Self-Renewal, Multipotency, and the Existence of Two G Stem Cell Niche

Cell 118, 635-648 DOI: 10.1016/j.cell.2004.08.012

Citation Report

#	Article	IF	CITATIONS
1	R162W Mutation of Keratin 9 in a Family with Autosomal Dominant Palmoplantar Keratoderma with Unique Histologic Features. Journal of Investigative Dermatology Symposium Proceedings, 1999, 4, 150-152.	0.8	13
2	Stem cells in clinical practice. Journal of the American College of Surgeons, 2003, 197, 458-478.	0.2	15
3	A perspective on pancreatic stem/progenitor cells. Pediatric Diabetes, 2004, 5, 29-37.	1.2	18
4	Skin stem cells. Drug Discovery Today, 2004, 9, 994.	3.2	2
5	A perspective on keratinocyte stem cells as targets for skin carcinogenesis. Differentiation, 2004, 72, 381-386.	1.0	44
6	In search of the "hair cycle clock― a guided tour. Differentiation, 2004, 72, 489-511.	1.0	263
7	BMP signaling in the control of skin development and hair follicle growth. Differentiation, 2004, 72, 512-526.	1.0	173
8	Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation, 2004, 72, 548-557.	1.0	215
9	Transformation of amnion epithelium into skin and hair follicles. Differentiation, 2004, 72, 558-565.	1.0	35
10	Epithelial Stem Cells. Cell, 2004, 118, 530-532.	13.5	57
11	Bioengineering the hair follicle: fringe benefits of stem cell technology. Current Opinion in Biotechnology, 2005, 16, 493-497.	3.3	97
12	Epigenetic Regulation of Normal and Cancer Stem Cells. Annals of the New York Academy of Sciences, 2005, 1044, 90-93.	1.8	8
13	Tracking Hematopoiesis at the Single Cell Level. Annals of the New York Academy of Sciences, 2005, 1044, 201-209.	1.8	37
14	Plasticity of Epidermal Stem Cells: Survival in Various Environments. Stem Cell Reviews and Reports, 2005, 1, 071-078.	5.6	11
15	The Contribution of Epidermal Stem Cells to Skin Cancer. Stem Cell Reviews and Reports, 2005, 1, 225-232.	5.6	40
16	STEM CELL NICHE: Structure and Function. Annual Review of Cell and Developmental Biology, 2005, 21, 605-631.	4.0	1,082
17	Epithelial Stem Cells and Their Niche: There's No Place Like Home. Stem Cells, 2005, 23, 150-165.	1.4	75
18	Characterization and Localization of Side Population Cells in Mouse Skin. Stem Cells, 2005, 23, 834-841.	1.4	90

#	Article	IF	CITATIONS
19	The Stem State: Plasticity Is Essential, Whereas Self-Renewal and Hierarchy Are Optional. Stem Cells, 2005, 23, 719-726.	1.4	99
20	Stem Cells: Classifications, Controversies, and Clinical Applications. Veterinary Surgery, 2005, 34, 415-423.	0.5	158
21	Reply to Re-examination of P-PTEN staining patterns in the intestinal crypt. Nature Genetics, 2005, 37, 1017-1018.	9.4	31
22	Mice in the world of stem cell biology. Nature Genetics, 2005, 37, 1201-1206.	9.4	36
23	Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine, 2005, 11, 1351-1354.	15.2	1,177
24	Tumour stem cells and drug resistance. Nature Reviews Cancer, 2005, 5, 275-284.	12.8	3,360
25	Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews Cancer, 2005, 5, 311-321.	12.8	564
26	Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature, 2005, 436, 1048-1052.	13.7	383
27	It's the ecology, stupid!. Nature, 2005, 435, 268-270.	13.7	56
29	An In Vivo Mouse Model of Human Skin Substitute Containing Spontaneously Sorted Melanocytes Demonstrates Physiological Changes after UVB Irradiation. Journal of Investigative Dermatology, 2005, 125, 364-372.	0.3	30
30	Plasticity of Rodent and Human Hair Follicle Dermal Cells:Implications for Cell Therapy and Tissue Engineering. Journal of Investigative Dermatology Symposium Proceedings, 2005, 10, 180-183.	0.8	59
31	Sox9 Is Essential for Outer Root Sheath Differentiation and the Formation of the Hair Stem Cell Compartment. Current Biology, 2005, 15, 1340-1351.	1.8	366
32	Interpreting epithelial cancer biology in the context of stem cells: Tumor properties and therapeutic implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2005, 1756, 25-52.	3.3	70
33	Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biology of the Cell, 2005, 97, 173-183.	0.7	163
34	Patterns of nestin expression in human skin. Cell Biology International, 2005, 30, 144-8.	1.4	19
35	Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse. Histochemistry and Cell Biology, 2005, 124, 35-50.	0.8	74
36	Stem Cells and Tissue Homeostasis in Mammary Glands. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 1-3.	1.0	5
37	Pregnancy and Stem Cell Behavior. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 25-36.	1.0	51

#	Article	IF	CITATIONS
38	Characterization and isolation of stem cell-enriched human hair follicle bulge cells. Journal of Clinical Investigation, 2005, 116, 249-260.	3.9	538
39	Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. Journal of Cell Biology, 2005, 170, 559-570.	2.3	48
40	Molecular Dissection of Mesenchymal–Epithelial Interactions in the Hair Follicle. PLoS Biology, 2005, 3, e331.	2.6	405
41	An Ideal Society? Neighbors of Diverse Origins Interact to Create and Maintain Complex Mini-Organs in the Skin. PLoS Biology, 2005, 3, e372.	2.6	17
42	What's New in Orthopaedic Research. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2356.	1.4	25
43	From The Cover: Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14677-14682.	3.3	280
44	Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14302-14307.	3.3	252
47	Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3714-3719.	3.3	119
48	Isoforms of ÂNp63 and the migration of ocular limbal cells in human corneal regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9523-9528.	3.3	376
49	Origin and Characterization of Multipotential Mesenchymal Stem Cells Derived from Adult Human Trabecular Bone. Stem Cells and Development, 2005, 14, 712-721.	1.1	58
50	Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes and Development, 2005, 19, 214-223.	2.7	244
51	Molecular characterization of melanocyte stem cells in their niche. Development (Cambridge), 2005, 132, 5589-5599.	1.2	185
52	Defining the impact of Â-catenin/Tcf transactivation on epithelial stem cells. Genes and Development, 2005, 19, 1596-1611.	2.7	348
53	Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. Journal of Cell Science, 2005, 118, 1693-1704.	1.2	107
54	Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion. Experimental Cell Research, 2005, 310, 311-318.	1.2	19
55	The molecular repertoire of the 'almighty' stem cell. Nature Reviews Molecular Cell Biology, 2005, 6, 726-737.	16.1	183
56	Effects of Telomerase and Telomere Length on Epidermal Stem Cell Behavior. Science, 2005, 309, 1253-1256.	6.0	400
57	Molecular mechanisms controlling germline and somatic stem cells: similarities and differences. Current Opinion in Genetics and Development, 2005, 15, 381-387.	1.5	10

#	Article	IF	Citations
58	Melanocyte Stem Cell Maintenance and Hair Graying. Cell, 2005, 121, 9-12.	13.5	100
59	Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer. Cell, 2005, 121, 823-835.	13.5	2,023
60	Stem Cell Function, Self-Renewal, and Behavioral Heterogeneity of Cells from the Adult Muscle Satellite Cell Niche. Cell, 2005, 122, 289-301.	13.5	1,221
61	Identification of Genes Needed for Regeneration, Stem Cell Function, and Tissue Homeostasis by Systematic Gene Perturbation in Planaria. Developmental Cell, 2005, 8, 635-649.	3.1	386
62	Toward an Understanding of the Physiological Function of Mammalian Stem Cells. Developmental Cell, 2005, 9, 173-183.	3.1	89
63	Distinct Stem Cell Populations Regenerate the Follicle and Interfollicular Epidermis. Developmental Cell, 2005, 9, 855-861.	3.1	381
64	Pathways to improving skin regeneration. Expert Reviews in Molecular Medicine, 2005, 7, 1-14.	1.6	26
65	Segmental Igfbp5 expression is specifically associated with the bent structure of zigzag hairs. Mechanisms of Development, 2005, 122, 988-997.	1.7	38
66	Checkpoints of Melanocyte Stem Cell Development. Science Signaling, 2005, 2005, pe42-pe42.	1.6	21
68	Intestinal Epithelial Stem Cells and Progenitors. Methods in Enzymology, 2006, 419, 337-383.	0.4	95
69	Comparative Characterization of Hair Follicle Dermal Stem Cells and Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 2006, 15, 49-60.	1.1	142
70	Kidney Epithelial Cells. Methods in Enzymology, 2006, 419, 194-207.	0.4	25
71	Epithelial Skin Stem Cells. Methods in Enzymology, 2006, 419, 73-99.	0.4	23
72	CombinatorialGata2and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2202-2207.	3.3	100
73	Technology Insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 99-108.	2.9	147
74	Epidermal Stem Cells of the Skin. Annual Review of Cell and Developmental Biology, 2006, 22, 339-373.	4.0	681
75	Expression of RNA-Binding Protein Musashi in Hair Follicle Development and Hair Cycle Progression. American Journal of Pathology, 2006, 168, 80-92.	1.9	55
76	Hematopoietic Stem Cells. American Journal of Pathology, 2006, 169, 338-346.	1.9	579

#	Article	IF	CITATIONS
77	Muscle stem cells in development, regeneration, and disease. Genes and Development, 2006, 20, 1692-1708.	2.7	456
78	Neoadjuvant chemotherapy in women with large and locally advanced breast cancer: Chemoresistance and prediction of response to drug therapy. Journal of the Royal College of Surgeons of Edinburgh, 2006, 4, 211-219.	0.8	24
79	Isolation of Multipotent Neural Crest-Derived Stem Cells from the Adult Mouse Cornea. Stem Cells, 2006, 24, 2714-2722.	1.4	178
80	Corneal Stem Cells: Bridging the Knowledge Gap. Seminars in Ophthalmology, 2006, 21, 1-7.	0.8	16
81	Gene therapy in combination with tissue engineering to treat epidermolysis bullosa. Expert Opinion on Biological Therapy, 2006, 6, 367-378.	1.4	31
82	Lhx2 Maintains Stem Cell Character in Hair Follicles. Science, 2006, 312, 1946-1949.	6.0	308
83	Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Letters, 2006, 580, 2860-2868.	1.3	179
84	Blimp1 Defines a Progenitor Population that Governs Cellular Input to the Sebaceous Gland. Cell, 2006, 126, 597-609.	13.5	396
85	Tcf3 Governs Stem Cell Features and Represses Cell Fate Determination in Skin. Cell, 2006, 127, 171-183.	13.5	262
86	Breaking out of the mold: diversity within adult stem cells and their niches. Current Opinion in Genetics and Development, 2006, 16, 463-468.	1.5	51
87	Epidermal stem cells: an update. Current Opinion in Genetics and Development, 2006, 16, 518-524.	1.5	173
88	Breast cancer stem cells: An overview. European Journal of Cancer, 2006, 42, 1219-1224.	1.3	126
89	ACIDIC FIBROBLAST GROWTH FACTOR PROMOTES HEPATIC DIFFERENTIATION OF MONKEY EMBRYONIC STEM CELLS. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 83.	0.7	13
90	Molecular and functional characterization of stratified squamous epithelial stem cells. Journal of the American Academy of Dermatology, 2006, 55, e1.	0.6	0
91	Biology of the Hair Follicle: The Basics. Seminars in Cutaneous Medicine and Surgery, 2006, 25, 2-10.	1.6	211
92	Genetics of epidermodysplasia verruciformis: Insights into host defense against papillomaviruses. Seminars in Immunology, 2006, 18, 362-374.	2.7	251
93	Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-DÎ ² cell line. Developmental Biology, 2006, 293, 414-425.	0.9	76
96	Hairless: A nuclear receptor corepressor essential for skin function. Advances in Developmental Biology (Amsterdam, Netherlands), 2006, , 357-387.	0.4	0

#	Article	IF	CITATIONS
97	The stem cell niche: a new target in medicine. Current Opinion in Orthopaedics, 2006, 17, 398-404.	0.3	8
98	Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biology, 2006, 7, 4.	3.0	128
99	Human hair genealogies and stem cell latency. BMC Biology, 2006, 4, 2.	1.7	20
100	Dioxin-induced chloracne – reconstructing the cellular and molecular mechanisms of a classic environmental disease. Experimental Dermatology, 2006, 15, 705-730.	1.4	129
101	Isolation and characterization of outer root sheath melanocytes of human hair follicles. British Journal of Dermatology, 2006, 155, 902-909.	1.4	34
102	Intestinal crypt properties fit a model that incorporates replicative ageing and deep and proximate stem cells. Cell Proliferation, 2006, 39, 379-402.	2.4	12
103	An enteroendocrine cell-based model for a quiescent intestinal stem cell niche. Cell Proliferation, 2006, 39, 403-414.	2.4	19
104	CD34 glycoprotein identifies putative stem cells located in the isthmic region of canine hair follicles. Veterinary Dermatology, 2006, 17, 244-251.	0.4	21
105	Extramammary Paget's disease-a proliferation of adnexal origin?. Histopathology, 2006, 48, 723-729.	1.6	85
106	Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genetics, 2006, 38, 356-362.	9.4	518
107	Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nature Medicine, 2006, 12, 1397-1402.	15.2	593
108	Hair follicle stem cell-targeted gene transfer and reconstitution system. Gene Therapy, 2006, 13, 732-737.	2.3	23
109	Interfollicular Epidermal Stem Cells: Identification, Challenges, Potential. Journal of Investigative Dermatology, 2006, 126, 1450-1458.	0.3	122
110	Epithelial Stem Cells: A Folliculocentric View. Journal of Investigative Dermatology, 2006, 126, 1459-1468.	0.3	488
111	Epidermal Stem Cells Have the Potential to Assist in Healing Damaged Tissues. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11, 118-123.	0.8	16
112	Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene, 2006, 25, 609-621.	2.6	174
113	Location, allocation, relocation: isolating adult tissue stem cells in three dimensions. Current Opinion in Biotechnology, 2006, 17, 511-517.	3.3	11
114	Regeneration and Transdifferentiation Potential of Muscle-Derived Stem Cells Propagated as Myospheres. Stem Cells, 2006, 24, 1769-1778.	1.4	77

ARTICLE IF CITATIONS # Effects of Aging and Niche Microenvironment on Spermatogonial Stem Cell Self-Renewal. Stem Cells, 115 1.4 235 2006, 24, 1505-1511. Integrins Are Markers of Human Neural Stem Cells. Stem Cells, 2006, 24, 2078-2084. 1.4 141 Identification and Functional Analysis of Candidate Genes Regulating Mesenchymal Stem Cell 117 1.4 179 Self-Renewal and Multipotency. Stem Cells, 2006, 24, 1707-1718. Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer 259 Therapies. Stem Cells, 2006, 24, 2319-2345. Stem Cells and Their Niches. Science, 2006, 311, 1880-1885. 119 6.0 1,403 Protection Against Chemotherapy-Induced Alopecia. Pharmaceutical Research, 2006, 23, 2505-2514. 1.7 104 Distinct epidermal stem cell compartments are maintained by independent niche microenvironments. 121 5.6 42 Stem Cell Reviews and Reports, 2006, 2, 221-231. Somatic stem cells and the origin of cancer. Clinical and Translational Oncology, 2006, 8, 647-663. 1.2 49 123 Papillomavirus and treatment. Antiviral Research, 2006, 71, 181-191. 1.9 41 The miRNA-Processing Enzyme Dicer Is Essential for the Morphogenesis and Maintenance of Hair 124 1.8 Follicles. Current Biology, 2006, 16, 1041-1049. Stem cells and their applications in skin-cell therapy. Trends in Biotechnology, 2006, 24, 48-52. 125 4.9 66 Controlling the stem cell niche: right time, right place, right strength. BioEssays, 2006, 28, 1-5. 1.2 Lhx2â \in "decisive role in epithelial stem cell maintenance, or just the $\hat{a}\in$ extip of the icebergâ \in ?. BioEssays, 127 1.2 16 2006, 28, 1157-1160. The putative human stem cell marker, Rex-1 (Zfp42): Structural classification and expression in normal 1.3 54 human epithelial and carcinoma cell cultures. Molecular Carcinogenesis, 2006, 45, 887-900. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with 129 1.2 185 characteristics of progenitor cells. Development (Cambridge), 2006, 133, 3027-3037. Developmental Pathways and Specification of Intrapulmonary Stem Cells. Pediatric Research, 2006, 59, 84R-93[']R. 131 The hair cycle. Journal of Cell Science, 2006, 119, 391-393. 400 1.2 Regeneration of Epidermal and Dental Tissues, Lens and Cornea., 2006, , 41-62.

#	Article	IF	CITATIONS
133	A Distant Upstream Locus Control Region Is Critical for Expression of the Kit Receptor Gene in Mast Cells. Molecular and Cellular Biology, 2006, 26, 5850-5860.	1.1	36
134	Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. Journal of Cell Biology, 2006, 172, 139-149.	2.3	108
135	Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes and Development, 2006, 20, 3022-3035.	2.7	368
136	AP-2α: a regulator of EGF receptor signaling and proliferation in skin epidermis. Journal of Cell Biology, 2006, 172, 409-421.	2.3	78
137	Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. Journal of Cell Biology, 2006, 175, 661-670.	2.3	80
138	Tissue Stem Cells. , 0, , .		6
139	Neural crest–derived cells with stem cell features can be traced back to multiple lineages in the adult skin. Journal of Cell Biology, 2006, 175, 1005-1015.	2.3	293
140	Transcriptional Profiling of Enriched Populations of Stem Cells Versus Transient Amplifying Cells. Journal of Biological Chemistry, 2006, 281, 19600-19609.	1.6	67
141	C/EBPδ regulates cell cycle and self-renewal of human limbal stem cells. Journal of Cell Biology, 2007, 177, 1037-1049.	2.3	181
142	CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice. Cancer Research, 2007, 67, 4173-4181.	0.4	130
143	Mice cloned from skin cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2738-2743.	3.3	67
144	Vitamin D receptor is essential for normal keratinocyte stem cell function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9428-9433.	3.3	137
145	HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13040-13045.	3.3	122
146	Early Fetal Healing as a Model for Adult Organ Regeneration. Tissue Engineering, 2007, 13, 1789-1798.	4.9	39
147	Discordant proliferation and differentiation in pituitary tumor-transforming gene-null bone marrow stem cells. American Journal of Physiology - Cell Physiology, 2007, 293, C1082-C1092.	2.1	14
148	Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1092-L1098.	1.3	69
149	Bioengineering the Hair Follicle. Organogenesis, 2007, 3, 6-13.	0.4	27
150	Long-term Engraftment of Single Genetically Modified Human Epidermal Holoclones Enables Safety Pre-assessment of Cutaneous Gene Therapy. Molecular Therapy, 2007, 15, 1670-1676.	3.7	64

	Стат	CITATION REPORT	
#	Article	IF	CITATIONS
151	Neural Potential of a Stem Cell Population in the Hair Follicle. Cell Cycle, 2007, 6, 2161-2170.	1.3	79
153	Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development (Cambridge), 2007, 134, 261-272.	1.2	81
154	Stem cells and their niche: an inseparable relationship. Development (Cambridge), 2007, 134, 2001-2000	6. 1.2	85
155	Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10063-10068.	3.3	276
156	Markers in normal and cancer stem cells. Cancer Biomarkers, 2007, 3, 211-231.	0.8	29
157	ld1, but not ld3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood, 2007, 110, 2351-2360.	0.6	93
158	Mechanisms of Laser Hair Removal. Dermatologic Surgery, 2007, 33, 1055-1065.	0.4	0
159	Towards therapeutic application of ocular stem cells. Seminars in Cell and Developmental Biology, 2007, 18, 805-818.	2.3	41
160	Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Developmental Biology, 2007, 305, 358-376.	0.9	38
161	Deletion of the Developmentally Essential Gene ATR in Adult Mice Leads to Age-Related Phenotypes and Stem Cell Loss. Cell Stem Cell, 2007, 1, 113-126.	5.2	691
162	FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System. Cell Stem Cell, 2007, 1, 140-152.	5.2	293
163	Sic Transit Gloria: Farewell to the Epidermal Transit Amplifying Cell?. Cell Stem Cell, 2007, 1, 371-381.	5.2	152
164	The role of vascular stem cells in atherogenesis and post-angioplasty restenosis. Ageing Research Reviews, 2007, 6, 109-127.	5.0	19
165	Differentiation of a hepatic phenotype after heterotropic transplantation of heart, kidney, brain, and skin tissues into liver in F344 rats. Biochemical and Biophysical Research Communications, 2007, 354, 841-845.	1.0	15
166	Epithelial Stem Cells: Turning over New Leaves. Cell, 2007, 128, 445-458.	13.5	511
167	Prostate (Cancer) Stem Cells. , 2007, , 63-72.		1
168	Regulation of Hematopoietic Stem Cells in the Osteoblastic Niche. Advances in Experimental Medicine and Biology, 2007, 602, 61-67.	0.8	16
169	Human Embryonic Stem Cells and Gene Therapy. Molecular Therapy, 2007, 15, 850-866.	3.7	57

