Acne and propionibacterium acnes

Clinics in Dermatology 22, 375-379 DOI: 10.1016/j.clindermatol.2004.03.005

Citation Report

#	Article	IF	CITATIONS
1	Insights in the Pathogenic Potential of Propionibacterium acnes From Its Complete Genome. Seminars in Cutaneous Medicine and Surgery, 2005, 24, 67-72.	1.6	111
2	Inhibition of Pathogenic Bacterial Adhesion by Acidic Polysaccharide from Green Tea (Camellia) Tj ETQq1 1 0.784	1314 rgBT . 2.4	/Oyerlock 10
3	Herbal Medicine for Acne Vulgaris. Alternative and Complementary Therapies, 2006, 12, 303-309.	0.1	10
4	Nasal antibiotic-resistant Propionibacterium acnes carriage in acne vulgaris patients in Turkey. Journal of Dermatology, 2006, 33, 899-901.	0.6	8
5	Pulmonary Immune Responses toPropionibacterium acnesin C57BL/6 and BALB/c Mice. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 347-356.	1.4	34
6	In vivo Porphyrin Production by P. acnes in Untreated Acne Patients and its Modulation by Acne Treatment. Acta Dermato-Venereologica, 2006, 86, 316-319.	0.6	58
7	Variable expression of immunoreactive surface proteins of Propionibacterium acnes. Microbiology (United Kingdom), 2006, 152, 3667-3681.	0.7	66
8	Endocarditis caused by Propionibacterium species: a report of three cases and a review of clinical features and diagnostic difficulties. Journal of Medical Microbiology, 2006, 55, 981-987.	0.7	80
9	Activity of the Novel Macrolide BAL19403 against Ribosomes from Erythromycin-Resistant Propionibacterium acnes. Antimicrobial Agents and Chemotherapy, 2007, 51, 4361-4365.	1.4	9
10	Potential Targets of P. acnes for New Treatments of P. acnes-Associated Diseases. Current Proteomics, 2007, 4, 157-161.	0.1	0
11	Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA - Opinion of the Scientific Committee. EFSA Journal, 2007, 5, 587.	0.9	350
13	Pulsed Dye Laser Treatment of Acne. Study of Clinical Efficacy and Mechanism of Action. Actas Dermo-sifiliográficas, 2007, 98, 415-419.	0.2	7
14	Acne and risk of prostate cancer. International Journal of Cancer, 2007, 121, 2688-2692.	2.3	78
15	A Citrus Polymethoxy Flavonoid, Nobiletin Inhibits Sebum Production and Sebocyte Proliferation, and Augments Sebum Excretion in Hamsters. Journal of Investigative Dermatology, 2007, 127, 2740-2748.	0.3	23
16	Effect of Garcinia mangostana on inflammation caused by Propionibacterium acnes. Fìtoterapìâ, 2007, 78, 401-408.	1.1	100
17	2β-Acetoxyferruginol—A new antibacterial abietane diterpene from the bark of Prumnopitys andina. Phytochemistry Letters, 2008, 1, 49-53.	0.6	18
18	Antibodies Elicited by Inactivated Propionibacterium acnes-Based Vaccines Exert Protective Immunity and Attenuate the IL-8 Production in Human Sebocytes: Relevance to Therapy for Acne Vulgaris. Journal of Investigative Dermatology, 2008, 128, 2451-2457.	0.3	68
19	Efficacy and tolerability of clindamycin phosphate and salicylic acid gel in the treatment of mild to moderate acne vulgaris. Journal of the European Academy of Dermatology and Venereology, 2008, 22, 629-631.	1.3	32

