process. Environmental Science and Technology Letters, 2014, 1, 191-195.	3.9	229
349	Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 2014, 65, 186-202.	5.3	388
350	Novel effective waste iron oxide-coated magnetic adsorbent for phosphate adsorption. Desalination and Water Treatment, 2014, 52, 766-774.	1.0	6
351	Recovery of high purity ferric phosphate from a spent electroless nickel plating bath. Green Chemistry, 2014, 16, 1217-1224.	4.6	27
352	Adsorption of phosphate using calcined Mg3–Fe layered double hydroxides in a fixed-bed column study. Journal of Industrial and Engineering Chemistry, 2014, 20, 3623-3630.	2.9	75
353	The adsorption process during inorganic phosphorus removal by cultured periphyton. Environmental Science and Pollution Research, 2014, 21, 8782-8791.	2.7	50
354	Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water. Journal of Colloid and Interface Science, 2014, 423, 13-19.	5.0	141
355	Effect of TiO ₂ , Al ₂ O ₃ , and Fe ₃ O ₄ nanoparticles on phosphorus removal from aqueous solution. Environmental Progress and Sustainable Energy, 2014, 33, 1209-1219.	1.3	17
356	Continuous reaction crystallization of struvite from diluted aqueous solution of phosphate(V) ions in the presence of magnesium ions excess. Chemical Engineering Research and Design, 2014, 92, 481-490.	2.7	28
357	Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor. Journal of Environmental Sciences, 2014, 26, 765-774.	3.2	50
358	Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 2014, 7, 139-155.	2.3	399
359	Fate of phosphorus in diluted urine with tap water. Chemosphere, 2014, 113, 146-150.	4.2	7
360	Phosphorus adsorption onto green synthesized nano-bimetal ferrites: Equilibrium, kinetic and thermodynamic investigation. Chemical Engineering Journal, 2014, 251, 285-292.	6.6	67

#	Article	IF	CITATIONS
361	Sequestration of phosphorus from wastewater by cement-based or alternative cementitious materials. Water Research, 2014, 62, 88-96.	5.3	44
362	Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chemical Engineering Journal, 2014, 254, 163-170.	6.6	290
363	Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: Preparation, characterization and thermodynamic. Microporous and Mesoporous Materials, 2014, 196, 145-157.	2.2	78
364	Removal of Phosphate Ions by PGAF (Poly-^ ^gamma;-Glutamic Acid and Flocculants). Journal of Water and Environment Technology, 2014, 12, 447-458.	0.3	4
365	THE EFFECTS OF OPERATION FACTORS ON MgKPO ₄ CRYSTALS. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2014, 70, III_277-III_284.	0.1	1
366	The development of a highly efficient photoâ€initiator system and its application in the photoâ€immobilization of activated sludge. Journal of Applied Polymer Science, 2014, 131, .	1.3	0
367	Application of the QUAL2K model to design an ecological purification scheme for treated effluent of a wastewater treatment plant. Water Science and Technology, 2015, 72, 2194-2200.	1.2	5
368	Dissolution Behavior of Nutrient Elements from Fertilizer Made of Steelmaking Slag, in an Irrigated Paddy Field Environment. Journal of Sustainable Metallurgy, 2015, 1, 304-313.	1.1	25
369	Nitrogen and Phosphorus Recovery from Wastewater. Current Pollution Reports, 2015, 1, 155-166.	3.1	196
370	Application of QUAL2K Model to Assess Ecological Purification Technology for a Polluted River. International Journal of Environmental Research and Public Health, 2015, 12, 2215-2229.	1.2	10
371	Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework. Sustainability, 2015, 7, 12071-12105.	1.6	65
372	A Study of the Physical and Chemical Characteristics of Ca-Rich Materials for Use as Phosphate Removal Filter Media: A Process Based on Laboratory-Scale Tests. , 2015, , .		1
373	Phosphorus Removal and Recovery from Digestate after Biogas Production. , 0, , .		19
374	Energy and nutrient recovery for municipal wastewater treatment: How to design a feasible plant layout?. Environmental Modelling and Software, 2015, 68, 156-165.	1.9	95
375	Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?. Environmental Technology (United Kingdom), 2015, 36, 2115-2124.	1.2	27
376	A novel method for nickel recovery and phosphorus removal from spent electroless nickel-plating solution. Separation and Purification Technology, 2015, 147, 237-244.	3.9	31
377	Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Research, 2015, 81, 288-293.	5.3	102
378	Towards more accurate life cycle assessment of biological wastewater treatment plants: a review. Journal of Cleaner Production, 2015, 107, 676-692.	4.6	126

#	Article	IF	CITATIONS
379	Phosphorus recovery from urine and anaerobic digester filtrate: comparison of adsorption–precipitation with direct precipitation. Environmental Science: Water Research and Technology, 2015, 1, 481-492.	1.2	19
380	Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution. Journal of Alloys and Compounds, 2015, 637, 188-196.	2.8	102
381	Phosphorus removal from solids separated hog manure by air stripping Canadian Biosystems Engineering / Le Genie Des Biosystems Au Canada, 2015, 56, 6.13-6.20.	0.3	1
382	Comparative evaluation of total phosphorus removal performances for treatment of domestic and secondary wastewater using integrated vertical-flow constructed wetlands: two years' experience. Desalination and Water Treatment, 2015, 56, 1379-1388.	1.0	8
383	Effect of ionic strength on phosphorus sorption in different sediments from a eutrophic plateau lake. RSC Advances, 2015, 5, 79607-79615.	1.7	34
384	Effects of chemical phosphate precipitation in the sidestream process on biological phosphorus removal at the anaerobic stage in an anaerobic—aerobic sequencing batch reactor. Desalination and Water Treatment, 2015, 54, 3011-3019.	1.0	5
385	Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environmental Science and Pollution Research, 2015, 22, 17453-17464.	2.7	127
386	Application of magnetic nano-particles for phosphorus removal/recovery in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 148-154.	2.7	46
387	Effective phosphate adsorption by Zr/Al-pillared montmorillonite: insight into equilibrium, kinetics and thermodynamics. Applied Clay Science, 2015, 104, 252-260.	2.6	103
388	Phosphorus removal using ferric–calcium complex as precipitant: Parameters optimization and phosphorus-recycling potential. Chemical Engineering Journal, 2015, 268, 230-235.	6.6	32
389	Iron(III) reduction-induced phosphate precipitation during anaerobic digestion of waste activated sludge. Separation and Purification Technology, 2015, 143, 6-11.	3.9	60
390	A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Management, 2015, 38, 321-335.	3.7	180
391	Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research, 2015, 71, 55-63.	5.3	123
392	Phosphate enhancing fermentative hydrogen production from substrate with municipal solid waste composting leachate as a nutrient. Bioresource Technology, 2015, 190, 431-437.	4.8	25
393	Phosphorus Recovery and Reuse from Waste Streams. Advances in Agronomy, 2015, 131, 173-250.	2.4	89
394	Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar. Frontiers of Environmental Science and Engineering, 2015, 9, 1066-1075.	3.3	79
395	How will minerals feed the world in 2050?. Proceedings of the Geologists Association, 2015, 126, 14-17.	0.6	65
396	Efficient adsorption behavior of phosphate on La-modified tourmaline. Journal of Environmental Chemical Engineering, 2015, 3, 515-522.	3.3	53

#	Article	IF	CITATIONS
397	Co-removal of phosphorus and nitrogen with commercial 201 × 7 anion exchange resin during tertiary treatment of WWTP effluent and phosphate recovery. Desalination and Water Treatment, 2015, 56, 1633-1647.	1.0	10
398	Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide. Environmental Science & Technology, 2015, 49, 9479-9488.	4.6	199
399	Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures. Environmental Geochemistry and Health, 2015, 37, 969-983.	1.8	112
400	pH control using polymer-supported phosphonic acids as reusable buffer agents. Green Chemistry, 2015, 17, 3771-3774.	4.6	5
401	Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles. Journal of Environmental Management, 2015, 162, 132-138.	3.8	35
402	Advances and Perspectives to Improve the Phosphorus Availability in Cropping Systems for Agroecological Phosphorus Management. Advances in Agronomy, 2015, 134, 51-79.	2.4	76
403	Urban wastewater treatment by seven species of microalgae and anÂalgal bloom: Biomass production, N and P removal kinetics andÂharvestability. Water Research, 2015, 83, 42-51.	5.3	133
404	Simultaneous removal of phosphorus and EfOM using MIEX, coagulation, and low-pressure membrane filtration. Environmental Technology (United Kingdom), 2015, 36, 3167-3175.	1.2	1
405	High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations. Water Science and Technology, 2015, 71, 588-596.	1.2	22
406	Phosphate removal using aerobic bacterial consortium and pure cultures isolated from activated sludge. Chemical Engineering Research and Design, 2015, 95, 237-246.	2.7	30
407	Conversion of dissolved phosphorus in runoff by ferric sulfate to a form less available to algae: Field performance and cost assessment. Ambio, 2015, 44, 286-296.	2.8	10
408	On the dissolution of lithium sulfate in water: anion photoelectron spectroscopy and density functional theory calculations. Physical Chemistry Chemical Physics, 2015, 17, 5624-5631.	1.3	13
409	Preparation of iron nanoparticles-loaded Spondias purpurea seed waste as an excellent adsorbent for removal of phosphate from synthetic and natural waters. Journal of Colloid and Interface Science, 2015, 452, 69-77.	5.0	42
410	High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Research, 2015, 80, 245-255.	5.3	57
411	Phosphate removal by a nano-biosorbent from the synthetic and real (Persian Gulf) water samples. RSC Advances, 2015, 5, 43290-43302.	1.7	17
412	Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. Journal of Experimental Botany, 2015, 66, 3523-3540.	2.4	135
413	Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. Journal of Environmental Management, 2015, 158, 146-157.	3.8	226
414	Constructed Wetland: An Ecotechnology for Wastewater Treatment and Conservation of Ganga Water Quality. , 2015, , 251-264.		1

#	Article	IF	CITATIONS
415	The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environmental Science & Technology, 2015, 49, 9400-9414.	4.6	383
416	Iron and phosphorus speciation in Fe-conditioned membrane bioreactor activated sludge. Water Research, 2015, 76, 213-226.	5.3	53
417	Phosphorous removal from wastewater by lanthanum modified Y zeolites. Frontiers of Chemical Science and Engineering, 2015, 9, 209-215.	2.3	10
418	PHREEQC program-based simulation of magnesium phosphates crystallization for phosphorus recovery. Environmental Earth Sciences, 2015, 73, 5075-5084.	1.3	13
419	Use of modified clays for removal of phosphorus from aqueous solutions. Environmental Monitoring and Assessment, 2015, 187, 639.	1.3	16
420	An investigation of pH mediated extraction and precipitation of phosphorus from sludge using microfiltration: processing and costs. Separation Science and Technology, 2015, , 150527095459001.	1.3	2
421	Chemical control of struvite scale by a green inhibitor polyaspartic acid. RSC Advances, 2015, 5, 91601-91608.	1.7	21
422	Phosphate removal from water by a novel zeolite/lanthanum hydroxide hybrid material prepared from coal fly ash. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 1298-1305.	0.9	32
423	Screening of Phosphorus-Accumulating Fungi and Their Potential for Phosphorus Removal from Waste Streams. Applied Biochemistry and Biotechnology, 2015, 177, 1127-1136.	1.4	32
424	Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond–constructed wetland systems. Bioresource Technology, 2015, 198, 7-15.	4.8	60
425	Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resources, Conservation and Recycling, 2015, 105, 347-359.	5.3	18
426	Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue. Desalination and Water Treatment, 2015, 55, 970-977.	1.0	13
427	Natural Volcanic Tephra for Phosphate Removal from Rural Micro-polluted Wastewater. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	7
428	EBP2R – An innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation. Water Research, 2015, 68, 821-830.	5.3	35
429	Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange. Water Research, 2015, 70, 130-137.	5.3	28
430	Raw and treated marble wastes reuse as low cost materials for phosphorus removal from aqueous solutions: Efficiencies and mechanisms. Comptes Rendus Chimie, 2015, 18, 75-87.	0.2	40
431	Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. Journal of Applied Phycology, 2015, 27, 1485-1498.	1.5	173
432	Phosphate removal from aqueous solutions by a nano-structured Fe–Ti bimetal oxide sorbent. Chemical Engineering Research and Design, 2015, 93, 652-661.	2.7	62

#	Article	IF	CITATIONS
433	Microbialâ€based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture, 2015, 7, 131-148.	4.6	151
434	Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. Journal of Hazardous Materials, 2015, 284, 35-42.	6.5	166
435	Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation. Applied Microbiology and Biotechnology, 2015, 99, 2393-2404.	1.7	44
436	Phosphate adsorption capacity testing of natural and industrial substrates in view of application in swimming and fish pond water treatment systems. Desalination and Water Treatment, 2015, 54, 2461-2467.	1.0	3
437	Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 336-384.	6.6	528
438	Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Clycine max). Scientific Reports, 2014, 4, 5686.	1.6	327
439	Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Chemical Engineering Research and Design, 2015, 94, 402-409.	2.7	66
440	The influence of competitive inorganic ions on phosphate removal from water by adsorption on iron (Fe+3) oxide/hydroxide nanoparticles-based agglomerates. Journal of Water Process Engineering, 2015, 5, 143-152.	2.6	53
441	Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technology, 2015, 269, 351-357.	2.1	142
442	Effects of the introduction of pre-treated wastewater in a shallow lake reed stand. Open Geosciences, 2016, 8, 62-77.	0.6	6
443	EFFECT OF CONTINUOUS CRYSTALLIZER PERFORMANCE ON STRUVITE CRYSTALS PRODUCED IN REACTION CRYSTALLIZATION FROM SOLUTIONS CONTAINING PHOSPHATE(V) AND ZINC(II) IONS. Brazilian Journal of Chemical Engineering, 2016, 33, 307-317.	0.7	10
444	Phosphorus Recovery FromÂWastes#. , 2016, , 687-705.		7
445	The Crystallization of Struvite and Its Analog (K-Struvite) From Waste Streams for Nutrient Recycling. , 2016, , 665-686.		14
446	Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems. Frontiers in Microbiology, 2016, 7, 673.	1.5	109
447	Drivers for the Adoption of Eco-Innovations in the German Fertilizer Supply Chain. Sustainability, 2016, 8, 682.	1.6	19
448	Methods for Utilization of Red Mud and Its Management. , 2016, , 485-524.		11
449	Study on the application of integrated eco-engineering in purifying eutrophic river waters. Ecological Engineering, 2016, 94, 320-328.	1.6	44
450	Mass Balance Model for Sustainable Phosphorus Recovery in a US Wastewater Treatment Plant. Journal of Environmental Quality, 2016, 45, 84-89.	1.0	31

