Removal of synthetic dyes from wastewaters: a review

Environment International 30, 953-971 DOI: 10.1016/j.envint.2004.02.001

Citation Report

#	Article	IF	CITATIONS
1	Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry, 1996, 68, 1373-1380.	1.9	292
2	Decolorization of bromoamine acid by a newly isolated strain of Sphingomonas xenophaga QYY and its resting cells. Biochemical Engineering Journal, 2005, 27, 104-109.	3.6	34
3	Adsorption of acid dyes using polyelectrolyte impregnated mesoporous silica. Korean Journal of Chemical Engineering, 2005, 22, 276-280.	2.7	18
4	Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research, 2005, 39, 1425-1440.	11.3	660
5	Characteristics of dye adsorption by pretreated pine bark adsorbents. International Journal of Environmental Studies, 2006, 63, 59-66.	1.6	16
6	Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere, 2006, 65, 65-73.	8.2	72
7	UV-based processes for reactive azo dye mineralization. Water Research, 2006, 40, 525-532.	11.3	75
8	Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water Research, 2006, 40, 435-444.	11.3	183
10	Coupling of membrane filtration with biological methods for textile wastewater treatment. Desalination, 2006, 198, 316-325.	8.2	42
11	Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzyme and Microbial Technology, 2006, 39, 51-55.	3.2	97
12	Pre-ozonation of aqueous azo dye (Acid Red-151) followed by activated sludge process. Chemical Engineering Journal, 2006, 123, 109-115.	12.7	14
13	Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278, 175-187.	4.7	329
14	Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran–Fomes sclerodermeus. Enzyme and Microbial Technology, 2006, 39, 848-853.	3.2	90
15	Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 195-202.	3.9	129
16	Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems. Separation and Purification Technology, 2006, 48, 24-35.	7.9	144
17	Photodegradation of nitrobenzene using 172nm excimer UV lamp. Journal of Hazardous Materials, 2006, 133, 68-74.	12.4	41
18	Decolourization of azo dyes using magnesium–palladium system. Journal of Hazardous Materials, 2006, 137, 1729-1741.	12.4	109
19	Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium. World Journal of Microbiology and Biotechnology, 2006, 22, 163-168.	3.6	86

	CITATION	Report	
#	Article	IF	CITATIONS
20	Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 2006, 69, 196-203.	3.7	379
21	Removal of Disperse Dyes from Aqueous Solution Using Sawdust and BDTDAâ€ S awdust. Journal of Dispersion Science and Technology, 2007, 28, 1066-1071.	2.4	7
22	Adsorption and Precoat Filtration Studies of Synthetic Dye Removal by Acid Mine Drainage Sludge. Journal of Environmental Engineering, ASCE, 2007, 133, 633-640.	1.4	9
23	Chemical treatment of textile dye effluent. , 2007, , 191-211.		4
24	Performance of Biopolymer in Relation to Removal of Reactive Azo-Dyes. , 2007, , 1.		0
25	Adsorption of dyes onto activated carbon cloth: Using QSPRs as tools to approach adsorption mechanisms. Chemosphere, 2007, 66, 887-893.	8.2	38
26	Adsorption of a dye on clay and sand. Use of cyclodextrins as solubility-enhancement agents. Chemosphere, 2007, 69, 1703-1712.	8.2	47
27	Chemical characterization of a dye processing plant effluent—Identification of the mutagenic components. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 626, 135-142.	1.7	81
28	Effective Anaerobic Decolorization of Azo Dye Acid Orange 7 in Continuous Upflow Packed-Bed Reactor Using Biological Activated Carbon System. Industrial & Engineering Chemistry Research, 2007, 46, 6788-6792.	3.7	87
29	Adsorptive removal of textile reactive dye using Posidonia oceanica (L.) fibrous biomass. International Journal of Environmental Science and Technology, 2007, 4, 433-440.	3.5	61
30	Hybrid Treatment Systems for Dye Wastewater. Critical Reviews in Environmental Science and Technology, 2007, 37, 315-377.	12.8	439
31	The Fenton Chemistry and Its Combination with Coagulation for Treatment of Dye Solutions. Separation Science and Technology, 2007, 42, 1521-1534.	2.5	29
32	Evidence for a radical mechanism in biocatalytic degradation of synthetic dyes by fungal laccases mediated by violuric acid. Biocatalysis and Biotransformation, 2007, 25, 269-275.	2.0	8
33	Photocatalytic degradation of textile dye CI Basic Yellow 28 in water by UV-A/TiO2. Chemical Industry and Chemical Engineering Quarterly, 2007, 13, 33-37.	0.7	10
34	Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes. Journal of Mass Spectrometry, 2007, 42, 1273-1278.	1.6	34
35	Sono-sorption as a new method for the removal of methylene blue from aqueous solution. Ultrasonics Sonochemistry, 2007, 14, 599-604.	8.2	47
36	Residual color profiles of reactive dyes mixture during a chemical flocculation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 45-53.	4.7	22
37	Statistical design of experiments as a tool for optimizing the batch conditions to methylene blue biosorption on yellow passion fruit and mandarin peels. Dyes and Pigments, 2007, 72, 256-266.	3.7	102

#	Article	IF	CITATIONS
38	Degradation mechanism of Reactive Orange 113 dye by H2O2/Fe2+ and ozone in aqueous solution. Dyes and Pigments, 2007, 74, 41-46.	3.7	66
39	Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater. Dyes and Pigments, 2007, 74, 237-248.	3.7	67
40	Low cost removal of disperse dyes from aqueous solution using palm ash. Dyes and Pigments, 2007, 74, 446-453.	3.7	136
41	Dyes separation by means of cross-flow ultrafiltration of micellar solutions. Dyes and Pigments, 2007, 74, 410-415.	3.7	39
42	Removal of cyanocobalamine from aqueous solution using mesoporous activated carbon. Dyes and Pigments, 2007, 75, 136-142.	3.7	9
43	Efficient microbial degradation of Toluidine Blue dye by Brevibacillus sp Dyes and Pigments, 2007, 75, 395-400.	3.7	58
44	Use of dried sugar beet pulp for binary biosorption of Gemazol Turquoise Blue-G reactive dye and copper(II) ions: Equilibrium modeling. Chemical Engineering Journal, 2007, 127, 177-188.	12.7	56
45	Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration. Journal of Hazardous Materials, 2007, 140, 95-103.	12.4	103
46	Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: Determination of column capacity. Journal of Hazardous Materials, 2007, 143, 362-371.	12.4	114
47	Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum. Journal of Hazardous Materials, 2007, 146, 214-226.	12.4	155
48	Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 2007, 146, 243-248.	12.4	354
49	Application of MCM-41 for dyes removal from wastewater. Journal of Hazardous Materials, 2007, 147, 997-1005.	12.4	174
50	Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. Journal of Hazardous Materials, 2007, 149, 735-741.	12.4	344
51	New insights into solar UV-protective properties of natural dye. Journal of Cleaner Production, 2007, 15, 366-372.	9.3	129
52	Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. Journal of Bioscience and Bioengineering, 2007, 104, 104-110.	2.2	50
53	New perspectives in safety and quality enhancement of wine through selection of yeasts based on the parietal adsorption activity. International Journal of Food Microbiology, 2007, 120, 167-172.	4.7	75
54	A new photon kinetic-measurement based on the kinetics of electron-hole pairs in photodegradation of textile wastewater using the UV-H2O2FS-TiO2 process. Journal of Environmental Sciences, 2007, 19, 367-373.	6.1	4
55	Decolourisation of a synthetic textile effluent using a bacterial consortium. Biotechnology Journal, 2007, 2, 370-373.	3.5	3

#	Article	IF	CITATIONS
56	The Binding of Anionic Dyes by Cross-Linked Cationic Starches. Journal of Polymer Research, 2007, 14, 67-73.	2.4	43
57	Oxidative decomposition of Acid Brown 159 dye in aqueous solution by H2O2/Fe2+ and ozone with GC/MS analysis. Dyes and Pigments, 2007, 74, 9-16.	3.7	27
58	Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization. Dyes and Pigments, 2007, 74, 380-387.	3.7	78
59	A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters. Chemical Engineering Journal, 2008, 142, 23-39.	12.7	177
60	Granular activated carbon-biofilm configured sequencing batch reactor treatment of C.I. Acid Orange 7. Dyes and Pigments, 2008, 76, 142-146.	3.7	44
61	A comparative study of Neutral Red decoloration by photo-Fenton and photocatalytic processes. Dyes and Pigments, 2008, 76, 332-337.	3.7	32
62	Ligninolytic activity from newly isolated basidiomycete strains and effect of these enzymes on the azo dye orange II decolourisation. Annals of Microbiology, 2008, 58, 427-432.	2.6	17
63	Biodegradation of disperse dye brown 3REL by microbial consortium of Galactomyces geotrichum MTCC 1360 and Bacillus sp. VUS. Biotechnology and Bioprocess Engineering, 2008, 13, 232-239.	2.6	26
64	Biodegradation of Reactive Blue 59 by isolated bacterial consortium PMB11. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1181-1190.	3.0	68
65	Removal of basic dyes from aqueous solutions with sulfonated phenol–formaldehyde resin. Journal of Applied Polymer Science, 2008, 109, 2774-2780.	2.6	42
66	Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst. Microporous and Mesoporous Materials, 2008, 115, 594-602.	4.4	143
67	Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 2008, 33, 399-447.	24.7	1,862
68	Irradiation treatment of azo dye containing wastewater: An overview. Radiation Physics and Chemistry, 2008, 77, 225-244.	2.8	164
69	Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. Journal of Hazardous Materials, 2008, 152, 683-689.	12.4	69
70	Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. Journal of Hazardous Materials, 2008, 153, 877-884.	12.4	170
71	Waste metal hydroxide sludge as adsorbent for a reactive dye. Journal of Hazardous Materials, 2008, 153, 999-1008.	12.4	116
72	Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): Effect of carbon coating and calcination temperature. Journal of Hazardous Materials, 2008, 154, 572-577.	12.4	72
73	Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions. Journal of Hazardous Materials, 2008, 155, 253-260.	12.4	126

#	Article	IF	CITATIONS
74	Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, 2008, 157, 344-351.	12.4	227
75	Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 2008, 158, 65-72.	12.4	501
76	Kinetic study approach of remazol black-B use for the development of two-stage anoxic–oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. Journal of Hazardous Materials, 2008, 159, 319-328.	12.4	82
77	Photolytic decolorization of Rose Bengal by UV/H2O2 and data optimization using response surface method. Journal of Hazardous Materials, 2008, 159, 602-609.	12.4	90
78	A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 2008, 76, 714-720.	3.7	496
79	Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes and Pigments, 2008, 77, 415-426.	3.7	362
80	Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresource Technology, 2008, 99, 1225-1235.	9.6	74
81	Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresource Technology, 2008, 99, 3162-3165.	9.6	206
82	Kinetic modelling and simulation of laccase catalyzed degradation of reactive textile dyes. Bioresource Technology, 2008, 99, 4768-4774.	9.6	56
83	Production and comparison of high surface area bamboo derived active carbons. Bioresource Technology, 2008, 99, 8909-8916.	9.6	102
84	Polysulfone-immobilized Corynebacterium glutamicum: A biosorbent for Reactive black 5 from aqueous solution in an up-flow packed column. Chemical Engineering Journal, 2008, 145, 44-49.	12.7	51
85	Novel bioreactor design for decolourisation of azo dye effluents. Chemical Engineering Journal, 2008, 143, 293-298.	12.7	36
86	Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresource Technology, 2008, 99, 7730-7741.	9.6	138
87	Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 2008, 112, 419-424.	4.4	211
88	Adsorption of basic dyes from model aqueous solutions onto novel spherical silica support. Coloration Technology, 2008, 124, 165-172.	1.5	13
89	Bacterial biosorbents and biosorption. Biotechnology Advances, 2008, 26, 266-291.	11.7	1,466
90	Decolorization, Cytotoxicity, and Genotoxicity Reduction During a Combined Ozonation/Fungal Treatment of Dye-Contaminated Wastewater. Environmental Science & Technology, 2008, 42, 584-589.	10.0	148
91	Characterization of radical intermediates in laccase-mediator systems. A multifrequency EPR, ENDOR and DFT/PCM investigation. Physical Chemistry Chemical Physics, 2008, 10, 7284.	2.8	36

#	Article	IF	CITATIONS
92	Fruit/Fruit Juice Waste Management: Treatment Methods and Potential Uses of Treated Waste. , 2008, , 569-628.		14
93	Degradation of Acid Orange 7 by electrochemically generated •OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: A mechanistic study. Chemosphere, 2008, 73, 678-684.	8.2	190
94	Study of the Ozonation of a Dye Using Kinetic Information Reconstruction. Ozone: Science and Engineering, 2008, 30, 344-355.	2.5	3
95	Adsorption de colorant métallifère par les fibres de <i>Posidonia oceanica</i> . Journal of Environmental Engineering and Science, 2008, 7, 645-650.	0.8	3
96	Adsorption of Acid Yellow 99 onto DEDMA-sepiolite from aqueous solutions. International Journal of Environment and Pollution, 2008, 34, 308.	0.2	9
97	The Removal of Methyl Red from Aqueous Solutions Using Banana Pseudostem Fibers. American Journal of Applied Sciences, 2009, 6, 1690-1700.	0.2	68
98	Descoloração de efluentes aquosos sintéticos e têxtil contendo corantes Ãndigo e azo via processos Fenton e foto-assistidos (UV e UV/H2O2). Engenharia Sanitaria E Ambiental, 2009, 14, 1-8.	0.5	20
99	Experimental Study on the Elimination of Colour and Organic Matter from Wastewater Using an Inexpensive Biomaterial, Chitosan. Water Quality Research Journal of Canada, 2009, 44, 295-306.	2.7	4
100	Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Brazilian Journal of Microbiology, 2009, 40, 31-39.	2.0	67
101	Phenolâ€mediated decolorization and removal of disperse dyes by bitter gourd (<i>Momordica) Tj ETQq1 1 0.78</i>	34314 rgBT 2.2	/Overlock 10
102	Kinetics of adsorption of sulphonated azo dyes on strong basic anion exchangers. Environmental Technology (United Kingdom), 2009, 30, 1059-1071.	2.2	29
103	Application of weakly and strongly basic anion exchangers for the removal of brilliant yellow from aqueous solutions. Desalination and Water Treatment, 2009, 2, 160-165.	1.0	12
104	Adsorption of Brilliant Scarlet 3R by Natural Diatomite. , 2009, , .		0
105	Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase. Journal of Bioscience and Bioengineering, 2009, 108, 496-500.	2.2	26
110	Separation of dyes using composite carbon membranes. AICHE Journal, 2009, 55, 1712-1722.	3.6	6
111	Equilibrium and Kinetic Studies on the Removal of Reactive Red 2 Dye from an Aqueous Solution Using a Positively Charged Functional Group of the <i>Nymphaea rubra</i> Biosorbent. Clean - Soil, Air, Water, 2009, 37, 901-907.	1.1	14
112	Use of Agroâ€Industrial Wastes for Removal of Basic Dyes from Aqueous Solutions. Clean - Soil, Air, Water, 2009, 37, 963-969.	1.1	108
113	Biodegradation of hazardous triphenylmethane dye methyl violet by <i>Rhizobium radiobacter</i> (MTCC 8161). Journal of Basic Microbiology, 2009, 49, S36-42.	3.3	41

#	Article	IF	CITATIONS
114	Sequential decolourization of reactive textile dyes by laccase mediator system. Journal of Chemical Technology and Biotechnology, 2009, 84, 442-446.	3.2	25
115	Fermentative and sulphate-reducing bacteria associated with treatment of an industrial dye effluent in an up-flow anaerobic fixed bed bioreactor. Biochemical Engineering Journal, 2009, 45, 136-144.	3.6	13
116	Synthesis and characterization of a crosslinked chitosan derivative with a complexing agent and its adsorption studies toward metal(II) ions. Carbohydrate Research, 2009, 344, 1632-1638.	2.3	46
117	Comparative study of Eriochrome black T treatment by BDD-anodic oxidation and Fenton process. Chemical Engineering Journal, 2009, 146, 98-104.	12.7	54
118	Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chemical Engineering Journal, 2009, 155, 223-233.	12.7	77
119	Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution. Chemical Engineering Journal, 2009, 155, 680-683.	12.7	93
120	Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 2009, 90, 2313-2342.	7.8	2,877
121	Single and binary dye and heavy metal bioaccumulation properties of Candida tropicalis: Use of response surface methodology (RSM) for the estimation of removal yields. Journal of Hazardous Materials, 2009, 172, 1512-1519.	12.4	37
122	Preparation of nanoporous composite carbon membrane for separation of rhodamine B dye. Journal of Membrane Science, 2009, 329, 2-10.	8.2	100
123	Removal of Dyes from Water Using a TiO2 Photocatalyst Supported on Black Sand. Water, Air, and Soil Pollution, 2009, 198, 233-241.	2.4	19
124	Combined MBR with Photocatalysis/Ozonation for Bromoamine Acid Removal. Applied Biochemistry and Biotechnology, 2009, 159, 664-672.	2.9	11
125	Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource Technology, 2009, 100, 1094-1099.	9.6	58
126	Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresource Technology, 2009, 100, 2493-2500.	9.6	305
127	Decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by a newly isolated strain of Sphingomonas herbicidovorans. International Biodeterioration and Biodegradation, 2009, 63, 88-92.	3.9	17
128	Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. International Biodeterioration and Biodegradation, 2009, 63, 280-288.	3.9	232
129	Application of â€~waste' wood-shaving bottom ash for adsorption of azo reactive dye. Journal of Environmental Management, 2009, 90, 912-920.	7.8	97
130	Adsorption of anionic dyes on ammonium-functionalized MCM-41. Journal of Hazardous Materials, 2009, 162, 133-139.	12.4	197
131	A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. Journal of Hazardous Materials, 2009, 162, 305-311.	12.4	304

#	Article	IF	CITATIONS
132	Removal efficiency of a calix[4]arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. Journal of Hazardous Materials, 2009, 162, 960-966.	12.4	113
133	Sorption of some textile dyes by beech wood sawdust. Journal of Hazardous Materials, 2009, 162, 1457-1464.	12.4	91
134	Colour and COD removal of disperse dye solution by a novel coagulant: Application of statistical design for the optimization and regression analysis. Journal of Hazardous Materials, 2009, 166, 1302-1306.	12.4	53
135	Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. Journal of Hazardous Materials, 2009, 166, 1421-1428.	12.4	186
136	Removal of malachite green from dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials, 2009, 167, 1089-1094.	12.4	387
137	Preparation of polyelectrolyte-functionalized mesoporous silicas for the selective adsorption of anionic dye in an aqueous solution. Journal of Hazardous Materials, 2009, 168, 102-107.	12.4	70
138	Single and binary chromium(VI) and Remazol Black B biosorption properties of Phormidium sp Journal of Hazardous Materials, 2009, 168, 310-318.	12.4	43
139	Removal of acid orange 7 by guava seed carbon: A four parameter optimization study. Journal of Hazardous Materials, 2009, 168, 515-522.	12.4	57
140	Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes. Journal of Hazardous Materials, 2009, 168, 1163-1169.	12.4	111
141	Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 2009, 170, 520-529.	12.4	1,593
142	Biosorptive uptake of methylene blue using Mediterranean green alga Enteromorpha spp Journal of Hazardous Materials, 2009, 170, 1050-1055.	12.4	50
143	Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye. Chemical Engineering Journal, 2009, 149, 348-352.	12.7	142
144	Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 2009, 151, 10-18.	12.7	795
145	Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chemical Engineering Journal, 2009, 152, 1-7.	12.7	209
146	Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment. Chemical Engineering Journal, 2009, 155, 62-67.	12.7	147
147	Electrochemical treatment of Remazol Brilliant Blue on a boron-doped diamond electrode. Chemical Engineering Journal, 2009, 153, 138-144.	12.7	53
148	Modeling dye degradation kinetic using dark- and photo-Fenton type processes. Chemical Engineering Journal, 2009, 155, 144-154.	12.7	42
149	Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, 2009, 87, 105-145.	20.2	1,863

#	Article	IF	CITATIONS
150	Effect of trace Ag+ adsorption on degradation of organic dye wastes. Biochemical Engineering Journal, 2009, 43, 2-7.	3.6	23
151	Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium. Biochemical Engineering Journal, 2009, 46, 252-256.	3.6	37
152	Biosorption of textile metal-complexed dye from aqueous medium using Posidonia oceanica (L.) leaf sheaths: Mathematical modelling. Desalination, 2009, 243, 109-121.	8.2	30
153	Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 2009, 249, 267-272.	8.2	280
154	On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16 dye. Electrochimica Acta, 2009, 54, 2024-2030.	5.2	96
155	Predictive expressions of growth and Remazol Turquoise Blue-G reactive dye bioaccumulation properties of Candida utilis. Enzyme and Microbial Technology, 2009, 45, 15-21.	3.2	16
156	Population dynamics in bioaugmented membrane bioreactor for treatment of bromoamine acid wastewater. Bioresource Technology, 2009, 100, 244-248.	9.6	48
157	Bacterial monitoring by molecular tools of a continuous stirred tank reactor treating textile wastewater. Bioresource Technology, 2009, 100, 629-633.	9.6	27
158	Fe(III)-Immobilized Collagen Fiber: A Renewable Heterogeneous Catalyst for the Photoassisted Decomposition of Orange II. Industrial & Engineering Chemistry Research, 2009, 48, 1458-1463.	3.7	13
159	Evaluation of Loofah as a Sorbent in the Decolorization of Basic Dye Contaminated Aqueous System. Industrial & Engineering Chemistry Research, 2009, 48, 2786-2794.	3.7	36
160	Fungal dye decolourization: Recent advances and future potential. Environment International, 2009, 35, 127-141.	10.0	511
161	Application of dye intercalated bentonite for developing latent fingerprints. Applied Clay Science, 2009, 44, 156-160.	5.2	22
162	Study of the influential factors in the simultaneous photocatalytic degradation process of three textile dyes. Talanta, 2009, 79, 1292-1297.	5.5	36
163	Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry. Chemical Reviews, 2009, 109, 6570-6631.	47.7	2,755
164	Equilibrium, kinetic and mechanism study for the adsorption of neutral red onto rice husk. Desalination and Water Treatment, 2009, 12, 210-218.	1.0	40
165	A hybrid material assembled by anthocyanins from açaÃ-fruit intercalated between niobium lamellar oxide. Dalton Transactions, 2009, , 4136.	3.3	13
166	Color Removal from Acid and Reactive Dye Solutions by Electrocoagulation and Electrocoagulation/Adsorption Processes. Water Environment Research, 2009, 81, 382-393.	2.7	11
167	Optimization of Removal of Methylene Blue by Platanus Tree Leaves Using Response Surface Methodology. Analytical Sciences, 2010, 26, 111-116.	1.6	29

#	Article	IF	Citations
168	Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis. Applied Surface Science, 2010, 256, 2569-2576.	6.1	70
169	Modeling the mineralization and discoloration in colored systems by (US)Fe2+/H2O2/S2O82â^' processes: A proposed degradation pathway. Chemical Engineering Journal, 2010, 157, 35-44.	12.7	45
170	Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chemical Engineering Journal, 2010, 160, 27-32.	12.7	87
171	Preparation and characterization of baker's yeast modified by nano-Fe3O4: Application of biosorption of methyl violet in aqueous solution. Chemical Engineering Journal, 2010, 165, 474-481.	12.7	77
172	One electron oxidation and reduction of Reactive Red-120 dye in aqueous solution: A steady state and pulse radiolysis study. Radiation Physics and Chemistry, 2010, 79, 1225-1233.	2.8	10
173	Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent. Journal of Hazardous Materials, 2010, 175, 858-865.	12.4	122
174	Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 2010, 177, 70-80.	12.4	2,390
175	Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie Van Leeuwenhoek, 2010, 98, 483-504.	1.7	29
176	Adsorption and decolorization of dyes using solid residues from Pleurotus ostreatus mushroom production. Biotechnology and Bioprocess Engineering, 2010, 15, 1102-1109.	2.6	26
177	Poly(Amic Acid)-Modified Biomass of Baker's Yeast for Enhancement Adsorption of Methylene Blue and Basic Magenta. Applied Biochemistry and Biotechnology, 2010, 160, 1394-1406.	2.9	13
178	Electrochemical degradation of the Acid Blue 62 dye on a β-PbO2 anode assessed by the response surface methodology. Journal of Applied Electrochemistry, 2010, 40, 1751-1757.	2.9	31
179	Biodegradation of Synthetic Dyes—A Review. Water, Air, and Soil Pollution, 2010, 213, 251-273.	2.4	568
180	Degradation of reactive azo dye by UV/peroxodisulfate system: an experimental design approach. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100, 33.	1.7	4
181	Removal of Methyl Violet from aqueous solutions using poly (acrylic acid-co-acrylamide)/attapulgite composite. Journal of Environmental Sciences, 2010, 22, 7-14.	6.1	109
182	Preparation, characterization and photocatalytic property of nanosized K–Ta mixed oxides via a sol–gel method. Materials Research Bulletin, 2010, 45, 1741-1747.	5.2	26
183	A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation. Chemosphere, 2010, 80, 410-415.	8.2	35
184	Chemicalâ€Template Synthesis of Micro/Nanoscale Magnesium Silicate Hollow Spheres for Wasteâ€Water Treatment. Chemistry - A European Journal, 2010, 16, 3497-3503.	3.3	218
185	Tailored activated carbons as catalysts in biodecolourisation of textile azo dyes. Applied Catalysis B: Environmental, 2010, 94, 179-185.	20.2	46

#	Article	IF	CITATIONS
186	Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Applied Surface Science, 2010, 256, 3228-3233.	6.1	112
187	High energy induced decoloration and mineralization of Reactive Red 120 dye in aqueous solution: A steady state and pulse radiolysis study. Radiation Physics and Chemistry, 2010, 79, 770-776.	2.8	25
188	Performance of an integrated membrane photocatalytic reactor for the removal of Reactive Black 5. Separation and Purification Technology, 2010, 71, 44-49.	7.9	69
189	Coupled concentration polarization and pore flow modeling of nanofiltration of an industrial textile effluent. Separation and Purification Technology, 2010, 73, 355-362.	7.9	21
190	Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 2010, 76, 64-71.	7.9	128
191	Effect of salinity on metal-complex dye biosorption by Rhizopus arrhizus. Journal of Environmental Management, 2010, 91, 1546-1555.	7.8	69
192	Decolorization of dye wastewaters by biosorbents: A review. Journal of Environmental Management, 2010, 91, 1915-1929.	7.8	638
193	Removal of direct azo dyes and aromatic amines from aqueous solutions using two β-cyclodextrin-based polymers. Journal of Hazardous Materials, 2010, 174, 592-597.	12.4	101
194	Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. Journal of Hazardous Materials, 2010, 175, 844-849.	12.4	147
195	Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. Journal of Hazardous Materials, 2010, 176, 629-637.	12.4	241
196	Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor. Journal of Hazardous Materials, 2010, 177, 1112-1118.	12.4	63
197	Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. Journal of Hazardous Materials, 2010, 182, 525-530.	12.4	23
198	Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). Journal of Hazardous Materials, 2010, 182, 735-742.	12.4	88
199	The comparison of photooxidation processes for the minimization of organic load of colored wastewater applying the response surface methodology. Journal of Hazardous Materials, 2010, 183, 189-202.	12.4	24
200	Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer, 2010, 51, 3801-3807.	3.8	58
201	Optimization of heavy metal-containing dye Acid Black 172 decolorization byÂPseudomonas sp. DY1 using statistical designs. International Biodeterioration and Biodegradation, 2010, 64, 566-573.	3.9	28
202	Degradation of Orange 3R, mixture of dyes and textile effluent and production of polyhydroxyalkanoates from biomass obtained after degradation. International Biodeterioration and Biodegradation, 2010, 64, 755-763.	3.9	20
203	Is the bleaching of phenosafranine by hydrogen peroxide oxidation catalyzed by silica-supported 5,10,15,20-tetrakis-(sulfonatophenyl)porphine-Mn(III) really biomimetic?. Journal of Molecular Catalysis A, 2010, 321, 27-33.	4.8	28

#	Article	IF	CITATIONS
204	Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresource Technology, 2010, 101, 165-173.	9.6	257
205	Tubular structured ordered mesoporous carbon as an efficient sorbent for the removal of dyes from aqueous solutions. Carbon, 2010, 48, 3330-3339.	10.3	75
206	Electrochemical degradation of reactive dye in the presence of water jet cavitation. Ultrasonics Sonochemistry, 2010, 17, 515-520.	8.2	30
207	The use of D-optimal design to model the effects of process parameters on mineralization and discoloration kinetics of Fenton-type oxidation. Chemical Engineering Journal, 2010, 157, 408-419.	12.7	27
208	Methylene Blue biosorption by Rhizopus arrhizus: Effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chemical Engineering Journal, 2010, 158, 474-481.	12.7	92
209	Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors. Chemical Engineering Journal, 2010, 160, 408-416.	12.7	257
210	Comparison of Remazol Black B biosorptive properties of live and treated activated sludge. Chemical Engineering Journal, 2010, 165, 184-193.	12.7	41
211	Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic–oxic bioreactor system degrading azo dyes. Bioresource Technology, 2010, 101, 476-484.	9.6	53
212	Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresource Technology, 2010, 101, 6580-6583.	9.6	69
213	Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresource Technology, 2010, 101, 7323-7329.	9.6	176
214	In situ encapsulation of laccase in microfibers by emulsion electrospinning: Preparation, characterization, and application. Bioresource Technology, 2010, 101, 8942-8947.	9.6	103
215	Decolorization of textile azo dyes by ultrasonication and microbial removal. Desalination, 2010, 255, 154-158.	8.2	35
216	Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water — The application of zeolite assisted AOPs. Desalination, 2010, 257, 22-29.	8.2	154
217	Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination, 2010, 263, 240-248.	8.2	185
218	Removal of various dyes from aqueous media onto polymeric gels by adsorption process: Their kinetics and thermodynamics. Desalination, 2010, 263, 249-257.	8.2	62
219	Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 2010, 264, 143-150.	8.2	95
220	Biotreatability enhancement of aqueous Reactive Black 5 by hydrogen peroxide/ultraviolet advanced oxidation process. Coloration Technology, 2010, 126, 308-314.	1.5	7
221	Electrochemical Treatment of synthetic and Actual Dyeing Wastewaters Using BDD Anodes. Air, Soil and Water Research, 2010, 3, ASWR.S3639.	2.5	5

#	Article	IF	CITATIONS
222	Removal of Grey BL from Dye Wastewater by Derris (Pongamia Glabra) Leaf Powder by Adsorption. E-Journal of Chemistry, 2010, 7, 1454-1462.	0.5	4
223	Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Brazilian Journal of Microbiology, 2010, 41, 907-915.	2.0	30
224	Application of Weak Base Anion Exchanger in Sorption of Tartrazine from Aqueous Medium. Solvent Extraction and Ion Exchange, 2010, 28, 845-863.	2.0	18
225	Purification of Toxic Compounds in Water and Treatment of Polymeric Materials. Nanostructure Science and Technology, 2010, , 345-402.	0.1	4
226	Photocatalytic Degradation of Eriochrome Black Dye in a Rotating Corrugated Drum Photocatalytic Reactor. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	0
227	Biosorption of Remazol Black B dye (Azo dye) by the growing <i>Aspergillus flavus</i> . Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1256-1263.	1.7	29
228	Treatment of textile effluent using Advanced Oxidation Process and Nanofiltration. International Journal of Environmental Engineering, 2010, 2, 56.	0.1	5
229	Weak Base Anion Exchanger Amberlite FPA51 as Effective Adsorbent for Acid Blue 74 Removal from Aqueous Medium – Kinetic and Equilibrium Studies. Separation Science and Technology, 2010, 45, 1076-1083.	2.5	11
230	Methyl orange removal from aqueous solutions by natural and treated skin almonds. Desalination and Water Treatment, 2010, 22, 174-181.	1.0	10
231	Adsorption of methylene blue and methyl orange from aqueous solution by iron oxide-coated zeolite in fi xed bed column: predicted curves. Desalination and Water Treatment, 2010, 22, 258-264.	1.0	16
232	Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Science and Technology, 2010, 62, 1177-1182.	2.5	74
233	A comparison study on Acid Red 119 dye removal using two different types of waterworks sludge. Water Science and Technology, 2010, 61, 1673-1681.	2.5	13
234	Bioremediation of wastewater containing azo dyes through sequential anaerobic–aerobic bioreactor system and its biodiversity. Environmental Reviews, 2010, 18, 21-36.	4.5	31
235	Removal of methylene blue using acid and heat treatment of clinoptilolite. Desalination and Water Treatment, 2010, 24, 61-66.	1.0	5
236	Kinetics, Mechanistic, Equilibrium, and Thermodynamic Studies on the Adsorption of Acid Red Dye from Wastewater by γ-Fe ₂ O ₃ Nanoadsorbents. Separation Science and Technology, 2010, 45, 1092-1103.	2.5	103
237	Bioaccumulation of Cu-complex reactive dye by growing pellets of Penicillium oxalicum and its mechanism. Water Research, 2010, 44, 3565-3572.	11.3	23
238	Kinetics and Equilibrium Studies of Adsorption of Anionic Dyes Using Acid-Treated Palm Shell. Industrial & Engineering Chemistry Research, 2010, 49, 8106-8113.	3.7	18
239	Evaluation of heterogeneous photo-Fenton oxidation of Orange II using response surface methodology. Water Science and Technology, 2010, 62, 1320-1326.	2.5	22

#	Article	IF	CITATIONS
240	Optimization of Parameters for Adsorption of Methylene Blue on a Low-Cost Activated Carbon. Journal of Chemical & Engineering Data, 2010, 55, 435-439.	1.9	165
242	Adsorption of Cationic Dye (Methylene Blue) from Water Using Polyaniline Nanotubes Base. Journal of Physical Chemistry C, 2010, 114, 14377-14383.	3.1	345
243	Determining the maximum environmental release limit of the toxic dye, CHPD. Canadian Journal of Chemistry, 2010, 88, 393-399.	1.1	2
244	Mesoporous protein thin films for molecule delivery. Journal of Materials Chemistry, 2011, 21, 13172.	6.7	10
245	Application of Aqai Stalks As Biosorbents for the Removal of the Dyes Reactive Black 5 and Reactive Orange 16 from Aqueous Solution. Journal of Chemical & Engineering Data, 2011, 56, 1857-1868.	1.9	42
246	Adsorption Behavior of Methylene Blue from Aqueous Solution by the Hydrogel Composites Based on Attapulgite. Separation Science and Technology, 2011, 46, 858-868.	2.5	28
247	Notice of Retraction: Degradation of Reactive Brilliant Red X-3B Using a Circulating-Flowing Aqueous Film Photoelectrocatalytic Reactor. , 2011, , .		0
248	Exploration of genetic information from dynamic microbial populations for enhancing the efficiency of azo-dye-degrading systems. Environmental Reviews, 2011, 19, 310-332.	4.5	5
249	Using Chemical Reactivity To Provide Insights into Environmental Transformations of Priority Organic Substances: The Fe ⁰ -Mediated Reduction of Acid Blue 129. Environmental Science & Technology, 2011, 45, 10369-10377.	10.0	25
250	Bacterial Community Dynamics During Treatment of Anthraquinone Dye in a Hydrolytic Reactor, an Aerobic Biofilm Reactor, and a Combined Hydrolytic–Aerobic Reactor System. Environmental Engineering Science, 2011, 28, 121-128.	1.6	4
251	Liquidâ^'Liquid Extraction of Basic Yellow 28, Basic Blue 41, and Basic Red 46 Dyes from Aqueous Solutions with Reverse Micelles. Journal of Chemical & Engineering Data, 2011, 56, 652-657.	1.9	19
252	Removal of Synthetic Textile Dyes From Wastewaters: A Critical Review on Present Treatment Technologies. Critical Reviews in Environmental Science and Technology, 2011, 41, 807-878.	12.8	485
253	Degradation of the Reactive Black 5 by Fenton and Fenton-like system. Procedia Engineering, 2011, 15, 4835-4840.	1.2	26
254	The decolorisation capacity and mechanism of Shewanella oneidensis MR-1 for Methyl Orange and Acid Yellow 199 under microaerophilic conditions. Water Science and Technology, 2011, 63, 956-963.	2.5	23
255	Water in the Textile Industry. , 2011, , 685-706.		25
256	Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies. International Journal of Environmental Science and Technology, 2011, 8, 561-570.	3.5	64
258	Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Applied Clay Science, 2011, 54, 90-96.	5.2	70
259	Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium. Ecotoxicology and Environmental Safety, 2011, 74, 1288-1296.	6.0	130

ARTICLE IF CITATIONS # Poly (<i>N</i>-Isopropylacrylamide) Microgel-Based Assemblies for Organic Dye Removal from Water. 260 8.0 77 ACŚ Applied Materials & amp; Interfaces, 2011, 3, 4714-4721. Étude cinétique et thermodynamique de l'adsorption d'un colorant basique sur la sciure de bois. 0.2 28 Revue Des Sciences De L'Eau, 0, 24, 131-144. Removal of Direct Yellow-12 Dye from Water by Adsorption on Activated Carbon Prepared 262 0.5 3 from <i>Ficus Racemosa </i>L. E-Journal of Chemistry, 2011, 8, 1536-1545. Applicability of anthraquinone-2,6-disulfonate (AQDS) to enhance colour removal in mesophilic UASB reactors treating textile wastewater. Brazilian Journal of Chemical Engineering, 2011, 28, 617-623. Isolation and characterization of Pseudomonas putida WLY for reactive brilliant red x-3b 264 0.6 13 decolorization. African Journal of Biotechnology, 2011, 10, 10456-10464. Azo Dyes and Their Metabolites: Does the Discharge of the Azo Dye into Water Bodies Represent Human and Ecological Risks?., O,,. Pilot Plant Experiences Using Activated Sludge Treatment Steps for the Biodegradation of Textile 266 0 Wastewater., 2011, ... The Effect of Recycling Flux on the Performance and Microbial Community Composition of a Biofilm Hydrolytic-Aerobic Recycling Process Treating Anthraquinone Reactive Dyes. Molecules, 2011, 16, 3.8 9838-9849. Nest-like structures of Sr doped Bi2WO6: Synthesis and enhanced photocatalytic properties. Materials 268 3.5 23 Science and Engineering B: Solid-State Matérials for Advanced Technology, 2011, 176, 1264-1270. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. Journal of Hazardous Materials, 2011, 186, 713-723. 12.4 198 Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped 270 12.4 74 diamond electrodes. Journal of Hazardous Materials, 2011, 192, 1683-1689. Removal of Chemazol Reactive Red 195 from aqueous solution by dehydrated beet pulp carbon. Journal 271 of Hazardous Materials, 2011, 194, 303-311. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: 272 12.4 33 Polyaminoimide homopolymer. Journal of Hazardous Materials, 2011, 198, 87-94. Ferromagnetic Ni decorated ordered mesoporous carbons as magnetically separable adsorbents for methyl orange. Materials Chemistry and Physics, 2011, 131, 52-59. Decolorization of dye solutions with Ruditapes philippinarum conglutination mud and the isolated 274 12 6.1 bacteria. Journal of Environmental Sciences, 2011, 23, S142-S145. Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 229-234. Biosorption of Acid Blue 25 by unmodified and CPC-modified biomass of Penicillium YW01: Kinetic 276 5.030 study, equilibrium isotherm and FTIR analysis. Colloids and Surfaces B: Biointerfaces, 2011, 88, 521-526. Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin 8.2 Amberlite IRA-958. Desalination, 2011, 278, 219-226.

#	Article	IF	CITATIONS
278	Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 2011, 280, 1-13.	8.2	1,350
279	Decolorization of the azo dye Orange II in a montmorillonite/H2O2 system. Desalination, 2011, 281, 306-311.	8.2	25
280	Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process. Electrochimica Acta, 2011, 58, 303-311.	5.2	113
281	Methylene blue photodegradation over titania-decorated SBA-15. Applied Catalysis B: Environmental, 2011, 110, 108-117.	20.2	108
282	Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. International Biodeterioration and Biodegradation, 2011, 65, 733-743.	3.9	130
283	Improving the simultaneous removal efficiency of COD and color in a combined HABMR–CFASR system based MPDW. Part 1: Optimization of operational parameters for HABMR by using response surface methodology. Bioresource Technology, 2011, 102, 8839-8847.	9.6	29
284	Synergistic action of azoreductase and laccase leads to maximal decolourization and detoxification of model dye-containing wastewaters. Bioresource Technology, 2011, 102, 9852-9859.	9.6	68
285	Integrating photobiological hydrogen production with dye–metal bioremoval from simulated textile wastewater. Bioresource Technology, 2011, 102, 9957-9964.	9.6	21
286	In vitro studies on degradation of synthetic dye mixture by Comamonas sp. VS-MH2 and evaluation of its efficacy using simulated microcosm. Bioresource Technology, 2011, 102, 10391-10400.	9.6	26
287	Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation. Catalysis Today, 2011, 175, 346-355.	4.4	143
288	Catalytic effect of lucunary heteropolyanion containing molybdenum and tungsten atoms on decolorization of direct blue 71. Chinese Chemical Letters, 2011, 22, 1501-1504.	9.0	10
289	Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chemical Engineering Journal, 2011, 173, 782-791.	12.7	128
290	Anodic oxidation of a simulated effluent containing Reactive Blue 19 on a boron-doped diamond electrode. Chemical Engineering Journal, 2011, 174, 612-618.	12.7	41
291	The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chemical Engineering Research and Design, 2011, 89, 2182-2189.	5.6	170
292	Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology, 2011, 20, 438-446.	2.4	93
293	A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environmental Monitoring and Assessment, 2011, 183, 151-195.	2.7	307
294	Potential of Gonium spp. in Synthetic Reactive Dye Removal, Possible Role of Laccases and Stimulation by Triacontanol Hormone. Water, Air, and Soil Pollution, 2011, 222, 297-303.	2.4	12
295	An effective adsorbent based on sawdust for removal of direct dye from aqueous solutions. Clean Technologies and Environmental Policy, 2011, 13, 713-718.	4.1	42

#	Article	IF	CITATIONS
296	Removal of cationic dyes from aqueous solutions with poly (N-isopropylacrylamide-co-itaconic acid) hydrogels. Polymer Bulletin, 2011, 66, 551-570.	3.3	61
297	Efficient photodegradation of dyes using light-induced self assembly TiO2 \hat{I}^2 -cyclodextrin hybrid nanoparticles under visible light irradiation. Journal of Hazardous Materials, 2011, 185, 117-123.	12.4	72
298	The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. Journal of Hazardous Materials, 2011, 192, 628-633.	12.4	100
299	Adsorptive removal of direct textile dyes by low cost agricultural waste: Application of factorial design analysis. Chemical Engineering Journal, 2011, 167, 35-41.	12.7	68
300	Decolorization of Naphthol Blue Black using the Horseradish Peroxidase. Applied Biochemistry and Biotechnology, 2011, 163, 433-443.	2.9	48
301	Surface characterization of dead microalgaeâ€based biomass using methylene blue adsorption. Surface and Interface Analysis, 2011, 43, 959-963.	1.8	17
302	The effect of platinum on the performance of WO ₃ nanocrystal photocatalysts for the oxidation of Methyl Orange and isoâ€propanol. Journal of Chemical Technology and Biotechnology, 2011, 86, 1018-1023.	3.2	49
303	Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chemical Engineering Journal, 2011, 168, 208-214.	12.7	84
304	Comparison of the gel anion exchangers for removal of Acid Orange 7 from aqueous solution. Chemical Engineering Journal, 2011, 170, 184-193.	12.7	53
305	Mechanistic investigation of decolorization and degradation of Reactive Red 120 by Bacillus lentus BI377. Bioresource Technology, 2011, 102, 758-764.	9.6	80
306	Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: Kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresource Technology, 2011, 102, 828-834.	9.6	158
307	Ability to use the diazo dye, C.I. Acid Black 1 as a nitrogen source by the marine cyanobacterium Oscillatoria curviceps BDU92191. Bioresource Technology, 2011, 102, 7218-7223.	9.6	42
308	Competitive biosorption of Acid Blue 25 and Acid Red 337 onto unmodified and CDAB-modified biomass of Aspergillus oryzae. Bioresource Technology, 2011, 102, 7429-7436.	9.6	41
309	Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution. Applied Radiation and Isotopes, 2011, 69, 982-987.	1.5	80
310	Decolorization and degradation of synthetic dyes by Schizophyllum sp. F17 in a novel system. Desalination, 2011, 265, 22-27.	8.2	28
311	Biosorption of Basic Orange from aqueous solution onto dried A. filiculoides biomass: Equilibrium, kinetic and FTIR studies. Desalination, 2011, 266, 56-62.	8.2	58
312	Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 2011, 266, 1-16.	8.2	286
313	The sorption of cationic dyes onto kaolin: Kinetic, isotherm and thermodynamic studies. Desalination, 2011, 266, 274-280.	8.2	158

#	Article	IF	CITATIONS
314	Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO2 under daylight illumination. Desalination, 2011, 269, 249-253.	8.2	78
315	Reactive dye removal from wastewater using a chitosan nanodispersion. Desalination, 2011, 271, 225-230.	8.2	59
316	Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination, 2011, 274, 22-30.	8.2	176
317	Degradation of phenolic pollutants using KrCl and XeBr excilamps in the presence of dye: A comparative study. Desalination, 2011, 274, 156-163.	8.2	15
318	An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 2011, 276, 13-27.	8.2	621
319	The wash-off of dyeings using interstitial water part 1: Initial studies. Dyes and Pigments, 2011, 90, 177-190.	3.7	18
320	Fixed-bed decolorization of Reactive Blue 172 by Proteus vulgaris NCIM-2027 immobilized on Luffa cylindrica sponge. International Biodeterioration and Biodegradation, 2011, 65, 494-503.	3.9	54
321	Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: Optimization based on statistical model. International Biodeterioration and Biodegradation, 2011, 65, 513-521.	3.9	55
322	Adsorption of cationic dyes onto mesoporous silica. Microporous and Mesoporous Materials, 2011, 141, 102-109.	4.4	216
323	Spontaneous oxidative degradation of indigo carmine by thin films of birnessite electrodeposited onto SnO2. Applied Catalysis B: Environmental, 2011, 107, 42-51.	20.2	40
324	Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites. Applied Surface Science, 2011, 257, 3524-3528.	6.1	79
325	Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 138-157.	5.3	1,164
326	Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution. Journal of Hazardous Materials, 2011, 185, 1124-1130.	12.4	144
327	Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation. Journal of Hazardous Materials, 2011, 185, 1558-1568.	12.4	43
328	Degradation of a xanthene dye by Fe(II)-mediated activation of Oxone process. Journal of Hazardous Materials, 2011, 186, 1455-1461.	12.4	159
329	Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 2011, 105, 321-327.	3.5	59
330	BiOBr hierarchical microspheres: Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties. Journal of Colloid and Interface Science, 2011, 354, 630-636.	9.4	154
331	Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 2011, 359, 24-29.	9.4	602

#	Article	IF	Citations
332	The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 2011, 79, 26-33.	7.9	248
333	Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrasonics Sonochemistry, 2011, 18, 440-446.	8.2	99
334	Removal of Reactive Brilliant Orange X-GN from Aqueous Solutions By Mg-Al Layered Double Hydroxides. Clays and Clay Minerals, 2011, 59, 438-445.	1.3	6
335	Iron-Activated Persulfate Oxidation of an Azo Dye in Model Wastewater: Influence of Iron Activator Type on Process Optimization. Journal of Environmental Engineering, ASCE, 2011, 137, 454-463.	1.4	44
336	Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 887-897.	1.7	16
337	Multicomponent Steady State Modeling of Concentration Polarization Including Adsorption during Nanofiltration of a Textile Effluent. Separation Science and Technology, 2011, 46, 1059-1067.	2.5	3
338	Notice of Retraction: Treatment of Dyestuff Wastewater by Micro-Electrocatalysis-SBR Process. , 2011, , .		0
339	Characterization and Utilization of Corncob Lignocellulose for Adsorptive Removal of Basic Dyes from Aqueous Solution. Advanced Materials Research, 2011, 236-238, 125-129.	0.3	1
340	Rapid Decolorization of Rhodamine B by UV/Fe(III)-Penicillamine Process under Neutral pH: Compared with UV/Fe(III)-Oxalate. Advanced Materials Research, 0, 183-185, 130-134.	0.3	1
341	Rapid Degradation of Rhodamine B over Cyclodextrin Modified TiO ₂ . Materials Science Forum, 0, 694, 764-768.	0.3	0
342	Notice of Retraction: Photocatalytic Degradation Kinetics of Reactive Bright Orange Solution with Phosphotungstic Acid. , 2011, , .		0
343	Decolorization of Malachite Green by a Newly Isolated <i>Penicillium</i> sp. YW 01 and Optimization of Decolorization Parameters. Environmental Engineering Science, 2011, 28, 555-562.	1.6	20
344	Orange-II removal from simulated wastewater by adsorption using <i>Annona squamosa</i> shell – A kinetic and equilibrium studies. Desalination and Water Treatment, 2011, 36, 374-382.	1.0	12
345	Electrochemical Techniques in Textile Processes and Wastewater Treatment. International Journal of Photoenergy, 2012, 2012, 1-12.	2.5	62
346	Application of Chemically Modified and Unmodified Waste Biological Sorbents in Treatment of Wastewater. International Journal of Chemical Engineering, 2012, 2012, 1-7.	2.4	8
347	Adsorption behaviour of methylene blue on carbon nanoparticles. Micro and Nano Letters, 2012, 7, 1060-1063.	1.3	9
348	Using D-optimal experimental design to optimise remazol black B mineralisation by Fenton-like peroxidation. Environmental Technology (United Kingdom), 2012, 33, 1111-1121.	2.2	13
349	Shaddock peel as a novel low-cost adsorbent for removal of methylene blue from dye wastewater. Desalination and Water Treatment, 2012, 39, 70-75.	1.0	16

#	Article	IF	CITATIONS
350	Adsorption of N-methylated diaminotriphenilmethane dye (malachite green) on natural rarasaponin modified kaolin. Desalination and Water Treatment, 2012, 41, 342-355.	1.0	18
351	Adsorption of Methyl Orange from Solution by IOCZ in Batch Mode: Equilibrium Study. Advanced Materials Research, 0, 581-582, 33-36.	0.3	1
352	Microbial Degradation of Dye-Containing Wastewater. Environmental Science and Engineering, 2012, , 317-338.	0.2	1
353	Preparation of Corncob-Based Bio-Char and its Application in Removing Basic Dyes from Aqueous Solution. Advanced Materials Research, 2012, 550-553, 2420-2423.	0.3	4
354	Environmental Protection Strategies: An Overview. , 2012, , 1-34.		4
355	A comperative study for adsorption of methylene blue from aqueous solutions by two kinds of amberlite resin materials. Desalination and Water Treatment, 2012, 45, 206-214.	1.0	12
356	Kinetic and Thermodynamic Studies on the Adsorption of Reactive Red 239 by Carra Sawdust Treated with Formaldehyde. Adsorption Science and Technology, 2012, 30, 881-899.	3.2	7
357	Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Physical Chemistry Chemical Physics, 2012, 14, 11139.	2.8	155
359	Comparative mineralization of textile dye indigo by photo-Fenton process and anodic oxidation using boron-doped diamond anode. Desalination and Water Treatment, 2012, 45, 297-304.	1.0	33
360	Microbial decolouration of azo dyes: A review. Process Biochemistry, 2012, 47, 1723-1748.	3.7	691
361	Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Technologies and Environmental Policy, 2012, 14, 989-1001.	4.1	36
362	Methylene Blue Degradation by Sphingomonas paucimobilis under Aerobic Conditions. Water, Air, and Soil Pollution, 2012, 223, 5131-5142.	2.4	23
363	Phytoremediatgion of wastewater containing azo dye by sunflowers and their photosynthetic response. Acta Ecologica Sinica, 2012, 32, 240-243.	1.9	8
364	Mathematical modeling of wastewater decolorization in a trickle-bed bioreactor. Journal of Biotechnology, 2012, 157, 512-523.	3.8	6
365	Rotating Drum Biological Contactor and its Application for Textile Dyes Decolorization. Procedia Engineering, 2012, 42, 1579-1586.	1.2	11
366	Atomic layer deposition of anatase TiO2 coating on silica particles: growth, characterization and evaluation as photocatalysts for methyl orange degradation and hydrogen production. Journal of Materials Chemistry, 2012, 22, 20203.	6.7	25
367	Degradation of Cationic Red GTL by Catalytic Wet Air Oxidation over Mo–Zn–Al–O Catalyst under Room Temperature and Atmospheric pressure. Environmental Science & Technology, 2012, 46, 2856-2863.	10.0	48
368	Assessment of biological decolorization and degradation of sulfonated di-azo dye Acid Maroon V by isolated bacterial consortium EDPA. International Biodeterioration and Biodegradation, 2012, 75, 187-193.	3.9	38

#	Article	IF	CITATIONS
369	A hands-on approach to teaching environmental awareness and pollutant remediation to undergraduate chemistry students. Research in Science and Technological Education, 2012, 30, 173-184.	2.5	8
370	Forward and Backward Extraction of Methylene Blue by using AOT/Isooctane Reversed Micellar Solution. Separation Science and Technology, 2012, 47, 1957-1962.	2.5	8
371	Application of Sensitivity and Flux Analyses for the Reduction of Model Predicting the Photooxidative Degradation of an Azo Dye in Aqueous Media. Environmental Modeling and Assessment, 2012, 17, 653-671.	2.2	5
372	Selective adsorption and photocatalysis of low-temperature base-modified anatase nanocrystals. RSC Advances, 2012, 2, 447-452.	3.6	38
373	Biotechnological Potential of Soil Isolate, <i>Flavobacterium mizutaii</i> for Removal of Azo Dyes: Kinetics, Isotherm, and Microscopic Study. Separation Science and Technology, 2012, 47, 1913-1925.	2.5	16
374	Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Research, 2012, 46, 33-42.	11.3	166
375	Comparison of Chemometric and Chromatographic Methods to Obtain Kinetic Parameters for Textile Dyes during a Biodegradation Process. Analytical Letters, 2012, 45, 1713-1723.	1.8	1
376	Polyoxometalate-based materials for efficient solar and visible light harvesting: application to the photocatalytic degradation of azo dyes. Journal of Materials Chemistry, 2012, 22, 24509.	6.7	190
377	Biodegradation of Azo Dyes from Wastewater. Environmental Chemistry for A Sustainable World, 2012, , 255-275.	0.5	2
378	Photocatalytic Si nanowires/TiO2microparticles with extended absorption edge up to 700 nm. Journal Physics D: Applied Physics, 2012, 45, 365304.	2.8	3
379	Comparative degradation of the diazo dye Direct Yellow 4 by electro-Fenton, photoelectro-Fenton and photo-assisted electro-Fenton. Journal of Electroanalytical Chemistry, 2012, 681, 36-43.	3.8	80
380	Evaluation of hematin-catalyzed Orange II degradation as a potential alternative to horseradish peroxidase. International Biodeterioration and Biodegradation, 2012, 73, 60-72.	3.9	14
381	Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chemical Engineering Journal, 2012, 198-199, 1-10.	12.7	136
382	Electrochemical oxidation of Methyl Red using Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. Chemical Engineering Journal, 2012, 204-206, 141-150.	12.7	98
383	Decolorization of textile dye CI Basic Yellow 28 with electrochemically generated active chlorine. Chemical Engineering Journal, 2012, 204-206, 151-157.	12.7	41
384	Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, 2012, 209, 520-530.	12.7	180
385	Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: Artificial neural network modeling. Ecotoxicology and Environmental Safety, 2012, 80, 291-298.	6.0	126
386	Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions. Ecological Engineering, 2012, 38, 79-85	3.6	145

#	ARTICLE	IF	CITATIONS
387	Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions. Chemistry Central Journal, 2012, 6, 161.	2.6	30
388	Anionic dye (acid green 25) adsorption from water by using polyaniline nanotubes salt/silica composite. Journal of Nanostructure in Chemistry, 2012, 3, 1.	9.1	48
389	Mesoporous-Assembled Nanocrystal Photocatalysts for Degradation of Azo Dyes. , 2012, , 147-175.		1
390	Removal of Dyes and Pigments from Industrial Effluents. , 2012, , 65-93.		11
391	Peroxidases as a Potential Tool for the Decolorization and Removal of Synthetic Dyes from Polluted Water. , 2012, , 453-498.		7
392	Synthetically engineered chitosan-based materials and their sorption properties with methylene blue in aqueous solution. Journal of Colloid and Interface Science, 2012, 388, 225-234.	9.4	41
393	Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity. Applied Catalysis B: Environmental, 2012, 126, 265-274.	20.2	42
394	Chemometric formulation of bacterial consortium-AVS for improved decolorization of resonance-stabilized and heteropolyaromatic dyes. Bioresource Technology, 2012, 123, 344-351.	9.6	29
395	Modeling wastewater biodecolorization with reactive blue 4 in fixed bed bioreactor by Trametes subectypus: Biokinetic, biosorption and transport. Bioresource Technology, 2012, 123, 452-462.	9.6	13
396	Impact of the redox mediator sodium anthraquinone-2,6-disulphonate (AQDS) on the reductive decolourisation of the azo dye Reactive Red 2 (RR2) in one- and two-stage anaerobic systems. Bioresource Technology, 2012, 121, 1-7.	9.6	42
397	Degradation of Erioglaucine Dye Under \hat{I}^3 -irradiation. Procedia Chemistry, 2012, 7, 647-653.	0.7	6
398	Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. Journal of Hazardous Materials, 2012, 239-240, 257-264.	12.4	75
399	Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. Journal of Industrial and Engineering Chemistry, 2012, 18, 1964-1969.	5.8	128
400	Optimized Treatment of Phenol-Containing Fire Fighting Wastewater Using Fenton Oxidation. Journal of Environmental Engineering, ASCE, 2012, 138, 761-770.	1.4	1
401	Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment. Applied Microbiology and Biotechnology, 2012, 96, 1599-1606.	3.6	69
402	Advances in Water Treatment and Pollution Prevention. , 2012, , .		41
403	Graphene–SnO ₂ composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology, 2012, 23, 355705.	2.6	233
404	Effects of Dodecyl Trimethyl Ammonium Bromide Surfactant on Decolorization of Remazol Blue by a Living <i>Aspergillus versicolor</i> Strain. Journal of Surfactants and Detergents, 2012, 15, 797-803.	2.1	19

ARTICLE IF CITATIONS # Biodecolorization of Azo Dye Remazol Orange by Pseudomonas aeruginosa BCH and Toxicity (Oxidative) Tj ETQq0 0 0 rgBT /Overlock 10 405 2.9 24 1319-1334. Biodegradation of crystal violet using Burkholderia vietnamiensis CO9V immobilized on PVA–sodium 406 6.0 alginate–kaolin gel beads. Ecotoxicology and Environmental Safety, 2012, 83, 108-114. Synthesis and Shape Control of Ag₈SnS₆ Submicropyramids with High 407 3.0 24 Surface Energy. Crystal Growth and Design, 2012, 12, 3458-3464. Cobalt ferrite–polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly 408 176 enhanced performances. Journal of Materials Chemistry, 2012, 22, 17485. Choline-Based Ionic Liquids-Enhanced Biodegradation of Azo Dyes. Environmental Science & Amp; 409 10.0 96 Technology, 2012, 46, 4902-4908. Removal of remazol yellow from aqueous solution using Fe–Cu and Fe–Ni nanoscale oxides and their carbonaceous composites. Environmental Technology (United Kingdom), 2012, 33, 545-554. 2.2 Environmental Chemistry for a Sustainable World. Environmental Chemistry for A Sustainable 411 0.5 15 World, 2012, , . Decolorization of Direct Yellow R Dye from Aqueous Solution by Aluminum Anode Electrochemical. 0.3 Advanced Materials Research, 0, 581-582, 58-63. Removal of textile dyes from aqueous solutions with eco-friendly biosorbent. Desalination and Water 413 1.0 92 Treatment, 2012, 37, 169-177. Use of Enzymatic Bio-Fenton as a New Approach in Decolorization of Malachite Green. Scientific 414 2.1 World Journal, The, 2012, 2012, 1-5. CELLULOSIC SUBSTRATES FOR REMOVAL OF POLLUTANTS FROM AQUEOUS SYSTEMS: A REVIEW. 2. DYES. 415 1.0 65 BioResources, 2012, 7, . Biosorption thermodynamic and kinetic of direct dye from aqueous solutions on bacterial cellulose. 0.4 African Journal of Microbiology Research, 2012, 6, 1270-1278. Treatment of Direct Blending Dye Wastewater and Recycling of Dye Sludge. Molecules, 2012, 17, 417 3.8 11 2784-2795. Biodegration of Dye Using Free Laccase and Sol-gel Laccase. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.784314 rg BT /Overlock 10 COMPARISON THE DYE REMOVAL ACTIVITY OF SYSTEMS CONTAINED SURFACTANTS AND FUNGUS. Journal 419 1.2 6 of the Chilean Chemical Society, 2012, 57, 1170-1173. Trace Determination of Rhodamine B and Rhodamine 6G Dyes in Aqueous Samples by Solidâ€phase 420 Extraction and Highâ€performance Liquid Chromatography Coupled with Fluorescence Detection. 50 Journal of the Chinese Chemical Society, 2012, 59, 515-519. Application of the aquatic fungus <i>Phoma</i> sp. (DSM22425) in bioreactors for the treatment of 421 3.214 textile dye model effluents. Journal of Chemical Technology and Biotechnology, 2012, 87, 1276-1283. Application of response surface analysis for biodegradation of azo reactive textile dye using 3.3 <i>Aspergillus foetidus</i>. Journal of Basic Microbiology, 2012, 52, 314-323.