#		IE	CITATIONS
#	Acricle	IF	CHATIONS
20	starting antiretroviral therapy. International Journal of STD and AIDS, 2008, 19, 493-495.	0.5	17
21	Acne Through the Ages: Case-Based Observations Through Childhood and Adolescence. Clinical Pediatrics, 2008, 47, 639-651.	0.4	23
22	Fatores etiopatogênicos da acne vulgar. Anais Brasileiros De Dermatologia, 2008, 83, 451-459.	0.5	15
23	Chemical composition and biological activities of Jeju Thymus quinquecostatus essential oils against Propionibacterium species inducing acne. Journal of General and Applied Microbiology, 2009, 55, 63-68.	0.4	24
24	Development of Three-Dimensional Tissue-Engineered Models of Bacterial Infected Human Skin Wounds. Tissue Engineering - Part C: Methods, 2009, 15, 475-484.	1.1	49
25	Involvement of Propionibacterium acnes in the Augmentation of Lipogenesis in Hamster Sebaceous Glands In Vivo and In Vitro. Journal of Investigative Dermatology, 2009, 129, 2113-2119.	0.3	72
26	Antimicrobial Property of Lauric Acid Against Propionibacterium Acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris. Journal of Investigative Dermatology, 2009, 129, 2480-2488.	0.3	266
27	The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials, 2009, 30, 6035-6040.	5.7	161
28	Inhibition of Pathogen Adhesion to Host Cells by Polysaccharides from <i>Panax ginseng</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 209-212.	0.6	27
29	Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes. Archives of Dermatological Research, 2010, 302, 745-756.	1.1	96
30	Proteomic identification of secreted proteins of Propionibacterium acnes. BMC Microbiology, 2010, 10, 230.	1.3	142
31	Radiant near infrared light emitting Diode exposure as skin preparation to enhance photodynamic therapy inflammatory type acne treatment outcome. Lasers in Surgery and Medicine, 2010, 42, 171-178.	1.1	33
32	A rapid method to clinically assess the effect of an anti-acne formulation. International Journal of Cosmetic Science, 2010, 32, 82-82.	1.2	0
33	Induction of inflammatory reactions by lipopolysaccharide in hamster sebaceous glands and pilosebaceous units <i>in vivo</i> and <i>in vitro</i> . Experimental Dermatology, 2010, 19, 1107-1109.	1.4	9
34	Anaerobic bacteria. , 2010, , 1757-1776.		1
35	Current status of acne vaccines. Expert Review of Dermatology, 2010, 5, 561-566.	0.3	8
36	Mutagenesis of Propionibacterium acnes and analysis of two CAMP factor knock-out mutants. Journal of Microbiological Methods, 2010, 83, 211-216.	0.7	40
37	Processing efficacy in relation to microbial contamination of skin allografts from 723 donors. Burns, 2010, 36, 347-351.	1.1	22

0.			D	
		ON		ODT.
\sim	171		NLF	

#	Article	IF	CITATIONS
38	Sebum Free Fatty Acids Enhance the Innate Immune Defense of Human Sebocytes by Upregulating β-Defensin-2 Expression. Journal of Investigative Dermatology, 2010, 130, 985-994.	0.3	182
39	Major constituents and antimicrobial activity of Korean herb <i>Acorus calamus</i> . Natural Product Research, 2011, 25, 1278-1281.	1.0	25
41	Susceptibility of Propionibacterium acnes isolated from patients with acne vulgaris to zinc ascorbate and antibiotics. Clinical, Cosmetic and Investigational Dermatology, 2011, 4, 161.	0.8	11
43	Microbial Symbiosis with the Innate Immune Defense System of the Skin. Journal of Investigative Dermatology, 2011, 131, 1974-1980.	0.3	289
44	Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells. International Journal of Medical Microbiology, 2011, 301, 69-78.	1.5	126
45	Staphylococcus epidermidis: A possible role in the pustules of rosacea. Journal of the American Academy of Dermatology, 2011, 64, 49-52.	0.6	80
46	Laser Raman Spectroscopy as a Potential Chair-side Microbiological Diagnostic Device. Journal of Endodontics, 2011, 37, 968-972.	1.4	5
47	Therapeutic agents and herbs in topical application for acne treatment. International Journal of Cosmetic Science, 2011, 33, 289-297.	1.2	74
48	Nanocarrier Systems for Transdermal Drug Delivery. , 0, , .		11
49	Peptides with antimicrobial and anti-inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides, 2012, 34, 275-282.	1.2	58
50	<scp>SIG</scp> 1273: a new cosmetic functional ingredient to reduce blemishes and <i><scp>P</scp>ropionibacterium acnes</i> in acne prone skin. Journal of Cosmetic Dermatology, 2012, 11, 272-278.	0.8	14
51	Multilocus sequence typing and repetitive-sequence-based PCR (DiversiLab) for molecular epidemiological characterization of Propionibacterium acnes isolates of heterogeneous origin. Anaerobe, 2012, 18, 392-399.	1.0	14
52	An Expanded Multilocus Sequence Typing Scheme for Propionibacterium acnes: Investigation of â€~Pathogenic', â€~Commensal' and Antibiotic Resistant Strains. PLoS ONE, 2012, 7, e41480.	1.1	196
53	Properties of herbal extracts against <i>Propionibacterium acnes</i> for biomedical application. Proceedings of SPIE, 2012, , .	0.8	0
54	Zinc ascorbate has superoxide dismutase-like activity and in vitro antimicrobial activity against Staphylococcus aureus and Escherichia coli. Clinical, Cosmetic and Investigational Dermatology, 2012, 5, 135.	0.8	1
55	Antibacterial and Anti-inflammatory Activity of Traditional Chinese Herb Pairs, Angelica sinensis and Sophora flavescens. Inflammation, 2012, 35, 913-919.	1.7	40
56	Antibiotic susceptibility in prostateâ€derived <i>Propionibacterium acnes</i> isolates. Apmis, 2012, 120, 778-785.	0.9	20
57	Reply: "Follicular spicules associated with <i>Propionibacterium acnes</i> with response to erythromycin― Lack of evidence for the species?. Journal of Dermatology, 2012, 39, 586-586.	0.6	1