	Сітатіо	ation Report	
#	Article	IF	CITATIONS
451	Soil in the City: Sustainably Improving Urban Soils. Journal of Environmental Quality, 2016, 45, 2-8.	1.0	55
452	Environmental impact of fertilizer use and slow release of mineral nutrients as a response to this challenge. Polish Journal of Chemical Technology, 2016, 18, 72-79.	0.3	31
453	Removal of phosphate from coating wastewater using magnetic Fe-Cu bimetal oxide modified fly ash. Journal of Water Reuse and Desalination, 2016, 6, 430-436.	1.2	11
454	Recovery of Phosphate by Magnetic Iron Oxide Particles and Iron Oxide Nanotubes in Water. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	6
455	Control structure design for resource recovery using the enhanced biological phosphorus removal and recovery (EBP2R) activated sludge process. Chemical Engineering Journal, 2016, 296, 447-457.	6.6	16
456	Fe–Al binary oxide nanosorbent: Synthesis, characterization and phosphate sorption property. Journal of Environmental Chemical Engineering, 2016, 4, 2458-2468.	3.3	49
457	Integration of Powdered Ca-Activated Zeolites in a Hybrid Sorption–Membrane Ultrafiltration Process for Phosphate Recovery. Industrial & Engineering Chemistry Research, 2016, 55, 6204-6212.	1.8	12
458	A study of coagulating protein of Moringa oleifera in microalgae bio-flocculation. International Biodeterioration and Biodegradation, 2016, 113, 310-317.	1.9	55
459	Total Value of Phosphorus Recovery. Environmental Science & amp; Technology, 2016, 50, 6606-6620.	4.6	452
460	Recovery of phosphorus from source separated urine by Acidithiobacillus ferrooxidans culture supernatant. Ecological Engineering, 2016, 92, 90-96.	1.6	3
461	A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical Engineering Journal, 2016, 298, 146-153.	6.6	117
462	Investigation of the effectiveness of nutrient release from sludge foam after hybrid pretreatment processes by IR analysis and EDX Quantification. Environmental Technology (United Kingdom), 2016, 37, 3120-3130.	1.2	1
463	Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment. Science of the Total Environment, 2016, 553, 596-606.	3.9	97
464	Pollutants removal in subsurface infiltration systems by shunt distributing wastewater with/without intermittent aeration under different shunt ratios. Bioresource Technology, 2016, 218, 101-107.	4.8	18
465	Adding value to the treatment of municipal wastewater through the intensive production of freshwater macroalgae. Algal Research, 2016, 20, 100-109.	2.4	54
466	Fourier transform infra-red (FTIR) spectroscopy investigation, dose effect, kinetics and adsorption capacity of phosphate from aqueous solution onto laterite and sandstone. Journal of Environmental Management, 2016, 183, 1032-1040.	3.8	22
467	Equilibrium and kinetics studies of adsorption phosphate on raw and novel lithium silica fume based adsorbent. Desalination and Water Treatment, 2016, 57, 28794-28805.	1.0	3
468	Eutrophication, Ammonia Intoxication, and Infectious Diseases: Interdisciplinary Factors of Mass Mortalities in Cultured Nile Tilapia. Journal of Aquatic Animal Health, 2016, 28, 187-198.	0.6	34

#	Article	IF	CITATIONS
469	Controlling struvite particles' size using the up-flow velocity. Chemical Engineering Journal, 2016, 302, 819-827.	6.6	63
470	Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique. Powder Technology, 2016, 301, 723-729.	2.1	53
471	Synthesis, application and evaluation of non-sintered zeolite porous filter (ZPF) as novel filter media in biological aerated filters (BAFs). Journal of Environmental Chemical Engineering, 2016, 4, 3374-3384.	3.3	20
472	Tailoring of magnetite powder properties for enhanced phosphate removal: Effect of PEG addition in the synthesis process. Powder Technology, 2016, 301, 511-519.	2.1	18
473	Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydrate Polymers, 2016, 154, 40-47.	5.1	79
474	Sun coral powder as adsorbent: Evaluation of phosphorus removal in synthetic and real wastewater. Ecological Engineering, 2016, 97, 13-22.	1.6	12
475	Removal of Phosphate from Aqueous Solution Using Alginate/Iron (III) Chloride Capsules: a Laboratory Study. Water, Air, and Soil Pollution, 2016, 227, 427.	1.1	25
477	Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology, 2016, , .	0.3	16
478	Environmental factors limiting fertilisation and larval success in corals. Coral Reefs, 2016, 35, 1433-1440.	0.9	8
479	Application of Microalgae and Fungal-Microalgal Associations for Wastewater Treatment. Fungal Biology, 2016, , 143-181.	0.3	9
480	Removal of Phosphate from Aqueous Solution Using Layered Double Hydroxide Prepared from Waste Iron-Making Slag. Bulletin of the Chemical Society of Japan, 2016, 89, 472-480.	2.0	22
481	Simultaneous denitrification and phosphorus removal by Agrobacterium sp. LAD9 under varying oxygen concentration. Applied Microbiology and Biotechnology, 2016, 100, 3337-3346.	1.7	25
482	Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies. Aquatic Ecology, 2016, 50, 367-383.	0.7	82
483	Removal of Phosphorus, BOD, and Pharmaceuticals by Rapid Rate Sand Filtration and Ultrafiltration Systems. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	9
484	Nutrient removal performance and microbial characteristics of a full-scale IFAS-EBPR process treating municipal wastewater. Water Science and Technology, 2016, 73, 1261-1268.	1.2	26
485	Identifying potential strategies in the key sectors of China's food chain to implement sustainable phosphorus management: a review. Nutrient Cycling in Agroecosystems, 2016, 104, 341-359.	1.1	27
486	Pilot-Scale Phosphate Recovery from Secondary Wastewater Effluents. Environmental Processes, 2016, 3, 5-22.	1.7	25
487	Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis. Biotechnology for Biofuels, 2016, 9, 51.	6.2	101

#	Article	IF	CITATIONS
488	A mobile pilot-scale plant for in situ demonstration of phosphorus recovery from wastewater using amorphous calcium silicate hydrates. Separation and Purification Technology, 2016, 170, 116-121.	3.9	16
489	Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS). Water Research, 2016, 92, 61-68.	5.3	100
490	Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Waste Management, 2016, 49, 437-454.	3.7	133
491	Growth and phosphorus removal by Synechococcus elongatus co-immobilized in alginate beads with Azospirillum brasilense. Journal of Applied Phycology, 2016, 28, 1501-1507.	1.5	34
492	Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Advances, 2016, 6, 5871-5880.	1.7	82
493	Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 2016, 107, 142-156.	5.3	240
494	Biosorption and retention of orthophosphate onto Ca(OH)2-pretreated biomass of Phragmites sp Journal of Environmental Sciences, 2016, 45, 49-59.	3.2	14
495	Investigation on the adsorption of phosphorus by Fe-loaded ceramic adsorbent. Journal of Colloid and Interface Science, 2016, 464, 277-284.	5.0	34
496	Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnology Advances, 2016, 34, 550-564.	6.0	186
497	Studies on sustainability of simulated constructed wetland system for treatment of urban waste: Design and operation. Journal of Environmental Management, 2016, 169, 285-292.	3.8	32
498	Increase of Soluble Phosphorus and Volatile Fatty Acids During Co-fermentation of Wastewater Sludge. Waste and Biomass Valorization, 2016, 7, 317-324.	1.8	9
499	Chemical behavior of different species of phosphorus in coagulation. Chemosphere, 2016, 144, 2264-2269.	4.2	47
500	Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research, 2016, 23, 6608-6620.	2.7	133
501	Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction. Water Research, 2016, 96, 32-41.	5.3	112
502	Phosphate recovery from anaerobic digester effluents using CaMg(OH)4. Journal of Environmental Sciences, 2016, 44, 260-268.	3.2	15
503	Investigation on the working performance of partitionable-space enhanced coagulation reactor. Separation Science and Technology, 2016, 51, 1220-1226.	1.3	2
504	Removal of phosphorus from aqueous solutions by granular mesoporous ceramic adsorbent based on Hangjin clay. Desalination and Water Treatment, 2016, 57, 22400-22412.	1.0	14
505	Sorption mechanism(s) of orthophosphate onto Ca(OH) ₂ pretreated bentonite. RSC Advances, 2016, 6, 22295-22305.	1.7	17

#	Article	IF	CITATIONS
506	Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer. Environmental Technology (United Kingdom), 2016, 37, 2099-2112.	1.2	24
507	Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production. Bioprocess and Biosystems Engineering, 2016, 39, 703-712.	1.7	26
508	Adsorption of arsenic with struvite and hydroxylapatite in phosphate-bearing solutions. Chemosphere, 2016, 146, 574-581.	4.2	24
509	Phosphorous adsorption on synthesized magnetite in wastewater. Journal of Industrial and Engineering Chemistry, 2016, 34, 198-203.	2.9	54
510	Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis. Separation and Purification Technology, 2016, 163, 1-7.	3.9	84
511	Phosphate recovery through adsorption assisted precipitation using novel precipitation material developed from building waste: Behavior and mechanism. Chemical Engineering Journal, 2016, 292, 246-254.	6.6	37
512	<i>In vitro</i> toxic effects of heavy metals on fungal growth and phosphate-solubilising abilities of isolates obtained from <i>Phragmites australis</i> rhizosphere. Chemistry and Ecology, 2016, 32, 49-67.	0.6	5
513	Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks. Environmental Science & Technology, 2016, 50, 1447-1454.	4.6	265
514	Removal of dissolved inorganic phosphorus with modified gravel sand: kinetics, equilibrium, and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 3074-3084.	1.0	13
515	Adsorption of phosphate from water by easily separable Fe 3 O 4 @SiO 2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. Journal of Colloid and Interface Science, 2016, 465, 76-82.	5.0	227
516	Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of Environmental Management, 2016, 169, 46-57.	3.8	154
517	The preparation of a cross-linked cerium (III)-loaded alginate bead adsorbent for the removal of phosphate from wastewater. Desalination and Water Treatment, 2016, 57, 18354-18365.	1.0	9
518	Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture. Chemosphere, 2016, 144, 1290-1298.	4.2	54
519	Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Research, 2016, 89, 210-221.	5.3	405
520	Red ceramics from composites of hazardous sludge with foundry sand, glass waste and acid neutralization salts. Journal of Environmental Chemical Engineering, 2016, 4, 753-761.	3.3	11
521	Reuse of alum sludge for phosphorus removal from municipal wastewater. Desalination and Water Treatment, 2016, 57, 13246-13254.	1.0	24
522	Macromolecule-based platforms for developing tailor-made formulations for scale inhibition. Environmental Science: Water Research and Technology, 2016, 2, 71-84.	1.2	23
523	Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms. Journal of Bioscience and Bioengineering, 2016, 121, 293-298.	1.1	39

#	ARTICLE	IF	CITATIONS
524	Optimization of phosphate removal from drinking water with activated carbon using response surface methodology (RSM). Desalination and Water Treatment, 2016, 57, 15613-15618.	1.0	5
525	Application of dissolved air flotation (DAF) with coagulation process for treatment of phosphorus within permeate of membrane bioreactor (MBR). Desalination and Water Treatment, 2016, 57, 9043-9050.	1.0	7
526	Effects of organic substances on struvite crystallization and recovery. Desalination and Water Treatment, 2016, 57, 10924-10933.	1.0	20
527	A novel peat-based biosorbent for the removal of phosphate from synthetic and real wastewater and possible utilization of spent sorbent in land application. Desalination and Water Treatment, 2016, 57, 13285-13294.	1.0	31
528	Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater <i>Chlorella vulgaris</i> . Environmental Technology (United) Tj ETQq0 0 0 rgBT	/Ovjezlock	1047f 50 577
529	Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC). Chemosphere, 2017, 173, 172-179.	4.2	14
530	Prospect of recovering phosphorus in magnesium slag-packed wetland filter. Environmental Science and Pollution Research, 2017, 24, 22808-22815.	2.7	9
531	Phosphorus recovery from simulated municipal wastewater (<scp>SMW</scp>) through the crystallization of magnesium ammonium phosphate hexahydrate (<scp>MAP</scp>). Journal of Chemical Technology and Biotechnology, 2017, 92, 2075-2082.	1.6	3
532	Detection and dissolution of needle-like hydroxyapatite nanomaterials in infant formula. NanoImpact, 2017, 5, 22-28.	2.4	32
533	Synthesis of mesoporous α-Fe 2 O 3 using cellulose nanocrystals as template and its use for the removal of phosphate from wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 474-479.	2.7	26
534	Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation. Process Biochemistry, 2017, 54, 135-139.	1.8	60
535	Phosphorus removal from aqueous solution using a novel granular material developed from building waste. Water Science and Technology, 2017, 75, 1500-1511.	1.2	6
536	Removal and recovery of phosphate from water by calcium-silicate composites-novel adsorbents made from waste glass and shells. Environmental Science and Pollution Research, 2017, 24, 8210-8218.	2.7	30
537	Spectroscopic and Microscopic Identification of the Reaction Products and Intermediates during the Struvite (MgNH ₄ PO ₄ ·6H ₂ O) Formation from Magnesium Oxide (MgO) and Magnesium Carbonate (MgCO ₃) Microparticles. ACS Sustainable Chemistry and Engineering, 2017. 5, 1567-1577.	3.2	44
538	Cyanobacteria-Mediated Heavy Metal Remediation. , 2017, , 105-121.		7
539	Application of Nanofertilizer and Nanopesticides for Improvements in Crop Production and Protection. Soil Biology, 2017, , 405-427.	0.6	35
540	Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay. Water Science and Technology, 2017, 75, 1952-1960.	1.2	7
541	Bentonite surface modification and characterization for high selective phosphate adsorption from aqueous media and its application for wastewater treatments. Journal of Water Reuse and Desalination, 2017, 7, 175-186.	1.2	31