#	Article	IF	CITATIONS
423	Preparation of some chitosan heavy metal complexes and study of its properties. Polymer Science - Series A, 2012, 54, 113-124.	1.0	47
424	A Novel Method for Dye Removal: Ionic Liquidâ€Based Dispersive Liquid–Liquid Extraction (ILâ€DLLE). Clean - Soil, Air, Water, 2012, 40, 290-297.	1.1	48
425	Poly(<i>N</i> â€Isopropylacrylamide)â€Based Microgels and Their Assemblies for Organicâ€Molecule Removal from Water. ChemPhysChem, 2012, 13, 2507-2515.	2.1	34
426	Perspectives on the Interaction of Plasmas With Liquid Water for Water Purification. IEEE Transactions on Plasma Science, 2012, 40, 1311-1323.	1.3	141
427	Biological Removal of Azo and Triphenylmethane Dyes and Toxicity of Process By-Products. Water, Air, and Soil Pollution, 2012, 223, 1581-1592.	2.4	131
428	Copper Oxide Nanoparticle-Coated Quartz Sand as a Catalyst for Degradation of an Organic Dye in Water. Water, Air, and Soil Pollution, 2012, 223, 3105-3115.	2.4	11
429	An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environmental Science and Pollution Research, 2012, 19, 1728-1737.	5.3	43
431	Enhanced degradation of azo dye alizarin yellow R in a combined process of iron–carbon microelectrolysis and aerobic bio-contact oxidation. Environmental Science and Pollution Research, 2012, 19, 1385-1391.	5.3	24
432	Waste coffee-grounds as potential biosorbents for removal of acid dye 44 from aqueous solution. Korean Journal of Chemical Engineering, 2012, 29, 903-907.	2.7	24
433	Decolorization of textile dyes by Alishewanella sp. KMK6. Applied Microbiology and Biotechnology, 2012, 95, 521-529.	3.6	40
434	Poly (N-isopropylacrylamide) microgel based assemblies for organic dye removal from water: microgel diameter effects. Colloid and Polymer Science, 2012, 290, 1053-1064.	2.1	29
435	Hollow micro-mesoporous carbon polyhedra produced by selective removal of skeletal scaffolds. Carbon, 2012, 50, 2546-2555.	10.3	19
436	Preparation and adsorption behavior for brilliant blue X-BR of the cost-effective cationic starch intercalated clay composite matrix. Carbohydrate Polymers, 2012, 87, 1447-1452.	10.2	41
437	Synthesis and flocculation property in dye solutions of β-cyclodextrin–acrylic acid–[2-(Acryloyloxy)ethyl] trimethyl ammonium chloride copolymer. Carbohydrate Polymers, 2012, 87, 1956-1962.	10.2	21
438	Facile synthesis of three-dimensional chitosan–graphene mesostructures for reactive black 5 removal. Carbohydrate Polymers, 2012, 88, 61-67.	10.2	97
439	Decolorization of textile industry effluent containing disperse dye Scarlet RR by a newly developed bacterial-yeast consortium BL-GG. Chemical Engineering Journal, 2012, 184, 33-41.	12.7	107
440	Structure and catalytic activity of MoZnAlO catalyst for degradation of cationic red GTL under room conditions. Chemical Engineering Journal, 2012, 183, 332-338.	12.7	19
441	Efficient decolorization/degradation of aqueous azo dyes using buffered H2O2 oxidation catalyzed by a dosage below ppm level of chloroperoxidase. Chemical Engineering Journal, 2012, 191, 236-242.	12.7	55

#	Article	IF	CITATIONS
442	Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chemical Engineering Journal, 2012, 192, 67-76.	12.7	177
443	Improvement of textile dye removal by electrocoagulation with low-cost steel wool cathode reactor. Chemical Engineering Journal, 2012, 192, 37-44.	12.7	76
444	Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. International Biodeterioration and Biodegradation, 2012, 69, 41-50.	3.9	85
445	Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. International Biodeterioration and Biodegradation, 2012, 72, 94-107.	3.9	197
446	Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration and Biodegradation, 2012, 73, 33-40.	3.9	66
447	Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Applied Catalysis B: Environmental, 2012, 115-116, 107-116.	20.2	174
448	Fast photocatalytic degradation of rhodamine B over [Mo6Br8(N3)6]2â^' cluster units under sun light irradiation. Applied Catalysis B: Environmental, 2012, 123-124, 1-8.	20.2	75
449	Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloids and Surfaces B: Biointerfaces, 2012, 91, 234-241.	5.0	49
450	Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes and Pigments, 2012, 93, 1441-1446.	3.7	107
451	NMR, multi-spectroscopic and molecular modeling approach to investigate the complexes between C.I. Acid Orange 7 and human serum albumin inÂvitro. Dyes and Pigments, 2012, 92, 1100-1107.	3.7	31
452	Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions – Kinetic and equilibrium studies. Dyes and Pigments, 2012, 92, 967-974.	3.7	144
453	A new heterogeneous catalytic system for decolorization and mineralization of Orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer. Dyes and Pigments, 2012, 95, 79-88.	3.7	39
454	ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2012, 377, 114-121.	9.4	396
455	Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips. Bioresource Technology, 2012, 106, 55-62.	9.6	47
456	Decolorization of Orange II using an anaerobic sequencing batch reactor with and without co-substrates. Journal of Environmental Sciences, 2012, 24, 291-296.	6.1	39
457	Novel sulfonated thin-film composite nanofiltration membranes with improved water flux for treatment of dye solutions. Journal of Membrane Science, 2012, 394-395, 218-229.	8.2	88
458	Mechanisms of radical generation in the removal of phenol derivatives and pigments using different Fe-based catalytic systems. Journal of Molecular Catalysis A, 2012, 352, 1-20.	4.8	61
459	Decolorization of the phthalocyanine dye reactive blue 21 by turnip peroxidase and assessment of its oxidation products. Journal of Molecular Catalysis B: Enzymatic, 2012, 77, 9-14.	1.8	76

#	Article	IF	CITATIONS
460	Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 2012, 674, 103-107.	3.8	116
461	Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. Journal of Environmental Management, 2012, 102, 148-164.	7.8	387
462	Photocatalytic decolorization of Remazol Black 5 and Remazol Brilliant Orange 3RÂby mesoporous TiO2. Journal of Environmental Management, 2012, 102, 125-133.	7.8	26
463	Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode. Journal of Hazardous Materials, 2012, 207-208, 91-96.	12.4	97
464	Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite. Journal of Hazardous Materials, 2012, 199-200, 143-150.	12.4	48
465	Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms. Journal of Hazardous Materials, 2012, 205-206, 47-54.	12.4	63
466	Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL. Journal of Hazardous Materials, 2012, 223-224, 31-38.	12.4	66
467	Sequential Anaerobic/Aerobic Treatment of Dye-Containing Wastewaters: Colour and COD Removals, and Ecotoxicity Tests. Applied Biochemistry and Biotechnology, 2012, 166, 1057-1069.	2.9	32
468	Electrochemical Degradation of Remazol Red BR and Novacron Blue C-D Dyes Using Diamond Electrode. Electrocatalysis, 2012, 3, 1-12.	3.0	62
469	Decolorization and partial mineralization of a polyazo dye by Bacillus firmus immobilized within tubular polymeric gel. 3 Biotech, 2012, 2, 67-78.	2.2	16
470	Fe–Ni Nanostructures and C/Fe–Ni Composites as Adsorbents for the Removal of a Textile Dye from Aqueous Solution. Water, Air, and Soil Pollution, 2012, 223, 1331-1341.	2.4	11
471	Enzymatic decolorization of Orange II: Optimization by response surface methodology and pathway. Environmental Progress and Sustainable Energy, 2013, 32, 294-301.	2.3	15
472	Poly (amidoamine-co-acrylic acid) copolymer: Synthesis, characterization and dye removal ability. Industrial Crops and Products, 2013, 42, 119-125.	5.2	110
473	Removal of Remazol Blue 19 from wastewater by zinc–aluminium–chloride-layered double hydroxides. Applied Water Science, 2013, 3, 431-438.	5.6	12
474	Magnetically Separable Fe3O4 Nanoparticles-Decorated Reduced Graphene Oxide Nanocomposite for Catalytic Wet Hydrogen Peroxide Oxidation. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 907-916.	3.7	50
475	Removal of reactive dyes using organofunctionalized mesoporous silicas. Journal of Porous Materials, 2013, 20, 1179-1188.	2.6	10
476	Kinetic and thermodynamic study of adsorption of methylene blue and rhodamine B on adsorbent prepared from Hyptis suaveolens (Vilayti Tulsi). Journal of the Iranian Chemical Society, 2013, 10, 1159-1166.	2.2	10
477	Cationic dye adsorption by poly(N-isopropylacrylamide/maleic acid) copolymeric hydrogels prepared by gamma rays. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1469-1476.	1.5	12

#	Article	IF	CITATIONS
478	Sol–gel synthesis of Sm2InTaO7 and its photocatalytic activity on degradation of crystal violet dye and reduction of Cr(VI) ions. Research on Chemical Intermediates, 2013, 39, 1533-1544.	2.7	11
479	Efficient adsorption and photocatalytic degradation of Congo red onto hydrothermally synthesized NiS nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1475.	1.9	73
481	Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants. ACS Applied Materials & Interfaces, 2013, 5, 6815-6819.	8.0	493
482	Degradation of direct azo dye by Cucurbita pepo free and immobilized peroxidase. Journal of Environmental Sciences, 2013, 25, 1235-1244.	6.1	42
483	Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Applied Catalysis B: Environmental, 2013, 142-143, 877-890.	20.2	172
484	Mechanistic study of a diazo dye degradation by Soybean Peroxidase. Chemistry Central Journal, 2013, 7, 93.	2.6	51
485	POME is treated for removal of color from biologically treated POME in fixed bed column: Applying wavelet neural network (WNN). Journal of Hazardous Materials, 2013, 262, 106-113.	12.4	62
486	Improvement of catalytic efficiency of chloroperoxidase by its covalent immobilization on SBA-15 for azo dye oxidation. Journal of Porous Materials, 2013, 20, 387-396.	2.6	24
487	Magnetic Graphene Oxide: Effect of Preparation Route on Reactive Black 5 Adsorption. Materials, 2013, 6, 1360-1376.	2.9	94
488	One-pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity. Applied Catalysis B: Environmental, 2013, 130-131, 270-276.	20.2	78
489	Photocatalytic Degradation of Dye C.I. Direct Blue 78 Using TiO ₂ Nanoparticles Immobilized on Recycled Woolâ€Based Nonwoven Material. Clean - Soil, Air, Water, 2013, 41, 1002-1009.	1.1	9
490	Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Letters in Applied Microbiology, 2013, 56, 283-290.	2.2	23
491	POTENTIAL OF THE AQUATIC FERNAZOLLA FILICULOIDESIN BIODEGRADATION OF AN AZO DYE: MODELING OF EXPERIMENTAL RESULTS BY ARTIFICIAL NEURAL NETWORKS. International Journal of Phytoremediation, 2013, 15, 729-742.	3.1	22
492	The microbial degradation of azo dyes: minireview. World Journal of Microbiology and Biotechnology, 2013, 29, 389-399.	3.6	90
493	Study of the photo-electrochemical activity of cobalt- and nickel-doped TiO2 photo-anodes for the treatment of a dye-contaminated aqueous solution. Journal of Applied Electrochemistry, 2013, 43, 433-440.	2.9	12
494	PMDA-modified biosorbents for enhancement adsorption of basic magenta. Environmental Earth Sciences, 2013, 70, 635-642.	2.7	4
495	Use of a Dual Arrangement of Flow Cells for Electrochemical Decontamination of Aqueous Solutions Containing Synthetic Dyes. Electrocatalysis, 2013, 4, 274-282.	3.0	24
496	On the application of nanostructured electrodes prepared by Ti/TiO2/WO3 "template†A case study of removing toxicity of indigo using visible irradiation. Chemosphere, 2013, 91, 586-593.	8.2	42

#	Article	IF	CITATIONS
497	Proteomics approach to decipher novel genes and enzymes characterization of a bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri ZMd44. Biotechnology and Bioprocess Engineering, 2013, 18, 8-17.	2.6	10
498	One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications. Materials Science in Semiconductor Processing, 2013, 16, 2070-2083.	4.0	177
499	Highly Efficient Biodecolorization/Degradation of Congo Red and Alizarin Yellow R by Chloroperoxidase from Caldariomyces fumago: Catalytic Mechanism and Degradation Pathway. Industrial & Engineering Chemistry Research, 2013, 52, 13572-13579.	3.7	35
500	Advances in Enzyme Biotechnology. , 2013, , .		9
501	Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon. Chemical Engineering Journal, 2013, 232, 259-265.	12.7	150
502	Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p. Applied Microbiology and Biotechnology, 2013, 97, 6051-6055.	3.6	12
503	Effectiveness of Dyes Removal by Mixed Fungal Cultures and Toxicity of Their Metabolites. Water, Air, and Soil Pollution, 2013, 224, 1534.	2.4	34
504	Identification of a gene responsible for amido black decolorization isolated from Amycolatopsis orientalis. World Journal of Microbiology and Biotechnology, 2013, 29, 625-633.	3.6	6
505	Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies. Environmental Science and Pollution Research, 2013, 20, 7243-7255.	5.3	60
506	Characterization of an efficient catalytic and organic solvent-tolerant azoreductase toward methyl red from Shewanella oneidensis MR-1. Environmental Science and Pollution Research, 2013, 20, 3232-3239.	5.3	24
507	Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads. Environmental Science and Pollution Research, 2013, 20, 2172-2183.	5.3	41
508	Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 2013, 56, 173-182.	10.3	409
509	Cytotoxic effects of Reactive Blue 33 on Allium cepa determined using Taguchi's L8 orthogonal array. Ecotoxicology and Environmental Safety, 2013, 98, 36-40.	6.0	11
510	Photoassisted degradation of <scp>CI</scp> Reactive Red 195 using an Fe(III)â€grafted polytetrafluoroethylene fibre complex as a novel heterogeneous Fenton catalyst over a wide <scp>pH</scp> range. Coloration Technology, 2013, 129, 403-411.	1.5	17
511	Degradation of 1-amino-4-bromoanthraquinone-2-sulfonic acid using combined airlift bioreactor and TiO2-photocatalytic ozonation. Journal of Chemical Technology and Biotechnology, 2013, 88, 970-974.	3.2	9
512	Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal. Bioresource Technology, 2013, 130, 517-521.	9.6	18
513	Seed-mediated synthesis and the photo-degradation activity of ZnO–graphene hybrids excluding the influence of dye adsorption. Applied Surface Science, 2013, 283, 654-659.	6.1	31
514	Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets. Applied Surface Science, 2013, 287, 270-275.	6.1	38

#	Article	IF	CITATIONS
515	Decolorization efficiency and kinetics of typical reactive azo dye RR2 in the homogeneous Fe(II) catalyzed ozonation process. Chemical Engineering Journal, 2013, 233, 14-23.	12.7	53
516	Binding mechanism of Orange G to human serum albumin: Saturation transfer difference-NMR, spectroscopic and computational techniques. Dyes and Pigments, 2013, 98, 212-220.	3.7	34
517	Manganese Peroxidases: Molecular Diversity, Heterologous Expression, and Applications. , 2013, , 67-87.		5
518	Removal of basic yellow cationic dye by an aqueous dispersion of Moroccan stevensite. Applied Clay Science, 2013, 80-81, 46-51.	5.2	25
519	Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity. Journal of Hazardous Materials, 2013, 262, 256-264.	12.4	108
520	Semi-empirical ZINDO/S description of the electronic structure and the spectral features of methyl orange and its products of oxidation. A study of relationship between molecular geometry and spectroscopic properties. Dyes and Pigments, 2013, 99, 839-849.	3.7	12
521	Influence of Operational Parameters in the Heterogeneous Photo-Fenton Discoloration of Wastewaters in the Presence of an Iron-Pillared Clay. Industrial & Engineering Chemistry Research, 2013, 52, 16656-16665.	3.7	57
522	The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters. Materials, 2013, 6, 5131-5158.	2.9	156
523	Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution. Journal of Advanced Research, 2013, 4, 479-484.	9.5	96
524	Photocatalytic degradation of Sudan red (IV) by Fe3O4 nanoparticles. Russian Journal of Applied Chemistry, 2013, 86, 1746-1750.	0.5	4
525	Efficiency of <i>Pleurotus florida</i> Laccase on Decolorization and Detoxification of the Reactive Dye Remazol Brilliant Blue R (RBBR) under Optimized Conditions. Clean - Soil, Air, Water, 2013, 41, 665-672.	1.1	26
526	Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation. Separation and Purification Technology, 2013, 120, 206-214.	7.9	72
527	Bioremoval of C.I. Basic Red 46 as an azo dye from contaminated water by <i>Lemna minor</i> L.: Modeling of key factor by neural network. Environmental Progress and Sustainable Energy, 2013, 32, 1082-1089.	2.3	27
528	Thermally reduced graphene: synthesis, characterization and dye removal applications. RSC Advances, 2013, 3, 24455.	3.6	36
529	Soybean peroxidase-mediated degradation of an azo dye– a detailed mechanistic study. BMC Biochemistry, 2013, 14, 35.	4.4	56
530	Ozonation-Based Decolorization of Food Dyes for Recovery of Fruit Leather Wastes. Journal of Agricultural and Food Chemistry, 2013, 61, 8198-8206.	5.2	12
531	Involvement of ligninolytic enzymes of Myceliophthora vellerea HQ871747 in decolorization and complete mineralization of Reactive Blue 220. Chemical Engineering Journal, 2013, 233, 98-108.	12.7	31
532	Environmental aspects on the photodegradation of reactive triazine dyes in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 252, 131-144.	3.9	33

#	Article	IF	CITATIONS
533	Preparation, decoration and characterization of graphene sheets for methyl green adsorption. Journal of Alloys and Compounds, 2013, 555, 193-200.	5.5	109
534	A polyoxometalate-based ionic crystal assembly from a heterometallic cluster and polyoxoanions with visible-light catalytic activity. RSC Advances, 2013, 3, 20829.	3.6	31
535	Applications of sonoelectrochemistry in wastewater treatment system. Reviews in Chemical Engineering, 2013, 29, .	4.4	24
536	Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Applied Catalysis B: Environmental, 2013, 132-133, 142-150.	20.2	102
537	Potocatalytic oxidative degradation of organic pollutant with molecular oxygen activated by a novel biomimetic catalyst ZnPz(dtn-COOH)4. Applied Catalysis B: Environmental, 2013, 132-133, 90-97.	20.2	28
538	In Silico and in Vitro Physicochemical Screening of Rigidoporus sp. Crude Laccase-assisted Decolorization of Synthetic Dyes—Approaches for a Cost-effective Enzyme-based Remediation Methodology. Applied Biochemistry and Biotechnology, 2013, 169, 911-922.	2.9	17
539	Applications of Nanomaterial-Based Membranes in Pollution Control. Critical Reviews in Environmental Science and Technology, 2013, 43, 2389-2438.	12.8	21
540	Electrochemical Reduction Prior to Electro-Fenton Oxidation of Azo Dyes: Impact of the Pretreatment on Biodegradability. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	20
541	Use of carbonised beet pulp carbon for removal of Remazol Turquoise Blue-G 133 from aqueous solution. Environmental Science and Pollution Research, 2013, 20, 431-442.	5.3	10
542	Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir, 2013, 29, 1657-1668.	3.5	329
543	Photocatalytic degradation of C. I. Reactive Red 24 solution with K6SiW11O39SnII. Journal of Environmental Sciences, 2013, 25, S80-S84.	6.1	2
544	Photocatalytic degradation of commercial dye, CI Reactive Red 35 in aqueous suspension: Degradation pathway and identification of intermediates by LC/MS. Journal of Molecular Catalysis A, 2013, 374-375, 66-72.	4.8	25
545	Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: Toward dye decolorization using a packed-bed metal affinity reactor. Bioresource Technology, 2013, 150, 298-306.	9.6	46
546	Experimental design to optimize the synthesis of CdO cauliflower-like nanostructure and high performance in photodegradation of toxic azo dyes. Materials Research Bulletin, 2013, 48, 935-942.	5.2	47
547	Reactive black-5 azo dye treatment in suspended and attach growth sequencing batch bioreactor using different co-substrates. International Biodeterioration and Biodegradation, 2013, 85, 556-562.	3.9	19
548	Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres. Carbohydrate Polymers, 2013, 91, 74-84.	10.2	109
549	Heterogeneous activation of Oxone by CoxFe3â^'xO4 nanocatalysts for degradation of rhodamine B. Journal of Hazardous Materials, 2013, 244-245, 736-742.	12.4	289
550	Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue. Applied Surface Science, 2013, 279, 400-408.	6.1	118

#	Article	IF	CITATIONS
551	Biological decolorization of malachite green by Deinococcus radiodurans R1. Bioresource Technology, 2013, 144, 275-280.	9.6	38
552	Evaluation of the interactions of DNA with the textile dyes Disperse Orange 1 and Disperse Red 1 and their electrolysis products using an electrochemical biosensor. Sensors and Actuators B: Chemical, 2013, 178, 627-635.	7.8	26
553	Loofa (<i>Luffa cylindrica</i>) sponge: Review of development of the biomatrix as a tool for biotechnological applications. Biotechnology Progress, 2013, 29, 573-600.	2.6	84
554	Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Research, 2013, 47, 4059-4073.	11.3	190
555	Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 2013, 20, 2099-2132.	5.3	541
556	Effects of coexisting anions on decolorization of azo dye X-3B by ferrate(VI) and a comparative study between ferrate(VI) and potassium permanganate. Separation and Purification Technology, 2013, 108, 74-82.	7.9	27
557	Comparison of removal of bromothymol blue from aqueous solution by multiwalled carbon nanotube and Zn(OH)2 nanoparticles loaded on activated carbon: A thermodynamic study. Journal of Industrial and Engineering Chemistry, 2013, 19, 1493-1500.	5.8	26
558	Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Advances in Colloid and Interface Science, 2013, 193-194, 24-34.	14.7	1,023
559	Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Research, 2013, 47, 3375-3388.	11.3	128
560	Improved biosorption potential of Thuja orientalis cone powder for the biosorptive removal of Basic Blue 9. Carbohydrate Polymers, 2013, 94, 400-408.	10.2	24
561	Reactions of hydrophobic organic nanoparticle mixtures in water: nanoparticle-on-nanoparticle oxidative dye bleaching. Green Chemistry, 2013, 15, 1590.	9.0	3
562	Extraction of soluble dyes from aqueous solutions with quaternary ammonium-based ionic liquids. Separation and Purification Technology, 2013, 106, 105-109.	7.9	45
563	Comparison of photocatalytic degradation of dyes in relation to their structure. Environmental Science and Pollution Research, 2013, 20, 3570-3581.	5.3	41
564	Characterization and application of a thin-film composite nanofiltration hollow fiber membrane for dye desalination and concentration. Chemical Engineering Journal, 2013, 223, 172-182.	12.7	131
565	Kinetics of photocatalytic decolorization of paramagenta at buffer solutions using nanotitanium dioxide under aerobic condition. Environmental Progress and Sustainable Energy, 2013, 32, 1061-1065.	2.3	4
566	Kinetics and Equilibrium Studies on the Removal of Victoria Blue Using <i>Prosopis juliflora</i> -Modified Carbon/Zn/Alginate Polymer Composite Beads. Journal of Chemical & Engineering Data, 2013, 58, 517-527.	1.9	38
567	Gemini polymeric nanoarchitecture as a novel adsorbent: Synthesis and dye removal from multicomponent system. Journal of Colloid and Interface Science, 2013, 400, 88-96.	9.4	31
568	Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: Kinetic and equilibrium aspects. Journal of Environmental Management, 2013, 118, 135-143.	7.8	122

#	Article	IF	CITATIONS
569	Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves. Ecotoxicology and Environmental Safety, 2013, 93, 128-134.	6.0	31
570	Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water. Journal of Hazardous Materials, 2013, 244-245, 86-93.	12.4	200
571	Removal of Organic Dyes in Environmental Water onto Magneticâ€Sulfonic Graphene Nanocomposite. Clean - Soil, Air, Water, 2013, 41, 992-1001.	1.1	25
572	Enhanced electrocatalytic oxidation of dyes in aqueous solution using cobalt phthalocyanine modified activated carbon fiber anode. Science China Chemistry, 2013, 56, 1757-1764.	8.2	11
573	Effect of the Operative Variables on the Treatment of Wastewater Polluted with Phthalo Blue by H2O2/UV Process. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	10
574	Synthesis of polypyrroleâ€nodified TiO ₂ composite adsorbent and its adsorption performance on acid Red C. Journal of Applied Polymer Science, 2013, 128, 3231-3239.	2.6	44
575	Preparation, characterisation and solar photoactivity of titania supported strontium ferrite nanocomposite photocatalyst. Journal of Experimental Nanoscience, 2013, 8, 295-310.	2.4	19
576	Bioremediation of Direct Blue 14 and Extracellular Ligninolytic Enzyme Production by White Rot Fungi: <i>Pleurotus</i> Spp BioMed Research International, 2013, 2013, 1-4.	1.9	29
577	Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A Review. Advanced Materials Research, 0, 788, 405-408.	0.3	12
578	Photocatalytic Decolourization of Direct Yellow 9 on Titanium and Zinc Oxides. International Journal of Photoenergy, 2013, 2013, 1-9.	2.5	16
579	Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions. Materials, 2013, 6, 2723-2746.	2.9	47
580	Decolorization of Mordant Red 15 Dye in Water by Potassium Ferrate (VI). Advanced Materials Research, 0, 838-841, 2445-2448.	0.3	2
581	Serendipitous discovery of super adsorbent properties of sonochemically synthesized nano BaWO4. RSC Advances, 2013, 3, 22580.	3.6	28
582	Characterization of a Laccase from White Rot Fungus <i>Cerrena unicolor</i> . Applied Mechanics and Materials, 0, 442, 120-124.	0.2	0
583	Optimization of phenoxazinone synthase production by response surface methodology and its application in Congo red decolourization. Electronic Journal of Biotechnology, 2013, 16, .	2.2	2
584	Synthesis of Magnetic Modified Organobentonite as Adsorbent for Degradation of Orange II. Advanced Materials Research, 2013, 838-841, 2306-2309.	0.3	1
585	Influence of Micro- and Mesoporosity of Resorcinol–Formaldehyde Xerogels on Adsorption. Environmental Engineering Science, 2013, 30, 381-386.	1.6	2
586	Equilibrium and thermodynamic investigation of methylene blue adsorption on thermal- and acid-acitvated clay minerals. Desalination and Water Treatment, 2013, 51, 2881-2888.	1.0	9

#	Article	IF	CITATIONS
587	Kinetic, thermodynamic, and equilibrium studies for adsorption of azo reactive dye onto a novel waste adsorbent: charcoal ash. Desalination and Water Treatment, 2013, 51, 6091-6100.	1.0	34
588	Application of mixed fungal biomass for effective reactive dye removal from textile effluents. Desalination and Water Treatment, 2013, 51, 3597-3603.	1.0	20
589	Dye Degradation by Layerâ€by‣ayer Immobilised Peroxidase/Redox Mediator Systems. ChemCatChem, 2013, 5, 1407-1415.	3.7	19
590	Removal of reactive dye from textile effluent through submerged filtration using hollow fiber composite nanofiltIration membrane. Desalination and Water Treatment, 2013, 51, 6101-6109.	1.0	16
591	Sorption of Synthetic Dyes Onto River Sediments: A Laboratory Study. Nova Biotechnologica Et Chimica, 2013, 12, 12-29.	0.1	6
592	TiO2-assisted Photocatalytic Degradation of Diazo Dye Reactive Red 120: Decolorization Kinetics andMineralization Investigations. Journal of Advanced Oxidation Technologies, 2013, 16, .	0.5	1
594	Fungal Laccases. , 2013, , .		4
595	Adsorbents for IRON removal obtained FROM vermiculite. Acta Geodynamica Et Geomaterialia, 2013, , 353-361.	0.5	7
596	Removal of Methylene Blue from Coloured Effluents by Adsorption onto ZnAPSO-34 Nanoporous Material. Journal of Material Science & Engineering, 2013, 02, .	0.2	0
597	Adsorption of azo dyes on polymer materials. Hemijska Industrija, 2013, 67, 881-900.	0.7	78
598	Decolorization of Dyeing Wastewater Using Polymeric Absorbents - An Overview. , 2013, , .		10
599	Degradation of Methyl Blue Using Fe-Tourmaline as a Novel Photocatalyst. Molecules, 2013, 18, 1457-1463.	3.8	10
600	Design and Synthesis of Metal Complexes of (2 <i>E</i>)-2-[(2 <i>E</i>)-3-Phenylprop-2-en-1-ylidene]hydrazinecarbothioamide and Their Photocatalytic Degradation of Methylene Blue. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	7
602	Textile Dyes: Dyeing Process and Environmental Impact. , 0, , .		172
603	Improving Kinetic or Thermodynamic Stability of an Azoreductase by Directed Evolution. PLoS ONE, 2014, 9, e87209.	2.5	30
604	Fabrication of Electrospun Polyamide-6/Chitosan Nanofibrous Membrane toward Anionic Dyes Removal. Journal of Nanotechnology, 2014, 2014, 1-12.	3.4	42
605	NovelCastellaniella denitrificansSA13P as a Potent Malachite Green Decolorizing Strain. Applied and Environmental Soil Science, 2014, 2014, 1-7.	1.7	2
606	Removal of the synthetic dye Remazol Brilliant Blue R from textile industry wastewaters by biosorption on the macrophyte Salvinia natans. Brazilian Journal of Chemical Engineering, 2014, 31, 1035-1045.	1.3	34

#	Article	IF	CITATIONS
607	Comparison of Alkali-Tolerant Fungus Myrothecium Sp. IMER1 and White-Rot Fungi for Decolorization of Textile Dyes and Dye Effluents. Journal of Bioremediation & Biodegradation, 2014, 05, .	0.5	5
608	Consorcio microbiano nativo con actividad catalÃtica para remoción de Ãndigo y surfactantes en agua residual industrial textil a través de una matriz de inmovilización. Revista Colombiana De BiotecnologÃa, 2014, 16, 177.	0.2	2
609	Eosin Removal Properties of Organo-local Clay from Aqueous Solution. Oriental Journal of Chemistry, 2014, 30, 675-680.	0.3	9
610	Irradiated Water-activated Waste Tyre Powder for Decolourization of Reactive Orange 16. Jurnal Teknologi (Sciences and Engineering), 2014, 68, .	0.4	5
611	Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode. Electrochimica Acta, 2014, 143, 180-187.	5.2	63
612	Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes. Nanoscale Research Letters, 2014, 9, 501.	5.7	26
613	Photodegradation of Reactive Red 141 and Reactive Yellow 105 Dyes Using Prepared TiO ₂ Nanoparticles. Materials Science Forum, 0, 807, 65-79.	0.3	3
614	Nanoscale Zero-Valent Iron Supported on Biochar: Characterization and Reactivity for Degradation of Acid Orange 7 from Aqueous Solution. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	36
615	Decolourization of azo dyes by a newly isolated <i>Klebsiella</i> sp. strain Y3, and effects of various factors on biodegradation. Biotechnology and Biotechnological Equipment, 2014, 28, 478-486.	1.3	65
616	Poly(methyl methacrylate-ethylene glycol dimethacrylate) copolymer for adsorptive removal of erythrosine dye from aqueous solution. Desalination and Water Treatment, 0, , 1-10.	1.0	1
617	Optimization of medium for decolorization of Congo red by <i>Enterobacter</i> sp. SXCR using response surface methodology. Desalination and Water Treatment, 2014, 52, 6166-6174.	1.0	10
618	Adsorptive removal of basic cationic dyes from aqueous solution by chemically protonated watermelon (<i>Citrullus lanatus</i>) rind biomass. Desalination and Water Treatment, 2014, 52, 6175-6184.	1.0	27
619	Equilibrium and kinetic study on the adsorption of basic dye (BY28) onto raw Ca-bentonite. Desalination and Water Treatment, 2014, 52, 7389-7399.	1.0	7
620	Removal of textile dye Reactive Black 5 from aqueous solution by adsorption on laccase-modified silica fume. Desalination and Water Treatment, 2014, 52, 6122-6134.	1.0	30
621	Fabrication of perovskite-type oxide La _{0.5} Ca _{0.5} CoO _{3â^²} <i>_δ</i> nanoparticles and its Dye removal performance. Desalination and Water Treatment, 2014, 52, 7377-7388.	1.0	9
622	Fabrication of Nanoperovskite Type Oxides and Its Efficient Usage on Removal of Trypan Blue Dye. Journal of Chemical Research, 2014, 38, 737-744.	1.3	1
623	Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization. Materials, 2014, 7, 7349-7365.	2.9	36
624	Use of response surface methodology for the bioaccumulation of Violet 90 metal-complex dye by Candida tropicalis. Turkish Journal of Engineering and Environmental Sciences, 2014, 38, 217-230.	0.1	3

#	Article	IF	CITATIONS
625	Study of Modern Nano Enhanced Techniques for Removal of Dyes and Metals. Journal of Nanomaterials, 2014, 2014, 1-20.	2.7	39
626	Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review. BioMed Research International, 2014, 2014, 1-24.	1.9	33
627	Self-cleaning properties of TiO2/palygorskite and TiO2/halloysite nanocomposite coatings. , 2014, , .		0
628	Fixed-bed column studies for the removal of cationic and anionic dyes by chemically modified oil palm empty fruit bunch fibers: single- and multi-solute systems. Desalination and Water Treatment, 0, , 1-8.	1.0	4
629	Palm oil mill effluent sludge ash as adsorbent for methylene blue dye removal. Desalination and Water Treatment, 2014, 52, 3654-3662.	1.0	29
630	Adsorption of the reactive gray BF-2R dye on orange peel: kinetics and equilibrium studies. Desalination and Water Treatment, 2014, 52, 1578-1588.	1.0	10
631	Degradation of Alizarin Yellow R using UV/H ₂ O ₂ advanced oxidation process. Environmental Progress and Sustainable Energy, 2014, 33, 482-489.	2.3	30
632	Degradation of textile dyes under subcritical water conditions in the presence of hydrogen peroxide. Canadian Journal of Chemical Engineering, 2014, 92, 615-622.	1.7	4
633	A novel Fe 3 O 4 @SiO 2 @BiOBr photocatalyst with highly active visible light photocatalytic properties. Materials Chemistry and Physics, 2014, 148, 896-902.	4.0	33
634	Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chinese Journal of Catalysis, 2014, 35, 1781-1792.	14.0	97
635	Performance evaluation of direct nanofiltration process to fouling by treating rinsing-bath effluents for water reuse. Desalination and Water Treatment, 2014, 52, 1770-1785.	1.0	6
636	Adsorption and desorption studies of Congo red using low-cost adsorbent: activated de-oiled mustard. Desalination and Water Treatment, 2014, 52, 7400-7411.	1.0	11
637	Adsorbents Based on Electrospun Nanofibers. Nanostructure Science and Technology, 2014, , 473-495.	0.1	2
638	Characterization of yellow bacterial laccase <scp>SmLac</scp> /role of redox mediators in azo dye decolorization. Journal of Chemical Technology and Biotechnology, 2014, 89, 1741-1750.	3.2	26
639	Electroâ€Fenton decolourization of dyes in batch mode by the use of catalytic activity of iron loaded hydrogels. Journal of Chemical Technology and Biotechnology, 2014, 89, 1235-1242.	3.2	32
640	Use of Chitosan with Different Deacetylation Degrees for the Adsorption of Food Dyes in a Binary System. Clean - Soil, Air, Water, 2014, 42, 767-774.	1.1	21
641	Pyrene nanoparticles as a novel FRET probe for detection of rhodamine 6G: spectroscopic ruler for textile effluent. RSC Advances, 2014, 4, 63866-63874.	3.6	26
642	Effect of the interaction between dye and acetic acid on the decomposition of Basic Green 4 with additive by ozone. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 18-26.	1.7	1
#	Article	IF	CITATIONS
-----	---	------	-----------
643	Fenton Degradation of Methylene Blue by CuFeS ₂ Ultrafine Powders. Key Engineering Materials, 0, 609-610, 449-454.	0.4	5
644	Effective Utilization of Solid WasteÂfrom Leather Industry. , 2014, , 593-613.		7
645	Adsorption of Azo Dye Orange II by Supported TiO ₂ : A Review. Applied Mechanics and Materials, 0, 625, 770-774.	0.2	0
646	Comparative Overview of Different Physical-Chemical Treatments Applied for Real Textile Effluents. Advanced Materials Research, 2014, 1036, 58-64.	0.3	4
647	Removal of methylene blue from colored effluents by adsorption onto ZnAPSO-34 nanoporous material. Desalination and Water Treatment, 2014, 52, 7766-7775.	1.0	12
648	A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes. Applied Surface Science, 2014, 308, 82-90.	6.1	63
649	Synthesis of novel polyoxometalate K6ZrW11O39Sn·12H2O and photocatalytic degradation aqueous azo dye solutions with solar irradiation. Journal of Molecular Catalysis A, 2014, 393, 232-239.	4.8	17
650	Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II. Journal of Hazardous Materials, 2014, 267, 21-30.	12.4	37
651	Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 131, 606-614.	3.9	56
652	Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicology in Vitro, 2014, 28, 31-38.	2.4	34
653	Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Applied Nanoscience (Switzerland), 2014, 4, 199-208.	3.1	56
654	Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. International Journal of Environmental Science and Technology, 2014, 11, 1093-1100.	3.5	129
655	Separation of ternary sodium chloride/Reactive Black-5 aqueous solutions using two different modules in a nanofiltration pilot plant. International Journal of Environmental Science and Technology, 2014, 11, 1237-1248.	3.5	5
656	Synthesis of urethane sodium carboxylate and its dye removal ability from single system. Journal of Industrial and Engineering Chemistry, 2014, 20, 1558-1565.	5.8	2
657	Evaluation of peanut husk as a novel, low cost biosorbent for the removal of Indosol Orange RSN dye from aqueous solutions: batch and fixed bed studies. Clean Technologies and Environmental Policy, 2014, 16, 527-544.	4.1	69
658	Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants. World Journal of Microbiology and Biotechnology, 2014, 30, 1725-1736.	3.6	17
659	Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa. 3 Biotech, 2014, 4, 605-619.	2.2	30
660	Application of electro-Fenton process as alternative for degradation of Novacron Blue dye. Journal of Environmental Chemical Engineering, 2014, 2, 875-880.	6.7	36

# 661	ARTICLE Integrated UV photodegradation and anaerobic digestion of textile dye for efficient biogas production using zeolite. Chemical Engineering Journal, 2014, 245, 241-247.	IF 12.7	Citations 31
662	Adsorption/desorption of a dye by a chitosan derivative: Experiments and phenomenological modeling. Chemical Engineering Journal, 2014, 248, 327-336.	12.7	75
663	Pararosaniline and crystal violet tagged montmorillonite for latent fingerprint investigation. Applied Clay Science, 2014, 87, 235-244.	5.2	15
664	Azo and anthraquinone dye mixture decolourization at elevated temperature and concentration by a newly isolated thermophilic fungus, Thermomucor indicae-seudaticae. Journal of Environmental Chemical Engineering, 2014, 2, 415-423.	6.7	40
665	Evaluation of in vitro efficacy for decolorization and degradation of commercial azo dye RB-B by Morganella sp. HK-1 isolated from dye contaminated industrial landfill. Chemosphere, 2014, 105, 126-132.	8.2	40
666	Microbial Degradation and Detoxification of Synthetic Dye Mixture by Pseudomonas sp. SUK 1. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 1059-1068.	1.0	6
667	Decolourisation of Different Dyes by two Pseudomonas Strains Under Various Growth Conditions. Water, Air, and Soil Pollution, 2014, 225, 1846.	2.4	27
668	Thermokinetic Comparison of Trypan Blue Decolorization by Free Laccase and Fungal Biomass. Applied Biochemistry and Biotechnology, 2014, 172, 2932-2944.	2.9	8
669	Free amino and imino-bridged centres attached to organic chains bonded to structurally ordered silica for dye removal from aqueous solution. Journal of Environmental Management, 2014, 133, 135-143.	7.8	24
670	Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 609-616.	5.3	53
671	One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination. Journal of Membrane Science, 2014, 452, 143-151.	8.2	81
672	Enhanced wet hydrogen peroxide catalytic oxidation performances based on CuS nanocrystals/reduced graphene oxide composites. Applied Surface Science, 2014, 288, 633-640.	6.1	64
673	Hybrid central composite design approach for simultaneous optimization of removal of alizarin red S and indigo carmine dyes using cetyltrimethylammonium bromide-modified TiO2 nanoparticles. Journal of Environmental Chemical Engineering, 2014, 2, 988-1000.	6.7	61
674	Rapid removal of cationic dyes from water by coprecipitation with aluminum hydroxide and sodium dodecyl sulfate. Journal of Environmental Chemical Engineering, 2014, 2, 752-758.	6.7	31
675	Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochimica Acta, 2014, 130, 568-576.	5.2	96
676	TiO2 hollow microspheres with mesoporous surface: Superior adsorption performance for dye removal. Applied Surface Science, 2014, 305, 352-358.	6.1	71
677	Influence of multi-walled carbon nanotubes on textural and adsorption characteristics of in situ synthesized mesostructured silica. Journal of Colloid and Interface Science, 2014, 421, 93-102.	9.4	42
678	Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 2014, 209, 172-184.	14.7	3,052

#	Article	IF	CITATIONS
679	Development of microbial consortium CN-1 for the degradation of Mordant Black 17. Journal of Environmental Chemical Engineering, 2014, 2, 832-840.	6.7	15
681	Biodegradation of malachite green by Ochrobactrum sp World Journal of Microbiology and Biotechnology, 2014, 30, 429-437.	3.6	15
682	Effective removal of dyes from aqueous solution using ultrafine silk fibroin powder. Advanced Powder Technology, 2014, 25, 574-581.	4.1	67
683	BiFeO3/α-Fe2O3 core/shell composite particles for fast and selective removal of methyl orange dye in water. Journal of Colloid and Interface Science, 2014, 428, 95-100.	9.4	48
684	Novel amphiphilic polymeric ionic liquid-solid phase micro-extraction membrane for the preconcentration of aniline as degradation product of azo dye Orange G under sonication by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2014, 1349, 24-29.	3.7	29
685	Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceramics International, 2014, 40, 10217-10221.	4.8	131
686	Phragmites sp. physiological changes in a constructed wetland treating an effluent contaminated with a diazo dye (DR81). Environmental Science and Pollution Research, 2014, 21, 9626-9643.	5.3	15
687	The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3â^' system. Applied Catalysis A: General, 2014, 469, 198-205.	4.3	78
688	Adsorption removal of organic dyes on covalent triazine framework (CTF). Microporous and Mesoporous Materials, 2014, 187, 63-70.	4.4	111
689	Preparation of graphite oxide/polyurethane foam material and its removal application of malachite green from aqueous solution. Journal of Applied Polymer Science, 2014, 131, .	2.6	31
690	Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochemical Engineering Journal, 2014, 82, 1-9.	3.6	78
691	Water recycle as a must: decolorization of textile wastewaters by plantâ€associated fungi. Journal of Basic Microbiology, 2014, 54, 120-132.	3.3	13
692	Removal of cationic and anionic azo dyes from aqueous solutions by adsorption on maize stem tissue. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1700-1708.	5.3	85
693	Co0.6Zn0.4Cu0.2CdxFe1.8â^'xO4 (0.2⩽x⩽0.8) magnetic ferrite nano-particle: Synthesis, characterization photo-catalytic degradation of methyl orange. Journal of Molecular Structure, 2014, 1059, 150-158.	and 3.6	18
694	Dye removal using iron–polyphenol complex nanoparticles synthesized by plant leaves. Environmental Technology and Innovation, 2014, 1-2, 29-34.	6.1	17
695	Sorbent concentration effect on adsorption of methyl orange on chitosan beads in aqueous solutions. Chemical Research in Chinese Universities, 2014, 30, 837-843.	2.6	6
696	Removal of Methyl Violet Dye from Aqueous Solution by <i>sf Platanus Carpinifolia</i> Tree Leaves as Highly Efficient Sorbent: Multivariate Optimization, Isotherm Modeling, and Kinetic Studies. Separation Science and Technology, 2014, 49, 752-762.	2.5	6
697	Determination of direct violet 51 dye in water based on its decolorisation by electrochemical treatment. Chemical Papers, 2014, 68, .	2.2	5

#	Article	IF	CITATIONS
698	Enhanced decolorization of Orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine. Chemical Engineering Journal, 2014, 256, 316-323.	12.7	93
699	Photocatalytic applications with CdS • block copolymer/exfoliated graphene nanoensembles: hydrogen generation and degradation of Rhodamine B. Nanotechnology, 2014, 25, 445404.	2.6	4
700	Optimized photocatalytic degradation of Reactive Blue 2 by TiO ₂ /UV process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 452-462.	1.7	12
701	A study on the decolorization of methylene blue by Spirodela polyrrhiza: experimentation and modeling. RSC Advances, 2014, 4, 30137.	3.6	10
702	Nanostructured Mn ₃ O ₄ –reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of Orange II and high lithium storage capacity. RSC Advances, 2014, 4, 41838-41847.	3.6	40
703	Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: Direct and Indirect oxidation. Electrochimica Acta, 2014, 140, 419-426.	5.2	85
704	Sorption of dyes and Cu(<scp>ii</scp>) ions from wastewater by sonochemically synthesized MnWO ₄ and MnMoO ₄ nanostructures. RSC Advances, 2014, 4, 37027-37035.	3.6	25
705	Influence of Surfactants on Dye Removal and Growth of <i>Aspergillus versicolor</i> – an Effective Way to Decolorize Textile Dye. Clean - Soil, Air, Water, 2014, 42, 917-922.	1.1	10
706	Removal of Tartrazine Dye onto Mixedâ€Waste Activated Carbon: Kinetic and Thermodynamic Studies. Clean - Soil, Air, Water, 2014, 42, 1824-1831.	1.1	28
707	Magnetic composite an environmental super adsorbent for dye sequestration – A review. Environmental Nanotechnology, Monitoring and Management, 2014, 1-2, 36-49.	2.9	127
708	Study of bio-degradation and bio-decolourization of azo dye by <i>Enterobacter</i> sp. SXCR. Environmental Technology (United Kingdom), 2014, 35, 956-965.	2.2	54
709	Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resources and Industry, 2014, 6, 64-80.	3.9	109
710	Achieving Enhanced Visible-Light-Driven Photocatalysis Using Type-II NaNbO ₃ /CdS Core/Shell Heterostructures. ACS Applied Materials & Interfaces, 2014, 6, 13221-13233.	8.0	142
711	Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon, 2014, 78, 38-48.	10.3	132
712	Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chemical Engineering Journal, 2014, 257, 66-73.	12.7	84
713	Synthesis and characterization of a starch–AlOOH–FeS ₂ nanocomposite for the adsorption of congo red dye from aqueous solution. RSC Advances, 2014, 4, 38334-38340.	3.6	74
714	Reactive Red 120 dye removal from aqueous solution by adsorption on nano-alumina. Journal of Water Chemistry and Technology, 2014, 36, 125-133.	0.6	48
715	Photocatalytic application of nanosized CdS immobilized onto functionalized MWCNTs. Dalton Transactions, 2014, 43, 7429.	3.3	19