#	Article	IF	CITATIONS
58	An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. British Journal of Dermatology, 2012, 167, 50-58.	1.4	185
59	Structure and function of the human skin microbiome. Trends in Microbiology, 2013, 21, 660-668.	3.5	348
60	<i>Propionibacterium acnes</i> activates caspaseâ€I in human neutrophils. Apmis, 2013, 121, 652-663.	0.9	39
61	Simultaneous visualization of Propionibacterium acnes and Propionibacterium granulosum with immunofluorescence and fluorescence in situ hybridization. Anaerobe, 2013, 23, 48-54.	1.0	24
62	Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne. Journal of Investigative Dermatology, 2013, 133, 2152-2160.	0.3	557
63	Antimicrobial susceptibility and genetic characteristics of <i>Propionibacterium acnes</i> isolated from patients with acne. International Journal of Dermatology, 2013, 52, 418-425.	0.5	64
64	Acne vulgarism treatment using ultra-short laser pulse generated by micro- and nano-ring resonator system. Artificial Cells, Nanomedicine and Biotechnology, 2013, 41, 92-97.	1.9	3
65	Deciphering the Intracellular Fate of <i>Propionibacterium acnes</i> in Macrophages. BioMed Research International, 2013, 2013, 1-11.	0.9	52
66	Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against Propionibacterium acnes and Staphylococcus aureus. Marine Drugs, 2013, 11, 4544-4557.	2.2	126
68	Diagnosis and Management of Periprosthetic Shoulder Infections. Journal of Bone and Joint Surgery - Series A, 2014, 96, 956-965.	1.4	83
69	Acne Pathogenesis: History of Concepts. Dermatology, 2014, 229, 1-46.	0.9	20
70	Propionibacterium acnes Induces IL-1β Secretion via the NLRP3 Inflammasome in Human Monocytes. Journal of Investigative Dermatology, 2014, 134, 381-388.	0.3	164
71	Analysis of the secondary endodontic lesions focusing on the extraradicular microorganisms: an overview. Journal of Investigative and Clinical Dentistry, 2014, 5, 245-254.	1.8	9
72	New Insights into Acne Pathogenesis: Propionibacterium Acnes Activates the Inflammasome. Journal of Investigative Dermatology, 2014, 134, 310-313.	0.3	70
73	IL-1β Drives Inflammatory Responses to Propionibacterium acnes In Vitro and In Vivo. Journal of Investigative Dermatology, 2014, 134, 677-685.	0.3	178
74	The Protective Effects of Melittin on Propionibacterium acnes –Induced Inflammatory Responses In Vitro and In Vivo. Journal of Investigative Dermatology, 2014, 134, 1922-1930.	0.3	87
75	Propionibacterium acnes: from Commensal to Opportunistic Biofilm-Associated Implant Pathogen. Clinical Microbiology Reviews, 2014, 27, 419-440.	5.7	471
76	The Use of Chicken Igy in a Double Antibody Sandwich Elisa for the Quantification of Melittin in Bee Venom and Bee Venom Melittin Content in Cosmetics. Journal of Apicultural Science, 2015, 59, 97-107.	0.1	2

