Peroxisome proliferator-activated receptor- \hat{I}^3 ligands a

Cancer Treatment Reviews 30, 545-554 DOI: 10.1016/j.ctrv.2004.04.004

Citation Report

#	Article	IF	CITATIONS
1	Ligands for the peroxisome proliferator-activated receptor-Î ³ have inhibitory effects on growth of human neuroblastoma cells in vitro. Toxicology, 2005, 213, 157-168.	4.2	31
2	Receptor-independent actions of PPAR thiazolidinedione agonists: Is mitochondrial function the key?. Biochemical Pharmacology, 2005, 70, 177-188.	4.4	251
3	PPARγâ€dependent effects of conjugated linoleic acid on the human glioblastoma cell line (ADF). International Journal of Cancer, 2005, 117, 923-933.	5.1	54
4	Peroxisome proliferator activated receptor-γ ligands induced cell growth inhibition and its influence on matrix metalloproteinase activity in human myeloid leukemia cells. Cancer Chemotherapy and Pharmacology, 2005, 56, 400-408.	2.3	46
5	Biomarkers for early effects of carcinogenic dual-acting PPAR agonists in rat urinary bladder urotheliumin vivo. Biomarkers, 2005, 10, 295-309.	1.9	51
6	Peroxisome proliferator-activated receptor-γ ligands for the treatment of breast cancer. Expert Opinion on Investigational Drugs, 2005, 14, 557-568.	4.1	74
7	The peroxisome proliferator-activated receptor ? ligand troglitazone induces apoptosis and p53 in rat granulosa cells. Molecular and Cellular Endocrinology, 2005, 233, 15-24.	3.2	39
8	Peroxisome proliferator-activated receptors (PPARs) and ovarian function–implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reproductive Biology and Endocrinology, 2005, 3, 41.	3.3	178
9	Potential therapeutic role of peroxisome proliferator activated receptor-Î ³ agonists in psoriasis. Expert Opinion on Pharmacotherapy, 2005, 6, 1455-1461.	1.8	9
10	Cellular, Molecular Consequences of Peroxisome Proliferator- Activated Receptor-δActivation in Ovarian Cancer Cells. Neoplasia, 2006, 8, 851-IN12.	5.3	48
11	Proline Oxidase, a Proapoptotic Gene, Is Induced by Troglitazone. Journal of Biological Chemistry, 2006, 281, 2044-2052.	3.4	99
12	Carbon Monoxide Orchestrates a Protective Response through PPARÎ ³ . Immunity, 2006, 24, 601-610.	14.3	146
13	Differential modulation of cell cycle, apoptosis and PPARγ2 gene expression by PPARγ agonists ciglitazone and 9-hydroxyoctadecadienoic acid in monocytic cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 74, 283-293.	2.2	32
14	From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in Lipid Research, 2006, 45, 120-159.	11.6	656
15	PPARÎ ³ is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1801-1811.	4.9	53
16	The cell cycle as a therapeutic target for Alzheimer's disease. , 2006, 111, 99-113.		85
17	Effects of PPARÎ ³ agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line. Journal of Cellular Biochemistry, 2006, 98, 1021-1035.	2.6	27
18	Expression of peroxisome proliferator activated receptor and cyclo-oxygenase 2 in primary and recurrent ovarian carcinoma. Journal of Clinical Pathology, 2006, 60, 307-310.	2.0	15