#	Article	IF	CITATIONS
716	Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide. Journal of Physical Chemistry C, 2014, 118, 17801-17809.	3.1	77
717	Optimizing the preparation of carbonaceous adsorbents for the selective removal of textile dyes by using Taguchi methodology. Journal of Analytical and Applied Pyrolysis, 2014, 109, 9-20.	5.5	24
718	Ag doped and Ag dispersed nano ZnTiO3: Improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity. Journal of Environmental Chemical Engineering, 2014, 2, 2177-2187.	6.7	52
719	Graphene nanosheets as efficient adsorbent for an azo dye removal: kinetic and thermodynamic studies. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	32
720	Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	41
721	Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 2014, 469, 306-315.	8.2	407
722	Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation of dyes in water. Journal of Membrane Science, 2014, 453, 221-229.	8.2	52
723	Fabrication of chitosan/PAA multilayer onto magnetic microspheres by LbL method for removal of dyes. Chemical Engineering Journal, 2014, 249, 79-92.	12.7	59
724	CdO/ZnO nanohybrids: facile synthesis and morphologically enhanced photocatalytic performance. RSC Advances, 2014, 4, 32977.	3.6	71
725	Effect of Enhancers and Inhibitors on Photocatalytic Sunlight Treatment of Methylene Blue. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	65
726	Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environmental Science and Pollution Research, 2014, 21, 9777-9784.	5.3	44
727	Uptake of Indosol Dark-blue GL dye from aqueous solution by water hyacinth roots powder: adsorption and desorption study. International Journal of Environmental Science and Technology, 2014, 11, 1027-1034.	3.5	11
728	Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination, 2014, 343, 106-112.	8.2	88
729	Quantitative structure–affinity relationship study of azo dyes for cellulose fibers by multiple linear regression and artificial neural network. Chemometrics and Intelligent Laboratory Systems, 2014, 134, 1-9.	3.5	14
730	Photoassisted electrochemical degradation of an azo dye using Ti/RuO2 anode and carbon nanotubes containing gas-diffusion cathode. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 930-936.	5.3	53
731	Pathways of reductive degradation of crystal violet in wastewater using free-strain Burkholderia vietnamiensis C09V. Environmental Science and Pollution Research, 2014, 21, 10339-10348.	5.3	19
732	Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw. Chinese Journal of Chemical Engineering, 2014, 22, 208-213.	3.5	16
733	Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon. Applied Surface Science, 2014, 294, 71-80.	6.1	60

#	Article	IF	CITATIONS
734	The Use of Ni/Sb–SnO2-based Membrane Electrode Assembly for Electrochemical Generation of Ozone and the Decolourisation of Reactive Blue 50 Dye Solutions. Electrochimica Acta, 2014, 135, 11-18.	5.2	27
735	Degradation of reactive dyes wastewater supplemented with cationic polymer (Organo Pol.) in a down flow hanging sponge (DHS) system. Journal of Industrial and Engineering Chemistry, 2014, 20, 2059-2065.	5.8	27
736	Abatement of Acid Orange 7 in macro and micro reactors. Effect of the electrocatalytic route. Applied Catalysis B: Environmental, 2014, 148-149, 473-483.	20.2	44
737	Degradation of Malachite Green by <i>Enterobacter asburiae</i> Strain XJUHXâ€4TM. Clean - Soil, Air, Water, 2014, 42, 849-856.	1.1	22
738	Mineralization and Kinetics of Reactive Brilliant Red X-3B by a Combined Anaerobic–Aerobic Bioprocess Inoculated with the Coculture of Fungus and Bacterium. Applied Biochemistry and Biotechnology, 2014, 172, 1106-1120.	2.9	8
739	Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. International Journal of Biological Macromolecules, 2014, 69, 447-455.	7.5	197
740	Dyeing properties and color fastness of cellulase-treated flax fabric with extractives from chestnut shell. Journal of Cleaner Production, 2014, 80, 197-203.	9.3	36
741	Preparation and characterization of novel Ln (Gd3+, Ho3+ and Yb3+)-doped Bi2MoO6 with Aurivillius layered structures and photocatalytic activities under visible light irradiation. Journal of Molecular Catalysis A, 2014, 392, 290-298.	4.8	67
742	Adsorption of crystal violet on montmorillonite (or iron modified montmorillonite) followed by degradation through Fenton or photo-Fenton type reactions. Journal of Environmental Chemical Engineering, 2014, 2, 2344-2351.	6.7	59
743	Response surface methodology for textile wastewater decolourization and biodegradation by a novel mixed bacterial consortium developed via mixture design. Desalination and Water Treatment, 2014, 52, 1539-1549.	1.0	7
744	A comparison of electrolysis and Fenton reaction pretreatment methods for dye wastewater. Desalination and Water Treatment, 2014, 52, 4547-4552.	1.0	4
745	Titanium Dioxide Supported in Mesoporous Material (SBA-15) to Remove the Textile Dye Reactive Blue 69 in Aqueous Solution. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	1
746	Supported Liquid Membrane Extraction of Reactive Dye Using Fabricated Polypropylene Membrane. Journal of Chemical Engineering of Japan, 2014, 47, 761-769.	0.6	5
747	Study of bimacid dye removal from aqueous solution: a comparative study between adsorption on pozzolana, bentonite, and biosorption on immobilized anaerobic sulfate-reducer cells. Desalination and Water Treatment, 2014, 52, 7723-7732.	1.0	7
748	Dyeing process optimization in natural fiber through the Photoacoustic Spectroscopy. Multidiscipline Modeling in Materials and Structures, 2015, 11, 273-283.	1.3	1
749	Structure, Properties and Application of Dendritic Macromolecules in Various Fields: Molecular Simulation Techniques in Hyperbranched Polymer and Dendrimers. , 2015, , 259-278.		0
750	Functionalization and Compatiblization of Halloysite Nanotubes. , 2015, , 309-332.		3
751	Application of waste materials as 'low cost' sorbents for industrial effluent treatment: a comparative overview. International Journal of Materials and Product Technology, 2015, 50, 196.	0.2	14

#	Article	IF	CITATIONS
752	Facile Synthesis of Thermally Stable Mesoporous Titania Spheres with Excellent Photocatalytic Activity. Chemistry Letters, 2015, 44, 61-63.	1.3	1
753	Isotherm study of reactive Blue 19 adsorption by an alum sludge. AIP Conference Proceedings, 2015, , .	0.4	0
754	Cresol Red Dye Removal Using Recycled Waste Tire Rubber. International Journal of Engineering Research in Africa, 2015, 16, 57-63.	0.7	4
755	Photocatalytic Activity of ZnO Nanosheets, Prepared Using N-(1-Butyl)Hexamethylenetetramine as Template, in the Degradation of Indigo Carmine. Theoretical and Experimental Chemistry, 2015, 51, 314-319.	0.8	1
756	Invention of Hollow Zirconium Tungesto-Vanadate at Nanotube Morphological Structure for Radionuclides and Heavy Metal Pollutants Decontamination from Aqueous Solutions. Nanoscale Research Letters, 2015, 10, 474.	5.7	34
757	Synthesis and characterization of super dye adsorbent hydrogels based on acrylic acid and acryloyl tetrasodium thiacalix[4]arene tetrasulfonate. Polymer International, 2015, 64, 1482-1490.	3.1	5
758	Biosorption of aniline blue from aqueous solution using a novel biosorbent Zizyphus oenoplia seeds: Modeling studies. Polish Journal of Chemical Technology, 2015, 17, 70-77.	0.5	4
759	Biodegradation of malachite green by a novel copper-tolerant Ochrobactrum pseudogrignonense strain GGUPV1 isolated from copper mine waste water. Bioresources and Bioprocessing, 2015, 2, .	4.2	27
760	Removal of methylene blue and neutral red from aqueous solutions by surfactantâ€modified magnetic nanoparticles as highly efficient adsorbent. Environmental Progress and Sustainable Energy, 2015, 34, 1683-1693.	2.3	9
761	Microbial diversity in tanning wastewaters treatment reactors. Environmental Progress and Sustainable Energy, 2015, 34, 401-410.	2.3	8
762	Decolorization of reactive blue 171 dye using ozonation and UV/H ₂ O ₂ and elucidation of the degradation mechanism. Environmental Progress and Sustainable Energy, 2015, 34, 1652-1661.	2.3	17
764	Biodegradation of Azo Dye Disperse Orange Sâ€RL by a Newly Isolated Strain <i>Acinetobacter</i> sp. SRL8. Water Environment Research, 2015, 87, 516-523.	2.7	13
765	Green Synthesis of ZnO Nanoparticles and Its Application in the Degradation of Some Dyes. Journal of the American Ceramic Society, 2015, 98, 1739-1746.	3.8	169
766	Modified Zeolite with Transition Metals Cu and Fe for Removal of Methylene Blue from Aqueous Medium: Mass Spectrometry Study. Bulletin of Chemical Reaction Engineering and Catalysis, 2015, 10, .	1.1	10
767	Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates. Beilstein Journal of Nanotechnology, 2015, 6, 2423-2430.	2.8	11
768	Removal of Reactive Red 24 Dye by Clean Electrocoagulation Process Using Iron and Aluminum Electrodes. Journal of Chemical Engineering & Process Technology, 2015, 07, .	0.1	13
769	Reversed Micellar Extraction of Methylene Blue by using Di(2-ethylhexyl) Phosphoric Acid. Solvent Extraction Research and Development, 2015, 22, 169-176.	0.4	1
770	Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. African Journal of Biotechnology, 2015, 14, 52-67.	0.6	40

	CITATION	Report	
#	Article	IF	Citations
771	NaOH TREATED SPENT BLEACHING EARTH. Jurnal Teknologi (Sciences and Engineering), 2015, 75, .	0.4	1
772	Computational Analysis and Low-Scale Constitutive Expression of Laccases Synthetic Genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS ONE, 2015, 10, e0116524.	2.5	36
773	Laccase-Catalyzed Decolorization of Malachite Green: Performance Optimization and Degradation Mechanism. PLoS ONE, 2015, 10, e0127714.	2.5	68
774	Efficacy of fungal decolorization of a mixture of dyes belonging to different classes. Brazilian Journal of Microbiology, 2015, 46, 415-424.	2.0	41
775	Enhancing the Decolorizing and Degradation Ability of Bacterial Consortium Isolated from Textile Effluent Affected Area and Its Application on Seed Germination. Scientific World Journal, The, 2015, 2015, 1-9.	2.1	35
776	Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites. Advances in Materials Science and Engineering, 2015, 2015, 1-22.	1.8	102
777	Nanosized Spinel Ferrites Synthesized by Sol-Gel Autocombustion for Optimized Removal of Azo Dye from Aqueous Solution. Journal of Nanomaterials, 2015, 2015, 1-13.	2.7	45
778	Basic Violet Decolourization Using Alginate Immobilized Nanozirconium Tungestovanadate Matrix as Cation Exchanger. Journal of Chemistry, 2015, 2015, 1-10.	1.9	17
780	REMOVAL OF CRESOL RED AND REACTIVE BLACK 5 DYES BY USING SPENT TEA LEAVES AND SUGARCANE BAGGASE POWDER. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	1
782	Eco- and Genotoxicological Assessments of Two Reactive Textile Dyes. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 287-300.	2.3	44
783	Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. Journal of Water Process Engineering, 2015, 6, 11-20.	5.6	121
784	Characterization of the enhancement of zero valent iron on microbial azo reduction. BMC Microbiology, 2015, 15, 85.	3.3	19
785	Mycoremediation of Synthetic Dyes: An Insight into the Mechanism, Process Optimization and Reactor Design. Environmental Science and Engineering, 2015, , 1-25.	0.2	11
786	Zero valent Ag deposited TiO2 for the efficient photocatalysis of methylene blue under UV-C light irradiation. Colloids and Interface Science Communications, 2015, 5, 1-4.	4.1	68
787	Polymers and Dyes: Developments and Applications. Polymers, 2015, 7, 717-746.	4.5	128
788	Bacterial Enzymes and Multi-enzymatic Systems for Cleaning-up Dyes from the Environment. Environmental Science and Engineering, 2015, , 27-55.	0.2	16
789	Iron nanoparticles decoration onto three-dimensional graphene for rapid and efficient degradation of azo dye. Journal of Hazardous Materials, 2015, 299, 50-58.	12.4	50
790	Adsorption of Rhodamine B dye by biomimetic mesoporous SiO2 nanosheets. Clean Technologies and Environmental Policy, 2015, 17, 2289-2298.	4.1	19

ARTICLE IF CITATIONS EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from 791 5.3 31 Bjerkandera adusta. Environmental Science and Pollution Research, 2015, 22, 8683-8692. Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA 792 11.3 and solar photoelectro-Fenton. Water Research, 2015, 81, 178-187. Enhanced photocatalytic activity of Eu-doped Bi₂S₃ nanoflowers for degradation of organic pollutants under visible light illumination. Catalysis Science and Technology, 793 4.1 52 2015, 5, 4055-4063. Fast dye removal from water by starch-based nanocomposites. Journal of Colloid and Interface 794 9.4 Science, 2015, 454, 200-209. A comparative study on the basis of adsorption capacity between CNTs and activated carbon as 795 adsorbents for removal of noxious synthetic dyes: a review. Journal of Nanostructure in Chemistry, 9.1 177 2015, 5, 227-236. Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: Application to decolorization of acid dye. Journal of Water Process Engineering, 2015, 8, 171-178. 796 5.6 Integration of Nanofiltration Hollow Fiber Membranes with Coagulation–Flocculation to Treat Colored Wastewater from a Dyestuff Manufacturer: A Pilot-Scale Study. Industrial & amp; Engineering 797 3.7 49 Chemistry Research, 2015, 54, 11159-11166. Synthesis and use of SBA-15 adsorbent for dye-loaded wastewater treatment. Journal of 798 6.7 Environmental Chemical Engineering, 2015, 3, 2866-2874. Preparation of PAN/PAMAM blend nanofiber mats as efficient adsorbent for dye removal. Fibers and 799 2.1 21 Polymers, 2015, 16, 1917-1924. Effect of pre-treatment on dye degradation in aerobic reactor. Desalination and Water Treatment, 1.0 2015, 56, 1547-1557. Synthesis and characterization of water-soluble phthalocyanine Copper(II) complex and its 801 3 2.1 coloration on acrylic fibers. Fibers and Polymers, 2015, 16, 2552-2557. Hybrid central composite design optimization for removal of Methylene blue by<i>Acer</i>tree leaves: 1.0 characterization of adsorption. Desalination and Water Treatment, 2015, 54, 2601-2610. Evaluation of Red Marine AlgaKappaphycus alvareziias Biosorbent for Methylene Blue: Isotherm, 803 2.5 15 Kinetic, and Mechanism Studies. Separation Science and Technology, 2015, 50, 1120-1126. Discoloration of denim garment with color free effluent using montmorillonite based nano clay and enzymes: nano bio-treatment on denim garment. Journal of Cleaner Production, 2015, 91, 208-215. 804 34 Synthesis of efficient activated carbon from <i>Peltophorum pterocarpum </i> for the adsorption of Safranin O and its investigation on equilibrium, kinetic, and thermodynamic studies. Desalination and 805 8 1.0 Water Treatment, 2015, 55, 1048-1059. Self-Driven Bioelectrochemical Mineralization of Azobenzene by Coupling Cathodic Reduction with Anodic Intermediate Oxidation. Electrochimica Acta, 2015, 154, 294-299. New sludge-based carbonaceous materials impregnated with different metals for anaerobic azo-dye 807 6.7 5 reduction. Journal of Environmental Chemical Engineering, 2015, 3, 104-112. Highly Efficient Photodegradation of Organic Pollutants Assisted by Sonoluminescence. 808 Photochemistry and Photobiology, 2015, 91, 59-67.

ARTICLE IF CITATIONS Facile Synthesis of Hierarchical Magnesium Silicate Hollow Nanofibers Assembled by Nanosheets as an 809 2.8 19 Efficient Adsorbent. ChemPlusChem, 2015, 80, 544-548. Electronic, optical properties, surface energies and work functions of Ag ₈ SnS 1.4 ₆ : First-principles method. Chinese Physics B, 2015, 24, 017501. One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater. Colloids and Súrfaces A: 811 4.7 119 Physicochemical and Engineering Aspects, 2015, 470, 248-257. Optimizing decolorization of Acid Fuchsin and Acid Orange II solution by MnO2 loaded MCM-41. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 205-214. Ultraviolet-activated persulfate oxidation of methyl orange: a comparison between artificial neural networks and factorial design for process modelling. Photochemical and Photobiological Sciences, 813 2.9 29 2015, 14, 528-535. Vanadium pentoxide 1-D nanostructures applied to dye removal from aqueous systems by coupling adsorption and visible-light photodegradation. RSC Advances, 2015, 5, 12000-12006. 814 3.6 Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water. Scientific 815 3.3 91 Reports, 2014, 4, 4453. Synthesis of buoyant metal-coated fly ash cenosphere and its excellent catalytic performance in dye 9.4 degradation. Journal of Colloid and Interface Science, 2015, 444, 10-16. Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process 817 12.4 60 following pure-oxygen activated sludge treatment. Journal of Hazardous Materials, 2015, 287, 421-428. Supercritical Water Oxidation vs Supercritical Water Gasification: Which Process Is Better for 54 Explosive Wastewater Treatment?. Industrial & amp; Engineering Chemistry Research, 2015, 54, 1251-1260. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts. Applied 819 21 6.1 Surface Science, 2015, 352, 42-48. Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Advances, 2015, 5, 820 3.6 650 18438-18450. Effect of morphology on the photocatalytic activity of g-C3N4 photocatalysts under visible-light 821 4.0 55 irradiation. Materials Science in Semiconductor Processing, 2015, 32, 76-81. Preparation and characterization of sulfonated graphene-enhanced poly (vinyl alcohol) composite hydrogel and its application as dye absorbent. Polymer, 2015, 60, 96-106. 3.8 64 Over-activity and stability of laccase using ionic liquids: screening and application in dye 823 40 3.6 decolorization. RSC Advances, 2015, 5, 16173-16189. TiO2â€"graphene sponge for the removal of tetracycline. Journal of Nanoparticle Research, 2015, 17, 1. 824 1.9 33 Polyoxometalates-based heterometallic organic–inorganic hybrid materials for rapid adsorption and 825 selective separation of methylene blue from aqueous solutions. Chemical Communications, 2015, 51, 4.1 158 3336-3339. Biodegradation of C.I. Acid Blue 92 byNasturtium officinale: Study of Some Physiological Responses 3.1 and Metabolic Fate of Dye. International Journal of Phytoremediation, 2015, 17, 322-329.

# 827	ARTICLE Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes. Journal of Hazardous Materials, 2015, 290, 34-42.	IF 12.4	CITATIONS 80
828	Bacterial–yeast consortium as an effective biocatalyst for biodegradation of sulphonated azo dye Reactive Red 198. RSC Advances, 2015, 5, 23046-23056.	3.6	57
829	Rhodamine B removal with activated carbons obtained from lignocellulosic waste. Journal of Environmental Management, 2015, 155, 67-76.	7.8	147
830	Biodegradation of Navy N5RL1 carpet dye by Staphylococcus saprophyticus strain BHUSS X3. 3 Biotech, 2015, 5, 775-782.	2.2	8
831	Effect of dye chemical structure on the efficiency of photoassisted electrochemical degradation using a cathode containing carbon nanotubes and a Ti/RuO2 anode. Research on Chemical Intermediates, 2015, 41, 6073-6085.	2.7	5
832	Facile immobilization of polyaspartate onto silica gels via poly(dopamine) for the removal of methylene blue from aqueous solution. Applied Surface Science, 2015, 351, 831-839.	6.1	19
833	Interactions of the dye, C.I. direct orange 34 with natural clay. Journal of Alloys and Compounds, 2015, 647, 720-727.	5.5	42
834	Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	22
835	Evaluation of the efficiency of isolated bacterial consortium PMB11 in removal of colour, degradation and reduction of toxicity from textile dye effluent. Biologia (Poland), 2015, 70, 11-18.	1.5	1
836	Role of anode material on the electrochemical oxidation of methyl orange. Journal of Solid State Electrochemistry, 2015, 19, 3177-3183.	2.5	42
837	Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Industrial Crops and Products, 2015, 74, 903-911.	5.2	61
838	Equilibrium, kinetics and process design of acid yellow 132 adsorption onto red pine sawdust. Water Science and Technology, 2015, 71, 1901-1911.	2.5	9
839	Efficient sorption and photocatalytic degradation of malachite green dye onto NiS nanoparticles prepared using novel green approach. Korean Journal of Chemical Engineering, 2015, 32, 1986-1992.	2.7	12
840	Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Separation and Purification Technology, 2015, 150, 243-251.	7.9	80
841	Malachite green decolorization by the filamentous fungus Myrothecium roridum – Mechanistic study and process optimization. Bioresource Technology, 2015, 194, 43-48.	9.6	47
842	Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel's cement nanoparticles. Journal of Environmental Chemical Engineering, 2015, 3, 1702-1712.	6.7	66
843	Biodegradation of acid orange 7 in an anaerobic–aerobic sequential treatment system. Chemical Engineering and Processing: Process Intensification, 2015, 94, 99-104.	3.6	24
844	Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 8235-8245.	3.6	21

\sim		<u> </u>	
			ЪΤ
\sim	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
845	Magnetic graphene sponge for the removal of methylene blue. Applied Surface Science, 2015, 351, 765-771.	6.1	80
846	Adsorption of Basic violet 16 from aqueous solutions by waste sugar beet pulp: kinetic, thermodynamic, and equilibrium isotherm studies. Chemical Speciation and Bioavailability, 2015, 27, 8-14.	2.0	14
847	A thin film sorbent of layered organo-MnO2 for the extraction of p-aminoazobenzene from aqueous solution. Journal of Materials Chemistry A, 2015, 3, 6470-6476.	10.3	7
848	Dye–collagen interactions. Mechanism, kinetic and thermodynamic analysis. RSC Advances, 2015, 5, 57395-57405.	3.6	13
849	Biological Treatment of Textile Dyes by Agarâ€Agar Immobilized Consortium in a Packed Bed Reactor. Water Environment Research, 2015, 87, 242-251.	2.7	27
850	Biochemical Synthesis of Ag/AgCl Nanoparticles for Visible-Light-Driven Photocatalytic Removal of Colored Dyes. Materials, 2015, 8, 2043-2053.	2.9	58
851	Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded activated carbon: Optimized experimental design. Materials Science and Engineering C, 2015, 52, 82-89.	7.3	34
852	Enhanced visible-light-driven photocatalytic performances using Bi2WO6/MS (M = Cd, Zn) heterostructures: facile synthesis and photocatalytic mechanisms. RSC Advances, 2015, 5, 41949-41960.	3.6	31
853	A negatively charged loose nanofiltration membrane by blending with poly (sodium 4-styrene) Tj ETQq0 0 0 rgBT / 146, 50-59.	Overlock 7.9	10 Tf 50 427 102
854	Adsorption characteristics of anionic azo dye onto large α-alumina beads. Colloid and Polymer Science, 2015, 293, 1877-1886.	2.1	51
855	Mn3+ ion in perovskite lattice: a potential Fenton's reagent exhibiting remarkably enhanced degradation of cationic and anionic dyes. Journal of Sol-Gel Science and Technology, 2015, 75, 124-133.	2.4	26
856	Dye Decolourisation Using Two Klebsiella Strains. Water, Air, and Soil Pollution, 2015, 226, 2249.	2.4	28
857	Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	10
858	Adsorption of direct fast scarlet 4BS dye from aqueous solution onto natural superfine down particle. Fibers and Polymers, 2015, 16, 73-78.	2.1	10
859	Synthesis and photocatalytic property of multilayered Co 3 O 4. Applied Surface Science, 2015, 355, 547-552.	6.1	19
860	Visible light transformation of Rhodamine 6G using tetracarbazole zinc phthalocyanine when embedded in electrospun fibers and in the presence of ZnO and Ag particles. Journal of Coordination Chemistry, 2015, 68, 1117-1131.	2.2	18
861	Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange. Ecotoxicology and Environmental Safety, 2015, 121, 73-79.	6.0	32

	Сітл	ation Report	
#	Article	IF	CITATIONS
863	Removal and Recovery of Acid Azo Dyes by Solvent Extraction using Cetyltrimethylammonium Chloride. Separation Science and Technology, 2015, 50, 1369-1376.	2.5	6
864	Synthesis of a Gum rosin alcohol-poly(acrylamide) based adsorbent and its application in removal of malachite green dye from waste water. RSC Advances, 2015, 5, 43092-43104.	3.6	73
865	Genotoxicity Assessment of Reactive and Disperse Textile Dyes Using Human Dermal Equivalent (3D Ce 466-480.	ell) Tj ETQq0 0 0 rgB ⁻ 2.3	[/Overlock] 20
866	Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons. Journal of Colloid and Interface Science, 2015, 450, 91-100.	9.4	79
867	Dyeing of Wool and Cotton with Extract of the Nettle (<i>Urtica dioica</i> L.) Leaves. Journal of Natural Fibers, 2015, 12, 222-231.	3.1	20
868	Improvement of Methylene Blue removal by electrocoagulation/banana peel adsorption coupling in a batch system. AEJ - Alexandria Engineering Journal, 2015, 54, 777-786.	6.4	71
869	Fabrication of a Mixed Matrix Membrane with in Situ Synthesized Quaternized Polyethylenimine Nanoparticles for Dye Purification and Reuse. ACS Sustainable Chemistry and Engineering, 2015, 3, 690-701.	6.7	94
870	Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. Journal of Hazardous Materials, 2015, 292, 90-97.	12.4	139
871	BiOClxBrylz (x+y+z=1) solid solutions with controllable band gap and highly enhanced visible light photocatalytic performances. Journal of Alloys and Compounds, 2015, 638, 254-260.	5.5	33
872	Decolorization and mineralization of Allura Red AC azo dye by solar photoelectro-Fenton: Identification of intermediates. Chemosphere, 2015, 136, 1-8.	8.2	71
873	Removal of triphenylmethane dyes by calcium carbonate–lentinan hierarchical mesoporous hybrid materials. Chemical Engineering Journal, 2015, 273, 371-380.	12.7	23
877	Decolourization of Congo Red by Ganoderma lucidum Laccase: Evaluation of Degradation Products and Toxicity. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	32
878	Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes. Applied Surface Science, 2015, 357, 1849-1856.	, 6.1	63
879	Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 2015, 5, 91846-91854.	3.6	43
880	Continuous Decolorization of Acid Blue 62 Solution in an Enzyme Membrane Reactor. Applied Biochemistry and Biotechnology, 2015, 177, 237-252.	2.9	6
881	Kinetic study of self-assembly of Ni(<scp>ii</scp>)-doped TiO ₂ nanocatalysts for the photodegradation of azo pollutants. RSC Advances, 2015, 5, 88266-88271.	3.6	20
882	Ternary dye adsorption onto MnO ₂ nanoparticle-loaded activated carbon: derivative spectrophotometry and modeling. RSC Advances, 2015, 5, 72300-72320.	3.6	129
883	Removal of Methylene Blue and Orange-G from Waste Water Using Magnetic Biochar. International Journal of Nanoscience, 2015, 14, 1550009.	0.7	46

#	Article	IF	Citations
884	A novel contractive effect of KTaO3 nanocrystals via La3+ doping and an enhanced photocatalytic performance. Journal of Alloys and Compounds, 2015, 622, 894-901.	5.5	58
885	Degradation performance of a Keggin type Zn–Mo–Zr catalyst for acidic green B with ultrasonic waves. RSC Advances, 2015, 5, 63104-63110.	3.6	9
886	Mesoporous titania spheres derived from sodium alginate-gum acacia composite beads: Efficient adsorbent for "Reactive blue H5G―dye. Journal of Environmental Chemical Engineering, 2015, 3, 2727-2737.	6.7	12
887	The Assembly of TiO ₂ Nanoparticles into Micrometer‣ized Structures, Photocatalytically Active Under <scp>UV</scp> and Vis Light. Journal of the American Ceramic Society, 2015, 98, 2997-3005.	3.8	7
888	Biocompatible G-Fe3O4/CA nanocomposites for the removal of Methylene Blue. Journal of Molecular Liquids, 2015, 212, 63-69.	4.9	53
890	Azo Dye Acid Blue 29: Biosorption and Phytotoxicity Test. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	9
891	Grape-like mesostructured silica nanoparticle-decorated single-walled carbon nanotubes: silica growth and dye adsorptivity. RSC Advances, 2015, 5, 71796-71804.	3.6	7
892	Environmental Implications of Recycling and Recycled Products. Environmental Footprints and Eco-design of Products and Processes, 2015, , .	1.1	7
893	Biosorption of basic violet 10 onto activated Gossypium hirsutum seeds: Batch and fixed-bed column studies. Chinese Journal of Chemical Engineering, 2015, 23, 1610-1619.	3.5	27
894	Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal. International Journal of Biological Macromolecules, 2015, 81, 205-211.	7.5	70
895	TiO2 hybrid photocatalytic systems: impact of adsorption and photocatalytic performance. Reviews in Inorganic Chemistry, 2015, 35, 151-178.	4.1	24
896	Photocatalytic degradation of indigo carmine using [Zn-Al] LDH supported on PAN nanofibres. Clay Minerals, 2015, 50, 185-197.	0.6	12
897	Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Applied Clay Science, 2015, 116-117, 23-30.	5.2	53
898	Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies. Journal of Environmental Management, 2015, 163, 53-61.	7.8	38
899	The removal of cationic dyes from aqueous solutions by using poly(N-vinylpyrrolidone-co-methacrylic) Tj ETQq0 C 735-743.) 0 rgBT /C 2.1	overlock 10 Th 5
900	Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating. Journal of Water Process Engineering, 2015, 7, 314-327.	5.6	63
901	Chitosan Derivatives as Effective Agents in Recycling of Textile Dyes from Waste Waters. Environmental Footprints and Eco-design of Products and Processes, 2015, , 135-148.	1.1	1
902	Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: Equilibrium study. Journal of Molecular Liquids, 2015, 212, 723-730.	4.9	62

#	Article	IF	CITATIONS
903	Polyimides as metal-free catalysts for organic dye degradation in the presence peroxymonosulfate under visible light irradiation. RSC Advances, 2015, 5, 98231-98240.	3.6	29
904	Controllable dye adsorption behavior on amorphous tungsten oxide nanosheet surfaces. RSC Advances, 2015, 5, 100898-100904.	3.6	27
905	Evaluation of the efficacy of a fungal consortium for degradation of azo dyes and simulated textile dye effluents. Sustainable Water Resources Management, 2015, 1, 233-243.	2.1	32
906	Facile synthesis of PbWO4: Applications in photoluminescence and photocatalytic degradation of organic dyes under visible light. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 348-355.	3.9	36
907	The cosmetic dye quinoline yellow causes DNA damage in vitro. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 777, 54-61.	1.7	34
908	Application of modified nano-Î ³ -alumina as an efficient adsorbent for removing malachite green (MC) from aqueous solution. Desalination and Water Treatment, 2015, 54, 758-768.	1.0	15
909	Environmentally benign polyoxometalate materials. Coordination Chemistry Reviews, 2015, 286, 17-29.	18.8	209
910	Advanced construction of heterostructured InCrO ₄ –TiO ₂ and its dual properties of greater UV-photocatalytic and antibacterial activity. RSC Advances, 2015, 5, 77000-77013.	3.6	26
911	Surface-functionalized silica aerogels and alcogels for methylene blue adsorption. RSC Advances, 2015, 5, 6111-6122.	3.6	53
912	Investigation of templated and supported polyaniline adsorbent materials. RSC Advances, 2015, 5, 6976-6984.	3.6	33
913	Electrochemical promotion of strong oxidants to degrade Acid Red 211: Effect of supporting electrolytes. Journal of Electroanalytical Chemistry, 2015, 738, 84-91.	3.8	51
914	Chemical Oxygen Demand Elimination and Decolorization of Textile Industrial Effluent by an Indigenous Fungal Species <i>Aspergillus foetidus</i> . Clean - Soil, Air, Water, 2015, 43, 456-461.	1.1	2
915	Cu0- doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent. Journal of Industrial and Engineering Chemistry, 2015, 26, 251-258.	5.8	39
916	Sonoelectrocatalytic decomposition of methylene blue using Ti/Ta2O5–SnO2 electrodes. Ultrasonics Sonochemistry, 2015, 23, 135-141.	8.2	38
917	Defatted algal biomass as a non-conventional low-cost adsorbent: Surface characterization and methylene blue adsorption characteristics. Bioresource Technology, 2015, 184, 395-404.	9.6	68
918	Optimization of brilliant green biosorption by native and acid-activated watermelon rind as low-cost adsorbent. Desalination and Water Treatment, 2015, 54, 235-244.	1.0	15
919	Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. International Journal of Environmental Science and Technology, 2015, 12, 405-420.	3.5	219
920	Characterization of zinc oxide nanorods loaded on activated carbon as cheap and efficient adsorbent for removal of methylene blue. Journal of Industrial and Engineering Chemistry, 2015, 21, 986-993.	5.8	69

#	Article	IF	CITATIONS
921	Synthesis, Characterization, and Application of Zn–Al Layered Double Hydroxide as a Nano-Sorbent for the Removal of Direct Red 16 from Industrial Wastewater Effluents. Chemical Engineering Communications, 2015, 202, 1349-1359.	2.6	16
922	A novel nanocomposite based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity. Applied Surface Science, 2015, 324, 419-431.	6.1	76
923	Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Reviews in Environmental Science and Biotechnology, 2015, 14, 271-285.	8.1	84
924	Metalâ€Free Carbonylations by Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 2270-2274.	13.8	162
925	Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015, 166-167, 603-643.	20.2	1,687
926	Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. Clean Technologies and Environmental Policy, 2015, 17, 709-720.	4.1	30
927	Catalytic degradation of orange G under microwave irradiation with a novel nanohybrid catalyst. Journal of Environmental Chemical Engineering, 2015, 3, 20-29.	6.7	20
928	Mathematical model of decolourization in a rotating disc reactor. Biochemical Engineering Journal, 2015, 93, 151-165.	3.6	6
929	Effective biodecolorization potential of surface modified lignocellulosic industrial waste biomass. Chemical Engineering Journal, 2015, 259, 286-292.	12.7	22
930	Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics. Journal of Industrial and Engineering Chemistry, 2015, 22, 19-27.	5.8	120
931	Photocatalytic degradation of bezacryl yellow in batch reactors – feasibility of the combination of photocatalysis and a biological treatment. Environmental Technology (United Kingdom), 2015, 36, 1-10.	2.2	39
932	A comparative study on properties of synthesized MgO with different templates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1286-1291.	3.9	42
933	Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-l3-alumina. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1016-1028.	3.9	90
934	A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chemical Engineering Journal, 2015, 259, 837-844.	12.7	84
935	Alkaline treatment of timber sawdust: A straightforward route toward effective low-cost adsorbent for the enhanced removal of basic dyes from aqueous solutions. Journal of Saudi Chemical Society, 2016, 20, S241-S249.	5.2	41
936	Dye Removal by Adsorption: A Review. Journal of Bioremediation & Biodegradation, 2016, 07, .	0.5	127
937	Natural Palygorskite as an Industrial Dye Remover in Single and Binary Systems. Materials Research, 2016, 19, 1232-1240.	1.3	13
938	Removal of Levafix Red from Aqueous Solution with Treated Jute Stick and its Relevance to Pharmaceutical Field. Bangladesh Pharmaceutical Journal, 2016, 19, 75-84.	0.3	3

#	Article	IF	CITATIONS
939	Cauliflower Leave, an Agricultural Waste Biomass Adsorbent, and Its Application for the Removal of MB Dye from Aqueous Solution: Equilibrium, Kinetics, and Thermodynamic Studies. International Journal of Analytical Chemistry, 2016, 2016, 1-10.	1.0	32
940	Preparation of TiO ₂ /Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	100
941	Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification. Journal of Materials, 2016, 2016, 1-10.	0.1	20
942	Improvement of Efficiency and Electrical Energy Consumption of AB74 Degradation Process using A Novel Cylindrical Batch Photochemical Reactor Oriental Journal of Chemistry, 2016, 32, 1295-1303.	0.3	3
943	Bioremediation and Detoxification Technology for Treatment of Dye(s) from Textile Effluent. , 0, , .		18
944	A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment – The Textile Industry Case. , 0, , .		37
946	Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–Ĩ€ interactions. Journal of Materials Chemistry A, 2016, 4, 12126-12135.	10.3	210
947	Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies. Water Science and Technology, 2016, 73, 2189-2198.	2.5	33
948	Photo-assisted electrochemical degradation of simulated textile effluent coupled with simultaneous chlorine photolysis. Environmental Science and Pollution Research, 2016, 23, 19292-19301.	5.3	27
949	Alkali metal ion induced cube shaped mesoporous hematite particles for improved magnetic properties and efficient degradation of water pollutants. Physical Chemistry Chemical Physics, 2016, 18, 20528-20541.	2.8	14
950	Facile synthesis of porous NiCo ₂ O ₄ nanoflakes as magnetic recoverable catalysts towards the efficient degradation of RhB. RSC Advances, 2016, 6, 64626-64633.	3.6	58
951	Photocatalytic decolourisation of dyes using TiO ₂ thin film photocatalysts. Surface Engineering, 2016, 32, 562-569.	2.2	18
952	Equilibrium modeling of single and binary adsorption of Food Yellow 4 and Food Blue 2 on modified chitosan using a statistical physics theory: new microscopic interpretations. Journal of Molecular Liquids, 2016, 222, 151-158.	4.9	27
953	Electrospun Fibrous Membranes of Modified Polystyrene and its Copolymer With Butyl Acrylate and Their Respective Adsorption Capabilities for Cationic Blue and Copper Ions. Journal of Macromolecular Science - Physics, 2016, 55, 822-838.	1.0	4
954	Degradation Efficiency of Textile and Wood Processing Industry Wastewater by Photocatalytic Process Using In Situ Ultrafiltration Membrane. Clean - Soil, Air, Water, 2016, 44, 224-231.	1.1	17
955	Synthesis, characterization of nitrogen-doped mesoporous carbon spheres and adsorption performance. RSC Advances, 2016, 6, 114361-114373.	3.6	16
956	Efficient removal of Indigo Carmine dye by a separation process. Water Science and Technology, 2016, 74, 2462-2473.	2.5	31
957	Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand. Water Science and Technology, 2016, 74, 994-1004.	2.5	15

#	Article	IF	CITATIONS
958	Oriented Clay Nanotube Membrane Assembled on Microporous Polymeric Substrates. ACS Applied Materials & Interfaces, 2016, 8, 34914-34923.	8.0	62
959	Synthesis Temperature Dependent Morphological Evolution in Zinc Titanate Heteronanostructures and Their Application in Environmental Remediation. ChemistrySelect, 2016, 1, 6382-6395.	1.5	15
960	Property of Cu2O-CuO/ZSM-5 nanocomposite and degradation process of azo dye AO7 without sacrificial agent (H2O2). Water Science and Technology, 2016, 73, 2747-2753.	2.5	3
961	Fungal laccases as tools for biodegradation of industrial dyes. Biocatalysis, 2016, 1, .	2.3	38
962	Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Scientific Reports, 2016, 6, 22870.	3.3	31
963	Adsorptive behavior, isothermal studies and kinetic modeling involved in removal of divalent lead from aqueous solutions, using Carissa carandas and Syzygium aromaticum. Cogent Environmental Science, 2016, 2, 1218993.	1.6	1
964	Degradation of Synthetic Dyes by Laccases – A Mini-Review. Nova Biotechnologica Et Chimica, 2016, 15, 90-106.	0.1	70
965	The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs. Chemosphere, 2016, 153, 115-129.	8.2	44
966	Enhanced catalytic oxidation ability of ternary layered double hydroxides for organic pollutants degradation. Dalton Transactions, 2016, 45, 8224-8235.	3.3	32
967	Sulfomethylated kraft lignin as a flocculant for cationic dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503, 19-27.	4.7	77
968	Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes. Electrochimica Acta, 2016, 210, 96-104.	5.2	23
969	Adsorptive removal of Direct Red 81 dye from aqueous solution onto Argemone mexicana. Sustainable Environment Research, 2016, 26, 117-123.	4.2	32
970	Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. Journal of Molecular Liquids, 2016, 220, 432-441.	4.9	347
971	The Adsorption of Reactive Blue 19 Dye onto Cucurbit[8]uril and Cucurbit[6]uril: An Experimental and Theoretical Study. Journal of Physical Chemistry B, 2016, 120, 4131-4142.	2.6	28
972	Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study. Ultrasonics Sonochemistry, 2016, 32, 119-131.	8.2	110
973	Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation. Applied Surface Science, 2016, 379, 140-149.	6.1	38
974	A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. Chemical Engineering Journal, 2016, 298, 55-67.	12.7	143
975	Organic–Inorganic Incompletely Condensed Polyhedral Oligomeric Silsesquioxane-Based Nanohybrid: Synthesis, Characterization and Dye Removal Properties. Polymer-Plastics Technology and Engineering, 2016, 55, 1586-1594.	1.9	29

#	Article	IF	CITATIONS
976	Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydrate Polymers, 2016, 148, 153-160.	10.2	142
977	Influence of acid chain length on the properties of TiO2 prepared by sol-gel method and LC-MS studies of methylene blue photodegradation. Journal of Colloid and Interface Science, 2016, 474, 58-67.	9.4	55
978	Solar photocatalytic degradation of hazardous Congo red using low-temperature synthesis of zinc oxide nanoparticles. Chemical Engineering Research and Design, 2016, 104, 549-557.	5.6	65
979	Detoxification of azo dyes in the context of environmental processes. Chemosphere, 2016, 155, 591-605.	8.2	244
980	Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 166, 49-55.	3.9	34
981	Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. Journal of Molecular Liquids, 2016, 219, 780-788.	4.9	105
982	Analysing performance of real textile wastewater bio-decolourization under different reaction environments. Journal of Cleaner Production, 2016, 129, 468-477.	9.3	72
983	Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots. Nanotechnology, 2016, 27, 245703.	2.6	33
984	Application of anodic oxidation, electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of Reactive Yellow 160 azo dye. Electrochimica Acta, 2016, 206, 307-316.	5.2	72
985	Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite. Water Science and Technology, 2016, 73, 2132-2142.	2.5	24
986	Nano-Fe ₃ O ₄ and corn cover composite for removal of Alizarin Red S from aqueous solution: characterization and optimization investigations. Desalination and Water Treatment, 0, , 1-14.	1.0	3
987	Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent. Archives of Environmental Protection, 2016, 42, 3-11.	1.1	41
988	Preparation of silver nanoparticle loaded on activated carbon and its application for removal of malachite green from aqueous solution. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, , 00-00.	0.6	15
989	Hollow Manganese Silicate Nanotubes with Tunable Secondary Nanostructures as Excellent Fentonâ€Type Catalysts for Dye Decomposition at Ambient Temperature. Advanced Functional Materials, 2016, 26, 7334-7342.	14.9	116
991	Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea) Tj ETQqO O Management, 2016, 184, 85-93.	0 rgBT /O 7.8	verlock 10 Tf 98
992	Successful degradation of Reactive Black 5 by engineered Fe/Pd nanoparticles: Mechanism and kinetics aspects. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 406-417.	5.3	18
993	Photocatalytic degradation of bromophenol blue in aqueous medium using chitosan conjugated magnetic nanoparticles. Korean Journal of Chemical Engineering, 2016, 33, 2802-2807.	2.7	65
994	Facile Biopolymer Assisted Synthesis of Hollow SnO ₂ Nanostructures and Their Application in Dye Removal. ChemistrySelect, 2016, 1, 4682-4689.	1.5	11

ARTICLE IF CITATIONS Dyes decolorization using silver nanoparticles supported on nanometric diamond as highly efficient photocatalyst under natural Sunlight irradiation. Journal of Environmental Chemical Engineering, 995 12 6.7 2016, 4, 4485-4493. Porous boron nitride coupled with CdS for adsorption–photocatalytic synergistic removal of RhB. RSC Advances, 2016, 6, 99165-99171. 996 3.6 An efficient and economical treatment for batik textile wastewater containing high levels of silicate 997 and organic pollutants using a sequential process of acidification, magnesium oxide, and palm 7.8 31 shell-based activated carbon application. Journal of Environmental Management, 2016, 184, 229-239. Field and Pretreatment-Free Detection of Heavy-Metal lons in Organic Polluted Water through an 998 Alkyne-Coded SERS Test Kit. ACS Applied Materials & amp; Interfaces, 2016, 8, 27772-27778. Electrodegradation of the Acid Green 28 dye using Ti/l^2 -PbO 2 and $Ti-Pt/l^2$ -PbO 2 anodes. Journal of 999 19 7.8 Environmental Management, 2016, 183, 306-313. Large scale fabrication of graphene for oil and organic solvent absorption. Progress in Natural Science: Materials International, 2016, 26, 319-323. 4.4 Degradation of Recalcitrant Textile Dyes by Coupling Fungal and Photocatalytic Membrane Reactors. 1001 1.1 11 Clean - Soil, Air, Water, 2016, 44, 1345-1351. Cost effective biochar gels with super capabilities for heavy metal removal. RSC Advances, 2016, 6, 3.6 <u>7543</u>0-75439. Modification of microcrystalline cellulose with pyridone derivatives for removal of cationic dyes 1003 4.9 32 from aqueous solutions. Cellulose, 2016, 23, 2917-2927. Surface response methodology–central composite design screening for the fabrication of a 1004 Gx-psy-g-polyacrylicacid adsorbent and sequestration of auramine-O dye from a textile effluent. RSC 3.6 Advances, 2016, 6, 74300-74313. Enhancement of π–Ï€ aromatic interactions between hydrophobic lonic Liquids and Methylene Blue for an optimum removal efficiency and assessment of toxicity by microbiological method. Journal of 1005 9.3 18 Cleaner Production, 2016, 137, 1149-1157. Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 2016, 1,004 306, 1116-1137. Enhanced photodegradation of Rhodamine B by coupling direct solid-state Z-scheme N-K2Ti4O9/g-C3N4 1007 heterojunction with high adsorption capacity of UiO-66. Journal of Environmental Chemical 6.7 23 Engineering, 2016, 4, 3364-3373. Kinetic Modeling and Community Dynamics of Microaerophilic Treatment of Textile Dyes Containing 1008 3.5 Effluent by Consortium VIE6. Environmental Processes, 2016, 3, 397-411. Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver 1009 143 3.8 nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 604-610. Biodegradation of H acid by Bacillus subtilis and RP-HPLC method development for percent 1.3 degradation estimation. Russian Journal of Physical Chemistry B, 2016, 10, 517-523. Lipids, hemoproteins and carotenoids in alive Rhodotorula mucilaginosa cells under pesticide 1011 8.2 9 decomposition – Raman imaging study. Chemosphere, 2016, 164, 1-6. Biodegradation of Remazol Black B in sequential microaerophilic–aerobic operations by NAR-2 bacterial consortium. Environmental Earth Sciences, 2016, 75, 1.

#	Article	IF	CITATIONS
1014	Visible-light-driven photodegradation of Methyl Orange using Cu2O/ZnAl calcined layered double hydroxides as photocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 110-116.	4.7	39
1015	Screening of freshwater fungi for decolorizing multiple synthetic dyes. Brazilian Journal of Microbiology, 2016, 47, 828-834.	2.0	27
1016	Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC Advances, 2016, 6, 86607-86616.	3.6	39
1017	PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism. Materials Research Express, 2016, 3, 075303.	1.6	1
1018	Ultrasound and microwave-assisted preparation of Fe-activated carbon as an effective low-cost adsorbent for dyes wastewater treatment. RSC Advances, 2016, 6, 78936-78946.	3.6	37
1019	Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology, 2016, , .	0.6	16
1020	Sequential anaerobic-aerobic decolourization of a real textile wastewater in a two-phase partitioning bioreactor. Science of the Total Environment, 2016, 573, 585-593.	8.0	34
1021	Application of Microalgae and Fungal-Microalgal Associations for Wastewater Treatment. Fungal Biology, 2016, , 143-181.	0.6	9
1022	Synthesis and application of rGO/CoFe 2 O 4 composite for catalytic degradation of methylene blue on heterogeneous Fenton-like oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 484-494.	5.3	58
1023	Optimisation and kinetics of biosorption of Coomassie Brilliant Blue G250 dye from synthetic effluent using Pennisetum purpureum biosorbent. International Journal of Environment and Sustainable Development, 2016, 15, 241.	0.3	2
1024	Methylene blue removal by alginate–clay quasi-cryogel beads. Reactive and Functional Polymers, 2016, 106, 1-7.	4.1	83
1025	A new preparation strategy via an in situ catalytic process: CeO ₂ @Ag/Ag ₂ Ta ₄ O ₁₁ catalyst for 4-nitrophenol reduction. CrystEngComm, 2016, 18, 6513-6519.	2.6	10
1026	Three-dimensional carbon boron nitrides with a broken, hollow, spherical shell for water treatment. RSC Advances, 2016, 6, 78252-78256.	3.6	9
1027	Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 500-510.	3.8	203
1028	Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food and Function, 2016, 7, 3354-3369.	4.6	85
1029	A survey on the present status of sustainable technologies for water pollutant abatement. Desalination and Water Treatment, 2016, 57, 28705-28714.	1.0	3
1030	Biosorption of victoria blue using Zizyphus oenoplia seed: Evaluation of experimental and modeling studies. , 2016, , .		1
1031	Synthesis of Tunable Band Gap Semiconductor Nickel Sulphide Nanoparticles: Rapid and Round the Clock Degradation of Organic Dyes. Scientific Reports, 2016, 6, 26034.	3.3	109

#	Article	IF	CITATIONS
1032	Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. Journal of Environmental Chemical Engineering, 2016, 4, 4600-4611.	6.7	61
1033	Cauliflower-like Ni/NiO and NiO architectures transformed from nickel alkoxide and their excellent removal of Congo red and Cr(<scp>vi</scp>) ions from water. RSC Advances, 2016, 6, 103585-103593.	3.6	18
1034	Solar Photoelectro-Fenton Degradation of Acid Orange 7 Azo Dye in a Solar Flow Plant: Optimization by Response Surface Methodology. Water Conservation Science and Engineering, 2016, 1, 83-94.	1.7	10
1035	High efficiency reductive degradation of a wide range of azo dyes by SiO 2 -Co core-shell nanoparticles. Applied Catalysis B: Environmental, 2016, 199, 504-513.	20.2	89
1036	Crofton weed derived activated carbon by microwave-induced KOH activation and application to wastewater treatment. Journal of Porous Materials, 2016, 23, 1597-1607.	2.6	21
1037	Sunlight-Induced Coloration of Silk. Nanoscale Research Letters, 2016, 11, 293.	5.7	12
1038	Photocatalytic activity of TiO2, ZnO and Nb2O5 applied to degradation of textile wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 9-17.	3.9	82
1039	Magnetic Nanocomposites as Efficient Sorption Materials for Removing Dyes from Aqueous Solutions. Nanoscale Research Letters, 2016, 11, 161.	5.7	45
1040	Adsorption of different dyes from aqueous solution using Si-MCM-41 having very high surface area. Journal of Porous Materials, 2016, 23, 1227-1237.	2.6	19
1041	Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review. Environmental Science and Pollution Research, 2016, 23, 14810-14853.	5.3	133
1042	Effect of drying temperatures on structural performance and photocatalytic activity of BiOCl synthesized by a soft chemical method. Journal of Solid State Chemistry, 2016, 239, 259-264.	2.9	12
1043	Isolation and characterization of <i>Bradyrhizobium</i> sp. 224 capable of degrading sulfanilic acid. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1663-1665.	1.3	3
1044	Elucidation of degradation mechanism of reactive blue 171 dye by ceric ammonium nitrate. Environmental Progress and Sustainable Energy, 2016, 35, 1254-1264.	2.3	5
1045	Microbial degradation of Paclitaxel using Citrobacter amalonaticus Rashtia isolated from pharmaceutical wastewater: kinetic and thermodynamic study. World Journal of Microbiology and Biotechnology, 2016, 32, 129.	3.6	10
1046	Microaerophilic Symmetric Reductive Cleavage of Reactive Azo Dye—Remazole Brilliant Violet 5R by Consortium VIE6: Community Synergism. Applied Biochemistry and Biotechnology, 2016, 180, 1029-1042.	2.9	28
1047	Chitosan microspheres modified with poly(ethylenimine) enhance the adsorption of methyl orange from aqueous solutions. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 428-436.	1.5	19
1048	Visible light induced photocatalytic decolourisation of rhodamine B by magnetite nanoparticles synthesised using recovered iron from waste iron ore tailing. Desalination and Water Treatment, 2016, 57, 900-907.	1.0	7
1049	Response surface methodology approach for optimization of adsorption process for the removal of Indosol Yellow BG dye from aqueous solution by agricultural waste. Desalination and Water Treatment, 2016, 57, 11773-11781.	1.0	20

#	Article	IF	CITATIONS
1050	Ag/TiO2/freeze-dried graphene nanocomposite as a high performance photocatalyst under visible light irradiation. Journal of Energy Chemistry, 2016, 25, 393-402.	12.9	33
1051	Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chemical Engineering Journal, 2016, 287, 545-556.	12.7	131
1052	Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow. Environmental Pollution, 2016, 210, 40-47.	7.5	50
1053	Poly(N-isopropylacrylamide)-based ionic hydrogels: synthesis, swelling properties, interfacial adsorption and release of dyes. Polymer Journal, 2016, 48, 431-438.	2.7	41
1054	Synthesis of nanostructured adsorbent and dye adsorption modeling by an intelligent model for multicomponent systems. Korean Journal of Chemical Engineering, 2016, 33, 902-913.	2.7	10
1055	Preparation and characterization of Ni-doped ZnO–SnO2 nanocomposites: Application in photocatalysis. Superlattices and Microstructures, 2016, 91, 225-237.	3.1	43
1056	Adsorptive removal of organic dyes from aqueous solutions using acrylic acid–acrylonitrile–N-isopropylacrylamide polymeric gels as adsorbents: linear and non linear isotherms. Desalination and Water Treatment, 2016, 57, 22543-22550.	1.0	8
1057	Chicken feather fibres waste as a low-cost biosorbent of acid Blue 80 dye. Desalination and Water Treatment, 2016, 57, 3732-3740.	1.0	13
1058	Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water. Journal of Magnetism and Magnetic Materials, 2016, 403, 18-29.	2.3	6
1059	Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chinese Journal of Chemical Engineering, 2016, 24, 521-528.	3.5	46
1061	Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety. Reviews of Environmental Contamination and Toxicology, 2016, 237, 71-104.	1.3	117
1062	Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification, 2016, 101, 87-100.	3.6	138
1063	Photocatalytic degradation of methyl blue by tourmaline-coated TiO ₂ nanoparticles. Desalination and Water Treatment, 2016, 57, 19292-19300.	1.0	2
1064	Recent trends in fungal laccase for various industrial applications: An eco-friendly approach - A review. Biotechnology and Bioprocess Engineering, 2016, 21, 19-38.	2.6	146
1065	Spectroscopic and QM/MM investigations of Chloroperoxidase catalyzed degradation of orange G. Archives of Biochemistry and Biophysics, 2016, 596, 1-9.	3.0	10
1066	Improved Photodegradation of Organic Contaminants Using Nanoâ€īiO ₂ and TiO ₂ –SiO ₂ Deposited on Portland Cement Concrete Blocks. Photochemistry and Photobiology, 2016, 92, 87-101.	2.5	41
1067	Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye. Electrochimica Acta, 2016, 197, 210-220.	5.2	56
1069	Studies on adsorptive removal of Direct Green 6 using a non-conventional activated carbon and polypyrrole composite. Desalination and Water Treatment, 2016, 57, 20534-20543.	1.0	6

ARTICLE IF CITATIONS Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in Nafion 1070 2.8 49 membranes. New Journal of Chemistry, 2016, 40, 3654-3663. Enhanced adsorptive removal of toxic dyes using SiO 2 nanofibers. Solid State Sciences, 2016, 55, 13-20. 1071 3.2 Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures 1072 towards the degradation of Congo red dye under solar radiation. Catalysis Science and Technology, 4.1 119 2016, 6, 4458-4472. Potential applications of abandoned aromatic polyamide reverse osmosis membrane by hypochlorite degradation. RSC Advances, 2016, 6, 12263-12271. Synthesis of three-dimensional carbon felt supported TiO 2 monoliths for photocatalytic degradation 1074 6.7 29 of methyl orange. Journal of Environmental Chemical Engineering, 2016, 4, 1259-1266. Magnetic nanocomposite of activated charcoal for removal of Congo red dye. Management of 4.3 Environmental Quality, 2016, 27, 45-58. Hierarchically structured ZnO-graphene hollow microspheres towards effective reusable adsorbent for organic pollutant via photodegradation process. Journal of Alloys and Compounds, 2016, 669, 1076 5.5 49 177-186. Detoxification of synthetic and real groundwater contaminated with gasoline and diesel using 1.0 Fenton, photo-Fenton, and biofilters. Desalination and Water Treatment, 2016, 57, 23760-23769. Effect of PEO molecular weight on sunlight induced photocatalytic activity of ZnO/PEO composites. 1078 6.1 13 Solar Energy, 2016, 127, 124-135. \hat{I} +MoO₃/polyaniline composite for effective scavenging of Rhodamine B, Congo red and 1079 3.6 textile dye effluent. RSC Advances, 2016, 6, 28871-28886. Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black 5 from 1080 70 9.4 aqueous solutions. Journal of Colloid and Interface Science, 2016, 466, 442-451. Selective decolorization of cationic dyes by peroxymonosulfate: non-radical mechanism and effect of 3.6 chloride. RSC Advances, 2016, 6, 866-871 Preparation and characterization of bifunctional BiOCl x I y solid solutions with excellent adsorption and photocatalytic abilities for removal of organic dyes. Materials Science in 1082 4.0 35 Semiconductor Processing, 2016, 41, 193-199. Comparative Adsorption of Crystal Violet and Congo Red onto ZnCl₂Activated Carbon. Journal of Dispersion Science and Technology, 2016, 37, 1671-1681. 2.4 Genotoxic and carcinogenic products arising from reductive transformations of the azo dye, 1084 8.2 58 Disperse Yellow 7. Chemosphere, 2016, 146, 206-215. Sustainable Production Processes in Textile Dyeing. Environmental Footprints and Eco-design of Products and Processes, 2016, , 185-216. Phragmites australis : An alternative biosorbent for basic dye removal. Ecological Engineering, 2016, 1087 3.6 69 86, 85-94. Continuous treatment of biologically treated textile effluent using a multi-cell electrochemical 1088 reactor. Chemical Engineering Journal, 2016, 286, 571-577.