		CITATION REPORT		
#	Article		IF	CITATIONS
170	Evidence for a stem cell hierarchy in the adult human breast. Journal of Cell Biology, 2003	7, 177, 87-101.	2.3	331
172	Adult Mouse Myometrial Label-Retaining Cells Divide in Response to Gonadotropin Stimu Cells, 2007, 25, 1317-1325.	Ilation. Stem	1.4	87
173	Identification of Human Oral Keratinocyte Stem/Progenitor Cells by Neurotrophin Recept the Role of Neurotrophin/p75 Signaling. Stem Cells, 2007, 25, 628-638.	or p75 and	1.4	111
174	Concise Review: Stem Cells, Myocardial Regeneration, and Methodological Artifacts. Ste 25, 589-601.	m Cells, 2007,	1.4	133
175	Advances in the Study of Stem-Cell-Enriched Hair Follicle Bulge Cells: A Review Featuring Characterization and Isolation of Human Bulge Cells. Dermatology, 2007, 214, 342-351.		0.9	18
176	Gene ontology analysis of human hair follicle bulge molecular signature. Journal of Derma Science, 2007, 45, 147-150.	atological	1.0	12
177	Hair follicle bulge: A fascinating reservoir of epithelial stem cells. Journal of Dermatologic Science, 2007, 46, 81-89.	al	1.0	167
178	Stem cell ageing: does it happen and can we intervene?. Expert Reviews in Molecular Me 1-20.	dicine, 2007, 9,	1.6	1,506
180	Advancing the field of lung stem cell biology. Frontiers in Bioscience - Landmark, 2007, 1	2, 3117.	3.0	13
181	Cutaneous Stem Cells. , 2007, , 1137-1147.			0
182	Stem cells of the melanocyte lineage. Cancer Biomarkers, 2007, 3, 203-209.		0.8	23
183	Lessons from musculoskeletal stem cell research: The key to successful regenerative mea development. Arthritis and Rheumatism, 2007, 56, 714-721.	licine	6.7	11
184	Carbon Nanotube Monolayer Patterns for Directed Growth of Mesenchymal Stem Cells. Materials, 2007, 19, 2530-2534.	Advanced	11.1	75
185	The microenvironment of the embryonic neural stem cell: Lessons from adult niches?. De Dynamics, 2007, 236, 3267-3282.	velopmental	0.8	55
186	A perspective on murine keratinocyte stem cells as targets of chemically induced skin ca Molecular Carcinogenesis, 2007, 46, 579-584.	ncer.	1.3	46
187	The tumor suppressor effect of the glucocorticoid receptor in skin is mediated via its effe follicular epithelial stem cells. Oncogene, 2007, 26, 3060-3068.	ect on	2.6	25
188	Akt activation induces epidermal hyperplasia and proliferation of epidermal progenitors. 2007, 26, 4882-4888.	Oncogene,	2.6	65
189	Requirement of Rac1 distinguishes follicular from interfollicular epithelial stem cells. Onc 2007, 26, 5078-5085.	ogene,	2.6	54

#	Article	IF	CITATIONS
190	Keratin Expression Provides Novel Insight into the Morphogenesis and Function of the Companion Layer in Hair Follicles. Journal of Investigative Dermatology, 2007, 127, 1061-1073.	0.3	37
191	Hair Follicle Regeneration Using Grafted Rodent and Human Cells. Journal of Investigative Dermatology, 2007, 127, 2106-2115.	0.3	97
192	Comprehensive Microarray Transcriptome Profiling of CD34-Enriched Mouse Keratinocyte Stem Cells. Journal of Investigative Dermatology, 2007, 127, 2904-2907.	0.3	19
193	Defining Hair Follicles in the Age of Stem Cell Bioengineering. Journal of Investigative Dermatology, 2007, 127, 2098-2100.	0.3	47
194	Epithelial Cells in the Hair Follicle Bulge do not Contribute to Epidermal Regeneration after Glucocorticoid-Induced Cutaneous Atrophy. Journal of Investigative Dermatology, 2007, 127, 2749-2758.	0.3	22
195	Stem Cells in the Hair Follicle and Interfollicular Epidermis of Mice following Topical Application of Fluocinolone Acetonide. Journal of Investigative Dermatology, 2007, 127, 2707-2708.	0.3	2
196	Scratching the surface of skin development. Nature, 2007, 445, 834-842.	13.7	779
197	Engineering the Stem Cell Microenvironment. Biotechnology Progress, 2007, 23, 18-23.	1.3	114
198	Histology of ferret skin: preweaning to adulthood. Veterinary Dermatology, 2007, 18, 401-411.	0.4	17
199	Epidermal repair results from activation of follicular and epidermal progenitor keratinocytes mediated by a growth factor cascade. Wound Repair and Regeneration, 2007, 15, 693-701.	1.5	28
200	Effect of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Nanofiber Matrices Cocultured With Hair Follicular Epithelial and Dermal Cells for Biological Wound Dressing. Artificial Organs, 2007, 31, 801-808.	1.0	61
201	Mechanisms of Laser Hair Removal: Could Persistent Photoepilation Induce Vitiligo or Defects in Wound Repair?. Dermatologic Surgery, 2007, 33, 1055-1065.	0.4	9
203	Putative cancer stem cells in cutaneous malignancies. Experimental Dermatology, 2007, 16, 297-301.	1.4	42
204	PAX genes: Roles in development, pathophysiology, and cancer. Biochemical Pharmacology, 2007, 73, 1-14.	2.0	239
205	Molecular Definition of Breast Tumor Heterogeneity. Cancer Cell, 2007, 11, 259-273.	7.7	1,273
206	Hair follicle stem cells: Walking the maze. European Journal of Cell Biology, 2007, 86, 355-376.	1.6	167
207	Stem cells and cancer. Seminars in Cancer Biology, 2007, 17, 191-203.	4.3	78
208	Stem cell niches. Biology Bulletin, 2007, 34, 211-220.	0.1	9

#	Article	IF	CITATIONS
209	Stem/Progenitor Cell-Like Properties of Desmoglein 3dimCells in Primary and Immortalized Keratinocyte Lines. Stem Cells, 2007, 25, 1286-1297.	1.4	28
210	Genome-Wide Differential Gene Expression Profiling of Human Bone Marrow Stromal Cells. Stem Cells, 2007, 25, 994-1002.	1.4	27
211	Progress and Potential for Regenerative Medicine. Annual Review of Medicine, 2007, 58, 299-312.	5.0	143
212	The potential of nestin-expressing hair follicle stem cells in regenerative medicine. Expert Opinion on Biological Therapy, 2007, 7, 289-291.	1.4	49
213	Improved isolation of outer root sheath cells from human hair follicles and their proliferation behavior under serum-free condition. Biotechnology and Bioprocess Engineering, 2007, 12, 54-59.	1.4	11
214	Stem Cells and TCF Proteins: A Role for β-Catenin—Independent Functions. Stem Cell Reviews and Reports, 2007, 3, 39-48.	5.6	16
215	The Emerging Picture of the Mouse Mammary Stem Cell. Stem Cell Reviews and Reports, 2007, 3, 114-123.	5.6	36
216	Aging, Graying and Loss of Melanocyte Stem Cells. Stem Cell Reviews and Reports, 2007, 3, 212-217.	5.6	45
217	Epidermal stem cells in skin homeostasis and cutaneous carcinomas. Clinical and Translational Oncology, 2007, 9, 760-766.	1.2	4
218	Mathematical Modelling of Aerosolised Skin Grafts Incorporating Keratinocyte Clonal Subtypes. Bulletin of Mathematical Biology, 2007, 69, 157-179.	0.9	17
219	Apoptosis in normal and cancer stem cells. Critical Reviews in Oncology/Hematology, 2008, 66, 42-51.	2.0	80
220	The Skin: A Home to Multiple Classes of Epithelial Progenitor Cells. Stem Cell Reviews and Reports, 2008, 4, 113-118.	5.6	60
221	Perplexing Pax: From puzzle to paradigm. Developmental Dynamics, 2008, 237, 2791-2803.	0.8	40
222	Hepatic stellate cells modulate the differentiation of bone marrow mesenchymal stem cells into hepatocyteâ€like cells. Journal of Cellular Physiology, 2008, 217, 138-144.	2.0	41
223	Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis and Rheumatism, 2008, 58, 990-1000.	6.7	91
224	Characterization of Bipotential Epidermal Progenitors Derived from Human Sebaceous Gland: Contrasting Roles of c-Myc and <i>î²</i> -Catenin. Stem Cells, 2008, 26, 1241-1252.	1.4	117
225	IFATS Collection: Using Human Adipose-Derived Stem/Stromal Cells for the Production of New Skin Substitutes. Stem Cells, 2008, 26, 2713-2723.	1.4	198
226	The Majority of Multipotent Epidermal Stem Cells Do Not Protect Their Genome by Asymmetrical Chromosome Segregation. Stem Cells, 2008, 26, 2964-2973.	1.4	64

#	Article	IF	Citations
227	Immunophenotyping of the human bulge region: the quest to define useful <i>in situ</i> markers for human epithelial hair follicle stem cells and their niche. Experimental Dermatology, 2008, 17, 592-609.	1.4	181
228	Epidermal insulin/IGF-1 signalling control interfollicular morphogenesis and proliferative potential through Rac activation. EMBO Journal, 2008, 27, 2091-2101.	3.5	66
229	Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO Journal, 2008, 27, 1309-1320.	3.5	124
230	Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature, 2008, 451, 340-344.	13.7	643
231	A skin microRNA promotes differentiation by repressing â€~stemness'. Nature, 2008, 452, 225-229.	13.7	735
232	Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature, 2008, 452, 650-653.	13.7	564
233	Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature, 2008, 453, 306-313.	13.7	261
234	Wound repair and regeneration. Nature, 2008, 453, 314-321.	13.7	4,690
235	Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics, 2008, 40, 1291-1299.	9.4	846
236	No place like home: anatomy and function of the stem cell niche. Nature Reviews Molecular Cell Biology, 2008, 9, 11-21.	16.1	659
237	A Systems Biology Approach to Anatomic Diversity of Skin. Journal of Investigative Dermatology, 2008, 128, 776-782.	0.3	78
238	An Extended Epidermal Response Heals Cutaneous Wounds in the Absence of a Hair Follicle Stem Cell Contribution. Journal of Investigative Dermatology, 2008, 128, 1311-1318.	0.3	162
239	Epidermal stem cells are retained <i>in vivo</i> throughout skin aging. Aging Cell, 2008, 7, 250-259.	3.0	177
240	Isolation and identification of stem cells from adult cashmere goat skin. International Journal of Dermatology, 2008, 47, 551-556.	0.5	15
241	Transcriptional profiling of putative human epithelial stem cells. BMC Genomics, 2008, 9, 359.	1.2	15
242	IKKα Is Required to Maintain Skin Homeostasis and Prevent Skin Cancer. Cancer Cell, 2008, 14, 212-225.	7.7	108
243	Clustered DNA lesion sites as a source of mutations during human colorectal tumourigenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 646, 60-68.	0.4	6
245	Medical applications of epidermal stem cells. Stembook, 2008, , .	0.3	0

#	Article	IF	CITATIONS
246	Hair follicles, their disorders and their opportunities. Drug Discovery Today Disease Mechanisms, 2008, 5, e173-e181.	0.8	44
247	Gene therapy of inherited skin adhesion disorders. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 249-254.	0.5	0
249	Stem Cell Research and Therapeutics. , 2008, , .		3
250	Regulation of Spermatogonial Stem Cell Self-Renewal in Mammals. Annual Review of Cell and Developmental Biology, 2008, 24, 263-286.	4.0	474
252	The Hair Follicle Stem Cell as the Paradigm Multipotent Adult Stem Cell. , 2008, , 275-287.		1
254	(Neuro-)endocrinology of epithelial hair follicle stem cells. Molecular and Cellular Endocrinology, 2008, 288, 38-51.	1.6	42
255	Treatment of alopecia by transplantation of hair follicle stem cells and dermal papilla cells encapsulated in alginate gels. Medical Hypotheses, 2008, 70, 1014-1016.	0.8	12
256	Hair Follicle Stem Cells Are Specified and Function in Early Skin Morphogenesis. Cell Stem Cell, 2008, 3, 33-43.	5.2	510
257	Transcriptome Analysis of the Normal Human Mammary Cell Commitment and Differentiation Process. Cell Stem Cell, 2008, 3, 109-118.	5.2	310
258	Hair Follicle Epithelial Stem Cells Get Their Sox On. Cell Stem Cell, 2008, 3, 3-4.	5.2	8
259	Molecular Analysis of Stem Cells and Their Descendants during Cell Turnover and Regeneration in the Planarian Schmidtea mediterranea. Cell Stem Cell, 2008, 3, 327-339.	5.2	347
260	Recent advances in cancer stem cells. Current Opinion in Genetics and Development, 2008, 18, 48-53.	1.5	213
261	NFATc1 Balances Quiescence and Proliferation of Skin Stem Cells. Cell, 2008, 132, 299-310.	13.5	383
262	Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell, 2008, 132, 598-611.	13.5	1,706
263	Current View: Intestinal Stem Cells and Signaling. Gastroenterology, 2008, 134, 849-864.	0.6	365
264	Overexpression of mIGF-1 in Keratinocytes Improves Wound Healing and Accelerates Hair Follicle Formation and Cycling in Mice. American Journal of Pathology, 2008, 173, 1295-1310.	1.9	51
265	Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 185-198.	1.8	121
266	Skin stem cells: rising to the surface. Journal of Cell Biology, 2008, 180, 273-284.	2.3	385

	CITATION	Report	
#	Article	IF	CITATIONS
267	Mathematical Models of Cancer Stem Cells. Journal of Clinical Oncology, 2008, 26, 2854-2861.	0.8	113
268	More than one way to skin Genes and Development, 2008, 22, 976-985.	2.7	192
269	Vibrissa hair bulge houses two populations of skin epithelial stem cells distinct by their keratin profile. FASEB Journal, 2008, 22, 1404-1415.	0.2	47
270	Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development (Cambridge), 2008, 135, 1059-1068.	1.2	99
271	Aldehyde Dehydrogenase as a Marker for Stem Cells. Current Stem Cell Research and Therapy, 2008, 3, 237-246.	0.6	237
272	The intestinal stem cell. Genes and Development, 2008, 22, 1856-1864.	2.7	517
273	Skin and hair: models for exploring organ regeneration. Human Molecular Genetics, 2008, 17, R54-R59.	1.4	34
274	Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12469-12473.	3.3	127
275	TERT Promotes Epithelial Proliferation through Transcriptional Control of a Myc- and Wnt-Related Developmental Program. PLoS Genetics, 2008, 4, e10.	1.5	283
276	Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes and Development, 2008, 22, 528-542.	2.7	111
277	HAIR BIOLOGY. Series in Cosmetic and Laser Therapy, 2008, , 1-18.	0.0	0
278	CD133 ⁺ neural stem cells in the ependyma of mammalian postnatal forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1026-1031.	3.3	300
279	AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. Journal of Cell Biology, 2008, 183, 37-48.	2.3	90
280	Pten Deficiency in Melanocytes Results in Resistance to Hair Graying and Susceptibility to Carcinogen-Induced Melanomagenesis. Cancer Research, 2008, 68, 5760-5768.	0.4	55
281	Constitutively Active Akt Induces Ectodermal Defects and Impaired Bone Morphogenetic Protein Signaling. Molecular Biology of the Cell, 2008, 19, 137-149.	0.9	27
282	Correction of Laminin-5 Deficiency in Human Epidermal Stem Cells by Transcriptionally Targeted Lentiviral Vectors. Molecular Therapy, 2008, 16, 1977-1985.	3.7	60
283	BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes and Development, 2008, 22, 543-557.	2.7	365
284	Beauty is skin deep: imaging and characterization of skin stem cells. Microscopy and Microanalysis, 2008, 14, 1468-1469.	0.2	0

#	Article	IF	CITATIONS
285	Current understanding of herpes simplex virus-associated erythema multiforme. Expert Review of Dermatology, 2008, 3, 491-499.	0.3	7
286	Building Epithelial Tissues from Skin Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 333-350.	2.0	75
287	Stem Cell Biology in the Lung and Lung Cancers: Using Pulmonary Context and Classic Approaches. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 479-490.	2.0	10
288	A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. Journal of Cell Science, 2008, 121, 609-617.	1.2	166
289	Beyond the Vernacular: New Sources of Cells for Bone Tissue Engineering. Plastic and Reconstructive Surgery, 2008, 122, 755-764.	0.7	14
290	Imaging Skin Epidermal Stem Cells: A Review. Microscopy Today, 2008, 16, 48-51.	0.2	0
291	The Controversial Clinicobiological Role of Breast Cancer Stem Cells. Journal of Oncology, 2008, 2008, 1-12.	0.6	5
292	Effects of strain and age on ear wound healing and regeneration in mice. Brazilian Journal of Medical and Biological Research, 2009, 42, 1143-1149.	0.7	9
293	The Fathers of Italian Histology. European Journal of Histochemistry, 2009, 51, 1.	0.6	5
294	Capacit Stam Calle 2000 467 482		1
			1
295	Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering. , 2009, 50, 2645.		70
295 296	Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering. , 2009, 50, 2645. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. International Journal of Developmental Biology, 2009, 53, 857-868.	0.3	70 61
295 296 297	Cancer Stell Cells., 2009, , 407-483. Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering. , 2009, 50, 2645. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. International Journal of Developmental Biology, 2009, 53, 857-868. Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation. PLoS Genetics, 2009, 5, e1000748.	0.3	70 61 81
295 296 297 298	 Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering. , 2009, 50, 2645. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. International Journal of Developmental Biology, 2009, 53, 857-868. Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation. PLoS Genetics, 2009, 5, e1000748. Regeneration of Epidermis from Adult Keratinocyte Stem Cells. , 2009, , 551-560. 	0.3	1 70 61 81 2
295 296 297 298 299	Calleer Stell Cells., 2009, , 407-483. Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering., 2009, 50, 2645. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. International Journal of Developmental Biology, 2009, 53, 857-868. Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation. PLoS Genetics, 2009, 5, e1000748. Regeneration of Epidermis from Adult Keratinocyte Stem Cells., 2009, , 551-560. Epithelial Hair Follicle Stem Cells., 2009, , 189-197.	0.3	1 70 61 81 2 1
295 296 297 298 299	Cancer Stem Cells., 2009, , 467-485. Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering. , 2009, 50, 2645. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. International Journal of Developmental Biology, 2009, 53, 857-868. Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation. PLoS Genetics, 2009, 5, e1000748. Regeneration of Epidermis from Adult Keratinocyte Stem Cells. , 2009, , 551-560. Epithelial Hair Follicle Stem Cells. , 2009, , 189-197. Disruption of Smad4 in Mouse Epidermis Leads to Depletion of Follicle Stem Cells. Molecular Biology of the Cell, 2009, 20, 882-890.	0.3 1.5	1 70 61 81 2 1 41
295 296 297 298 299 300	 Canter Stein Cells, 2009, 1407485. Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering., 2009, 50, 2645. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. International Journal of Developmental Biology, 2009, 53, 857-868. Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation. PLoS Genetics, 2009, 5, e1000748. Regeneration of Epidermis from Adult Keratinocyte Stem Cells., 2009, , 551-560. Epithelial Hair Follicle Stem Cells., 2009, , 189-197. Disruption of Smad4 in Mouse Epidermis Leads to Depletion of Follicle Stem Cells. Molecular Biology of the Cell, 2009, 20, 882-890. The Glucocorticoid-Induced TNF Receptor-Related Protein (GITR)-GITR Ligand Pathway Acts As a Mediator of Cutaneous Dendritic Cell Migration and Promotes T Cell-Mediated Acquired Immunity. Journal of Immunology, 2009, 182, 2708-2716. 	0.3 1.5 0.9	1 70 61 81 2 1 41 28