#	Article	IF	Citations
542	Fe-Al-Mn ternary oxide nanosorbent: Synthesis, characterization and phosphate sorption property. Journal of Environmental Chemical Engineering, 2017, 5, 1330-1340.	3.3	38
543	Bacterially mediated morphogenesis of struvite and its implication for phosphorus recovery. American Mineralogist, 2017, 102, 381-390.	0.9	37
544	Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment. Bioresource Technology, 2017, 232, 321-330.	4.8	31
545	Evaluation of kinetic and statistical models for predicting breakthrough curves of phosphate removal using dolochar-packed columns. Journal of Water Process Engineering, 2017, 17, 168-180.	2.6	62
546	Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution. Applied Surface Science, 2017, 396, 1783-1792.	3.1	89
547	Increasing economic and environmental benefits of media-based aquaponics through optimizing aeration pattern. Journal of Cleaner Production, 2017, 162, 1111-1117.	4.6	54
548	Robust phosphate capture over inorganic adsorbents derived from lanthanum metal organic frameworks. Chemical Engineering Journal, 2017, 326, 1086-1094.	6.6	154
549	Recovery of Inorganic Phosphorus Using Copper-Substituted ZSM-5. ACS Sustainable Chemistry and Engineering, 2017, 5, 6192-6200.	3.2	10
550	Removal of phosphate using calcium and magnesium-modified iron-based adsorbents. Materials Chemistry and Physics, 2017, 198, 115-124.	2.0	38
551	Conductimetric study of struvite crystallization in water as a function of pH. Journal of Crystal Growth, 2017, 471, 42-52.	0.7	34
552	Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge. Journal of Environmental Management, 2017, 200, 359-365.	3.8	18
553	Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environmental Technology and Innovation, 2017, 8, 113-125.	3.0	49
554	Adsorption of phosphorus based on Hangjin clay granular ceramic from aqueous solution and sewage: Fixedâ€bed column study. Environmental Progress and Sustainable Energy, 2017, 36, 1323-1332.	1.3	7
555	Phycoremediation: An Eco-friendly Algal Technology for Bioremediation and Bioenergy Production. , 2017, , 431-456.		15
556	Nutrient-energy-water recovery from synthetic sidestream centrate using a microbial electrolysis cell - forward osmosis hybrid system. Journal of Cleaner Production, 2017, 154, 16-25.	4.6	82
557	Effect of calcium silicate hydrates (CSH) on phosphorus immobilization and speciation in shallow lake sediment. Chemical Engineering Journal, 2017, 317, 844-853.	6.6	56
558	Gadolinium Complex for the Catch and Release of Phosphate from Water. Environmental Science & Technology, 2017, 51, 4549-4558.	4.6	35
559	Riparian wetland conservation: A case study of phosphorous and social return on investment in the Black River watershed. Ecosystem Services, 2017, 26, 400-410.	2.3	9

#	Article	IF	CITATIONS
560	Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching from biosolids. Waste Management, 2017, 64, 133-139.	3.7	43
561	Strategic phosphate removal/recovery by a re-usable Mg–Fe–Cl layered double hydroxide. Chemical Engineering Research and Design, 2017, 107, 454-462.	2.7	52
562	Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 2017, 196, 340-346.	3.8	28
563	Iron [Fe(0)]-rich substrate based on iron–carbon micro–electrolysis for phosphorus adsorption in aqueous solutions. Chemosphere, 2017, 168, 1486-1493.	4.2	48
564	Synthesis and characterization of magnetic chitosan microspheres as low-density and low-biotoxicity adsorbents for lake restoration. Chemosphere, 2017, 171, 571-579.	4.2	22
565	Biosolid Application to Agricultural Land—a Contribution to Global Phosphorus Recycle: A Review. Pedosphere, 2017, 27, 1-16.	2.1	63
566	Enhanced carbon, nitrogen and phosphorus removal from domestic wastewater in a novel anoxic-aerobic photobioreactor coupled with biogas upgrading. Chemical Engineering Journal, 2017, 313, 424-434.	6.6	83
567	Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater. Chemosphere, 2017, 168, 1317-1323.	4.2	10
568	Enhanced organics removal and partial desalination of high strength industrial wastewater with a multi-stage microbial desalination cell. Desalination, 2017, 423, 104-110.	4.0	38
569	Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environmental Science and Pollution Research, 2017, 24, 26297-26309.	2.7	176
570	Coagulation performance of a novel poly-ferric-acetate (PFC) coagulant in phosphate-kaolin synthetic water treatment. Korean Journal of Chemical Engineering, 2017, 34, 2641-2647.	1.2	10
571	Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes. Environmental Science and Pollution Research, 2017, 24, 22524-22534.	2.7	46
572	Size Modulation of Zirconium-Based Metal Organic Frameworks for Highly Efficient Phosphate Remediation. ACS Applied Materials & amp; Interfaces, 2017, 9, 32151-32160.	4.0	146
573	Amine-crosslinked Shaddock Peel embedded with hydrous zirconium oxide nano-particles for selective phosphate removal in competitive condition. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 650-662.	2.7	22
574	Is SCENA a good approach for side-stream integrated treatment from an environmental and economic point of view?. Water Research, 2017, 125, 478-489.	5.3	33
575	Harvesting of algae in municipal wastewater treatment by calcium phosphate precipitation mediated by photosynthesis, sodium hydroxide and lime. Algal Research, 2017, 27, 115-120.	2.4	25
576	Release of phosphorus from sewage sludge during ozonation and removal by magnesium ammonium phosphate. Environmental Science and Pollution Research, 2017, 24, 23794-23802.	2.7	9
577	Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecological Engineering, 2017, 107, 110-119.	1.6	48

#	Article	IF	CITATIONS
578	Adsorption behavior of phosphate on anion-functionalized nanoporous polymer. Water Quality Research Journal of Canada, 2017, 52, 187-195.	1.2	5
579	Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere, 2017, 186, 381-395.	4.2	150
580	Application of Bioinoculants for Sustainable Agriculture. , 2017, , 473-495.		4
581	Removal and recovery of phosphate from water by a magnetic Fe 3 O 4 @ASC adsorbent. Journal of Environmental Chemical Engineering, 2017, 5, 4229-4238.	3.3	33
582	Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor. Korean Journal of Chemical Engineering, 2017, 34, 2879-2885.	1.2	8
583	House of Quality Planning Matrix for Evaluating Wastewater Nutrient Management Technologies at Three Scales Within a Sewershed. Environmental Engineering Science, 2017, 34, 773-784.	0.8	11
584	Investigation of pH-dependent phosphate removal from wastewaters by membrane capacitive deionization (MCDI). Environmental Science: Water Research and Technology, 2017, 3, 875-882.	1.2	43
585	Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Research, 2017, 123, 353-360.	5.3	127
586	Phosphate removal by Ce(III)â€impregnated crosslinked chitosan complex from aqueous solutions. Polymer Engineering and Science, 2017, 57, 44-51.	1.5	20
587	A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 424, 213-220.	1.0	22
588	Synthesis and Characterization of MgO Modified Diatomite for Phosphorus Recovery in Eutrophic Water. Journal of Chemical & Engineering Data, 2017, 62, 226-235.	1.0	36
589	Exploiting Phosphate-Starved cells of Scenedesmus sp. for the Treatment of Raw Sewage. Indian Journal of Microbiology, 2017, 57, 241-249.	1.5	14
590	Performance of an Ultraviolet Mutagenetic Polyphosphate-Accumulating Bacterium PZ2 and Its Application for Wastewater Treatment in a Newly Designed Constructed Wetland. Applied Biochemistry and Biotechnology, 2017, 181, 735-747.	1.4	3
591	Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research, 2017, 24, 438-449.	2.4	199
592	A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of "no solid waste generation―and analytical methods. Journal of Cleaner Production, 2017, 142, 1728-1740.	4.6	284
593	Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. Journal of Environmental Chemical Engineering, 2017, 5, 160-169.	3.3	66
594	Phosphate removal from aqueous solutions by using natural Jordanian zeolitic tuff. Adsorption Science and Technology, 2017, 35, 284-299.	1.5	17
595	Seqestration Options for Phosphorus in Wastewater. , 2017, , 115-140.		4

#	Article	IF	CITATIONS
596	Effect of COD/N Ratio on Removal Performances in Two Subsurface Wastewater Infiltration Systems. Water Environment Research, 2017, 89, 694-702.	1.3	4
597	Conversion of Wastes to Bioelectricity, Bioethanol, and Fertilizer. Water Environment Research, 2017, 89, 676-686.	1.3	7
598	A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. Journal of Saudi Chemical Society, 2017, 21, S143-S152.	2.4	116
599	Molecular Mechanisms of Phosphate Homeostasis in <i>Escherichia coli</i> . , 0, , .		9
600	The Evaluation of Phosphorus Removal Processes and Mechanisms From Surface Water by Periphyton. , 2017, , 171-202.		1
601	Eco-innovations in the German fertilizer supply chain: Impact on the carbon footprint of fertilizers. Plant, Soil and Environment, 2017, 63, 531-544.	1.0	18
602	Phosphorus Recovery by Struvite Crystallization from Livestock Wastewater and Reuse as Fertilizer: A Review. , 0, , .		10
603	Phosphate Ion Adsorption Properties of Polyacrylonitrile (PAN) Activated Carbon Fiber. Journal of Fiber Science and Technology, 2017, 73, 222-228.	0.2	8
604	Phosphate Removal from Aqueous Solutions Using Calcium Silicate Hydrate Prepared from Blast Furnace Slag. ISIJ International, 2017, 57, 1657-1664.	0.6	23
605	Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals (Basel,) Tj ETQq1 1 0.7	784314 rg 0.8	BT 19verlock
605 606		784314 rg 0.8	BT 10verlock
	Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals (Basel,) Tj ETQq1 1 0.7	784314 rg 0.8	1/
606	Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals (Basel,) Tj ETQq1 1 0. Social Perspectives on the Effective Management of Wastewater. , 0, , . Efficient removal of La(III) from water by surface metal sequestration methodology using 5-azo-phenolate-8-hydroxyquinoline as a task designed sequestering material. Journal of Industrial	0.0	10
606 607	Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals (Basel,) Tj ETQq1 1 0.3 Social Perspectives on the Effective Management of Wastewater., 0, , . Efficient removal of La(III) from water by surface metal sequestration methodology using 5-azo-phenolate-8-hydroxyquinoline as a task designed sequestering material. Journal of Industrial and Engineering Chemistry, 2018, 63, 220-229. The potential of foodwaste leachate as a phycoremediation substrate for microalgal CO2 fixation and	2,9	17 10 15
606 607 608	 Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals (Basel,) Tj ETQq1 1 0.7 Social Perspectives on the Effective Management of Wastewater. , 0, , . Efficient removal of La(III) from water by surface metal sequestration methodology using 5-azo-phenolate-8-hydroxyquinoline as a task designed sequestering material. Journal of Industrial and Engineering Chemistry, 2018, 63, 220-229. The potential of foodwaste leachate as a phycoremediation substrate for microalgal CO2 fixation and biodiesel production. Environmental Science and Pollution Research, 2021, 28, 40724-40734. Preparation of surface anion imprinted polymer by developing a La(III)-coordinated 3-methacryloxyethyl-propyl bi-functionalized graphene oxide for phosphate removal. Journal of the 	2.9	17 10 15 8
606 607 608 609	 Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals (Basel,) Tj ETQq1 1 0.3 Social Perspectives on the Effective Management of Wastewater. , 0, , . Efficient removal of La(III) from water by surface metal sequestration methodology using 5-azo-phenolate-8-hydroxyquinoline as a task designed sequestering material. Journal of Industrial and Engineering Chemistry, 2018, 63, 220-229. The potential of foodwaste leachate as a phycoremediation substrate for microalgal CO2 fixation and biodiesel production. Environmental Science and Pollution Research, 2021, 28, 40724-40734. Preparation of surface anion imprinted polymer by developing a La(III)-coordinated 3-methacryloxyethyl-propyl bi-functionalized graphene oxide for phosphate removal. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 282-290. Assessment of sulphate and iron reduction rates during reactor start-up for passive anaerobic co-treatment of acid mine drainage and sewage. Geochemistry: Exploration, Environment, Analysis, 	2.9 2.7 2.7	17 10 15 8 24
 606 607 608 609 610 	 Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals (Basel,) Tj ETQq1 1 0 Social Perspectives on the Effective Management of Wastewater., 0, , . Efficient removal of La(III) from water by surface metal sequestration methodology using 5-azo-phenolate-8-hydroxyquinoline as a task designed sequestering material. Journal of Industrial and Engineering Chemistry, 2018, 63, 220-229. The potential of foodwaste leachate as a phycoremediation substrate for microalgal CO2 fixation and biodiesel production. Environmental Science and Pollution Research, 2021, 28, 40724-40734. Preparation of surface anion imprinted polymer by developing a La(III)-coordinated 3-methacryloxyethyl-propyl bi-functionalized graphene oxide for phosphate removal. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 282-290. Assessment of sulphate and iron reduction rates during reactor start-up for passive anaerobic co-treatment of acid mine drainage and sewage. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 76-84. 	2.9 2.7 2.7 0.5	17 10 15 8 24 8

#	Article	IF	CITATIONS
614	Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: Adsorption kinetics and mechanism. Journal of Alloys and Compounds, 2018, 753, 422-432.	2.8	117
615	Effect of suspended solids and its role on struvite formation from digested manure. Journal of Chemical Technology and Biotechnology, 2018, 93, 2758-2765.	1.6	18
616	Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 3135-3142.	3.2	71
617	Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change, 2018, 18, 1387-1401.	1.4	17
618	The feasibility of enhanced biological phosphorus removal in the novel oxic/extended idle process using fermentation liquid from sludge fermentation. RSC Advances, 2018, 8, 3321-3327.	1.7	6
619	Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater. Clean Technologies and Environmental Policy, 2018, 20, 393-402.	2.1	69
620	Novel Smart Hydroxyapatite/Silica Sol–Gel Nanocomposite Hybrid Coating for Corrosion Protection of AA2024. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1598-1608.	1.9	7
621	Physical cleaning techniques to control fouling during the pre-concentration of high suspended-solid content solutions for resource recovery by forward osmosis. Desalination, 2018, 429, 134-141.	4.0	27
622	A new hybrid sewage treatment system combining a rolled pipe system and membrane bioreactor to improve the biological nitrogen removal efficiency: A pilot study. Journal of Cleaner Production, 2018, 178, 937-946.	4.6	6
623	The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal. Environmental Science and Pollution Research, 2018, 25, 5318-5335.	2.7	44
624	The mechanism of biological phosphorus removal under anoxic-aerobic alternation condition with starch as sole carbon source and its biochemical pathway. Biochemical Engineering Journal, 2018, 132, 90-99.	1.8	22
625	Development of polymeric iron/zirconium-pillared clinoptilolite for simultaneous removal of multiple inorganic contaminants from wastewater. Chemical Engineering Journal, 2018, 347, 819-827.	6.6	21
626	Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules. Bioresource Technology Reports, 2018, 2, 7-14.	1.5	49
627	Performance of pilot scale anaerobic biofilm digester (ABD) for the treatment of leachate from a municipal waste transfer station. Bioresource Technology, 2018, 260, 213-220.	4.8	21
628	A Comprehensive Review of the Available Media and Approaches for Phosphorus Recovery from Wastewater. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	50
629	Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochemical Engineering Journal, 2018, 134, 129-135.	1.8	115
630	Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 2018, 616-617, 1242-1260.	3.9	254
631	Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains. Soil Biology and Biochemistry, 2018, 116, 139-147.	4.2	50