#	Article	IF	CITATIONS
1089	Tubular carbon nanotube-based gas diffusion electrode removes persistent organic pollutants by a cyclic adsorption – Electro-Fenton process. Journal of Hazardous Materials, 2016, 307, 1-6.	12.4	97
1090	Facile sonochemical synthesis of Ag modified Bi4Ti3O12 nanoparticles with enhanced photocatalytic activity under visible light. Materials Research Bulletin, 2016, 74, 397-407.	5.2	50
1091	Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: Analysis by derivative spectrophotometry. Journal of Industrial and Engineering Chemistry, 2016, 34, 186-197.	5.8	240
1092	Nanostructured adsorbent (MnO ₂): Synthesis and least square support vector machine modeling of dye removal. Desalination and Water Treatment, 2016, 57, 21524-21533.	1.0	9
1093	Decoloration and detoxification of effluents by ionizing radiation. Radiation Physics and Chemistry, 2016, 124, 198-202.	2.8	27
1094	Influence of porosity and surface modification on the adsorption of both cationic and anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 30-40.	4.7	22
1095	Facile mesoporous template-assisted hydrothermal synthesis of ordered mesoporous magnesium silicate as an efficient adsorbent. Applied Surface Science, 2016, 360, 889-895.	6.1	27
1096	Hyperbranched polymeric ionic liquid with imidazolium backbones for highly efficient removal of anionic dyes. Chemical Engineering Journal, 2016, 287, 482-491.	12.7	52
1097	An analytical study of the electrochemical degradation of methyl orange using a novel polymer disk electrode. Microelectronic Engineering, 2016, 149, 31-36.	2.4	9
1098	Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydrate Polymers, 2016, 136, 329-340.	10.2	113
1099	Biogenic synthesis of magnetic perlite@iron oxide composite: application as a green support for dye removal. Desalination and Water Treatment, 2016, 57, 11859-11871.	1.0	17
1100	Optimization of physico-chemical parameters for the photo-oxidation of neutral red on the spinel Co2SnO4. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 310-317.	5.3	14
1101	Artificial neural network modeling of biotreatment of malachite green by Spirodela polyrhiza: Study of plant physiological responses and the dye biodegradation pathway. Chemical Engineering Research and Design, 2016, 99, 11-19.	5.6	28
1102	Synthesis and characterization of [Zn–Al] LDH: Study of the effect of calcination on the photocatalytic activity. Applied Clay Science, 2016, 119, 229-235.	5.2	93
1103	Full factorial experimental design applied to methylene blue adsorption onto Alfa stems. Desalination and Water Treatment, 2016, 57, 6098-6105.	1.0	8
1104	Evaluation of the mesoporous silica material MCM-41 for competitive adsorption of Basic Violet 5BN and Basic Green from industrial dye wastewater. Desalination and Water Treatment, 2016, 57, 17494-17511.	1.0	2
1105	Removal of crystal violet from aqueous solution using surfactant modified glass waste: kinetic, isotherm, and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 18076-18086.	1.0	2
1106	Combustion of textile monoazo, diazo and triazo dyes by solar photoelectro-Fenton: Decolorization, kinetics and degradation routes. Applied Catalysis B: Environmental, 2016, 181, 681-691.	20.2	97

#	Article	IF	CITATIONS
1107	Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB. Catalysis Today, 2016, 264, 250-256.	4.4	101
1108	Degradation of organic compounds in a fenton system based on chitosan/Fe0/Fe2O3 composites: a theoretical and experimental study. Journal of the Iranian Chemical Society, 2016, 13, 377-386.	2.2	3
1109	Removal of fluorescent dissolved organic matter in biologically treated textile wastewater by ozonation-biological aerated filter. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 359-364.	5.3	30
1110	Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: Isotherm, kinetic, and thermodynamic analysis. Particulate Science and Technology, 2016, 34, 103-111.	2.1	19
1111	Synthesis, characterization, and photocatalytic activity of TiO ₂ –SiO ₂ nanocomposites. Desalination and Water Treatment, 2016, 57, 14647-14655.	1.0	16
1112	Ag-doped hydroxyapatite as efficient adsorbent for removal of Congo red dye from aqueous solution: Synthesis, kinetic and equilibrium adsorption isotherm analysis. Microporous and Mesoporous Materials, 2016, 219, 134-144.	4.4	109
1113	Ni-, Pt- and (Ni/Pt)-doped TiO2 nanophotocatalysts: A smart approach for sustainable degradation of Rhodamine B dye. Applied Catalysis B: Environmental, 2016, 181, 270-278.	20.2	85
1114	Methyl orange adsorption onto simple chemical route synthesized crystalline α-Fe ₂ O ₃ nanoparticles: kinetic, equilibrium isotherm, and neural network modeling. Desalination and Water Treatment, 2016, 57, 13549-13560.	1.0	39
1115	Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. Journal of Molecular Liquids, 2016, 213, 381-389.	4.9	91
1116	Evaluating treatment options for wastewater generated from production of metal complex dyes. Desalination and Water Treatment, 2016, 57, 14044-14050.	1.0	1
1117	Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies. Desalination and Water Treatment, 2016, 57, 10632-10645.	1.0	39
1118	Biodegradation of C.I. Acid Red 1 by indigenous bacteria Stenotrophomonas sp. BHUSSp X2 isolated from dye contaminated soil. Environmental Science and Pollution Research, 2016, 23, 4054-4062.	5.3	22
1119	Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources. Environmental Science and Pollution Research, 2017, 24, 6222-6232.	5.3	28
1120	Degradation of Direct Red 81 mediated by Fenton reactions: multivariate optimization, effect of chloride and sulfate, and acute ecotoxicity assessment. Environmental Science and Pollution Research, 2017, 24, 6176-6186.	5.3	18
1121	Bio-adsorption of dyes from aqueous solution by powdered excess sludge (PES): Kinetic, isotherm, and thermodynamic study. Journal of Dispersion Science and Technology, 2017, 38, 347-354.	2.4	5
1122	Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products. Environmental Science and Pollution Research, 2017, 24, 6307-6316.	5.3	70
1123	Adsorption of Naphthol Green B on unburned carbon: 2- and 3-parameter linear and non-linear equilibrium modelling. Chinese Journal of Chemical Engineering, 2017, 25, 37-44.	3.5	14
1124	Polyoxometalates for photocatalytic degradation of aqueous dyestuff solutions and quantitative structure–property relationship study on photolysis rate constants. Toxicological and Environmental Chemistry, 2017, 99, 363-375.	1.2	4

#	Article	IF	CITATIONS
1125	Entfernung von organischen, anorganischen und mikrobiellen Schadstoffen aus Wasser durch immobilisierte Polyoxometallatâ€basierte ionische Flüssigkeiten (POMâ€SILPs). Angewandte Chemie, 2017, 129, 1689-1692.	2.0	15
1126	Electrochemical abatement of amaranth dye solutions using individual or an assembling of flow cells with Ti/Pt and Ti/Pt-SnSb anodes. Separation and Purification Technology, 2017, 179, 194-203.	7.9	34
1127	Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere, 2017, 173, 107-115.	8.2	77
1128	Adsorption studies of ferroin in aqueous solution onto graphite oxide. Canadian Journal of Chemistry, 2017, 95, 520-525.	1.1	0
1129	Transcriptome and metabolome responses of Shewanella oneidensis MR-1 to methyl orange under microaerophilic and aerobic conditions. Applied Microbiology and Biotechnology, 2017, 101, 3463-3472.	3.6	23
1130	A versatile carbohydrate based gelator for oil water separation, nanoparticle synthesis and dye removal. New Journal of Chemistry, 2017, 41, 2261-2267.	2.8	40
1131	Optimization of cellulose and sugarcane bagasse oxidation: Application for adsorptive removal of crystal violet and auramine-O from aqueous solution. Journal of Colloid and Interface Science, 2017, 494, 223-241.	9.4	65
1132	Facile preparation of BiOCl x I1â^'x composites with enhanced visible-light photocatalytic activity. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	6
1133	Studies on the formation of formaldehyde during 2-ethylhexyl 4-(dimethylamino)benzoate demethylation in the presence of reactive oxygen and chlorine species. Environmental Science and Pollution Research, 2017, 24, 8049-8061.	5.3	10
1134	Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337, 100-111.	3.9	87
1135	Removal of Multiple Contaminants from Water by Polyoxometalate Supported Ionic Liquid Phases (POMâ€SILPs). Angewandte Chemie - International Edition, 2017, 56, 1667-1670.	13.8	104
1136	Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Applied Catalysis B: Environmental, 2017, 206, 44-52.	20.2	102
1137	Adsorption of eriochrome black T from aqueous phase on MgAl-, CoAl- and NiFe- calcined layered double hydroxides: Kinetic, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 2017, 230, 344-352.	4.9	110
1138	Mesoporous CuO-TiO 2 microspheres for efficient catalytic oxidation of CO and photodegradation of methylene blue. Journal of Physics and Chemistry of Solids, 2017, 104, 103-110.	4.0	30
1139	Photocatalytic decolorization of azo dyes on TiO 2 : Prediction of mechanism via conceptual DFT. Catalysis Today, 2017, 287, 169-175.	4.4	30
1140	Cell thermolysis $\hat{a} \in$ A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes. Process Biochemistry, 2017, 56, 171-176.	3.7	9
1141	Ilmenite type nano-crystalline Co–Ti–O ternary oxides: sol–gel thin film on borosilicate glass, characterization and photocatalytic activity in mineralization of reactive red 198. Journal of Materials Science: Materials in Electronics, 2017, 28, 8286-8293.	2.2	9
1142	Alkaline textile wastewater biotreatment: A sulfate-reducing granular sludge based lab-scale study. Journal of Hazardous Materials, 2017, 332, 104-111.	12.4	37

#	Article	IF	CITATIONS
1143	Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by <i>Aspergillus</i> sp. XJ-2 CGMCC12963. Bioengineered, 2017, 8, 630-641.	3.2	25
1144	Sustainable bulk scale cationization of cotton hosiery fabrics for salt-free reactive dyeing process. Journal of Cleaner Production, 2017, 149, 1188-1199.	9.3	55
1145	Synthesis of nano-ZnO by wire explosion process and its photocatalytic activity. Journal of Environmental Chemical Engineering, 2017, 5, 1676-1684.	6.7	14
1146	Quaternized triethanolamine-sebacoyl moieties in highly branched polymer architecture as a host for the entrapment of acid dyes in aqueous solutions. Journal of Water Reuse and Desalination, 2017, 7, 53-65.	2.3	7
1147	A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS 2 - rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red. Journal of Environmental Chemical Engineering, 2017, 5, 1150-1158.	6.7	43
1148	Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances, 2017, 7, 14395-14405.	3.6	120
1149	Polypyrrole-coated cotton fabrics used for removal of methylene blue from aqueous solution. Journal of the Textile Institute, 2017, 108, 1847-1852.	1.9	9
1150	Template-free Synthesis of Large-Pore-Size Porous Magnesium Silicate Hierarchical Nanostructures for High-Efficiency Removal of Heavy Metal Ions. ACS Sustainable Chemistry and Engineering, 2017, 5, 2774-2780.	6.7	51
1151	Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science, 2017, 143, 279-292.	5.2	389
1152	Chemometrics approach for optimization of simultaneous adsorption of Alizarin red S and Congo red by cobalt hydroxide nanoparticles. Journal of Chemometrics, 2017, 31, e2886.	1.3	6
1153	Synthesis, structure, and photocatalytic activity of a novel Ni (II) coordination polymer based on p-aminohippuric acid. Inorganic and Nano-Metal Chemistry, 2017, 47, 989-993.	1.6	2
1154	Fungi Imperfecti Laccase: Biotechnological Potential and Perspectives. , 2017, , 203-212.		1
1155	High UV light performance for the degradation of Rhodamine B dye by synthesized Bi2S3ZnO nanocomposite. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	6
1157	Advances in Environmental Biotechnology. , 2017, , .		10
1158	Organic Pollutants. Environmental Chemistry for A Sustainable World, 2017, , 105-135.	0.5	7
1159	Broadband Photocatalytic Activity of Mesoporous Cd(II)â€Đoped TiO ₂ . ChemistrySelect, 2017, 2, 3648-3656.	1.5	6
1160	Efficient approach to enhance whole cell azo dye decolorization by heterologous overexpression of Enterococcus sp. L2 azoreductase (azoA) and Mycobacterium vaccae formate dehydrogenase (fdh) in different bacterial systems. International Biodeterioration and Biodegradation, 2017, 124, 91-100.	3.9	39
1161	Green synthesis of the Pd/perlite nanocomposite using Euphorbia neriifolia L. leaf extract and evaluation of its catalytic activity. Separation and Purification Technology, 2017, 184, 298-307.	7.9	44

#	Article	IF	CITATIONS
1162	Highly efficient adsorbent based on novel cotton flower-like porous boron nitride for organic pollutant removal. Composites Part B: Engineering, 2017, 123, 45-54.	12.0	38
1163	Removal or storage of environmental pollutants and alternative fuel sources with inorganic adsorbents via host–guest encapsulation. Journal of Materials Chemistry A, 2017, 5, 10746-10771.	10.3	35
1164	Screening and optimization of laccase from cyanobacteria with its potential in decolorization of anthraquinonic dye Remazol Brilliant Blue R. Biocatalysis and Agricultural Biotechnology, 2017, 10, 403-410.	3.1	26
1165	Parameters Affecting Adsorption and Photocatalytic Degradation Behavior of Gentian Violet under UV Irradiation with Several Kinds of TiO2 as a Photocatalyst. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	16
1166	Preparation of a regenerated silk fibroin film and its adsorbability to azo dyes. International Journal of Biological Macromolecules, 2017, 102, 1066-1072.	7.5	31
1167	Adsorption equilibrium and thermodynamics of anionic reactive dyes from aqueous solutions by using a new modified silica gel with 2,2′-(pentane-1,5-diylbis(oxy))dibenzaldehyde. Chemical Engineering Research and Design, 2017, 123, 50-62.	5.6	32
1168	Bioremediation Technologies for Decolorization of Effluent. , 2017, , 93-123.		0
1169	Calcined eggshell as a cost effective material for removal of dyes from aqueous solution. Applied Water Science, 2017, 7, 4255-4268.	5.6	36
1170	Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: A thermodynamic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 531-540.	4.7	84
1171	Kinetic study of photodegradation of methylene blue over P25-graphene and P25-CNT nanocomposites using Monte Carlo simulation. Russian Journal of Physical Chemistry A, 2017, 91, 1337-1344.	0.6	4
1172	Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicology and Environmental Safety, 2017, 144, 79-87.	6.0	84
1173	Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO 2 anodes. Electrochimica Acta, 2017, 244, 199-208.	5.2	64
1174	A review of progress in the ecological application of ionic liquids in textile processes. Journal of Cleaner Production, 2017, 161, 105-126.	9.3	64
1175	Ultrafast Dye Removal Using Ionic Liquid–Graphene Oxide Sponge. ACS Sustainable Chemistry and Engineering, 2017, 5, 6026-6035.	6.7	129
1176	Degradation of Adsorbed Azo Dye by Solid-State Fermentation: Improvement of Culture Conditions, a Kinetic Study, and Rotating Drum Bioreactor Performance. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	17
1177	Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light. Environmental Science and Pollution Research, 2017, 24, 15360-15368.	5.3	27
1178	Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry. Carbohydrate Polymers, 2017, 174, 137-145.	10.2	50
1179	Synthesis of silica gel modified with 2,2′-(hexane-1,6-diylbis(oxy)) dibenzaldehyde as a new adsorbent for the removal of Reactive Yellow 84 and Reactive Blue 19 dyes from aqueous solutions: Equilibrium and thermodynamic studies. Powder Technology, 2017, 319, 60-70.	4.2	48

#	Article	IF	CITATIONS
1180	Coacervate of Polyacrylamide and Cationic Gemini Surfactant for the Extraction of Methyl Orange from Aqueous Solution. Langmuir, 2017, 33, 6846-6856.	3.5	29
1181	Facile preparation of water-soluble hyperbranched polyamine functionalized multiwalled carbon nanotubes for high-efficiency organic dye removal from aqueous solution. Scientific Reports, 2017, 7, 3611.	3.3	34
1182	Photocatalytic degradation of Direct yellow 86 diazo dye using sulfanilic acid-modified TiO2 in aqueous suspensions. Water Science and Technology, 2017, 76, 1992-2002.	2.5	4
1184	Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution. Environmental Science and Pollution Research, 2017, 24, 16958-16970.	5.3	28
1185	Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. Journal of Environmental Management, 2017, 200, 145-159.	7.8	78
1186	Structural study, photoluminescence and photocatalytic properties of La2O3 â‹ Fe3O4 â‹ ZnO,AgO â‹ NiO â ZnO and La2O3 â‹ AgO â‹ ZnO nanocomposites. Nano Structures Nano Objects, 2017, 10, 30-41.	⁽ .3.5	62
1187	Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient conditions. Water Science and Technology, 2017, 76, 1676-1686.	2.5	5
1188	Application of Doehlert design to the electro-Fenton treatment of Bismarck Brown Y. Journal of Electroanalytical Chemistry, 2017, 799, 34-39.	3.8	24
1189	Adsorption behavior of methylene blue onto waste-derived adsorbent and exhaust gases recycling. RSC Advances, 2017, 7, 27331-27341.	3.6	62
1190	Comparison of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions. Environmental Science and Pollution Research, 2017, 24, 16031-16040.	5.3	23
1191	Synthesis of SBA-15/PAni mesoporous composite for adsorption of reactive dye from aqueous media: RBF and MLP networks predicting models. Fibers and Polymers, 2017, 18, 465-475.	2.1	14
1192	Characterization and adsorption properties of La and Fe modified activated carbon for dye wastewater treatment. Green Processing and Synthesis, 2017, 6, 487-498.	3.4	19
1193	Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation. Applied Surface Science, 2017, 410, 401-413.	6.1	157
1194	Electron scavenger-assisted photocatalytic degradation of amido black 10B dye with Mn3O4 nanotubes: A response surface methodology study with central composite design. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 341, 146-156.	3.9	62
1195	Solar-driven advanced oxidation processes for full mineralisation of azo dyes in wastewater. Environmental Chemistry, 2017, 14, 188.	1.5	7
1196	Zinc Oxide Coating Effect for the Dye Removal and Photocatalytic Mechanisms of Flower-Like MoS2 Nanoparticles. Nanoscale Research Letters, 2017, 12, 221.	5.7	57
1197	Application of BDD and DSA electrodes for the removal of RB 5 in batch and continuous operation. Journal of Water Process Engineering, 2017, 17, 11-21.	5.6	44
1198	Kinetics analysis of photocatalytic degradation of Acid Orange 7 by Co/N/Er3+: Y3Al5O12/TiO2 films. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	1

#	Article	IF	CITATIONS
1199	Adsorption of reactive yellow X-RG and reactive brilliant red X-3B onto cucurbit[8]uril and cucurbit[6]uril: Effect factors, adsorption behavior and mechanism study. Journal of Colloid and Interface Science, 2017, 498, 31-46.	9.4	33
1200	Decolorisation by <i>Bacillus flexus</i> of exhausted dyebaths containing <scp>CI</scp> Acid Red 249 and their reuse for wool dyeing. Coloration Technology, 2017, 133, 218-222.	1.5	3
1201	Sol–gel synthesis of SnO2/CdS heterostructures using various Cd:S molar ratio solutions and its application in photocatalytic degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 2017, 28, 9024-9031.	2.2	10
1202	Influence of Cu doping on the visible-light-induced photocatalytic activity of InVO4. RSC Advances, 2017, 7, 13911-13918.	3.6	36
1203	Biosynthesis and Photocatalytic Properties of SnO2 Nanoparticles Prepared Using Aqueous Extract of Cauliflower. Journal of Cluster Science, 2017, 28, 1883-1896.	3.3	47
1204	Removal of synthetic dyes from multicomponent industrial wastewaters. Reviews in Chemical Engineering, 2017, 34, 107-134.	4.4	45
1205	Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: Equilibrium and kinetic. Chinese Journal of Chemical Engineering, 2017, 25, 523-532.	3.5	42
1206	Study of hydrolytic kinetics of vinyl sulfone reactive dye in siloxane reverse micro-emulsion. Textile Reseach Journal, 2017, 87, 2368-2378.	2.2	26
1207	A miniaturized injection-moulded flow-cell with integrated conducting polymer electrodes for on-line electrochemical degradation of azo dye solutions. Microelectronic Engineering, 2017, 169, 16-23.	2.4	9
1208	Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 2017, 5, 601-611.	6.7	413
1209	Hydrothermal synthesis of m-BiVO4 and m-BiVO4/BiOBr with various facets and morphologies and their photocatalytic performance under visible light. Journal of Alloys and Compounds, 2017, 697, 417-426.	5.5	49
1210	Polyurethane for removal of organic dyes from textile wastewater. Environmental Chemistry Letters, 2017, 15, 347-366.	16.2	52
1211	Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption. Chemosphere, 2017, 171, 332-338.	8.2	93
1212	Malachite green "a cationic dye―and its removal from aqueous solution by adsorption. Applied Water Science, 2017, 7, 3407-3445.	5.6	180
1213	Protein-Directed Synthesis of Bifunctional Adsorbent-Catalytic Hemin-Graphene Nanosheets for Highly Efficient Removal of Dye Pollutants via Synergistic Adsorption and Degradation. ACS Applied Materials & Interfaces, 2017, 9, 684-692.	8.0	69
1214	A review on graphene–TiO ₂ and doped graphene–TiO ₂ nanocomposite photocatalyst for water and wastewater treatment. Environmental Technology Reviews, 2017, 6, 1-14.	4.3	187
1215	Morphology dependent two photon absorption in plasmonic structures and plasmonic–organic hybrids. Optics and Laser Technology, 2017, 90, 201-210.	4.6	8
1216	Facile Fabrication of Multifunctional Metal–Organic Framework Hollow Tubes To Trap Pollutants. Journal of the American Chemical Society, 2017, 139, 16482-16485.	13.7	96

#	Article	IF	CITATIONS
1217	Application of photosynthetic bacteria for removal of heavy metals, macro-pollutants and dye from wastewater: A review. Journal of Water Process Engineering, 2017, 19, 312-321.	5.6	65
1218	Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle. Materials Chemistry and Physics, 2017, 202, 340-351.	4.0	60
1219	Bi ₁₂ O ₁₇ Cl ₂ /(BiO) ₂ CO ₃ Nanocomposite Materials for Pollutant Adsorption and Degradation: Modulation of the Functional Properties by Composition Tailoring. ACS Omega, 2017, 2, 6298-6308.	3.5	24
1220	Structural, photoluminescence, electrical, anti cancer and visible light driven photocatalytic characteristics of Co doped WO 3 nanoplates. Vibrational Spectroscopy, 2017, 93, 78-89.	2.2	37
1222	3D graphene-based nanostructured materials as sorbents for cleaning oil spills and for the removal of dyes and miscellaneous pollutants present in water. Environmental Science and Pollution Research, 2017, 24, 27731-27745.	5.3	36
1223	Rational design of hierarchical macroporous–mesoporous magnesium silicate for highly efficient removal of organic dye and Pb ²⁺ . RSC Advances, 2017, 7, 47225-47234.	3.6	16
1224	Morphologyâ€Control Strategy of the Superhydrophobic Poly(Methyl Methacrylate) Surface for Efficient Bubble Adhesion and Wastewater Remediation. Advanced Functional Materials, 2017, 27, 1702020.	14.9	64
1225	Removal of carcinogenic aromatic amines by metal hexacyanoferrates nanocubes synthesized via green process. Journal of Environmental Chemical Engineering, 2017, 5, 5298-5311.	6.7	43
1226	Characterization and adsorption of disperse dyes from wastewater onto cenospheres activated carbon composites. Environmental Earth Sciences, 2017, 76, 1.	2.7	11
1227	A cost-effective birnessite–silicon solar cell hybrid system with enhanced performance for dye decolorization. RSC Advances, 2017, 7, 47975-47982.	3.6	12
1228	A study on combining natural dyes and environmentally-friendly mordant to improve color strength and ultraviolet protection of textiles. Fibers and Polymers, 2017, 18, 1523-1530.	2.1	19
1229	Extremely fouling resistant zwitterionic copolymer membranes with ~ 1 nm pore size for treating municipal, oily and textile wastewater streams. Journal of Membrane Science, 2017, 543, 184-194.	8.2	69
1230	Rapid reduction of dye pollutants and hexavalent chromium by silver-sulphur oxido-vanadium cluster. Journal of Environmental Chemical Engineering, 2017, 5, 4212-4219.	6.7	19
1231	Synthesis of water dispersible dendritic amino acid modified polythiophenes as highly effective adsorbent for removal of methylene blue. Journal of Environmental Chemical Engineering, 2017, 5, 4923-4936.	6.7	22
1232	Oxidase-Peroxidase sequential polymerization for removal of a dye from contaminated water by horseradish peroxidase (HRP)/glucose oxidase (GOx)/polyurethane hybrid catalyst. Korean Journal of Chemical Engineering, 2017, 34, 2870-2878.	2.7	19
1233	Overexpression of a Laccase with Dye Decolorization Activity from <i>Bacillus</i> sp. Induced in <i>Escherichia coli</i> . Journal of Molecular Microbiology and Biotechnology, 2017, 27, 217-227.	1.0	8
1234	Development of novel cross-linked chitosan for the removal of anionic Congo red dye. Journal of Molecular Liquids, 2017, 244, 211-218.	4.9	110
1235	Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal. Carbohydrate Polymers, 2017, 177, 347-354.	10.2	93

#	Article	IF	CITATIONS
1236	Decolorization of Direct Blue 71 solutions using tannic acid/polysulfone thin film nanofiltration composite membrane; preparation, optimization and characterization of anti-fouling. Korean Journal of Chemical Engineering, 2017, 34, 2342-2353.	2.7	11
1237	An efficient strategy for full mineralization of an azo dye in wastewater: a synergistic combination of solar thermo- and electrochemistry plus photocatalysis. RSC Advances, 2017, 7, 36246-36255.	3.6	30
1238	Synthesis and application of graphene-αMoO 3 nanocomposite for improving visible light irradiated photocatalytic decolorization of methylene blue dye. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 276-285.	5.3	13
1239	Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 423-430.	5.3	35
1240	Preparation and Characterization of K6 ZrW11 O39 Sn-TiO2 Composite Catalyst for Solar Photocatalytic Degradation of Aqueous Dye Solutions. Journal of the Chinese Chemical Society, 2017, 64, 1111-1119.	1.4	4
1241	Preparation and Characterization of Magnetic Cobalt Ferrites/SBA-15 Nanocomposite Adsorbents and the Removal of Methylene Blue. Nano, 2017, 12, 1750060.	1.0	2
1242	Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	5
1243	Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catalysis Science and Technology, 2017, 7, 4548-4569.	4.1	223
1244	Electrospun nanofiber membranes for adsorption of dye molecules from textile wastewater. IOP Conference Series: Materials Science and Engineering, 2017, 254, 102001.	0.6	13
1245	Electrochemical aspects of photocatalysis: Au@FeS ₂ nanocomposite for removal of industrial pollutant. Physical Chemistry Chemical Physics, 2017, 19, 32412-32420.	2.8	26
1246	3D nitrogen-doped graphene gels as robust and sustainable adsorbents for dyes. New Journal of Chemistry, 2017, 41, 15447-15457.	2.8	12
1247	Biological degradation of Reactive Black 5 dye by yeast Trichosporon akiyoshidainum. Journal of Environmental Chemical Engineering, 2017, 5, 5987-5993.	6.7	51
1248	Bio-inspired, fouling resistant, tannic acid functionalized halloysite nanotube reinforced polysulfone loose nanofiltration hollow fiber membranes for efficient dye and salt separation. Journal of Water Process Engineering, 2017, 20, 138-148.	5.6	53
1249	Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study. Journal of Chemical Physics, 2017, 147, 174704.	3.0	5
1250	Novel-structured Mo-Cu-Fe-O composite for catalytic air oxidation of dye-containing wastewater under ambient temperature and pressure. Chinese Journal of Catalysis, 2017, 38, 1719-1725.	14.0	14
1251	Oneâ€pot Synthesis of Novel Composite@Compositeâ€Typed Core@Shell Nanostructures and the Adsorption Property for Dye Wastewater. ChemistrySelect, 2017, 2, 5080-5088.	1.5	2
1252	Mechanistic links between magnetic nanoparticles and recovery potential and enhanced capacity for crystal violet of nanoparticles-coated kaolin. Journal of Cleaner Production, 2017, 164, 695-702.	9.3	20
1253	Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. Journal of Environmental Chemical Engineering, 2017, 5, 3508-3517.	6.7	128

#	Article	IF	CITATIONS
1254	Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution. Ecotoxicology and Environmental Safety, 2017, 145, 57-68.	6.0	180
1255	Novel activated carbon from Manihot esculenta Crantz for removal of Methylene Blue. Sustainable Environment Research, 2017, 27, 215-222.	4.2	24
1256	Multi-phase nanocrystallization induced fast degradation of methyl orange by annealing Fe-based amorphous ribbons. Intermetallics, 2017, 90, 30-35.	3.9	34
1257	Experimental and Modeling Studies for the Removal of Crystal Violet Dye from Aqueous Solutions using Eco-friendly Gracilaria corticata Seaweed Activated Carbon/Zn/Alginate Polymeric Composite Beads. Journal of Polymers and the Environment, 2017, 25, 1062-1071.	5.0	16
1258	Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite. Ceramics International, 2017, 43, 1290-1297.	4.8	59
1259	Adsorption Study of Reactive Blue 2 Dye on CTAB-Bentonite in Aqueous Solution. Springer Proceedings in Energy, 2017, , 109-115.	0.3	0
1260	Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide. Chemosphere, 2017, 168, 80-90.	8.2	58
1261	Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent. Science of the Total Environment, 2017, 576, 398-408.	8.0	64
1262	Improved photocatalytic activity of Î^FeOOH by using H2O2 as an electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 54-59.	3.9	35
1263	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261.	20.2	1,579
1263 1264	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catalysis Today, 2017, 280, 155-164.	20.2 4.4	1,579 10
1263 1264 1265	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catalysis Today, 2017, 280, 155-164. Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: its application in removal of cationic dye. Polymer Bulletin, 2017, 74, 1221-1236.	20.2 4.4 3.3	1,579 10 10
1263 1264 1265 1266	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catalysis Today, 2017, 280, 155-164. Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: its application in removal of cationic dye. Polymer Bulletin, 2017, 74, 1221-1236. Influence of alternating current on the adsorption of indigo carmine. Environmental Science and Pollution Research, 2017, 24, 9940-9950.	20.2 4.4 3.3 5.3	1,579 10 10 43
1263 1264 1265 1266 1267	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catalysis Today, 2017, 280, 155-164. Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: its application in removal of cationic dye. Polymer Bulletin, 2017, 74, 1221-1236. Influence of alternating current on the adsorption of indigo carmine. Environmental Science and Pollution Research, 2017, 24, 9940-9950. Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchemical Journal, 2017, 130, 129-136.	20.2 4.4 3.3 5.3 4.5	1,579 10 10 43 102
1263 1264 1265 1266 1267	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catalysis Today, 2017, 280, 155-164. Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: its application in removal of cationic dye. Polymer Bulletin, 2017, 74, 1221-1236. Influence of alternating current on the adsorption of indigo carmine. Environmental Science and Pollution Research, 2017, 24, 9940-9950. Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchemical Journal, 2017, 130, 129-136. Mechanism and dynamic study of reactive red X-3B dye degradation by ultrasonic-assisted ozone oxidation process. Ultrasonics Sonochemistry, 2017, 38, 681-692.	 20.2 4.4 3.3 5.3 4.5 8.2 	1,579 10 10 43 102 67
1263 1264 1265 1266 1267 1268	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catalysis Today, 2017, 280, 155-164. Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: its application in removal of cationic dye. Polymer Bulletin, 2017, 74, 1221-1236. Influence of alternating current on the adsorption of indigo carmine. Environmental Science and Pollution Research, 2017, 24, 9940-9950. Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchemical Journal, 2017, 130, 129-136. Mechanism and dynamic study of reactive red X-3B dye degradation by ultrasonic-assisted ozone oxidation process. Ultrasonics Sonochemistry, 2017, 38, 681-692. Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chemical Engineering Journal, 2017, 307, 1026-1036.	20.2 4.4 3.3 5.3 4.5 8.2 12.7	1,579 10 10 43 102 67 77
1263 1264 1265 1266 1267 1268 1269	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 2017, 202, 217-261. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catalysis Today, 2017, 280, 155-164. Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: its application in removal of cationic dye. Polymer Bulletin, 2017, 74, 1221-1236. Influence of alternating current on the adsorption of indigo carmine. Environmental Science and Pollution Research, 2017, 24, 9940-9950. Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchemical Journal, 2017, 130, 129-136. Mechanism and dynamic study of reactive red X-3B dye degradation by ultrasonic-assisted ozone oxidation process. Ultrasonics Sonochemistry, 2017, 38, 681-692. Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chemical Engineering Journal, 2017, 307, 1026-1036. Optimization of dye adsorption using Fe ₃ O ₄ nanoparticles encapsulated with alginate beads by Taguchi method. Adsorption Science and Technology, 2017, 35, 55-71.	 20.2 4.4 3.3 5.3 4.5 8.2 12.7 3.2 	1,579 10 10 43 102 67 67 77 34

#	Article	IF	CITATIONS
1272	Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes. Journal of Hazardous Materials, 2017, 321, 576-585.	12.4	8
1273	Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 439-448.	3.9	23
1274	High performance methyl orange capture on magnetic nanoporous MCM-41 prepared by incipient wetness impregnation method. Korean Journal of Chemical Engineering, 2017, 34, 259-265.	2.7	42
1275	Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents. International Journal of Biological Macromolecules, 2017, 95, 393-403.	7.5	55
1276	Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. Journal of Environmental Management, 2017, 187, 82-88.	7.8	48
1277	Improved adsorption performance of nanostructured composite by ultrasonic wave: Optimization through response surface methodology, isotherm and kinetic studies. Ultrasonics Sonochemistry, 2017, 37, 94-105.	8.2	74
1278	Fe/TiO 2 composite coatings modified by ceria layer: Electrochemical synthesis using environmentally friendly methanesulfonate electrolytes and application as photocatalysts for organic dyes degradation. Journal of Environmental Chemical Engineering, 2017, 5, 136-146.	6.7	12
1279	Azo dye decolorization by ZVI under circum-neutral pH conditions and the characterization of ZVI corrosion products. Journal of Industrial and Engineering Chemistry, 2017, 47, 86-93.	5.8	23
1280	Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. Journal of Materials Science, 2017, 52, 504-518.	3.7	43
1281	Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater. IOP Conference Series: Earth and Environmental Science, 2017, 109, 012042.	0.3	17
1282	Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron. IOP Conference Series: Materials Science and Engineering, 2017, 262, 012178.	0.6	1
1283	Preparation of adsorbent based on cotton fiber for removal of dyes. Fibers and Polymers, 2017, 18, 2102-2110.	2.1	26
1284	Effective removal of brilliant green from aqueous solution with magnetic Fe3O4@SDBS@LDHs composites. Transactions of Nonferrous Metals Society of China, 2017, 27, 2673-2681.	4.2	22
1285	Graphene Oxide/Chitosan/Polyvinylâ€Alcohol Composite Sponge as Effective Adsorbent for Dyes. Water Environment Research, 2017, 89, 555-563.	2.7	9
1286	Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution. Arabian Journal of Chemistry, 2017, 10, S244-S251.	4.9	44
1287	Study of photocatalytic asset of the ZnSnO 3 synthesized by green chemistry. Arabian Journal of Chemistry, 2017, 10, S404-S411.	4.9	46
1288	Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry, 2017, 10, S3216-S3228.	4.9	97
1289	One-step electrochemical synthesis of graphene oxide-TiO_2 nanotubes for improved visible light activity. Optical Materials Express, 2017, 7, 1535.	3.0	12

#	Article	IF	Citations
1290	Activated Carbon, Carbon Nanotubes and Graphene: Materials and Composites for Advanced Water Purification. Journal of Carbon Research, 2017, 3, 18.	2.7	128
1291	Selective Adsorption and Photocatalytic Degradation of Dyes Using Polyoxometalate Hybrid Supported on Magnetic Activated Carbon Nanoparticles under Sunlight, Visible, and UV Irradiation. International Journal of Photoenergy, 2017, 2017, 1-15.	2.5	33
1292	The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts, 2017, 7, 9.	3.5	64
1293	Advances and Trends in Voltammetric Analysis of Dyes. , 0, , .		5
1294	Adsorption Capability of Cationic Dyes (Methylene Blue and Crystal Violet) onto Poly-Î ³ -glutamic Acid. Chemical and Pharmaceutical Bulletin, 2017, 65, 268-275.	1.3	7
1295	The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of Mn Đ¥ Fe3Ââ^'ÂX Đž4 Spinels. Nanoscale Research Letters, 2017, 12, 505.	5.7	21
1296	Degradation of Pollutants Using Advanced Ecomaterials. , 2017, , 1-19.		0
1297	Application of Factorial Design in the Analysis of Factors Influencing Textile Dye Adsorption on Activated Carbon. Journal of Civil & Environmental Engineering, 2017, 07, .	0.1	1
1298	Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites. Journal of Colloid and Interface Science, 2018, 519, 154-173.	9.4	104
1299	The different paths and potential risks of photo(-electro)-catalytic degradation for rhodamine B in water by graphene/TiO2 membrane. Environmental Science and Pollution Research, 2018, 25, 13988-13999.	5.3	9
1300	Catalytically Active Bacterial Nanocelluloseâ€Based Ultrafiltration Membrane. Small, 2018, 14, e1704006.	10.0	59
1301	Sustainable Dyeing Techniques. Textile Science and Clothing Technology, 2018, , 1-29.	0.5	4
1302	Removal of brilliant green and malachite green from aqueous solution by a viable magnetic polymeric nanocomposite: Simultaneous spectrophotometric determination of 2 dyes by PLS using original and first derivative spectra. Journal of Chemometrics, 2018, 32, e3014.	1.3	13
1303	TiO ₂ â€Graphene Nanocomposites for Effective Photocatalytic Degradation of Rhodamineâ€B Dye. ChemistrySelect, 2018, 3, 2578-2585.	1.5	27
1304	Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 2018, 29, 8347-8353.	2.2	59
1305	Acid Green 1 removal from wastewater by layered double hydroxides. Applied Water Science, 2018, 8, 1.	5.6	9
1306	Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of Water Process Engineering, 2018, 22, 180-191.	5.6	75
1307	Core-shell structured Mn 2 O 3 /MgO microsphere for removal of C.I. Basic Violet 3 from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 188-196.	4.7	12
#	Article		CITATIONS
------	---	------	-----------
1308	Metal hexacyanoferrates nanoparticles mediated degradation of carcinogenic aromatic amines. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 36-50.		23
1309	Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohydrate Polymers, 2018, 194, 375-383.	10.2	86
1310	In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies. Environmental Science and Pollution Research, 2018, 25, 17310-17320.	5.3	25
1311	Sustainable adsorbents formed from by-product of acid activation of vermiculite and leached-vermiculite-LDH hybrids for removal of industrial dyes and metal cations. Applied Clay Science, 2018, 161, 6-14.	5.2	27
1312	Use of Pt and Boronâ€Đoped Diamond Anodes in the Electrochemical Advanced Oxidation of Ponceau SS Diazo Dye in Acidic Sulfate Medium. ChemElectroChem, 2018, 5, 685-693.	3.4	40
1313	Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicology and Environmental Safety, 2018, 158, 50-58.	6.0	55
1314	Pilot-scale produced super activated carbon with a nanoporous texture as an excellent adsorbent for the efficient removal of metanil yellow. Powder Technology, 2018, 333, 243-251.	4.2	9
1315	Removal of organic dyes from aqueous solution using waste catalyst-derived adsorbent: Isotherm modeling and kinetic studies. Materials Research Express, 2018, 5, 065603.	1.6	3
1316	Photo-oxidation processes of Rhodamine B: A chromatographic and mass spectrometric approach. Microchemical Journal, 2018, 140, 114-122.	4.5	31
1317	Gamma-radiation induced decolorization and degradation on aqueous solutions of Indigo Carmine dye. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 37-44.	1.5	28
1318	Enhanced visible light photocatalytic activity of g-C3N4assisted by hydrogen peroxide. Materials Research Express, 2018, 5, 046203.	1.6	2
1319	A rapid potentiometric titration method for measuring low-level chemical oxygen demand inÂorganic wastewater containing synthetic phenothiazine dyes. Analytical Methods, 2018, 10, 1902-1910.	2.7	2
1320	Facile synthesis and structural analysis of graphene oxide decorated with iron-cerium carbonate for visible-light driven rapid degradation of organic dyes. Journal of Environmental Chemical Engineering, 2018, 6, 2616-2626.	6.7	9
1321	Facile Synthesis of MgAl-Layered Double Hydroxide Supported Metal Organic Framework Nanocomposite for Adsorptive Removal of Methyl Orange Dye. Colloids and Interface Science Communications, 2018, 24, 35-39.	4.1	44
1322	Efficient photocatalytic removal of RhB, MO and MB dyes by optimized Ni/NiO/TiO2 composite thin films under solar light irradiation. Journal of Environmental Chemical Engineering, 2018, 6, 2724-2732.	6.7	55
1323	Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal. Journal of Environmental Chemical Engineering, 2018, 6, 1683-1689.	6.7	22
1324	Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Applied Nanoscience (Switzerland), 2018, 8, 173-186.	3.1	61
1325	Removal of a cationic dye from aqueous solution by natural clay. Groundwater for Sustainable Development, 2018, 6, 255-262.	4.6	61

#	Article	IF	CITATIONS
1326	Preparation of high surface area activated carbon from waste-biomass of sunflower piths: Kinetics and equilibrium studies on the dye removal. Journal of Environmental Chemical Engineering, 2018, 6, 1702-1713.		116
1327	Regenerable urchin-like Fe 3 O 4 @PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes. Journal of Hazardous Materials, 2018, 350, 66-75.	12.4	172
1328	The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environmental Science and Pollution Research, 2018, 25, 8286-8314.	5.3	108
1329	Study of adsorptive materials obtained by wet fine milling and acid activation of vermiculite. Applied Clay Science, 2018, 155, 37-49.	5.2	25
1330	High Surface Area SnO ₂ –Ta ₂ O ₅ Composite for Visible Lightâ€driven Photocatalytic Degradation of an Organic Dye. Photochemistry and Photobiology, 2018, 94, 633-640.	2.5	15
1331	Bio-Adsorbent from Carboxymethyl Cellulose and Tannin for Dye Adsorption. Journal of Macromolecular Science - Physics, 2018, 57, 177-186.	1.0	14
1332	Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 2018, 256, 395-407.	4.9	592
1333	High performance photocatalytic activity of pure and Ni doped SnO2 nanoparticles by a facile wet chemical route. Journal of Materials Science: Materials in Electronics, 2018, 29, 6308-6315.	2.2	6
1334	Adsorption Kinetics of Acid Red on Activated Carbon Web Prepared from Acrylic Fibrous Waste. Fibers and Polymers, 2018, 19, 71-81.	2.1	12
1335	Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties. Materials Research Express, 2018, 5, 015505.	1.6	3
1336	Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta. Dyes and Pigments, 2018, 151, 15-21.	3.7	25
1337	Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere, 2018, 196, 58-68.	8.2	102
1338	Effect of nitrogen source concentration on decolouration rates of laboratory dyes by immobilized cells of two bacterial species. World Journal of Microbiology and Biotechnology, 2018, 34, 18.	3.6	8
1339	Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis. Chemical Engineering Journal, 2018, 338, 46-54.	12.7	62
1340	Construction of two-dimensional porphyrin-based fully conjugated microporous polymers as highly efficient photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 370-378.	3.9	32
1341	Removal of textile dyes by carbon nanotubes: A comparison between adsorption and UV assisted photocatalysis. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 99, 6-15.	2.7	49
1342	Advancement of Photocatalytic Water Treatment Technology for Environmental Control. , 2018, , 1-28.		0
1343	Facile synthesis of MoO ₂ /CaSO ₄ composites as highly efficient adsorbents for congo red and rhodamine B. RSC Advances, 2018, 8, 1621-1631.	3.6	18

#	Article	IF	Citations
1344	Removal of acid orange 7 by surfactant-modified iron nanoparticle supported on palygorskite: Reactivity and mechanism. Applied Clay Science, 2018, 152, 173-182.	5.2	17
1345	Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environmental Research, 2018, 162, 173-195.	7.5	448
1346	Enhanced adsorption of xylenol orange from aqueous solutions by polyethylenimineâ€grafted chitosan microspheres. Canadian Journal of Chemical Engineering, 2018, 96, 2007-2013.	1.7	1
1347	Green synthesis of ZnO hollow microspheres and ZnO/rGO nanocomposite using red rice husk extract and their photocatalytic performance. Materials Research Express, 2018, 5, 095012.	1.6	20
1348	Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science, 2018, 4, 244-254.	1.0	260
1349	Membrane Type Wastewater Decolorization Using Culture Supernatant of <i>Trametes versicolor</i> . Journal of Water and Environment Technology, 2018, 16, 54-62.	0.7	1
1350	Treatment of Crystal Violet from Synthetic Solution Using Membranes Doped with Natural Fruit Extract. Clean - Soil, Air, Water, 2018, 46, 1700413.	1.1	22
1351	Mechanochemical synthesis of novel heterostructured Bi2S3/Zn-Al layered double hydroxide nano-particles as efficient visible light reactive Z-scheme photocatalysts. Applied Surface Science, 2018, 452, 123-133.	6.1	55
1352	Synthesis of Ag–SiO ₂ –APTES Nanocomposites by Blending Poly(Vinylidene Fluoride) Membrane with Potential Applications on Dye Wastewater Treatment. Nano, 2018, 13, 1850034.	1.0	10
1353	Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chemical Engineering Journal, 2018, 348, 67-73.	12.7	189
1354	Enhanced removal performance for methylene blue by kaolin with graphene oxide modification. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89, 77-85.	5.3	57
1355	The Dependence of Oxidation Parameters and Dyes' Molecular Structures on Microstructure of Boron-Doped Diamond in Electrochemical Oxidation Process of Dye Wastewater. Journal of the Electrochemical Society, 2018, 165, H324-H332.	2.9	21
1356	Graphene Oxide/Alginate Quasi-Cryogels for Removal of Methylene Blue. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	29
1357	Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnO X -CeO 2 using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 191-197.	4.7	21
1358	Electrophoretically deposited halloysite nanotubes coating as the adsorbent for the removal of methylene blue from aqueous solution. Journal of the European Ceramic Society, 2018, 38, 3650-3659.	5.7	24
1359	Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor. IOP Conference Series: Earth and Environmental Science, 2018, 106, 012089.	0.3	16
1360	Application of copper sulfide nanoparticles loaded activated carbon for simultaneous adsorption of ternary dyes: Response surface methodology. Korean Journal of Chemical Engineering, 2018, 35, 1108-1118.	2.7	8
1361	Nanofibers for Water Treatment. , 2018, , 1-58.		0