ARTICLE IF CITATIONS Lubricant and Bactericidal Properties of Calcium Salts of Fatty Acids: Effect of Degree of 0.6 13 77 Unsaturation. Journal of Oleo Science, 2015, 64, 1095-1100. Magnesium Ascorbyl Phosphate Regulates the Expression of Inflammatory Biomarkers in Cultured 0.3 Sebocytes. Annals of Dermatology, 2015, 27, 376. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment. 79 0.4 24 Journal of Advanced Pharmaceutical Technology and Research, 2015, 6, 7. Propionibacteria and Disease., 2015, , 837-858. Human Microbiome: When a Friend Becomes an Enemy. Archivum Immunologiae Et Therapiae 81 1.0 53 Experimentalis, 2015, 63, 287-298. Conventional Diagnostic Challenges in Periprosthetic Joint Infection. Journal of the American Academy of Orthopaedic Surgeons, The, 2015, 23, S18-S25. 1.1 The diversity and host interactions of <i>Propionibacterium acnes</i> bacteriophages on human skin. 83 4.4 83 ISME Journal, 2015, 9, 2078-2093. The Incidence of Propionibacterium acnes in Open Shoulder Surgery. Journal of Bone and Joint 84 1.4 144 Surgery - Series A, 2015, 97, 957-963. Antibiotic susceptibility of Propionibacterium acnes isolated from orthopaedic implant-associated 85 1.0 37 infections. Anaerobe, 2015, 32, 57-62. Propionic Acid Produced by Propionibacterium acnes Strains ContriÂbutes to Their Pathogenicity. Acta Dermato-Venereologica, 2016, 96, 43-49. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal 87 2.0 30 Propionibacterium acnes. Polymers, 2016, 8, 321. The balance of metagenomic elements shapes the skin microbiome in acne and health. Scientific 1.6 169 Reports, 2016, 6, 39491. Microbial biofilms and the human skin microbiome. Npj Biofilms and Microbiomes, 2016, 2, 3. 89 2.9 120 Multicenter crossâ€sectional observational study of antibiotic resistance and the genotypes of <i>Propionibacterium acnes</i> isolated from Chinese patients with acne vulgaris. Journal of Dermatology, 2016, 43, 406-413. Molecular Microbiological Profile of Chronic Suppurative Otitis Media. Journal of Clinical 91 1.8 48 Microbiology, 2016, 54, 2538-2546. Reduction of Inflammatory and Noninflammatory Lesions with Topical Tyrothricin 0.1% in the Treatment of Mild to Severe Acne Papulopustulosa: A Randomized Controlled Clinical Trial. Skin Pharmacology and Physiology, 2016, 29, 1-8. Frequency and typing of Propionibacterium acnes in prostate tissue obtained from men with and 93 1.2 63 without prostate cancer. Infectious Agents and Cancer, 2016, 11, 26. Choline and Geranate Deep Eutectic Solvent as a Broadâ€Spectrum Antiseptic Agent for Preventive and 94 104 Therapeutic Applications. Advanced Healthcare Materials, 2016, 5, 1282-1289.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
95	Energy-Based Devices in Treatment of Acne Vulgaris. Dermatologic Surgery, 2016, 42,	573-585.	0.4	17
96	Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes. A Dermatological Research, 2016, 308, 79-86.	rchives of	1.1	29
97	Different cutaneous innate immunity profiles in acne patients with and without atroph European Journal of Dermatology, 2016, 26, 68-74.	iic scars.	0.3	37
98	Strain-Level Differences in Porphyrin Production and Regulation in Propionibacterium a Disease Associations. MSphere, 2016, 1, .	icnes Elucidate	1.3	71
99	The potential of the brown seaweed Sargassum polycystum against acne vulgaris. Jour Phycology, 2016, 28, 3127-3133.	nal of Applied	1.5	18
100	Inhibition of <i>Propionibacterium acnes</i> lipase activity by the antifungal agent ket Microbiology and Immunology, 2017, 61, 42-44.	oconazole.	0.7	17
101	A Polycation Antimicrobial Peptide Mimic without Resistance Buildup against <i>Propi Acnes</i> . Macromolecular Bioscience, 2017, 17, 1700090.	onibacterium	2.1	5
102	Rhodomyrtone inhibits lipase production, biofilm formation, and disorganizes establish Propionibacterium acnes. Anaerobe, 2017, 43, 61-68.	ned biofilm in	1.0	25
103	Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, N inflammasome activation-mediated IL-11 ² secretion and pyroptosis. Biomedicine and P 2017, 96, 129-136.	LRP3 harmacotherapy,	2.5	42
104	Cutibacterium (formerly Propionibacterium) acnes infections associated with implanta Expert Review of Anti-Infective Therapy, 2017, 15, 1083-1094.	ble devices.	2.0	29
105	Factors shaping the composition of the cutaneous microbiota. British Journal of Derma 176, 344-351.	atology, 2017,	1.4	51
106	Tea tree oil: a promising essential oil. Journal of Essential Oil Research, 2017, 29, 201-2	213.	1.3	62
107	Green Tea and Other Tea Polyphenols: Effects on Sebum Production and Acne Vulgaris 2017, 6, 2.	. Antioxidants,	2.2	43
108	P. acnes-Driven Disease Pathology: Current Knowledge and Future Directions. Frontier and Infection Microbiology, 2017, 7, 81.	s in Cellular	1.8	44
109	Phenotype and Antimicrobial Activity ofÂTh17 Cells Induced by Propionibacterium acn Associated with Healthy andÂAcne Skin. Journal of Investigative Dermatology, 2018, 1	es Strains 38, 316-324.	0.3	83
110	16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius compared to Triatoma maculata midgut microbiota in natural populations of vector in Colombia. Acta Tropica, 2018, 178, 327-332.	pallescens sects from	0.9	36
111	Kaempferia parviflora Extract as a Potential Anti-Acne Agent with Anti-Inflammatory, S Anti-Propionibacterium acnes Activity. International Journal of Molecular Sciences, 201	ebostatic and .8, 19, 3457.	1.8	18
112	Antibiotics and autoimmune and allergy diseases: Causative factor or treatment?. Inte Immunopharmacology, 2018, 65, 328-341.	national	1.7	30