	CITATION	Report	
#	Article	IF	CITATIONS
632	Algae as a Potential Source of Biokerosene and Diesel – Opportunities and Challenges. , 2018, , 303-324.		5
633	Effect of calcium silicate hydrates coupled with Myriophyllum spicatum on phosphorus release and immobilization in shallow lake sediment. Chemical Engineering Journal, 2018, 331, 462-470.	6.6	30
634	A novel Fe(II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery. Environmental Science and Pollution Research, 2018, 25, 1543-1550.	2.7	7
635	Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis. Journal of Environmental Chemical Engineering, 2018, 6, 395-403.	3.3	76
636	Ca(OH) ₂ Preâ€Treated Bentonite for Phosphorus Removal and Recovery From Synthetic and Real Wastewater. Clean - Soil, Air, Water, 2018, 46, 1700378.	0.7	13
637	Bioremediation by Microalgae: Current and Emerging Trends for Effluents Treatments for Value Addition of Waste Streams. Energy, Environment, and Sustainability, 2018, , 355-375.	0.6	16
638	Biocomposite application for the phosphate ions removal in aqueous medium. Journal of Materials Research and Technology, 2018, 7, 300-307.	2.6	62
639	Going deeper into phosphorus adsorbents for lake restoration: Combined effects of magnetic particles, intraspecific competition and habitat heterogeneity pressure on Daphnia magna. Ecotoxicology and Environmental Safety, 2018, 148, 513-519.	2.9	4
640	Critical analysis of excessive utilization of crude protein in ruminants ration: impact on environmental ecosystem and opportunities of supplementation of limiting amino acids—a review. Environmental Science and Pollution Research, 2018, 25, 181-190.	2.7	26
641	Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. Journal of Colloid and Interface Science, 2018, 513, 72-81.	5.0	150
642	Alkaline solubilization of excess mixed sludge and the recovery of released phosphorus as magnesium ammonium phosphate. Bioresource Technology, 2018, 249, 783-790.	4.8	45
643	Optimized Phosphate Recovery Through MAP Precipitation in an Air Agitated Column Reactor. Oriental Journal of Chemistry, 2018, 34, 3044-3051.	0.1	0
644	A review on environmental applications of chitosan biopolymeric hydrogel based composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 747-763.	1.2	37
645	Effects of Commonly Occurring Metal Ions on Hydroxyapatite Crystallization for Phosphorus Recovery from Wastewater. Water (Switzerland), 2018, 10, 1619.	1.2	20
646	The Importance of Media in Wastewater Treatment. , 0, , .		4
647	Phosphorus Removal and Recovery from Wastewater using Fe-Dosing Bioreactor and Cofermentation: Investigation by X-ray Absorption Near-Edge Structure Spectroscopy. Environmental Science & Technology, 2018, 52, 14119-14128.	4.6	74
648	Quantifying Glycogen in Solids at Full-Scale Enhanced Biological Phosphorous Removal Wastewater Facilities. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	2
649	Impact of pH and Ionic Molar Ratios on Phosphorous Forms Precipitation and Recovery from Different Wastewater Sludges. Resources, 2018, 7, 71.	1.6	54

#	Article	IF	CITATIONS
650	Phytobionts of Wastewater and Restitution. , 2018, , 379-401.		2
651	Nutrient recycling from the effluent of a decentralized anaerobic membrane bioreactor (AnMBR) treating fresh domestic wastewater by cultivation of the microalgae Acutodesmus obliquus. Water Science and Technology, 2018, 78, 1556-1565.	1.2	8
652	Phosphate removal and recovery using immobilized phosphate binding proteins. Water Research X, 2018, 1, 100003.	2.8	17
653	Seasonal characteristics of phosphorus sorption by sediments from plain lakes with different trophic statuses. Royal Society Open Science, 2018, 5, 172237.	1.1	2
654	Removal and recovery of phosphate from water by Mg-laden biochar: Batch and column studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 429-437.	2.3	109
655	Preparation of cobalt-containing spinel oxides as novel adsorbents for efficient phosphate removal. Environmental Science: Water Research and Technology, 2018, 4, 1671-1684.	1.2	14
656	Effects of <i>Stigeoclonium nanum</i> , a freshwater periphytic microalga on water quality in a small-scale recirculating aquaculture system. Aquaculture Research, 2018, 49, 3529-3540.	0.9	9
657	Synthesis and Physicochemical Characterization of Anion Exchanger Based on Green Modified Bottle Gourd Shell. Journal of Spectroscopy, 2018, 2018, 1-16.	0.6	9
658	Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy. Energies, 2018, 11, 664.	1.6	65
659	Regeneration of alkali leaching solution through precipitation using calcium hydroxide. Hydrometallurgy, 2018, 181, 35-42.	1.8	2
660	Effect of heating temperature and time on the phosphate adsorption capacity of thermally modified copper tailings. Water Science and Technology, 2018, 77, 2668-2676.	1.2	5
661	Accelerated effects of nano-ZnO on phosphorus removal by Chlorella vulgaris: Formation of zinc phosphate crystallites. Science of the Total Environment, 2018, 635, 559-566.	3.9	28
662	Chitosan–Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abatement of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers, 2018, 10, 25.	2.0	44
663	Coupling hydrothermal liquefaction and membrane distillation to treat anaerobic digestate from food and dairy farm waste. Bioresource Technology, 2018, 267, 408-415.	4.8	43
664	Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery. Science of the Total Environment, 2018, 644, 661-674.	3.9	89
665	Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants. Bioresource Technology, 2018, 268, 797-810.	4.8	53
666	Development of lanthanum hydroxide loaded on molecular sieve adsorbent and mechanistic study for phosphate removal. Journal of Alloys and Compounds, 2018, 768, 953-961.	2.8	26
667	Cd and Nutrient Elements Release into Various Aqueous Solutions from Synthesized K-Struvite Fertilizer. Communications in Soil Science and Plant Analysis, 2018, 49, 2175-2188.	0.6	2

#	Article	IF	CITATIONS
668	Combined effects of phosphate-solubilizing bacterium XMT-5 (Rhizobium sp.) and submerged macrophyte Ceratophyllum demersum on phosphorus release in eutrophic lake sediments. Environmental Science and Pollution Research, 2018, 25, 18990-19000.	2.7	6
669	Improvement of the quality of struvite crystals recovered from a mixture of human urine and municipal sewage via a novel two-step precipitation method. Environmental Technology and Innovation, 2018, 12, 80-90.	3.0	12
670	Nutrient recovery by struvite precipitation, ion exchange and adsorption from source-separated human urine – a review. Environmental Technology Reviews, 2018, 7, 106-138.	2.1	31
671	Improved Phosphorus Recycling in Organic Farming: Navigating Between Constraints. Advances in Agronomy, 2018, , 159-237.	2.4	78
672	Phosphorus Removal and Recovery From Anaerobic Digestion Residues. Advances in Bioenergy, 2018, , 77-136.	0.5	16
673	Phycotechnological Approaches Toward Wastewater Management. , 2019, , 423-435.		6
674	Tertiary treatment of domestic wastewater by <i>Spirulina platensis</i> integrated with microalgal biorefinery. Biofuels, 2019, 10, 33-44.	1.4	24
675	A model for estimating phosphorus requirements of world food production. Agricultural Systems, 2019, 176, 102666.	3.2	21
676	Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. Water Research, 2019, 165, 114996.	5.3	17
677	Method for Preparation of Nutrient-depleted Soil for Determination of Plant Nutrient Requirements. Communications in Soil Science and Plant Analysis, 2019, 50, 1878-1886.	0.6	7
678	Reusability of iron oxyhydroxide agglomerates adsorbent for repetitive phosphate removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123680.	2.3	21
679	Process optimization of anammox-driven hydroxyapatite crystallization for simultaneous nitrogen removal and phosphorus recovery. Bioresource Technology, 2019, 290, 121779.	4.8	47
680	Luxury phosphorus uptake in microalgae. Journal of Applied Phycology, 2019, 31, 2755-2770.	1.5	103
681	Ecological responses of three emergent aquatic plants to eutrophic water in Shanghai, P. R. China. Ecological Engineering, 2019, 136, 134-140.	1.6	9
682	The Passivating Layer Influence on Mg-Based Anode Corrosion and Implications for Electrochemical Struvite Precipitation. Journal of the Electrochemical Society, 2019, 166, E358-E364.	1.3	18
683	Nutrient Recovery from Municipal Wastewater for Sustainable Food Production Systems: An Alternative to Traditional Fertilizers. Environmental Engineering Science, 2019, 36, 833-842.	0.8	54
684	Simultaneous removal of phosphates and dyes by Al-doped iron oxide decorated MgAl layered double hydroxide nanoflakes. Environmental Science: Nano, 2019, 6, 2615-2625.	2.2	28
685	Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media. Scientific Reports, 2019, 9, 9561.	1.6	29

#	Article	IF	CITATIONS
686	Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Scientific Reports, 2019, 9, 15291.	1.6	19
687	Tunable porous ferric composite for effective removal of phosphate in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123854.	2.3	12
688	Cultivation and safety aspects of Arthrospira platensis (Spirulina) grown with struvite recovered from anaerobic digestion plant as phosphorus source. Algal Research, 2019, 44, 101716.	2.4	15
689	Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal. Water (Switzerland), 2019, 11, 1897.	1.2	7
690	A novel method to rapidly assess the suitability of water treatment residual and crushed concrete for the mitigation of point and nonpoint source nutrient pollution. Resources Conservation & Recycling X, 2019, 2, 100010.	4.2	2
691	Magnetic separation of phosphate contaminants from starch wastewater using magnetic seeding. Science of the Total Environment, 2019, 695, 133723.	3.9	27
692	A review of phosphorus recovery from different thermal treatment products of sewage sludge. Waste Disposal & Sustainable Energy, 2019, 1, 99-115.	1.1	56
693	Analysis of phosphorus migration into soil profiles fertilized with struvite. E3S Web of Conferences, 2019, 86, 00033.	0.2	0
694	Removal of phosphate by Donnan dialysis coupled with adsorption onto calcium alginate beads. Water Science and Technology, 2019, 80, 117-125.	1.2	10
695	Facile synthesis of novel 3D flower-like magnetic La@Fe/C composites from ilmenite for efficient phosphate removal from aqueous solution. RSC Advances, 2019, 9, 28312-28322.	1.7	9
696	Integration of wastewater treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX. Journal of Cleaner Production, 2019, 240, 118211.	4.6	30
697	Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Research, 2019, 43, 101651.	2.4	71
698	Layered double hydroxides for phosphorus recovery from acidified and non-acidified dewatered sludge. Water Research, 2019, 153, 208-216.	5.3	53
699	Development of chitosan-poly(ethyleneimine) based double network cryogels and their application as superadsorbents for phosphate. Carbohydrate Polymers, 2019, 210, 17-25.	5.1	67
700	Advances and microbial techniques for phosphorus recovery in sustainable wastewater management. , 2019, , 275-289.		0
701	Phosphate adsorption on an industrial residue and subsequent use as an amendment for phosphorous deficient soils. Journal of Cleaner Production, 2019, 230, 844-853.	4.6	11
702	Phosphorus flows on ships: Case study from the Baltic Sea. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2019, 233, 528-539.	0.3	3
703	Characteristics of vegetable crop cultivation and nutrient releasing with struvite as a slow-release fertilizer. Environmental Science and Pollution Research, 2019, 26, 34332-34344.	2.7	28

#	Article	IF	CITATIONS
704	In Situ Nutrient Removal from Rural Runoff by A New Type Aerobic/Anaerobic/Aerobic Water Spinach Wetlands. Water (Switzerland), 2019, 11, 1100.	1.2	3
705	Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. Algal Research, 2019, 41, 101554.	2.4	12
706	Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration. Bioresource Technology, 2019, 289, 121600.	4.8	131
707	A novel platform based on gold nanoparticles chemically impregnated polyurethane foam sorbent coupled ion chromatography for selective separation and trace determination of phosphate ions in water. Microchemical Journal, 2019, 149, 103987.	2.3	11
708	Comment to: Qi, Yi, et al. "Bibliometric Analysis of Algal-Bacterial Symbiosis in Wastewater Treatmentâ€; Int. J. Environ. Res. Public Health 2019, 16, 1077. International Journal of Environmental Research and Public Health, 2019, 16, 2034.	1.2	2
709	Making Phosphorus Fertilizer from Dairy Wastewater with Aluminum Water Treatment Residuals. Soil Science Society of America Journal, 2019, 83, 649-657.	1.2	9
710	New framework for automated article selection applied to a literature review of Enhanced Biological Phosphorus Removal. PLoS ONE, 2019, 14, e0216126.	1.1	6
711	Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite. Water (Switzerland), 2019, 11, 633.	1.2	40
712	Photomineralization of Effluent Organic Phosphorus to Orthophosphate under Simulated Light Illumination. Environmental Science & Technology, 2019, 53, 4997-5004.	4.6	48
713	Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites. Chemical Engineering Journal, 2019, 371, 893-902.	6.6	142
714	Use of (modified) natural adsorbents for arsenic remediation: A review. Science of the Total Environment, 2019, 676, 706-720.	3.9	228
715	Biomass production and nutrients removal from nonâ€sterile municipal wastewater and cattle farm wastewater inoculated with <i>Chlorococcum</i> sp. GD. Journal of Chemical Technology and Biotechnology, 2019, 94, 2580-2588.	1.6	10
716	ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes. Journal of Environmental Management, 2019, 241, 587-602.	3.8	28
717	Concurrent Nitrogen and Phosphorus Recovery Using Flow-Electrode Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2019, 7, 7844-7850.	3.2	84
718	Adsorption of different forms of phosphorus on modified corn bracts. Water Environment Research, 2019, 91, 748-755.	1.3	5
719	Phosphorus Capture, Immobilization and Channeling Through Algae for a Sustainable Agriculture. , 2019, , 1-11.		0
720	The Influence of Periphyton Biofilm on Phosphorus Migration in Sediments. International Journal of Environmental Research, 2019, 13, 327-335.	1.1	5
721	Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution. Journal of Cleaner Production, 2019, 222, 36-46.	4.6	63