#	Article	IF	CITATIONS
19	Effects of luteinizing hormone on peroxisome proliferator-activated receptor Î ³ in the rat ovary before and after the gonadotropin surge. Reproduction, 2006, 131, 93-101.	2.6	16
20	Thiazolidinediones Ameliorate Diabetic Nephropathy via Cell Cycle–Dependent Mechanisms. Diabetes, 2006, 55, 1666-1677.	0.6	93
21	Lipid Phosphate Phosphatase-2 Activity Regulates S-phase Entry of the Cell Cycle in Rat2 Fibroblasts. Journal of Biological Chemistry, 2006, 281, 9297-9306.	3.4	35
22	Peroxisome Proliferator-activated Receptor-γ1 Is Dephosphorylated and Degraded during BAY 11-7085-induced Synovial Fibroblast Apoptosis. Journal of Biological Chemistry, 2006, 281, 22597-22604.	3.4	15
23	Peroxisome proliferator-activated receptor-γ ligands as investigational modulators of angiogenesis. Expert Opinion on Investigational Drugs, 2007, 16, 1561-1572.	4.1	28
24	Regulators of the G1 Phase of the Cell Cycle and Neurogenesis. Central Nervous System Agents in Medicinal Chemistry, 2007, 7, 115-128.	1.1	Ο
25	Activation of Peroxisome Proliferator-Activated Receptor Î ³ (PPARÎ ³) by Rosiglitazone Suppresses Components of the Insulin-Like Growth Factor Regulatory System in Vitro and in Vivo. Endocrinology, 2007, 148, 903-911.	2.8	130
26	Effects of Thiazolidinediones on Differentiation, Proliferation, and Apoptosis. Molecular Cancer Research, 2007, 5, 523-530.	3.4	61
27	Rosiglitazone sensitizes MDA-MB-231 breast cancer cells to anti-tumour effects of tumour necrosis factor-α, CH11 and CYC202. Endocrine-Related Cancer, 2007, 14, 305-315.	3.1	29
28	Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone. PPAR Research, 2007, 2007, 1-12.	2.4	9
29	Effects of dietary retinoids and carotenoids on immune development. Proceedings of the Nutrition Society, 2007, 66, 458-469.	1.0	72
30	Cytotoxicity of peroxisome proliferator-activated receptor α and γ agonists in renal proximal tubular cell lines. Toxicology in Vitro, 2007, 21, 1066-1076.	2.4	12
31	PPARÎ ³ activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide. Biochemical and Biophysical Research Communications, 2007, 359, 1017-1023.	2.1	19
32	A consideration of PPAR-γ ligands with respect to lipophilicity: current trends and perspectives. Expert Opinion on Investigational Drugs, 2007, 16, 413-417.	4.1	17
33	Peroxisome proliferator-activated receptor-Î ³ ligands as bone turnover modulators. Expert Opinion on Investigational Drugs, 2007, 16, 195-207.	4.1	11
34	Continuous Nucleocytoplasmic Shuttling Underlies Transcriptional Activation of PPARγ by FABP4â€. Biochemistry, 2007, 46, 6744-6752.	2.5	128
35	Investigation of the lipophilic behaviour of some thiazolidinediones. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 857, 181-187.	2.3	24
36	Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism. Fundamental and Clinical Pharmacology, 2007, 21, 231-244.	1.9	50

#	Article	IF	CITATIONS
37	Downregulation of cyclooxygenase-2 expression and activation of caspase-3 are involved in peroxisome proliferator-activated receptor-Î ³ agonists induced apoptosis in human monocyte leukemia cells in vitro. Annals of Hematology, 2007, 86, 173-183.	1.8	29
38	Expression of Peroxisome Proliferator-Activated Receptor-γ in Colon Cancer: Correlation with Histopathological Parameters, Cell Cycle-Related Molecules, and Patients' Survival. Digestive Diseases and Sciences, 2007, 52, 2305-2311.	2.3	40
39	Adipocyte/macrophage fatty acid binding proteins in metabolic syndrome. Current Atherosclerosis Reports, 2007, 9, 222-229.	4.8	31
40	Heme oxygenase and carbon monoxide initiate homeostatic signaling. Journal of Molecular Medicine, 2008, 86, 267-279.	3.9	207
41	Troglitazone inhibits cell migration, adhesion, and spreading by modulating cytoskeletal rearrangement in human breast cancer cells. Molecular Carcinogenesis, 2008, 47, 905-915.	2.7	16
42	Quantitative Structureâ€Activity Relationships for PPARâ€Î³ Binding and Gene Transactivation of Tyrosineâ€Based Agonists Using Multivariate Statistics. Chemical Biology and Drug Design, 2008, 72, 257-264.	3.2	15
43	Peroxisome proliferator-activated receptor-Î ³ and growth inhibition by its ligands in prostate cancer. Cancer Detection and Prevention, 2008, 32, 259-266.	2.1	25
44	The prince and the pauper. A tale of anticancer targeted agents. Molecular Cancer, 2008, 7, 82.	19.2	73
45	Review: PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Therapeutic Advances in Cardiovascular Disease, 2008, 2, 179-197.	2.1	72
46	PPAR-Î ³ signaling pathway in placental development and function: A potential therapeutic target in the treatment of gestational diseases. Expert Opinion on Therapeutic Targets, 2008, 12, 1049-1063.	3.4	22
47	Osteogenic and Adipogenic Induction Potential of Human Periodontal Cells. Journal of Periodontology, 2008, 79, 525-534.	3.4	43
48	Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. British Journal of Nutrition, 2008, 99, ES78-ES108.	2.3	84
49	PPARÂ is involved in mesalazine-mediated induction of apoptosis and inhibition of cell growth in colon cancer cells. Carcinogenesis, 2008, 29, 1407-1414.	2.8	57
50	The Role of PPAR Ligands in Controlling Growth-Related Gene Expression and their Interaction with Lipoperoxidation Products. PPAR Research, 2008, 2008, 1-15.	2.4	20
51	Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) Ligands: Novel Pharmacological Agents in the Treatment of Ischemia Reperfusion Injury. Current Molecular Medicine, 2008, 8, 562-579.	1.3	39
52	Inhibition of cardiovascular cell proliferation by angiotensin receptor blockers: are all molecules the same?. Journal of Hypertension, 2008, 26, 973-980.	0.5	32
53	The Role of PPARs in Cancer. PPAR Research, 2008, 2008, 1-15.	2.4	190
54	PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î±</mml:mi>Ligands as Antitumorigenic and Antiangiogenic Agents. PPAR Research, 2008, 2008, 1-8.</mml:math 	2.4	27