	CITATION	REPORT	
#	Article	IF	Citations
304	Necl2 regulates epidermal adhesion and wound repair. Development (Cambridge), 2009, 136, 3505-3514.	1.2	30
305	Reconstruction of an <i>In Vitro</i> Tissue-Specific Microenvironment to Rejuvenate Synovium-Derived Stem Cells for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 3809-3821.	1.6	99
306	Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation. Human Reproduction, 2009, 24, 805-814.	0.4	22
307	Chapter 17 Regulation of Gene Transcription and Keratinocyte Differentiation by Anandamide. Vitamins and Hormones, 2009, 81, 441-467.	0.7	15
308	On the Origin of Epidermal Cancers. Current Molecular Medicine, 2009, 9, 355-364.	0.6	7
309	Cancer Stem Cells: The Emerging Challenge of Drug Targeting. Current Medicinal Chemistry, 2009, 16, 394-416.	1.2	64
310	Anchoring stem cells in the niche by cell adhesion molecules. Cell Adhesion and Migration, 2009, 3, 396-401.	1.1	20
311	Use of keratinocytes in combination with a dermal replacement to treat skin loss. , 2009, , 207-211.		0
312	Targeted Disruption of Stat3 Reveals a Major Role for Follicular Stem Cells in Skin Tumor Initiation. Cancer Research, 2009, 69, 7587-7594.	0.4	48
313	Cancer Stem Cells and Aneuploid Populations within Developing Tumors Are the Major Determinants of Tumor Dormancy. Cancer Research, 2009, 69, 9245-9253.	0.4	162
314	Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. Journal of Cell Biology, 2009, 187, 91-100.	2.3	240
315	USP9X Enhances the Polarity and Self-Renewal of Embryonic Stem Cell-derived Neural Progenitors. Molecular Biology of the Cell, 2009, 20, 2015-2029.	0.9	52
316	Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage. Seminars in Radiation Oncology, 2009, 19, 112-121.	1.0	47
317	The Hair Follicle as a Dynamic Miniorgan. Current Biology, 2009, 19, R132-R142.	1.8	814
318	Stem cells of the adult cornea: From cytometric markers to therapeutic applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 54-66.	1.1	68
319	Commentary: Sca-1 and Cells of the Lung: A matter of Different Sorts. Stem Cells, 2009, 27, 606-611.	1.4	31
320	A Methodological Approach to Tracing Cell Lineage in Human Epithelial Tissues. Stem Cells, 2009, 27, 1410-1420.	1.4	72
321	Epithelial stem cells in corneal regeneration and epidermal gene therapy. Journal of Pathology, 2009, 217, 217-228.	2.1	106

#	Article	IF	CITATIONS
322	Epidermal stem cells: location, potential and contribution to cancer. Journal of Pathology, 2009, 217, 206-216.	2.1	54
323	The stem cell niche. Journal of Pathology, 2009, 217, 169-180.	2.1	188
324	Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model. Journal of Biomedical Science, 2009, 16, 100.	2.6	27
325	Canine hairâ€follicle keratinocytes enriched with bulge cells have the highly proliferative characteristic of stem cells. Veterinary Dermatology, 2009, 20, 338-346.	0.4	30
326	Multipotent nestinâ€expressing hair follicle stem cells. Journal of Dermatology, 2009, 36, 1-9.	0.6	38
327	Gene therapy of inherited skin adhesion disorders: a critical overview. British Journal of Dermatology, 2009, 161, 19-24.	1.4	48
328	Epidermal stem cells: practical perspectives and potential uses. British Journal of Dermatology, 2009, 161, 228-236.	1.4	65
329	Does collapse of immune privilege in the hair-follicle bulge play a role in the pathogenesis of primary cicatricial alopecia?. Clinical and Experimental Dermatology, 2010, 35, 637-644.	0.6	32
330	Markers to Evaluate the Quality and Self-Renewing Potential of Engineered Human Skin Substitutes In Vitro and after Transplantation. Journal of Investigative Dermatology, 2009, 129, 480-490.	0.3	114
331	Building Complex Tissues: High-Throughput Screening for Molecules Required in Hair Engineering. Journal of Investigative Dermatology, 2009, 129, 815-817.	0.3	13
332	Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Laboratory Investigation, 2009, 89, 844-856.	1.7	121
333	Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nature Genetics, 2009, 41, 1068-1075.	9.4	184
334	Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nature Genetics, 2009, 41, 1144-1149.	9.4	96
335	Tcf proteins are deeply rooted in skin. Nature Genetics, 2009, 41, 1050-1051.	9.4	2
336	Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews Molecular Cell Biology, 2009, 10, 207-217.	16.1	1,076
337	The Tcl1 oncogene defines secondary hair germ cells differentiation at catagen–telogen transition and affects stem-cell marker CD34 expression. Oncogene, 2009, 28, 1329-1338.	2.6	7
338	Defining the hair follicle stem cell (Part I). Journal of Cutaneous Pathology, 2009, 36, 1031-1034.	0.7	5
339	Defining the hair follicle stem cell (Part II). Journal of Cutaneous Pathology, 2009, 36, 1134-1137.	0.7	9

#	Article	IF	CITATIONS
340	Exploring the role of stem cells in cutaneous wound healing. Experimental Dermatology, 2009, 18, 921-933.	1.4	242
341	A functional model for adult stem cells in epithelial tissues. Wound Repair and Regeneration, 2009, 17, 296-305.	1.5	24
342	Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin. Aging Cell, 2009, 8, 738-751.	3.0	63
343	Multipotent skin-derived precursors: from biology to clinical translation. Current Opinion in Biotechnology, 2009, 20, 522-530.	3.3	61
344	Corneal Limbal Microenvironment Can Induce Transdifferentiation of Hair Follicle Stem Cells into Corneal Epithelial-like Cells. Stem Cells, 2009, 27, 642-652.	1.4	156
345	Stem cells of intestinal epithelium. The mechanisms of survival and the role of microbiota. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2009, 3, 221-236.	0.2	1
346	The multipotency of adult vibrissa follicle stem cells. Differentiation, 2009, 77, 317-323.	1.0	16
347	The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation, 2009, 77, 395-411.	1.0	56
348	Follicular transport route – Research progress and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 173-180.	2.0	205
349	Ezh2 Orchestrates Gene Expression for the Stepwise Differentiation of Tissue-Specific Stem Cells. Cell, 2009, 136, 1122-1135.	13.5	556
350	The Tortoise and the Hair: Slow-Cycling Cells in the Stem Cell Race. Cell, 2009, 137, 811-819.	13.5	351
351	A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration. Cell Stem Cell, 2009, 4, 155-169.	5.2	669
352	Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis. Cell Stem Cell, 2009, 4, 427-439.	5.2	450
353	mTOR Mediates Wnt-Induced Epidermal Stem Cell Exhaustion and Aging. Cell Stem Cell, 2009, 5, 279-289.	5.2	356
354	LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. Developmental Biology, 2009, 331, 58-67.	0.9	115
356	Collagen I matrix contributes to determination of adult human stem cell lineage via differential, structural conformation-specific elicitation of cellular stress response. Matrix Biology, 2009, 28, 251-262.	1.5	32
357	Stem Cells and Somatic Cells: Reprogramming and Plasticity. Clinical Lymphoma and Myeloma, 2009, 9, S319-S328.	1.4	14
358	Skin tissue engineering. Stembook, 2009, , .	0.3	8

ARTICLE IF CITATIONS # The Neuroendocrine Leydig Cells and their Stem Cell Progenitors, the Pericytes. Advances in Anatomy, 359 1.0 14 Embryology and Cell Biology, 2009, , . Stem Cells in Regenerative Medicine. Methods in Molecular Biology, 2009, , . 0.4 361 Biology of Stem Cells and the Molecular Basis of the Stem State., 2009, , . 18 Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiotherapy and Oncology, 2009, 92, 466-471. Wnt Signaling, Lgr5, and Stem Cells in the Intestine and Skin. American Journal of Pathology, 2009, 174, 363 1.9 297 715-721. Bone Morphogenetic Protein Antagonist Noggin Promotes Skin Tumorigenesis via Stimulation of the Wnt and Shh Signaling Pathways. American Journal of Pathology, 2009, 175, 1303-1314. 364 37 365 Adult stem cells in tissue engineering. Expert Review of Medical Devices, 2009, 6, 621-640. 1.4 37 Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine, 2009, 1, 260-267. 3.3 366 162 Characterization of Rat Hair Follicle Stem Cells Selected by Vario Magnetic Activated Cell Sorting 367 0.8 8 System. Acta Histochemica Et Cytochemica, 2009, 42, 129-136. Dermal cysts participate in reparative regeneration of epidermis in Hr hr /Hr hr mice. Russian Journal 0.1 of Developmental Biology, 2010, 41, 240-246. Hair follicular cell/organ culture in tissue engineering and regenerative medicine. Biochemical 369 22 1.8 Engineering Journal, 2010, 48, 323-331. Expression and function of glycogen synthase kinase-3 in human hair follicles. Archives of Dermatological Research, 2010, 302, 263-270. 1.1 Differential expression of stem cell markers in human follicular bulge and interfollicular epidermal 371 0.8 31 compartments. Histochemistry and Cell Biology, 2010, 133, 455-465. Stem Cell Competition for Niche Occupancy: Emerging Themes and Mechanisms. Stem Cell Reviews and 5.6 Reports, 2010, 6, 345-350. A Functional Role of RB-Dependent Pathway in the Control of Quiescence in Adult Epidermal Stem 373 5.6 18 Cells Revealed by Genomic Profiling. Stem Cell Reviews and Reports, 2010, 6, 162-177. Unveiling Hair Follicle Stem Cells. Stem Cell Reviews and Reports, 2010, 6, 658-664. 374 43 Normal stem cells and cancer stem cells: similar and different. Seminars in Cancer Biology, 2010, 20, 375 4.3 127 85-92. Effects of Wnt-10b on proliferation and differentiation of adult murine skin-derived CD34 and CD49f 376 1.1 double-positive cells. Journal of Bioscience and Bioengineering, 2010, 110, 217-222.

#	ARTICLE	IF	CITATIONS
377	The hair follicle—a stem cell zoo. Experimental Cell Research, 2010, 316, 1422-1428.	1.2	147
378	Recent advances on skinâ€resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel antiâ€aging and cancer therapies. Journal of Cellular and Molecular Medicine, 2010, 14, 116-134.	1.6	33
379	Keratinocyte stem cells: Friends and foes. Journal of Cellular Physiology, 2010, 225, 310-315.	2.0	74
380	Possibility of Skin Epithelial Cell Transdifferentiation in Tracheal Reconstruction. Artificial Organs, 2011, 35, 122-130.	1.0	13
381	Blimpâ€1: a marker of terminal differentiation but not of sebocytic progenitor cells. Journal of Cutaneous Pathology, 2010, 37, 362-370.	0.7	34
382	The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Experimental Dermatology, 2010, 19, 89-99.	1.4	176
383	Functional characterization of highly adherent CD34+ keratinocytes isolated from human skin. Experimental Dermatology, 2010, 19, 685-688.	1.4	20
384	Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Experimental Dermatology, 2010, 19, 697-706.	1.4	96
385	Committed differentiation of hair follicle bulge cells into sebocytes: an <i>inÂvitro</i> study. International Journal of Dermatology, 2010, 49, 135-140.	0.5	8
386	Regeneration of Multilineage Skin Epithelia by Differentiated Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 388-397.	0.3	54
387	MicroRNA-mediated control in the skin. Cell Death and Differentiation, 2010, 17, 229-235.	5.0	97
388	Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biology, 2010, 12, 299-305.	4.6	345
389	Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology, 2010, 12, 572-582.	4.6	222
390	Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nature Protocols, 2010, 5, 898-911.	5.5	174
391	Heterogeneity for Stem Cell–Related Markers According to Tumor Subtype and Histologic Stage in Breast Cancer. Clinical Cancer Research, 2010, 16, 876-887.	3.2	364
392	Runx1 Directly Promotes Proliferation of Hair Follicle Stem Cells and Epithelial Tumor Formation in Mouse Skin. Molecular and Cellular Biology, 2010, 30, 2518-2536.	1.1	107
393	Hair follicle renewal: authentic morphogenesis that depends on a complex progression of stem cell lineages. Development (Cambridge), 2010, 137, 569-577.	1.2	50
394	Nuclear Factor I-C Regulates TGF-Î ² -dependent Hair Follicle Cycling*. Journal of Biological Chemistry, 2010, 285, 34115-34125.	1.6	37

#	Article	IF	CITATIONS
395	Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement. Development (Cambridge), 2010, 137, 3545-3549.	1.2	94
396	Arsenic-Specific Stem Cell Selection During Malignant Transformation. Journal of the National Cancer Institute, 2010, 102, 638-649.	3.0	85
397	Genetic studies on the functional relevance of the protein prenyltransferases in skin keratinocytes. Human Molecular Genetics, 2010, 19, 1603-1617.	1.4	33
398	Endothelial Cell-Initiated Signaling Promotes the Survival and Self-Renewal of Cancer Stem Cells. Cancer Research, 2010, 70, 9969-9978.	0.4	227
399	Transcription factor E4F1 is essential for epidermal stem cell maintenance and skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21076-21081.	3.3	36
400	Compartmentalized organization: a common and required feature of stem cell niches?. Development (Cambridge), 2010, 137, 1586-1594.	1.2	60
401	Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis, 2010, 31, 149-158.	1.3	74
402	Postnatal Tissue-specific Disruption of Transcription Factor FoxN1 Triggers Acute Thymic Atrophy. Journal of Biological Chemistry, 2010, 285, 5836-5847.	1.6	99
403	Protein Kinase D Is Implicated in the Reversible Commitment to Differentiation in Primary Cultures of Mouse Keratinocytes. Journal of Biological Chemistry, 2010, 285, 23387-23397.	1.6	29
404	Activin Potentiates Proliferation in Mature Avian Auditory Sensory Epithelium. Journal of Neuroscience, 2010, 30, 478-490.	1.7	16
405	Identification of epithelial label-retaining cells at the transition between the anal canal and the rectum in mice. Cell Cycle, 2010, 9, 3111-3117.	1.3	22
406	The Intestinal Stem Cell. Progress in Molecular Biology and Translational Science, 2010, 96, 157-173.	0.9	14
407	Canine Follicle Stem Cell Candidates Reside in the Bulge and Share Characteristic Features with Human Bulge Cells. Journal of Investigative Dermatology, 2010, 130, 1988-1995.	0.3	36
408	Stem cell dynamics in mouse hair follicles: A story from cell division counting and single cell lineage tracing. Cell Cycle, 2010, 9, 1504-1510.	1.3	34
409	Biology of Human Hair: Know Your Hair to Control It. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 121-143.	0.6	12
410	Cell of origin of lung cancer. Molecular Oncology, 2010, 4, 397-403.	2.1	153
411	Primitive origins of prostate cancer: <i>In vivo</i> evidence for prostateâ€regenerating cells and prostate cancerâ€initiating cells. Molecular Oncology, 2010, 4, 385-396.	2.1	71
412	Leucine-Rich Repeat-Containing G-Protein-Coupled Receptors as Markers of Adult Stem Cells. Gastroenterology, 2010, 138, 1681-1696.	0.6	300

#	Article	IF	CITATIONS
413	The vitamin D receptor, the skin and stem cells. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 314-316.	1.2	27
414	Melanocyte stem cells express receptors for canonical Wnt-signaling pathway on their surface. Biochemical and Biophysical Research Communications, 2010, 396, 837-842.	1.0	27
415	Tissue-Resident Adult Stem Cell Populations of Rapidly Self-Renewing Organs. Cell Stem Cell, 2010, 7, 656-670.	5.2	307
416	A review of tissue-engineered skin bioconstructs available for skin reconstruction. Journal of the Royal Society Interface, 2010, 7, 229-258.	1.5	567
417	Cancer stem cells versus phenotypeâ€switching in melanoma. Pigment Cell and Melanoma Research, 2010, 23, 746-759.	1.5	408
418	<i>Lgr6</i> Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin. Science, 2010, 327, 1385-1389.	6.0	692
419	Coexistence of Quiescent and Active Adult Stem Cells in Mammals. Science, 2010, 327, 542-545.	6.0	1,104
420	Facing towards epidermal stem cells (Review). International Journal of Molecular Medicine, 2010, 26, 171-4.	1.8	9
421	Aging Hair. , 2010, , .		22
422	Managing the Prenatal Environment to Enhance Livestock Productivity. , 2010, , .		14
422 423	Managing the Prenatal Environment to Enhance Livestock Productivity. , 2010, , . FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>Pseudomonas aeruginosa</i> . Journal of Experimental Medicine, 2011, 208, 1473-1484.	4.2	14 85
422 423 424	Managing the Prenatal Environment to Enhance Livestock Productivity. , 2010, , . FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>>Pseudomonas aeruginosa </i> Journal of Experimental Medicine, 2011, 208, 1473-1484. A Single Cell Functions as a Tissue-Specific Stem Cell and the <i>In Vitro </i> Niche-Forming Cell. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 459-469.	4.2	14 85 58
422 423 424 425	Managing the Prenatal Environment to Enhance Livestock Productivity. , 2010, , . FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>Pseudomonas aeruginosa </i> . Journal of Experimental Medicine, 2011, 208, 1473-1484. A Single Cell Functions as a Tissue-Specific Stem Cell and the <i>In Vitro </i> Niche-Forming Cell. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 459-469. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852.	4.2 1.4 1.2	14 85 58 104
422 423 424 425 425	Managing the Prenatal Environment to Enhance Livestock Productivity., 2010, , . FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>>Pseudomonas aeruginosa </i> Journal of Experimental Medicine, 2011, 208, 1473-1484. A Single Cell Functions as a Tissue-Specific Stem Cell and the <i>In Vitro </i> Niche-Forming Cell. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 459-469. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852. Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration. Science, 2011, 332, 811-816.	4.2 1.4 1.2 6.0	14 85 58 104 555
 422 423 424 425 426 427 	Managing the Prenatal Environment to Enhance Livestock Productivity. , 2010, , . FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>Pseudomonas aeruginosa </i> . Journal of Experimental Medicine, 2011, 208, 1473-1484. A Single Cell Functions as a Tissue-Specific Stem Cell and the <i>In Vitro</i> Niche-Forming Cell. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 459-469. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852. Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration. Science, 2011, 332, 811-816. Turning round: multipotent stromal cells, a three-dimensional revolution?. Cytotherapy, 2011, 13, 903-912.	4.2 1.4 1.2 6.0 0.3	14 85 58 104 555
 422 423 424 425 426 427 428 	Managing the Prenatal Environment to Enhance Livestock Productivity., 2010, , . FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>Pseudomonas aeruginosa </i> . Journal of Experimental Medicine, 2011, 208, 1473-1484. A Single Cell Functions as a Tissue-Specific Stem Cell and the <i>In Vitro </i> Niche-Forming Cell. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 459-469. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852. Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration. Science, 2011, 332, 811-816. Turning round: multipotent stromal cells, a three-dimensional revolution?. Cytotherapy, 2011, 13, 903-912. Skin Tissue Engineering., 2011, 467-499.	 4.2 1.4 1.2 6.0 0.3 	14 85 58 104 555 35
 422 423 424 425 425 425 428 429 	Managing the Prenatal Environment to Enhance Livestock Productivity., 2010, , . FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>>Pseudomonas aeruginosa</i> >. Journal of Experimental Medicine, 2011, 208, 1473-1484. A Single Cell Functions as a Tissue-Specific Stem Cell and the Nitro American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 459-469. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852. Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration. Science, 2011, 332, 811-816. Turning round: multipotent stromal cells, a three-dimensional revolution?. Cytotherapy, 2011, 13, 903-912. Skin Tissue Engineering., 2011, , 467-499. Tissue-Engineered Skin Preserving the Potential of Epithelial Cells to Differentiate into Hair After Crafting. Tissue Engineering - Part A, 2011, 17, 819-830.	4.2 1.4 1.2 6.0 0.3 1.6	14 85 58 104 555 35 15 22