#	Article		CITATIONS
1362	Graphene oxide-wrapped magnetite nanoclusters: A recyclable functional hybrid for fast and highly efficient removal of organic dyes from wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 2176-2190.		60
1363	Behaviour of polysulfone ultrafiltration membrane for dyes removal. Water Science and Technology, 2018, 77, 2093-2100.		27
1364	A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye. Journal of Environmental Chemical Engineering, 2018, 6, 3640-3647.	6.7	33
1365	Photo-assisted advanced oxidation processes for Rhodamine B degradation using ZnO–Ag nanocomposite materials. Journal of Environmental Chemical Engineering, 2018, 6, 3610-3620.	6.7	43
1366	Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 2018, 65, 201-222.	6.1	541
1367	Adsorption of anionic dye by anionic surfactant modified chitosan beads: Influence of hydrophobic tail and ionic head-group. Journal of Dispersion Science and Technology, 2018, 39, 106-115.	2.4	10
1368	Anaerobic–aerobic sequencing batch reactor treating azo dye containing wastewater: effect of high nitrate ions and salt. Journal of Water Reuse and Desalination, 2018, 8, 251-261.	2.3	26
1369	Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. Journal of Environmental Sciences, 2018, 65, 92-102.	6.1	89
1370	Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb 2+ and methyl orange sorption from aqueous solution. Journal of Materials Science and Technology, 2018, 34, 855-863.		73
1371	Preparation, characterization and evaluation of the catalytic power of an hybrid compound [H ₃ PMo ₁₂ O ₄₀ -chitosan] for theÂazoic-colored solutions. Journal of the Textile Institute, 2018, 109, 232-240.	1.9	5
1372	A Biomass Cationic Adsorbent Prepared From Corn Stalk: Low-Cost Material and High Adsorption Capacity. Journal of Polymers and the Environment, 2018, 26, 1642-1651.	5.0	17
1373	An effective electroanalytical approach for the monitoring of electroactive dyes and intermediate products formed in electro-Fenton treatment. Journal of Electroanalytical Chemistry, 2018, 808, 403-411.	3.8	22
1374	Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 164-169.	3.9	57
1375	A robust and stable nanoâ€biocatalyst by coâ€immobilization of chloroperoxidase and horseradish peroxidase for the decolorization of azo dyes. Journal of Chemical Technology and Biotechnology, 2018, 93, 489-497.	3.2	31
1376	lsotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization. Ultrasonics Sonochemistry, 2018, 40, 373-382.	8.2	127
1377	Removal of organic water pollutant using magnetite nanomaterials embedded with ionic copolymers of 2â€acrylamidoâ€2â€methylpropane sodium sulfonate cryogels. Polymer International, 2018, 67, 166-177.	3.1	13
1379	Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. Journal of Cleaner Production, 2018, 172, 1128-1139.	9.3	154
1380	Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups. Carbohydrate Polymers, 2018, 181, 327-336.	10.2	109

#	Article		CITATIONS
1381	Identification of biotransformation products of disperse dyes with rat liver microsomes by LC-MS/MS and theoretical studies with DNA: Structure-mutagenicity relationship using Salmonella/microsome assay. Science of the Total Environment, 2018, 613-614, 1093-1103.		16
1382	Facile fabrication of CuO-Pb 2 O 3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation. Applied Surface Science, 2018, 433, 206-212.	6.1	29
1383	Degradation of Reactive Black 5 by electrochemical oxidation. Chemosphere, 2018, 190, 405-416.	8.2	69
1384	Novel microbial and root mediated green synthesis of TiO ₂ nanoparticles and its application in wastewater remediation. Journal of Chemical Technology and Biotechnology, 2018, 93, 736-743.	3.2	37
1385	Novel development of nanocrystalline kesterite Cu2ZnSnS4 thin film with high photocatalytic activity under visible light illumination. Journal of Physics and Chemistry of Solids, 2018, 112, 37-42.	4.0	25
1386	Influence of oxygen pressure to photoelectrochemical oxidation C.I. direct black 22 on TiO2 nanotube array photoanode. International Journal of Environmental Science and Technology, 2018, 15, 1609-1618.	3.5	6
1387	Synthesis of amphiphilic hyperbranched polyglycerol through "thiol-ene―chemistry and its application on the removal of industrial dyes. Chemical Engineering Communications, 2018, 205, 82-91.	2.6	2
1388	Prospective assessment of the Enterobacter aerogenes PP002 in decolorization and degradation of azo dyes DB 71 and DG 28. Journal of Environmental Chemical Engineering, 2018, 6, 95-109.	6.7	26
1389	Application of a planar falling film reactor for decomposition and mineralization of methylene blue in the aqueous media via ozonation, Fenton, photocatalysis and non-thermal plasma: A comparative study. Chemical Engineering Research and Design, 2018, 113, 319-329.	5.6	100
1390	Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 2018, 82, 3107-3126.	16.4	203
1391	Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 2018, 21, 77-83.	5.6	26
1392	Thermoreversible gelation of poly(urethane acyl-semicarbazides) carrying cycloaliphatic moieties and studies on selective adsorption of dyes from wastewater. European Polymer Journal, 2018, 99, 90-101.	5.4	7
1393	Adsorption behavior and mechanism of acidic blue 25 dye onto cucurbit[8]uril: A spectral and DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 125-132.	3.9	24
1394	Hybrid central composite design for simultaneous optimization of removal of methylene blue and alizarin red S from aqueous solutions using <i>Vitis</i> tree leaves. Journal of Chemometrics, 2018, 32, e2960.	1.3	9
1395	Flocculation characteristics of a biodegradable polymer based on dextran. Separation and Purification Technology, 2018, 194, 48-55.	7.9	8
1396	Investigation of amino acids as templates for the sol–gel synthesis of mesoporous nano TiO2 for photocatalysis. Monatshefte Für Chemie, 2018, 149, 11-18.	1.8	5
1397	A comprehensive investigation of dye–chitosan blended films for green chemistry applications. Journal of Applied Polymer Science, 2018, 135, 45945.	2.6	22
1398	Magnetic based nanocomposite sorbent combination with ultrasound assisted for solid-phase microextraction of Azure II in water samples prior to its determination spectrophotometric. Journal of Colloid and Interface Science, 2018, 513, 240-250.	9.4	60

#	Article	IF	CITATIONS
1399	Lightweight bricks manufactured from ground soil, textile sludge, and coal ash. Environmental Technology (United Kingdom), 2018, 39, 1359-1367.		18
1400	Treatment of Leather Dyeing Wastewater with Associated Process of Coagulation-Flocculation/Adsorption/Ozonation. Ozone: Science and Engineering, 2018, 40, 133-140.	2.5	56
1401	Removal of methyl orange by heterogeneous Fenton catalysts prepared using glycerol as green reducing agent. Environmental Technology (United Kingdom), 2018, 39, 2822-2833.		8
1402	Use of Tectonagrandis Leaf Extract in Colouring Silk Cloth Material Based on pH and Mordant Variations. IOP Conference Series: Materials Science and Engineering, 2018, 333, 012051.	0.6	1
1403	Evaluating the scale-up of a reactor for the treatment of textile effluents using Bjerkandera sp. Revista Facultad De IngenierÃa, 2018, , 80-90.	0.5	3
1404	Polyetherimide thin film composite (PEI-TFC) membranes for nanofiltration treatment of dyes wastewater. IOP Conference Series: Earth and Environmental Science, 0, 195, 012057.		15
1405	Bioremediation of Textile Dyes: Appraisal of Conventional and Biological Approaches. , 2018, , 459-487.		4
1406	Laccase Isoenzymes of Trametes hirsuta LE-BIN072: Degradation of Industrial Dyes and Secretion under the Different Induction Conditions. Applied Biochemistry and Microbiology, 2018, 54, 834-841.		7
1407	Application of Box–Behnken design in the optimization of a simple graphene oxide/zinc oxide nanocomposite-based pipette tip micro-solid phase extraction for the determination of Rhodamine B and Malachite green in seawater samples by spectrophotometry. Analytical Methods, 2018, 10, 5707-5714.		29
1408	Dye-tolerant marine Acinetobacter baumannii-mediated biodegradation of reactive red. Water Science and Engineering, 2018, 11, 265-275.		38
1409	Investigating the catalytic properties of calcium compounds derived from marine based shell waste for wastewater treatment. Materials Today: Proceedings, 2018, 5, 21718-21727.		6
1410	9. Transition metal-catalyzed dehydrogenation of amines. , 2018, , 295-326.		0
1411	Loại bổmÃu thuốc nhuá»™m reactive yellow 160 bằng kỹ thuáºt fenton dị thể sá»-dụng bùn Ä'á Chemistry, 2018, 56, 104-110.	»•biá⁰;n t∕ 0.8	Ănh. Vietnam O
1412	Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions. ACS Omega, 2018, 3, 15140-15148.	3.5	112
1413	Reusable Superparamagnetic Raspberry‣ike Supraparticle Adsorbers as Instant Cleaning Agents for Ultrafast Dye Removal from Water. ChemNanoMat, 2019, 5, 230-240.	2.8	14
1414	Porous Materials Obtained from Nonconventional Sources Used in Wastewater Treatment Processes. , 2018, , 1-20.		1
1415	Adsorption of Graphene Oxide onto Synthetic Fibers: Experimental Conditions. Fibers and Polymers, 2018, 19, 2254-2267.	2.1	2
1416	Enhanced Removal of Azo Dye by a Bioelectrochemical System Integrated with a Membrane Biofilm Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 16433-16441.	3.7	24

#	Article	IF	CITATIONS
1417	Environmental Photocatalysis/Photocatalytic Decontamination. , 2018, , 1-16.		1
1418	Heavy Metals, Polycyclic Aromatic Hydrocarbons (PAHs), Radioactive Materials, Xenobiotic, Pesticides, Hazardous Chemicals and Dyes Bioremediation. , 2018, , 215-229.		2
1419	Bioremediation-Waste Water Treatment. Journal of Bioremediation & Biodegradation, 2018, 09, .	0.5	15
1420	Cu(OH)2 Nanostructures for Dynamic Photodegradation of Methyl Orange under Visible Light. Russian Journal of Applied Chemistry, 2018, 91, 1345-1352.	0.5	0
1421	Adsorption of congo red dye from aqueous solution onto amino-functionalized silica gel. Engenharia Sanitaria E Ambiental, 2018, 23, 1053-1060.	0.5	53
1422	Practices towards Sustainable Textile Processes: Investigation on Environmental Issues at Different Stages of Knitted Fabric Wet Processing. Journal of Textile Science & Engineering, 2018, 08, .	0.2	0
1423	Decolorization and detoxification of textile wastewaters by recombinant Myceliophthora thermophila and Trametes trogii laccases. 3 Biotech, 2018, 8, 505.	2.2	7
1424	Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: process optimization and modeling kinetics for dye removal. Applied Nanoscience (Switzerland), 2018, 8, 2077-2092.	3.1	43
1425	Oxidative degradation of quinazoline in supercritical water: a combined ReaxFF and DFT study. Molecular Simulation, 2018, 44, 1508-1519.	2.0	9
1426	Template-free synthesis of three dimensional porous boron nitride nanosheets for efficient water cleaning. RSC Advances, 2018, 8, 32886-32892.	3.6	14
1427	Alginate/calix[4]arenes modified graphene oxide nanocomposite beads: Preparation, characterization, and dye adsorption studies. International Journal of Biological Macromolecules, 2018, 120, 1353-1361.	7.5	36
1428	Questions of Noninnocence and Ease of Azo Reduction in Diruthenium Frameworks with a 1,8-Bis((<i>E</i>)-phenyldiazenyl)naphthalene-2,7-dioxido Bridge. Inorganic Chemistry, 2018, 57, 12800-12810.	4.0	29
1429	Bio-prospecting of macro-algae for potential industrial dyes. African Journal of Biotechnology, 2018, 17, 804-810.	0.6	3
1430	Valorisation of rhodamine B adsorbed copolymer beads for the recovery of Cu2+ from e-waste: Green approach. Journal of Environmental Chemical Engineering, 2018, 6, 7002-7009.	6.7	4
1431	Effect of chemical modification with 4-vinylpyridine on dyeing of cotton fabric with reactive dyestuff. Cellulose, 2018, 25, 6793-6809.	4.9	17
1432	Structural, Optical, and Photocatalytic Activities of Ag-Doped and Mn-Doped ZnO Nanoparticles. Journal of Nanomaterials, 2018, 2018, 1-9.	2.7	37
1433	Lipase and Laccase Encapsulated on Zeolite Imidazolate Framework: Enzyme Activity and Stability from Voltammetric Measurements. ChemCatChem, 2018, 10, 5425-5433.	3.7	40
1434	One-Pot Approach for the Synthesis of Water-Soluble Anatase TiO ₂ Nanoparticle Cluster with Efficient Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2018, 122, 26447-26453.	3.1	6

#	Article		CITATIONS
1435	Enhanced decolorization of sulfonated azo dye methyl orange by single and mixed bacterial strains AK1, AK2 and VKY1. Bioremediation Journal, 2018, 22, 136-146.		24
1436	Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination. Catalysts, 2018, 8, 491.	3.5	86
1437	Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. International Journal of Molecular Sciences, 2018, 19, 3373.	4.1	70
1438	Polymer-Decorated Filter Material for Wastewater Treatment: In Situ Ultrafast Oil/Water Emulsion Separation and Azo Dye Adsorption. Langmuir, 2018, 34, 13192-13202.	3.5	19
1439	Molybdenum Trioxide: Efficient Nanosorbent for Removal of Methylene Blue Dye from Aqueous Solutions. Molecules, 2018, 23, 2295.	3.8	35
1440	Modified Nigella Sativa Seeds as a Novel Efficient Natural Adsorbent for Removal of Methylene Blue Dye. Molecules, 2018, 23, 1950.	3.8	14
1441	Chromatographic Analysis of Textile Dyes. Journal of AOAC INTERNATIONAL, 2018, 101, 1353-1370.	1.5	22
1442	Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 169-183.	4.7	40
1443	Tough and Self-Healable Nanocomposite Hydrogels for Repeatable Water Treatment. Polymers, 2018, 10, 880.	4.5	22
1444	Nanocomposite-Based Aminated Polyethersulfone and Carboxylate Activated Carbon for Environmental Application. A Real Sample Analysis. Journal of Carbon Research, 2018, 4, 30.	2.7	22
1445	Electrochemical degradation of Mordant Blue 13 azo dye using boron-doped diamond and dimensionally stable anodes: influence of experimental parameters and water matrix. Environmental Science and Pollution Research, 2018, 25, 30425-30440.	5.3	29
1446	Synergetic effect of heterojunction and doping of silver on ZnNb2O6 for superior visible-light photocatalytic activity and recyclability. Solid State Sciences, 2018, 84, 86-94.	3.2	8
1447	Crossed mixtureâ€process design for optimization of simultaneous adsorption of Tartrazine and Indigo carmine dyes by cobalt hydroxide nanosorbent. Journal of Chemometrics, 2018, 32, e3039.	1.3	12
1448	Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation. Chemosphere, 2018, 207, 285-292.	8.2	40
1449	Photocatalytic degradation of textile dye using TiO2-activated carbon nanocomposite. AIP Conference Proceedings, 2018, , .	0.4	5
1450	Highly dispersed PVP-supported Ir–Ni bimetallic nanoparticles as high performance catalyst for degradation of metanil yellow. Bulletin of Materials Science, 2018, 41, 1.	1.7	6
1451	Modeling and Optimization of Acid Blue 193 Removal by UV and Peroxydisulfate Process. Journal of Environmental Engineering, ASCE, 2018, 144, .	1.4	38
1452	Removal of methylene blue from aqueous solution by electrophoretically deposited titaniaâ€halloysite nanotubes coatings. Journal of the American Ceramic Society, 2018, 101, 4942-4955.	3.8	4

# 1453	ARTICLE Identification of a repressor and an activator of azoreductase gene expression in Pseudomonas putida and Xanthomonas oryzae. Biochemical and Biophysical Research Communications, 2018, 502, 9-14.	IF 2.1	CITATIONS
1454	Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. Journal of Alloys and Compounds, 2018, 763, 1024-1034.	5.5	97
1455	Guanidinium ionic liquid-controlled synthesis of zeolitic imidazolate framework for improving its adsorption property. Science of the Total Environment, 2018, 640-641, 163-173.	8.0	22
1456	Exploring the Reusability of Synthetically Contaminated Wastewater Containing Crystal Violet Dye using Tectona grandis Sawdust as a Very Low-Cost Adsorbent. Scientific Reports, 2018, 8, 8314.	3.3	140
1457	Nickel-foam-supported β-Ni(OH) ₂ as a green anodic catalyst for energy efficient electrooxidative degradation of azo-dye wastewater. RSC Advances, 2018, 8, 19776-19785.	3.6	24
1458	Biogenic synthesis of shape-tunable Au-Pd alloy nanoparticles with enhanced catalytic activities. Journal of Alloys and Compounds, 2018, 763, 399-408.	5.5	24
1459	Removal of a Persistent Dye in Aqueous Solutions by Electrocoagulation Process: Modeling and Optimization Through Response Surface Methodology. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	19
1460	Fabrication of PET/BiOI/SnO2 heterostructure nanocomposites for enhanced visible-light photocatalytic activity. Solid State Sciences, 2018, 82, 34-43.	3.2	12
1461	Wastewater Treatment: An Overview. Environmental Chemistry for A Sustainable World, 2018, , 1-21.	0.5	32
1462	Crossâ€linked poly(methyl methacrylate)/multiwall carbon nanotube nanocomposites for environmental treatment. Advances in Polymer Technology, 2018, 37, 3240-3251.	1.7	11
1463	Solution combustion synthesis of nickel sulfide composite powders. Ceramics International, 2018, 44, 17277-17282.	4.8	24
1464	Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 2018, 6, 4676-4697.	6.7	1,525
1465	Ultrasound assisted synthesis of guar gum-zero valent iron nanocomposites as a novel catalyst for the treatment of pollutants. Carbohydrate Polymers, 2018, 199, 41-50.	10.2	40
1466	Ultrasound enhanced electrochemical oxidation of Alizarin Red S on boron doped diamond(BDD) anode:Effect of degradation process parameters. Chemosphere, 2018, 209, 685-695.	8.2	74
1467	In-situ synthesis of rGO-ZnO nanocomposite for demonstration of sunlight driven enhanced photocatalytic and self-cleaning of organic dyes and tea stains of cotton fabrics. Journal of Hazardous Materials, 2018, 360, 193-203.	12.4	100
1468	Integrated adsorption and catalytic degradation of safranine T by a porous covalent triazine-based framework. Journal of Colloid and Interface Science, 2018, 532, 1-11.	9.4	43
1469	Polyaniline-derived porous carbons: Remarkable adsorbent for removal of various hazardous organics from both aqueous and non-aqueous media. Journal of Hazardous Materials, 2018, 360, 163-171.	12.4	49
1470	A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems. Journal of Polymers and the Environment, 2018, 26, 3924-3936.	5.0	23

#	Article	IF	Citations
1471	Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization. Molecular Biotechnology, 2018, 60, 681-689.	2.4	23
1472	Total mineralization of mixtures of Tartrazine, Ponceau SS and Direct Blue 71 azo dyes by solar photoelectro-Fenton in pre-pilot plant. Chemosphere, 2018, 210, 1137-1144.	8.2	54
1473	Bio-decolourization of Reactive Blue EFAF using halotolerant Exiguobacterium profundumstrain CMR2 isolated from salt pan. Biocatalysis and Agricultural Biotechnology, 2018, 16, 98-106.	3.1	16
1474	Nanocomposite membrane for environmental remediation. , 2018, , 407-440.		8
1475	MOF-derived In2S3 nanorods for photocatalytic removal of dye and antibiotics. Journal of Solid State Chemistry, 2018, 266, 205-209.	2.9	42
1476	Synthesis of Rectorite/Fe3O4/ZnO Composites and Their Application for the Removal of Methylene Blue Dye. Catalysts, 2018, 8, 107.	3.5	30
1477	Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes. International Journal of Environmental Research and Public Health, 2018, 15, 35.	2.6	8
1478	Removal Behavior of Methylene Blue from Aqueous Solution by Tea Waste: Kinetics, Isotherms and Mechanism. International Journal of Environmental Research and Public Health, 2018, 15, 1321.	2.6	59
1479	Mesoporous Jarosite/MnO2 and Goethite/MnO2 Nanocomposites Synthesis And Application for Oxidation of Methylene Blue. Journal of Structural Chemistry, 2018, 59, 463-473.	1.0	6
1480	Hierarchically structure CrO4–TiO2 nanocomposite material and its multi application. Journal of Materials Science: Materials in Electronics, 2018, 29, 15074-15085.	2.2	2
1481	Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Advances, 2018, 8, 24571-24587.	3.6	235
1482	Direct Orange 34 dye fixation by modified kaolin. Clay Minerals, 2018, 53, 271-287.	0.6	6
1483	Electrochemical degradation of azo dye methyl orange by anodic oxidation on Ti4O7 electrodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 14065-14072.	2.2	24
1484	Degradation of malachite green dye by Tenacibaculum sp. HMG1 isolated from Pacific deep-sea sediments. Acta Oceanologica Sinica, 2018, 37, 104-111.	1.0	16
1485	High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 4634-4643.	6.7	83
1486	Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	4
1487	Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Advances, 2018, 8, 24588-24598.	3.6	59
1488	Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller's earth. Journal of Physics and Chemistry of Solids, 2018, 123, 43-51.	4.0	127

#	Article	IF	CITATIONS
1489	Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. Journal of Environmental Management, 2018, 219, 285-293.		137
1490	Horseradish peroxidase-mediated decolourization of Orange II: modelling hydrogen peroxide utilization efficiency at different pH values. Environmental Science and Pollution Research, 2018, 25, 19989-20002.	5.3	10
1491	Decolourization of Reactive Red EXF Dye by Isolated Strain Proteus Mirabilis. , 2018, , .		5
1492	Statistical physics modeling of synthetic dyes adsorption onto Spirulina platensis nanoparticles. Environmental Science and Pollution Research, 2018, 25, 28973-28984.	5.3	13
1493	Electrochemical oxidation of reactive brilliant orange X-GN dye on boron-doped diamond anode. Journal of Central South University, 2018, 25, 1825-1835.	3.0	5
1494	Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha. International Journal of Biological Macromolecules, 2018, 120, 19-27.	7.5	36
1495	TiO 2 -PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. Journal of Water Process Engineering, 2018, 24, 74-82.	5.6	78
1496	Strong pyro-electro-chemical coupling of Ba0.7Sr0.3TiO3@Ag pyroelectric nanoparticles for room-temperature pyrocatalysis. Nano Energy, 2018, 50, 581-588.	16.0	94
1497	Partially carboxymethylated and partially cross-linked surface of chitosan versus the adsorptive removal of dyes and divalent metal ions. Carbohydrate Polymers, 2018, 197, 586-597.	10.2	76
1498	Performance analysis of different textile effluent treatment processes involving marine diatom Odontella aurita. Environmental Technology and Innovation, 2018, 11, 153-164.	6.1	8
1499	One-step mechanochemical synthesis of plasmonic Ag/Zn–Al LDH with excellent photocatalytic activity. Journal of Materials Science, 2018, 53, 12795-12806.	3.7	45
1500	A highly selective conversion of toxic nitrobenzene to nontoxic aminobenzene by Cu ₂ 0/Bi/Bi ₂ MoO ₆ . Dalton Transactions, 2018, 47, 8794-8800.	3.3	19
1501	Carbon quantum dots/TiO2 nanocomposite for sensing of toxic metals and photodetoxification of dyes with kill waste by waste concept. Materials and Design, 2018, 155, 485-493.	7.0	30
1502	Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment, 2018, 640-641, 772-797.	8.0	341
1503	Possibilities of Obtaining from Highly Polluted Environments: New Bacterial Strains with a Significant Decolorization Potential of Different Synthetic Dyes. Water, Air, and Soil Pollution, 2018, 229, 176.	2.4	24
1504	Preparation and characterization of Fe-Ce co-doped Ti/TiO2 NTs/PbO2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants. Journal of Electroanalytical Chemistry, 2018, 823, 193-202.	3.8	80
1505	A novel green approach for the synthesis of tungsten oxide nanorods and its efficient potential towards photocatalytic degradation of reactive green 19 dye. Journal of Materials Science: Materials in Electronics, 2018, 29, 13715-13722.	2.2	30
1506	Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches. , 2019, , 219-244.		66

		CITATION REPOR	T	
#	Article	IF		CITATIONS
1507	Microalgae as Bio-Converters of Wastewater into Biofuel and Food. , 2019, , 75-94.			0
1509	Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 145-155.	16	.2	1,575
1510	Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads an functionalized composites. Journal of Environmental Sciences, 2019, 78, 81-91.	id their 6.1	L	74
1511	Green formulation for synthetic dye extraction using synergistic mixture of acid-base extracta Separation and Purification Technology, 2019, 209, 293-300.	nt. 7.9		27
1512	A facile colloidal crystal templating method to produce three-dimensional hierarchical porous graphene–Fe3O4 nanocomposite for the removal of dyes from aqueous solution. Journal of Materials, 2019, 26, 271-280.	Porous 2.6	5	10
1513	Sonochemical Degradation of C.I. Reactive Orange 107. Environmental Engineering Science, 2 158-171.	019, 36, 1.6		5
1514	Fast decolourization of Indigo Carmine and Crystal Violet in aqueous environments through m catalysis. Separation and Purification Technology, 2019, 210, 698-709.	icellar 7.9)	19
1515	Fast Light-Driven Biodecolorization by a <i>Geobacter sulfurreducens</i> –CdS Biohybrid. AG Sustainable Chemistry and Engineering, 2019, 7, 15427-15433.	CS 6.7	7	43
1516	Multivariate Optimization for Preconcentration and Separation of Brilliant Green using Magne Nanoparticles Functionalized by Cetyltrimethylamonium Bromide. Journal of Analytical Chemis 2019, 74, 744-755.	tite stry, 0.9	9	7
1517	Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of org pollutants in water. Journal of Industrial and Engineering Chemistry, 2019, 80, 247-257.	ganic 5.8	8	70
1518	Nanomaterials for Healthcare, Energy and Environment. Advanced Structured Materials, 2019,	,,. 0.5	5	5
1519	Au nanoparticles decorated on magnetic nanocomposite (GO-Fe3O4/Dop/Au) as a recoverable for degradation of methylene blue and methyl orange in water. International Journal of Hydrog Energy, 2019, 44, 23002-23009.	e catalyst gen 7.1		43
1520	Degradation of organic dyes by water soluble iron(III) mononuclear complexes from bis-(2-pyridylmethyl)amine NNN-derivative ligands. Inorganic Chemistry Communication, 2019 107507.	9, 108, 3.9)	5
1521	Comparative study between homo-metallic & hetero-metallic nanostructures based agar catalytic degradation of dyes. International Journal of Biological Macromolecules, 2019, 138, 4	in 7.5 150-461. 7		65
1522	Decolorization of dye solutions by tyrosinase in enzymatic membrane reactors. Journal of Che Technology and Biotechnology, 2019, 94, 3559-3568.	mical 3.2	2	18
1523	Photocatalytic performance of nitrogen doped ZnO structures supported on graphene oxide f degradation. Chemosphere, 2019, 236, 124368.	or MB 8.2	2	34
1524	Photocatalytic study of cobalt doped zinc oxide nanoparticles prepared by co-precipitation me AIP Conference Proceedings, 2019, , .	2thod. 0.4	4	3
1525	Shape-tunable CuO-Nd(OH)3 nanocomposites with excellent adsorption capacity in organic d removal and regeneration of spent adsorbent to reduce secondary waste. Journal of Hazardou Materials, 2019, 380, 120838.	ye S 12.	.4	43

ARTICLE IF CITATIONS Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry 1526 16.2 94 Létters, 2019, 17, 1645-1666. Bioremediation of Azo Dye., 2019, , 103-126. 1527 Mycoremediation of Environmental Pollutants from Contaminated Soil., 2019, , 239-274. 1528 10 Biodegradation of toxic dyes: a comparative study of enzyme action in a microbial system., 2019,, 255-287. Efficient Charge Transfer in Heterostructures of CdS/NaTaO₃ with Improved 1530 3.5 21 Visible-Light-Driven Photocatalytic Activity. ACS Omega, 2019, 4, 12175-12185. Advanced TiO₂â€"SiO₂â€"Sulfur (Tiâ€"Siâ€"S) Nanohybrid Materials: Potential Adsorbent for the Remediation of Contaminated Wastewater. ACS Applied Materials & amp; Interfaces, 8.0 2019, 11, 30247-30258. Fe₃O₄ Nanoparticles Coated with EDTA and Ag Nanoparticles for the 1532 5.0 83 Catalytic Reduction of Organic Dyes from Wastewater. ACS Applied Nano Materials, 2019, 2, 5310-5319. In-situ growth of polyvinylpyrrolidone modified Zr-MOFs thin-film nanocomposite (TFN) for efficient 1533 12.0 dyes removal. Composites Part B: Engineering, 2019, 176, 107208. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for 1534 5.2 224 photocatalysis of organic pollutants in water. Journal of Saudi Chemical Society, 2019, 23, 1119-1136. Electron beam irradiation treatment of Ag/Bi₂WO₆/CdWO₄ heterogeneous material with enhanced photocatalytic activity. New Journal of Chemistry, 2019, 43, 2.8 13764-13774. Improved Photocatalytic Performance for Rhodamine B Degradation by Porous Zn2SnO4 Prepared 1536 2 2.4 with Carbon Black as a Pore-Forming Agent. Water, Air, and Soil Pollution, 2019, 230, 1. Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation. Journal of Physics and Chemistry of Solids, 2019, 135, 4.0 109086. A simple and facile bioinspired catalytic strategy to decolorize dye wastewater by using metal 1538 12.4 3 octacarboxyphthalocyanine particles. Journal of Hazardous Materials, 2019, 380, 120842. Using modified fish scale waste from <i>Sardinella brasiliensis</i> as a low-cost adsorbent to remove dyes from textile effluents. Journal of Environmental Science and Health - Part A Toxic/Hazardous 1.7 Substances and Environmental Engineering, 2019, 54, 1083-1090. The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for 1540 10 3.3 bleaching dye. Scientific Reports, 2019, 9, 15217. Effect of Reducing Agent NaBH₄ on Photocatalytic Properties of 1541 Bi/BiOBr/Bi_ZWO₆ Composites. ChemistrySelect, 2019, 4, 10065-10071. Dualâ€Responsive Janus Membrane by Oneâ€Step Laser Drilling for Underwater Bubble Selective Capture 1542 3.7 20 and Repelling. Advanced Materials Interfaces, 2019, 6, 1901176. Characterization and Evaluation of Zeolite A/Fe₃O₄Nanocomposite as a 1543 Potential Adsorbent for Removal of Organic Molecules from Wastewater. Journal of Chemistry, 2019,

#	Article	IF	CITATIONS
1544	Selective Removal of Malachite Green Dye from Aqueous Solutions by Supported Liquid Membrane Technology. International Journal of Environmental Research and Public Health, 2019, 16, 3484.	2.6	7
1545	A 1D porphyrin-based rigid conjugated polymer as efficient and recyclable visible-light driven photocatalyst. Reactive and Functional Polymers, 2019, 143, 104340.	4.1	15
1546	Facile synthesis of novel highly photocatalytic graphitic carbon nitride/NiO nanocomposites for wastewater treatment. Materials Research Express, 2019, 6, 115541.	1.6	2
1547	Selfâ€Assembled Uniform Silver Nanoparticles (SAAgNPs) and Their Supported MoO ₃ Nanocatalysts for Effective Degradation of Azo Dyes. ChemistrySelect, 2019, 4, 10770-10776.	1.5	6
1548	Understanding Mechanism of Adsorption in the Decolorization of Aqueous Methyl Violet (6B) Solution by Okra Polysaccharides: Experiment and Theory. ACS Omega, 2019, 4, 17880-17889.	3.5	15
1549	Preparation and characterization of cellulose nanocrystals with different aspect ratios as nano-composite membrane for cationic dye removal. SN Applied Sciences, 2019, 1, 1.	2.9	2
1550	Promoting Photodegradation Efficiency via a Heterojunction Photocatalyst Combining with Oxygen Direct and Fast Diffusion from the Gas Phase to Active Catalytic Sites. ACS Applied Materials & Interfaces, 2019, 11, 44922-44930.	8.0	24
1551	Biodegradation of aniline from textile industry waste using salt tolerant Bacillus firmus BA01. Engineering in Agriculture, Environment and Food, 2019, 12, 360-366.	0.5	4
1552	Effects of duration of thermal stress on growth performance, serum oxidative stress indices, the expression and localization of ABCG2 and mitochondria ROS production of skeletal muscle, small intestine and immune organs in broilers. Journal of Thermal Biology, 2019, 85, 102420.	2.5	23
1553	Multiple degrees of separation in the central pathways of the catabolism of aromatic compounds in fungi belonging to the Dikarya sub-Kingdom. Advances in Microbial Physiology, 2019, 75, 177-203.	2.4	6
1554	Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering, 2019, 32, 100911.	5.6	149
1555	Decolorization of Azo Synthetic Textile Dye by Halotolerant Bacteria And Identification Used By 16S rRNA. IOP Conference Series: Earth and Environmental Science, 2019, 305, 012068.	0.3	1
1556	Microbial degradation of batik waste water treatment in Indonesia. IOP Conference Series: Earth and Environmental Science, 2019, 314, 012020.	0.3	6
1557	A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye. Reviews on Environmental Health, 2019, 34, 365-375.	2.4	28
1558	A novel approach in simultaneous extraction of basic dyes by using a batch reactor consisting a polymer inclusion membrane. AEJ - Alexandria Engineering Journal, 2019, 58, 929-935.	6.4	9
1559	Comparative studies of pure cultures and a consortium of white-rot fungi to degrade a binary mixture of dyes by solid-state fermentation and performance at different scales. International Biodeterioration and Biodegradation, 2019, 145, 104772.	3.9	11
1560	Desulfonation of the textile azo dye Acid Fast Yellow MR by newly isolated Aeromonas hydrophila SK16. Water Resources and Industry, 2019, 22, 100116.	3.9	13
1561	Preparation and characterization of alginate-kelp biochar composite hydrogel bead for dye removal. Environmental Science and Pollution Research, 2019, 26, 33030-33042.	5.3	28

#	Article	IF	CITATIONS
1562	Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine and Pharmacotherapy, 2019, 118, 109363.	5.6	87
1563	Synthesis, crystal structure, and photodegradation properties of a new multicore Zn(II) metal organic framework. Inorganic and Nano-Metal Chemistry, 2019, 49, 455-460.	1.6	7
1564	Facile synthesis of novel microporous CdSe/SiO2 nanocomposites selective for removal of methylene blue dye by tandem adsorption and photocatalytic process. Journal of Materials Science: Materials in Electronics, 2019, 30, 17527-17539.	2.2	10
1565	Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: Process optimization, short acclimatization and reusability analysis in batch cycles. Chemical Engineering Research and Design, 2019, 131, 116-126.	5.6	31
1566	Sono-electro-chemical Treatment of Reactive Black 5 Dye and Real Textile Effluent Using MnSO4/Na2S2O8 Electrolytes. Arabian Journal for Science and Engineering, 2019, 44, 9987-9996.	3.0	17
1567	Multistage fluidized bed bioreactor for dye decolorization using immobilized polyurethane foam: A novel approach. Biochemical Engineering Journal, 2019, 152, 107368.	3.6	19
1568	Adsorption, aggregation and sedimentation of titanium dioxide nanoparticles and nanotubes in the presence of different sources of humic acids. Science of the Total Environment, 2019, 692, 660-668.	8.0	16
1569	Immobilization of Cr-MIL-101 over the NiO/13X zeolite nanocomposite towards ultrasound-assisted destruction of organic dyes in aqueous media. Journal of Water Process Engineering, 2019, 32, 100946.	5.6	15
1570	Tea Stem as a Sorbent for Removal of Methylene Blue from Aqueous Phase. Advances in Materials Science and Engineering, 2019, 2019, 1-15.	1.8	10
1571	Adsorption of Acid Black 210 and Remazol Brilliant Blue R onto magnetite nanoparticles. Inorganic and Nano-Metal Chemistry, 2019, 49, 231-239.	1.6	10
1572	Rapid and Efficient Coacervate Extraction of Cationic Industrial Dyes from Wastewater. ACS Applied Materials & Interfaces, 2019, 11, 7472-7478.	8.0	47
1573	Integrated photocatalytic-biological treatment of triazine-containing pollutants. Chemosphere, 2019, 222, 371-380.	8.2	14
1574	Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Research on Chemical Intermediates, 2019, 45, 2197-2254.	2.7	131
1575	H3PO4-activated carbons produced from açai stones and Brazil nut shells: removal of basic blue 26 dye from aqueous solutions by adsorption. Environmental Science and Pollution Research, 2019, 26, 28533-28547.	5.3	25
1576	Nanomaterials for Photocatalytic Applications. , 2019, , .		3
1577	Visible light driven degradation of brilliant green dye using titanium based ternary metal oxide photocatalyst. Results in Physics, 2019, 12, 1850-1858.	4.1	39
1578	A Mild in-Situ Method to Construct Fe-Doped Cauliflower-Like Rutile TiO2 Photocatalysts for Degradation of Organic Dye in Wastewater. Catalysts, 2019, 9, 426.	3.5	20
1579	Zwitterionic Nanocellulose-Based Membranes for Organic Dye Removal. Materials, 2019, 12, 1404.	2.9	47

#	Article	IF	CITATIONS
1580	Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology. Applied Water Science, 2019, 9, 1.	5.6	16
1581	Structural characteristics of hazardous organic dyes and relationship between membrane fouling and organic removal efficiency in fluidized ceramic membrane reactor. Journal of Cleaner Production, 2019, 232, 608-616.	9.3	28
1582	Process Optimization by a Response Surface Methodology for Adsorption of Congo Red Dye onto Exfoliated Graphite-Decorated MnFe2O4 Nanocomposite: The Pivotal Role of Surface Chemistry. Processes, 2019, 7, 305.	2.8	32
1583	TiO 2 /rGO/CuS Nanocomposites for Efficient Photocatalytic Degradation of Rhodamineâ€B Dye. ChemistrySelect, 2019, 4, 6167-6176.	1.5	20
1584	The synthesis of CB[8]/ZnO composites materials with enhanced photocatalytic activities. Heliyon, 2019, 5, e01714.	3.2	14
1585	New hybrid polyoxometalate/polymer composites for photodegradation of eosin dye. Journal of Polymer Science Part A, 2019, 57, 1538-1549.	2.3	26
1586	Layered composite based on halloysite and natural polymers: a carrier for the pH controlled release of drugs. New Journal of Chemistry, 2019, 43, 10887-10893.	2.8	105
1587	Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. International Journal of Environmental Research and Public Health, 2019, 16, 2066.	2.6	240
1588	Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water. Carbohydrate Research, 2019, 481, 60-66.	2.3	18
1589	Effects of pH, Temperature and Agitation on the Decolourisation of Dyes by Laccase-Containing Enzyme Preparation from Pleurotus sajor-caju. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	15
1590	Adsorptive removal of acidic dye onto grafted chitosan: A plausible grafting and adsorption mechanism. International Journal of Biological Macromolecules, 2019, 136, 1209-1218.	7.5	88
1591	Sustainable Agriculture Reviews 36. Sustainable Agriculture Reviews, 2019, , .	1.1	12
1592	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	1.1	12
1593	Nanofibers for Water Treatment. , 2019, , 1049-1104.		0
1594	Removal of Rhodamine B by g-C3N4/Co3O4/MWCNT composite stabilized in hydrogel via the synergy of adsorption and photocatalysis under visible light. Journal of Materials Science: Materials in Electronics, 2019, 30, 12475-12486.	2.2	15
1595	Removal of anionic dyes from aqueous solution by novel pyrrolidinium-based Polymeric Ionic Liquid (PIL) as adsorbent: Investigation of the adsorption kinetics, equilibrium isotherms and the adsorption mechanisms involved. Journal of Environmental Chemical Engineering, 2019, 7, 103163.	6.7	26
1596	Effective adsorption of Coomassie brilliant blue dye using poly(phenylene diamine)grafted electrospun carbon nanofibers as a novel adsorbent. Materials Chemistry and Physics, 2019, 234, 133-145.	4.0	62
1597	The preparation of thin-walled multi-cavities Î ² -cyclodextrin polymer and its static and dynamic properties for dyes removal. Journal of Environmental Management, 2019, 245, 105-113.	7.8	14

#	Article	IF	CITATIONS
1598	Detailed Study on Rapid Removal of Cationic Dyes Using TiO ₂ -Poly(3-Chloro-2-Hydroxypropyl Methacrylate) Nanocomposite. Journal of the Electrochemical Society, 2019, 166, B3240-B3245.	2.9	2
1599	Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: Performance and mechanism. Chemosphere, 2019, 233, 549-558.	8.2	77
1600	Mesoporous SiO ₂ Particles Combined with Fe Oxide Nanoparticles as a Regenerative Methylene Blue Adsorbent. ACS Omega, 2019, 4, 9745-9755.	3.5	21
1601	Advancement of Photocatalytic Water Treatment Technology for Environmental Control. , 2019, , 1719-1746.		0
1602	A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – Containing hybrids as promising adsorbents for dyes removal. Journal of Molecular Liquids, 2019, 288, 110989.	4.9	196
1603	Biosorption of Heavy Metals and Dyes from Industrial Effluents by Microalgae. , 2019, , 599-634.		18
1604	H3PO4-activated sawdust and rice husk as effective decolorizers for textile wastewater containing Reactive Black 5. International Journal of Environmental Science and Technology, 2019, 16, 8375-8388.	3.5	10
1605	Electrochemical Degradation of Reactive Blue 19 Dye by Combining Boronâ€Doped Diamond and Reticulated Vitreous Carbon Electrodes. ChemElectroChem, 2019, 6, 3516-3524.	3.4	11
1606	Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model. Journal of Molecular Liquids, 2019, 285, 165-170.	4.9	121
1607	Synthesis, characterization and sunlight catalytic performance of Cu doped NiO nanoparticles. AIP Conference Proceedings, 2019, , .	0.4	6
1608	Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501982819.	1.0	33
1609	Preparation of nano-alkalinecellulose carboxylates (NACCs) as the methylene blue sorbent and as the catalyst for the large-scale nifedipine synthesis. International Journal of Biological Macromolecules, 2019, 134, 1-10.	7.5	6
1610	Ionic liquid assisted combustion synthesis of ZnO and its modification by Au Sn bimetallic nanoparticles: An efficient photocatalyst for degradation of organic contaminants. Materials Chemistry and Physics, 2019, 232, 339-353.	4.0	18
1611	Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. International Journal of Biological Macromolecules, 2019, 134, 330-343.	7.5	61
1612	Rapid decolorization of methyl orange using polyacrylonitrile membranes incorporated with nickel nanoparticles loaded in block copolymer micelles. Separation and Purification Technology, 2019, 223, 203-210.	7.9	4
1613	Improved single-step extraction performance of aqueous biphasic systems using novel symmetric ionic liquids for the decolorisation of toxic dye effluents. Journal of Industrial and Engineering Chemistry, 2019, 76, 500-507.	5.8	28
1614	Polyaniline Supported Palladium Catalyzed Reductive Degradation of Dyes Under Mild Condition. Current Green Chemistry, 2019, 6, 69-75.	1.1	11
1615	Nanophotocatalysis and Environmental Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.5	7

#	Article	IF	CITATIONS
1616	Lignosulfonate functionalized kaolin-Ag hybrid catalyst for highly effective dye decolorization. Applied Clay Science, 2019, 171, 38-47.	5.2	20
1617	Entrapment of TiO<mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td> <td>6.1</td> <td>31</td>	6.1	31
1618	Effect of different synthesis methods on the morphology, optical behavior, and superior photocatalytic performances of Ag3PO4 sub-microcrystals using white-light-emitting diodes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 14-25.	3.9	29
1619	Enhanced photocatalytic degradation of industrial dye by g-C3N4/TiO2 nanocomposite: Role of shape of TiO2. Advanced Powder Technology, 2019, 30, 1089-1098.	4.1	135
1620	Residual biomass of chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: Characterization, kinetic, thermodynamic and isotherm studies. Journal of Environmental Chemical Engineering, 2019, 7, 103008.	6.7	28
1621	Perovskite-Based Materials for Photocatalytic Environmental Remediation. Environmental Chemistry for A Sustainable World, 2019, , 139-165.	0.5	10
1622	Statistical modeling and optimization of Toluidine Red biodegradation in a synthetic wastewater using Halomonas strain Gb. Journal of Environmental Health Science & Engineering, 2019, 17, 319-330.	3.0	7
1623	Kinetic and thermodynamic study of methylene blue adsorption onto chitosan: insights about metachromasy occurrence on wastewater remediation. Energy, Ecology and Environment, 2019, 4, 85-102.	3.9	11
1624	Facile synthesis of manganese oxide-embedded mesoporous carbons and their adsorbability towards methylene blue. Chemosphere, 2019, 227, 455-461.	8.2	45
1625	Degradation pathways and kinetics of anthraquinone compounds along with nitrate removal by a newly isolated Rhodococcus pyridinivorans GF3 under aerobic conditions. Bioresource Technology, 2019, 285, 121336.	9.6	18
1626	A critical review on ultrasonic-assisted dye adsorption: Mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Critical Reviews in Environmental Science and Technology, 2019, 49, 1959-2015.	12.8	52
1627	Brilliant Green and Acid Orange 74 Dyes Removal from Water by <i>Pinus roxburghii</i> Leaves in Naturally Benign Way: An Application of Green Chemistry. Journal of Chemistry, 2019, 2019, 1-10.	1.9	18
1629	Kinetic, thermodynamics and equilibrium studies on the removal of Congo red dye using activated teak leaf powder. Applied Water Science, 2019, 9, 1.	5.6	40
1630	Ultransonic-assisted alcoholysis preparation of BiOClxBr1â^x modified BiOF microstructure with enhanced photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 5995-6006.	2.2	4
1631	Adsorption Properties of β- and Hydroxypropyl-β-Cyclodextrins Cross-Linked with Epichlorohydrin in Aqueous Solution. A Sustainable Recycling Strategy in Textile Dyeing Process. Polymers, 2019, 11, 252.	4.5	36
1632	Photocatalytic performances of BiFeO3 powders synthesized by solution combustion method: The role of mixed fuels. Materials Chemistry and Physics, 2019, 228, 168-174.	4.0	29
1633	S-, N- and C-doped ZnO as semiconductor photocatalysts: A review. Frontiers of Materials Science, 2019, 13, 1-22.	2.2	109
1634	Nanocomposites for Environmental Pollution Remediation. , 2019, , 1407-1440.		4

#	Article	IF	CITATIONS
1635	Fabrication of Ag/AgBr/Ag ₃ VO ₄ composites with high visible light photocatalytic performance. RSC Advances, 2019, 9, 5100-5109.	3.6	24
1636	Efficient removal of dyes from dyeing wastewater by powder activated charcoal/titanate nanotube nanocomposites: adsorption and photoregeneration. Environmental Science and Pollution Research, 2019, 26, 10263-10273.	5.3	28
1637	Endophytic Fungi: Role in Dye Decolorization. Fungal Biology, 2019, , 1-15.	0.6	8
1638	Silica Supported Copper-Nickel Oxide Catalyst for Photodegradation of Methylene Blue. Asian Journal of Chemistry, 2019, 31, 2891-2896.	0.3	2
1639	Photodegradation of remazol brilliant blue using Fe ₂ O ₃ intercalated bentonite. Journal of Physics: Conference Series, 2019, 1341, 032028.	0.4	4
1641	Biological decolourization of textile industry wastewater by a developed bacterial consortium. Water Science and Technology, 2019, 80, 1910-1918.	2.5	23
1642	Polyetherimide nanofiltration membranes modified by interfacial polymerization for treatment of textile dyes wastewater. IOP Conference Series: Materials Science and Engineering, 2019, 622, 012019.	0.6	17
1643	High-Surface-Area Sodium Tantalate Nanoparticles with Enhanced Photocatalytic and Electrical Properties Prepared through Polymeric Citrate Precursor Route. ACS Omega, 2019, 4, 19408-19419.	3.5	35
1644	Production of a Spirulina sp. algae hybrid with a silica matrix as an effective adsorbent to absorb crystal violet and methylene blue in a solution. Sustainable Environment Research, 2019, 29, .	4.2	14
1645	Decolourization and Degradation of Reactive Textile Dyes by Isolated Strain Proteus mirabilis. Asian Journal of Water, Environment and Pollution, 2019, 16, 1-6.	0.5	7
1646	Enhanced adsorptive removal of Indigo carmine dye performance by functionalized carbon nanotubes based adsorbents from aqueous solution: equilibrium, kinetic, and DFT study. Journal of Nanostructure in Chemistry, 2019, 9, 323-334.	9.1	41
1647	Kinetic and equilibrium study of the removal of reactive dye using modified walnut shell. Water Science and Technology, 2019, 80, 874-883.	2.5	13
1648	New Smart Magnetic Ionic Liquid Nanocomposites Based on Chemically Bonded Imidazole Silica for Water Treatment. ACS Omega, 2019, 4, 21288-21301.	3.5	9
1649	Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Applied Surface Science, 2019, 464, 170-177.	6.1	189
1650	Enhanced azo dye removal from wastewater by coupling sulfidated zero-valent iron with a chelator. Journal of Cleaner Production, 2019, 213, 753-761.	9.3	52
1651	Adsorption behavior and mechanism of Fe-Mn binary oxide nanoparticles: Adsorption of methylene blue. Journal of Colloid and Interface Science, 2019, 539, 553-562.	9.4	97
1652	Facile Fabrication of High Performance Nanofiltration Membranes by Using Molecular Coordination Complexes as Pore-Forming Agents. ACS Sustainable Chemistry and Engineering, 2019, 7, 2728-2738.	6.7	14
1653	Degradation of Congo Red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst: Synergetic effects of Fe2O3. Journal of Colloid and Interface Science, 2019, 539, 135-145.	9.4	106

#	Article	IF	CITATIONS
1654	Prussian Blue Microcrystals with Morphology Evolution as a High-Performance Photo-Fenton Catalyst for Degradation of Organic Pollutants. ACS Applied Materials & Interfaces, 2019, 11, 1174-1184.	8.0	70
1655	Synthesis of Ag nanoparticles decorated on TiO2 nanotubes for surface adsorption and photo-decomposition of methylene blue under dark and visible light irradiation. Research on Chemical Intermediates, 2019, 45, 1829-1840.	2.7	6
1656	Use of waste Japonochytrium sp. biomass after lipid extraction as an efficient adsorbent for triphenylmethane dye applied in aquaculture. Biomass Conversion and Biorefinery, 2019, 9, 479-488.	4.6	11
1657	Polyaniline/Tectona grandis sawdust: A novel composite for efficient decontamination of synthetically polluted water containing crystal violet dye. Groundwater for Sustainable Development, 2019, 8, 390-401.	4.6	58
1658	Enhanced adsorption of Congo red on microwave synthesized layered Zn-Al double hydroxides and its adsorption behaviour using mixture of dyes from aqueous solution. Inorganic Chemistry Communication, 2019, 100, 107-117.	3.9	31
1659	Novel Aliquat-336 impregnated chitosan beads for the adsorptive removal of anionic azo dyes. International Journal of Biological Macromolecules, 2019, 125, 989-998.	7.5	52
1660	Amino grafted MCM-41 as highly efficient and reversible ecofriendly adsorbent material for the Direct Blue removal from wastewater. Journal of Molecular Liquids, 2019, 273, 435-446.	4.9	41
1661	Semiconductor Photocatalysis for Water Purification. , 2019, , 689-705.		12
1662	Maghemite/alginate/functionalized multiwalled carbon nanotubes beads for methylene blue removal: Adsorption and desorption studies. Journal of Molecular Liquids, 2019, 275, 431-440.	4.9	41
1663	Impact of rGO on photocatalytic performance of Cd-doped ZnO nanostructures synthesized via a simple aqueous co-precipitation route. Materials Research Express, 2019, 6, 025051.	1.6	19
1664	A sustainable approach for degradation of leather dyes by a new fungal laccase. Journal of Cleaner Production, 2019, 211, 590-597.	9.3	68
1665	Adsorption of anionic dyes on a cationic amphiphilic dextran hydrogel: equilibrium, kinetic, and thermodynamic studies. Colloid and Polymer Science, 2019, 297, 45-57.	2.1	22
1666	Antibacterial and natural room-light driven photocatalytic activities of CuO nanorods. Materials Chemistry and Physics, 2019, 226, 106-112.	4.0	32
1667	Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environmental Science and Pollution Research, 2019, 26, 5333-5356.	5.3	234
1668	Fabrication of oxidized graphite supported La2O3/ZrO2 nanocomposite for the photoremediation of toxic fast green dye. Journal of Molecular Liquids, 2019, 277, 738-748.	4.9	25
1669	Competition in sonochemical degradation of Naphthol Blue Black: Presence of an organic (nonylphenol) and a mineral (bicarbonate ions) matrix. Journal of Environmental Chemical Engineering, 2019, 7, 102819.	6.7	14
1670	Preparation and characterization of nano SiO2@CeO2 extracted from blast furnace slag and uranium extraction waste for wastewater treatment. Ceramics International, 2019, 45, 7309-7317.	4.8	34
1671	Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. Journal of Cleaner Production, 2019, 215, 123-130.	9.3	62

#	Article	IF	CITATIONS
1672	Preparation of chitin nanowhiskers and its application for crystal violet dye removal from wastewaters. Environmental Science and Pollution Research, 2019, 26, 28548-28557.	5.3	32
1673	One-pot solvothermal synthesis of Carboxylatopillar[5]arene-modified Fe3O4 magnetic nanoparticles for ultrafast separation of cationic dyes. Dyes and Pigments, 2019, 162, 512-516.	3.7	37
1674	Synthesis of cobalt–nitrogen-doped mesoporous carbon from chitosan and its performance for pollutant degradation as Fenton-like catalysts. Research on Chemical Intermediates, 2019, 45, 907-918.	2.7	19
1675	A Facile Sol–Gel Process for Synthesis of ZnWO4 Nanopartices with Enhanced Band Gap and Study of Its Photocatalytic Activity for Degradation of Methylene Blue. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 220-228.	3.7	29
1676	Ionic self-assembly of poly(ionic liquid)-polyoxometalate hybrids for selective adsorption of anionic dyes. Chemical Engineering Journal, 2019, 358, 850-859.	12.7	103
1677	Use of Cu(II)-incorporated zeolite Y for decolourization of dyes in water: a case study with aqueous methylene blue and Congo red. SN Applied Sciences, 2019, 1, 1.	2.9	9
1678	Novel selfâ€immobilized biomass mixture based on mycelium pellets for wastewater treatment: A review. Water Environment Research, 2019, 91, 93-100.	2.7	23
1679	Modification of Karaya gum by graft copolymerization for effective removal of anionic dyes. Separation Science and Technology, 2019, 54, 2638-2652.	2.5	13
1680	Mineralization of toxic industrial dyes by gallic acid mediated synthesized photocatalyst SnO2 nanoparticles. Environmental Technology and Innovation, 2019, 13, 197-210.	6.1	14
1681	Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater. Journal of Molecular Liquids, 2019, 276, 153-162.	4.9	138
1682	Shallow Pond Systems Planted With Duckweed Treating Azo Dyes. , 2019, , 215-251.		1
1683	Hierarchically porous BiOBr/ZnAl1.8Fe0.2O4 and its excellent adsorption and photocatalysis activity. Materials Research Bulletin, 2019, 110, 1-12.	5.2	33
1684	A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. Journal of Molecular Liquids, 2019, 273, 274-281.	4.9	32
1685	Size tunable biosynthesis and luminescence quenching of nanostructured hematite (α-Fe2O3) for catalytic degradation of organic pollutants. Journal of Physics and Chemistry of Solids, 2019, 124, 221-234.	4.0	64
1686	Adsorption of Basic Magenta II onto H2SO4 activated immature Gossypium hirsutum seeds: Kinetics, isotherms, mass transfer, thermodynamics and process design. Arabian Journal of Chemistry, 2019, 12, 1322-1337.	4.9	53
1687	Adsorption of leather dyes on activated carbon from leather shaving wastes: kinetics, equilibrium and thermodynamics studies. Environmental Technology (United Kingdom), 2019, 40, 2756-2768.	2.2	39
1688	Extraction and partial characterisation of antioxidant pigment produced by <i>Chryseobacterium</i> sp. kr6. Natural Product Research, 2019, 33, 1541-1549.	1.8	12
1689	Hydrothermal Synthesis of N-Doped GQD/CuO and N-Doped GQD/ZnO Nanophotocatalysts for MB Dye Removal Under Visible Light Irradiation: Evaluation of a New Procedure to Produce N-Doped GQD/ZnO. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1266-1280.	3.7	13