#	Article	IF	CITATIONS
55	Peroxisome Proliferator-Activated Receptor- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">γLigands: Potential Pharmacological Agents for Targeting the Angiogenesis Signaling Cascade in Cancer. PPAR Research, 2008, 2008, 1-12.</mml:mi </mml:math 	2.4	29
56	Ciglitazone, an agonist of peroxisome proliferator-activated receptor \hat{I}^3 , exerts potentiated cytostatic/cytotoxic effects against tumor cells when combined with lovastatin. International Journal of Oncology, 2008, , .	3.3	2
57	PPAR- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi>Agonists and Their Effects on IGF-I Receptor Signaling: Implications for Cancer. PPAR Research, 2009, 2009, 1-18.</mml:math 	2.4	92
58	Structural Basis for the Design of PPAR-γ Ligands: A Survey on Quantitative Structure- Activity Relationships. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1075-1083.	2.4	8
59	Antitumor activity of a novel series of α-aryloxy-α-methylhydrocinnamic acid derivatives as PPAR gamma agonists against a panel of human cancer cell lines. Investigational New Drugs, 2009, 27, 223-232.	2.6	9
60	Peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands as potential therapeutic agents to treat arthritis. Pharmacological Research, 2009, 60, 160-169.	7.1	58
61	Peroxisome Proliferator-Activated Receptor-Î ³ Agonists Promote Differentiation and Antioxidant Defenses of Oligodendrocyte Progenitor Cells. Journal of Neuropathology and Experimental Neurology, 2009, 68, 797-808.	1.7	88
62	Therapeutic Implications of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>in Human Osteosarcoma. PPAR Research, 2010, 2010, 1-16.</mml:math 	2.4	43
63	Association between peroxisome proliferator-activated receptor-Î ³ gene polymorphism (Pro12Ala) andHelicobacter pyloriinfection in gastric carcinogenesis. Scandinavian Journal of Gastroenterology, 2010, 45, 1162-1167.	1.5	14
64	PPARs and Myocardial Response to Ischemia in Normal and Diseased Heart. , 2011, , 135-148.		1
66	PPARÎ ³ : A molecular link between systemic metabolic disease and benign prostate hyperplasia. Differentiation, 2011, 82, 220-236.	1.9	41
67	Adriamycin inhibits adipogenesis through the modulation of PPARÎ ³ and restoration of adriamycin-mediated inhibition of adipogenesis by PPARÎ ³ over-expression. Toxicology Mechanisms and Methods, 2012, 22, 540-546.	2.7	26
68	Synthesis, Characterization and Biological Evaluation of Ureidofibrate-Like Derivatives Endowed with Peroxisome Proliferator-Activated Receptor Activity. Journal of Medicinal Chemistry, 2012, 55, 37-54.	6.4	46
69	Aminoacylase 1-catalysed deacetylation of bioactives epoxides mycotoxin-derived mercapturates; 3,4-epoxyprecocenes as models of cytotoxic epoxides. Biochimie, 2012, 94, 1668-1675.	2.6	7
70	Expression of Peroxisome Proliferator Activated Receptor-Gamma (PPAR-γ) in Human Non-small Cell Lung Carcinoma: Correlation with Clinicopathological Parameters, Proliferation and Apoptosis Related Molecules and Patients' Survival. Pathology and Oncology Research, 2012, 18, 875-883.	1.9	29
71	The role of PPAR in myocardial response to ischemia in normal and†diseased heart. General Physiology and Biophysics, 2012, 30, 329-341.	0.9	30
72	Restoration of C/EBP \hat{i}_{\pm} in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis. Genes Chromosomes and Cancer, 2012, 51, 313-327.	2.8	22
73	Efatutazone, an Oral PPAR-Î ³ Agonist, in Combination With Paclitaxel in Anaplastic Thyroid Cancer: Results of a Multicenter Phase 1 Trial. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2392-2400.	3.6	99