#	Article	IF	CITATIONS
722	Film based on magnesium impregnated biochar/cellulose acetate for phosphorus adsorption from aqueous solution. RSC Advances, 2019, 9, 5620-5627.	1.7	38
723	Economic and energetic assessment of different phosphorus recovery options from aerobic sludge. Journal of Cleaner Production, 2019, 223, 729-738.	4.6	49
724	Technologies for Recovering Nutrients from Wastewater: A Critical Review. Environmental Engineering Science, 2019, 36, 511-529.	0.8	90
725	Removal of phosphorus from secondary effluents using infiltration–percolation process. Applied Water Science, 2019, 9, 1.	2.8	28
726	Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 2049-2116.	6.6	80
727	ADSORPTIVE REMOVAL OF PHOSPHATE ONTO IRON LOADED LITCHI CHINENSIS SEED WASTE. Journal of Institute of Science and Technology, 2019, 23, 81-87.	0.2	4
728	Synthesis of Positively Charged Polystyrene Microspheres for the Removal of Congo Red, Phosphate, and Chromium(VI). ACS Omega, 2019, 4, 6669-6676.	1.6	19
729	Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME Journal, 2019, 13, 1933-1946.	4.4	130
730	Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. Bioresource Technology, 2019, 285, 121303.	4.8	52
731	Extraction and quantification of polyphosphates in activated sludge from waste water treatment plants by 31P NMR spectroscopy. Water Research, 2019, 157, 346-355.	5.3	32
732	Advances in energy systems for valorization of aqueous byproducts generated from hydrothermal processing of biomass and systems thinking. Green Chemistry, 2019, 21, 2518-2543.	4.6	21
733	DEVELOPMENT OF CONTINUOUS SYSTEM BASED ON NANOSCALE ZERO VALENT IRON PARTICLES FOR PHOSPHORUS REMOVAL. Journal of Japan Society of Civil Engineers, 2019, 7, 30-42.	0.1	25
734	Performance of Anaerobic Baffled Reactor for Decentralized Wastewater Treatment in Urban Malang, Indonesia. Processes, 2019, 7, 184.	1.3	21
735	Ion exchange nutrient recovery from anaerobic membrane bioreactor permeate. Water Environment Research, 2019, 91, 606-615.	1.3	11
736	Effectiveness of biopolymer coagulants in agricultural wastewater treatment at two contrasting levels of pollution. SN Applied Sciences, 2019, 1, 1.	1.5	22
737	Interaction between phosphate ions and Fe-Mg type hydrotalcite for purification of wastewater. Journal of Environmental Chemical Engineering, 2019, 7, 102897.	3.3	23
738	Fractionation and identification of iron-phosphorus compounds in sewage sludge. Chemosphere, 2019, 223, 250-256.	4.2	62
739	Preparation and Photocatalytic Properties of Graphene/SrTiO ₃ Thin Film Catalyst. Materials Science Forum, 0, 972, 191-199.	0.3	0

#	Article	IF	CITATIONS
740	Nutrient removal efficiency of green algal strains at high phosphate concentrations. Water Science and Technology, 2019, 80, 1832-1843.	1.2	10
741	Selective removal of phosphate by dual Zr and La hydroxide/cellulose-based bio-composites. Journal of Colloid and Interface Science, 2019, 533, 692-699.	5.0	62
742	Controlled Synthesis of Struvite Nanowires in Synthetic Wastewater. ACS Sustainable Chemistry and Engineering, 2019, 7, 2035-2043.	3.2	16
743	Microbial electrolysis followed by chemical precipitation for effective nutrients recovery from digested sludge centrate in WWTPs. Chemical Engineering Journal, 2019, 361, 256-265.	6.6	72
744	Column adsorption and regeneration study of magnetic biopolymer resin for perchlorate removal in presence of nitrate and phosphate. Journal of Cleaner Production, 2019, 213, 762-775.	4.6	49
745	Experimental study of nutrient removal in an anaerobic hybrid upflow sludge blanket filtration bioreactor using response surface methodology. International Journal of Environmental Science and Technology, 2019, 16, 7683-7694.	1.8	0
746	Phosphorus recovery as calcium phosphate by a pellet reactor pre-treating domestic wastewater before entering a constructed wetland. International Journal of Environmental Science and Technology, 2019, 16, 3851-3860.	1.8	14
747	Unexpected Favorable Role of Ca ²⁺ in Phosphate Removal by Using Nanosized Ferric Oxides Confined in Porous Polystyrene Beads. Environmental Science & Technology, 2019, 53, 365-372.	4.6	88
748	Elucidating the impact of influent pollutant loadings on pollutants removal in agricultural waste-based constructed wetlands treating low C/N wastewater. Bioresource Technology, 2019, 273, 529-537.	4.8	27
749	One-Pot Synthesis of Magnetic Cationic Adsorbent Modified with PDDA for Organic Phosphonates Removal. Nano, 2019, 14, 1950019.	0.5	7
750	Energy Recovery and Nitrogen Management from Struvite Precipitation Effluent via Microbial Fuel Cells. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	10
751	Sustainable bio-hydrothermal sequencing treatment for asbestos-cement wastes. Journal of Hazardous Materials, 2019, 364, 256-263.	6.5	12
752	Adsorption of micronutrient metal ion onto struvite to prepare slow release multielement fertilizer: Copper(II) doped-struvite. Chemosphere, 2019, 217, 393-401.	4.2	48
753	Environmental impacts of phosphorus recovery from a "product―Life Cycle Assessment perspective: Allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Science of the Total Environment, 2019, 656, 55-69.	3.9	82
754	Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process. Separation and Purification Technology, 2019, 212, 783-790.	3.9	21
755	Phosphorus recovery from dairy manure wastewater by fungal biomass treatment. Water and Environment Journal, 2019, 33, 508-517.	1.0	11
756	A Pharmaceutical Industry Perspective on Sustainable Metal Catalysis. Organometallics, 2019, 38, 36-46.	1.1	210
757	Microtopographic modification conserves urban wetland water quality by increasing the dissolved oxygen in the wet season. Journal of Environmental Sciences, 2020, 87, 71-81.	3.2	8

#	Article	IF	CITATIONS
758	Preconcentration and Immobilization of Phosphate from Aqueous Solutions in Environmental Cleanup by a New Bio-based Anion Exchanger. Waste and Biomass Valorization, 2020, 11, 1373-1384.	1.8	5
759	Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2020, 81, 24-40.	2.9	92
760	Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode. Chemical Engineering Journal, 2020, 380, 122480.	6.6	55
761	Modification of sludge-based biochar and its application to phosphorus adsorption from aqueous solution. Journal of Material Cycles and Waste Management, 2020, 22, 123-132.	1.6	21
762	Rapid and long-effective removal of phosphate from water by zero-valent iron in combination with hypochlorite (ZVI/NaClO). Chemical Engineering Journal, 2020, 382, 122835.	6.6	29
763	Efficient removal of phosphate from acidified urine using UiO-66 metal-organic frameworks with varying functional groups. Applied Surface Science, 2020, 501, 144074.	3.1	102
764	Heavy metals in water, sediment, fish and associated risks from an endorheic lake located in Southern Africa. International Journal of Environmental Science and Technology, 2020, 17, 253-266.	1.8	12
765	Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal, 2020, 381, 122566.	6.6	333
766	Ionic dissolution and precipitation of KBF4 and NaBF4 aqueous solutions. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123283.	1.2	1
767	Characteristic and model of phosphate adsorption by activated carbon electrodes in capacitive deionization. Separation and Purification Technology, 2020, 236, 116285.	3.9	29
768	Comparing the leaching behavior of phosphorus, aluminum and iron from post-precipitated tertiary sludge and anaerobically digested sewage sludge aiming at phosphorus recovery. Journal of Cleaner Production, 2020, 247, 119129.	4.6	51
769	Engineered addition of slag fines for the sequestration of phosphate and sulfide during mesophilic anaerobic digestion. Water Environment Research, 2020, 92, 455-464.	1.3	5
770	Identifying eco-efficient year-round crop combinations for rooftop greenhouse agriculture. International Journal of Life Cycle Assessment, 2020, 25, 564-576.	2.2	30
771	Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. Environmental Science and Pollution Research, 2020, 27, 5730-5743.	2.7	28
772	Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere, 2020, 247, 125847.	4.2	102
773	Cheese wastewater treatment by acid and basic precipitation: Application of H2SO4, HNO3, HCl, Ca(OH)2 and NaOH. Journal of Environmental Chemical Engineering, 2020, 8, 103556.	3.3	30
774	Unsterilized sewage treatment and carbohydrate accumulation in Tetradesmus obliquus PF3 with CO2 supplementation. Algal Research, 2020, 45, 101741.	2.4	28
775	Nonedible vegetable oil-based cutting fluids for machining processes – a review. Materials and Manufacturing Processes, 2020, 35, 1-32.	2.7	75

#	Article	IF	CITATIONS
776	Highly efficient adsorption and recycle of phosphate from wastewater using flower-like layered double oxides and their potential as synergistic flame retardants. Journal of Colloid and Interface Science, 2020, 562, 578-588.	5.0	39
777	Nitrogen release of hydrothermal treatment of antibiotic fermentation residue and preparation of struvite from hydrolysate. Science of the Total Environment, 2020, 713, 135174.	3.9	20
778	Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant. Water Research, 2020, 170, 115361.	5.3	59
779	Selective and efficient sequestration of phosphate from waters using reusable nano-Zr(IV) oxide impregnated agricultural residue anion exchanger. Science of the Total Environment, 2020, 700, 134999.	3.9	28
780	Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization. Separation and Purification Technology, 2020, 237, 116322.	3.9	86
781	Resource recovery assessment at a pulp mill wastewater treatment plant in Uruguay. Journal of Environmental Management, 2020, 255, 109718.	3.8	3
782	Environmental performances of production and land application of sludge-based phosphate fertilizers—a life cycle assessment case study. Environmental Science and Pollution Research, 2020, 27, 2054-2070.	2.7	16
783	Influence of Ca2+ on phosphate removal from water using a non-core-shell Fe3O4@ZIF-67 composites. Journal of Environmental Chemical Engineering, 2020, 8, 104458.	3.3	17
784	Phosphorus Removal from Wastewater by Electrocoagulation with Magnetized Iron Particle Anode. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
785	Field validation of multifunctional ion exchange process for reverse osmosis pretreatment and phosphate recovery during impaired water reuse. Journal of Water Process Engineering, 2020, 36, 101347.	2.6	16
786	Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 52788-52796.	4.0	83
787	Algal pathway for nutrient recovery from urban sewage. Algal Research, 2020, 51, 102023.	2.4	13
788	Microalgal bio-fertilizers. , 2020, , 445-463.		4
789	Potential strategies for the mainstream application of anammox in treatment of anaerobic effluents - A review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2567-2594.	6.6	6
790	Revisiting Chemically Enhanced Primary Treatment of Wastewater: A Review. Sustainability, 2020, 12, 5928.	1.6	61
791	Potassium solubilizing and mobilizing microbes: Biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress. , 2020, , 177-202.		22
792	Sweet Corn Phosphorus Uptake from Sandy Soil Amended with Anaerobically-digested Manure. Communications in Soil Science and Plant Analysis, 2020, 51, 2398-2413.	0.6	1
793	Phosphorus recovery from sewage sludge – phosphorus leaching behavior from aluminum-containing tertiary and anaerobically digested sludge. Water Science and Technology, 2020, 82, 1509-1522.	1.2	12

ARTICLE IF CITATIONS Perspectives on Microalgal Biofilm Systems with Respect to Integration into Wastewater Treatment 794 1.2 9 Technologies and Phosphorus Scarcity. Water (Switzerland), 2020, 12, 2245. Simultaneous nitrification–denitrification by phosphate accumulating microorganisms. World Journal of Microbiology and Biotechnology, 2020, 36, 151. 795 1.7 Effects of Potassium Phosphates on Hydrothermal Liquefaction of Triglyceride, Protein, and 796 2.5 27 Polysaccharide. Energy & amp; Fuels, 2020, 34, 15313-15321. Phosphorus removal potential at sewage treatment plants in Bavaria $\hat{a} \in \hat{}$ a case study. Environmental 797 2.0 Challenges, 2020, 1, 100008. pH control in neutral solutions using polymethylacrylic acids as polymer-supported buffer agents. 798 0.2 0 IOP Conference Series: Earth and Environmental Science, 2020, 558, 042017. A Recyclable Polymer-supported Glycane as pH Buffers for Urease-catalyzed Reaction. IOP Conference Series: Earth and Environmental Science, 2020, 558, 042018. 799 0.2 Enhanced phosphorus removal and recovery by metallic nanoparticles-modified biochar. 800 2.0 6 Nanotechnology for Environmental Engineering, 2020, 5, 1. Recovery of ammonium and phosphate using battery deionization in a background electrolyte. 1.2 Environmental Science: Water Research and Technology, 2020, 6, 1688-1696. Simple processes for contamination removal in cheesemaking wastewater: CaCO3, Mg(OH)2, FeSO4 and 802 3.3 11 FeCl3. Journal of Environmental Chemical Engineering, 2020, 8, 104034. Microalgae Cultivation in Wastewater to Recycle Nutrients as Biofertilizer. Environmental Chemistry for A Sustainable World, 2020, , 71-86. Hydroeconomic modeling of resource recovery from wastewater: Implications for water quality and 804 4 1.0 quantity management. Journal of Environmental Quality, 2020, 49, 593-602. Climate and soil microâ€organisms drive soil phosphorus fractions in coastal dune systems. Functional Ecology, 2020, 34, 1690-1701. Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects 806 3.0 52 on plants. Environmental Technology and Innovation, 2020, 19, 100869. Can wastewater feed cities? Determining the feasibility and environmental burdens of struvite recovery and reuse for urban regions. Science of the Total Environment, 2020, 737, 139783. Does influent C/N ratio affect pollutant removal and greenhouse gas emission in wastewater 808 ecological soil infiltration systems with/without intermittent aeration?. Water Science and 1.2 4 Technology, 2020, 81, 668-678. Heterologous expression of azoreductase-encoding gene azrS of Bacillus sp. MR-1/2 for enhanced azo dye decolorization and wastewater treatment. Archives of Microbiology, 2020, 202, 2135-2145. 809 Direct and residual effect of biochar derived from biosolids on soil phosphorus pools: A four-year 810 3.9 36 field assessment. Science of the Total Environment, 2020, 739, 140013. Aqueous phosphorous adsorption onto SnO₂ and WO₃ nanoparticles in 811 batch mode: kinetic, isotherm and thermodynamic study. Journal of Experimental Nanoscience, 2020, 1.3 15, 242-265.