		15	0
#	ARTICLE	IF	CITATIONS
1690	Vis Dyeing of Wool. Journal of Natural Fibers, 2020, 17, 1508-1518.	3.1	11
1691	Bioremediation of dyes from textile and dye manufacturing industry effluent. , 2020, , 107-125.		17
1692	A green biochar/iron oxide composite for methylene blue removal. Journal of Hazardous Materials, 2020, 384, 121286.	12.4	315
1693	Bioremediation. , 2020, , 1-23.		20
1694	Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Critical Reviews in Analytical Chemistry, 2020, 50, 513-537.	3.5	48
1695	Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model. Chemical Engineering Journal, 2020, 382, 122952.	12.7	123
1696	Boosted photocatalytic degradation of Rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite. Applied Surface Science, 2020, 502, 144275.	6.1	68
1697	Influence of doped platinum nanoparticles on photocatalytic performance of CuO–SiO2 for degradation of Acridine orange dye. Ceramics International, 2020, 46, 1690-1696.	4.8	15
1698	Simulated solar light driven performance of nanosized ZnIn2S4/dye system: decolourization vs. photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112154.	3.9	7
1699	Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Separation and Purification Technology, 2020, 230, 115851.	7.9	70
1700	Activated Carbon from Different Waste Materials for the Removal of Toxic Metals. Environmental Chemistry for A Sustainable World, 2020, , 47-68.	0.5	12
1701	Textile Industry Wastewaters as Major Sources of Environmental Contamination: Bioremediation Approaches for Its Degradation and Detoxification. , 2020, , 135-167.		16
1702	Green Materials for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2020, ,	0.5	7
1703	Bioreactor Membranes for Laccase Immobilization Optimized by Ionic Liquids and Cross-Linking Agents. Applied Biochemistry and Biotechnology, 2020, 190, 1-17.	2.9	20
1704	Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104715.	5.5	147
1705	Synthesis, optical and photo-electrochemical properties of NiBi2O4 and its photocatalytic activity under solar light irradiation. Optik, 2020, 207, 163762.	2.9	24
1706	A novel strategy to construct a visible-light-driven Z-scheme (ZnAl-LDH with active phase/g-C3N4) heterojunction catalyst via polydopamine bridge (a similar "bridge" structure). Journal of Hazardous Materials, 2020, 386, 121650.	12.4	77
1707	Wasseraufreinigung und Mikroplastikâ€Entferung durch magnetische Polyoxometallatâ€unterstützte ionische Flüssigphasen (magPOMâ€6ILPs). Angewandte Chemie, 2020, 132, 1618-1622.	2.0	8

			_
#	Article	IF	CITATIONS
1708	Water Purification and Microplastics Removal Using Magnetic Polyoxometalateâ€Supported Ionic Liquid Phases (magPOMâ€SILPs). Angewandte Chemie - International Edition, 2020, 59, 1601-1605.	13.8	153
1709	Simple synthesis and characterization of Cs0.3WO3.15/Cs3PW12O40 composite for fast adsorption of cationic dyes from water. Journal of the Australian Ceramic Society, 2020, 56, 49-57.	1.9	8
1710	Kinetic Study of Degradation of Basic Turquise Blue X-GB and Basic Blue X-GRRL using Advanced Oxidation Process. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1803-1817.	2.8	20
1711	Multiâ€walled carbon nanotubesâ€CoFe ₂ O ₄ nanoparticles as a reusable novel peroxymonosulfate activator for degradation of Reactive Black 5. Water Environment Research, 2020, 92, 969-974.	2.7	21
1712	Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor. Extremophiles, 2020, 24, 239-247.	2.3	18
1713	Elucidation of the decolorization of Congo Red by Trametes versicolor laccase in presence of ABTS through cyclic voltammetry. Enzyme and Microbial Technology, 2020, 135, 109507.	3.2	10
1714	Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environmental Science & amp; Technology, 2020, 54, 647-664.	10.0	327
1715	Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review. Current Analytical Chemistry, 2020, 16, 14-40.	1.2	148
1716	Facile synthesis of dual-functionalized microporous organic network for efficient removal of cationic dyes from water. Microporous and Mesoporous Materials, 2020, 296, 110013.	4.4	24
1717	Hierarchically porous BiOCl@NiCo ₂ O ₄ nanoplates as low-cost and highly efficient catalysts for the discoloration of organic contaminants in aqueous media. New Journal of Chemistry, 2020, 44, 258-264.	2.8	12
1718	Degradation of indigo carmine by coupling Fe(II)-activated sodium persulfate and ozone in a rotor-stator reactor. Chemical Engineering and Processing: Process Intensification, 2020, 148, 107791.	3.6	11
1719	Preparation of BiOBr-Bi heterojunction composites with enhanced photocatalytic properties on BiOBr surface by in-situ reduction. Materials Science in Semiconductor Processing, 2020, 108, 104882.	4.0	21
1720	Application of a new metal-organic framework of [Ni2F2(4,4′-bipy)2(H2O)2](VO3)2.8H2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization. Environmental Research, 2020, 182, 109054.	7.5	33
1721	Thiourea-modified Fe3O4/graphene oxide nanocomposite as an efficient adsorbent for recycling Coomassie brilliant blue from aqueous solutions. Materials Chemistry and Physics, 2020, 241, 122450.	4.0	15
1722	Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water (Switzerland), 2020, 12, 102.	2.7	381
1724	Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 2020, 253, 120019.	9.3	66
1726	Bi2O3 particles decorated on porous g-C3N4 sheets: Enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of Reactive Black 5 under UV–vis light. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112289.	3.9	58
1727	A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117961.	3.9	123

#	Article	IF	CITATIONS
1728	Mesostructured Hollow Siliceous Spheres for Adsorption of Dyes. Chemical Engineering and Technology, 2020, 43, 392-402.	1.5	46
1729	Microbial use for azo dye degradation—a strategy for dye bioremediation. International Microbiology, 2020, 23, 149-159.	2.4	105
1730	Influence of Sodium Sulfate on the Direct Red 28 Degradation by Ozone in a Wastewater Recycling Process: A Stoichiometric and Novel Image Analysis. Ozone: Science and Engineering, 2020, 42, 428-438.	2.5	4
1731	Tannic acid mediated synthesis of nanostructured NiO and SnO2 for catalytic degradation of methylene blue. Optical and Quantum Electronics, 2020, 52, 1.	3.3	13
1732	Comparative degradation of Metanil Yellow in the electro-Fenton process with different catalysts: A simplified kinetic model study. Dyes and Pigments, 2020, 174, 108076.	3.7	23
1733	Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews, 2020, 405, 213111.	18.8	329
1734	Photocatalytic degradation of dyes by mononuclear copper(II) complexes from bis-(2-pyridylmethyl)amine NNN-derivative ligands. Inorganica Chimica Acta, 2020, 512, 119924.	2.4	29
1735	Facile solid-state synthesis of Fe3O4/kaolinite nanocomposites for enhanced dye adsorption. Journal of Solid State Chemistry, 2020, 291, 121655.	2.9	23
1736	Removal of lead metal ion using biowaste of <i>Pithophora cleveana wittrock and Mimusops elengi</i> . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-19.	2.3	5
1737	Biomedical and photocatalytic applications of biosynthesized silver nanoparticles: Ecotoxicology study of brilliant green dye and its mechanistic degradation pathways. Journal of Molecular Liquids, 2020, 319, 114114.	4.9	49
1738	Preparation and Characterization of a Novel Chemically Modified PVC Adsorbent for Methyl Orange Removal: Optimization, and Study of Isotherm, Kinetics, and Thermodynamics of Adsorption Process. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	2
1739	Facile synthesis and characterization of Ag(NP)/TiO2 nanocomposite: Photocatalytic efficiency of catalyst for oxidative removal of Alizarin Yellow. Catalysis Today, 2022, 388-389, 125-133.	4.4	10
1740	Bioremediation of dyes: Current status and prospects. Journal of Water Process Engineering, 2020, 38, 101680.	5.6	120
1741	Facilely Magnetized CuZnFe ₂ O ₄ -Activated Carbon Composite as an Efficient Recyclable Adsorbent of Cationic Dyes. Journal of Chemical & Engineering Data, 2020, 65, 5532-5544.	1.9	9
1742	Removal of Acid Orange 7 Dye from Wastewater: Review. , 2020, , .		2
1743	Facile synthesis of porous boron nitride-supported α-Fe ₂ O ₃ nanoparticles for enhanced regeneration performance. Materials Technology, 2021, 36, 731-737.	3.0	1
1744	The Role of Mushrooms in Biodegradation and Decolorization of Dyes. , 0, , .		6
1746	Preparation and Photocatalytic Performance for Degradation of Rhodamine B of AgPt/Bi4Ti3O12 Composites. Nanomaterials, 2020, 10, 2206.	4.1	12

#	Article	IF	CITATIONS
1747	Iron Molybdate Fe2(MoO4)3 Nanoparticles: Efficient Sorbent for Methylene Blue Dye Removal from Aqueous Solutions. Molecules, 2020, 25, 5100.	3.8	5
1748	Degradation of Acid Orange 7 (AO7) by a bacterium strain Flavobacterium mizutaii L-15. Water Science and Technology, 2020, 82, 266-272.	2.5	2
1749	Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnology for Environmental Engineering, 2020, 5, 1.	3.3	28
1750	Efficiency of Sawdust as Low-Cost Adsorbent for Dyes Removal. Journal of Chemistry, 2020, 2020, 1-17.	1.9	78
1751	Facile synthesis of novel NiS-Analcime composite for the efficient photocatalytic degradation of Eriochrome Black T dye. International Journal of Environmental Analytical Chemistry, 2022, 102, 8331-8345.	3.3	4
1752	Photocatalytic and electrochemical sensor for direct detection of paracetamol comprising γ-aluminium oxide nanoparticles synthesized via sonochemical route. Sensors International, 2020, 1, 100039.	8.4	36
1753	Sonophotocatalytic Degradation of Pollutants by ZnOâ€Based Catalysts: A Review. ChemistrySelect, 2020, 5, 13720-13731.	1.5	10
1754	Ability of Bacteria of the Genus Azospirillum to Decolorize Synthetic Dyes. Microbiology, 2020, 89, 451-458.	1.2	2
1755	Myco-decontamination of azo dyes: nano-augmentation technologies. 3 Biotech, 2020, 10, 384.	2.2	14
1757	Simultaneous persulfate activation by electrogenerated H2O2 and anodic oxidation at a boron-doped diamond anode for the treatment of dye solutions. Science of the Total Environment, 2020, 747, 141541.	8.0	47
1758	Adsorption of methylene blue onto electrospun nanofibrous membranes of polylactic acid and polyacrylonitrile coated with chloride doped polyaniline. Scientific Reports, 2020, 10, 13412.	3.3	56
1759	Bi-functional catalytic performance of silver manganite/polypyrrole nanocomposite for electrocatalytic sensing and photocatalytic degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125321.	4.7	15
1760	Uptake of Methylene Blue from Aqueous Solution by Pectin–Chitosan Binary Composites. Journal of Composites Science, 2020, 4, 95.	3.0	26
1761	Cobalt (II) phthalocyanine dye removal from aqueous solution using cobalt ferrite nanoparticles as an efficient adsorbent. Water Science and Technology: Water Supply, 2020, 20, 2547-2563.	2.1	1
1762	Bioadsorbent from Magnetic Activated Carbon Hybrid for Removal of Dye and Pesticide. ChemistrySelect, 2020, 5, 8814-8822.	1.5	8
1763	Actinobacteria for the effective removal of toxic dyes. , 2020, , 37-52.		2
1764	Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chemical Reviews, 2020, 120, 9304-9362.	47.7	477
1765	Synthesis of aminated electrospun carbon nanofibers and their application in removal of cationic dye. Materials Research Bulletin, 2020, 132, 111003.	5.2	12

#	Article	IF	CITATIONS
1766	Hydrothermal synthesis and characterization of CuO–CoO/TiO2 for photocatalytic degradation of methylene blue under visible light and catalytic reduction of P-nitrophenol. Journal of Materials Science: Materials in Electronics, 2020, 31, 14810-14822.	2.2	19
1767	Achievements in high pressure membrane processes NF and RO for wastewater and water treatment. , 2020, , 109-126.		1
1768	Fabrication of zirconium (IV)-loaded chitosan/Fe3O4/graphene oxide for efficient removal of alizarin red from aqueous solution. Carbohydrate Polymers, 2020, 248, 116792.	10.2	56
1769	Chemical Characterization of Specific Micropollutants from Textile Industry Effluents in Fez City, Morocco. Journal of Chemistry, 2020, 2020, 1-11.	1.9	10
1770	Synthesis, characterization and investigation of photocatalytic activity of ZnMnO3/Fe3O4 nanocomposite for degradation of dye Congo red under visible light irradiation. International Journal of Industrial Chemistry, 2020, 11, 205-216.	3.1	7
1771	A comparison of the influence of synthesis methods on the photocatalytic activity of nitrogen doped titania-carbon nanotube nanohybrids. Applied Catalysis A: General, 2020, 604, 117776.	4.3	3
1772	In silico enhancement of azo dye adsorption affinity for cellulose fibre through mechanistic interpretation under guidance of QSPR models using Monte Carlo method with index of ideality correlation. SAR and QSAR in Environmental Research, 2020, 31, 697-715.	2.2	23
1773	Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. Journal of Molecular Liquids, 2020, 318, 114061.	4.9	210
1774	Synthesis of New Cyclodextrin-Based Adsorbents to Remove Direct Red 83:1. Polymers, 2020, 12, 1880.	4.5	7
1775	Removal of reactive brilliant red X-3B by a weak magnetic field enhanced Fenton-like system with zero-valent iron. RSC Advances, 2020, 10, 32671-32677.	3.6	5
1776	Simultaneous removal of crystal violet and methyl green in water samples by functionalised SBA-15. International Journal of Environmental Analytical Chemistry, 2022, 102, 5919-5935.	3.3	9
1777	Solar Light Induced Glass-Supported Zinc Oxide Catalyzed Degradation of Allura Red AC in Aqueous Solution. Russian Journal of Physical Chemistry A, 2020, 94, 2723-2732.	0.6	1
1778	Collagen polymer and magnetic collagen nanocomposite recycled from waste to reduce polluted water toxicity. Polymers and Polymer Composites, 2021, 29, 1515-1527.	1.9	5
1779	Oriented Membrane Processes For Extraction Of Methylene Blue And Blue P3R Dyes Across Polymer Inclusion Membranes Containing Chitin As New Extractive Agent. IOP Conference Series: Materials Science and Engineering, 2020, 948, 012022.	0.6	1
1780	Biomimetic surface functionalization of SiO2 microspheres with catecholamine-containing poly(itaconic acid) for removal of cationic dye. Surfaces and Interfaces, 2020, 21, 100644.	3.0	2
1781	Integral approach of treatment of phenolic wastewater using nano-metal coated graphene oxide in combination with advanced oxidation. Surfaces and Interfaces, 2020, 21, 100660.	3.0	10
1782	Enhanced Photocatalytic Activity of TiO2/γ-Fe2O3 by Using H2O2 as an Electron Acceptor Under Visible Light Radiation. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	6
1783	Recyclable Fe3O4@C nanocomposite as potential adsorbent for a wide range of organic dyes and simulated hospital effluents. Environmental Technology and Innovation, 2020, 20, 101122.	6.1	32

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1784	Achievements in hybrid processes for wastewater and water treatment. , 2020, , 239-262.		6
1785	Facile synthesis of trimethylammonium grafted cellulose foams with high capacity for selective adsorption of anionic dyes from water. Carbohydrate Polymers, 2020, 241, 116369.	10.2	74
1786	Visible light assisted Fenton type degradation of methylene blue by admicelle anchored alumina supported rod shaped manganese oxide. Journal of Water Process Engineering, 2020, 36, 101272.	5.6	28
1787	Tertiary treatment (Chlorella sp.) of a mixed effluent from two secondary treatments (immobilized) Tj ETQq1 1 C Biotech, 2020, 10, 233.).784314 r 2.2	gBT /Overloc 5
1788	Adsorption of Remazol Brilliant Violet-5R Textile Dye from Aqueous Solutions by Using Eggshell Waste Biosorbent. Scientific Reports, 2020, 10, 8385.	3.3	48
1789	New insights in the use of a strong cationic resin in dye adsorption. Water Science and Technology, 2020, 81, 773-780.	2.5	11
1790	A Facile Green Approach of Cone-like ZnO NSs Synthesized Via Jatropha gossypifolia Leaves Extract for Photocatalytic and Biological Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4441-4451.	3.7	29
1791	Electrocatalytic Oxidation of Aromatic Ecopollutants on Composite Anodic Materials. Russian Journal of Electrochemistry, 2020, 56, 337-348.	0.9	2
1792	Characterization of the biosorption of fast black azo dye K salt by the bacterium Rhodopseudomonas palustris 51ATA strain. Electronic Journal of Biotechnology, 2020, 46, 22-29.	2.2	21
1793	Biosorption of Water Pollutants by Fungal Pellets. Water (Switzerland), 2020, 12, 1155.	2.7	53
1795	Dye adsorption onto magnetic and superparamagnetic Fe3O4 nanoparticles: A detailed comparative study. Journal of Environmental Chemical Engineering, 2020, 8, 103994.	6.7	41
1796	Facile preparation of hydroxyl‑rich mesoporous magnesium silicate with excellent adsorption performance. Surfaces and Interfaces, 2020, 20, 100519.	3.0	8
1797	Latest innovations in bacterial degradation of textile azo dyes. , 2020, , 285-309.		5
1798	Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction. Process Biochemistry, 2020, 95, 108-114.	3.7	6
1799	Lignin-Derived Hybrid Materials as Promising Adsorbents for the Separation of Pollutants. ACS Symposium Series, 2020, , 225-261.	0.5	7
1800	Modification of rice husk silica with bovine serum albumin (BSA) for improvement in adsorption of metanil yellow dye. Journal of the Iranian Chemical Society, 2020, 17, 2599-2612.	2.2	29
1801	Capacitive Organic Dye Removal by Block Copolymer Based Porous Carbon Fibers. Advanced Materials Interfaces, 2020, 7, 2000507.	3.7	11
1802	Visibly Active FeO/ZnO@PANI Magnetic Nano-photocatalyst for the Degradation of 3-Aminophenol. Topics in Catalysis, 2020, 63, 1302-1313.	2.8	17

#	Article	IF	CITATIONS
1803	Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydrate Polymers, 2020, 246, 116653.	10.2	35
1804	Comparison study of adsorbent produced from renewable resources: Oil palm empty fruit bunch and rice husk. Materials Today: Proceedings, 2020, 29, 149-155.	1.8	1
1805	Cobalt–carbon/silica nanocomposites prepared by pyrolysis of a cobalt 2,2′-bipyridine terephthalate complex for remediation of cationic dyes. RSC Advances, 2020, 10, 17660-17672.	3.6	18
1806	Synthesis of ZnO-magnetic/ZSM-5 and its application for removal of disperse Blue 56 from contaminated water. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107969.	3.6	7
1807	Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry. Journal of Electroanalytical Chemistry, 2020, 873, 114360.	3.8	47
1808	Biodecolorization of anthraquinone dyes using immobilised mycelium of Bjerkandera adusta CCBAS930. E3S Web of Conferences, 2020, 171, 01013.	0.5	3
1809	Active Carbon from Microwave Date Stones for Toxic Dye Removal: Setting the Design Capacity. Chemical Engineering and Technology, 2020, 43, 1841-1849.	1.5	8
1810	Oriented membranes processes for facilitated extraction and recovery of some industrial dyes across polymer inclusion membranes containing Chitin as new extractive agent. IOP Conference Series: Materials Science and Engineering, 2020, 827, 012001.	0.6	2
1811	Catalytic activation of persulphate with Mn ₃ O ₄ nanoparticles for degradation of acid blue 113: process optimisation and degradation pathway. International Journal of Environmental Analytical Chemistry, 2022, 102, 3786-3805.	3.3	27
1812	Graphene-zinc oxide nanocomposites (G-ZnO NCs): Synthesis, characterization and their photocatalytic degradation of dye molecules. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 254, 114516.	3.5	49
1813	C/W emulsionâ€ŧemplated macroporous anionic monolith: Application for dye removal. Journal of Applied Polymer Science, 2020, 137, 49200.	2.6	5
1814	A facile approach of adsorption of acid blue 9 on aluminium silicate-coated Fuller's Earth––Equilibrium and kinetics studies. Surfaces and Interfaces, 2020, 19, 100503.	3.0	23
1815	Comprehensive Studies on Methylene Blue Adsorption onto Na-bentonite Clay and its Kinetics, Isotherm and Thermodynamics. IOP Conference Series: Materials Science and Engineering, 2020, 736, 022013.	0.6	1
1816	Synthesis of Fe3O4/SiO2/TiO2-Ag Photo-Catalytic Nano-structures with an Effective Silica Shell for Degradation of Methylene blue. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3740-3749.	3.7	9
1817	Comparison of Remazol Brilliant Blue Reactive Adsorption on Pristine and Calcined ZnAl, MgAl, ZnMgAl Layered Double Hydroxides. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	18
1818	Synthesis and cationic dye biosorption properties of a novel low-cost adsorbent: coconut waste modified with acrylic and polyacrylic acids. International Journal of Phytoremediation, 2020, 22, 551-566.	3.1	18
1819	Adsorption of Reactive Blue-13, an Acidic Dye, from Aqueous Solution Using Magnetized Activated Carbon. Journal of Chemical & Carbon Bata, 2020, 65, 2220-2229.	1.9	17
1820	Electro-Oxidation–Plasma Treatment for Azo Dye Carmoisine (Acid Red 14) in an Aqueous Solution. Materials, 2020, 13, 1463.	2.9	19

#	Article	IF	CITATIONS
1821	Construction of a hierarchical-structured MgO-carbon nanocomposite from a metal–organic complex for efficient CO2 capture and organic pollutant removal. Dalton Transactions, 2020, 49, 5183-5191.	3.3	18
1822	Polyaniline-modified 3D-spongy SnS composites for the enhanced visible-light photocatalytic degradation of methyl orange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125240.	4.7	45
1823	Electrochemical oxidation for decolorization of Rhodamine-B dye using mixed metal oxide electrode: modeling and optimization. Water Science and Technology, 2020, 81, 720-731.	2.5	16
1824	Stepwise Ethanol-Water Fractionation of Enzymatic Hydrolysis Lignin to Improve Its Performance as a Cationic Dye Adsorbent. Molecules, 2020, 25, 2603.	3.8	15
1826	Hyper-Crosslinked Polymer Nanocomposites Containing Mesoporous Silica Nanoparticles with Enhanced Adsorption Towards Polar Dyes. Polymers, 2020, 12, 1388.	4.5	14
1827	Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chemical Engineering Journal, 2020, 402, 125881.	12.7	110
1828	A facile approach from waste to resource: Reclaimed rubber-derived membrane for dye removal. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 286-295.	5.3	21
1829	Ultrasonic-assisted synthesis of nano-sized metal-organic framework; a simple method to explore selective and fast Congo Red adsorption. Ultrasonics Sonochemistry, 2020, 69, 105246.	8.2	29
1830	Efficient Removal of Organic Pollutants by Metal–organic Framework Derived Co/C Yolk–Shell Nanoreactors: Size-Exclusion and Confinement Effect. Environmental Science & Technology, 2020, 54, 10289-10300.	10.0	193
1831	Degradation of Rhodamine B by glass foam coated with WO3 and TiO2 under simulated solar radiation. AIP Conference Proceedings, 2020, , .	0.4	2
1832	Factorial design of experiments for optimization of photocatalytic degradation of tartrazine by zinc oxide (ZnO) nanorods with different aspect ratios. Journal of Environmental Chemical Engineering, 2020, 8, 104235.	6.7	26
1833	Phragmites australis as a new cellulose source: Extraction, characterization and adsorption of methylene blue. Journal of Molecular Liquids, 2020, 312, 113313.	4.9	27
1834	Biosorptive removal of acid orange 74 dye by HCl-pretreated Lemna sp PLoS ONE, 2020, 15, e0228595.	2.5	14
1835	MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chemical Engineering Journal, 2020, 388, 124340.	12.7	267
1836	Synergistic Catalysis of Co(OH)2/CuO for the Degradation of Organic Pollutant Under Visible Light Irradiation. Scientific Reports, 2020, 10, 1939.	3.3	34
1837	Genotoxic effect of two commonly used food dyes metanil yellow and carmoisine using Allium cepa L. as indicator. Toxicology Reports, 2020, 7, 370-375.	3.3	47
1838	Recycling performance of graphene oxide-chitosan hybrid hydrogels for removal of cationic and anionic dyes. Nano Convergence, 2020, 7, 4.	12.1	54
1839	Liquid phase microextraction based sensitive analytical strategy for the determination of 22 hazardous aromatic amine products of azo dyes in wastewater and tap water samples by GC-MS system.	4.5	23

#	Article	IF	CITATIONS
1840	Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater. Journal of Materials Science and Technology, 2020, 45, 84-91.	10.7	16
1841	Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 2020, 717, 137222.	8.0	762
1842	Multifunctional Edge-Activated Carbon Nitride Nanosheet-Wrapped Polydimethylsiloxane Sponge Skeleton for Selective Oil Absorption and Photocatalysis. ACS Omega, 2020, 5, 4181-4190.	3.5	30
1843	Recent developments in textile wastewater biotreatment: dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles. Reviews in Environmental Science and Biotechnology, 2020, 19, 149-190.	8.1	16
1844	Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal. Applied Surface Science, 2020, 513, 145775.	6.1	32
1845	Laser-Induced Wettability Gradient Surface of the Aluminum Matrix Used for Directional Transportation and Collection of Underwater Bubbles. ACS Omega, 2020, 5, 718-725.	3.5	15
1846	Efficient removal of azo-dye Orange II by fungal biomass absorption and laccase enzymatic treatment. 3 Biotech, 2020, 10, 146.	2.2	16
1847	Preparation of TiN–TiO2 composite nanoparticles for organic dye adsorption and photocatalysis. Ceramics International, 2020, 46, 14529-14535.	4.8	31
1848	Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: Optimization of conditions and comparison of decolourization efficiency. Biochemical Engineering Journal, 2020, 156, 107501.	3.6	71
1849	Zerovalent nickel nanoparticles performance towards Cr(VI) adsorption in polluted water. Nanotechnology, 2020, 31, 195708.	2.6	5
1850	The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials, 2020, 10, 295.	4.1	114
1851	Direct synthesis of nitrogen-doped mesoporous carbons from triazine-functionalized resol for CO2 uptake and highly efficient removal of dyes. Journal of Hazardous Materials, 2020, 391, 122163.	12.4	77
1852	A Novel and Efficient Dyes Degradation Using Bentonite Supported Zeroâ€Valent Ironâ€Based Nanocomposites. ChemistrySelect, 2020, 5, 369-378.	1.5	13
1853	Bioremediation of dyes using coconut parts via adsorption: a review. SN Applied Sciences, 2020, 2, 1.	2.9	20
1854	Photostability of organic red food dyes. Food Chemistry, 2020, 315, 126249.	8.2	17
1855	Adsorption of dyes onto modified titanium dioxide. , 2020, , 85-160.		2
1856	Synergism of Aliquat336-D2EHPA as carrier on the selectivity of organic compound dyes extraction via emulsion liquid membrane process. Separation and Purification Technology, 2020, 239, 116527.	7.9	16
1857	Modelling and optimisation of catalytic ozonation process assisted by ZrO ₂ -pumice/H ₂ O ₂ in the degradation of Rhodamine B dye from aqueous environment. International Journal of Environmental Analytical Chemistry, 2021, 101, 2629-2653.	3.3	20

#	Article	IF	CITATIONS
1858	Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors. Environmental Science and Pollution Research, 2020, 27, 9152-9166.	5.3	24
1859	Comparative adsorption capabilities of rubbish tissue paper–derived carbon-doped MgO and CaCO3 for EBT and U(VI), studied by batch, spectroscopy and DFT calculations. Environmental Science and Pollution Research, 2020, 27, 13114-13130.	5.3	10
1860	Surface modification of aluminum phosphate by sodium dodecylbenzenesulfonate (SDBS): A new nano-structured adsorbent for an improved removal of Ponceau S― Journal of Environmental Chemical Engineering, 2020, 8, 103625.	6.7	15
1861	A magnetically separable and recyclable g-C ₃ N ₄ /Fe ₃ O ₄ /porous ruthenium nanocatalyst for the photocatalytic degradation of water-soluble aromatic amines and azo dyes. RSC Advances, 2020, 10. 6043-6051.	3.6	22
1862	Biochar-activated persulfate for organic contaminants removal: Efficiency, mechanisms and influencing factors. Ecotoxicology and Environmental Safety, 2020, 198, 110653.	6.0	46
1863	Microbial Enzymes: Roles and Applications in Industries. Microorganisms for Sustainability, 2020, , .	0.7	12
1864	Investigating the fragmentation pathways of <i>β</i> â€naphthol pigments using liquid chromatography/electrospray ionization quadrupole timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8789.	1.5	8
1866	Electrochemical Treatment of Cattle Wastewater Samples. Waste and Biomass Valorization, 2020, 11, 5185-5196.	3.4	7
1867	A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. Journal of Environmental Chemical Engineering, 2020, 8, 103896.	6.7	227
1868	A novel, two-electron catalysts for the electro-Fenton process. Journal of Water Process Engineering, 2020, 36, 101242.	5.6	22
1869	Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. Journal of Molecular Liquids, 2020, 309, 113094.	4.9	187
1870	One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Progress in Materials Science, 2020, 113, 100671.	32.8	64
1871	Isotherm, Kinetics and Thermodynamic Study of Adsorption of Phthalocyanine and Azo Dyes by CoCl2 Doped Polyaniline. Asian Journal of Chemistry, 2020, 32, 746-752.	0.3	3
1872	Fabrication of recyclable magnetic biosorbent from eggshell membrane for efficient adsorption of dye. Environmental Technology (United Kingdom), 2020, 42, 1-13.	2.2	2
1873	Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 2020, 6, e03663.	3.2	219
1874	Sugarcane bagasse-facilitated benign synthesis of Cu2O nanoparticles and its role in photocatalytic degradation of toxic dyes: a trash to treasure approach. Environment, Development and Sustainability, 2021, 23, 2071-2091.	5.0	22
1875	Application of Magnetic ordered mesoporous carbon Nanocomposite for the Removal of Ponceau 4R Using Factorial Experimental Design. Silicon, 2021, 13, 1561-1573.	3.3	7
1876	Impact of long-term storage of various redox-sensitive supported nanocomposites on their application in removal of dyes from wastewater: Mechanisms delineation through spectroscopic	12.4	20

#	Article	IF	CITATIONS
1877	Calix[4]pyrrole Stabilized PdNPs as an Efficient Heterogeneous Catalyst for Enhanced Degradation of Water-Soluble Carcinogenic Azo Dyes. Catalysis Letters, 2021, 151, 548-558.	2.6	11
1878	In-situ hydrogen peroxide synthesis with environmental applications in bioelectrochemical systems: A state-of-the-art review. International Journal of Hydrogen Energy, 2021, 46, 3204-3219.	7.1	36
1879	Comparison of efficiency for monoazo dye removal by different species of white-rot fungi. International Journal of Environmental Science and Technology, 2021, 18, 21-32.	3.5	11
1880	Dyes and their removal technologies from wastewater: A critical review. , 2021, , 127-160.		22
1881	Removal of methylene blue from aqueous solution using Lathyrus sativus husk: Adsorption study, MPR and ANN modelling. Chemical Engineering Research and Design, 2021, 149, 345-361.	5.6	68
1882	Characterization of zinc oxide nanocrystals with different morphology for application in ultravioletâ€light photocatalytic performances on rhodamine B. Luminescence, 2021, 36, 149-162.	2.9	19
1883	A Carboxylâ€Functionalized Covalent Organic Framework Synthesized in a Deep Eutectic Solvent for Dye Adsorption. Chemistry - A European Journal, 2021, 27, 2692-2698.	3.3	45
1884	Effect of some medium parameters on Brilliant Blue G biosorption by Amberlite resin/Agaricus campestris. International Journal of Environmental Science and Technology, 2021, 18, 1709-1718.	3.5	6
1885	Evolution of microbial populations and impacts of microbial activity in the anaerobic-oxic-settling-anaerobic process for simultaneous sludge reduction and dyeing wastewater treatment. Journal of Cleaner Production, 2021, 282, 124403.	9.3	20
1886	Pyridone Modified Cellulosic Adsorbent for Selective Segregation of Organic Dyes from Aqueous Solution. Australian Journal of Chemistry, 2021, 74, 230.	0.9	1
1887	Reactive Orange 16 dye degradation in anaerobic and aerobic MBBR coupled with ozonation: addressing pathways and performance. International Journal of Environmental Science and Technology, 2021, 18, 1991-2010.	3.5	24
1888	Sustainable pilot scale reactive dyeing based on silicone oil for improving dye fixation and reducing discharges. Journal of Cleaner Production, 2021, 279, 123831.	9.3	32
1889	Novel bacterial biofilm consortia that degrade and detoxify the carcinogenic diazo dye Congo red. Archives of Microbiology, 2021, 203, 643-654.	2.2	29
1890	Batik became two sides of blade for the sustainable development in Indonesia. , 2021, , 59-97.		6
1891	Decolourisation of reactive dyes with laccase-mediator system. Research Journal of Textile and Apparel, 2021, 25, 75-88.	1.1	0
1892	An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment. Journal of Water Process Engineering, 2021, 40, 101827.	5.6	46
1893	Methods of Reactive Red 141 Dye Decolorization, Treatment, and Removal from Industrial Wastewaters: A Critical Review. Environmental Engineering Science, 2021, 38, 577-591.	1.6	10
1894	Decolorization, degradation and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi Journal of Biological Sciences, 2021, 28, 793-804.	3.8	80

#	Article	IF	CITATIONS
1895	Adsorption of Diazo Dye from Aqueous Solutions by Magnetic Montmorillonite Composite. Clean - Soil, Air, Water, 2021, 49, 2000165.	1.1	4
1896	Mechanistic study of carmoisine dye degradation in aqueous solution by Fenton process. Materials Today: Proceedings, 2021, 37, 3847-3853.	1.8	8
1897	Design and optimization of a cavitating device for Congo red decolorization: Experimental investigation and CFD simulation. Ultrasonics Sonochemistry, 2021, 71, 105386.	8.2	26
1898	Removal of dyes and pigments from industrial effluents. , 2021, , 135-187.		23
1899	Two Co(II)/Ni(II) isostructural Metal-Organic Frameworks with bnn topology for photocatalysis and electrocatalysis. Microporous and Mesoporous Materials, 2021, 312, 110813.	4.4	12
1900	Nickel-Iron Alloy Nanoparticle Characteristics Pre- and Post-Reaction With Orange G. IEEE Open Journal of Nanotechnology, 2021, 2, 16-25.	2.0	1
1901	Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	2.0	20
1902	Facile preparation and application of fluoroalkyl end-capped vinyltrimethoxysilane oligomer/methyltrimethoxysilane nanocomposite lipogels possessing superoleophilic/superhydrophobic characteristic. Colloid and Polymer Science, 2021, 299, 637-648.	2.1	2
1903	Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. Journal of Cleaner Production, 2021, 284, 124773.	9.3	217
1904	Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. Ultrasonics Sonochemistry, 2021, 71, 105367.	8.2	67
1905	Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics. Environmental Science and Pollution Research, 2021, 28, 9133-9145.	5.3	13
1906	TiO2/PLLA Electrospun Nanofibers Membranes for Efficient Removal of Methylene Blue Using Sunlight. Journal of Polymers and the Environment, 2021, 29, 509-519.	5.0	9
1907	Comparative study on photocatalytic material activity of BiOBr flower microspheres and sheet structure. Environmental Technology (United Kingdom), 2021, 42, 1461-1471.	2.2	10
1908	Occurrence and fate of aromaticity driven recalcitrance in anaerobic treatment of wastewater and organic solidÂwastes. , 2021, , 203-226.		1
1909	Biosorption of astrazon red dye by the bacterium Rhodopseudomonas sp. strain 51ATA. Environmental Earth Sciences, 2021, 80, 1.	2.7	3
1910	Microbial metabolites: as sources of green dye. , 2021, , 231-273.		2
1911	Efficient native biosorbent derived from agricultural waste precursor for anionic dye adsorption in synthetic wastewater. Biomass Conversion and Biorefinery, 2023, 13, 171-188.	4.6	13
1912	Cyclodextrin Polymers and Cyclodextrin-Containing Polysaccharides for Water Remediation. Polysaccharides, 2021, 2, 16-38.	4.8	47

#	Article	IF	CITATIONS
1913	Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes, 2021, 11, 60.	3.0	18
1914	Application of biosurfactants and nanomaterials in the treatment of polluted water. , 2021, , 203-234.		0
1915	The Role of Adsorption in the Photocatalytic Decomposition of Dyes on APTES-Modified TiO2 Nanomaterials. Catalysts, 2021, 11, 172.	3.5	10
1916	Applications of Photochemical Oxidation in Textile Industry. , 2021, , 1-30.		1
1917	Biological Decolorization and Degradation of Synthetic Dyes: A Green Step Toward Sustainable Environment. Microorganisms for Sustainability, 2021, , 77-110.	0.7	8
1918	Magnetically Modified Biological Materials for Dye Removal. Environmental Chemistry for A Sustainable World, 2021, , 223-257.	0.5	0
1919	High-capacity adsorbents from stainless steel slag for the control of dye pollutants in water. Environmental Science and Pollution Research, 2021, 28, 23896-23910.	5.3	14
1920	Green derived metal sulphides as photocatalysts for waste water treatment. A review. Current Research in Green and Sustainable Chemistry, 2021, 4, 100163.	5.6	33
1921	Photocatalytic degradation of dye by a copper(II) Schiff base metal complex under visible light irradiation. AIP Conference Proceedings, 2021, , .	0.4	1
1922	Potential of Thallophytes in Degradation of Dyes. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 440-474.	0.4	0
1923	Electrode material in electrochemical decolorization of dyestuffs wastewater: A review. E3S Web of Conferences, 2021, 234, 00058.	0.5	4
1925	Electrochemical technologies for wastewater treatment and resource reclamation. , 2021, , 381-389.		1
1926	Synthesis of Gum Acacia Capped Polyaniline-Based Nanocomposite Hydrogel for the Removal of Methylene Blue Dye. Journal of Polymers and the Environment, 2021, 29, 2447-2462.	5.0	25
1927	Characterization of prepared eco-friendly biochar from almond (Terminalia catappa L) leaf for sequestration of bromophenol blue (BPB) from aqueous solution. Carbon Letters, 2021, 31, 1001-1014.	5.9	28
1928	Composites leading to a clean and green future. , 2021, , 253-285.		2
1929	Technology for Treating Oily Wastewater Derived from Various Industries: A Review Paper. Chemica: Jurnal Teknik Kimia, 2021, 7, 106.	0.1	2
1930	Adsorption of organic compounds on activated carbons. , 2021, , 355-385.		5
1931	Natural Polymer Composites for Environmental Applications. , 2021, , 1725-1741.		0

#	Article	IF	CITATIONS
1932	Dyes from Textile Industry Wastewater as Emerging Contaminants in Agricultural Fields. Sustainable Agriculture Reviews, 2021, , 109-129.	1.1	9
1933	Synthesis of TiO ₂ –Ag ₃ PO ₄ photocatalyst material with high adsorption capacity and photocatalytic activity: application in the removal of dyes and pesticides. RSC Advances, 2021, 11, 17032-17045.	3.6	27
1934	Cucurbituril-Functionalized Nanocomposite as a Promising Industrial Adsorbent for Rapid Cationic Dye Removal. ACS Omega, 2021, 6, 3024-3036.	3.5	11
1935	Methods for the Treatment of Wastewaters Containing Dyes and Pigments. Environmental Chemistry for A Sustainable World, 2021, , 597-661.	0.5	8
1936	A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxideâ€Based Adsorption Strategies for Textile Wastewater Treatment. Chemical Record, 2021, 21, 1570-1610.	5.8	353
1937	Biosynthesized Quantum Dots as Improved Biocompatible Tools for Biomedical Applications. Current Medicinal Chemistry, 2021, 28, 496-513.	2.4	7
1938	Combination of Advanced Oxidation Processes and Microalgae Aiming at Recalcitrant Wastewater Treatment and Algal Biomass Production: a Review. Environmental Processes, 2021, 8, 483-509.	3.5	10
1939	Electrospun biosystems made of nylon 6 and laccase and its application in dyes removal. Environmental Technology and Innovation, 2021, 21, 101332.	6.1	18
1940	TiO2 Photocatalysis for the Transformation of Aromatic Water Pollutants into Fuels. Catalysts, 2021, 11, 317.	3.5	34
1941	Fiber engineering of silica-based aerogels with surface specificity and regenerability for continuous removal of dye pollutants from wastewaters. Microporous and Mesoporous Materials, 2021, 314, 110874.	4.4	30
1942	The Removal of Reactive Red 141 From Wastewater: A Study of Dye Adsorption Capability of Water-Stable Electrospun Polyvinyl Alcohol Nanofibers. Autex Research Journal, 2021, 21, 20-31.	1.1	6
1943	Effective sequestration of Congo red dye with ZnO/cotton stalks biochar nanocomposite: MODELING, reusability and stability. Journal of Saudi Chemical Society, 2021, 25, 101176.	5.2	44
1944	Adsorption of methylene blue onto sugarcane bagasseâ€based adsorbent materials. Journal of Physical Organic Chemistry, 2021, 34, e4193.	1.9	18
1945	Removal of two cationic dyes from aqueous solutions by adsorption onto local clay: experimental and theoretical study using DFT method. International Journal of Environmental Analytical Chemistry, 2023, 103, 1223-1244.	3.3	16
1946	Binary Adsorption of Textile Dyes onto Zwitterionic Adsorbent Coating: Performance Study. Trends Journal of Sciences Research, 2021, 10.31586, 1-7.	0.1	0
1947	Surface modification of titanium dioxide with silver nanoparticles for application in photocatalysis. Applied Nanoscience (Switzerland), 2022, 12, 1175-1182.	3.1	6
1948	Enhancing methylene blue sorption on spotted golden thistle stalks by soft chemical pretreatments. Chemical Engineering Communications, 0, , 1-13.	2.6	0
1949	Synthesis of multi-organo-functionalized fibrous silica KCC-1 for highly efficient adsorption of acid fuchsine and acid orange II from aqueous solution. Scientific Reports, 2021, 11, 2716.	3.3	20

#	Article	IF	CITATIONS
1950	Adsorption Capacity of Smectite Clay and Its Thermal and Chemical Modification for Two Anionic Dyes: Comparative Study. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	9
1951	Microalgae in aquatic environs: A sustainable approach for remediation of heavy metals and emerging contaminants. Environmental Technology and Innovation, 2021, 21, 101340.	6.1	48
1952	Network structure-based decorated CPA@CuO hybrid nanocomposite for methyl orange environmental remediation. Scientific Reports, 2021, 11, 5056.	3.3	13
1953	Biodegradation of textile azo dyes by textile effluent non-adapted and adapted Aeromonas hydrophila. Environmental Research, 2021, 194, 110643.	7.5	43
1955	Facile solid solution of trirutile and columbite structured oxides Zn1-xLixNb2-xMoxO6 and Zn1-xLixNb2-xWxO6 (x = 0.0-1.0): synthesis and photocatalytic studies. International Journal of Environmental Analytical Chemistry, 0, , 1-14.	3.3	0
1956	Synthesis of activated carbon material using sawdust as precursor and its application for dye removal: batch study and optimization using response surface methodology. Biomass Conversion and Biorefinery, 2023, 13, 3903-3915.	4.6	5
1957	Gold Nanoparticle-Decorated Bi2S3 Nanorods and Nanoflowers for Photocatalytic Wastewater Treatment. Catalysts, 2021, 11, 355.	3.5	22
1958	Highly Efficient Methylene Blue Dye Removal by Nickel Molybdate Nanosorbent. Molecules, 2021, 26, 1378.	3.8	11
1959	Response surface modeling of Orange-G adsorption onto surface tuned ragi husk. Colloids and Interface Science Communications, 2021, 41, 100363.	4.1	26
1960	Application of immobilized mycelium-based pellets for the removal of organochlorine compounds: a review. Water Science and Technology, 2021, 83, 1781-1796.	2.5	11
1961	Hydrothermal Synthesis of K ₂ Ti ₆ O ₁₃ Nanotubes/Nanoparticles: A Photodegradation Study on Methylene Blue and Rhodamine B Dyes. ACS Omega, 2021, 6, 7248-7256.	3.5	22
1962	Biodegradation of reactive yellow EXF dye: optimization of physiochemical parameters and analysis of degradation products. International Journal of Environmental Science and Technology, 2022, 19, 1683-1694.	3.5	4
1963	Macaúba's world scenario: a bibliometric analysis. Biomass Conversion and Biorefinery, 2023, 13, 3329-3347.	4.6	9
1964	N-doping copolymer derived hierarchical micro/mesoporous carbon:Pore regulation of melamine and fabulous adsorption performances. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 236-245.	5.3	13
1965	Agro and industrial residues: Potential raw materials for photocatalyst development. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113184.	3.9	15
1966	Photocatalytic Degradation of Organic Pollutants by Using Nanocrystalline Boronâ€doped TiO ₂ Catalysts. ChemistrySelect, 2021, 6, 3360-3369.	1.5	13
1967	Multicomponent transport model-based scaling up of long-term fixed bed adsorption of reactive dyes from textile effluent using aminated PAN beads. Environmental Science and Pollution Research, 2021, 28, 43483-43506.	5.3	3
1968	Sıfır Değerlikli Demir Nanoparçacık (nZVI) ile Sulu Çözeltilerden Metil Oranj Giderimi. International Journal of Advances in Engineering and Pure Sciences, 0, ,	0.8	0
			_
------	---	------	-----------
#	ARTICLE	IF	CITATIONS
1969	Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application. International Journal of Biological Macromolecules, 2021, 176, 37-46.	7.5	15
1970	Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater. Inorganic Chemistry Communication, 2021, 126, 108487.	3.9	48
1971	Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. Scientific Reports, 2021, 11, 7678.	3.3	47
1972	Adsorptive removal of Safranin-O dye from aqueous medium using coconut coir and its acid-treated forms: Adsorption study, scale-up design, MPR and GA-ANN modeling. Sustainable Chemistry and Pharmacy, 2021, 19, 100374.	3.3	46
1974	Empirical modeling and kinetic study of methylene blue removal from synthetic wastewater by activation of persulfate with heterogeneous Fenton-like process. Journal of Molecular Liquids, 2021, 328, 115408.	4.9	12
1975	Structural Stability of Ni/Al Layered Double Hydroxide Supported on Graphite and Biochar Toward Adorption of Congo Red. Science and Technology Indonesia, 2021, 6, 85-95.	0.8	14
1976	Novel Ti/TiHx/SnO2-Sb2O5-NiO-CNT electrode for electrochemical Ozone Generation for degradation of toxic textile azo dyes. Environmental Engineering Research, 2022, 27, 200429-0.	2.5	5
1977	Watermelon rinds as cost-efficient adsorbent for acridine orange: a response surface methodological approach. Environmental Science and Pollution Research, 2023, 30, 71554-71573.	5.3	22
1978	Photocatalytic organic dye by two new coordination polymers with flexible dicarboxylate and different N-donor linkage. Inorganica Chimica Acta, 2021, 519, 120284.	2.4	5
1979	Single-Atom Ni Heterogeneous Catalysts Supported UiO-66 Structure: Synthesis and Catalytic Activities. Journal of Nanomaterials, 2021, 2021, 1-16.	2.7	9
1980	Antifouling Polyethersulfone-Petrol Soot Nanoparticles Composite Ultrafiltration Membrane for Dye Removal in Wastewater. Membranes, 2021, 11, 361.	3.0	5
1981	Photodegradation mechanisms of reactive blue 19 dye under UV and simulated solar light irradiation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119481.	3.9	9
1982	A Short Review on Electrochemical Sensing of Commercial Dyes in Real Samples Using Carbon Paste Electrodes. Electrochem, 2021, 2, 274-294.	3.3	19
1983	Factors Determining the Removal Efficiency of Procion MX in Waters Using Titanate Nanotubes Catalyzed by UV Irradiation. Journal of Nanotechnology, 2021, 2021, 1-10.	3.4	4
1984	Perovskite Oxide Catalysts for Advanced Oxidation Reactions. Advanced Functional Materials, 2021, 31, 2102089.	14.9	93
1985	Efficient removal of crystal violet by sulphonic-modified multi-walled carbon nano-tube and graphene oxide. Nanotechnology for Environmental Engineering, 2021, 6, 1.	3.3	8
1986	Doping of Mg on ZnO Nanorods Demonstrated Improved Photocatalytic Degradation and Antimicrobial Potential with Molecular Docking Analysis. Nanoscale Research Letters, 2021, 16, 78.	5.7	36
1987	Nanocellulose Obtained from Biomass as Advance Adsorbent for Methylene Blue and Crystal Violet. Journal of Physics: Conference Series, 2021, 1912, 012015.	0.4	2

#	Article	IF	CITATIONS
1988	Degradation of Congo red by UV photolysis of nitrate: Kinetics and degradation mechanism. Separation and Purification Technology, 2021, 262, 118276.	7.9	20
1989	Studies of the potential of a native natural biosorbent for the elimination of an anionic textile dye Cibacron Blue in aqueous solution. Scientific Reports, 2021, 11, 9705.	3.3	14
1990	Studies on phytomolecules mediated synthesis of copper oxide nanoparticles for biomedical and environmental applications. Biocatalysis and Agricultural Biotechnology, 2021, 33, 101994.	3.1	22
1991	Adsorptive Removal of Anionic Azo Dye New Coccine Using Silica and Silica-gel with Surface Modification by Polycation. Polymers, 2021, 13, 1536.	4.5	9
1992	Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 2021, 45, 101802.	0.7	79
1993	Highly-stable Madurella mycetomatis laccase immobilized in silica-coated ZIF-8 nanocomposites for environmentally friendly cotton bleaching process. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111672.	5.0	27
1994	The in situ treatment of Basic Violet 16 synthetic dye in groundwater. Remediation, 2021, 31, 27-34.	2.4	3
1995	UV SPECTROSCOPY AND KINETIC RESEARCH OF PHOTODEGRADATION OF METHYL ORANGE IN THE PRESENCE OF TITANIUM DIOXIDE AND Î ² -CYCLODEXTRIN OR ITS DERIVATIVES. Polymer Journal, 2021, 43, 103-112.	0.1	1
1996	Carboxylcellulose hydrogel confined-Fe3O4 nanoparticles catalyst for Fenton-like degradation of Rhodamine B. International Journal of Biological Macromolecules, 2021, 180, 792-803.	7.5	28
1997	Release of toxic methylene blue from water by mesoporous silicalite-1: characterization, kinetics and isotherm studies. Applied Water Science, 2021, 11, 1.	5.6	18
1998	Efficient adsorption removal of anionic dyes by an imidazolium-based mesoporous poly(ionic liquid) including the continuous column adsorption-desorption process. Chemosphere, 2021, 272, 129640.	8.2	42
1999	Mir-140 and Mir-34a as Molecular Markers for Apoptotic Brain in Sunset Yellow and Carmoisine Intoxicated Mice. Zagazig Veterinary Journal, 2021, 49, 37-49.	0.2	3
2000	Detection of suspected carcinogen azo dyes in textiles using thermogravimetric analysis. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 896-901.	1.7	2
2001	Adsorption of methylene blue and bright blue dyes on bayleaf capertree pods powder: Understanding the adsorption mechanism by a theoretical study. Journal of Molecular Liquids, 2021, 332, 115680.	4.9	26
2002	Biodegradation of Indanthrene Blue RS dye in immobilized continuous upflow packed bed bioreactor using corncob biochar. Scientific Reports, 2021, 11, 13390.	3.3	15
2004	Advanced Oxidation Processes (AOPs) for treatment of antibiotics in wastewater: A review. IOP Conference Series: Earth and Environmental Science, 2021, 779, 012109.	0.3	20
2005	Visible-light-driven zirconium oxide/cadmium sulfide nanocomposite for degradation of textile dyes. International Journal of Environmental Science and Technology, 2022, 19, 4037-4046.	3.5	6
2006	Biodecolorization and Biodegradation of Dyes: A Review. Open Biotechnology Journal, 2021, 15, 97-108.	1.2	11