# 432	ARTICLE Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle. Cell, 2011, 144, 92-105.	IF 13.5	Citations
433	Skin Stem Cells Orchestrate Directional Migration by Regulating Microtubule-ACF7 Connections through GSK3β. Cell, 2011, 144, 341-352.	13.5	179
434	Strategies for Homeostatic Stem Cell Self-Renewal in Adult Tissues. Cell, 2011, 145, 851-862.	13.5	441
435	Considerations in the choice of a skin donor site for harvesting keratinocytes containing a high proportion of stem cells for culture in vitro. Burns, 2011, 37, 440-447.	1.1	10
436	The multiple functions of collagen XVIII in development and disease. Matrix Biology, 2011, 30, 83-92.	1.5	121
437	Stem cells in tumor angiogenesis. Journal of Molecular and Cellular Cardiology, 2011, 50, 290-295.	0.9	53
438	Hair Follicle Stem Cells Provide a Functional Niche for Melanocyte Stem Cells. Cell Stem Cell, 2011, 8, 177-187.	5.2	241
439	ΔNp63α Is an Oncogene that Targets Chromatin Remodeler Lsh to Drive Skin Stem Cell Proliferation and Tumorigenesis. Cell Stem Cell, 2011, 8, 164-176.	5.2	175
440	There and Back Again: Hair Follicle Stem Cell Dynamics. Cell Stem Cell, 2011, 8, 8-9.	5.2	4
441	Specific MicroRNAs Are Preferentially Expressed by Skin Stem Cells To Balance Self-Renewal and Early Lineage Commitment. Cell Stem Cell, 2011, 8, 294-308.	5.2	184
442	Nerve-Derived Sonic Hedgehog Defines a Niche for Hair Follicle Stem Cells Capable of Becoming Epidermal Stem Cells. Cell Stem Cell, 2011, 8, 552-565.	5.2	395
443	Regulation of Human Epidermal Stem Cell Proliferation and Senescence Requires Polycomb- Dependent and -Independent Functions of Cbx4. Cell Stem Cell, 2011, 9, 233-246.	5.2	128
444	Genome-wide Maps of Histone Modifications Unwind InÂVivo Chromatin States of the Hair Follicle Lineage. Cell Stem Cell, 2011, 9, 219-232.	5.2	187
445	Integrating Physiological Regulation with Stem Cell and Tissue Homeostasis. Neuron, 2011, 70, 703-718.	3.8	67
446	Mammary gland stem cells: current status and future challenges. International Journal of Developmental Biology, 2011, 55, 719-729.	0.3	16
447	Multipotent Dental Stem Cells: An Alternative Adult Derived Stem Cell Source for Regenerative Medicine. , 0, , .		1
448	The Hair Follicle Bulge: A Niche for Adult Stem Cells. Microscopy and Microanalysis, 2011, 17, 513-519.	0.2	18
449	Cancer stem cells and markers: New model of tumorigenesis with therapeutic implications. Cancer Biomarkers, 2011, 9, 65-99.	0.8	13

# 450	ARTICLE Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO Journal, 2011, 30, 3635-3646.	IF 3.5	CITATIONS
451	Towards expansion of human hair follicle stem cells in vitro. Cell Proliferation, 2011, 44, 244-253.	2.4	13
452	The interfollicular epidermal stem cell saga: sensationalism versus reality check. Experimental Dermatology, 2011, 20, 697-702.	1.4	26
453	Ferreting out stem cells from their niches. Nature Cell Biology, 2011, 13, 513-518.	4.6	80
454	Tracking adult stem cells. EMBO Reports, 2011, 12, 113-122.	2.0	163
455	Basal Cell Carcinomas Arise from Hair Follicle Stem Cells in Ptch1+/â^' Mice. Cancer Cell, 2011, 19, 114-124.	7.7	191
456	Skin tissue engineering — In vivo and in vitro applications. Advanced Drug Delivery Reviews, 2011, 63, 352-366.	6.6	483
457	A new transgenic mouse line for tetracycline inducible transgene expression in mature melanocytes and the melanocyte stem cells using the Dopachrome tautomerase promoter. Transgenic Research, 2011, 20, 421-428.	1.3	10
458	Isolation and in vitro expansion of Lgr6-positive multipotent hair follicle stem cells. Cell and Tissue Research, 2011, 344, 435-444.	1.5	18
459	Matrix control of scarring. Cellular and Molecular Life Sciences, 2011, 68, 1871-1881.	2.4	50
460	CD34 antigen: Determination of specific sites of phosphorylation in vitro and in vivo. International Journal of Mass Spectrometry, 2011, 301, 12-21.	0.7	6
461	Cancer stem cells and cancer therapy. Tumor Biology, 2011, 32, 425-440.	0.8	124
462	Stem cells in clinical practice: applications and warnings. Journal of Experimental and Clinical Cancer Research, 2011, 30, 9.	3.5	152
463	From Hair to Cornea: Toward the Therapeutic Use of Hair Follicle-Derived Stem Cells in the Treatment of Limbal Stem Cell Deficiency. Stem Cells, 2011, 29, 57-66.	1.4	117
464	Functional Characterization of Quiescent Keratinocyte Stem Cells and Their Progeny Reveals a Hierarchical Organization in Human Skin Epidermis. Stem Cells, 2011, 29, 1256-1268.	1.4	59
465	A novel role for the Tâ€box transcription factor <i>Tbx1</i> as a negative regulator of tumor cell growth in mice. Molecular Carcinogenesis, 2011, 50, 981-991.	1.3	13
466	Primer and interviews: The dynamic stem cell niche. Developmental Dynamics, 2011, 240, 737-743.	0.8	24
467	Male androgenetic alopecia is due to hair follicle stem cell inactivation. Expert Review of Dermatology, 2011, 6, 145-147.	0.3	4

#	Article	IF	CITATIONS
468	Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10544-10549.	3.3	246
469	Identifying the cellular origin of squamous skin tumors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7431-7436.	3.3	257
470	Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury. Molecular Biology of the Cell, 2011, 22, 2532-2540.	0.9	21
471	Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7425-7430.	3.3	163
472	Wounding mobilizes hair follicle stem cells to form tumors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4093-4098.	3.3	106
473	Differentially Expressed Genes Associated with Human Limbal Epithelial Phenotypes: New Molecules That Potentially Facilitate Selection of Stem Cell-Enriched Populations. , 2011, 52, 1252.		25
474	EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes and Development, 2011, 25, 485-498.	2.7	332
475	Revisiting the ABCs of Multidrug Resistance in Cancer Chemotherapy. Current Pharmaceutical Biotechnology, 2011, 12, 570-594.	0.9	185
476	Delineating Immune-Mediated Mechanisms Underlying Hair Follicle Destruction in the Mouse Mutant Defolliculated. Journal of Investigative Dermatology, 2011, 131, 572-579.	0.3	31
477	The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate. PLoS Genetics, 2011, 7, e1002403.	1.5	160
478	TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. EMBO Journal, 2011, 30, 3004-3018.	3.5	92
479	Cédric Blanpain: The stories stem cells tell. Journal of Cell Biology, 2012, 199, 4-5.	2.3	0
480	Building Models for Keratin Disorders. Journal of Investigative Dermatology, 2012, 132, 1324-1326.	0.3	3
481	The germinative epithelium of sheep vibrissae and wool follicles has extensive proliferative potential but is dependent on the dermal papilla. International Journal of Trichology, 2012, 4, 75.	0.1	1
482	Focal adhesion kinase is required for \hat{l}^2 -catenin-induced mobilization of epidermal stem cells. Carcinogenesis, 2012, 33, 2369-2376.	1.3	26
483	Hair Follicle Regeneration in Skin Grafts: Current Concepts and Future Perspectives. Tissue Engineering - Part B: Reviews, 2012, 18, 15-23.	2.5	45
484	Stem Cells, Cancer Stem-Like Cells, and Natural Products. Planta Medica, 2012, 78, 935-942.	0.7	38
485	Analyses of Donor-Derived Keratinocytes in Hairy and Nonhairy Skin Biopsies of Female Patients Following Allogeneic Male Bone Marrow Transplantation. Stem Cells and Development, 2012, 21, 152-157.	1.1	7

#	Article	IF	CITATIONS
486	Hair Cycle Resting Phase Is Regulated by Cyclic Epithelial FGF18 Signaling. Journal of Investigative Dermatology, 2012, 132, 1338-1345.	0.3	106
487	Tracing epithelial stem cells during development, homeostasis, and repair. Journal of Cell Biology, 2012, 197, 575-584.	2.3	61
488	A Role for Transcription Factor STAT3 Signaling in Oncogene Smoothened-driven Carcinogenesis. Journal of Biological Chemistry, 2012, 287, 38356-38366.	1.6	29
489	Head and Neck Cancer Stem Cells. Journal of Dental Research, 2012, 91, 334-340.	2.5	99
490	Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. Journal of Molecular Endocrinology, 2012, 49, R89-R111.	1.1	69
491	Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO Journal, 2012, 31, 2498-2510.	3.5	85
492	Skin-Derived Precursor Cells as an In Vitro Modelling Tool for the Study of Type 1 Neurofibromatosis. Stem Cells International, 2012, 2012, 1-9.	1.2	3
493	Stem Cell Dynamics and Heterogeneity: Implications for Epidermal Regeneration and Skin Cancer. Current Medicinal Chemistry, 2012, 19, 5984-5992.	1.2	4
494	Physical Exercise Affects Cell Proliferation in Lumbar Intervertebral Disc Regions in Rats. Spine, 2012, 37, 1440-1447.	1.0	21
495	Regenerative Medicine as Applied to General Surgery. Annals of Surgery, 2012, 255, 867-880.	2.1	97
496	Hair Follicle Stem Cells Derived from Single Rat Vibrissa via Organ Culture Reconstitute Hair Follicles in Vivo. Cell Transplantation, 2012, 21, 1075-1085.	1.2	18
497	Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs. Frontiers in Physiology, 2012, 3, 107.	1.3	43
498	Insights on Foxn1 Biological Significance and Usages of the "Nude―Mouse in Studies of T-Lymphopoiesis. International Journal of Biological Sciences, 2012, 8, 1156-1167.	2.6	36
499	DNA Damage, Checkpoint Responses, and Cell Cycle Control in Aging Stem Cells. Else-Kröner-Fresenius-Symposia, 2012, , 36-47.	0.1	0
500	Chromatin regulators in mammalian epidermis. Seminars in Cell and Developmental Biology, 2012, 23, 897-905.	2.3	36
501	Regeneration of Epidermal Structures. , 2012, , 43-65.		2
502	Innate immunity and the regulation and mobilization of keratinocyte stem cells: are the old players playing a new game?. Experimental Dermatology, 2012, 21, 660-664.	1.4	11
503	Unravelling hair follicle–adipocyte communication. Experimental Dermatology, 2012, 21, 827-830. 	1.4	68

#	Article	IF	CITATIONS
504	Continuation of Smoking after Treatment of Laryngeal Cancer: An Independent Prognostic Factor?. Orl, 2012, 74, 250-254.	0.6	21
505	Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness. EMBO Journal, 2012, 31, 4563-4575.	3.5	73
506	Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer. Oncogene, 2012, 31, 3009-3022.	2.6	107
507	Act your age: Tuning cell behavior to tissue requirements in interfollicular epidermis. Seminars in Cell and Developmental Biology, 2012, 23, 884-889.	2.3	13
509	Human Skin Cells That Express Stage-Specific Embryonic Antigen 3 Associate with Dermal Tissue Regeneration. BioResearch Open Access, 2012, 1, 25-33.	2.6	10
510	Dormancy in the stem cell niche. Stem Cell Research and Therapy, 2012, 3, 10.	2.4	27
511	Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene, 2012, 31, 187-199.	2.6	115
512	Stem cell reprogramming as a driver of basal cell carcinoma. Nature Cell Biology, 2012, 14, 1246-1247.	4.6	1
513	Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nature Cell Biology, 2012, 14, 1282-1294.	4.6	117
514	Role of Label-Retaining Cells in Estrogen-Induced Endometrial Regeneration. Reproductive Sciences, 2012, 19, 102-114.	1.1	48
515	New Activators and Inhibitors in the Hair Cycle Clock: Targeting Stem Cells' State of Competence. Journal of Investigative Dermatology, 2012, 132, 1321-1324.	0.3	74
516	Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell, 2012, 10, 63-75.	5.2	316
517	Adult Human RPE Can Be Activated into a Multipotent Stem Cell that Produces Mesenchymal Derivatives. Cell Stem Cell, 2012, 10, 88-95.	5.2	233
518	Cédric Blanpain: ISSCR's Outstanding Young Investigator for 2012. Cell Stem Cell, 2012, 10, 751-752.	5.2	4
519	Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development (Cambridge), 2012, 139, 3510-3520.	1.2	82
520	Identification of Stem Cell Populations in Sweat Glands and Ducts Reveals Roles in Homeostasis and Wound Repair. Cell, 2012, 150, 136-150.	13.5	265
521	CD133 in the Selection of Epidermal Stem Cells in Mice: Steps in the Right Direction. Journal of Investigative Dermatology, 2012, 132, 2492-2494.	0.3	3
522	A family business: stem cell progeny join the niche to regulate homeostasis. Nature Reviews Molecular Cell Biology, 2012, 13, 103-114.	16.1	266

#	Article	IF	CITATIONS
523	Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Research, 2012, 22, 432-435.	5.7	163
524	Hairy tale of signaling in hair follicle development and cycling. Seminars in Cell and Developmental Biology, 2012, 23, 906-916.	2.3	169
525	Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Seminars in Cell and Developmental Biology, 2012, 23, 917-927.	2.3	319
526	Capturing epidermal stemness for regenerative medicine. Seminars in Cell and Developmental Biology, 2012, 23, 937-944.	2.3	54
527	A single cell bioengineering approach to elucidate mechanisms of adult stem cell self-renewal. Integrative Biology (United Kingdom), 2012, 4, 360-367.	0.6	16
528	Characterizing the Phenotype of Murine Epidermal Progenitor Cells: Complementary Whole-Mount Visualization and Flow Cytometry Strategies. Methods in Molecular Biology, 2012, 916, 243-261.	0.4	1
529	DNA Methylation Dynamics during InÂVivo Differentiation of Blood and Skin Stem Cells. Molecular Cell, 2012, 47, 633-647.	4.5	338
530	Physiology and Pathophysiology of Wound Healing in Diabetes. , 2012, , 127-149.		5
531	CD133 Is a Marker for Long-Term Repopulating Murine Epidermal Stem Cells. Journal of Investigative Dermatology, 2012, 132, 2522-2533.	0.3	21
532	Neural Development and Stem Cells. , 2012, , .		0
534	Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nature Communications, 2012, 3, 784.	5.8	198
535	Wound Contraction Is Significantly Reduced by the Use of Microcarriers to Deliver Keratinocytes and Fibroblasts in an <i>In Vivo</i> Pig Model of Wound Repair and Regeneration. Tissue Engineering - Part A, 2012, 18, 587-597.	1.6	30
536	Somatic Stem Cells. Methods in Molecular Biology, 2012, , .	0.4	6
537	Hair organ regeneration via the bioengineered hair follicular unit transplantation. Scientific Reports, 2012, 2, 424.	1.6	67
538	Stem Cells and Cancer Stem Cells, Volume 4. , 2012, , .		2
539	Isolating stem cells in the inter-follicular epidermis employing synchrotron radiation-based Fourier-transform infrared microspectroscopy and focal plane array imaging. Analytical and Bioanalytical Chemistry, 2012, 404, 1745-1758.	1.9	26
540	Miz1 Is a Critical Repressor of cdkn1a during Skin Tumorigenesis. PLoS ONE, 2012, 7, e34885.	1.1	15
541	Expression of Kruppel-Like Factor KLF4 in Mouse Hair Follicle Stem Cells Contributes to Cutaneous Wound Healing. PLoS ONE, 2012, 7, e39663.	1.1	22

	Сіта	tion Report	
#	Article	IF	CITATIONS
542	Stem cells in embryonic skin development. Biological Research, 2012, 45, 215-222.	1.5	26
543	Melanocyte stem cells: Biology and current aspects. Medical Science Monitor, 2012, 18, RA155-RA159.	0.5	26
545	<i>Drosophila</i> models of epithelial stem cells and their niches. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 447-457.	5.9	42
546	Brief Report: Requirement of TACE/ADAM17 for Hair Follicle Bulge Niche Establishment. Stem Cells, 2012, 30, 1781-1785.	1.4	10
547	Stem Cells in the Skin. , 2012, , 281-286.		0
548	Mechanisms regulating epidermal stem cells. EMBO Journal, 2012, 31, 2067-2075.	3.5	63
549	Using Stem Cells in Skin Regeneration: Possibilities and Reality. Stem Cells and Development, 2012, 21, 1201-1214.	1.1	37
550	Stem cells of the human epidermis and their niche: composition and function in epidermal regeneration and carcinogenesis. Carcinogenesis, 2012, 33, 1247-1258.	1.3	68
551	An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature, 2012, 485, 104-108.	13.7	94
552	Dynamic Signals for Hair Follicle Development and Regeneration. Stem Cells and Development, 2012, 22 7-18.	., 1.1	67
553	Development and Homeostasis of the Skin Epidermis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008383-a008383.	2.3	83
554	Fabrication and characterization of epithelial scaffolds for hair follicle regeneration. Tissue Engineering and Regenerative Medicine, 2012, 9, 147-156.	1.6	6
555	Home sweet home: skin stem cell niches. Cellular and Molecular Life Sciences, 2012, 69, 2573-2582.	2.4	80
556	Label Retaining Cells and Cutaneous Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 414-425.	5.6	25
557	Two- and Three-Dimensional Culture of Keratinocyte Stem and Precursor Cells Derived from Primary Murine Epidermal Cultures. Stem Cell Reviews and Reports, 2012, 8, 402-413.	5.6	27
558	Ontogeny and Homeostasis of Adult Epithelial Skin Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 561-576.	5.6	16
559	Mesenchymal stem cells in kidney inflammation and repair. Nephrology, 2012, 17, 1-10.	0.7	83
560	Primary cicatricial alopecia: Recent advances in understanding and management. Journal of Dermatology, 2012, 39, 18-26.	0.6	44

#	Article	IF	CITATIONS
561	Interfollicular epidermal homeostasis: dicing with differentiation. Experimental Dermatology, 2012, 21, 249-253.	1.4	38
562	Keratinocyte Stem Cells and the Targets for Nonmelanoma Skin Cancer ^{â€} . Photochemistry and Photobiology, 2012, 88, 1099-1110.	1.3	12
563	Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Developmental Biology, 2012, 363, 138-146.	0.9	86
564	Hair follicle stem cell differentiation is inhibited through crossâ€ŧalk between Wnt/βâ€ɛatenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia. British Journal of Dermatology, 2012, 166, 1035-1042.	1.4	115
566	Molecular Dermatology. Methods in Molecular Biology, 2013, , .	0.4	4
567	Effect of intense pulsed light treatment on human skin <i>in vitro</i> : analysis of immediate effects on dermal papillae and hair follicle stem cells. British Journal of Dermatology, 2013, 169, 859-868.	1.4	6
568	MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nature Cell Biology, 2013, 15, 1153-1163.	4.6	145
569	A simple culture method for epithelial stem cells derived from human hair follicle. Open Life Sciences, 2013, 8, 432-439.	0.6	1
571	Cell–Material Interactions Revealed Via Material Techniques of Surface Patterning. Advanced Materials, 2013, 25, 5257-5286.	11.1	424
573	Indian Hedgehog Controls Proliferation and Differentiation in Skin Tumorigenesis and Protects against Malignant Progression. Cell Reports, 2013, 4, 340-351.	2.9	15
574	<i>Sept4/</i> ARTS Regulates Stem Cell Apoptosis and Skin Regeneration. Science, 2013, 341, 286-289.	6.0	81
575	Human Induced Pluripotent Stem Cell–Derived Ectodermal Precursor Cells Contribute to Hair Follicle Morphogenesis In Vivo. Journal of Investigative Dermatology, 2013, 133, 1479-1488.	0.3	72
576	Spatial organization within a niche as a determinant of stem-cell fate. Nature, 2013, 502, 513-518.	13.7	353
577	RNAi-Mediated Gene Function Analysis in Skin. Methods in Molecular Biology, 2013, 961, 351-361.	0.4	27
578	Epidermal stem cells: an update on their potential in regenerative medicine. Expert Opinion on Biological Therapy, 2013, 13, 901-910.	1.4	11
579	aPKCλ controls epidermal homeostasis and stem cell fate through regulation of division orientation. Journal of Cell Biology, 2013, 202, 887-900.	2.3	86
580	Cells of origin and tumor-initiating cells for nonmelanoma skin cancers. Cancer Letters, 2013, 338, 82-88.	3.2	26
581	Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplantation, 2013, 22, 701-709.	1.2	105