#	Article	IF	CITATIONS
812	Biological Removal of Micropollutants in Human Supply Water Samples Using Nitrifying and Denitrifying Bacteria. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	1
813	Transformation of Fe–P Complexes in Bioreactors and P Recovery from Sludge: Investigation by XANES Spectroscopy. Environmental Science & Technology, 2020, 54, 4641-4650.	4.6	28
814	A Study on the Potential Fertilization Effects of Microgranule Fertilizer Based on the Protein and Calcined Bones in Maize Cultivation. Sustainability, 2020, 12, 1343.	1.6	19
815	Synthesis of magnetite/lanthanum hydroxide composite and magnetite/aluminum hydroxide composite for removal of phosphate. Science of the Total Environment, 2020, 723, 137838.	3.9	40
816	Application of the hydroxyapatite crystallization-filtration process to recover phosphorus from wastewater effluents. Water Science and Technology, 2020, 81, 2300-2310.	1.2	3
817	Removal of phosphate at low concentration from water by porous PVA/Al ₂ O ₃ composites. Environmental Technology (United Kingdom), 2022, 43, 345-354.	1.2	10
818	Resource recovery and waste-to-energy from wastewater sludge via thermochemical conversion technologies in support of circular economy: a comprehensive review. BMC Chemical Engineering, 2020, 2, .	3.4	44
819	Water Chemical Remediation for Simultaneous Removal of Phosphate Ion and Blue-Green Algae From Anthropogenically Eutrophied Pond. , 0, , .		2
820	Enhanced phosphate removal by using La-Zr binary metal oxide nanoparticles confined in millimeter-sized anion exchanger. Journal of Colloid and Interface Science, 2020, 580, 234-244.	5.0	27
821	Abatement of circumneutral mine drainage by Co-treatment with secondary municipal wastewater. Journal of Environmental Management, 2020, 271, 110982.	3.8	12
822	Filter Media-Packed Bed Reactor Fortification with Biochar to Enhance Wastewater Quality. Applied Sciences (Switzerland), 2020, 10, 790.	1.3	2
823	Preparation of mesoporous zirconia ceramic fibers modified by dual surfactants and their phosphate adsorption characteristics. Ceramics International, 2020, 46, 14019-14029.	2.3	15
824	Simultaneous recovery of phosphorus and nitrogen from liquid digestate by vacuum membrane distillation with permeate fractional condensation. Chinese Journal of Chemical Engineering, 2020, 28, 1558-1565.	1.7	11
825	Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production, 2020, 257, 120573.	4.6	148
826	Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions. Chemosphere, 2020, 250, 126245.	4.2	26
827	Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics. Bioresource Technology, 2020, 304, 122983.	4.8	26
828	Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential. Water Research, 2020, 174, 115627.	5.3	35
829	Reducing excess phosphorus in agricultural runoff with low-cost, locally available materials to prevent toxic eutrophication in hoar areas of Bangladesh. Groundwater for Sustainable Development, 2020, 10, 100348.	2.3	8

#	Article	IF	CITATIONS
830	Potato response to struvite compared with conventional phosphorus fertilizer in Eastern Canada. Agronomy Journal, 2020, 112, 1360-1376.	0.9	8
831	Effective removal of phosphorus from eutrophic water by using cement. Environmental Research, 2020, 183, 109218.	3.7	17
832	Culture study on utilization of phosphite by green microalgae. Journal of Applied Phycology, 2020, 32, 889-899.	1.5	6
833	Sterile phosphate as a novel calcic adsorbent for phosphorus removal from wastewater. Water Science and Technology, 2020, 81, 199-209.	1.2	0
834	Removal and recovery of nutrients from municipal sewage: Algal vs. conventional approaches. Water Research, 2020, 175, 115709.	5.3	49
835	Monitoring and modelling of influent patterns, phase distribution and removal of 20 elements in two primary wastewater treatment plants in Norway. Science of the Total Environment, 2020, 725, 138420.	3.9	11
836	Biodegradable fertilizer nanocomposite hydrogel based on poly(vinyl alcohol)/kaolin/diammonium hydrogen phosphate (DAhP) for controlled release of phosphate. Polymer Bulletin, 2021, 78, 2933-2950.	1.7	8
837	Adsorption of phosphate from aqueous using iron hydroxides prepared by various methods. Journal of Environmental Chemical Engineering, 2021, 9, 104645.	3.3	16
838	Biosynthesis of vivianite from microbial extracellular electron transfer and environmental application. Science of the Total Environment, 2021, 762, 143076.	3.9	25
839	Phosphorus recovery from soil through phosphorus extraction and retention on material: A comparison between batch extraction-retention and column percolation. Journal of Environmental Management, 2021, 277, 111435.	3.8	5
840	Efficacy of selected phosphorus sorbing materials (PSMs) to enhance the orthophosphate sorption capacity of filter socks. Water and Environment Journal, 2021, 35, 807-818.	1.0	2
841	Development of a novel phosphorus recovery system using incinerated sewage sludge ash (ISSA) and phosphorus-selective adsorbent. Waste Management, 2021, 120, 41-49.	3.7	30
842	A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining. Resources, Conservation and Recycling, 2021, 168, 105273.	5.3	41
843	Bio-inspired materials for nutrient biocapture from wastewater: Microalgal cells immobilized on chitosan-based carriers. Journal of Water Process Engineering, 2021, 40, 101774.	2.6	23
844	Development and simulation of a struvite crystallization fluidized bed reactor with enhanced external recirculation for phosphorous and ammonium recovery. Science of the Total Environment, 2021, 760, 144311.	3.9	11
845	Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl3. International Journal of Biological Macromolecules, 2021, 167, 223-232.	3.6	10
846	Multicomponent adsorption of pentavalent As, Sb and P onto iron-coated cork granulates. Journal of Hazardous Materials, 2021, 406, 124339.	6.5	16
847	Great enhancement in phosphate uptake onto lanthanum carbonate grafted microfibrous composite under a low-voltage electrostatic field. Chemosphere, 2021, 264, 128378.	4.2	27

	CITATION	N KEPORT	
#	Article	IF	CITATIONS
848	Mg-coordinated self-assembly of MgO-doped ordered mesoporous carbons for selective recovery of phosphorus from aqueous solutions. Chemical Engineering Journal, 2021, 406, 126748.	6.6	54
849	Phosphate Recovery by a Surface-Immobilized Cerium Affinity Peptide. ACS ES&T Water, 2021, 1, 58-67.	2.3	10
850	Microwave-enhanced advanced oxidation process of biogas slurry from cow manure anaerobic digester. Environmental Technology (United Kingdom), 2021, 42, 1846-1852.	1.2	1
851	Recovery and reuse of alginate in an immobilized algae reactor. Environmental Technology (United) Tj ETQq1	1 0.784314 1.2	rgBT/Overloc 23
852	Advanced applications of green materials in nitrate, phosphate, and fluoride removal. , 2021, , 423-459.		2
853	Coral Reef Ecosystem. SpringerBriefs in Earth Sciences, 2021, , 27-53.	0.5	3
854	Performance of Nano Zero-Valent Iron Derived from the Decomposition of Siderite in the Removal of Phosphate. Journal of Nanoscience and Nanotechnology, 2021, 21, 623-631.	0.9	1
855	Study on Brazilian agribusiness wastewaters: composition, physical‑chemical characterization, volumetric production and resource recovery. Brazilian Journal of Environmental Sciences (Online), 2021, 56, 248-265.	0.1	2
856	Electrochemically precipitated struvite effects on extractable nutrients compared with other fertilizerâ€phosphorus sources. , 2021, 4, e20183.		8
857	Cationic starch: an effective flocculant for separating algal biomass from wastewater RO concentrate treated by microalgae. Journal of Applied Phycology, 2021, 33, 917-928.	1.5	10
858	The scientometric analysis of the research on microalgae-based wastewater treatment. Environmental Science and Pollution Research, 2021, 28, 25339-25348.	2.7	8
859	More than a fertilizer: wastewater-derived struvite as a high value, sustainable fire retardant. Green Chemistry, 2021, 23, 4510-4523.	4.6	18
860	Combination of Advanced Oxidation Processes and Microalgae Aiming at Recalcitrant Wastewater Treatment and Algal Biomass Production: a Review. Environmental Processes, 2021, 8, 483-509.	1.7	10
861	Metagenomic insights into the effect of sulfate on enhanced biological phosphorus removal. Applied Microbiology and Biotechnology, 2021, 105, 2181-2193.	1.7	21
862	Pollutants removal, greenhouse gases emission and functional genes in wastewater ecological soil infiltration systems: influences of influent surface organic loading and aeration mode. Water Science and Technology, 2021, 83, 1619-1632.	1.2	2
863	Simultaneous removal of nitrate and phosphate in groundwater using Ca-citrate complex. Environmental Science and Pollution Research, 2021, 28, 35738-35750.	2.7	8
864	Case study for analyzing nutrient-management technologies at three scales within a sewershed. Urban Water Journal, 2021, 18, 410-420.	1.0	1
865	Harnessing Peptide Binding to Capture and Reclaim Phosphate. Journal of the American Chemical Society, 2021, 143, 4440-4450.	6.6	11

#	Article	IF	CITATIONS
866	Effect of ammonia removal and biochar detoxification on anaerobic digestion of aqueous phase from municipal sludge hydrothermal liquefaction. Bioresource Technology, 2021, 326, 124730.	4.8	23
867	Combining Process Modelling and LCA to Assess the Environmental Impacts of Wastewater Treatment Innovations. Water (Switzerland), 2021, 13, 1246.	1.2	13
868	Facile synthesis of Zr(IV)-crosslinked carboxymethyl cellulose/carboxymethyl chitosan hydrogel using PEG as pore-forming agent for enhanced phosphate removal. International Journal of Biological Macromolecules, 2021, 176, 558-566.	3.6	25
869	Advanced techniques to remove phosphates and nitrates from waters: a review. Environmental Chemistry Letters, 2021, 19, 3165-3180.	8.3	44
870	Phosphate removal from landfill leachate using ferric iron bioremediation under anaerobic condition. Journal of Material Cycles and Waste Management, 2021, 23, 1576-1587.	1.6	2
871	Magnetic particles as new adsorbents for the reduction of phosphate inputs from a wastewater treatment plant to a Mediterranean Ramsar wetland (Southern Spain). Chemosphere, 2021, 270, 128640.	4.2	4
872	Phosphorus immobilization in water and sediment using iron-based materials: A review. Science of the Total Environment, 2021, 767, 144246.	3.9	75
873	Incineration of Textile Sludge for Partial Replacement of Cement in Concrete Production: A Case of Ethiopian Textile Industries. Advances in Materials Science and Engineering, 2021, 2021, 1-6.	1.0	6
874	Assessing the viability of recovered phosphorus from eutrophicated aquatic ecosystems as a liquid fertilizer. Journal of Environmental Management, 2021, 285, 112156.	3.8	2
875	The electrochemistry of ammonium dihydrogen phosphate, disodium phosphate, ammonium chloride on Mgâ€based and polycrystalline Pt electrodes. Electrochemical Science Advances, 0, , e2100067.	1.2	0
876	Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology. Technological Forecasting and Social Change, 2021, 167, 120689.	6.2	15
877	Evaluation of simultaneous removal of nitrate and phosphate in groundwater under flow-through conditions. Journal of the Geological Society of Korea, 2021, 57, 353-363.	0.3	0
878	Performance Evaluation of Cascade Separation for a Humic Substance and Nutrient Recovery from Piggery Wastewater toward a Circular Bioeconomy. ACS Sustainable Chemistry and Engineering, 2021, 9, 8115-8124.	3.2	8
879	Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. Environmental Technology (United Kingdom), 2022, 43, 4306-4314.	1.2	3
880	Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review. Renewable Energy, 2021, 171, 401-415.	4.3	93
881	Maximizing phosphorus recovery as biofertilizer in an algal wastewater treatment system. Resources, Conservation and Recycling, 2021, 170, 105552.	5.3	13
882	Long-term performance of nutrient removal in an integrated constructed wetland. Science of the Total Environment, 2021, 779, 146268.	3.9	16
883	Degradation of Alkali-Activated Slag and Fly Ash Mortars under Different Aggressive Acid Conditions. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	25