ARTICLE IF CITATIONS # TNIP1 Regulates Cutibacterium acnes-Induced Innate Immune Functions in Epidermal Keratinocytes. 113 2.2 19 Frontiers in Immunology, 2018, 9, 2155. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. 114 190 Microbiome, 2018, 6, 154. In-vitro investigation of anti-acne properties of Mangifera indica L. kernel extract and its mechanism 115 1.0 32 of action against Propionibacterium acnes. Anaerobe, 2018, 52, 64-74. SIG1459: A novel phytylâ€cysteine derived TLR2 modulator with in vitro and clinical antiâ€acne activity. 116 Experimental Dermatology, 2018, 27, 993-999. Anticancer, Antiviral, Antibacterial, and Antifungal Properties in Microalgae., 2018, , 235-261. 117 26 The Anti-Inflammatory Activities of Propionibacterium acnes CAMP Factor-Targeted Acne Vaccines. 0.3 Journal of Investigative Dermatology, 2018, 138, 2355-2364. Control of Propionibacterium acnes by natural antimicrobial substances: Role of theÂbacteriocin 119 1.6 22 AS-48 and lysozyme. Scientific Reports, 2018, 8, 11766. Genetic association between the <i>NLRP3</i> gene and acne vulgaris in a Chinese population. Clinical 0.6 19 and Experimental Dermatology, 2019, 44, 184-189. The role of the skin microbiota in acne pathophysiology. British Journal of Dermatology, 2019, 181, 121 1.4 64 691-699. Potential Therapeutic Applications of Bee Venom on Skin Disease and Its Mechanisms: A Literature 1.5 Review. Toxins, 2019, 11, 374. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules, 2019, 24, 2456. 123 172 1.7 A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. International Journal of Molecular Sciences, 2019, 124 1.8 20, 14. Skin: Cutibacterium (formerly Propionibacterium) acnes and Acne Vulgaris., 2019, , 1-20. 125 1 Cutibacterium acnes (formerly Propionibacterium acnes) isolated from prosthetic joint infections is less susceptible to oxacillin than to benzylpenicillin. Journal of Bone and Joint Infection, 2019, 4, 106-110. 127 Microbiome in the hair follicle of androgenetic alopecia patients. PLoS ONE, 2019, 14, e0216330. 1.1 38 A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGF1±-Mediated Recruitment of Neutrophils. Immunity, 2019, 50, 1069-1083.e8. Short-Chain Fatty Acids from <i>Cutibacterium acnes</i> Activate Both a Canonical and Epigenetic 129 0.4 71 Inflammatory Response in Human Sebocytes. Journal of Immunology, 2019, 202, 1767-1776. The Role of Digital Fluorescence in Acne Vulgaris: Correlation of Ultraviolet Red Fluorescence with the Severity of Acne Vulgaris. Dermatology Research and Practice, 2019, 2019, 1-4.