#	Article	IF	CITATIONS
75	Association of thiazolidinediones with gastric cancer in type 2 diabetes mellitus: a population-based case–control study. BMC Cancer, 2013, 13, 420.	2.6	5
76	Interplay between SOX9, β-catenin and PPARγ activation in colorectal cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1853-1865.	4.1	36
77	The PPARÎ ³ Agonist Efatutazone Increases the Spectrum of Well-Differentiated Mammary Cancer Subtypes Initiated by Loss of Full-Length BRCA1 in Association with TP53 Haploinsufficiency. American Journal of Pathology, 2013, 182, 1976-1985.	3.8	19
78	Doinseunggitang Ameliorates Endothelial Dysfunction in Diabetic Atherosclerosis. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	1.2	6
79	The anti-tumor activity of Mikania micrantha aqueous extract in vitro and in vivo. Cytotechnology, 2014, 66, 107-117.	1.6	16
80	5-Ethoxymethylidene-4-thioxo-2-thiazolidinone as Versatile Building Block for Novel Biorelevant Small Molecules with Thiopyrano[2,3- <i>d</i>][1,3]thiazole Core. Synthetic Communications, 2014, 44, 237-244.	2.1	28
81	Identification of transcription factors for drug-associated gene modules and biomedical implications. Bioinformatics, 2014, 30, 305-309.	4.1	27
82	Combined Treatment with Troglitazone and Lovastatin Inhibited Epidermal Growth Factor-Induced Migration through the Downregulation of Cysteine-Rich Protein 61 in Human Anaplastic Thyroid Cancer Cells. PLoS ONE, 2015, 10, e0118674.	2.5	15
83	Protective Effects of <i>Turbinaria ornata</i> and <i>Padina pavonia</i> against Azoxymethane-Induced Colon Carcinogenesis through Modulation of PPAR Gamma, NF-κB and Oxidative Stress. Phytotherapy Research, 2015, 29, 737-748.	5.8	22
84	Differential ontogenetic exposure to obesogenic environment induces hyperproliferative status and nuclear receptors imbalance in the rat prostate at adulthood. Prostate, 2016, 76, 662-678.	2.3	10
85	Intestinal PPARÎ ³ signalling is required for sympathetic nervous system activation in response to caloric restriction. Scientific Reports, 2016, 6, 36937.	3.3	20
86	Genotoxic investigation of a thiazolidinedione PPAR $^{ m 3}$ agonist using thein vitromicronucleus test and thein vivohomozygotization assay. Mutagenesis, 2016, 31, 417-424.	2.6	5
87	Synthesis and in vitro anticancer activity of new 2-thioxo-oxazolidin-4-one derivatives. Pharmacological Reports, 2017, 69, 633-641.	3.3	9
88	New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity. European Journal of Medicinal Chemistry, 2017, 127, 379-397.	5.5	19
89	Identification of a Triterpenoid as a Novel PPARÎ ³ Activator Derived from Formosan Plants. Phytotherapy Research, 2017, 31, 1722-1730.	5.8	9
90	TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPARÎ ³ -SIRT1 feedback loop in human bladder cancer cells. Cancer Letters, 2018, 414, 278-293.	7.2	58
91	Enteric Microbiota–Gut–Brain Axis from the Perspective of Nuclear Receptors. International Journal of Molecular Sciences, 2018, 19, 2210.	4.1	21
92	New insights into sperm with total globozoospermia: Increased fatty acid oxidation and centrin1 alteration. Systems Biology in Reproductive Medicine, 2019, 65, 390-399.	2.1	24