#	Article	IF	CITATIONS
884	<i>ptxD/</i> Phi as alternative selectable marker system for genetic transformation for bio-safety concerns: a review. PeerJ, 2021, 9, e11809.	0.9	9
885	Microbial Fuel Cell for Energy Production, Nutrient Removal and Recovery from Wastewater: A Review. Processes, 2021, 9, 1318.	1.3	30
886	Biosorption for Removal of Nitratesand Phosphates: A Review. Iarjset, 2021, 8, .	0.0	0
887	Infrastructures for Phosphorus Recovery from Livestock Waste Using Cyanobacteria: Transportation, Techno-Economic, and Policy Implications. ACS Sustainable Chemistry and Engineering, 2021, 9, 11416-11426.	3.2	4
888	Relevant design parameters for a reactor used in P removal with ZVI-based materials. Journal of Industrial and Engineering Chemistry, 2021, 104, 8-21.	2.9	16
889	Investigation of hydrodynamics of inverse fluidized bed reactor (IFBR) for struvite (NH4MgPO4·6H2O) recovery from urban wastewater. Chemical Papers, 0, , 1.	1.0	0
890	Engineering Calcium-Bearing Mineral/Hydrogel Composites for Effective Phosphate Recovery. ACS ES&T Engineering, 2021, 1, 1553-1564.	3.7	5
891	KENTSEL NİTELİKLİ ANAEROBİK ÇÜRÜTÜLMÜŞ ÇAMURDAN KİREÇ İLE FOSFOR GERİ KAZ ARAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2021, 24,	ANIMINDA 138-145.	.pH ETKİSÄ
892	Management of phosphorus nutrient amid climate change for sustainable agriculture. Journal of Environmental Quality, 2021, 50, 1303-1324.	1.0	24
893	Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 2021, 9, 105579.	3.3	48
894	An iron-air fuel cell system towards concurrent phosphorus removal and resource recovery in the form of vivianite and energy generation in wastewater treatment: A sustainable technology regarding phosphorus. Science of the Total Environment, 2021, 791, 148213.	3.9	18
895	Adsorption of phosphate ions from aqueous solutions by amorphous silica obtained by acid decomposition of nepheline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127073.	2.3	4
896	Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. Journal of Environmental Management, 2021, 296, 113246.	3.8	99
897	Recent advances on the removal of phosphorus in aquatic plant-based systems. Environmental Technology and Innovation, 2021, 24, 101933.	3.0	28
898	Algal biomass production by phosphorus recovery and recycling from wastewater using amorphous calcium silicate hydrates. Bioresource Technology, 2021, 340, 125678.	4.8	5
899	Effects of different pre-treatments on the properties of polyhydroxyalkanoates extracted from sidestreams of a municipal wastewater treatment plant. Science of the Total Environment, 2021, 801, 149633.	3.9	14
900	Recovered phosphorus for a more resilient urban agriculture: Assessment of the fertilizer potential of struvite in hydroponics. Science of the Total Environment, 2021, 799, 149424.	3.9	20
901	Equilibrium modeling and statistical analysis of struvite precipitation for nutrient recovery from corn-ethanol downstream process. , 2022, , 463-490.		0

#	Article	IF	CITATIONS
902	Rare earth elements (REE) for the removal and recovery of phosphorus: A review. Chemosphere, 2022, 286, 131661.	4.2	43
903	An optimized CaO2-functionalized alginate bead for simultaneous and efficient removal of phosphorous and harmful cyanobacteria. Science of the Total Environment, 2022, 806, 150382.	3.9	21
904	Phosphorus biofertilizer from microalgae. , 2021, , 57-68.		1
905	Phosphorus Release and Adsorption Properties of Polyurethane–Biochar Crosslinked Material as a Filter Additive in Bioretention Systems. Polymers, 2021, 13, 283.	2.0	6
906	Mining Phosphate from Wastewater: Treatment and Reuse. Green Energy and Technology, 2020, , 67-81.	0.4	7
907	Aqueous phosphate removal using nanoscale zero-valent iron. , 2012, , 197-210.		97
908	Balancing the Needs of All Services Provided by Global Water Resources. Springer Water, 2014, , 3-14.	0.2	4
909	Microalgae Applications in Wastewater Treatment. Green Energy and Technology, 2016, , 249-268.	0.4	26
910	Prospects and Issues of Phosphorus Recovery as Struvite from Waste Streams. , 2018, , 1-50.		3
911	Superior Polymeric Formulations and Emerging Innovative Products of Bacterial Inoculants for Sustainable Agriculture and the Environment. , 2016, , 15-46.		28
912	CO2-assisted removal of nutrients from municipal wastewater by microalgae Chlorella vulgaris and Scenedesmus obliquus. International Journal of Environmental Science and Technology, 2018, 15, 2183-2192.	1.8	16
913	How do hydraulic load and intermittent aeration affect pollutants removal and greenhouse gases emission in wastewater ecological soil infiltration systems?. Ecological Engineering, 2020, 146, 105747.	1.6	13
914	Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar. Chemical Engineering Research and Design, 2020, 140, 221-232.	2.7	86
915	Phosphorus recovered from human excreta: A socio-ecological-technical approach to phosphorus recycling. Resources, Conservation and Recycling, 2020, 157, 104744.	5.3	32
916	Cadmium (II) removal from aqueous solution using magnetic spent coffee ground biochar: Kinetics, isotherm and thermodynamic adsorption. Materials Research Express, 2020, 7, 085503.	0.8	18
918	Development of a Cost-Benefit Analysis Approach for Water Reuse in Irrigation. International Journal of Environmental Protection and Policy, 2014, 2, 179.	0.2	6
919	Chemical characterization of faecal sludge in the Kumasi metropolis, Ghana. Gates Open Research, 0, 1, 12.	2.0	12
920	Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles. PLoS ONE, 2015, 10, e0142700.	1.1	13

#	Article	IF	CITATIONS
921	Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal: Review of past trends and future perspectives in the context of nutrient recovery. European Journal of Environmental Sciences, 2017, 7, 63-72.	0.6	8
922	APPLICATION OF CROSS-LINKED CHITOSAN FOR PHOSPHATE REMOVAL FROM AQUEOUS SOLUTIONS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2014, 19, 5-14.	0.1	23
923	Adsorption of nutrients using low-cost adsorbents from agricultural waste and by-products – review. Progress in Agricultural Engineering Sciences, 2018, 14, 1-30.	0.5	5
924	CHARACTERIZATION OF ENDOPHYTIC BACTERIA WITH PLANT GROWTH PROMOTING ACTIVITIES ISOLATED FROM SIX MEDICINAL PLANTS. Journal of Experimental Biology and Agricultural Sciences, 2018, 6, 782-791.	0.1	4
926	Phosphate Adsorption on Zirconium-Loaded Activated Carbon, and its Application for Phosphate Recovery from Deep Seawater. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 388-393.	0.3	2
927	Effect of ionic strength on phosphorus removal with modified sediments in lake: kinetics and equilibrium studies. International Journal of Electrochemical Science, 2016, 11, 9972-9986.	0.5	2
928	Water Treatment Residual Nanoparticles: A Novel Sorbent for Enhanced Phosphorus Removal from Aqueous Medium. Current Nanoscience, 2015, 11, 655-668.	0.7	20
929	Characteristics of a Ceramic Carrier after Wastewater Treatment Process in the Model Column Cascade with Ethanol Addition. Open Biotechnology Journal, 2015, 9, 76-84.	0.6	1
930	Nitrogen and Phosphorus Recovery from Wastewater and the Supernate of Dewatered Sludge. Recent Patents on Food, Nutrition & Agriculture, 2009, 1, 236-242.	0.5	4
931	The identification and quantification of bioactive compounds from the aqueous extract of comfrey root by UHPLC-DAD-HESI-MS method and its microbial activity. Hemijska Industrija, 2015, 69, 1-8.	0.3	11
932	Reaction crystallization of struvite in a continuous DTM type crystallizer with a compressed air driven jet pump. Polish Journal of Chemical Technology, 2011, 13, 46-53.	0.3	3
933	INTEGRATED AND SUSTAINABLE SYSTEM FOR MULTI-WASTE VALORIZATION. Environmental Engineering and Management Journal, 2014, 13, 2467-2475.	0.2	5
936	Phosphate Solubilization Potential of Fluorescent Pseudomonas spp. Isolated from Diverse Agro-Ecosystems of India. International Journal of Soil Science, 2014, 9, 101-110.	0.7	8
937	Anammox Process. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 264-289.	0.3	3
938	Effect of Copper (II) Ions on Quality of Struvite Produced in Continuous Reaction Crystallization Process at the Magnesium Ions Excess. Advances in Chemical Engineering and Science, 2013, 03, 1-6.	0.2	9
939	Chemically Precipitated Struvite Dissolution Dynamics over Time in Various Soil Textures. Agricultural Sciences, 2020, 11, 567-591.	0.2	8
940	Review: Low Cost, Environmentally Friendly Humic Acid Coated Magnetite Nanoparticles (HA-MNP) and Its Application for the Remediation of Phosphate from Aqueous Media. Journal of Encapsulation and Adsorption Sciences, 2018, 08, 256-279.	0.3	8
941	Modeling and Optimizations of Phosphate Removal from Aqueous Solutions Using Synthetic Zeolite Na-A. Journal of Materials Science and Chemical Engineering, 2015, 03, 15-29.	0.2	5

#	Article	IF	CITATIONS
942	Struvite recovery from swine wastewater and its assessment as a fertilizer. Environmental Engineering Research, 2016, 21, 29-35.	1.5	35
943	Recovery of nitrogen by struvite precipitation from swine wastewater for cultivating Chinese cabbage. Journal of Environmental Science International, 2015, 24, 1253-1264.	0.0	1
944	Eco-friendly Production of Maize Using Struvite Recovered from Swine Wastewater as a Sustainable Fertilizer Source. Asian-Australasian Journal of Animal Sciences, 2011, 24, 1699-1705.	2.4	54
945	Use of Desalinated Reject Water as a Source of Magnesium for Phosphorus Recovery. International Journal of Chemical Engineering and Applications (IJCEA), 2013, , 165-168.	0.3	2
946	Profiting from Cooked Tea Leaves Waste in Eco-Friendly Method. Advances in Research, 2014, 2, 179-187.	0.3	2
947	Effects of Optimized Encapsulation Formulations of Microalgae and Bacteria on the Nitrogen and Phosphorus Removal from Wastewater. Water Pollution and Treatment, 2021, 09, 155-165.	0.0	0
948	Iron-Loaded Pomegranate Peel as a Bio-Adsorbent for Phosphate Removal. Water (Switzerland), 2021, 13, 2709.	1.2	3
949	Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology and Innovation, 2022, 25, 102040.	3.0	44
950	Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. Science of the Total Environment, 2022, 809, 151109.	3.9	12
951	The effect of anode degradation on energy demand and production efficiency of electrochemically precipitated struvite. Journal of Applied Electrochemistry, 2022, 52, 205-215.	1.5	6
952	Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae. Energies, 2021, 14, 6992.	1.6	9
953	Phosphate removal from simulated wastewater using industrial calcium-containing solid waste. Journal of Environmental Chemical Engineering, 2021, 9, 106575.	3.3	8
954	Deployable Decentralized Biofilm System to Degrade Organic Carbon, Nutrients and Benzene from Wastewater. , 2009, , .		0
955	Changes of Compost Quality by the Formation of Struvite Crystal During the Composting of Swine Manure. Journal of Animal Science and Technology, 2009, 51, 249-254.	0.8	0
957	Biotechnological Methods for Nutrient Removal From Wastewater With Emphasis on the Denitrifying Phosphorus Removal Process. , 2011, , 297-306.		0
958	Continuous Reaction Crystallization of Struvite in a DTM Type Crystallizer With Jet Pump of Ascending Suspension Flow in a Mixing Chamber–Kinetic Approach of the Process. Journal of Crystallization Process and Technology, 2012, 02, 96-104.	0.6	1
960	Phosphate Removal in Wastewater by Tobermolite. Journal of the Korean Society of Water and Wastewater, 2013, 27, 751-759.	0.3	1
961	The Effect of Temperature on Nitrate and Phosphate Uptake from Synthetic Wastewater by Selected Bacteria Species. British Microbiology Research Journal, 2014, 4, 328-342.	0.2	5

#	Article	IF	CITATIONS
962	Investigation of the Efficiency of Selected Bacterial and Fungal Species in the Removal of Phosphate and Sulphate from Wastewater. Journal of Scientific Research and Reports, 2014, 3, 1875-1885.	0.2	0
963	Fundamental Study of the Regeneration of Layered Double Hydroxide Saturated with Phosphate. Journal of Environmental Science International, 2014, 23, 1333-1338.	0.0	2
964	A Study on the Highly Effective Treatment of Spent Electroless Nickel Plating Solution by an Advanced Oxidation Process. Applied Chemistry for Engineering, 2015, 26, 270-274.	0.2	0
965	Nitrogen and Phosphorus Recoveries from Anaerobic Digester Supernatant Using Seawater as Magnesium Source for Struvite Formation. Journal of Korean Neuropsychiatric Association, 2015, 31, 387-391.	0.2	0
966	Odzysk fosforu z osadów Å›ciekowych - motywacja i przykÅ,adowe rozwiÄzania technologiczne. Gaz, Woda; Technika Sanitarna, 2015, 1, 26-31.	0.0	0
967	Recovery of Struvite from Phosphorus Mineral Fertilizer Industry Wastewater in Continuous Jet Pump Crystallizer. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 36-41.	0.3	0
968	Organic Matter and Nutrient Removal in a Sequencing Baffled Steep-flow Constructed Wetland System. Journal of Environmental Science and Technology, 2016, 9, 340-344.	0.3	0
969	Reduction of organic contaminants and microbial communities in bioecological wastewater treatment system. African Journal of Microbiology Research, 2016, 10, 890-896.	0.4	0
970	Feasibility of Phosphorus Recovery from Biological Livestock Wastewater Treatment Plant. Journal of Korean Neuropsychiatric Association, 2016, 32, 343-348.	0.2	0
971	Study of Performance of Modified Oyster Shell for Phosphorus Removal. Advances in Environmental Protection, 2017, 07, 1-9.	0.0	1
972	Chemical and Biological Processes for Nutrients Removal and Recovery. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 76-111.	0.3	0
973	Modelling and Control of Nitrogen and Phosphorus Removing Systems. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 174-201.	0.3	0
974	Assessment of the Struvite Crystallization Process for Phosphate Removal and Recovery from a Sludge Treatment System of a Domestic Wastewater Treatment Plant. Daehan Hwan'gyeong Gonghag Hoeji, 2017, 39, 462-469.	0.4	0
975	Activated Carbon/Chitosan Porous Beads as a High Efficiency Adsorbent for Cationic Dye Removal: Isotherm, Kinetic, and Thermodynamic Studies. Material Sciences, 2018, 08, 816-827.	0.0	0
976	High Performance of MWCNT/GO/CA Composite Membranes for MB Adsorption. Material Sciences, 2018, 08, 412-421.	0.0	0
977	Phosphorus as a Bottleneck for a Sustainable Food Suply. Contemporary Agriculture, 2018, 67, 177-182.	0.3	0
978	Tratamento de águas residuais para produção de estruvita: Um estudo bibliométrico. Research, Society and Development, 2018, 7, e1179380.	0.0	2
979	Screening of phosphate accumulating bacteria (pab) from dairy waste water. International Journal of Pharma and Bio Sciences, 2018, 9, .	0.1	Ο