	CITATION	Report	
#	Article	IF	CITATIONS
132	Extrinsic Factors Shaping the Skin Microbiome. Microorganisms, 2020, 8, 1023.	1.6	23
133	Enhancement of anti-acne effect of Scutellaria baicalensis extract by fermentation with symbiotic fungus Penicillium decumbens. Journal of Bioscience and Bioengineering, 2020, 130, 457-463.	1.1	6
134	Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharmaceutical Development and Technology, 2020, 25, 1216-1225.	1.1	17
135	A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography. Atmosphere, 2020, 11, 919.	1.0	20
136	Nanovectorized Microalgal Extracts to Fight Candida albicans and Cutibacterium acnes Biofilms: Impact of Dual-Species Conditions. Antibiotics, 2020, 9, 279.	1.5	6
137	Knockdown of H19 Inhibits the Pathogenesis of Acne Vulgaris by Targeting the miR-196a/TLR2/NF-κB Axis. Inflammation, 2020, 43, 1936-1947.	1.7	14
138	Rosa davurica Pall. Improves Propionibacterium acnes-Induced Inflammatory Responses in Mouse Ear Edema Model and Suppresses Pro-Inflammatory Chemokine Production via MAPK and NF-κB Pathways in HaCaT Cells. International Journal of Molecular Sciences, 2020, 21, 1717.	1.8	14
139	Strategies to decolonize the shoulder of Cutibacterium acnes: a review of the literature. Journal of Shoulder and Elbow Surgery, 2020, 29, 660-666.	1.2	18
140	Cosm-nutraceutical nanovesicles for acne treatment: Physicochemical characterization and exploratory clinical experimentation. International Journal of Pharmaceutics, 2020, 577, 119092.	2.6	44
141	Microbial Diversity and Classification. , 2021, , .		0
142	The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects—A Randomized, Double-Blind, Placebo-Controlled Trial. Microorganisms, 2021, 9, 563.	1.6	4
143	Polyphyllin I Inhibits Propionibacterium acnes-Induced IL-8 Secretion in HaCaT Cells by Downregulating the CD36/NOX1/ROS/NLRP3/IL-1β Pathway. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	7
144	Antibiofilm activities of fatty acids including myristoleic acid against Cutibacterium acnes via reduced cell hydrophobicity. Phytomedicine, 2021, 91, 153710.	2.3	18
145	Metagenomics of the Human Body. , 2011, , .		18
146	Identification of Pathogen Signatures in Prostate Cancer Using RNA-seq. PLoS ONE, 2015, 10, e0128955.	1.1	34
147	Phytochemical characterization of different yarrow species (<i>Achillea</i> sp.) and investigations into their antimicrobial activity. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2021, 76, 55-65.	0.6	13
148	Plant Extracts as a Natural Source of Bioactive Compounds and Potential Remedy for the Treatment of Certain Skin Diseases. Current Pharmaceutical Design, 2020, 26, 2859-2875.	0.9	14
149	<i>Propionibacterium acnes</i> in the Pathogenesis and Immunotherapy of Acne Vulgaris. Current Drug Metabolism, 2015, 16, 245-254.	0.7	38