#	Article	IF	CITATIONS
93	Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Frontiers in Molecular Biosciences, 2019, 6, 105.	3.5	65
94	Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes, 2019, 10, 709.	2.4	71
95	Cycloaddition reactions for antiviral compounds. , 2019, , 1-83.		3
96	Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients, 2020, 12, 3476.	4.1	15
97	Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. Cells, 2020, 9, 1708.	4.1	39
98	Extremely Lowâ€Frequency Electromagnetic Field Altered PPARγ and CCL2 Levels and Suppressed CD44 + / CD24 â^' Breast Cancer Cells Characteristics. Bulletin of the Korean Chemical Society, 2020, 41, 812-823.	1.9	6
99	Host-Directed Therapy in Tuberculosis: Targeting Host Metabolism. Frontiers in Immunology, 2020, 11, 1790.	4.8	17
100	Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer. Frontiers in Molecular Biosciences, 2020, 7, 202.	3.5	25
101	Identifying kinase targets of PPARÎ ³ in human breast cancer. Journal of Drug Targeting, 2021, 29, 660-668.	4.4	2
102	Thiazolidinedione "Magic Bullets―Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their <i>In Vitro</i> and <i>In Vivo</i> Antitumor Effects. Journal of Medicinal Chemistry, 2021, 64, 6949-6971.	6.4	20
103	Rosiglitazone Alleviates Mechanical Allodynia of Rats with Bone Cancer Pain through the Activation of PPAR-γ to Inhibit the NF-κB/NLRP3 Inflammatory Axis in Spinal Cord Neurons. PPAR Research, 2021, 2021, 1-18.	2.4	11
104	Structural Insights into the Loss-of-Function R288H Mutant of Human PPARÎ ³ . Biological and Pharmaceutical Bulletin, 2021, 44, 1196-1201.	1.4	1
105	Effects of Pparγ1 deletion on late-stage murine embryogenesis and cells that undergo endocycle. Developmental Biology, 2021, 478, 222-235.	2.0	2
106	Thiazolidinediones inhibit apoptosis and heat shock protein 60 expression in human vascular endothelial cells. Thrombosis and Haemostasis, 2005, 93, 810-815.	3.4	22
107	Pioglitazone, a PPAR-gamma ligand, exerts cytostatic/cytotoxic effects against cancer cells, that do not result from inhibition of proteasome Acta Biochimica Polonica, 2008, 55, 75-84.	0.5	6
108	Synthesis, Spectroscopic, In-vitro and Computational Analysis of Hydrazones as Potential Antituberculosis Agents: (Part-I). Combinatorial Chemistry and High Throughput Screening, 2020, 23, 392-401.	1.1	25
109	Peroxisome proliferator-activated receptor-γ 34C>G polymorphism and colorectal cancer risk: A meta-analysis. World Journal of Gastroenterology, 2010, 16, 2170.	3.3	13
110	A comparison of peroxisome proliferator-activated receptor- $\hat{l}\pm$ agonist and antagonist on human umbilical vein endothelial cells angiogenesis. Advanced Biomedical Research, 2013, 2, 54.	0.5	5

#	Article	IF	CITATIONS
111	Peroxisome proliferator-activated receptor Î ³ and colorectal cancer. World Journal of Gastrointestinal Oncology, 2010, 2, 159.	2.0	36
112	The Effects of Combined Treatment with an HMG-CoA Reductase Inhibitor and PPARÎ ³ Agonist on the Activation of Rat Pancreatic Stellate Cells. Gut and Liver, 2012, 6, 262-269.	2.9	6
113	Peroxisome Proliferator-Activated Receptor-Gamma Pro12Ala Polymorphism Could be a Risk Factor for Gastric Cancer. Asian Pacific Journal of Cancer Prevention, 2015, 16, 2333-2340.	1.2	6
114	Peroxisome Proliferator-Activated Receptor (PPAR). , 2016, , 1-7.		0
115	Peroxisome Proliferator-Activated Receptor (PPAR). , 2018, , 3884-3890.		0
116	PPARÎ ³ Agonists in Combination Cancer Therapies. Current Cancer Drug Targets, 2020, 20, 197-215.	1.6	11
117	Nitro Fatty Acids (NO2-FAs): An Emerging Class of Bioactive Fatty Acids. Molecules, 2021, 26, 7536.	3.8	9
118	Multi-targeted HDAC Inhibitors as Anticancer Agents: Current Status and Future Prospective. Current Medicinal Chemistry, 2023, 30, 2762-2795.	2.4	7
120	A Gold(III) Complex with Potential Anticancer Properties. ChemistrySelect, 2022, 7, .	1.5	3
121	Anticancer heterocyclic hybrids: design, synthesis, molecular docking and evaluation of new thiazolidinone-pyrazoles. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2023, 78, 1-16.	0.7	1
122	Xianlinglianxiafang Inhibited the growth and metastasis of triple-negative breast cancer via activating PPARÎ ³ /AMPK signaling pathway. Biomedicine and Pharmacotherapy, 2023, 165, 115164.	5.6	1
123	Combined In Silico and In Vitro Analyses to Assess the Anticancer Potential of Thiazolidinedione–Thiosemicarbazone Hybrid Molecules. International Journal of Molecular Sciences, 2023, 24, 17521.	4.1	0
124	Moderate exercise mitigates cardiac dysfunction and injury induced by cyclosporine A through activation of the PGI2 / PPAR-1 ³ signaling pathway. Research in Pharmaceutical Sciences, 2023, 18, 696-707.	1.8	0
125	Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian Journal of Clinical Biochemistry, 0, , .	1.9	0