#	Article	IF	CITATIONS
2007	Three-Dimensional Electrochemical Oxidation of Recalcitrant Dye Using Green Iron Microparticles. Water (Switzerland), 2021, 13, 1925.	2.7	5
2008	Characterization of the Physical, Chemical, and Adsorption Properties of Coal-Fly-Ash–Hydroxyapatite Composites. Minerals (Basel, Switzerland), 2021, 11, 774.	2.0	6
2009	A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. Journal of Hazardous Materials, 2021, 413, 125375.	12.4	223
2010	Treatment of Textile Dyeing Waste Water Using TiO2/Zn Electrode by Spray Pyrolysis in Electrocoagulation Process. , 0, , .		0
2011	Microwave-assisted synthesis of ceria nanoparticles on carbon nanotubes and their dye-removal assesstment. Journal of Materials Research and Technology, 2021, 13, 70-82.	5.8	17
2012	Efficiency assessment of Cu and Al electrodes in the removal of anthraquinone based disperse dye aqueous solution in electrocoagulation–an analytical approach. International Journal of Environmental Analytical Chemistry, 0, , 1-20.	3.3	1
2013	ZIF-67-based Composite Membranes Generated from Carboxymethyl Chitosan and Nylon Mesh for Separation Applications. Fibers and Polymers, 2021, 22, 3261-3270.	2.1	1
2014	Using indigenous bacterial isolate Nesterenkonia lacusekhoensis for removal of azo dyes: A low-cost ecofriendly approach for bioremediation of textile wastewaters. Environment, Development and Sustainability, 2022, 24, 5344-5367.	5.0	17
2015	Exploring the potential of Eucalyptus citriodora biochar against direct red 31 dye and its phytotoxicity assessment. Biomass Conversion and Biorefinery, 0, , 1.	4.6	4
2016	Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural, industrial compounds. Communications Biology, 2021, 4, 871.	4.4	18
2017	Efficient Removal of Azo Dye from Wastewater Using the Non-Toxic Potassium Ferrate Oxidation–Coagulation Process. Applied Sciences (Switzerland), 2021, 11, 6825.	2.5	11
2018	Textile Industry Effluent Treatment Techniques. Journal of Chemistry, 2021, 2021, 1-14.	1.9	78
2019	Subcritical and supercritical water oxidation for dye decomposition. Journal of Environmental Management, 2021, 290, 112605.	7.8	60
2020	Chemo-metrically formulated consortium with selectively screened bacterial strains for ameliorated biotransformation and detoxification of 1,4-dioxane. Journal of Hazardous Materials, 2021, 413, 125456.	12.4	11
2021	Exfoliation of 2D materials by saponin in water: Aerogel adsorption / photodegradation organic dye. Chemosphere, 2021, 274, 129795.	8.2	15
2022	Identification of adsorption or degradation mechanism for the removal of different ionic dyes with iron-carbon micro-electrolysis process. Journal of Environmental Chemical Engineering, 2021, 9, 105690.	6.7	17
2023	Crude extracts from Allium cepa skin and Sorghum bicolor seed can provide as non-toxic and eco-friendly cytoplasmic stains. Practical Laboratory Medicine, 2021, 26, e00239.	1.3	0
2024	Polyaniline-multiwalled carbon nanotubes (PANI- MWCNTs) composite revisited: An efficient and reusable material for methyl orange dye removal. Diamond and Related Materials, 2021, 117, 108455.	3.9	39

#	Article	IF	Citations
2025	Removal of Acid Red 131 by Peroxi-Coagulation Using Stainless Steel and Aluminum Electrodes: a Comparative Study. Water Conservation Science and Engineering, 2021, 6, 201-211.	1.7	4
2026	Recent Advances in Biopolymer-Based Dye Removal Technologies. Molecules, 2021, 26, 4697.	3.8	54
2027	Bibliometric analysis of global research on white rot fungi biotechnology for environmental application. Environmental Science and Pollution Research, 2022, 29, 1491-1507.	5.3	11
2028	Compared catalytic properties of OMS-2-based nanocomposites for the degradation of organic pollutants. Chinese Chemical Letters, 2021, 32, 2513-2518.	9.0	27
2029	Two new Cd/Co-based coordination polymers as photocatalysts for UV-light promoted dye degradation. Inorganica Chimica Acta, 2021, 525, 120457.	2.4	0
2030	Synthesis and Characterization of Co/Al-PILCs for the Oxidation of an Azo Dye Using the Bicarbonate-Activated Hydrogen Peroxide System. Catalysis Letters, 2022, 152, 1905-1916.	2.6	4
2031	The decolorization and degradation of azo dyes by two Stenotrophomonas strains isolated from textile effluent (Tepetitla, Mexico). Brazilian Journal of Microbiology, 2021, 52, 1755-1767.	2.0	7
2032	Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 2021, 26, 5419.	3.8	136
2033	Fe(III)-Complex-Imprinted Polymers for the Green Oxidative Degradation of the Methyl Orange Dye Pollutant. Polymers, 2021, 13, 3127.	4.5	2
2034	Adsorption mechanisms investigation of methylene blue on the (0 0 1) zeolite 4A surface in aqueous medium by computational approach and molecular dynamics. Applied Surface Science, 2022, 572, 151381.	6.1	41
2035	Concentration measurement of opaque dye solution using a non-contact fiber displacement sensor. Optical Fiber Technology, 2021, 65, 102624.	2.7	1
2036	Textile Industry Wastewaters From Jetpur, Gujarat, India, Are Dominated by Shewanellaceae, Bacteroidaceae, and Pseudomonadaceae Harboring Genes Encoding Catalytic Enzymes for Textile Dye Degradation. Frontiers in Environmental Science, 2021, 9, .	3.3	12
2037	Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments. Journal of Microbiology, 2021, 59, 898-910.	2.8	17
2038	Improved photocatalytic activity for degradation of textile dyeing waste water and thiazine dyes using PbWO4 nanoparticles synthesized by co-precipitation method. Environmental Research, 2021, 200, 111721.	7.5	29
2039	Synthesis of PVDFâ€B 4 C mixed matrix membrane for ultrafiltration of protein and photocatalytic dye removal. Journal of Applied Polymer Science, 0, , 51663.	2.6	4
2040	Mechanistically understanding adsorption of methyl orange, indigo carmine, and methylene blue onto ionic/nonionic polystyrene adsorbents. Journal of Hazardous Materials, 2021, 418, 126300.	12.4	39
2041	Phylogenetically diverse bacteria isolated from tattoo inks, an azo dye-rich environment, decolorize a wide range of azo dyes. Annals of Microbiology, 2021, 71, .	2.6	4
2042	Synthesis and characterization of chitosan/polyacrylamide hydrogel grafted poly(N-methylaniline) for methyl red removal. International Journal of Biological Macromolecules, 2021, 187, 240-250.	7.5	17

#	Article	IF	CITATIONS
2043	Enhanced photocatalytic degradation of organic dyes from aqueous environment using neodymium-doped mesoporous layered double hydroxide. Journal of Rare Earths, 2022, 40, 1554-1563.	4.8	23
2044	Review of the Advancements on Polymer/Metal Oxide Hybrid Nanocompositeâ€Based Adsorption Assisted Photocatalytic Materials for Dye Removal. ChemistrySelect, 2021, 6, 9300-9310.	1.5	8
2045	Copper(II) complexes with NNN and NNO Schiff base ligands as efficient photodegradation agents for methylene blue, preferential BSA binder and biomaterial transplants. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 422, 113565.	3.9	7
2046	Recent progress in the removal of mercury ions from water based MOFs materials. Coordination Chemistry Reviews, 2021, 443, 214034.	18.8	93
2047	Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition. Microbiological Research, 2021, 250, 126805.	5.3	39
2048	Formation of organic chloramines during chlorination of 18 compounds. Water Research, 2021, 204, 117570.	11.3	13
2049	A magnetic graphene nanocomposite for efficient removal of methylene blue from wastewater. Inorganic Chemistry Communication, 2021, 132, 108823.	3.9	4
2050	Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater. Journal of Environmental Management, 2021, 295, 113362.	7.8	41
2051	An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. Journal of Environmental Chemical Engineering, 2021, 9, 105812.	6.7	101
2052	Enhanced surface adsorption of Congo red dye by the metastable α-LiAlO2 over LiAl2(OH)7â‹2H2O. Solid State Sciences, 2021, 120, 106724.	3.2	4
2053	AgI/CuWO4 Z-scheme photocatalyst for the degradation of organic pollutants: Experimental and molecular dynamics studies. Journal of Colloid and Interface Science, 2021, 599, 717-729.	9.4	50
2054	Development of room temperature synthesized and functionalized metal-organic framework/graphene oxide composite and pollutant adsorption ability. Materials Research Bulletin, 2021, 142, 111408.	5.2	38
2055	Lead-free Rudorffite-type Cs3Bi2Br9 nanoparticles for photocatalytic degradation of rhodamine B and methylene blue. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113460.	3.9	13
2056	Magnetically separable mesoporous alginate polymer beads assist adequate removal of aqueous methylene blue over broad solution pH. Journal of Cleaner Production, 2021, 319, 128694.	9.3	20
2057	Methylene blue adsorption on thermo plasma expanded graphite in a multilayer column system. Journal of Environmental Management, 2021, 296, 113365.	7.8	17
2058	A comprehensive review on the synthesis and performance of different zirconium-based adsorbents for the removal of various water contaminants. Chemical Engineering Journal, 2021, 424, 130509.	12.7	52
2059	Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. Journal of Molecular Liquids, 2021, 341, 117317.	4.9	35
2060	Analysis and effective separation of toxic pollutants from water resources using MBBR: Pathway prediction using alkaliphilic P. mendocina. Science of the Total Environment, 2021, 797, 149135.	8.0	6

#	Article	IF	CITATIONS
2061	Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. International Journal of Biological Macromolecules, 2021, 190, 862-875.	7.5	77
2062	Ultrasound-assisted heterogeneous Fenton-like process for methylene blue removal using magnetic MnFe2O4/biochar nanocomposite. Applied Surface Science, 2021, 566, 150654.	6.1	48
2063	Prolific approach for the removal of dyes by an effective interaction with polymer matrix using ultrafiltration membrane. Journal of Environmental Chemical Engineering, 2021, 9, 106328.	6.7	21
2064	Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water — A comprehensive review. Carbohydrate Polymers, 2021, 273, 118604.	10.2	111
2065	Resin immobilized gold nanocomposites assisted surface enhanced infrared absorption (SEIRA) spectroscopy for improved surface assimilation of methylene blue from aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120144.	3.9	9
2066	The Facile Synthesis of Cu2O-Cu hybrid cubes as efficient visible-light-driven photocatalysts for water remediation processes. Powder Technology, 2021, 394, 1111-1120.	4.2	17
2067	Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere, 2022, 287, 132080.	8.2	156
2068	Thiourea-functionalized graphene aerogel for the aqueous phase sensing of toxic Pb(II) metal ions and H2O2. Chemosphere, 2022, 287, 132105.	8.2	23
2069	Application of lead oxide electrodes in wastewater treatment: A review. Science of the Total Environment, 2022, 806, 150088.	8.0	20
2070	Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O. Materials Research Bulletin, 2022, 145, 111561.	5.2	48
2071	Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere, 2022, 286, 131916.	8.2	83
2072	Application of random forest for modeling batch and continuous fixed-bed removal of crystal violet from aqueous solutions using Gypsophila aretioides stem-based biosorbent. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120292.	3.9	13
2073	Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. Chemosphere, 2022, 286, 131914.	8.2	35
2074	Microbial communities: An effective tool for cleaning environment. , 2022, , 231-248.		0
2075	Applications of Photochemical Oxidation in Textile Industry. , 2021, , 1975-2003.		1
2076	Microbial diversity, interactions and biodegradation of hazardous textile wastewater using biological consortium technology. , 2021, , 91-117.		0
2077	Highlighting the cathodic contribution of an electrooxidation post-treatment study on decolorization of textile wastewater effluent pre-treated with a lab-scale moving bed-membrane bioreactor. Environmental Science and Pollution Research, 2021, 28, 25972-25983.	5.3	7
2078	Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature. ACS Omega, 2021, 6, 2601-2612.	3.5	117

#	Article	IF	CITATIONS
2079	Application of Sustainable and Low-Cost Sludge-Based Adsorbents for Textile Dye Degradation. Sustainable Textiles, 2021, , 25-88.	0.7	1
2080	Bi ₂ O ₂ CO ₃ /TiO ₂ hybrid with 0D/1D nanostructure: design, synthesis and photocatalytic performance. New Journal of Chemistry, 2021, 45, 6247-6253.	2.8	6
2081	Electro-photocatalytic degradation processes for dye/colored wastewater treatment. , 2021, , 833-846.		1
2082	Phytosynthesized nanoparticle-directed catalytic reduction of synthetic dyes: beast to beauty. Nanotechnology for Environmental Engineering, 2021, 6, 1.	3.3	11
2084	Preparation of Mn ₂ O ₃ /MIL-100(Fe) composite and its mechanism for enhancing the photocatalytic removal of rhodamine B in water. RSC Advances, 2021, 11, 28496-28507.	3.6	10
2085	Graphene and its derivatives for environmental applications. , 2021, , 219-259.		0
2086	Industrial dye degradation bydifferent nanocomposite doped material. , 2021, , 377-404.		0
2087	Industrial applications of photocatalytic methods such as textile pharmaceutical industries, tannery, and craft. , 2021, , 467-488.		1
2088	Utilization of low-cost waste materials in wastewater treatments. , 2021, , 99-119.		0
2089	A porous anionic zinc(<scp>ii</scp>) metal–organic framework for gas adsorption, selective uptake of dyes and sensing of Fe ³⁺ by Tb ³⁺ ion encapsulation. CrystEngComm, 2021, 23, 7348-7357.	2.6	12
2090	The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology, 2021, 3, 59-75.	9.1	276
2092	White Rot Fungi and Their Enzymes for the Treatment of Industrial Dye Effluents. Fungal Biology, 2019, , 73-100.	0.6	4
2093	Hybrid Adsorbents for Dye Removal from Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 405-451.	0.5	8
2094	Microbe-Mediated Degradation of Synthetic Dyes in Wastewater. Environmental Science and Engineering, 2015, , 205-241.	0.2	3
2095	Microbial Decolorization of Triphenylmethane Dyes. Environmental Science and Engineering, 2015, , 169-186.	0.2	5
2096	Dyes—Environmental Impact and Remediation. , 2012, , 111-162.		173
2097	Microbial Decolorization of Colored Industrial Effluents. , 2012, , 787-813.		4
2098	Removal of Dyes from Industrial Effluents by Application of Combined Biological and Physicochemical Treatment Approaches. , 2020, , 365-407.		5

#	Article	IF	CITATIONS
2099	White Rot Fungi: Nature's Scavenger. , 2020, , 267-307.		3
2100	Dyes: Effect on the Environment and Biosphere and Their Remediation Constraints. , 2020, , 73-94.		7
2101	Natural Biological Treatment of Effluent and Sludges to Combat the Burden of Waste. , 2020, , 107-122.		2
2102	Wastewater Treatment Techniques: An Introduction. , 2021, , 161-182.		4
2103	Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay. Applied Clay Science, 2018, 152, 148-157.	5.2	107
2104	Electrochemical oxidation of Reactive Blue 19 on boron-doped diamond anode with different supporting electrolyte. Journal of Environmental Chemical Engineering, 2020, 8, 103997.	6.7	25
2105	A review of advances in engineered composite materials popular for wastewater treatment. Journal of Environmental Chemical Engineering, 2020, 8, 104073.	6.7	87
2106	Regenerative nanobots based on magnetic layered double hydroxide for azo dye removal and degradation. Chemical Communications, 2017, 53, 10456-10458.	4.1	14
2107	Zinc Chloride-activated Waste Carbon Powder for Decolourization of Methylene Blue. Jurnal Teknologi (Sciences and Engineering), 2014, 67, .	0.4	7
2108	Evaluation of Culture Conditions for Allura Red degradation by Pleurotus ostreatus under Solid State Fermentation. , 0, , .		1
2109	Removal of the Mixture of Azo Dyes Allura Red - Tartrazine by Adsorption onto Corncob. , 0, , .		3
2111	Dyes Contamination in the Environment. , 2017, , 127-176.		1
2113	Synthesis and Mechanism of Flocculating-Decolorizing Agent PAD used for Polymer-Sulphonated Drilling Wastewater. Journal of Residuals Science and Technology, 2016, 13, 135-143.	0.6	2
2114	Synthesis and Evaluation Catalytic Efficiency of Perovskite-Type Oxide Nanopowders in Removal of Bromocresol Purple from Aqueous Solution. International Journal of Scientific Research in Knowledge, 0, , 340-351.	0.1	1
2115	Elimination of Dyes from Waste Water via Adsorption Materials - A Mini Review. Material Science Research India, 2018, 15, 141-144.	0.7	2
2116	Effects of various Carbonization Processes in the Preparation of Nanoporous Carbon Materials using Ipomoea Carnea Stem Waste for the Removal of Dyes from Textile Industrial Effluents. Journal of Environmental Nanotechnology, 2014, 3, 9-21.	0.3	1
2117	Electrochemical oxidation of textile azo dye reactive orange 16 on the Platinum electrode. Mediterranean Journal of Chemistry, 2020, 10, 82-89.	0.7	7
2118	Optimization of Dyeing Time of Eco-friendly Cotton Coloration Using Banana (Musa Sapientum) Floral Stem Sap. Chemical and Materials Engineering, 2016, 4, 26-31	0.7	8

			-
#	ARTICLE	IF	CITATIONS
2119	Process of Reactive Black 5 onto Fungal Biomass. PLoS ONE, 2012, 7, e33551.	2.5	17
2120	Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1381-1393.	2.8	27
2121	Biological Treatment of Reactive Black 5 by Resupinate White Rot Fungus Phanerochaete sordida PBU 0057. Polish Journal of Environmental Studies, 2016, 25, 1167-1176.	1.2	12
2122	Kinetic Aspects of Methylene Blue Adsorption on Blast Furnace Sludge. Chemical and Biochemical Engineering Quarterly, 2015, 28, 491-498.	0.9	12
2123	Preparation and Investigation of the Photocatalytic Properties of Periwinkle Shell Ash for Tartrazine Decolourisation. Journal of Mechanical Engineering and Sciences, 2014, 7, 1070-1084.	0.6	5
2124	Bacterial Bioremediation of Textile Azo Dyes – A Review. Indian Journal of Applied Research, 2011, 3, 480-482.	0.0	2
2125	Flower wastes as a low-cost adsorbent for the removal of acid blue 9. DYNA (Colombia), 2014, 81, 132.	0.4	16
2126	Removal of methylene blue from aqueous solutions using cassava peel (Manihot esculenta) modified with phosphoric acid // Remoción de azul de metileno de soluciones acuosas utilizando cA¡scara de yuca (Manihot esculenta) modificada con ácido fosfórico. Prospectiva, 2017, 15, 60-73.	0.2	8
2127	Review on Dye Removal from Its Aqueous Solution into Alternative Cost Effective and Non-Conventional Adsorbents. Journal of Chemical and Process Engineering, 2013, , .	0.0	19
2128	Kinetic and Thermodynamic Study of Phenol Removal from Water Using Activated Carbon Synthesizes from Avocado Kernel Seed. International Letters of Natural Sciences, 0, 54, 42-57.	1.0	5
2129	OPTIMIZATION OF ADSORPTION PROCESS FOR REMOVAL OF SULPHONATED DI AZO TEXTILE DYE. Green Chemistry & Technology Letters, 2015, 1, 61-66.	0.3	8
2130	Evaluation of Toxicity of a Textile Dye (Optilan Red) towards a Green Microalga Chlorella vulgaris. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 3346-3355.	0.1	7
2131	Study of the Reuse of Industrial Wastewater After Electrochemical Treatment of Textile Effluents without External Addition of Chloride. International Journal of Electrochemical Science, 2019, 14, 1733-1750.	1.3	14
2132	POTENTIAL APPLICATION OF ORANGE PEELS AS BIO SORBENTS IN THE REMOVAL OF ORGANIC MOLECULES FROM WASTEWATER. , 0, , .		2
2133	Evaluation of Calotropes procera fruits as a bioadsorbent for removing of acid red 73 dye from the aqueous solution. Egyptian Journal of Chemistry, 2020, .	0.2	1
2134	Kinetic Study for Reduced the Toxicity of Textile Dyes (Reactive yellow 14 dye and Reactive green dye) Using UV-A light/ZnO System. Egyptian Journal of Chemistry, 2020, .	0.2	2
2135	Role of Bacterial-Fungal Consortium for Enhancement in the Degradation of Industrial Dyes. Current Genomics, 2020, 21, 283-294.	1.6	12
2136	Differential Protein Expression in Shewanella seohaensis Decolorizing Azo Dyes. Current Proteomics, 2019, 16, 156-164.	0.3	6

#	Article	IF	CITATIONS
2137	Enzymatic Textile Dyes Decolorization by In vitro and In silico Studies. Recent Patents on Biotechnology, 2019, 13, 268-276.	0.8	3
2140	Photocatalytic degradation of textile dye C.I. reactive orange 16 in TiO2 water suspension by simulated solar light. Chemical Industry and Chemical Engineering Quarterly, 2007, 13, 179-185.	0.7	5
2141	Photocatalytic degradation of synthetic dye under sunlight. Hemijska Industrija, 2007, 61, 7-12.	0.7	2
2142	Solvent effects on photodegradation of CI Reactive Orange 16 by simulated solar light. Hemijska Industrija, 2008, 62, 275-281.	0.7	4
2144	USING OF INDUSTRIAL WASTE MATERIALS FOR TEXTILE WASTEWATER TREATMENT. Environmental Engineering and Management Journal, 2009, 8, 1097-1102.	0.6	48
2145	Equilibrium, thermodynamic and kinetic studies to study the sorption of rhodamine-b by moroccan clay. Global Nest Journal, 2013, 15, 542-550.	0.1	2
2146	Eco-Structured Biosorptive Removal of Basic Fuchsin Using Pistachio Nutshells: A Definitive Screening Design—Based Approach. Applied Sciences (Switzerland), 2019, 9, 4855.	2.5	27
2147	Hydrothermal Synthesis and Photocatalytic Properties of Bi ₂ WO ₆ . Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1169-1174.	1.3	4
2148	Equilibrium and Kinetic Adsorption Study of the Removal of Orange-G Dye Using Carbon Mesoporous Material. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 660-666.	1.3	18
2149	Bioremediation of Methylene Blue by Bacillus thuringiensis 4 G1: Application of Statistical Designs and Surface Plots for Optimization. Biotechnology, 2006, 6, 34-39.	0.1	12
2150	Assessment of Bio Elimination and Detoxification of Phenothiazine Dye by Bacillus firmus in Synthetic Wastewater under High Salt Conditions. Journal of Applied Sciences, 2011, 11, 2886-2897.	0.3	4
2151	Synthetic Textile Effluent Removal by Skin Almonds Waste. Journal of Environmental Science and Technology, 2009, 2, 153-169.	0.3	52
2152	Biosorption of Acid Dyes by Non-living Aquatic Macrophyte, Hydrilla verticillata. Journal of Environmental Science and Technology, 2012, 5, 332-342.	0.3	9
2153	Extraction of Toxic Rhodamine B Dye by Using Organic Solvent: A Statistical Analysis. Research Journal of Environmental Toxicology, 2016, 10, 152-158.	1.0	9
2154	Bacterial Decolourization of Acid Orange 10 in Synthetic Wastewater under Saline Conditions: Effect of Process Parameters. Poly(amino Acid)-Catalyzed Epoxidation, 2012, 2, 1-13.	0.1	1
2155	Classification, Chemistry, and Applications of Chemical Substances That Are Harmful to the Environment. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2020, , 20-49.	0.1	3
2156	Dyeing Processing Technology. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2020, , 115-145.	0.1	1
2157	Impact of Synthetic Dyes on Human Health and Environment. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2020, , 146-161.	0.1	3

#	Article	IF	CITATIONS
2158	Bioremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 294-317.	0.4	2
2159	New Solar Photocatalytic Technologies for Water Purification as Support for the Implementation of Industry 4.0. Advances in Business Information Systems and Analytics Book Series, 2020, , 385-412.	0.4	3
2160	Exploiting Application of Pseudomonas spp. ETL-2013 in Microbial Degradation and Decolorization of Disperse Orange 3. Journal of Bioremediation & Biodegradation, 2013, 04, .	0.5	1
2161	Microbial Decolorization and Degradation of Orange 16 Dye by a Newly Isolated Aeromonas Spp. Etl-1949. Journal of Bioremediation & Biodegradation, 2013, 04, .	0.5	4
2162	Insilico Screening and Comparative Study on the Effectiveness of Textile Dye Decolourization by Crude Laccase Immobilised Alginate Encapsulated Beads from Pleurotus Ostreatus. Journal of Bioprocessing & Biotechniques, 2011, 01, .	0.2	4
2163	Hydrothermal Degradation of Congo Red in Hot Compressed Water and its Kinetics. Journal of Chemical Engineering & Process Technology, 2013, 04, .	0.1	5
2164	Biotransformation of Carmoisine and Reactive Black 5 Dyes Using <i>Saccharomyces cerevisiae</i> . Health, 2014, 06, 859-864.	0.3	9
2165	Kinetic Modeling of Dye Effluent Biodegradation by Pseudomonas Stutzeri. Engineering, Technology & Applied Science Research, 2013, 3, 387-390.	1.9	12
2166	CARACTERIZAÇÃO DA MACRÓFITA AQUÃTICA Salvinia cucullata EMPREGADA NA BIOADSORÇÃO DO CORANTE SINTÉTICO ÀIDO LARANJA 7. , 0, , .		1
2167	Effects of reactive red 239 textile dye on total soluble protein content, peroxidase activity and lipid peroxidation of Zea mays L. cv. "Martha F1― African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.5	2
2170	Improvement of Laccase Production in Pluerotus pulmonarius-LAU 09 by Mutation. Journal of Microbiology Research, 2012, 2, 11-17.	0.3	8
2172	Decolorization of Methylene Blue and Malachite Green by Immobilized Desmodesmus sp. Isolated from North Jordan. International Journal of Environmental Science and Development, 2016, 7, 95-99.	0.6	56
2173	Neural Network Application in Fixed Bed Column Adsorption. International Journal of Innovation Management and Technology, 2014, , .	0.3	1
2174	Microbial Decolourization of an Anthraquinone Dye C.I. Reactive Blue 19 Using Bacillus cereus. American Chemical Science Journal, 2012, 2, 60-68.	0.2	14
2175	Critical Evaluation of Some Available Treatment Techniques for Textile & Paper Industry Effluents: A Review. American Chemical Science Journal, 2015, 6, 77-90.	0.2	12
2176	Azo Dye Decolourisation using Crude Peroxidase from Armoracia rusticana Hairy Roots. Annual Research & Review in Biology, 2014, 4, 4459-4470.	0.4	1
2177	Bioremediation of Textile Dyeing Effluent Using Algae - A Review. Journal of Advances in Microbiology, 2017, 7, 1-12.	0.2	10
2178	Enhancement of biological approach and potential of Lactobacillus delbrueckii in decolorization of textile wastewater - A review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2014, 8, 06-10.	0.1	12

#	Article	IF	CITATIONS
2179	Study of Removal Techniques for Azo Dyes by Biosorption: A Review. IOSR Journal of Applied Chemistry, 2014, 7, 06-21.	0.2	9
2180			

#	Article	IF	Citations
2197	Photocatalysis of Giemsa Dye: An Approach towards Biotechnology Laboratory Effluent Treatment. , 2011, 01, .		2
2198	Enzyme Catalysis and Decolourisation of Brilliant Reactive Red X-3B by Azoreductase from a Newly Isolated <i>Pseudomonas Putida</i> Wly. Biology and Environment, 2012, 112, 293-300.	0.3	3
2199	Decolorization of dyes by recombinase CotA from Escherichia coli BL21 (DE3) and characterization of the purified enzyme. African Journal of Biotechnology, 2012, 11, .	0.6	0
2200	Decolourisation of Reactive Black 5 by Azoreductase Produced by Brevibacillus panacihumi ZBI. Jurnal Teknologi (Sciences and Engineering), 2013, 59, .	0.4	0
2201	SORPS: SORption Process Simulation Software. Journal of Software, 2012, 7, .	0.6	0
2202	Isolation, Identification And Characterisation Of Dye-Adapted Bacteria From Textile Effluents Mixed With Sewage Released Into The River Amaravathy, Karur, Tamilnadu, India IOSR Journal of Environmental Science, Toxicology and Food Technology, 2013, 7, 51-57.	0.1	0
2203	Remediation of Dye Containing Wastewater Using Viable Algal Biomass. RSC Green Chemistry, 2013, , 212-228.	0.1	2
2204	Simultaneous decolorization of ternary dye mixture from aqueous solution by electrocoagulation. Environmental Protection Engineering, 2013, 39, .	0.1	0
2205	Biosorption of Methylene Blue from Aqueous Solutions by Diospyrous melanoxylon Leaf Waste. Environmental Research, Engineering and Management, 2013, 63, .	1.0	1
2206	Diseño Box-Behnken para la optimización de la adsorción del colorante azul ácido sobre residuos de flores. IngenierÃa Y Ciencia, 2013, 9, 75-91.	0.3	6
2207	Comparison of methylene blue adsorption from aqueous solution using spent tea dust and raw coir pith. Global Nest Journal, 2013, 16, 146-159.	0.1	3
2208	Optimisation of Coagulation Process with SIWW is Coagulant for Colour and COD Removal of Acid Dye Effluent Using Central Composite Design Experiment. International Journal of Environmental Monitoring and Analysis, 2014, 2, 1.	0.3	1
2209	COMPARISON OF EFFICIENCY OF APM AND MNO2 BY PHOTOCATALYTICAL DEGRADATION OF AZURE-B BASED ON QUALITY PARAMETER MODIFICATION. Journal of Advances in Chemistry, 2014, 10, 2092-2100.	0.1	0
2210	Equilibrium Modeling and Kinetic Studies on the Adsorption of Basic Dye by A low-Cost Adsorbent: Sugarcane Bagasse. International Journal of Scientific Research in Environmental Sciences, 2014, 2, 301-307.	0.1	2
2211	Relationship between the Adsorption of Dye and the Surface Charge Density of Silica Sol. Textile Coloration and Finishing, 2014, 26, 297-304.	0.0	2
2212	DEGRADAÇÃO DO AZOCORANTE PONCEAU 4R EM SOLUÇÃO AQUOSA UTILIZANDO FOTO-OXIDAÇÃO CATALÃŦICA. , 0, , .		0
2213	The Magnetic Photocatalyst Conversion to the Magnetic Dye-Adsorbent Catalyst via Hydrothermal Followed by Typical Washing and Thermal Treatments. , 2015, , 341-356.		0
2214	Recovery of Synthetic Dye Red 3BS from Simulated Wastewater using Supported Liquid Membrane Process Containing Immobilized Kerosene-tridodecylamine Liquid Membrane. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	0

#	Article	IF	CITATIONS
2215	The removal of synthetic dyes from wastewater. ScienceRise, 2016, 5, 47.	0.1	0
2216	Decolorization of Textile Dyes in Two Different Medium. Journal of the Institute of Science and Technology, 2016, 6, 35-35.	0.9	0
2217	Photocatalytic degradation of methyl orange in the presence of maleoylchitosan and titanium dioxide. Polymer Journal, 2016, 38, 307-311.	0.1	0
2218	Effects of Malachite Green Contaminated Water on Production of Pak Choy and Chinese Convolvulus. International Journal of Electrical Energy, 2017, , .	0.4	0
2219	Studies of the Adsorption Properties of Methylene Blue onto Nickel Alginate Fibers. Material Sciences, 2017, 07, 106-113.	0.0	1
2220	The removal of indigo carmine from water by solvent sublation. Water and Water Purification Technologies Scientific and Technical News, 2018, 21, 31-38.	0.2	0
2221	Production of Dye from Green and Brown Walnut Shells for Leather Coloration. Periodicals of Engineering and Natural Sciences, 2017, 5, .	0.5	0
2222	Application of Marine Polymers in Dye and Textile Industries. , 2017, , 577-589.		0
2223	Application of Marine Polymers in Dye and Textile Industries. , 2017, , 577-589.		0
2224	7 Treatment of Textile Industry Waste. Advances in Industrial and Hazardous Wastes Treatment Series, 2017, , 207-284.	0.0	0
2227	Reactive Red 45'in Antep Fıstığı Katı Atığı Üzerine Etkili Gideriminin AraştırıIması. Ç Mühendislik-Mimarlık Fakültesi Dergisi, 2017, 32, 175-184.	ukurova Ã	œniversitesi
2228	Microbial Degradation of Azo Dyes. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 341-371.	0.4	0
2229	Characterization and Treatment of Textile Effluent By Photocatalytic Method. International Journal of Scientific and Research Publications, 2018, 8, .	0.0	2
2230	CÃSCARA DE PIÑA COMO ADSORBENTE DE COLORANTES TÃPICOS DE LA INDUSTRIA TEXTIL. Ciencia En Desarrollo, 2018, 9, .	0.1	0
2231	Biodegradation Effect of some Bacterial Isolates on some Endocrine Disruptors (EDCS). Mustansiriyah Journal of Science, 2018, 29, 43-49.	0.4	1
2232	Investigation of the solvent sublation patterns of cationic dyes. ScienceRise, 2018, 12, 54-59.	0.1	0
2233	Surface Modification of Nanofiltration Membrane with Silane Coupling Agents for Separation of Dye. Membrane Journal, 2018, 28, 414-423.	0.4	2
2234	Degradation of Pollutants Using Advanced Ecomaterials. , 2019, , 495-512.		0

#	Article	IF	CITATIONS
2235	Nanomaterials for Removal of Toxic Metals Ions from the Water. Advanced Structured Materials, 2019, , 159-174.	0.5	2
2236	Porous Materials Obtained from Nonconventional Sources Used in Wastewater Treatment Processes. , 2019, , 353-372.		0
2237	Environmental Photocatalysis/Photocatalytic Decontamination. , 2019, , 1625-1640.		1
2238	Kinetics of oxidation of triaryl methane dye, brilliant blue-r with chlorine dioxide. South African Journal of Chemistry, 2019, 72, 40-46.	0.6	4
2239	Microbial Degradation of Azo Dyes. , 2019, , 1867-1897.		0
2240	Efficient Decolorization of Water and Oil-Soluble Azo Dyes by Enterococcus avium Treated with HP-β-CD. Pakistan Journal of Zoology, 2019, 51, .	0.2	1
2241	DECOLOURIZATION, DEGRADATION AND DETOXIFICATION OF DYE HOUSE EFFLUENTS BY A DEVELOPED BACTERIAL CONSORTIUM. Journal of Experimental Biology and Agricultural Sciences, 2019, 7, 211-221.	0.4	0
2242	SIMULATION OF SOLVENT SUBLATION PROCESS TO FORECAST THE AMOUNT OF REMOVED DYES. Water and Water Purification Technologies Scientific and Technical News, 2019, 24, 25-33.	0.2	0
2243	Adsorción de azul de metileno usando un oxido de grafeno purificado. QuÃmica Hoy Chemistry Sciences \$b, 2019, 9, 7.	0.1	0
2244	Sorption of Methylene Blue by Alternative Adsorbents. Research Papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava, 2019, 27, 73-79.	0.4	0
2245	Synthesis and Characterization of PMMA Polymer/Clay Nanocomposites for Removal of Dyes. Asian Journal of Chemistry, 2019, 31, 2589-2595.	0.3	2
2246	Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. Environmental Research and Technology, 2019, 2, 233-242.	0.7	6
2247	Bio-catalysis as a Green Approach for Industrial Waste Treatment. Nanotechnology in the Life Sciences, 2020, , 359-405.	0.6	3
2248	Natural Polymer Composites for Environmental Applications. , 2020, , 1-18.		0
2249	REMOVAL OF REACTIVE BLACK 5 FROM TEXTILE WASTEWATER BY OZONE AND PHOTO-FENTON – INFLUENCE OF INDUSTRIAL MATRIX EFFECTS. Latin American Applied Research, 2020, 50, 101-107.	0.4	0
2250	Elimination of Methylene Blue by low-cost Biomaterial prepared from Local Natural Residue. Algerian Journal of Renewable Energy and Sustainable Development, 2020, 2, 60-66.	0.4	1
2251	Study of Microbial Decolorization of Indigo Carmine Dye by Bacillus albus. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2020, 28, 29-39.	0.0	0
2252	Design of sodium alginate/soybean extract beads loaded with hemp hurd and halloysite as novel and sustainable systems for methylene blue adsorption. Polymer Engineering and Science, 2022, 62, 129-144.	3.1	12

ARTICLE IF CITATIONS Assessment of cyto-nephrotoxicity and growth performance in Labeo rohita induced by fluorescein 2253 3.5 3 dye Y and B. Journal of King Saud University - Science, 2021, 33, 101672. Degradation of Dyes Using Filamentous Fungi. Sustainable Textiles, 2022, , 51-66. 2254 Bioremediation of Dye Using Mesophilic Bacteria: Mechanism and Parametric Influence. Sustainable 2255 0.7 1 Textiles, 2022, , 67-86. Preparation of a New Zwitterionic Sulfobetaine Methacrylate Based Superabsorbent Copolymer Hydrogel and Its Adsorption Behavior Toward Cationic and Anionic Dyes. Journal of Macromolecular 1.0 Science - Physics, 0, , 1-23. Development of Three-Dimensional Nickelâ€"Cobalt Oxide Nanoflowers for Superior Photocatalytic Degradation of Food Colorant Dyes: Catalyst Properties and Reaction Kinetic Study. Langmuir, 2021, 37, 2257 3.5 13 12929-12939. Removal of Dyes from Wastewaters in Moving Bed Biofilm Reactors: A Review of Biodegradation 2258 Pathways and Treatment Performance. Sustainable Textiles, 2022, , 227-262. Realistic Approach for Bioremediation of Heterogeneous Recalcitrant Compounds., 2020, , 237-260. 2260 1 World of the Dye., 2022, , 493-507. 2261 2262 Role of Nanomaterials in the Detoxification of Harmful Dyes., 2022, , 373-386. 0 Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. Journal of 44 Environmental Management, 2022, 302, 113989. Highly efficient and selective Hg(II) removal from water by thiol-functionalized MOF-808: Kinetic and 2264 12.7 79 mechanism study. Chemical Engineering Journal, 2022, 430, 132960. Use of a new zwitterionic cellulose derivative for removal of crystal violet and orange II from 12.4 aqueous solutions. Journal of Hazardous Materials, 2022, 424, 127401. Comparative Study of Dye Removal Using PANI/TiO2 and PANI/GNS Nanocomposites. Springer 2266 0.2 0 Proceedings in Physics, 2020, , 87-94. Biogenic Nanoparticles for Degradation of Noxious Dyes. Nanotechnology in the Life Sciences, 2020, , 2267 0.6 323-350. Outdoor Pollution Management by Nanotechnology. Health Information Systems and the 2268 0.1 0 Advancement of Medical Practice in Developing Countries, 2020, , 258-277. Bioremediation of synthetic dyes: Dye decolorizing peroxidases (DyPs)., 2020, , 453-486. 2269 Role of Fungal Enzymes in the Removal of Azo Dyes. Microorganisms for Sustainability, 2020, , 231-257. 2270 0.7 9 Innovative Sustainable Apparel Design: Application of CAD and Redesign Process. Sustainable Textiles, 2271 2020, , 87-107.

ARTICLE IF CITATIONS World of the Dye. Health Information Systems and the Advancement of Medical Practice in Developing 2272 0.1 0 Countries, 2020, , 1-19. Dyes Depollution of Water Using Porous TiO2-Based Photocatalysts. Environmental Chemistry for A 2273 Sústainable World, 2020, , 35-92 A short review on photocatalytic toward dye degradation. Materials Today: Proceedings, 2020, 31, 2274 1.8 19 A42-A47. Binary Cationic Dyes-Counter Ion Extraction by Reverse Micelles. Tenside, Surfactants, Detergents, 1.2 2020, 57, 154-161. Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm 2276 petioles: Characterization, adsorption properties and reuse studies. Arabian Journal of Chemistry, 4.9 42 2022, 15, 103542. Biological macromolecule chitosan grafted co-polymeric composite: bio-adsorption probe on cationic 2277 3.3 dyes. Polymer Bulletin, 0, , 1. Cold atmospheric plasma technology for removal of organic micropollutants from wastewaterâ€"a 2278 1.3 21 review. European Physical Journal D, 2021, 75, 1. LaCoxFe1-XO3 (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML") Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 47 2279 8.2 ultrasonic approach as photocatalysts. Ultrasonics Sonochemistry. 2021. 80. 105824 Characteristics and Adsorptive Treatment of Wastewaters Containing Dyes. Environmental Chemistry 2280 0.5 2 for A Sustainable World, 2021, , 273-311. Isotherm, kinetic and thermodynamic studies for the adsorption of methylene blue on almond leaf powder. Cumhuriyet Science Journal, 2020, 41, 651-658. Design of a hybrid bio-adsorbent based on Sodium Alginate/Halloysite/Hemp hurd for methylene blue dye removal: kinetic studies and mathematical modeling. Colloids and Surfaces A: Physicochemical and 2283 4.731 Engineering Aspects, 2022, 633, 127925. Current status on designing of dual Z-scheme photocatalysts for energy and environmental 2285 5.8 39 applications. Journal of Industrial and Engineering Chemistry, 2022, 106, 340-355. Ionic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe2O3/WO3Â 0.5H2O Hybrid Nanostructure with Enhanced Photocatalytic Property. Molecules, 2021, 2286 3.8 1 26, 6857. Strong Pyro-Electro-Chemical Coupling of Elbaite/H2O2 System for Pyrocatalysis Dye Wastewater. 2287 3.5 Catalysts, 2021, 11, 1370. Optimization of Anthraquinone Dye Wastewater Treatment using Ozone in the Presence of Persulfate 2288 2 0.3Ion in a Semi-batch Reactor. IOP Conference Series: Earth and Environmental Science, 2021, 920, 012019. Ultrasonic-assisted synthesis of highly effective visible light Fe3O4/ZnO/PANI nanocomposite: Thoroughly kinetics and thermodynamic investigations on the Congo red dye decomposition. Journal 2289 of Molecular Structure, 2022, 1250, 131903. Direct grafting of cellulose nanocrystals with poly(ionic liquids) via Gamma-ray irradiation and their 2290 utilization for adsorptive removal of CR. International Journal of Biological Macromolecules, 2022, 7.5 10 194, 1029-1037. In situ formation of porous organic polymer-based thin polyester membranes for loose 8.2 nanofiltration. Journal of Membrane Science, 2022, 644, 120074.

#	Article	IF	CITATIONS
2292	A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere, 2022, 289, 133100.	8.2	29
2293	Kinetics and Adsorption Model of Methylene Blue on g-C ₃ N ₄ @WO ₃ .H ₂ O Nanoplate Composite. International Journal of Nanoscience, 2021, 20, .	0.7	2
2294	Negatively charged hollow crosslinked aromatic polymer fiber membrane for high-efficiency removal of cationic dyes in wastewater. Chemical Engineering Journal, 2022, 433, 133650.	12.7	21
2295	Domination of methylene blue over rhodamine B during simultaneous photocatalytic degradation by TiO2 nanoparticles in an aqueous binary solution under UV irradiation. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 511-527.	1.7	12
2296	Application of Amberlite IRA 402 Resin Adsorption and Laccase Treatment for Acid Blue 113 Removal from Aqueous Media. Polymers, 2021, 13, 3991.	4.5	11
2297	Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Applied Catalysis A: General, 2022, 630, 118460.	4.3	26
2298	Applications of 1D Mesoporous Inorganic Nanomaterials as Adsorbents. Springer Series in Materials Science, 2022, , 183-187.	0.6	0
2299	Mathematical modeling and optimization by the application of full factorial design and response surface methodology approach for decolourization of dyes by a newly isolated Photobacterium ganghwense. Journal of Water Process Engineering, 2021, 44, 102429.	5.6	14
2300	Mechanochemically constructed Bi2WO6/Zn-Al layered double hydroxide heterojunction with prominent visible light-driven photocatalytic efficiency. Applied Clay Science, 2021, 215, 106328.	5.2	8
2301	Removal of acid orange II azo dyes using Fe-based metallic glass catalysts by Fenton-like process. Journal of Materials Science, 2022, 57, 2039-2052.	3.7	6
2302	Sono–degradation of Reactive Blue 19 in aqueous solution and synthetic textile industry wastewater by nanoscale zero–valent aluminum. Journal of Environmental Management, 2022, 303, 114200.	7.8	15
2303	Post-synthetic modification of conjugated microporous polymer with imidazolium for highly efficient anionic dyes removal from water. Separation and Purification Technology, 2022, 284, 120245.	7.9	14
2304	Introducing a bio sorbent for removal of methylene blue dye based on flexible poly(glycerol) Tj ETQq0 0 0 rgBT /C	verlock 10 8.2	0 Tf 50 262 T 40
2305	High-performance porous graphene oxide hollow fiber membranes with tailored pore sizes for water purification. Journal of Membrane Science, 2022, 645, 120216.	8.2	17
2306	Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Science of the Total Environment, 2022, 810, 152279.	8.0	28
2307	Synergistic degradation of organic pollutants on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation under LED irradiation. Applied Surface Science, 2022, 579, 152151.	6.1	16
2308	In-situ synthesis of a novel ZnO/CuCo2S4 p-n heterojunction photocatalyst with improved phenol and rhodamine B degradation performance and investigating the mechanism of charge carrier separation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113676.	3.9	9
2309	Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications. Environmental Research, 2022, 205, 112560.	7.5	77

#	Article	IF	CITATIONS
2310	Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 2022, 293, 133540.	8.2	28
2311	Remoción del colorante AV7 presente en solución acuosa mediante carbón activado. Ingenierias, 2020, 23, 6-13.	0.2	0
2312	Comparative Study of G-C ₃ N ₄ /Ag-Based Metals (V, Mo, and Fe) Composites for Degradation of Reactive Black 5 (RB5) Under Simulated Solar Light Irradiation. SSRN Electronic Journal, 0, , .	0.4	0
2313	A short review of titania-graphene oxide based composites as a photocatalysts. Advanced Technologies, 2021, 10, 51-60.	0.4	4
2314	Multifunctional Fe3O4@Ag@TiO2-xNx core-shell composite particles for dye adsorption and visible-light photocatalysis. Ceramics International, 2022, 48, 13906-13913.	4.8	7
2315	Rapid degradation of Direct Blue dye by Co-based amorphous alloy wire. Journal of Non-Crystalline Solids, 2022, 576, 121282.	3.1	15
2316	Evaluation of Amine Functionalized Thermal Power Plant Solid Waste for Industrial Wastewater Remediation. Adsorption Science and Technology, 2022, 2022, .	3.2	3
2317	A simple and highly efficient composite based on g-C ₃ N ₄ for super rapid removal of multiple organic dyes from water under sunlight. Catalysis Science and Technology, 2022, 12, 786-798.	4.1	9
2318	lron(<scp>iii</scp>)-cross-linked alginate hydrogels: a critical review. Materials Advances, 2022, 3, 1849-1873.	5.4	48
2319	Visible Light Spectroscopic Analysis of Methylene Blue in Water. Journal of Applied Spectroscopy, 2022, 88, 1284-1290.	0.7	3
2320	Electrochemical Degradation of Methylene Blue using Ce(IV) Ionic Mediator in the Presence of Ag(I) Ion Catalyst for Environmental Remediation. Sains Malaysiana, 2022, 51, 149-159.	0.5	0
2321	Metalâ€Organicâ€Framework based Catalytic Micromotor for Enhanced Water Decontamination. ChemistrySelect, 2022, 7, .	1.5	5
2322	Improving Biocatalytic Properties of an Azoreductase <i>via</i> the <i>Nâ€</i> Terminal Fusion of Formate Dehydrogenase. ChemBioChem, 2022, 23, .	2.6	9
2323	Anisotropic Sliding Behaviors of Gas Bubbles upon Ferrofluidâ€Infused Orthonormal Tracks (FOTs) Under Magnetic Stimuli. Advanced Materials Interfaces, 2022, 9, .	3.7	4
2324	Recent trends in bioremediation of pollutants by enzymatic approaches. , 2022, , 115-134.		1
2325	A novel carbon-based material recycled from end-of-life tires (ELTs) for separation of organic dyes to understand kinetic and isotherm behavior. Separation Science and Technology, 2022, 57, 2024-2040.	2.5	2
2326	Individual and Competitive Adsorption of Negatively Charged Acid Blue 25 and Acid Red 1 onto Raw Indonesian Kaolin Clay. Arabian Journal for Science and Engineering, 2022, 47, 6617-6630.	3.0	17
2327	In-situ polymerization induced Mn2O3 sites as intrinsic carbon defects for capacitive organic dye removal. Separation and Purification Technology, 2022, 287, 120583.	7.9	3

#	Article	IF	CITATIONS
2328	Phosphoric acid/FeCl3 converting waste mangosteen peels into bio-carbon adsorbents for methylene blue removal. International Journal of Environmental Science and Technology, 2022, 19, 12315-12328.	3.5	5
2329	Comparative study of g-C3N4/Ag-based metals (V, Mo, and Fe) composites for degradation of Reactive Black 5 (RB5) under simulated solar light irradiation. Journal of Environmental Chemical Engineering, 2022, 10, 107308.	6.7	7
2330	Highly ordered pure and indium-incorporated MCM-41 mesoporous adsorbents: synthesis, characterization and evaluation for dye removal. Journal of Materials Science, 2022, 57, 4504-4527.	3.7	13
2331	Magnetic Fe3O4/TiO2/graphene sponge for the adsorption of methylene blue in aqueous solution. Diamond and Related Materials, 2022, 123, 108811.	3.9	18
2332	Complete genome sequence of Shewanella algae strain 2NE11, a decolorizing bacterium isolated from industrial effluent in Peru. Biotechnology Reports (Amsterdam, Netherlands), 2022, 33, e00704.	4.4	7
2333	Carbon nanotubes mediated chemical and biological decolorization of azo dye: Understanding the structure-activity relationship. Environmental Research, 2022, 210, 112897.	7.5	4
2334	Inâ€Situ Stabilizing Nanoâ€Ag onto Nonwoven Fabrics via a Musselâ€Inspired Approach for Continuousâ€Flow Catalysis Reduction of Organic Dyes. ChemistrySelect, 2022, 7, .	1.5	0
2335	Statistical optimization of Methylene Blue dye removal from a synthetic textile wastewater using indigenous adsorbents. Environmental and Sustainability Indicators, 2022, 14, 100176.	3.3	22
2336	Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review. Frontiers in Environmental Science, 2021, 9, .	3.3	87
2337	Functionalization of Zeolite NaP1 for Simultaneous Acid Red 18 and Cu(II) Removal. Materials, 2021, 14, 7817.	2.9	5
2340	Degradation and Detoxification of Remazol Blue Contaminants as a Model Textile Effluent via Advanced Nonthermal Plasma Oxidation Processes. IEEE Transactions on Plasma Science, 2022, , 1-9.	1.3	1
2341	Characterization and applications of a novel semiconductor ZnO-CuCrO4 nanocomposite material through the co-precipitation method. AIP Conference Proceedings, 2022, , .	0.4	0
2342	Anaerobic Processes in Dye Removal. Sustainable Textiles, 2022, , 95-118.	0.7	3
2343	Overview of Biological Technologies for Azo Dye Removal. Sustainable Textiles, 2022, , 1-38.	0.7	1
2344	Mesoporous Fe–Al-doped cellulose for the efficient removal of reactive dyes. Materials Advances, 2022, 3, 3278-3285.	5.4	30
2345	Role of Moving Bed Bioreactor (MBBR) in Dye Removal. Sustainable Textiles, 2022, , 155-199.	0.7	Ο
2346	Hierarchical porous zeolitic imidazolate frameworks (ZIF-8) and ZnO@N-doped carbon for selective adsorption and photocatalytic degradation of organic pollutants. RSC Advances, 2022, 12, 7075-7084.	3.6	62
2348	The effect of Ralstonia pickettii bacterium addition on methylene blue dye biodecolorization by brown-rot fungus Daedalea dickinsii. Heliyon, 2022, 8, e08963.	3.2	6