#	Article	IF	CITATIONS
582	Adult hair follicle stem cells do not retain the older DNA strands in vivo during normal tissue homeostasis. Chromosome Research, 2013, 21, 203-212.	1.0	7
583	Tissue-engineered skin substitutes: an overview. Journal of Artificial Organs, 2013, 16, 397-403.	0.4	72
584	Architectural Niche Organization by LHX2 Is Linked to Hair Follicle Stem Cell Function. Cell Stem Cell, 2013, 13, 314-327.	5.2	84
585	Unravelling cancer stem cell potential. Nature Reviews Cancer, 2013, 13, 727-738.	12.8	723
586	Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nature Reviews Molecular Cell Biology, 2013, 14, 737-748.	16.1	131
587	Future Horizons in Hair Restoration. Facial Plastic Surgery Clinics of North America, 2013, 21, 521-528.	0.9	12
588	BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nature Cell Biology, 2013, 15, 846-852.	4.6	126
589	<i>Nfatc1</i> orchestrates aging in hair follicle stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4950-9.	3.3	146
590	A matter of life and death: selfâ€renewal in stem cells. EMBO Reports, 2013, 14, 39-48.	2.0	153
591	BRCA1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. Genes and Development, 2013, 27, 39-51.	2.7	33
592	Characterization of Dental Epithelial Stem Cells from the Mouse Incisor with Two-Dimensional and Three-Dimensional Platforms. Tissue Engineering - Part C: Methods, 2013, 19, 15-24.	1.1	23
593	Wnt Signaling in Skin Development, Homeostasis, and Disease. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008029-a008029.	2.3	205
594	Hair Follicle: A Novel Source of Multipotent Stem Cells for Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2013, 19, 265-278.	2.5	68
595	Microfluidic Enrichment of Mouse Epidermal Stem Cells and Validation of Stem Cell Proliferation In Vitro. Tissue Engineering - Part C: Methods, 2013, 19, 765-773.	1.1	15
596	Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: Control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biology, 2013, 32, 365-371.	1.5	19
597	Identification of Lineage-Uncommitted, Long-Lived, Label-Retaining Cells in Healthy Human Esophagus and Stomach, and in Metaplastic Esophagus. Gastroenterology, 2013, 144, 761-770.	0.6	63
598	Physical forces make rete ridges in oral mucosa. Medical Hypotheses, 2013, 81, 883-886.	0.8	20
599	Melanocytes, melanocyte stem cells, and melanoma stem cells. Clinics in Dermatology, 2013, 31, 166-178.	0.8	60

#	Article	IF	CITATIONS
600	Biochemistry of epidermal stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2427-2434.	1.1	28
601	Morphogenesis of Rete Ridges in Human Oral Mucosa: A Pioneering Morphological and Immunohistochemical Study. Cells Tissues Organs, 2013, 197, 239-248.	1.3	33
602	Stem Cells and Generation of New Cells in the Adult Kidney. , 2013, , 959-980.		1
603	Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development (Cambridge), 2013, 140, 1517-1527.	1.2	255
604	Strategies to enhance epithelial–mesenchymal interactions for human hair follicle bioengineering. Journal of Dermatological Science, 2013, 70, 78-87.	1.0	70
605	Regeneration of Epidermis from Adult Human Keratinocyte Stem Cells. , 2013, , 767-780.		2
606	Analysis of Bulge Stem Cells from the Epidermis Using Flow Cytometry. Methods in Molecular Biology, 2013, 989, 33-43.	0.4	0
607	Interfollicular Epidermal Stem Cells: Boosting and Rescuing from Adult Skin. Methods in Molecular Biology, 2013, 989, 1-9.	0.4	8
608	Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development (Cambridge), 2013, 140, 1882-1891.	1.2	65
609	Isolation of Hair Follicle Bulge Stem Cells from YFP-Expressing Reporter Mice. Methods in Molecular Biology, 2013, 989, 21-32.	0.4	1
610	Isolation and Characterization of Cutaneous Epithelial Stem Cells. Methods in Molecular Biology, 2013, 989, 61-69.	0.4	4
611	Identification and Analysis of Epidermal Stem Cells from Primary Mouse Keratinocytes. Methods in Molecular Biology, 2013, 989, 71-81.	0.4	2
612	Analysis of Gene Expression in Skin Using Laser Capture Microdissection. Methods in Molecular Biology, 2013, 989, 109-117.	0.4	1
613	Brg1 Governs a Positive Feedback Circuit in the Hair Follicle for Tissue Regeneration and Repair. Developmental Cell, 2013, 25, 169-181.	3.1	53
614	Nestin-expressing multipotent hair follicle stem cells for regenerative medicine. Expert Review of Dermatology, 2013, 8, 19-26.	0.3	0
615	Awakened by Cellular Stress: Isolation and Characterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue. PLoS ONE, 2013, 8, e64752.	1.1	104
616	Molecular regulation of stem cell quiescence. Nature Reviews Molecular Cell Biology, 2013, 14, 329-340.	16.1	912
617	Epidermal Development in Mammals: Key Regulators, Signals from Beneath, and Stem Cells. International Journal of Molecular Sciences, 2013, 14, 10869-10895.	1.8	85

ARTICLE IF CITATIONS Resident Stem Cell in Skin., 2013, , 89-103. 1 619 Cell of origin of lung cancer. Journal of Carcinogenesis, 2013, 12, 6. 2.5 Scalable production of controllable dermal papilla spheroids on PVA surfaces andÂthe effects of 621 5.7 89 spheroid size on hair follicle regeneration. Biomaterials, 2013, 34, 442-451. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development 1.2 (Cambridge), 2013, 140, 3809-3818. Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration 623 2.2 16 compared. Regenerative Medicine Research, 2013, 1, 4. 624 Engineering the niche for stem cells. Growth Factors, 2013, 31, 175-184. 625 Propagation of Adult SSCs: From Mouse to Human. BioMed Research International, 2013, 2013, 1-9. 0.9 18 EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers. International Journal of Molecular Sciences, 2013, 14, 1.8 38 19361-19384. Androgenetic alopecia: An update. Indian Journal of Dermatology, Venereology and Leprology, 2013, 79, 627 0.2 101 613. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem 628 Cells. BioMed Research International, 2013, 2013, 1-21. Skin Tumors Rb(eing) Uncovered. Frontiers in Oncology, 2013, 3, 307. 629 7 1.3 <i>Hopx</i> expression defines a subset of multipotent hair follicle stem cells and a progenitor 1.2 population primed to give rise to K6+ niche cells. Development (Cambridge), 2013, 140, 1655-1664. Development and Prospects of Organ Replacement Regenerative Therapy. Cornea, 2013, 32, S13-S21. 631 0.9 30 Protein Kinase $C < i > \hat{\mu} < /i >$, Which Is Linked to Ultraviolet Radiation-Induced Development of Squamous Cell Carcinomas, Stimulates Rapid Turnover of Adult Hair Follicle Stem Cells. Journal of Skin Cancer, 2013, 2013, 1-13. Moderate Physical Exercise Results in Increased Cell Activity in Articular Cartilage of the Knee Joint in 633 1.3 4 Rats. Cells Tissues Organs, 2013, 198, 237-248. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell 634 homeostasis and cyclic activation. Proceedings of the National Academy of Sciences of the United 169 States of America, 2013, 110, 1351-1356. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. Journal 635 0.3 180 of Investigative Dermatology, 2013, 133, 31-41. Stem cell expansion during carcinogenesis in stem cell-depleted conditional telomeric repeat factor 2 null mutant mice. Oncogene, 2013, 32, 5156-5166.

ARTICLE IF CITATIONS Cancer Stem Cells. , 2013, , 387-412. 637 0 Inflammation and Hras signaling control epithelial–mesenchymal transition during skin tumor 2.7 progression. Genes and Development, 2013, 27, 670-682. A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World 639 1.3 55 Journal of Stem Cells, 2013, 5, 1. Endothelial Protein C Receptor Function in Murine and Human Breast Cancer Development. PLoS ONE, 640 2013, 8, e61071. Stem Cells behind the Barrier. International Journal of Molecular Sciences, 2013, 14, 13670-13686. 641 1.8 24 Function of KLF4 in Stem Cell Biology., 0, , . 643 Treatment of Leg Chronic Wounds with Dermal Substitutes and Thin Skin Grafts., 2013,,. 3 Endogenous stem/progenitor cell recruitment for tissue regeneration., 0,, 405-418. 644 645 Hair follicle and skin regeneration., 0, , 590-602. 0 Epidermal Stem Cells Cultured on Collagen-Modified Chitin Membrane Induce In Situ Tissue 646 1.1 Regeneration of Full-Thickness Skin Defects in Mice. PLoS ONE, 2014, 9, e87557. Alteration of Skin Wound Healing in Keratinocyte-Specific Mediator Complex Subunit 1 Null Mice. PLoS 647 1.1 22 ONE, 2014, 9, e102271. Human Hair Follicle: An Update on Biology and Perspectives in Hair Growth Disorders Treatment. Hair Therapy & Transplantation, 2014, 04, . Activated Hair Follicle Stem Cells and Wnt/l2-catenin Signaling Involve in Pathnogenesis of Sebaceous 649 1.1 15 Neoplasms. International Journal of Medical Sciences, 2014, 11, 1022-1028. Possible Existence of Melanocytes or Melanoblasts in Human Sebaceous Glands. Annals of 0.3 Dermatology, 2014, 26, 469. 652 FOXN1 in Organ Development and Human Diseases. International Reviews of Immunology, 2014, 33, 83-93. 40 1.5 Cutaneous Epithelial Stem Cells., 2014, , 1581-1594. Periodontal-Ligament-Derived Stem Cells Exhibit the Capacity for Long-Term Survival, Self-Renewal, 654 1.1 122 and Regeneration of Multiple Tissue Types in Vivo. Stem Cells and Development, 2014, 23, 1001-1011. DMBA/TPA Treatment Is Necessary for BCC Formation from Patched Deficient Epidermal Cells in Ptch flox/flox CD4Cre +/a[^] Mice. Journal of Investigative Dermatology, 2014, 134, 2620-2629.

#	Article	IF	Citations
656	Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Research, 2014, 24, 1466-1485.	5.7	134
657	Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development (Cambridge), 2014, 141, 1649-1659.	1.2	117
658	Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells. PLoS Biology, 2014, 12, e1002002.	2.6	145
659	Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes and Development, 2014, 28, 983-994.	2.7	42
660	Signaling Involved in Hair Follicle Morphogenesis and Development. International Journal of Molecular Sciences, 2014, 15, 1647-1670.	1.8	277
661	Concise Review: Understanding Clonal Dynamics in Homeostasis and Injury Through Multicolor Lineage Tracing. Stem Cells, 2014, 32, 3046-3054.	1.4	24
662	Melanocytes and Vitiligo (and Hair Graying). , 2014, , 1148-1157.		1
663	Pathology of Tissue Regeneration Repair: Skin Regeneration. , 2014, , 558-566.		1
664	SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes and Development, 2014, 28, 328-341.	2.7	171
665	Akt Signaling Leads to Stem Cell Activation and Promotes Tumor Development in Epidermis. Stem Cells, 2014, 32, 1917-1928.	1.4	30
666	Application of stems cells in wound healing—An update. Wound Repair and Regeneration, 2014, 22, 151-160.	1.5	68
667	Smad1 and 5 but Not Smad8 Establish Stem Cell Quiescence Which Is Critical to Transform the Premature Hair Follicle During Morphogenesis Toward the Postnatal State. Stem Cells, 2014, 32, 534-547.	1.4	51
668	Medullary Thymic Epithelial Stem Cells Maintain a Functional Thymus to Ensure Lifelong Central T Cell Tolerance. Immunity, 2014, 41, 753-761.	6.6	106
669	Hair Follicle Dermal Stem Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and Modulate Hair Type. Developmental Cell, 2014, 31, 543-558.	3.1	189
670	Heterogeneity and plasticity of epidermal stem cells. Development (Cambridge), 2014, 141, 2559-2567.	1.2	97
671	The interactions of TGF-beta signalling pathway and Jagged2/Notch1 pathway induce acanthosis in lingual epithelia. Pathology, 2014, 46, 555-565.	0.3	2
672	<i>miR-125b</i> can enhance skin tumor initiation and promote malignant progression by repressing differentiation and prolonging cell survival. Genes and Development, 2014, 28, 2532-2546.	2.7	52
673	Beyond goosebumps: Does the arrector pili muscle have a role in hair loss?. International Journal of Trichology, 2014, 6, 88.	0.1	30

#	Article	IF	CITATIONS
674	Integration of BMP/Wnt signaling to control clonal growth of limbal epithelial progenitor cells by niche cells. Stem Cell Research, 2014, 12, 562-573.	0.3	55
675	β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche. Science, 2014, 343, 1353-1356.	6.0	99
676	Tooth, hair and claw: Comparing epithelial stem cell niches of ectodermal appendages. Experimental Cell Research, 2014, 325, 96-103.	1.2	14
677	Stem cell dynamics in the hair follicle niche. Seminars in Cell and Developmental Biology, 2014, 25-26, 34-42.	2.3	135
678	Macroenvironmental Regulation of Hair Cycling and Collective Regenerative Behavior. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015198-a015198.	2.9	45
679	Prospective Identification and Purification of Quiescent Adult Neural Stem Cells from Their In Vivo Niche. Neuron, 2014, 82, 545-559.	3.8	563
680	Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration. Cell, 2014, 157, 935-949.	13.5	306
681	Direct in Vivo RNAi Screen Unveils Myosin IIa as a Tumor Suppressor of Squamous Cell Carcinomas. Science, 2014, 343, 309-313.	6.0	234
682	InÂvivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nature Cell Biology, 2014, 16, 179-190.	4.6	180
683	Epithelial Stem Cells in Adult Skin. Current Topics in Developmental Biology, 2014, 107, 109-131.	1.0	36
684	Adult Stem Cell Niches. Current Topics in Developmental Biology, 2014, 107, 333-372.	1.0	80
685	Bone Morphogenetic Protein Signaling Suppresses Wound-Induced Skin Repair by Inhibiting Keratinocyte Proliferation and Migration. Journal of Investigative Dermatology, 2014, 134, 827-837.	0.3	60
686	Microfluidic Isolation of CD34-Positive Skin Cells Enables Regeneration of Hair and Sebaceous Glands In Vivo. Stem Cells Translational Medicine, 2014, 3, 1354-1362.	1.6	12
687	Endothelial progenitor cells as a possible component of stem cell niche to promote self-renewal of mesenchymal stem cells. Molecular and Cellular Biochemistry, 2014, 397, 235-243.	1.4	12
688	Defining a mesenchymal progenitor niche at single-cell resolution. Science, 2014, 346, 1258810.	6.0	128
689	SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nature Communications, 2014, 5, 4511.	5.8	100
690	Markers of Epidermal Stem Cell Subpopulations in Adult Mammalian Skin. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013631-a013631.	2.9	103
691	Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells. Stem Cells Translational Medicine, 2014, 3, 1209-1219.	1.6	73

#	Article	IF	CITATIONS
692	Tooth replacement without a dental lamina: The search for epithelial stem cells in <i>Polypterus senegalus</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 281-293.	0.6	26
693	Overexpression of Epigen during Embryonic Development Induces Reversible, Epidermal Growth Factor Receptor-Dependent Sebaceous Gland Hyperplasia. Molecular and Cellular Biology, 2014, 34, 3086-3095.	1.1	25
694	Adipocytes in Skin Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015271-a015271.	2.9	81
695	Sweat Gland Progenitors in Development, Homeostasis, and Wound Repair. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015222-a015222.	2.9	124
696	Wnt7b Is an Important Intrinsic Regulator of Hair Follicle Stem Cell Homeostasis and Hair Follicle Cycling. Stem Cells, 2014, 32, 886-901.	1.4	83
697	Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors. Stem Cells, 2014, 32, 1380-1389.	1.4	649
698	Stem Cells in Aesthetic Procedures. , 2014, , .		8
699	Emerging interactions between skin stem cells and their niches. Nature Medicine, 2014, 20, 847-856.	15.2	474
700	Genetic reporter analysis reveals an expandable reservoir of OCT4+ cells in adult skin. Cell Regeneration, 2014, 3, 3:9.	1.1	5
701	Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes and Development, 2014, 28, 1517-1532.	2.7	215
702	Regenerative Hair Waves in Aging Mice and Extra-Follicular Modulators Follistatin, Dkk1, and Sfrp4. Journal of Investigative Dermatology, 2014, 134, 2086-2096.	0.3	80
703	Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clinical and Translational Medicine, 2014, 3, 12.	1.7	34
704	Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation. Stem Cell Reports, 2014, 2, 633-647.	2.3	85
705	SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature, 2014, 511, 246-250.	13.7	552
706	Plasticity of epithelial stem cells in tissue regeneration. Science, 2014, 344, 1242281.	6.0	464
707	New insights into skin stem cell aging and cancer. Biochemical Society Transactions, 2014, 42, 663-669.	1.6	12
708	Role of epidermal stem cells in repair of partial-thickness burn injury after using Moist Exposed Burn Ointment (MEBO®) histological and immunohistochemical study. Tissue and Cell, 2014, 46, 144-151.	1.0	19
709	EGF–FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs). Experimental Cell Research, 2014, 327, 37-47.	1.2	29

		CITATION RE	PORT	
#	Article		IF	CITATIONS
710	Role of the protein C receptor in cancer progression. Thrombosis Research, 2014, 133,	\$85-\$89.	0.8	16
711	Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor. Journ Visualized Experiments, 2014, , .	nal of	0.2	20
712	Chrysanthemum zawadskii extract induces hair growth by stimulating the proliferation differentiation of hair matrix. International Journal of Molecular Medicine, 2014, 34, 13	and 0-136.	1.8	12
713	Deciphering principles of morphogenesis from temporal and spatial patterns on the int Developmental Dynamics, 2015, 244, 905-920.	egument.	0.8	21
714	Cardiac Bmi1 + cells contribute to myocardial renewal in the murine adult heart. Stem (and Therapy, 2015, 6, 205.	Cell Research	2.4	35
715	Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quid Reports, 2015, 13, 561-572.	escence. Cell	2.9	63
716	Breast cancer resistance protein identifies clonogenic keratinocytes in human interfollio epidermis. Stem Cell Research and Therapy, 2015, 6, 43.	cular	2.4	12
717	SCF increases in utero–labeled stem cells migration and improves wound healing. We Regeneration, 2015, 23, 583-590.	ound Repair and	1.5	7
718	Ultraviolet <scp>B</scp> Inhibits Skin Wound Healing by Affecting Focal Adhesion Dyr Photochemistry and Photobiology, 2015, 91, 909-916.	iamics.	1.3	15
719	Skin equivalents: skin from reconstructions as models to study skin development and c Journal of Dermatology, 2015, 173, 391-403.	liseases. British	1.4	65
720	9. Zelltherapien in der Regenerativen Medizin. , 2015, , 291-341.			1
721	Functional and molecular characterization of cancer stem-like cells in bladder cancer: a signature for muscle-invasive tumors. Oncotarget, 2015, 6, 36185-36201.	potential	0.8	34
722	Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. Cancer Gro Metastasis, 2015, 8s1, CGM.S21219.	wth and	3.5	13
723	Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World Jour Cells, 2015, 7, 711.	rnal of Stem	1.3	92
724	Cancer Stem Cells: Biological Features and Targeted Therapeutics. Hanyang Medical Re 250.	views, 2015, 35,	0.4	2
725	ETS family transcriptional regulators drive chromatin dynamics and malignancy in squar carcinomas. ELife, 2015, 4, e10870.	mous cell	2.8	71
726	Ovine Hair Follicle Stem Cells Derived from Single Vibrissae Reconstitute Haired Skin. Ir Journal of Molecular Sciences, 2015, 16, 17779-17797.	Iternational	1.8	13
727	Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative St Hair Cycling. PLoS ONE, 2015, 10, e0131674.	tress during	1.1	21

ARTICLE IF CITATIONS # Embryonic attenuated Wnt/Î²-catenin signaling defines niche location and long-term stem cell fate in 728 2.8 57 hair follicle. ELife, 2015, 4, e10567. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin. Optics and Laser 2.2 Technology, 2015, 73, 69-76. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological 730 3.0 52 Protection. Annals of the ICRP, 2015, 44, 7-357. Decoding the stem cell quiescence cycle – lessons from yeast for regenerative biology. Journal of Cell Science, 2015, 128, 4467-4474. Skin and Skin Appendage Regeneration., 2015, , 269-292. 732 8 Constitutive Stat3 activation alters behavior of hair follicle stem and progenitor cell populations. Molecular Carcinogenesis, 2015, 54, 121-133. 1.3 Partial Maintenance and Long-Term Expansion of Murine Skin Epithelial Stem Cells by Wnt-3a In Vitro. 734 0.3 10 Journal of Investigative Dermatology, 2015, 135, 1598-1608. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during 1.5 hair regeneration. Journal of Molecular Cell Biology, 2015, 7, 62-72. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2. 736 2.7 41 Genes and Development, 2015, 29, 144-156. <scp>MSCs</scp> seeded on bioengineered scaffolds improve skin wound healing in rats. Wound 1.5 Repair and Regeneration, 2015, 23, 115-123. Reversible regulation of stem cell niche size associated with dietary control of Notch signalling. 738 2.1 33 BMC Developmental Biology, 2015, 15, 8. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 578-585. La FAM fatale: USP9X in development and disease. Cellular and Molecular Life Sciences, 2015, 72, 740 2.4 145 2075-2089. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnology 741 6.0 Advances, 2015, 33, 962-979. In vitro keratinocyte expansion for cell transplantation therapy is associated with differentiation 742 1.0 18 and loss of basal layer derived progenitor population. Differentiation, 2015, 89, 137-145. Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion. Cell 743 126 Stem Cell, 2015, 17, 60-73. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell 744 15.2 179 carcinoma. Nature Medicine, 2015, 21, 946-954. BMP-SHH Signaling Network Controls Epithelial Stem Cell Fate via Regulation of Its Niche in the 745 3.1 Developing Tooth. Developmental Cell, 2015, 33, 125-135.