#	Article	IF	CITATIONS
150	Cutibacterium acnes Infection Induces Type I Interferon Synthesis Through the cGAS-STING Pathway. Frontiers in Immunology, 2020, 11, 571334.	2.2	23
153	Secretory Proteases of the Human Skin Microbiome. Infection and Immunity, 2022, 90, IAI0039721.	1.0	8
154	The Bacterial Life Cycle in Textiles is Governed by Fiber Hydrophobicity. Microbiology Spectrum, 2021, 9, e0118521.	1.2	12
155	Microbial-based cleaning products as a potential risk to human health: A review. Toxicology Letters, 2021, 353, 60-70.	0.4	2
156	Bacteriology of the Skin. , 2009, , 29-36.		1
157	Skin: Acne and Propionibacterium acnes Genomics. , 2010, , 3215-3225.		1
158	JaunatviniÅ ³ spuogÅ ³ diagnostikos bei koregavimo galimybiÅ ³ kosmetinÄ—mis priemonÄ—mis ir procedÅ«romis s su subjektyviai vertinama sveikata. Health Sciences, 2013, 23, 69-77.	Äsajos 0.0	0
159	Skin microbiota in women of reproductive age in norm and androgen-dependent dermatoses. Journal of Obstetrics and Women's Diseases, 2019, 68, 7-16.	0.0	2
160	Probable Scenarios of Process Contamination with <i>Cutibacterium</i> (<i>Propionibacterium</i>) <i>acnes</i> in Mammalian Cell Bioreactor. PDA Journal of Pharmaceutical Science and Technology, 2020, 74, 592-601.	0.3	1
161	Skin: Cutibacterium (formerly Propionibacterium) acnes and Acne Vulgaris. , 2020, , 225-243.		1
162	Immune recovery folliculitis: Case reports in HIV naà ve and experienced patients. IDCases, 2021, 26, e01324.	0.4	1
163	Development of a topical bacteriophage gel targeting <i>Cutibacterium acnes</i> for acne prone skin and results of a phase 1 cosmetic randomized clinical trial. Skin Health and Disease, 2022, 2, .	0.7	14
164	The Anti-Acne Potential and Chemical Composition of Two Cultivated Cotoneaster Species. Cells, 2022, 11, 367.	1.8	5
165	The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans. Microbiology Spectrum, 2022, 10, e0205621.	1.2	18
166	Immunohistochemical expression of interleukin 1 beta in papule biopsies from patients with acne vulgaris. Dermatology Reports, 2022, 14, .	0.4	7
167	Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions. Molecules, 2022, 27, 2290.	1.7	8
168	Chemical profiling and antimicrobial effect of Anatolian honey bee venom. Toxicon, 2022, 213, 1-6.	0.8	4
176	Can Extracts from the Leaves and Fruits of the Cotoneaster Species Be Considered Promising Anti-Acne Agents?, Molecules, 2022, 27, 2907.	1.7	0

#	Article	IF	CITATIONS
177	PATHOGENETIC MECHANISM OF ACNE-COUPLED INFLAMMATION. Russian Journal of Immunology: RJI: Official Journal of Russian Society of Immunology, 2020, 23, 19-26.	0.2	0
178	Thermosensitive gel based on cellulose derivative for topical delivery of propolis in acne treatment. Pharmaceutical Development and Technology, 2022, 27, 490-501.	1.1	1
179	T Cell Extracellular Traps: Tipping the Balance Between Skin Health and Disease. Frontiers in Immunology, 0, 13, .	2.2	5
180	Adipose-derived stem cells attenuate acne-related inflammation via suppression of NLRP3 inflammasome. Stem Cell Research and Therapy, 2022, 13, .	2.4	3
181	An overview of biomedical applications of choline geranate (CAGE): a major breakthrough in drug delivery. RSC Advances, 2022, 12, 25977-25991.	1.7	11
182	Identification of natural inhibitors to inhibit C. acnes lipase through docking and simulation studies. Journal of Molecular Modeling, 2022, 28, .	0.8	4
183	Anaerobes and the cleanroom operator association: Is there a case for anaerobic environmental monitoring?. European Journal of Parenteral and Pharmaceutical Sciences, 0, , .	1.0	0
184	Evaluation of serum levels of interleukins 1â€beta, 10 and 12 in patients with acne vulgaris. Journal of Cosmetic Dermatology, 2022, 21, 7100-7106.	0.8	4
185	PECULІÐRІTІES OF THE PHYSІOTHERÐPEUTІC METHODS USE ІN THE TREÐTMENT OF ÐCNE. Bulletin Biology and Medicine, 2022, 1, 18.	of Probler	nş
186	Treatment of acne fulminans with intense pulsed light: a case report. The Journal of Cosmetic Medicine, 2022, 6, 99-102.	0.1	Ο

191	Cutibacterium (previously Propionibacterium) acnes and disease. , 2024, , 881-903.	0