#	Article	IF	CITATIONS
2349	Removal of Cadmium, Copper and Lead from Aqueous Solution Using Activated Carbon Prepared from Avocado Kernel. Oriental Journal of Chemistry, 2022, 38, 65-71.	0.3	3
2350	Polyacrylonitrile Derived Robust and Flexible Poly(ionic liquid)s Nanofiber Membrane as Catalyst Supporter. Catalysts, 2022, 12, 266.	3.5	3
2351	Characterization and Analysis of Argania spinosa Shells from Souss-Massa Area: Application in the Adsorption of Methylene Blue in Aqueous Solution. Journal of Nanomaterials, 2022, 2022, 1-14.	2.7	3
2352	Contaminant Removal and Resource Recovery in Bioelectrochemical Wastewater Treatment. Current Pollution Reports, 2022, 8, 159-176.	6.6	4
2353	Nitrogen-doped pyrogenic carbonaceous matter facilitates azo dye decolorization by sulfide: The important role of graphitic nitrogen. Chinese Chemical Letters, 2023, 34, 107326.	9.0	2
2355	Plant microbe based remediation approaches in dye removal: A review. Bioengineered, 2022, 13, 7798-7828.	3.2	29
2356	Preparation of Plasmonic Ag@PS Composite via Seed-Mediated In Situ Growth Method and Application in SERS. Frontiers in Chemistry, 2022, 10, 847203.	3.6	5
2357	Dried Brown Seaweed's Phytoremediation Potential for Methylene Blue Dye Removal from Aquatic Environments. Polymers, 2022, 14, 1375.	4.5	35
2358	Network template-based cross-linked Poly(methyl methacrylate)/tin(IV) oxide nanocomposites for the photocatalytic degradation of MB under UV irradiation. Journal of Materials Research and Technology, 2022, 18, 2721-2734.	5.8	2
2359	Hybrid of sodium polytungstate polyoxometalate supported by the green substrate for photocatalytic degradation of auramine-O dye. Environmental Science and Pollution Research, 2022, 29, 56055-56067.	5.3	8
2360	Decolorization mechanisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production. Main Group Chemistry, 2022, 21, 851-863.	0.8	1
2361	Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food and Chemical Toxicology, 2022, 164, 112961.	3.6	231
2362	Tunable 2D Nanomaterials; Their Key Roles and Mechanisms in Water Purification and Monitoring. Frontiers in Environmental Science, 2022, 10, .	3.3	16
2363	A preliminary review on antimicrobial property of zinc-based nanoflakes and its impact on wastewater purification. International Journal of Health Sciences, 0, , 3099-3108.	0.1	0
2364	Structural, electrical and photoluminescence properties of ZTO thin films for water depollution. Inorganic Chemistry Communication, 2022, 138, 109271.	3.9	1
2365	Molecular identification of indigenous halotolerant bacteria isolated from the red sea coast applied for biodegradation of synthetic dyes and assessmentÂof degraded metabolite toxicity. Chemical Engineering Research and Design, 2022, 160, 817-838.	5.6	10
2366	Intelligent modeling of dye removal by aluminized activated carbon. Environmental Science and Pollution Research, 2022, 29, 58950-58962.	5.3	9
2367	Solar photodegradation of Solophenyl Red 3BL and Neuro-Fuzzy modeling: kinetic, mechanism and mineralization studies. Reaction Kinetics, Mechanisms and Catalysis, 0, , 1.	1.7	1

#	Article	IF	CITATIONS
2368	Free chlorine formation in the process of the chlorine dioxide oxidation of aliphatic amines. Water Research, 2022, 217, 118399.	11.3	8
2369	Direct microwave heating synthesis and characterization of highly efficient g-C3N4 photocatalyst. Inorganic Chemistry Communication, 2022, 139, 109386.	3.9	2
2370	A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation. Chemical Engineering Research and Design, 2022, 161, 703-722.	5.6	29
2371	Synergetic removal of oppositely charged dyes by co-precipitation and amphoteric self-floating capturer: Mechanism investigation by molecular simulation. Chemosphere, 2022, 296, 134033.	8.2	24
2372	Light-driven bio-decolorization of triphenylmethane dyes by a Clostridium thermocellum-CdS biohybrid. Journal of Hazardous Materials, 2022, 431, 128596.	12.4	6
2373	Spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence of dye in aqueous medium. Journal of Molecular Liquids, 2022, 355, 118949.	4.9	2
2374	Biodegradation of Alprazolam in Pharmaceutical Wastewater Using Mesoporous Nanoparticles-Adhered Pseudomonas stutzeri. Molecules, 2022, 27, 237.	3.8	6
2375	Evaluation of using electric arc furnace slag as an adsorbent for dyes removal. International Journal of Environmental Analytical Chemistry, 2023, 103, 9679-9697.	3.3	0
2376	Alizarin Red S'in Silika Jel Üzerindeki Çözeltiden Adsorpsiyonu: Denge İzotermleri ve Kinetik İncelemele Türk Doğa Ve Fen Dergisi, 2021, 10, 223-232.	^r 0.5	0
2377	Application of Microalgal Physiological Response as Biomarker for Evaluating the Toxicity of the Textile Dye Alizarin Red S. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 401-408.	2.7	3
2378	Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane technology. Applied Water Science, 2022, 12, 1.	5.6	10
2379	The study of TiO2/Cu2O nanoparticles as an efficient nanophotocalyst toward surface adsorption and photocatalytic degradation of methylene blue. Applied Nanoscience (Switzerland), 2022, 12, 2195-2205.	3.1	11
2380	Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. International Journal of Environmental Research and Public Health, 2022, 19, 4740.	2.6	43
2383	Utilization of iron waste from steel industries in persulfate activation for effective degradation of dye solutions. Journal of Environmental Management, 2022, 314, 115108.	7.8	31
2384	Fenton Processes in Dye Removal. Sustainable Textiles, 2022, , 21-36.	0.7	1
2385	Dye removal using biochars. , 2022, , 429-471.		1
2387	Dye Removal Using Polymer Composites as Adsorbents. Sustainable Textiles, 2022, , 85-104.	0.7	2
2388	Decolorization of Azo Dye-Contaminated Water using Microbes: A Review. Lecture Notes in Civil Engineering, 2022, , 821-835.	0.4	3

#	Article	IF	CITATIONS
2389	Development and Application of Graphene Oxide Supported Ceo2/In2o3 Heterojunction Nanocomposite for Efficient Degradation of Industrial Effluents and Voltammetric Detection of Sulfamaxole Drug. SSRN Electronic Journal, 0, , .	0.4	0
2392	Aspartic Acid- and Glycine-Functionalized Mesoporous Silica as an Effective Adsorbent to Remove Methylene Blue from Contaminated Water. Journal of Chemistry, 2022, 2022, 1-14.	1.9	4
2393	Adsorption Processes Coupled with Photochemical Depolution of Waters Contaminated with Direct Orange-26 Azo Dye. Scientific Bulletin of Valahia University: Materials and Mechanics, 2022, 18, 33-37.	0.1	0
2394	Enhancement of Congo red dye removal efficiency using Mg-Fe-layered double hydroxide. Research on Chemical Intermediates, 2022, 48, 2683-2703.	2.7	10
2395	Evaluating the adsorptive capacity of three Tunisian clays deposits for several potentially toxic metals in phosphogypsum waste. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	2
2396	Adaptation of micro- and metafauna in activated sludge with microbial augmentation to shock loading with amaranth. Biotechnology and Biotechnological Equipment, 2022, 36, 220-231.	1.3	0
2397	Statistical optimization for simultaneous removal of methyl red and production of fatty acid methylÂesters using fresh alga Scenedesmus obliquus. Scientific Reports, 2022, 12, 7156.	3.3	6
2398	Photocatalytic activity of the visible-light-driven spherical Ag2S modifying the CdS synthesized by the facile chemical methods for the degradation of methylene blue and rhodamine B. Materials Chemistry and Physics, 2022, 285, 126174.	4.0	15
2399	A review on recent advances in the treatment of dye-polluted wastewater. Journal of Industrial and Engineering Chemistry, 2022, 112, 1-19.	5.8	116
2400	Removal of Reactive Blue 19 from Aqueous Solution and Batik Wastewater Using Iron Modified Activated Carbon. Key Engineering Materials, 0, 920, 63-67.	0.4	2
2401	Efficient and recyclable AuNPs/aminoclay nanocomposite catalyst for the reduction of organic dyes. Surfaces and Interfaces, 2022, 32, 102052.	3.0	8
2402	<i>In situ</i> fabrication of porous biochar reinforced W ₁₈ O ₄₉ nanocomposite for methylene blue photodegradation. RSC Advances, 2022, 12, 14902-14911.	3.6	2
2403	Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. Journal of Hazardous Materials, 2022, 436, 129174.	12.4	65
2404	Cu- and Fe-substituted ZSM-5 zeolite as an effective catalyst for wet peroxide oxidation of Rhodamine 6ÂG dye. Journal of Environmental Chemical Engineering, 2022, 10, 107950.	6.7	5
2405	Preparation of Porous Biochar from Heavy Bio-Oil for Adsorption of Methylene Blue in Wastewater. SSRN Electronic Journal, 0, , .	0.4	0
2406	Facile approach to synthesis super-adsorptive hydrogel based on hyperbranched polymer for water remediation from methylene blue. Reactive and Functional Polymers, 2022, 177, 105312.	4.1	10
2407	Performance and cost analysis of dye wastewater treatment by Fenton, electro-Fenton, and biosorption: Box-Behnken experimental design and response surface methodology. Biomass Conversion and Biorefinery, 2023, 13, 13527-13537.	4.6	2
2408	A Review of the Removal of Dyestuffs from Effluents onto Biochar. Separations, 2022, 9, 139.	2.4	13

#	Article	IF	CITATIONS
2410	An eco-friendly approach for the degradation of azo dyes and their effluents by Pleurotus florida. , 2022, , 209-242.		1
2411	Nanoceramic Based Composites for Removal of Dyes from Aqueous Stream. Sustainable Textiles, 2022, , 277-295.	0.7	1
2412	Evaluation of dye decolorization using anaerobic granular sludge from an expanded granular sludge bed based on spectrometric and microbiome analyses. Journal of General and Applied Microbiology, 2022, , .	0.7	0
2413	Biotechnology: the sustainable tool for effective treatment of wastewater. , 2022, , 347-380.		1
2414	Microbial decontamination: economic and environmental benefits. , 2022, , 381-409.		0
2416	Toward Grapheneâ€Enhanced Spectroelectrochemical Sensors. Advanced Materials Interfaces, 0, , 2200478.	3.7	1
2417	Low-cost novel nano-constructed granite composites for removal of hazardous Terasil dye from wastewater. Environmental Science and Pollution Research, 2023, 30, 81333-81351.	5.3	4
2418	Immobilization of cellulose extracted from Robinia Pseudoacacia seed fibers onto chitosan: Chemical characterization and study of methylene blue removal. Arabian Journal of Chemistry, 2022, 15, 104066.	4.9	14
2419	Photodegradation of Rhodamine-B Dye under Natural Sunlight using CdO. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 466-475.	1.1	3
2420	Preparation of <scp>rGOâ€CNT</scp> / <scp>Ag₃PO₄</scp> / <scp>Nb₂O₅ composite with enhanced photoresponse properties as a highly effective visible light driven photocatalyst. Journal of Chemical Technology and Biotechnology. 2022, 97, 2820-2833.</scp>	:/scp> 3.2	4
2421	Electrochemical monitoring sensors of water pollution systems. Food and Chemical Toxicology, 2022, 166, 113196.	3.6	6
2422	Photocatalytic and Antimicrobial Investigations of Pvp Capped Mwcnts/La/Zno Nanostructures Prepared by Chemical Route. SSRN Electronic Journal, 0, , .	0.4	0
2423	Dyeing of fibers and impact on the environment. , 2022, , 517-543.		1
2424	Synthesis, column packing and liquid chromatography of molecularly imprinted polymers for the acid black 1, acid black 210, and acid Brown 703 dyes. RSC Advances, 2022, 12, 19611-19623.	3.6	5
2425	Self-assembled nanosheets of ZnCo2O4 as efficient sonophotocatalysts for day light dye degradation. Ceramics International, 2022, 48, 29460-29464.	4.8	3
2426	Photocatalytic dye degradation using nickel ferrite spinel and its nanocomposite. Environmental Science and Pollution Research, 2022, 29, 78255-78264.	5.3	13
2427	Screening and identification of azo dye decolorizers from mangrove rhizospheric soil. Environmental Science and Pollution Research, 2022, 29, 83496-83511.	5.3	2
2428	Fabrication of Al2O3 supported TiO2 membranes for photocatalytic applications. Materials Today: Proceedings, 2022, 65, 3694-3699.	1.8	4

#	Article	IF	CITATIONS
2429	Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules, 2022, 27, 4436.	3.8	15
2430	Optimization, Nature, and Mechanism Investigations for the Adsorption of Ciprofloxacin and Malachite Green onto Carbon Nanoparticles Derived from Low-Cost Precursor via a Green Route. Molecules, 2022, 27, 4577.	3.8	12
2431	Evaluation of global research trends in photocatalytic degradation of dye effluents using scientometrics analysis. Journal of Environmental Management, 2022, 318, 115600.	7.8	3
2432	Molecular response of Anoxybacillus sp. PDR2 under azo dye stress: An integrated analysis of proteomics and metabolomics. Journal of Hazardous Materials, 2022, 438, 129500.	12.4	13
2433	Sonochemical synthesis of improved graphene oxide for enhanced adsorption of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129587.	4.7	11
2434	Removal of methylene blue by H3PO4Treated eucalyptus leaves: Study of fixed bed column and GA-ANN modeling. Sustainable Chemistry and Pharmacy, 2022, 29, 100774.	3.3	4
2435	Facile Synthesis of Mn doped Bi2S3 Photocatalyst for Efficient Degradation of Organic Dye under Visible-Light Irradiation. Journal of Molecular Structure, 2022, 1267, 133598.	3.6	31
2436	Evaluation of a Microbial Consortium and Selection of a Support in an Anaerobic Reactor Directed to the Bio-Treatment of Wastewater of the Textile Industry. Sustainability, 2022, 14, 8889.	3.2	5
2437	Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design. Inorganic Chemistry Communication, 2022, 143, 109785.	3.9	27
2439	Adsorptive removal and catalytic performance of metal-organic frameworks containing mixed azolium-bipyridine ligand. , 2022, 1, 201-210.		0
2440	Photocatalytic Degradation of Rhodamine B Dye by Nanocomposites: A Review. Applied Mechanics and Materials, 0, 908, 119-129.	0.2	11
2441	<scp>Arylâ€aryl</scp> linked <scp>twoâ€dimensional</scp> covalent organic frameworks/cellulose composite monolith with hierarchical structure for aqueous dyes adsorption. Journal of Applied Polymer Science, 0, , .	2.6	2
2443	Nanotechnological tweaking for textile industrial dye stress on floras. Materials Today: Proceedings, 2022, , .	1.8	0
2444	Synergistic Influences of Doping Techniques and Wellâ€Defined Heterointerface Formation to Improve the Photocatalytic Ability of the Sâ€ZnO/GO Nanocomposite. ChemistrySelect, 2022, 7, .	1.5	8
2445	Z-scheme Ag-loaded g-C3N4/CuNb2O6 composite photocatalyst for RhB dye degradation. Research on Chemical Intermediates, 2022, 48, 4163-4182.	2.7	6
2446	Investigation of g-C3N4 ratio on CaFe2O4 to remove toxic pollutants from wastewater. Journal of Hazardous Materials Advances, 2022, 7, 100143.	3.0	2
2447	The Taguchi Approach in Studying and Optimizing the Electro-Fenton Oxidation to Reduce Organic Contaminants in Refinery Wastewater Using Novel Electrodes. Engineering, Technology & Applied Science Research, 2022, 12, 8928-8935.	1.9	3
2448	The Applicability of Cellulose — Tara Gum Composite Hydrogels as Dye Capture Adsorbents. Water, Air, and Soil Pollution, 2022, 233, .	2.4	6

#	Article	IF	CITATIONS
2449	Floatable graphitic carbon nitride/alginate beads for the photodegradation of organic pollutants under solar light irradiation. Journal of Cleaner Production, 2022, 371, 133641.	9.3	15
2450	Synthesis of HAp/CS-SA composite for effective removal of highly toxic dyes in aqueous solution. Food and Chemical Toxicology, 2022, 168, 113346.	3.6	3
2451	Efficient separation and removal of dyes from single and multiple systems by magnetic/silver/carbon nanocomposite: Mechanism and mathematical modeling. Sustainable Chemistry and Pharmacy, 2022, 29, 100802.	3.3	1
2452	A visible-light-driven Z-scheme heterojunction catalysts via carbon nanodots bridges: Photocatalytic performance and mechanisms investigation. Materials Science in Semiconductor Processing, 2022, 151, 107022.	4.0	5
2453	Adsorption properties of methylene blue and gentian violet of sodium vanadate nanowire arrays synthesized by hydrothermal method. Applied Surface Science, 2022, 604, 154608.	6.1	7
2454	Influence of Doping-Ion-Type on the Characteristics of Al2O3-Based Nanocomposites and Their Capabilities of Removing Indigo Carmine from Water. Inorganics, 2022, 10, 144.	2.7	1
2455	Synthesis of CdS–SnS photocatalyst by chemical co-precipitation for photocatalytic degradation of methylene blue and rhodamine B under irradiation by visible light. Journal of Physics and Chemistry of Solids, 2022, 171, 110993.	4.0	17
2456	An universal approach of catalyst immobilization inside hydrophobic PFA tubing under well dispersed manner for continuous-flow applications. Chemical Engineering Journal, 2023, 452, 139347.	12.7	2
2457	Preliminary study of the photodegradation of dyes using amorphous films of ZnO-CuO obtained by photochemical deposition in solid phase. Environmental Science and Pollution Research, 0, , .	5.3	1
2458	Adsorptive Detoxification of Congo Red and Brilliant Green Dyes Using Chemically Processed <i>Brassica Oleracea</i> Biowaste from Waste Water. Adsorption Science and Technology, 2022, 2022,	3.2	2
2460	Catalytic degradation of methylene blue by biosynthesized Au nanoparticles on titanium dioxide (Au@TiO2). Environmental Science and Pollution Research, 2023, 30, 12307-12316.	5.3	2
2461	Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes, 2022, 10, 1968.	2.8	51
2462	Recent Developments on Magnetically Separable Ferrite-Based Nanomaterials for Removal of Environmental Pollutants. Journal of Nanomaterials, 2022, 2022, 1-15.	2.7	15
2463	Removal of Basic Yellow 51 Dye by Using Ion Exchange Resin Obtained by Modification of Byproduct Sugar Beet Pulp. Sugar Tech, 2023, 25, 569-579.	1.8	4
2464	Adsorption of methylene blue dye from aqueous solutions onto natural clay: Equilibrium and kinetic studies. Materials Today: Proceedings, 2023, 72, 3638-3643.	1.8	21
2465	An Excellent Alternative to Industrial Activated Carbons for the Purification of Textile Water Elaborated from Waste Coffee Grounds. International Journal of Environmental Research, 2022, 16, .	2.3	2
2466	Bacillus subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II. International Journal of Molecular Sciences, 2022, 23, 10637.	4.1	20
2467	Biodecolorization and degradation of textile azo dyes using Lysinibacillus sphaericus MTCC 9523. Frontiers in Environmental Science, 0, 10, .	3.3	9

#	Article	IF	CITATIONS
2468	Covalent organic framework membranes prepared via mixed linker modulated assembly for hydrogen peroxide enrichment. Journal of Membrane Science, 2022, 663, 121043.	8.2	1
2469	Water treatment using stimuli-responsive polymers. Polymer Chemistry, 2022, 13, 5940-5964.	3.9	9
2470	Statistically optimized sequential hydrothermal route for FeTiO3 surface modification: evaluation of hazardous cationic dyes adsorptive removal. Environmental Science and Pollution Research, 2023, 30, 19167-19181.	5.3	10
2472	A converged approach of electro-biological process for decolorization and degradation of toxic synthetic dyes. Environmental Monitoring and Assessment, 2023, 195, .	2.7	1
2473	<i>Delonix regia</i> seed pod—an efficient biosorptive candidate toward the removal of Rhodamine B from simulated wastewater: characterization, kinetics, and equilibrium approach. International Journal of Phytoremediation, 2023, 25, 1077-1094.	3.1	1
2474	Nano-remediation for the decolourisation of textile effluents: A review. Nanofabrication, 0, 7, .	1.1	7
2475	Toxic effects of Rhodamine B on antioxidant system and photosynthesis of Hydrilla verticillata. Journal of Hazardous Materials Letters, 2022, 3, 100069.	3.6	11
2476	Fast and high removal of acid red 97 dye from aqueous solution by adsorption onto a synthetic hydrocalumite: Structural characterization and retention mechanisms. Inorganic Chemistry Communication, 2022, 146, 110169.	3.9	10
2477	Sonochemical Synthesis and Characterization of Visible Light Driven CuO@g-C3N4 Nano-Photocatalyst for Eriochrome Black T Dye Degradation in Industrial Dye Effluent. Russian Journal of Inorganic Chemistry, 2022, 67, 2153-2165.	1.3	2
2478	Construction of magnetically separable novel arrow down dual S-scheme ZnIn2S4/BiOCl/FeVO4 heterojunction for improved photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114326.	3.9	62
2479	Kinetic and Thermodynamic Study of Phenol Removal from Water Using Activated Carbon Synthesizes from Avocado Kernel Seed. International Letters of Natural Sciences, 0, 54, 42-57.	1.0	0
2480	Transient absorption spectroscopy insights into heterogeneous photocatalysis for water pollution remediation. Applied Catalysis A: General, 2023, 649, 118943.	4.3	10
2481	Synthesis of TiO2, TiO2/PAni, TiO2/PAni/GO nanocomposites and photodegradation of anionic dyes Rose Bengal and thymol blue in visible light. Environmental Research, 2023, 216, 114741.	7.5	25
2482	Cross-Linked Ionic Liquid Polymer for the Effective Removal of Ionic Dyes from Aqueous Systems: Investigation of Kinetics and Adsorption Isotherms. Molecules, 2022, 27, 7775.	3.8	5
2483	Removal of Malachite Green Dye from Aqueous Solution by Catalytic Wet Oxidation Technique Using Ni/Kaolin as Catalyst. Molecules, 2022, 27, 7528.	3.8	9
2484	Simultaneous removal of Basic blue and Toluidine blue O dyes by Magnetic Fe3O4@polydopamine nanoparticle as an efficient adsorbent using derivative spectrophotometric determination and central composite design optimization. Inorganic Chemistry Communication, 2022, 146, 110203.	3.9	6
2485	Influence of extraction techniques on the adsorption capacity of methylene blue on sawdust: Optimization by full factorial design. Materials Science for Energy Technologies, 2023, 6, 114-123.	1.8	3
2486	On the applicability of triazine-based covalent organic polymer as adsorbent for dye removal from aqueous solution. Microporous and Mesoporous Materials, 2023, 348, 112367.	4.4	5

#	Article	IF	CITATIONS
2487	Bio-functionalized copper oxide/chitosan nanocomposite using Sida cordifolia and their efficient properties of antibacterial, anticancer activity against on breast and lung cancer cell lines. Environmental Research, 2023, 218, 114986.	7.5	15
2488	Textile industry wastewater microbiome: Recovery of metagenome assembled genomes (MAGs) using shotgun sequencing approach from Jetpur, Gujarat, India. Ecological Genetics and Genomics, 2023, 26, 100155.	0.5	1
2489	Recent advances and perspectives of tannin-based adsorbents for wastewater pollutants elimination: A review. Environmental Nanotechnology, Monitoring and Management, 2023, 19, 100763.	2.9	2
2490	Utilization of Agro-Waste in the Elimination of Dyes from Aqueous Solution: Equilibrium, Kinetic and Thermodynamic Studies. International Letters of Chemistry, Physics and Astronomy, 0, 86, 11-23.	0.0	1
2491	A novel octamolybdateâ€based organic–inorganic hybrid as photoâ€Fentonâ€like catalyst for degradation of methylene blue. Applied Organometallic Chemistry, 2023, 37, .	3.5	3
2493	Antibacterial studies of Ag@HPEI@GO nanocomposites and their effects on fouling and dye rejection in PES UF membranes. Heliyon, 2022, 8, e11825.	3.2	3
2494	Light-driven biodegradation of azo dyes by Shewanella decolorationis-CdS biohybrid in wastewater lacking electron donors. Applied Microbiology and Biotechnology, 2023, 107, 447-457.	3.6	3
2495	Application of electrochemistry technology to effectively inhibit dye pollution and unfixed dye transfer in a washing microenvironment. Chemical Papers, 2023, 77, 1951-1970.	2.2	2
2496	Electrochemical Treatment of Industrial Effluent and Its Impact on Stainless Steel Corrosion. International Journal of Electrochemical Science, 2022, 17, 221211.	1.3	0
2497	A Novel Composite of Zinc-based Metal Organic Framework Embedded with SnO2 Nanoparticle as a Photocatalyst for Methylene Blue Dye Degradation as well as Fluorometric Probe for Nitroaromatic Compounds Detection. Journal of Fluorescence, 0, , .	2.5	0
2498	Valorization of Silicomanganese Slag into Reusable Porous High-Performance Nanosilica for Recovery of Water from Methylene Blue Wastewater. Journal of Sustainable Metallurgy, 2023, 9, 132-147.	2.3	1
2499	Nanomaterials as a Sustainable Choice for Treating Wastewater: A Review. Materials, 2022, 15, 8576.	2.9	6
2500	Using silk-derived magnetic carbon nanocomposites as highly efficient Nanozymes and electromagnetic absorbing agents. Chinese Chemical Letters, 2023, 34, 108084.	9.0	0
2501	Removal of heavy metals and dyes from its aqueous solution utilizing metal organic Frameworks (MOFs): Review. Materials Today: Proceedings, 2023, 77, 188-200.	1.8	6
2502	Hollow and oval-configured ultrafine Co3O4 as a highly-efficient activator of monopersulfate for catalytic elimination of Azorubin S. Sustainable Environment Research, 2022, 32, .	4.2	4
2503	Effective Removal of Metal ion and Organic Compounds by Non-Functionalized rGO. Molecules, 2023, 28, 649.	3.8	1
2504	Exploiting Marine Fungi in the Removal of Hazardous Pollutants and Biomass Valorisation. Environmental Challenges and Solutions, 2023, , 117-146.	0.9	2
2505	Bio-Remediation of Organic Dyes from Wastewater by Microbial Colony—A Short Review. Environmental Footprints and Eco-design of Products and Processes, 2023, , 61-104.	1.1	1

#	Article	IF	CITATIONS
2506	Degradation of Textile Dye by Bimetallic Oxide Activated Peroxymonosulphate Process. Catalysts, 2023, 13, 195.	3.5	4
2507	Accelerated biodecolorization and detoxification of synthetic textile dye Acid Maroon V by bacterial consortium under redox mediator system. 3 Biotech, 2023, 13, .	2.2	3
2508	Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. Nanomaterials, 2023, 13, 214.	4.1	2
2509	Textile Waste: The Genesis, Environmental Impact and Remediation Using Nanomaterials. Environmental Footprints and Eco-design of Products and Processes, 2023, , 15-34.	1.1	Ο
2510	A Novel Approach, Based on the Combined Action of Chitosan Hydrogel and Laccases, for the Removal of Dyes from Textile Industry Wastewaters. Gels, 2023, 9, 41.	4.5	9
2511	Chitin nanocrystals scaffold by directional freezing for high-efficiency water purification. Separation and Purification Technology, 2023, , 123177.	7.9	2
2512	Multifunctional polyoxotungstocobaltate anchored fern-leaf like BiVO4 microstructures for enhanced photocatalytic and supercapacitive performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 130974.	4.7	6
2513	Graphene quantum dots functionalised with rhamnolipid produced from bioconversion of palm kernel oil by <i>Pseudomonas stutzeri</i> BK-AB12MT as a photocatalyst. RSC Advances, 2023, 13, 2949-2962.	3.6	1
2514	Electrodeposition of One-Dimensional Nanostructures: Environmentally Friendly Method. Journal of Composites and Biodegradable Polymers, 0, 10, 19-42.	0.3	1
2515	Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Zeitschrift Fur Physikalische Chemie, 2023, 237, 187-209.	2.8	5
2516	Effect of Nitrogen Doping in GO as Support in ZnO/GO-N Compounds and Their Photocatalytic Assessment to Degrade the Lignin Molecule. Catalysts, 2023, 13, 69.	3.5	0
2517	Synthesis and enhanced photocatalytic application of porous nanocomposites of (r)GO/TiO2 embedded HCP (hyper crosslinked polymer). Photochemical and Photobiological Sciences, 2023, 22, 837-855.	2.9	1
2518	Evaluación del proceso Fenton para el tratamiento de un agua sintética coloreada empleando calamina. Ingenieria Y Competitividad, 2022, 25, .	0.1	0
2519	Wastewater treatment: an overview. , 2023, , 19-34.		2
2520	Adsorptive removal of hazardous dyes from industrial waste using activated carbon: an appraisal. , 2023, , 455-483.		2
2521	Removal of Methylene Blue from Water Using Magnetic GTL-Derived Biosolids: Study of Adsorption Isotherms and Kinetic Models. Molecules, 2023, 28, 1511.	3.8	2
2522	<i>Streptomyces</i> spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste. Microbial Biotechnology, 2024, 17, .	4.2	2
2523	Developments in treatment technologies of dye-containing effluent: A review. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100339.	6.1	33

#	Article	IF	CITATIONS
2524	Development and application of redox active GO supported CeO2/In2O3 nanocomposite for photocatalytic degradation of toxic dyes and electrochemical detection of sulfamaxole. Surfaces and Interfaces, 2023, 38, 102774.	3.0	3
2525	Nonradical oxidative degradation of amino-G acid by hydrogen peroxide induced by copper cerium plate catalyst: Electron transfer mechanisms. Journal of Environmental Chemical Engineering, 2023, 11, 109576.	6.7	1
2526	Engineering sodium alginate-SiO2 composite beads for efficient removal of methylene blue from water. International Journal of Biological Macromolecules, 2023, 239, 124279.	7.5	3
2527	Enhanced charge transfer and photocatalytic performance of cube-shaped Ag3PO4@Zeolite-A nanocomposite. Materials Chemistry and Physics, 2023, 302, 127701.	4.0	4
2528	Toxicity of malachite green on plants and its phytoremediation: A review. Regional Studies in Marine Science, 2023, 62, 102911.	0.7	12
2529	Synthesis and characterization of a novel oxovanadium complex and stability of azo groups in the presence of laccase. Journal of Molecular Structure, 2023, 1285, 135465.	3.6	0
2530	Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results in Engineering, 2023, 17, 100920.	5.1	40
2531	Genotoxicity of Synthetic Food Colors on Nitrogen-Fixing Bacteria in Agricultural Lands Irrigated with Wastewater of Corresponding Industries. Sustainability, 2023, 15, 2897.	3.2	2
2532	Immobilization of <i>Trametes trogii</i> laccase on polyvinylpyrrolidone-coated magnetic nanoparticles for biocatalytic degradation of textile dyes. Biocatalysis and Biotransformation, 2024, 42, 194-211.	2.0	3
2533	The role of microbes and enzymes for bioelectricity generation: a belief toward global sustainability. , 2023, , 709-751.		0
2534	The effects of Ag-ions on the physiochemical characteristics and visible-light catalytic activity of ZnS nanoparticles. Inorganic Chemistry Communication, 2023, 150, 110511.	3.9	5
2535	Synthesis, Characterization, and Application of Dichloride (5,10,15,20-Tetraphenylporphyrinato) Antimony Functionalized Pectin Biopolymer to Methylene Blue Adsorption. Polymers, 2023, 15, 1030.	4.5	0
2536	Application of nanocomposites in wastewater treatment. , 2023, , 297-319.		0
2537	A review on polyaniline (PANI) based nanocomposites for water purification. South African Journal of Chemical Engineering, 2023, 44, 276-282.	2.4	2
2538	Bacterial tools for the removal and degradation of synthetic dyes from the wastewater. , 2023, , 339-370.		0
2539	Microbial consortium as an effective biocatalyst for the decolorization of textile dyes wastewater. , 2023, , 473-511.		0
2540	A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. Journal of Environmental Sciences, 2024, 139, 389-417.	6.1	27
2541	Efficacy of Fungi in the Decolorization and Detoxification of Remazol Brilliant Blue Dye in Aquatic Environments. Microorganisms, 2023, 11, 703.	3.6	2

#	Article	IF	CITATIONS
2542	Utilization of Azadirachta indica Sawdust as a Potential Adsorbent for the Removal of Crystal Violet Dye. Sustainable Chemistry, 2023, 4, 110-126.	4.7	11
2543	Fabrication of polyaniline/zinc oxide nanocomposites: synthesis, characterization and adsorption of methylene orange. Polymer Bulletin, 2024, 81, 1131-1157.	3.3	8
2544	Highly Efficient Removal of Alizarin Yellow R Dye from Aqueous Solution Using a Synthetic Hydrocalumite-Type LDH (CaAl–NO3). Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 1517-1526.	3.7	3
2545	Review on the Biomedical and Environmental Applications of Nonthermal Plasma. Catalysts, 2023, 13, 685.	3.5	19
2546	Recyclable Carbon-Based Hybrid Adsorbents Functionalized with Alumina Nanoparticles for Water Remediation. Crystals, 2023, 13, 598.	2.2	1
2547	Study on the photocatalytic properties differences between the 1-D and 3-D W ₁₈ O ₄₉ particles. RSC Advances, 2023, 13, 10657-10666.	3.6	0
2548	Supercritical carbon dioxide (<scp>SC O₂</scp>) dyeing of cellulose acetate: An opportunity for a "greener―circular textile economy. Coloration Technology, 2023, 139, 475-488.	1.5	1
2549	Quantum chemical and experimental studies on the extraction of acid blue 80 and acid red 1 from their aquatic environment using tetrabutylammonium bromide based deep eutectic solvents. Journal of Dispersion Science and Technology, 2023, 44, 1778-1787.	2.4	1
2550	Facile Synthesis and Characterization of Magnetic Calcium Alginate-Graphene Oxide Composite for Removal of a Commercial Textile Dye Doracryl Red MD. Water, Air, and Soil Pollution, 2023, 234, .	2.4	0
2551	Synthesis of novel fluorescent sensor based on a modified amino Alâ€MOF for rapid, sensitive, and selective detection of arsenic in aqueous solution. Applied Organometallic Chemistry, 2023, 37, .	3.5	8
2552	Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater. Environmental Research, 2023, 229, 115861.	7.5	4
2553	Textile waste water treatment: analysis of mapping knowledge domains. Environmental Monitoring and Assessment, 2023, 195, .	2.7	2
2554	Mycoremediation as a Potentially Promising Technology: Current Status and Prospects—A Review. Applied Sciences (Switzerland), 2023, 13, 4978.	2.5	9
2556	Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Materials Horizons, 2023, 10, 2312-2342.	12.2	13
2557	Preparation of Thiadiazole Modified UiO-68-CdS Composites for RhB Degradation under Visible Light Irradiation. Crystals, 2023, 13, 785.	2.2	0
2558	Highly efficient removal of ionic dyes in aqueous solutions using magnetic 3D reduced graphene oxide aerogel supported nano zero-valent iron. Environmental Engineering Research, 2024, 29, 230149-0.	2.5	0
2559	Recent Progress in Electrochemical Oxidation Technology: Its Applicability in Highly Efficient Treatment of Persistent Organic Pollutants from Industrial Wastewater. Energy, Environment, and Sustainability, 2023, , 165-196.	1.0	0
2560	Effective assessment of biopolymer-based multifunctional sorbents for the remediation of environmentally hazardous contaminants from aqueous solutions. Chemosphere, 2023, 329, 138552.	8.2	14

#	Article	IF	CITATIONS
2561	Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. Toxics, 2023, 11, 406.	3.7	7
2562	Effect of Enhanced Hydrolytic Acidification Process on the Treatment of Azo Dye Wastewater. Molecules, 2023, 28, 3930.	3.8	0
2564	Photocatalytic and molecular docking supported antimicrobial investigations of PVP capped MWCNTs/La/ZnO nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 295, 116582.	3.5	1
2565	Mikro Ölçekli Sıfır DeÄŸerlikli Demir (mZVI) Partikülü ile Sulu Çözeltilerden C.I. Vat Green 1 Boyasıı Gideriminin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2023, 10, 54-67.	າıກ 0.6	0
2566	Facile synthesis of SnO2– CuSe nanocomposites with enhanced visible light photocatalytic performance. Physica B: Condensed Matter, 2023, 664, 415023.	2.7	1
2567	NaBiS2 decorated polysaccharide sponges for adsorption–photocatalytic degradation of dye under visible light illumination. Carbohydrate Polymers, 2023, 316, 121072.	10.2	4
2568	Comparative Research of Isotherm, Kinetic, and Thermodynamic Studies for Neutral Red Adsorption by Activated Carbon Prepared from Apple Peel. Water, Air, and Soil Pollution, 2023, 234, .	2.4	1
2569	Preparation and Adsorption Properties of Lignin/Cellulose Hydrogel. Materials, 2023, 16, 4260.	2.9	0
2570	Grafted polymeric organogel using low molecular weight gelator as an effective medium for expulsion and purification of cationic dyes and organic pollutants from contaminated surface water. European Polymer Journal, 2023, 195, 112213.	5.4	2
2571	Adsorption–degradation of methylene blue by natural manganese ore: kinetics, characterization, and mechanism. International Journal of Environmental Science and Technology, 2024, 21, 1817-1830.	3.5	0
2572	Research on Decolorization Efficiency of Organic Wastewater with High-Concentration and High-Chromaticity. Environmental Science and Engineering, 2023, , 379-391.	0.2	0
2573	Khả nÄfng hấp phụ Methyl Orange trong dung dịch bởi hạt gel chitosan đƺợc chiết xuất tị Tap Chi Khoa Hoc = Journal of Science, 2023, 59, 27-38.	∝ vổtôm 0.1	sú Penaeu
2574	Effect of noble bacteria <i>Ochrobactrum intermedium</i> (Alhpa-22) on decolorization of methyl orange dye in a bioreactor. International Journal of Chemical Reactor Engineering, 2023, 21, 1517-1527.	1.1	0
2575	Adsorptive removal of reactive violet 5 azodye (V5R) with biochar: An ecofriendly technology. , 2023, 2, 100017.		0
2576	Influence of Cell Design and Electrode Materials on the Decolouration of Dyeing Effluents. International Journal of Electrochemical Science, 2012, 7, 12470-12488.	1.3	12
2577	Indirect Electrochemical Oxidation of Dye Wastewater Containing Acid Orange 7 Using Ti/RuO2-Pt Electrode. International Journal of Electrochemical Science, 2014, 9, 943-954.	1.3	28
2578	Green Synthesis and Characteristics of Cellulose Nanocrystal/Poly Acrylic Acid Nanocomposite Thin Film for Organic Dye Adsorption during Water Treatment. Polymers, 2023, 15, 2154.	4.5	6
2579	Sequential photo electro oxidation and biodegradation of textile effluent: Elucidation of degradation mechanism and bacterial diversity. Chemosphere, 2023, 331, 138816.	8.2	7

#	Article	IF	CITATIONS
2580	A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water, Air, and Soil Pollution, 2023, 234, .	2.4	47
2581	Fabricating ternary α-Fe2O3 nanoparticles-polyaniline-graphite nanoplatelets nanocomposite with enhanced photoelectrochemical activity for potential use as peroxidase mimic as well as photocatalyst. Journal of Environmental Chemical Engineering, 2023, 11, 110410.	6.7	0
2582	Effective Dye Removal by Acrylic-Based Membrane Constructed from Textile Fibers Waste. Fibers and Polymers, 2023, 24, 2391-2399.	2.1	3
2583	Electrochemical Treatment of C.I. Reactive Black 5 Solutions on Stabilized Doped Ti/SnO2 Electrodes. International Journal of Electrochemical Science, 2012, 7, 13074-13092.	1.3	17
2584	Ionic Liquids in Wastewater Treatments. , 2023, , 197-226.		0
2585	Advanced techniques for wastewater purification: fundamentals and applications. , 2023, , 115-137.		0
2586	Cellulose nanofibers decorated with SiO2 nanoparticles: Green adsorbents for removal of cationic and anionic dyes; kinetics, isotherms, and thermodynamic studies. International Journal of Biological Macromolecules, 2023, 247, 125753.	7.5	4
2587	Reduction of four bisâ€azo dyes by pig liver microsomal fraction in anaerobic conditions. Clean - Soil, Air, Water, 0, , .	1.1	0
2589	Facile synthesis of ZnO/Ag/g-C3N4 nanocomposites for multiple applications in photocatalytic degradation and photoactivated NO2 sensing. Applied Surface Science, 2023, 638, 158010.	6.1	13
2590	e-Beam and Î ³ -rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes. Membranes, 2023, 13, 659.	3.0	1
2591	A review on the removal of methylene blue dye from simulated wastewater by cement kiln dust (CKD). AIP Conference Proceedings, 2023, , .	0.4	0
2592	Enhanced photocatalytic activity of magnetically recyclable spherical Fe ₃ O ₄ /Cu ₂ O S-scheme heterojunction. Environmental Technology (United Kingdom), 0, , 1-17.	2.2	0
2593	Simultaneous elimination of toxic dyes, ciprofloxacin and Cr(<scp>vi</scp>) contents from polluted water: escalating surface plasmon electrons of Ag cocatalysts on BiVO ₄ microstructures. Environmental Science: Water Research and Technology, 2023, 9, 2238-2252.	2.4	3
2594	Fabrication of a novel bio-polymer adsorbent with high adsorptive capacity towards organic dyes. Industrial Crops and Products, 2023, 203, 117166.	5.2	6
2595	Synthesis, Characterization, Density Functional Theory, Monte Carlo, and Molecular Dynamics Simulations of [Ni(li)(Tpy) ₂] Metal Organic Framework and Congo Red Dye Application. Journal of Computational Biophysics and Chemistry, 2023, 22, 845-862.	1.7	1
2596	Kinetics and thermodynamics studies on the adsorption of acid blue 193 dye onto pumpkin seed shell. Environmental Sustainability, 2023, 6, 373-382.	2.8	1
2597	A scalable flow device for the removal of organic and inorganic pollutants from water. , 2023, 1, 100020.		0
2598	Efficient dual sensor based on modified NH2-UiO-66(Zr) MOF for sensitive and rapid monitoring of ultra-trace arsenic (III) in aqueous media. Journal of Molecular Liquids, 2023, 389, 122787.	4.9	2

#	Article	IF	CITATIONS
2599	Decolorisation of Reactive Congo Red Dye Solution by Electro Coagulation Process. Wasit Journal of Engineering Sciences, 2023, 11, 66-74.	0.2	0
2600	Synthesis of phenyl-based hyper-crosslinked porous organic polymers via Friedel-Crafts reaction for efficient organic dye adsorption. Microporous and Mesoporous Materials, 2023, 362, 112765.	4.4	1
2601	Propensity of a low-cost adsorbent derived from agricultural wastes to interact with cationic dyes in aqueous solutions. Environmental Monitoring and Assessment, 2023, 195, .	2.7	3
2602	Synergetic effects of a poly-tartrazine/CTAB modified carbon paste electrode sensor towards simultaneous and interference-free determination of benzenediol isomers. Reaction Chemistry and Engineering, 0, , .	3.7	0
2603	Fabrication of CFOx-PVDF catalytic membrane for removal of dyes in water and its mechanism. Chemical Engineering Research and Design, 2023, 198, 14-24.	5.6	1
2604	Natural tourmaline for pyroelectric dye decomposition under 25–60 °C room-temperature cold-hot fluctuation. Separation and Purification Technology, 2023, 327, 124971.	7.9	3
2605	Indigo Carmine: Between Necessity and Concern. Journal of Xenobiotics, 2023, 13, 509-528.	6.7	5
2606	Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Advances, 2023, 13, 26455-26474.	3.6	7
2607	Response surface methodology: a powerful tool for optimizing the synthesis of metal sulfide nanoparticles for dye degradation. Materials Advances, 2023, 4, 5094-5125.	5.4	3
2608	Adsorptive removal of acid red 18 dye from aqueous solution using hexadecyl-trimethyl ammonium chloride modified nano-pumice. Scientific Reports, 2023, 13, .	3.3	6
2609	A review on sustainable mesoporous activated carbon as adsorbent for efficient removal of hazardous dyes from industrial wastewater. Journal of Water Process Engineering, 2023, 54, 104054.	5.6	15
2610	Sustainable treatment of the dye wastewater generated from unorganized small-scale units using an economical ceramic clay-bimetallic MOF filter. Journal of Water Process Engineering, 2023, 56, 104381.	5.6	1
2611	In Situ Synthesis of Crystalline MoS2@ZIF-67 Nanocomposite for the Efficient Removal of Methyl Orange Dye from Aqueous Media. Micromachines, 2023, 14, 1534.	2.9	1
2612	Graphene oxide mediated carbon foam/CNTs composites for highly efficient adsorption of methylene blue and mechanism insight. Ceramics International, 2023, 49, 36970-36978.	4.8	3
2613	Mechanistic insights into acid orange 7 azo dye (AO7) reduction using DFT calculations. Polyhedron, 2023, 245, 116648.	2.2	3
2614	Industrial Pollution Management Approach. , 2023, , 363-388.		0
2615	Biodegradation on the Removal of Dyes from Textile Effluent. International Journal of Advanced Research in Science, Communication and Technology, 0, , 4-8.	0.0	0
2616	The Future of Graphene Oxide-Based Nanomaterials and Their Potential Environmental Applications: A Contemporary View. Advances in Material Research and Technology, 2023, , 153-175.	0.6	0

#	Article	IF	CITATIONS
2618	Microbial Fuel Cell and Wastewater Treatment. Springer Water, 2023, , 293-322.	0.3	0
2619	Competitive Adsorption of Anionic Dyes from Aqueous Single and Binary Solutions with CoAl Layered Double Hydroxide. International Journal of Environment and Geoinformatics, 2023, 10, 65-76.	0.8	0
2620	Tetracycline adsorption/desorption by raw and activated Tunisian clays. Environmental Research, 2024, 242, 117536.	7.5	2
2621	Degradation of Procion Brilliant Purple H-3R using ultrasound coupled with advanced oxidation processes. Journal of Environmental Management, 2024, 350, 119642.	7.8	0
2622	A machine learning approach for the estimation of photocatalytic activity of ALD ZnO thin films on fabric substrates. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 448, 115308.	3.9	0
2623	Influence of nickel doping and cotton stalk activated carbon loading on structural, optical, and photocatalytic properties of zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 448, 115300.	3.9	5
2624	Algae-Based Bioremediation of Emerging Pollutants. , 2023, , 143-199.		0
2625	Textile dye decolorization by white rot fungi – A review. Bioresource Technology Reports, 2024, 25, 101687.	2.7	3
2626	Persulfate activation over CoFe2O4/CuS for degradation of Orange II under visible light. Journal of Physics and Chemistry of Solids, 2024, 185, 111787.	4.0	1
2627	Cationic Surfactant-Modified Tetraselmis sp. for the Removal of Organic Dyes from Aqueous Solution. Molecules, 2023, 28, 7839.	3.8	5
2628	Study and Analysis of pH, Conductivity, Absorbance and Chemical Oxygen Demand of Drinking, Dye Contaminated Water and Treated Domestic Wastewater. , 2023, , .		0
2629	Sulfur-Doped g-C ₃ N ₄ Heterojunctions for Efficient Visible Light Degradation of Methylene Blue. ACS Omega, 0, , .	3.5	0
2630	2D/2D Z-scheme WO3/g-C3N4 heterojunctions for photocatalytic organic pollutant degradation and nitrogen fixation. Materials Advances, 0, , .	5.4	0
2631	Morphological Dependence of Metal Oxide Photocatalysts for Dye Degradation. Inorganics, 2023, 11, 484.	2.7	0
2632	Potential Environmental Contaminants: Exploring Hydrolyzed Dyes in Household Washing Sources and Electrochemical Degradation. Bulletin of Environmental Contamination and Toxicology, 2023, 111,	2.7	0
2633	UV photolytic decoloration of aqueous solutions of some synthetic dyes. AIP Conference Proceedings, 2023, , .	0.4	0
2634	Synthesis of Polymeric Sunscreen Photocatalyst ZnO2, CuO2, PbO2, and CdO2 Using Ethylene Glycol for Reactive Blue Dye Removal from Textile Waste Water. Catalysis Surveys From Asia, 0, , .	2.6	0
2636	Effect of Electrode Materials in Decolorization of Dyestuffs from Wastewater. , 2023, , 108-142.		0

#	Article	IF	CITATIONS
2637	Modified biochar derived from date palm trunks for removing cation dyes from aqueous solution. AIP Conference Proceedings, 2023, , .	0.4	0
2639	Synthesis of sulfur-encapsulated mullite structure Bi0/Fe0-Rich Bi2Fe4O9â^'x framework by advanced probe sonic approach applied for augmented electroactive hydrogen production, storage and photoactive degradation studies. Journal of Alloys and Compounds, 2024, 978, 173323.	5.5	1
2640	An environmentally friendly hydrophobic deep eutectic solvent dispersive liquid liquid microextraction for spectrophotometric analysis of indigo carmine (E132). Optical and Quantum Electronics, 2024, 56, .	3.3	0
2642	Kinetics of the photocatalytic degradation of methylene blue under natural sunlight irradiation using nanocatalysts Ce3+ and Mg2+ co-doped CaFeO3â°Î´. Reaction Kinetics, Mechanisms and Catalysis, 2024, 137, 1141-1155.	1.7	0
2643	Orange peel magnetic activated carbon for removal of acid orange 7 dye from water. Scientific Reports, 2024, 14, .	3.3	0
2644	Design of chitosan/boehmite biocomposite for the removal of anionic and nonionic dyes from aqueous solutions: Adsorption isotherms, kinetics, and thermodynamics studies. International Journal of Biological Macromolecules, 2024, 259, 129219.	7.5	0
2645	Recent advancements in modified SnO ₂ –Sb electrodes for electrochemical treatment of wastewater. Journal of Materials Chemistry A, 2024, 12, 4397-4420.	10.3	0
2646	Carbon-Polyaniline Composite Adsorbents for Aqueous Pollutants Uptake. , 2024, , .		0
2648	Potential of green-based microporous carbon for advanced water decontamination from azo dyes: Experiment and molecular dynamic simulation studies. Journal of Environmental Chemical Engineering, 2024, 12, 111875.	6.7	0
2649	Facile preparation and characterization of Zn2Ti3O8/g-C3N4 nanocomposites for degradation of rhodamine B under simulated sunlight. Solar Energy, 2024, 268, 112316.	6.1	0
2650	Streptomyces sp. VYN22 Suşunun Tekstil Atık Sularında Boyar Madde Giderimine Etkisi. Black Sea Journal of Engineering and Science, 2024, 7, 160-164.	0.6	0
2651	Green synthesis of rGO nanosheets wrapped on Ni-doped ZnO nanocomposite using P. dodecandra L'Herit (P.d) leaves extract and their photocatalytic and antioxidant performance. Journal of Materials Science: Materials in Electronics, 2024, 35, .	2.2	0
2652	Improvement of Zeolite Adsorption Ability for Methylene Blue by Using Electrospinning Cellulose Microfibers as Template. Water, Air, and Soil Pollution, 2024, 235, .	2.4	0
2653	Utilization of Agricultural Waste as Low-Cost Adsorbents in Dye Wastewater Treatment: Kinetic and Thermodynamic Study. IOP Conference Series: Earth and Environmental Science, 2023, 1215, 012055.	0.3	1
2654	Effect of anode passivation on ferrate(VI) electro-generation using ductile iron anode and application for methylene blue treatment. Journal of Applied Electrochemistry, 0, , .	2.9	0
2655	Cleaner cationization of cotton fabrics by reusing modification bath for salt-free reactive dyeing. Journal of Cleaner Production, 2024, 442, 141154.	9.3	0
2656	Efficient photocatalytic remediation of lerui acid brilliant blue dye using radiation- prepared carboxymethyl cellulose/acrylic acid hydrogel supported by ZnO@Ag. International Journal of Biological Macromolecules, 2024, 262, 129946.	7.5	0
2657	NNS donor bis Schiff base metal complexes and its Co3O4 and CuO nanoparticles: Synthesis, photocatalytic Activities, antioxidation and docking studies. Inorganic Chemistry Communication, 2024, 162, 112149.	3.9	1
#	Article	IF	CITATIONS
------	---	----------	-------------
2659	Dispersive turning point effect based microfiber wide range water temperature sensor. Measurement: Journal of the International Measurement Confederation, 2024, 227, 114321.	5.0	0
2660	Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar. Journal of the Institute of Science and Technology, 2024, 14, 156-167.	0.9	0
2661	Preliminary Results of Spadns Treatment by Electroflocculation With Iron Electrodes. RGSA: Revista De Gestão Social E Ambiental, 2024, 18, e04784.	3.8	2
2662	Microwave-assisted synthesis of oxygen vacancy associated Bi–TiO ₂ nanocomposite for degradation of rhodamine B under visible light irradiation. Reaction Chemistry and Engineering, 0, , .	3.7	0
2663	Continuous electrocoagulation treatment of textile industry effluent located in Istanbul Turkey. , 2024, , 157-174.		0
2664	A novel method for the remediation of o―and pâ€aminophenol from industrial wastewater by hexacyanoferrate (III) ions using Irâ€complex catalyst. Environmental Quality Management, O, , .	1.9	0
2665	Unveiling the future of environmental solutions: S-g-C3N4/Te-doped metal oxides (ZnO, Mn3O4 &) Tj ETQqC	0 0 rgBT	Overlock 10
	Engineering B: Solid-State Materials for Advanced Technology, 2024, 302, 117269.	0.0	0
2666	Bacillus Species with Dye-remediation Potential – A Mini Review. UMYU Journal of Microbiology Research, 2023, 8, 212-226.	0.1	0
2667	Modified hemp fibers as a novel and green adsorbent for organic dye adsorption: adsorption, kinetic studies and modeling. Euro-Mediterranean Journal for Environmental Integration, 0, , .	1.3	0
2668	Catalytic wet peroxide oxidation of organic dye with in-situ generated H2O2 over bifunctional Fe-Pt@Pd/SiO2 catalyst prepared by double-metal complex salt approach. Applied Catalysis A: General, 2024, 676, 119640.	4.3	0
2669	Ammonia application in dye and cleaning. , 2024, , 95-111.		0
2670	Recent Advances in Nitride Composites for Effective Removal of Organic Dyes in Wastewater Treatment. KONA Powder and Particle Journal, 2024, , .	1.7	0
2671	Development of persulfate-based advanced oxidation processes to remove synthetic azo dyes from aqueous matrices. Chemosphere, 2024, 355, 141766.	8.2	0
2672	Functionalization of wool fabric by rice stubble extract dyeing and bio-mordanting. Bioresource Technology Reports, 2024, 26, 101829.	2.7	0
2673	Dyes and heavy metals: removal, recovery and wastewater reuse—a review. Sustainable Water Resources Management, 2024, 10, .	2.1	0
2674	Degradation of Procion brilliant yellow H‣6G using ultrasonic and hydrodynamic cavitation combined with oxidants with demonstration at pilot scale. Water Environment Research, 2024, 96,	2.7	0
2675	A novel laccase from Trametes polyzona with high performance in the decolorization of textile dyes. AMB Express, 2024, 14, .	3.0	0