#	Article	IF	Citations
746	Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nature Reviews Molecular Cell Biology, 2015, 16, 299-309.	16.1	142
747	Metabolism gene signatures and surgical site infections in abdominal surgery. International Journal of Surgery, 2015, 14, 67-74.	1.1	3
748	MicroRNAs in skin tissue engineering. Advanced Drug Delivery Reviews, 2015, 88, 16-36.	6.6	39
749	Switching roles: the functional plasticity of adult tissue stem cells. EMBO Journal, 2015, 34, 1164-1179.	3.5	77
750	Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature, 2015, 521, 366-370.	13.7	350
751	An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin. Developmental Cell, 2015, 34, 577-591.	3.1	197
752	Interfering with stem cell-specific gatekeeper functions controls tumour initiation and malignant progression of skin tumours. Nature Communications, 2015, 6, 5874.	5.8	15
753	Loss of endogenous Nfatc1 reduces the rate of DMBA/TPA-induced skin tumorigenesis. Molecular Biology of the Cell, 2015, 26, 3606-3614.	0.9	17
754	Mini-Gut Organoids: Reconstitution of the Stem Cell Niche. Annual Review of Cell and Developmental Biology, 2015, 31, 269-289.	4.0	162
755	Wnt Signaling and Its Contribution to Craniofacial Tissue Homeostasis. Journal of Dental Research, 2015, 94, 1487-1494.	2.5	45
756	Thyroid hormone signaling controls hair follicle stem cell function. Molecular Biology of the Cell, 2015, 26, 1263-1272.	0.9	36
757	Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells. Actas Dermo-sifiliográficas, 2015, 106, 725-732.	0.2	2
758	CéIulas madre de la piel: en la frontera entre el laboratorio y la clÃnica. Parte I: céIulas madre epidérmicas. Actas Dermo-sifiliográficas, 2015, 106, 725-732.	0.2	6
759	Alteration of biomechanical properties of burned skin. Burns, 2015, 41, 789-795.	1.1	8
760	Stress as a fundamental theme in cell plasticity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 371-377.	0.9	22
761	Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration. Stem Cells, 2015, 33, 988-998.	1.4	13
762	Stem cells and aberrant signaling of molecular systems in skin aging. Ageing Research Reviews, 2015, 19, 8-21.	5.0	25
763	Scarring, stem cells, scaffolds and skin repair. Journal of Tissue Engineering and Regenerative	1.3	64

#	Article	IF	CITATIONS
764	Bioengineering Skin Constructs. , 2015, , 703-719.		2
765	Label-Retaining Stromal Cells in Mouse Endometrium Awaken for Expansion and Repair After Parturition. Stem Cells and Development, 2015, 24, 768-780.	1.1	31
766	Isolation and Functional Assessment of Cutaneous Stem Cells. Methods in Molecular Biology, 2015, 1235, 147-164.	0.4	8
767	In vitro neural differentiation of CD34 + stem cell populations in hair follicles by three different neural induction protocols. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 192-203.	0.7	16
768	Refining the role for adult stem cells as cancer cells of origin. Trends in Cell Biology, 2015, 25, 11-20.	3.6	109
769	Molecular Basis of "Hypoxic―Signaling, Quiescence, Self-Renewal, and Differentiation in Stem Cells. , 2016, , 115-141.		0
770	Epidermal Cells Expressing Putative Cell Markers in Nonglabrous Skin Existing in Direct Proximity with the Distal End of the Arrector Pili Muscle. Stem Cells International, 2016, 2016, 1-11.	1.2	5
771	Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells. Stem Cells International, 2016, 2016, 1-14.	1.2	9
772	The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming. Stem Cells International, 2016, 2016, 1-14.	1.2	73
773	Human Hair and the Impact of Cosmetic Procedures: A Review on Cleansing and Shape-Modulating Cosmetics. Cosmetics, 2016, 3, 26.	1.5	52
774	Mitotic Diversity in Homeostatic Human Interfollicular Epidermis. International Journal of Molecular Sciences, 2016, 17, 167.	1.8	13
775	DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization. International Journal of Molecular Sciences, 2016, 17, 1984.	1.8	18
776	Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus. PLoS ONE, 2016, 11, e0152870.	1.1	11
777	Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunological Reviews, 2016, 271, 38-55.	2.8	51
778	Stem Cell Niche. , 2016, , 57-85.		3
780	Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Reports, 2016, 17, 1700-1720.	2.0	63
781	Expansion of Hair Follicle Stem Cells Sticking to Isolated Sebaceous Glands to Generate in Vivo Epidermal Structures. Cell Transplantation, 2016, 25, 2071-2082.	1.2	10
782	The Adult Stem Cell Niche: Multiple Cellular Players in Tissue Homeostasis and Regeneration. , 2016, , 794-806.		1

#	Article	IF	CITATIONS
783	Targeting clotting proteins in cancer therapy – progress and challenges. Thrombosis Research, 2016, 140, S1-S7.	0.8	20
784	Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nature Cell Biology, 2016, 18, 619-631.	4.6	158
785	Cancer Stem Cells: Basic Concepts and Therapeutic Implications. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 47-76.	9.6	559
786	FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1506-15.	3.3	121
787	Polymeric Electrospinning for Musculoskeletal Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2016, 2, 69-84.	1.6	35
788	Modeling head and neck cancer stem cell-mediated tumorigenesis. Cellular and Molecular Life Sciences, 2016, 73, 3279-3289.	2.4	7
789	Activating Hair Follicle Stem Cells via R-spondin2 to Stimulate Hair Growth. Journal of Investigative Dermatology, 2016, 136, 1549-1558.	0.3	29
790	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
791	Maintenance of Skin Epithelial Stem Cells by Wnt-3a In Vitro. Methods in Molecular Biology, 2016, 1516, 279-288.	0.4	0
792	The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annual Review of Cell and Developmental Biology, 2016, 32, 609-631.	4.0	43
793	FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling. Advances in Radiation Oncology, 2016, 1, 170-181.	0.6	5
794	Cellular plasticity: 1712 to the present day. Current Opinion in Cell Biology, 2016, 43, 46-54.	2.6	69
795	Essential Role of Polarity Protein Par3 for Epidermal Homeostasis through Regulation of Barrier Function, Keratinocyte Differentiation, and Stem Cell Maintenance. Journal of Investigative Dermatology, 2016, 136, 2406-2416.	0.3	36
796	Stereological Quantification of Cell-Cycle Kinetics and Mobilization of Epithelial Stem Cells during Wound Healing. Methods in Molecular Biology, 2016, 1453, 93-107.	0.4	1
797	Tracing cellular dynamics in tissue development, maintenance and disease. Current Opinion in Cell Biology, 2016, 43, 38-45.	2.6	39
798	Biorevitalizing effect of a novel facial serum containing apple stem cell extract, proâ€collagen lipopeptide, creatine, and urea on skin aging signs. Journal of Cosmetic Dermatology, 2016, 15, 24-30.	0.8	23
799	Global gene expression and comparison between multiple populations in the mouse epidermis. Stem Cell Research, 2016, 17, 191-202.	0.3	10
	Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and		

#	Article	IF	CITATIONS
802	Highly Efficient Neural Differentiation of CD34-Positive Hair-Follicle-Associated Pluripotent Stem Cells Induced by Retinoic Acid and Serum-Free Medium. Methods in Molecular Biology, 2016, 1453, 161-172.	0.4	4
803	Hair Follicle Regeneration by Transplantation of a Bioengineered Hair Follicle Germ. Methods in Molecular Biology, 2016, 1453, 71-84.	0.4	7
805	Development of functional human oral mucosal epithelial stem/progenitor cell sheets using a feeder-free and serum-free culture system for ocular surface reconstruction. Scientific Reports, 2016, 6, 37173.	1.6	21
806	Neural Stem Cells Restore Hair Growth through Activation of the Hair Follicle Niche. Cell Transplantation, 2016, 25, 1439-1451.	1.2	16
807	Emergence of form from function—Mechanical engineering approaches to probe the role of stem cell mechanoadaptation in sealing cell fate. Bioarchitecture, 2016, 6, 85-103.	1.5	16
808	Isolating Hair Follicle Stem Cells and Epidermal Keratinocytes from Dorsal Mouse Skin. Journal of Visualized Experiments, 2016, , .	0.2	9
809	Identification of an epidermal keratinocyte AMPA glutamate receptor involved in dermatopathies associated with sensory abnormalities. Pain Reports, 2016, 1, e573.	1.4	4
810	Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death and Differentiation, 2016, 23, 1257-1264.	5.0	59
811	Efficient generation of functional hepatocyte-like cells from mouse liver progenitor cells via indirect co-culture with immortalized human hepatic stellate cells. Hepatobiliary and Pancreatic Diseases International, 2016, 15, 173-179.	0.6	3
812	Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells, 2016, 34, 720-731.	1.4	23
813	Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity. Cell Reports, 2016, 14, 269-281.	2.9	53
814	Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents. Journal of Membrane Biology, 2016, 249, 281-292.	1.0	10
815	Slow cycling cells in the continuous dental lamina of Scyliorhinus canicula: new evidence for stem cells in sharks. Developmental Biology, 2016, 413, 39-49.	0.9	5
816	Keratin 14 Expression in Epithelial Progenitor Cells of the Developing Human Cornea. Stem Cells and Development, 2016, 25, 699-711.	1.1	14
817	Epithelial Skin Biology. Current Topics in Developmental Biology, 2016, 116, 357-374.	1.0	121
818	Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science, 2016, 351, 613-617.	6.0	109
819	<i>Axin2</i> marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1498-505.	3.3	93
820	Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium, 2016, 59, 91-97.	1.1	128

#	Article	IF	CITATIONS
821	Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell, 2016, 18, 79-90.	5.2	206
822	Low Dose Radiation Causes Skin Cancer in Mice and Has a Differential Effect on Distinct Epidermal Stem Cells. Stem Cells, 2017, 35, 1355-1364.	1.4	18
823	<i>lgf1r</i> signalling acts on the anagenâ€ŧo atagen transition in the hair cycle. Experimental Dermatology, 2017, 26, 785-791.	1.4	13
824	Efficacy of 50 Hz electromagnetic fields on human epidermal stem cell transplantation seeded in collagen sponge scaffolds for wound healing in a murine model. Bioelectromagnetics, 2017, 38, 204-212.	0.9	11
825	The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes and Development, 2017, 31, 172-183.	2.7	471
826	Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in <scp>MSC</scp> s niche. Cell Proliferation, 2017, 50, .	2.4	20
827	Translation from unconventional $5\hat{a}\in^2$ start sites drives tumour initiation. Nature, 2017, 541, 494-499.	13.7	282
829	Isolation and In Vitro Characterization of Epidermal Stem Cells. Methods in Molecular Biology, 2017, 1553, 67-83.	0.4	6
830	Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Central Science, 2017, 3, 163-175.	5.3	342
831	Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nature Communications, 2017, 8, 14684.	5.8	273
832	Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration. Histochemistry and Cell Biology, 2017, 147, 749-758.	0.8	34
833	Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, 2017, , .	0.2	5
834	Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell, 2017, 169, 636-650.e14.	13.5	255
835	Stem Cells and Tissue Engineering. Clinics in Plastic Surgery, 2017, 44, 635-650.	0.7	56
836	Asymmetric Localization and Distribution of Factors Determining Cell Fate During Early Development of Xenopus laevis. Results and Problems in Cell Differentiation, 2017, 61, 229-241.	0.2	3
837	Wound Healing from Dermal Grafts Containing CD34+ Cells Is Comparable to Wound Healing with Split-Thickness Skin Micrografts. Plastic and Reconstructive Surgery, 2017, 140, 306-314.	0.7	12
838	Identification of hair shaft progenitors that create a niche for hair pigmentation. Genes and Development, 2017, 31, 744-756.	2.7	43
839	Triolein reduces MMP-1 upregulation in dermal fibroblasts generated by ROS production in UVB-irradiated keratinocytes. Journal of Dermatological Science, 2017, 85, 124-130.	1.0	30

#	Article	IF	CITATIONS
840	Isolation of Stem Cells and Progenitors from Mouse Epidermis. Current Protocols in Stem Cell Biology, 2017, 41, 1C.20.1-1C.20.11.	3.0	8
841	From basal cell carcinoma morphogenesis to the alopecia induced by hedgehog inhibitors: connecting the dots. British Journal of Dermatology, 2017, 177, 1485-1494.	1.4	16
842	Pancreas, Kidney and Skin Regeneration. Stem Cells in Clinical Applications, 2017, , .	0.4	1
843	Stem cell plasticity enables hair regeneration following Lgr5+ cell loss. Nature Cell Biology, 2017, 19, 666-676.	4.6	61
844	Quiescent adult stem cells in murine teeth are regulated by Shh signaling. Cell and Tissue Research, 2017, 369, 497-512.	1.5	25
845	PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells. Stem Cell Reports, 2017, 9, 304-314.	2.3	22
846	Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene, 2017, 36, 5681-5694.	2.6	52
847	Functional Hair Follicle Regeneration by the Rearrangement of Stem Cells. Methods in Molecular Biology, 2017, 1597, 117-134.	0.4	10
848	A scalable self-priming fractal branching microchannel net chip for digital PCR. Lab on A Chip, 2017, 17, 1655-1665.	3.1	59
849	Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nature Communications, 2017, 8, 14091.	5.8	166
850	Androgenetic alopecia: a review. Endocrine, 2017, 57, 9-17.	1.1	242
851	Maintaining hair follicle stem cell identity in a dish. EMBO Journal, 2017, 36, 132-134.	3.5	6
852	Hair follicle stem cell cultures reveal selfâ€organizing plasticity of stem cells and theirÂprogeny. EMBO Journal, 2017, 36, 151-164.	3.5	70
853	TGF-β-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell, 2017, 21, 650-664.e8.	5.2	119
854	Cancer stem cells revisited. Nature Medicine, 2017, 23, 1124-1134.	15.2	1,895
855	Concise Review: Mechanisms of Quiescent Hair Follicle Stem Cell Regulation. Stem Cells, 2017, 35, 2323-2330.	1.4	52
856	Mobilizing Transit-Amplifying Cell-Derived Ectopic Progenitors Prevents Hair Loss from Chemotherapy or Radiation Therapy. Cancer Research, 2017, 77, 6083-6096.	0.4	36
857	Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions. Current Pharmaceutical Design, 2017, 23, 3455-3482.	0.9	91

#	Article	IF	CITATIONS
858	Constitutive transgene expression of Stem Cell Antigen-1 in the hair follicle alters the sensitivity to tumor formation and progression. Stem Cell Research, 2017, 23, 109-118.	0.3	1
859	Hair follicle-associated-pluripotent (HAP) stem cells. Cell Cycle, 2017, 16, 2169-2175.	1.3	35
860	Lactate dehydrogenase activity drives hair follicle stem cell activation. Nature Cell Biology, 2017, 19, 1017-1026.	4.6	203
861	Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell, 2017, 43, 387-401.	3.1	314
862	6.20 Skin Tissue Engineering â~†. , 2017, , 334-382.		3
863	Expression Analysis of the Stem Cell Marker Pw1/Peg3 Reveals a CD34 Negative Progenitor Population in the Hair Follicle. Stem Cells, 2017, 35, 1015-1027.	1.4	13
864	Aging of Epidermal Stem Cells. , 2017, , 191-204.		1
865	Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Molecular and Cellular Endocrinology, 2017, 439, 26-34.	1.6	55
866	Collagen XVIII in tissue homeostasis and dysregulation — Lessons learned from model organisms and human patients. Matrix Biology, 2017, 57-58, 55-75.	1.5	86
867	Cancer Stem Cells in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2017, 137, 31-37.	0.3	30
868	Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition. Cell Stem Cell, 2017, 20, 191-204.e5.	5.2	170
869	In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells from Jawbone Compared with Dental Tissue. Tissue Engineering and Regenerative Medicine, 2017, 14, 763-774.	1.6	36
870	Current and Future Perspectives of Stem Cell Therapy in Dermatology. Annals of Dermatology, 2017, 29, 667.	0.3	20
871	The Epithelial Stem Cell Niche in Skin. , 2017, , 127-143.		9
872	Pigmented Epithelioid Melanocytoma (PEM)/Animal Type Melanoma (ATM): Quest for an Origin. Report of One Unusual Case Indicating Follicular Origin and Another Arising in an Intradermal Nevus. International Journal of Molecular Sciences, 2017, 18, 1769.	1.8	4
873	Roles of the Hedgehog Signaling Pathway in Epidermal and Hair Follicle Development, Homeostasis, and Cancer. Journal of Developmental Biology, 2017, 5, 12.	0.9	66
874	Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of $\hat{I}^3\hat{I}$ T-cells. ELife, 2017, 6, .	2.8	60
875	Stem cells from human hair follicles: first mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investigation, 2017, 4, 58-58.	1.3	101

#	ARTICLE	IF	CITATIONS
876	Hair Follicle Reconstruction and Stem Cells. , 2017, , .		2
877	Comparative regenerative mechanisms across different mammalian tissues. Npj Regenerative Medicine, 2018, 3, 6.	2.5	157
878	Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nature Reviews Genetics, 2018, 19, 311-325.	7.7	129
879	Ex Vivo Imaging and Genetic Manipulation of Mouse Hair Follicle Bulge Stem Cells. Methods in Molecular Biology, 2018, 1879, 15-29.	0.4	2
880	Functional anatomy of the hair follicle: The Secondary Hair Germ. Experimental Dermatology, 2018, 27, 701-720.	1.4	45
881	Isolation and Enrichment of Newborn and Adult Skin Stem Cells of the Interfollicular Epidermis. Methods in Molecular Biology, 2018, 1879, 119-132.	0.4	3
882	Regulation of melanocyte stem cell behavior by the niche microenvironment. Pigment Cell and Melanoma Research, 2018, 31, 556-569.	1.5	25
883	In vitro models to study hair follicle generation. , 2018, , 279-301.		6
884	Hair Follicle Stem Cell Faith Is Dependent on Chromatin Remodeling Capacity Following Low-Dose Radiation. Stem Cells, 2018, 36, 574-588.	1.4	13
885	In vivo monitoring of hair cycle stages via bioluminescence imaging of hair follicle NG2 cells. Scientific Reports, 2018, 8, 393.	1.6	15
887	Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells. Genome Biology, 2018, 19, 3.	3.8	17
888	Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials, 2018, 167, 121-131.	5.7	29
889	TGF-β Family Signaling in Epithelial Differentiation and Epithelial–Mesenchymal Transition. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022194.	2.3	90
890	Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells, 2018, 36, 22-35.	1.4	99
891	Stem Cell Pathology. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 71-92.	9.6	15
893	Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches. Methods in Molecular Biology, 2018, 1686, 1-25.	0.4	37
894	Identifying Quiescent Stem Cells in Hair Follicles. Methods in Molecular Biology, 2018, 1686, 137-147.	0.4	10
895	An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. Methods in Molecular Biology, 2018, 1686, 27-47.	0.4	26