#	Article	IF	CITATIONS
980	Prospects and Issues of Phosphorus Recovery as Struvite from Waste Streams. , 2019, , 821-868.		1
981	Research Progress of Phosphorus Removal and Resource Utilization of the Rural Domestic Sewage. Advances in Environmental Protection, 2019, 09, 79-84.	0.0	0
982	Nutrient Recovery from Wasted Biomass Using Microbial Electrochemical Technologies. , 2020, , 69-90.		1
983	New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth. Journal of Cleaner Production, 2021, 328, 129536.	4.6	22
984	Immobilization of β-FeOOH nanomaterials on the basalt fiber as a novel porous composite to effectively remove phosphate from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 632, 127815.	2.3	8
985	Fertilization with Municipal Wastewater Phosphorus Adsorbed to Alginate Beads: Results from a Pot Experiment with Italian Ryegrass. Agronomy, 2021, 11, 2142.	1.3	1
986	A review on the incorporation and potential mechanism of heavy metals on the recovered struvite from wastewater. Water Research, 2021, 207, 117823.	5.3	30
987	Kinetic analysis of sucrose activated carbon for nutrient removal in water. H2Open Journal, 2020, 3, 208-220.	0.8	2
988	Bioinformatics: A New Insight Tool to Deal with Environment Management. , 2021, , 155-184.		0
989	A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Separation and Purification Technology, 2022, 281, 119870.	3.9	34
990	Biological Nutrient Removal by Suspended Growth Systems. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 264-293.	0.3	0
991	Anaerobic Digestion (AD) of Organic Waste Is a Sustainable Waste Management Facility. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 626-650.	0.3	1
992	Sustainable Management of Toxic Industrial Effluent of Coal-Based Power Plants. Microorganisms for Sustainability, 2020, , 193-219.	0.4	0
993	Chemical and Biological Processes for Nutrients Removal and Recovery. , 2020, , 102-138.		0
994	Exploring the effect of a peptide additive on struvite formation and morphology: a high-throughput method. RSC Advances, 2020, 10, 39328-39337.	1.7	3
995	Magnetic Separation of Impurities from Hydrometallurgy Solutions and Waste Water Using Magnetic Iron Ore Seeding. , 0, , .		1
996	Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy, 2022, 244, 122604.	4.5	18
997	Simultaneous Recovery of Struvite and Irrigation Water for Agricultural Purposes Obtained from Dewatering Liquor through Electrodialysis. Water (Switzerland), 2021, 13, 3280.	1.2	2

#	Article	IF	Citations
998	Pollutant removal from municipal sewage by a microaerobic up-flow oxidation ditch coupled with		6
990	micro-electrolysis. Royal Society Open Šcience, 2021, 8, 201887.	1.1	0
999	Socio Economic Aspects of Sewage Sludge Use in Agriculture. , 2022, , 281-296.		1
1000	Source and central level recovery of nutrients from urine and wastewater: A state-of-art on nutrients mapping and potential technological solutions. Journal of Environmental Chemical Engineering, 2022, 10, 107146.	3.3	8
1001	Iron oxide coated sand (IOS): Scale-up analysis and full-scale application for phosphorus removal from goat farm wastewater. Separation and Purification Technology, 2022, 284, 120213.	3.9	12
1002	A review of advances over 20Âyears on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydrate Polymers, 2022, 279, 119014.	5.1	17
1003	Enhanced phosphate removal by nano-lanthanum hydroxide embedded silica aerogel composites: Superior performance and insights into specific adsorption mechanism. Separation and Purification Technology, 2022, 285, 120365.	3.9	25
1004	Evaluation of phosphorus removal in floating treatment wetlands: New insights in non-reactive phosphorus. Science of the Total Environment, 2022, 815, 152896.	3.9	19
1005	Removal of nitrogen and phosphorus from wastewater through the moving bed biofilm reactor. , 2022, , 285-300.		2
1006	Sustainable wastewater remediation technologies for agricultural uses. , 2022, , 153-179.		1
1007	Sulfate and phosphate ions removal using novel nano-adsorbents: modeling and optimization, kinetics, isotherm and thermodynamic studies. International Journal of Phytoremediation, 2022, 24, 1518-1532.	1.7	3
1008	Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water (Switzerland), 2022, 14, 558.	1.2	11
1009	Cellulose amendment promotes P solubilization by Penicillium aculeatum in non-sterilized soil. Fungal Biology, 2022, 126, 356-365.	1.1	4
1010	Multipurpose Polysaccharide-based composite hydrogel with magnetic and thermoresponsive properties for phosphorus and enhanced copper (II) removal. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106916.	3.8	9
1011	Electrospinning preparation and adsorption properties of La2O3 nanofibers and photoluminescence properties of La2O3: Eu nanofibers. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114010.	2.0	4
1012	Evolution of struvite research and the way forward in resource recovery of phosphates through scientometric analysis. Journal of Cleaner Production, 2022, 357, 131737.	4.6	13
1013	Metallic iron (Fe0)-based materials for aqueous phosphate removal: A critical review. Journal of Environmental Management, 2022, 315, 115157.	3.8	24
1014	Biotechnology advancements in CO2 capture and conversion by microalgae-based systems. , 2022, , 385-414.		1
1015	Role of polyphosphate accumulating organisms in enhanced biological phosphorous removal. , 2022, , 151-179.		0

#	Article	IF	CITATIONS
1016	Design and optimization of an innovative lanthanum/chitosan bead for efficient phosphate removal and study of process performance and mechanisms. Chemosphere, 2022, 306, 135468.	4.2	5
1017	Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability. Reactive and Functional Polymers, 2022, 177, 105328.	2.0	25
1018	Reuse of aluminium-based water treatment sludge for phosphorus adsorption: Evaluating the factors affecting and correlation between adsorption and sludge properties. Environmental Technology and Innovation, 2022, 27, 102717.	3.0	12
1020	Wastewaterâ€recovered struvite evaluation as a fertilizerâ€phosphorus source for corn in eastern Arkansas. Agronomy Journal, 2022, 114, 2994-3012.	0.9	7
1021	Diatomite Composited with a Zeolitic Imidazolate Framework for Removing Phosphate from Water. ACS Omega, 2022, 7, 26154-26164.	1.6	9
1022	Life Cycle Environmental Impacts of Wastewater-Derived Phosphorus Products: An Agricultural End-User Perspective. Environmental Science & Technology, 2022, 56, 10289-10298.	4.6	14
1023	Struvite precipitation within wastewater treatment: A problem or a circular economy opportunity?. Heliyon, 2022, 8, e09862.	1.4	16
1024	Removal of Phosphate from Wastewater with a Recyclable La-Based Particulate Adsorbent in a Small-Scale Reactor. Water (Switzerland), 2022, 14, 2326.	1.2	4
1025	Effective phosphate removal from sewage water using zerovalent iron nanomaterial as an adsorbent. Water Quality Research Journal of Canada, 2022, 57, 177-199.	1.2	2
1026	Phosphorus removal from real and synthetic wastewater using biomass bottom ash. International Journal of Environmental Science and Technology, 2023, 20, 7065-7082.	1.8	3
1027	Influent carbon to phosphorus ratio drives the selection of PHA-storing organisms in a single CSTR. Water Research X, 2022, 16, 100150.	2.8	4
1028	Fabrication of Ce-doped MIL-100(Fe), its adsorption performance, and the mechanisms to adsorb phosphate from water. Environmental Technology and Innovation, 2022, 28, 102847.	3.0	4
1029	A review of recent advances in electrode materials and applications for flow-electrode desalination systems. Desalination, 2022, 541, 116037.	4.0	22
1030	Phosphorus recovery as K-struvite from a waste stream: A review of influencing factors, advantages, disadvantages and challenges. Environmental Research, 2022, 214, 114086.	3.7	11
1031	A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from waste water. Journal of Water Process Engineering, 2022, 49, 103159.	2.6	30
1032	The effects of light regime on carbon cycling, nutrient removal, biomass yield, and polyhydroxybutyrate (PHB) production by a constructed photosynthetic consortium. Bioresource Technology, 2022, 363, 127912.	4.8	10
1033	Copper ion-exchanged zeolite X from fly ash as an efficient adsorbent of phosphate ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2022, 10, 108567.	3.3	24
1034	Biological wastewater treatment systems: an overview. , 2022, , 1-12.		0

# 1035	ARTICLE Facile synthesis of hydrous zirconia-impregnated chitosan beads as a filter medium for efficient removal of phosphate from water. Cellulose, 2022, 29, 8749-8768.	IF 2.4	CITATIONS 6
1036	Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. Critical Reviews in Environmental Science and Technology, 2023, 53, 1148-1172.	6.6	17
1037	Binder-free La(OH)3 supported activated carbon fiber electrode with N-doped C layer for efficient phosphate electrosorption. Applied Surface Science, 2023, 612, 155430.	3.1	3
1038	Development of ecological sanitation approaches for integrated recovery of biogas, nutrients and clean water from domestic wastewater. Resources, Environment and Sustainability, 2023, 11, 100095.	2.9	5
1039	Phosphorus recovery alternatives for sludge from chemical phosphorus removal processes – Technology comparison and system limitations. Sustainable Materials and Technologies, 2022, 34, e00514.	1.7	3
1040	Enhancing anaerobic co-digestion of primary settled-nightsoil sludge and food waste for phosphorus extraction and biogas production: effect of operating parameters and determining phosphorus transformation. Environmental Science and Pollution Research, 0, , .	2.7	0
1041	Heated kaolinite-La(III) hydroxide complex for effective removal of phosphate from eutrophic water. Applied Clay Science, 2023, 231, 106729.	2.6	3
1042	Phosphorus recovery for circular Economy: Application potential of feasible resources and engineering processes in Europe. Chemical Engineering Journal, 2023, 454, 140153.	6.6	25
1043	Comparative study for removal of phosphorus from aqueous solution by natural and activated bentonite. Scientific Reports, 2022, 12, .	1.6	8
1044	Mechanochemically activated microscale zero-valent iron with carboxymethylcellulose for efficient sequestration of phosphate in aqueous solution. Journal of Environmental Chemical Engineering, 2023, 11, 109066.	3.3	2
1045	Green synthesis of AgNPs, alginate microbeads and Chlorella minutissima laden alginate microbeads for tertiary treatment of municipal wastewater. Bioresource Technology Reports, 2023, 21, 101300.	1.5	2
1046	A kinetic and structural analysis of the effects of Ca- and Fe ions on struvite crystal growth. Solid State Sciences, 2022, 134, 107062.	1.5	3
1048	Molecular transformation pathway and bioavailability of organic phosphorus in sewage sludge under hydrothermal treatment: Importance of biopolymers interactions. Journal of Cleaner Production, 2023, 385, 135746.	4.6	4
1049	Pressure-driven membrane nutrient preconcentration for down-stream electrochemical struvite recovery. Separation and Purification Technology, 2023, 309, 122907.	3.9	3
1050	Efficient Phosphate Removal from Wastewater by Ca-Laden Biochar Composites Prepared from Eggshell and Peanut Shells: A Comparison of Methods. Sustainability, 2023, 15, 1778.	1.6	7
1051	Arsenic effects and behavior during the transformation of struvite to newberyite: Implications for applications of green fertilizers. Chemical Engineering Journal, 2023, 458, 141396.	6.6	3
1052	Evaluation of flue gas desulfurization gypsum as a low-cost precipitant for phosphorus removal from anaerobic digestion effluent filtrate. IOP Conference Series: Earth and Environmental Science, 2023, 1135, 012011.	0.2	1
1053	Assessment of Recovered Struvite as a Safe and Sustainable Phosphorous Fertilizer. Environments - MDPI, 2023, 10, 22.	1.5	4

#	Article	IF	CITATIONS
1054	Establishing the nexus between the coagulant for microalgae harvesting and the biomass nutrient assemblage. , 0, , .		0
1055	Long term operation of a phototrophic biological nutrient removal system: Impact of CO2 concentration and light exposure on process performance. Journal of Environmental Management, 2023, 334, 117490.	3.8	Ο
1056	High nutrients surplus led to deep soil nitrate accumulation and acidification after cropland conversion to apple orchards on the Loess Plateau, China. Agriculture, Ecosystems and Environment, 2023, 351, 108482.	2.5	6
1057	Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. Chemosphere, 2023, 330, 138685.	4.2	17
1058	Performance evaluation of moving bed bioreactor for simultaneous nitrification denitrification and phosphorus removal from simulated fertilizer industry wastewater. Environmental Science and Pollution Research, 2023, 30, 49060-49074.	2.7	1
1059	Effects of Sewage Treatment Water Supply on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation. Horticulturae, 2023, 9, 309.	1.2	0
1060	Nitrate adsorption towards ultrasound-assisted modified oil palm frond: Characterization and performance investigation using response surface methodology. Materials Today: Proceedings, 2023, , .	0.9	0
1061	Production of Nano Hydroxyapatite and Mg-Whitlockite from Biowaste-Derived products via Continuous Flow Hydrothermal Synthesis: A Step towards Circular Economy. Materials, 2023, 16, 2138.	1.3	3
1062	The Performance of Ultrafiltration Process to Further Refine Lactic Acid from the Pre-Microfiltered Broth of Kitchen Waste Fermentation. Membranes, 2023, 13, 330.	1.4	1
1063	Industrial wastewater treatment technologies for reuse, recycle, and recovery: advantages, disadvantages, and gaps. Environmental Technology Reviews, 2023, 12, 205-250.	2.1	2
1064	Lanthanum-based materials for adsorptive removal of phosphate. , 2023, , 305-319.		1
1065	Aspergillus niger Enhances the Efficiency of Sewage Sludge Biochar as a Sustainable Phosphorus Source. Sustainability, 2023, 15, 6940.	1.6	2
1066	Phosphorus Removal from Synthetic Wastewater by Using Palm Oil Clinker as Media in Continuous Activated Sludge. Advances in Science, Technology and Innovation, 2023, , 41-44.	0.2	2
1080	Recovery of phosphorus from industrial wastewater through struvite crystallization. , 2023, , 499-519.		0