#	Article	IF	CITATIONS
896	Androgens and androgen receptor action in skin and hair follicles. Molecular and Cellular Endocrinology, 2018, 465, 122-133.	1.6	111
897	Preparation of well-distributed titania nanopillar arrays on Ti6Al4V surface by induction heating for enhancing osteogenic differentiation of stem cells. Nanotechnology, 2018, 29, 045101.	1.3	10
899	Stem cells derived from burned skin - The future of burn care. EBioMedicine, 2018, 37, 509-520.	2.7	43
900	Comprehensive molecular and cellular studies suggest avian scutate scales are secondarily derived from feathers, and more distant from reptilian scales. Scientific Reports, 2018, 8, 16766.	1.6	22
901	A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature, 2018, 562, 429-433.	13.7	105
902	A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature, 2018, 562, 434-438.	13.7	113
903	Foxn1 in Skin Development, Homeostasis and Wound Healing. International Journal of Molecular Sciences, 2018, 19, 1956.	1.8	14
904	DNA Methylation as anÂEpigenetic Memory Keeper during Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , 57-73.	0.1	1
905	Oncogenic activation of PI3K induces progenitor cell differentiation to suppress epidermal growth. Nature Cell Biology, 2018, 20, 1256-1266.	4.6	45
906	Physiology and Pathophysiology of Wound Healing in Diabetes. Contemporary Diabetes, 2018, , 109-130.	0.0	1
907	The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells. Carbohydrate Polymers, 2018, 202, 488-496.	5.1	23
908	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.1	0
909	The Role of ATP-dependent Chromatin Remodeling in theÂControl of Epidermal Differentiation and Skin Stem Cell Activity. Pancreatic Islet Biology, 2018, , 159-173.	0.1	0
910	Single-cell genomics to guide human stem cell and tissue engineering. Nature Methods, 2018, 15, 661-667.	9.0	52
911	Therapeutic Potential of Stem Cells in Follicle Regeneration. Stem Cells International, 2018, 2018, 1-16.	1.2	54
912	Isolation of Cancer Stem Cells from Squamous Cell Carcinoma. Methods in Molecular Biology, 2018, 1879, 407-414.	0.4	6
913	Tissue Engineered Skin Substitutes. Advances in Experimental Medicine and Biology, 2018, 1107, 143-188.	0.8	69
914	Stem Cell: Current and Future State. , 2018, , 71-76.		0

CITATION REPORT ARTICLE IF CITATIONS Macrophages Promote Wound-Induced Hair Follicle Regeneration in a CX3CR1- and TGF-β1–Dependent 0.3 48 Manner. Journal of Investigative Dermatology, 2018, 138, 2111-2122. Clinical Outcome of Cryopreserved Acellular Dermal Matrix for Full-Thickness Burns. 1.0 Macromolecular Research, 2018, 26, 780-787. Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 1.2 143 (Cambridge), 2018, 145, . Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction 2.4 for alopecia areata. Stem Cell Research and Therapy, 2018, 9, 141. Interfollicular Epidermal Stem Cells: Boosting and Rescuing from Adult Skin. Methods in Molecular 0.4 4 Biology, 2018, 1879, 101-110. Isolation and Characterization of Cutaneous Epithelial Stem Cells. Methods in Molecular Biology, 0.4 2018, 1879, 87-99. Skin Stem Cells in Silence, Action, and Cancer. Stem Cell Reports, 2018, 10, 1432-1438. 2.325 JunB defines functional and structural integrity of the epidermo-pilosebaceous unit in the skin. 5.8 26 Nature Communications, 2018, 9, 3425. 3D human skin bioprinting: a view from the bio side. Journal of 3D Printing in Medicine, 2018, 2, 141-162. 1.0 22 Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Frontiers in Bioengineering and Biotechnology, 2018, 6, 86. Organ regeneration based on developmental biology: past and future. Current Opinion in Genetics and 1.5 19 Development, 2018, 52, 42-47. Skin in vitro models to study dermal white adipose tissue role in skin healing., 2018, , 327-352. An intronic enhancer of Bmp6 underlies evolved tooth gain in sticklebacks. PLoS Genetics, 2018, 14, 1.5 30 e1007449. Dedifferentiation, transdifferentiation and cell fusion: <i>inÂvivo</i> reprogramming strategies for 2.2 39 regenerative medicine. FEBS Journal, 2019, 286, 1074-1093. Isolation of Mouse Epidermal Keratinocytes and Their In Vitro Clonogenic Culture. Journal of 0.2 5 Visualized Experiments, 2019, , . Epidermal stem cells in wound healing and their clinical applications. Stem Cell Research and Therapy, 2.4 2019, 10, 229.

000	Dermal papilla regulation of hair growth and pigmentation. Advances in Stem Cells and Their Niches,	0.1	
932	2019, , 115-138.	0.1	3

7

1.4

Cutaneous extramedullary haematopoiesis: Implications in human disease and treatment. Experimental

#

915

917

919

921

923

924

925

927

929

931

Dermatology, 2019, 28, 1201-1209.

	Сіта	CITATION REPORT	
#	Article	IF	CITATIONS
933	Stem cells in tissues, organoids, and cancers. Cellular and Molecular Life Sciences, 2019, 76, 4043-4070). 2.4	44
934	Competitive Repopulation Assay of Long-Term Epidermal Stem Cell Regeneration Potential. Methods in Molecular Biology, 2019, 2109, 45-53.	0.4	1
935	Generation and validation of novel conditional flox and inducible Cre alleles targeting fibroblast growth factor 18 (<i>Fgf18</i>). Developmental Dynamics, 2019, 248, 882-893.	0.8	23
936	Plasticity of Epidermal Stem Cells: The Future of Stem Cell-Based Therapeutics to Improve Cutaneous Wound Healing. , 2019, , 357-389.		0
937	Autologous Cellular Method Using Micrografts of Human Adipose Tissue Derived Follicle Stem Cells in Androgenic Alopecia. International Journal of Molecular Sciences, 2019, 20, 3446.	1.8	98
938	Hair-follicle-associated pluripotent stem cells derived from cryopreserved intact human hair follicles sustain multilineage differentiation potential. Scientific Reports, 2019, 9, 9326.	1.6	18
939	Overexpression of Nanog in amniotic fluid–derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Experimental and Molecular Medicine, 2019, 51, 1-15.	3.2	20
940	KLF4 inhibition promotes the expansion of keratinocyte precursors from adult human skin and of embryonic-stem-cell-derived keratinocytes. Nature Biomedical Engineering, 2019, 3, 985-997.	11.6	25
941	Stem cell–driven lymphatic remodeling coordinates tissue regeneration. Science, 2019, 366, 1218-12	.25. 6.0	122
942	Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration <i>inÂvivo</i> . EMBO Journal, 2019, 38, e101688.	3.5	47
944	Scaffolds for epithelial and hair follicle regeneration. , 2019, , 211-236.		1
945	Cancer Stem Cells: From Birth to Death. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 1-30.	0.1	1
946	Bispecific Antibody Therapy for Effective Cardiac Repair through Redirection of Endogenous Stem Cells. Advanced Therapeutics, 2019, 2, 1900009.	1.6	7
947	Jarid1b promotes epidermal differentiation by mediating the repression of Ship1 and activation of the AKT/Ovol1 pathway. Cell Proliferation, 2019, 52, e12638.	2.4	11
948	Molecular aspects governing epidermal stem cell niches. Advances in Stem Cells and Their Niches, 2019, , 73-113.	0.1	1
949	Epidermal stem cell lineages. Advances in Stem Cells and Their Niches, 2019, 3, 31-72.	0.1	1
950	Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence. Stem Cell Reports, 2019, 12, 1190-1	1200. 2.3	111
951	Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biology, 2019, 17, e30002	97. 2.6	87

#	Article	IF	CITATIONS
952	Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. International Journal of Molecular Sciences, 2019, 20, 2158.	1.8	68
953	Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt Pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells, 2019, 8, 466.	1.8	176
954	Skin Stem Cells, Their Niche and Tissue Engineering Approach for Skin Regeneration. Advances in Experimental Medicine and Biology, 2019, 1212, 107-126.	0.8	14
955	Lung cancer stem cells and their aggressive progeny, controlled by EGFR/MIG6 inverse expression, dictate a novel NSCLC treatment approach. Oncotarget, 2019, 10, 2546-2560.	0.8	6
956	Preclinical animal tumor models to study prevention of colon cancer recurrence by curcumin. , 2019, , 293-307.		2
957	An updated classification of hair follicle morphogenesis. Experimental Dermatology, 2019, 28, 332-344.	1.4	108
958	Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflammation and Regeneration, 2019, 39, 4.	1.5	29
959	Involvement of cutaneous SR-B1 in skin lipid homeostasis. Archives of Biochemistry and Biophysics, 2019, 666, 1-7.	1.4	15
960	The ciliary GTPase Arl3 maintains tissue architecture by directing planar spindle orientation during epidermal morphogenesis. Development (Cambridge), 2019, 146, .	1.2	7
961	Platelet-Rich Plasma and Micrografts Enriched with Autologous Human Follicle Mesenchymal Stem Cells Improve Hair Re-Growth in Androgenetic Alopecia. Biomolecular Pathway Analysis and Clinical Evaluation. Biomedicines, 2019, 7, 27.	1.4	83
962	Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Molecular Neurobiology, 2019, 56, 6902-6927.	1.9	52
963	Cancer stem cell mobilization and therapeutic targeting of the 5T4 oncofetal antigen. , 2019, 7, 251513551882162.	1.4	10
964	Stem Cell Quiescence: Dynamism, Restraint, and Cellular Idling. Cell Stem Cell, 2019, 24, 213-225.	5.2	220
965	An improved clonogenic culture method for thymic epithelial cells. Journal of Immunological Methods, 2019, 467, 29-36.	0.6	2
966	Hair follicle stem cells isolated from newborn Yangtze River Delta White Goats. Gene, 2019, 698, 19-26.	1.0	18
967	Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Frontiers in Cell and Developmental Biology, 2019, 7, 284.	1.8	22
968	Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 2019, 21, 18-24.	4.6	250
969	An Ovol2â€Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation. EMBO Reports, 2019, 20, .	2.0	32

#	Article	IF	CITATIONS
970	Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin. Nature Communications, 2019, 10, 91.	5.8	34
971	Review of Human Hair Follicle Biology: Dynamics of Niches and Stem Cell Regulation for Possible Therapeutic Hair Stimulation for Plastic Surgeons. Aesthetic Plastic Surgery, 2019, 43, 253-266.	0.5	25
972	Mesenchymal Stem Cell–Based Therapies for Repair and Regeneration of Skin Wounds. , 2019, , 173-222.		1
973	Minor collagens of the skin with not so minor functions. Journal of Anatomy, 2019, 235, 418-429.	0.9	20
974	Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Seminars in Cancer Biology, 2020, 62, 134-148.	4.3	23
975	CD34 cells in somatic, regenerative and cancer stem cells: Developmental biology, cell therapy, and omics big data perspective. Journal of Cellular Biochemistry, 2020, 121, 3058-3069.	1.2	12
976	Action mechanism of anti-wrinkle effect of Rhamnus yoshinoi methanol extract in human dermal fibroblast and keratinocyte cell lines. Toxicological Research, 2020, 36, 69-77.	1.1	8
977	Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science, 2020, 367, 161-166.	6.0	77
978	Fractional CO2 laser micropatterning of cell-seeded electrospun collagen scaffolds enables rete ridge formation in 3D engineered skin. Acta Biomaterialia, 2020, 102, 287-297.	4.1	28
979	Epigenetic metabolites license stem cell states. Current Topics in Developmental Biology, 2020, 138, 209-240.	1.0	11
980	Deriving Keratinocyte Progenitor Cells and Keratinocytes from Humanâ€Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2020, 54, e119.	3.0	9
981	Lack of CD34 produces defects in platelets, microparticles, and lung inflammation. Cell and Tissue Research, 2020, 382, 405-419.	1.5	5
982	Epiregulin promotes hair growth via EGFRâ€medicated epidermal and ErbB4â€mediated dermal stimulation. Cell Proliferation, 2020, 53, e12881.	2.4	6
983	Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell, 2020, 183, 1103-1116.e20.	13.5	600
984	<scp>SIRT</scp> 7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO Journal, 2020, 39, e104365.	3.5	37
985	Transplanted hair follicle stem cells migrate to the penumbra and express neural markers in a rat model of cerebral ischaemia/reperfusion. Stem Cell Research and Therapy, 2020, 11, 413.	2.4	14
986	MicroRNA-222 Regulates Melanoma Plasticity. Journal of Clinical Medicine, 2020, 9, 2573.	1.0	10
987	Identifying 8-mRNAsi Based Signature for Predicting Survival in Patients With Head and Neck Squamous Cell Carcinoma via Machine Learning. Frontiers in Genetics, 2020, 11, 566159.	1.1	12

#	Article	IF	CITATIONS
988	An Intrinsic Oscillation of Gene Networks Inside Hair Follicle Stem Cells: An Additional Layer That Can Modulate Hair Stem Cell Activities. Frontiers in Cell and Developmental Biology, 2020, 8, 595178.	1.8	27
989	Amelioration of Androgenetic Alopecia by Algal Oligosaccharides Prepared by Deep-Sea Bacterium Biodegradation. Frontiers in Microbiology, 2020, 11, 567060.	1.5	9
990	Immune modulation of hair follicle regeneration. Npj Regenerative Medicine, 2020, 5, 9.	2.5	57
991	MicroRNA Profiling of Highly Enriched Human Corneal Epithelial Stem Cells by Small RNA Sequencing. Scientific Reports, 2020, 10, 7418.	1.6	8
992	Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell, 2020, 26, 817-831.	5.2	49
993	Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. Journal of Biomedical Science, 2020, 27, 43.	2.6	73
994	Leading edge: emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opinion on Biological Therapy, 2020, 20, 911-923.	1.4	15
995	Maintenance and modulation of stem cells stemness based on biomaterial designing via chemical and physical signals. Applied Materials Today, 2020, 19, 100614.	2.3	16
996	Electrospun Nanofibrous Materials for Wound Healing. Advanced Fiber Materials, 2020, 2, 212-227.	7.9	134
997	Epidermal Cells. Methods in Molecular Biology, 2020, , .	0.4	3
998	Neuropeptide Y is involved in the regulation of quiescence of hematopoietic stem cells. Neuropeptides, 2020, 80, 102029.	0.9	10
999	The aging skin microenvironment dictates stem cell behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5339-5350.	3.3	101
1000	Regenerative responses following DNA damage: β-catenin mediates head regrowth in the planarian Schmidtea mediterranea. Journal of Cell Science, 2020, 133, .	1.2	3
1001	The Thyroid Hormone Inactivator Enzyme, Type 3 Deiodinase, Is Essential for Coordination of Keratinocyte Growth and Differentiation. Thyroid, 2020, 30, 1066-1078.	2.4	15
1002	Autologous Micrografts from Scalp Tissue: Trichoscopic and Long-Term Clinical Evaluation in Male and Female Androgenetic Alopecia. BioMed Research International, 2020, 2020, 1-10.	0.9	59
1003	The applied anatomy of human skin: A model for regeneration. Wound Medicine, 2020, 28, 100179.	2.7	81
1004	Ubiquitin Dynamics in Stem Cell Biology: Current Challenges and Perspectives. BioEssays, 2020, 42, 1900129.	1.2	0
1005	A combination of pyridineâ€2, 4â€dicarboxylic acid diethyl ester and resveratrol stabilizes hypoxiaâ€inducible factor 1â€alpha and improves hair density in female volunteers. International Journal of Cosmetic Science, 2020, 42, 167-173.	1.2	7

#	Article	IF	Citations
1006	L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nature Cancer, 2020, 1, 28-45.	5.7	137
1007	Hair follicle stem cells differentiation into bone cells on collagen scaffold. Cell and Tissue Banking, 2020, 21, 181-188.	0.5	8
1008	Regeneration of skin appendages and nerves: current status and further challenges. Journal of Translational Medicine, 2020, 18, 53.	1.8	79
1009	In Silico Analysis of the Age-Dependent Evolution of the Transcriptome of Mouse Skin Stem Cells. Cells, 2020, 9, 165.	1.8	4
1010	Metabolic Regulation of Tissue Stem Cells. Trends in Cell Biology, 2020, 30, 566-576.	3.6	49
1011	Cutaneous epithelial stem cells. , 2020, , 1289-1307.		0
1012	Hair follicle stem cells combined with human allogeneic acellular amniotic membrane for repair of full thickness skin defects in nude mice. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 723-735.	1.3	23
1013	Evolution of nano/submicro-scale oxide structures on Ti6Al4V achieved by an ultrasonic shot peening-induction heating approach for high-performance surface design of bone implants. Journal of Alloys and Compounds, 2020, 831, 154876.	2.8	8
1014	Systematic Review of Platelet-Rich Plasma Use in Androgenetic Alopecia Compared with Minoxidil®, Finasteride®, and Adult Stem Cell-Based Therapy. International Journal of Molecular Sciences, 2020, 21, 2702.	1.8	93
1015	Deficiency of Crif1 in hair follicle stem cells retards hair growth cycle in adult mice. PLoS ONE, 2020, 15, e0232206.	1.1	10
1016	Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. Journal of Biomedical Science, 2020, 27, 56.	2.6	2
1017	The dermal sheath: An emerging component of the hair follicle stem cell niche. Experimental Dermatology, 2021, 30, 512-521.	1.4	42
1018	Androgens downregulate BMP2 impairing the inductive role of dermal papilla cells on hair follicle stem cells differentiation. Molecular and Cellular Endocrinology, 2021, 520, 111096.	1.6	10
1019	Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Experimental Dermatology, 2021, 30, 529-545.	1.4	15
1020	Diverse cellular players orchestrate regeneration after wounding. Experimental Dermatology, 2021, 30, 605-612.	1.4	8
1021	ANXA1 affects murine hair follicle growth through EGF signaling pathway. Gene, 2021, 771, 145343.	1.0	2
1022	Highâ€resolution singleâ€cell transcriptomics reveals heterogeneity of selfâ€renewing hair follicle stem cells. Experimental Dermatology, 2021, 30, 457-471.	1.4	24
1023	Markers of Stem Cells. , 2021, , 147-175.		0

ARTICLE IF CITATIONS Histological and Immunohistochemical Examination of Stem Cell Proliferation and Reepithelialization 1024 0.2 3 in the Wounded Skin. Bio-protocol, 2021, 11, e3894. Strategies to utilize iPS cells for hair follicle regeneration and the treatment of hair loss disorders., 2021, , 1-22. Sources, Isolation and culture of stem cells?., 2021, , 23-80. 0 1026 Expansion and characterization of epithelial stem cells with potential for cyclical hair regeneration. Scientific Reports, 2021, 11, 1173. Functional hair follicle regeneration: an updated review. Signal Transduction and Targeted Therapy, 1028 7.1 78 2021, 6, 66. 3D skin models in domestic animals. Veterinary Research, 2021, 52, 21. 1.1 Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. 1030 0.8 27 Oncotarget, 2021, 12, 230-250. Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem 3.1 cells. Developmental Cell, 2021, 56, 761-780.e7. Nestin and CD34 expression in colorectal cancer predicts improved overall survival. Acta OncolÃ³gica, 1032 0.8 5 2021, 60, 727-734. The deubiquitinase Usp9x regulates PRC2-mediated chromatin reprogramming during mouse 5.8 development. Nature Communications, 2021, 12, 1865. Twist1 is required for the development of UVBâ€induced squamous cell carcinoma. Molecular 1034 1.3 9 Carcinogenesis, 2021, 60, 342-353. Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo, 2021, 12, 4. 1035 1.3 Establishment of an Efficient Primary Culture System for Human Hair Follicle Stem Cells Using the 1036 Rho-Associated Protein Kinase Inhibitor Y-27632. Frontiers in Cell and Developmental Biology, 2021, 9, 1.8 15 632882. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. 1.4 Experimental Dermatology, 2021, 30, 588-597. Chemotherapeutic Resistance Genes of Breast Cancer Patients – An Overview. Advanced 1039 2 0.6 Pharmaceutical Bulletin, 2021, , . Novel cell sources for bone regeneration. MedComm, 2021, 2, 145-174. 1041 3.1 Wound healing with topical BRAF inhibitor therapy in a diabetic model suggests tissue regenerative 1042 1.1 4 effects. PLoS ONE, 2021, 16, e0252597. Human stem cells – sources, sourcing and in vitro methods. Medical Journal of Cell Biology 1043 0.2 (discontinued), 2021, 9, 73-85.

#	Article	IF	CITATIONS
1044	Impact of adipose-derived stem cells on engineering hair follicle germ-like tissue grafts for hair regenerative medicine. Journal of Bioscience and Bioengineering, 2021, 131, 679-685.	1.1	14
1045	TMT-Based Quantitative Proteomic Analysis Reveals the Effect of Bone Marrow Derived Mesenchymal Stem Cell on Hair Follicle Regeneration. Frontiers in Pharmacology, 2021, 12, 658040.	1.6	5
1047	Epithelial cell plasticity: breaking boundaries and changing landscapes. EMBO Reports, 2021, 22, e51921.	2.0	9
1048	A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Frontiers in Cell and Developmental Biology, 2021, 9, 682143.	1.8	15
1049	Suppression of FGF5 and FGF18 Expression by Cholesterol-Modified siRNAs Promotes Hair Growth in Mice. Frontiers in Pharmacology, 2021, 12, 666860.	1.6	9
1050	The antiâ€apoptotic Bclâ€2 protein regulates hair follicle stem cell function. EMBO Reports, 2021, 22, e52301.	2.0	10
1051	Innovative method of alopecia treatment by autologous adipose-derived SVF. Stem Cell Research and Therapy, 2021, 12, 486.	2.4	14
1052	Repeated Injury Promotes Tracheobronchial Tissue Stem Cell Attrition. Stem Cells Translational Medicine, 2021, 10, 1696-1713.	1.6	8
1054	Melanocyte System for Studying Stem Cell Niche. , 2005, , 1-13.		4
1055	What Can We Learn about Breast Cancer from Stem Cells?. Advances in Experimental Medicine and Biology, 2008, 617, 17-22.	0.8	8
1056	Hair Cell Regeneration: Mechanisms Guiding Cellular Proliferation and Differentiation. , 0, , 141-197.		9
1057	An Introduction to Wnt Signaling. , 2011, , 1-18.		1
1058	Glial Nature of Adult Neural Stem Cells: Neurogenic Competence in Adult Astrocytes. , 2012, , 149-172.		10
1059	Isolation and Culture of Epithelial Stem Cells. Methods in Molecular Biology, 2009, 482, 215-232.	0.4	169
1060	Regeneration of Skin and Cornea by Tissue Engineering. Methods in Molecular Biology, 2009, 482, 233-256.	0.4	62
1061	Multipotency and Tissue-Specific Stem Cells. , 2009, , 39-55.		1
1062	The Stem State: Stemness as a State in the Cell's Life Cycle. , 2009, , 177-216.		2
1063	Multistage Carcinogenesis. , 2011, , 27-51.		4

#	Article	IF	CITATIONS
1064	Isolation and Characterization of Stem Cell-Enriched Human and Canine Hair Follicle Keratinocytes. Methods in Molecular Biology, 2012, 879, 389-401.	0.4	21
1065	Molecular Dermatology Comes of Age. Methods in Molecular Biology, 2013, 961, 1-16.	0.4	5
1067	Heterogeneity of Neural Stem Cells in theÂVentricular–Subventricular Zone. Advances in Experimental Medicine and Biology, 2019, 1169, 1-30.	0.8	2
1068	The Hair Follicle Stem Cell Niche: The Bulge and Its Environment. Pancreatic Islet Biology, 2015, , 1-26.	0.1	2
1069	Diseases of Hair. , 2009, , 1029-1059.		2
1070	Telomerase as a Potential Regulator of Tissue Progenitor Cells. , 2008, , 203-210.		2
1071	Tissue Engineering Application in General Surgery. , 2009, , 855-867.		2
1072	Skin architecture and function. , 2012, , 29-46.		1
1073	Use of Stem Cells for Regeneration of the Intervertebral Disc. , 2014, , 373-383.		2
1075	Cancer Stem Cells. , 2011, , 351-376.		1
1076	Stem Cell Niche. , 2011, , 81-101.		3
1077	Hair Follicle Stem Cells. , 2012, , 35-47.		4
1079	Structure and Function of Newborn Skin. , 2008, , 19-31.		6
1080	Stem cells: novel players in the treatment of erectile dysfunction. Asian Journal of Andrology, 2012, 14, 145-155.	0.8	33
1081	Autologous activated platelet-rich plasma (AA-PRP) and non-activated (A-PRP) in hair growth: a retrospective, blinded, randomized evaluation in androgenetic alopecia. Expert Opinion on Biological Therapy, 2020, 20, 327-337.	1.4	55
1086	Very Long-term Self-renewal of Small Intestine, Colon, and Hair Follicles from Cycling Lgr5+ve Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 351-356.	2.0	104
1087	Role of Â-catenin in Epidermal Stem Cell Expansion, Lineage Selection, and Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 503-512.	2.0	58
1088	Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice. Journal of Clinical Investigation, 2010, 120, 446-456.	3.9	31

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
1089	Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. Journal of Clinical Investigation, 2011, 121, 613-622.	3.9	258
1090	Dissecting the bulge in hair regeneration. Journal of Clinical Investigation, 2012, 122, 448-454.	3.9	74
1091	A Newly Designed Collagen-Based Bilayered Scaffold for Skin Tissue RegenerationÂ. Journal of Composites and Biodegradable Polymers, 2013, 1, 8-15.	0.3	13
1092	Promiscuous Expression of H2B-GFP Transgene in Hematopoietic Stem Cells. PLoS ONE, 2008, 3, e2357.	1.1	37
1093	A p53-Dependent Response Limits Epidermal Stem Cell Functionality and Organismal Size in Mice with Short Telomeres. PLoS ONE, 2009, 4, e4934.	1.1	67
1094	Stem Cells Propagate Their DNA by Random Segregation in the Flatworm Macrostomum lignano. PLoS ONE, 2012, 7, e30227.	1.1	14
1095	Modulatory Role of Sensory Innervation on Hair Follicle Stem Cell Progeny during Wound Healing of the Rat Skin. PLoS ONE, 2012, 7, e36421.	1.1	26
1096	Augmenting Endogenous Wnt Signaling Improves Skin Wound Healing. PLoS ONE, 2013, 8, e76883.	1.1	55
1097	Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog. PLoS ONE, 2016, 11, e0146937.	1.1	3
1098	Adult stem and transit-amplifying cell location. Histology and Histopathology, 2006, 21, 995-1027.	0.5	54
1099	Skin stem cells as an object for cryopreservation. 1. Skin stem reserve. Problems of Cryobiology and Cryomedicine, 2014, 24, 3-15.	0.3	3
1100	HOX Decoy Peptide Enhances the Ex Vivo Expansion of Human Umbilical Cord Blood CD34+ Hematopoietic Stem Cells/Hematopoietic Progenitor Cells. Stem Cells, 2006, 24, 2592-2602.	1.4	24
1101	Skin Stem Cells in Skin Cell Therapy. Journal of Skin and Stem Cell, 2015, 2, .	0.1	3
1102	Leukemic stem cells: from metabolic pathways and signaling to a new concept of drug resistance targeting Acta Biochimica Polonica, 2007, 54, 717-726.	0.3	30
1103	Green Peptide–nanomaterials; A Friendly Healing Touch for Skin Wound Regeneration. Advanced Nano Research, 2019, 2, 14-31.	0.9	3
1104	Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice. Cell Journal, 2017, 19, 259-268.	0.2	25
1105	Stem Cells of Adult Organisms in Biology and Medicine. Advances in Cell Biology, 2010, 2, 155-166.	1.5	1
1106	Wnt/FZD signaling and colorectal cancer morphogenesis. Frontiers in Bioscience - Landmark, 2007, 12, 458.	3.0	26

#	Article	IF	CITATIONS
1108	Effects of Silibinin on Hair Follicle Stem Cells Differentiation to Neural-like Cells. American Journal of Biochemistry and Molecular Biology, 2011, 1, 212-222.	0.6	8
1109	Triterpenes in the Ethanol Extract of Poria cocos Induce Dermal Papilla Cell Proliferation. International Journal of Pharmacology, 2019, 16, 1-9.	0.1	4
1110	Epigenetic regulations on skin wound healing: implications from current researches. Annals of Translational Medicine, 2015, 3, 227.	0.7	5
1111	Wound Healing: From Epidermis Culture to Tissue Engineering. CellBio, 2012, 01, 17-29.	1.3	10
1112	Hair follicle stem cells: <i>In vitro</i> and <i>in vivo</i> neural differentiation. World Journal of Stem Cells, 2015, 7, 866.	1.3	24
1113	Alkyloxy carbonyl modified hexapeptides as a high affinity compounds for Wnt5A protein in the treatment of psoriasis. Bioinformation, 2014, 10, 743-749.	0.2	22
1114	An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. ELife, 2019, 8,	2.8	9
1115	Escape of hair follicle stem cells causes stem cell exhaustion during aging. Nature Aging, 2021, 1, 889-903.	5.3	31
1116	Building and Maintaining the Skin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040840.	2.3	30
1117	Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell, 2022, 29, 70-85.e6.	5.2	33
1118	The adhesive heterogeneity of different compartments of oral mucosal rete ridges. Experimental Dermatology, 2021, , .	1.4	2
1119	Hair-raising stem cells confirmed in mouse skin. Nature, 0, , .	13.7	0
1121	WHAT'S NEW IN ORTHOPAEDIC RESEARCH. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2356-2365.	1.4	0
1122	Skin Regeneration from Multipotent Adult and Embryonic Stem Cells. , 2006, , 395-406.		0
1124	Early Fetal Healing As a Model for Adult Organ Regeneration. Tissue Engineering, 2007, .	4.9	0
1126	Stem Cells: Biology, Ethics and potential for Medicine. L'annuaire Du Collège De France, 2008, , 897-902.	0.0	0
1127	Estructura y función de la piel del recién nacido. , 2009, , 19-31.		0
1128	Mechanistic Aspects of Fetal Development Relating to Postnatal Fibre Production and Follicle Development in Ruminants. , 2009, , 121-159.		0

#	Article	IF	CITATIONS
1129	Endokrinologische Störungen an Haut und Haaren. , 2009, , 419-441.		0
1130	Epithelial Stem Cells and the Development of the Thymus, Parathyroid, and Skin. , 2009, , 405-437.		0
1131	Cancer Stem Cells and Skin Cancer. , 2009, , 251-267.		1
1132	Development of the Neuroendocrine Leydig Cells. Advances in Anatomy, Embryology and Cell Biology, 2009, , 49-87.	1.0	1
1134	Sebaceous cell carcinoma. , 2010, , 396-407.		0
1135	Future Directions: Bioengineering the Hair Follicle. , 2010, , 239-248.		1
1136	Dermabrasion, Laser Resurfacing, and Photorejuvenation for Prevention of Non-Melanoma Skin Cancer. , 2010, , 205-210.		0
1137	Future Directions: The Known and Unknown Roles of Hair-Follicle Stem Cell Types. , 2010, , 233-238.		0
1139	Skin Anatomy. , 2011, , 1-10.		0
1140	Hepatic Progenitors in Development and Transplantation. Molecular Pathology Library, 2011, , 225-241.	0.1	Ο
1141	Hair Anatomy and Histology. Series in Cosmetic and Laser Therapy, 2010, , 1-35.	0.0	0
1142	The Biological Impact of Radiation Exposure on Breast Cancer Development. , 2011, , 185-203.		Ο
1143	Clinical Application of Autologous Epithelial Stem Cells in Disorders of Squamous Epithelia. Pancreatic Islet Biology, 2011, , 45-53.	0.1	0
1144	Structure and Development of the Skin and Cutaneous Appendages. , 2011, , 671-679.		0
1145	Advances and Applications in Stem Cell Biology. Journal of Postgraduate Medicine Education and Research, 2012, 46, 75-80.	0.1	0
1146	Bio-Engineered Mesenchymal Stromal Cell (MSCs) Grafts for Skin Repair/ Regeneration - Preclinical Aspects. Journal of Regenerative Medicine, 2012, 02, .	0.1	2
1147	The tortoise and the hare?: Two distinct intestinal stem cell populations. Inflammation and Regeneration, 2012, 32, 048-052.	1.5	0
1148	Gene Expression of Cancer Stem Cell in Oral Squamous Cell Carcinoma. Dental Medicine Research, 2012, 32, 81-89.	0.1	0

#	Article	IF	Citations
1149	TGF-β1 Expression by Proliferated Keratinocytes in the Skin of E-Irradiated Mice. Journal of Life Science, 2012, 22, 133-141.	0.2	0
1150	Hair Follicle: A Novel Source of Stem Cells for Cell and Gene Therapy. , 2013, , 97-118.		0
1151	Stem Cell Niche. , 2013, , 79-106.		2
1152	LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy. Proceedings of SPIE, 2013, , .	0.8	0
1153	Molecular Signals Underlying Hair Follicle Morphogenesis and Cutaneous Regeneration. , 2014, , 89-100.		0
1154	Molecular Aspects of Sebaceous Differentiation. , 2014, , 19-26.		2
1155	Extensive Characterization of Stem Cells Derived from Skin. , 2014, , 335-342.		0
1157	Aging of Epidermal Stem Cells. , 2015, , 1-14.		0
1158	Recent Advances in Image-Based Stem-Cell Labeling and Tracking, and Scaffold-Based Organ Development in Cardiovascular Disease. Recent Patents on Medical Imaging, 2015, 4, 110-126.	0.1	1
1159	Properties and clinical application of human amniotic epithelial cells (HAEC). Current Gynecologic Oncology, 2015, 13, 123-135.	0.1	1
1160	Promises and Challenges of Adult Stem Cells in Cancer Therapy. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2015, 15, 138-144.	0.5	0
1161	Hair Follicles. , 2016, , 203-211.		1
1162	Use of Stem Cells in Acute and Complex Wounds. Stem Cells in Clinical Applications, 2017, , 195-226.	0.4	2
1163	Proliferation and Differentiation of Human Hair Follicle Stem Cells on Chitosan-Skin Engineered Template in Vitro. International Journal on Advanced Science, Engineering and Information Technology, 2017, 7, 42.	0.2	0
1164	KIL FOLİKÜLÜ GELİŞİMİ ÜZERİNE ETKİLİ GENLER. Mehmet Akif Ersoy Üniversitesi Veteriner Fa 2017, 2, 61-73.	akültesi 0.0	Dergisi,
1165	Identification of Bulge Stem Cells in Mouse and Human Hair Follicles. Microscopy Research, 2018, 06, 19-29.	0.3	4
1166	Epidermal Stem Cells and Dermal–Epidermal Junction. Comprehensive Series in Photochemical and Photobiological Sciences, 2019, , 167-194.	0.3	1
1168	Skin Anatomy. , 2020, , 1-12.		0

#	Article	IF	Citations
1171	Single-cell analysis defines the lineage plasticity of stem cells in cervix epithelium. Cell Regeneration, 2021, 10, 36.	1.1	8
1172	Skin Architecture and Function. , 2020, , 27-40.		0
1174	Hair Follicle Stem Cells and Hair Regeneration. , 2020, , 265-296.		1
1175	Isolation, Cultivation, and Morphological Characteristics of Hair Follicle Adult Stem Cells in the Bulge Region in Mouse and Human. Microscopy Research, 2020, 08, 9-30.	0.3	1
1176	Hair Follicle Stem Cells and Hair Regeneration. , 2020, , 1-32.		0
1178	An integrating concept of malignant progression in colorectal cancer. , 0, , 271-284.		0
1180	Tissue Engineering – Combining Cells and Biomaterials into Functional Tissues. , 2008, , 193-214.		0
1181	Spatio-temporal regulation of gene expression defines subpopulations of epidermal stem cells. Biochemical Society Transactions, 2020, 48, 2839-2850.	1.6	1
1182	Neuronal differentiation of rat hair follicle stem cells: the involvement of the neuroprotective factor Seladin-1 (DHCR24). Iranian Biomedical Journal, 2014, 18, 136-42.	0.4	4
1183	Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review. Iranian Journal of Public Health, 2017, 46, 1167-1175.	0.3	13
1184	Discovery of a stem-like multipotent cell fate. American Journal of Stem Cells, 2018, 7, 25-37.	0.4	1
1185	Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science, 2021, 374, eabh2444.	6.0	56
1186	The neuroprotective properties and therapeutic potential of epidermal neural crest stem cells transplantation in a rat model of vascular dementia. Brain Research, 2022, 1776, 147750.	1.1	8
1187	Aryl Hydrocarbon Receptor Controls Skin Homeostasis, Regeneration, and Hair Follicle Cycling by Adjusting Epidermal Stem Cell Function. Stem Cells, 2021, 39, 1733-1750.	1.4	12
1188	Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review. Life, 2022, 12, 117.	1.1	7
1189	Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology. Biocell, 2022, 46, 1157-1162.	0.4	3
1190	KLHL24-Mediated Hair Follicle Stem Cells Structural Disruption Causes Alopecia. Journal of Investigative Dermatology, 2022, 142, 2079-2087.e8.	0.3	3
1191	Efficient Gammaâ€Retroviral Transduction of Primary Human Skin Cells Using the EFâ€c Peptide as a Transduction Enhancer. Current Protocols, 2022, 2, e353.	1.3	1

#	Article	IF	CITATIONS
1192	Transplantation of intestinal organoids into a mouse model of colitis. Nature Protocols, 2022, 17, 649-671.	5.5	39
1193	Cyclinâ€dependent kinase 4 expression alters the number of keratinocyte stem cells in the mouse hair follicle. Cell Biology International, 2022, 46, 737-746.	1.4	1
1194	Role of peptide growth factors in the rhythm of change hair. Vestnik Dermatologii I Venerologii, 2015, 91, 54-61.	0.2	0
1195	Cellular Heterogeneity and Plasticity of Skin Epithelial Cells in Wound Healing and Tumorigenesis. Stem Cell Reviews and Reports, 2022, 18, 1912-1925.	1.7	8
1196	Spatial discordances between mRNAs and proteins in the intestinal epithelium. Nature Metabolism, 2021, 3, 1680-1693.	5.1	25
1197	Keratinocyte Stem Cells: Role in Aging. , 0, , .		0
1198	Adaptive multiâ€degreeâ€ofâ€freedom in situ bioprinting robot for hairâ€follicleâ€inclusive skin repair: A preliminary study conducted in mice. Bioengineering and Translational Medicine, 2022, 7, .	3.9	21
1199	Thymic stromal lymphopoietin controls hair growth. Stem Cell Reports, 2022, 17, 649-663.	2.3	4
1200	Disparate progenitor cell populations contribute to maintenance and repair neurogenesis in the zebrafish olfactory epithelium. Cell and Tissue Research, 2022, 388, 331-358.	1.5	2
1201	Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics, 2022, 14, 612.	2.0	12
1202	Depilatory laser miniaturizes hair by inducing bystander dermal papilla cell necrosis through thermal diffusion. Lasers in Surgery and Medicine, 2022, , .	1.1	0
1203	ROCK â€~n TOR: An Outlook on Keratinocyte Stem Cell Expansion in Regenerative Medicine via Protein Kinase Inhibition. Cells, 2022, 11, 1130.	1.8	4
1204	Regenerative nutrition and gut microbiota signaling in skeletal muscle metabolism: a concise systematic review. International Journal of Nutrology, 2022, 15, .	0.0	0
1205	Single-Cell Transcriptomics Reveals the Molecular Anatomy of Sheep Hair Follicle Heterogeneity and Wool Curvature. Frontiers in Cell and Developmental Biology, 2021, 9, 800157.	1.8	11
1206	Calcium Signaling in the Photodamaged Skin: In Vivo Experiments and Mathematical Modeling. Function, 2021, 3, zqab064.	1.1	9
1207	Regulation of signaling pathways in hair follicle stem cells. Burns and Trauma, 2022, 10, .	2.3	17
1208	β-Catenin Signaling Evokes Hair Follicle Senescence by Accelerating the Differentiation of Hair Follicle Mesenchymal Progenitors. Frontiers in Cell and Developmental Biology, 2022, 10, 839519.	1.8	6
1221	The Functions of PCNA in Tumor Stemness and Invasion. International Journal of Molecular Sciences, 2022, 23, 5679.	1.8	4

ARTICLE IF CITATIONS # The stem cell quiescence and niche signaling is disturbed in the hair follicle of the hairpoor mouse, 1222 2.4 1 an MUHH model mouse. Stem Cell Research and Therapy, 2022, 13, . Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. 1.8 Frontiers in Cell and Developmental Biology, 2022, 10, . Stem Cell Biology: Structure and Function – The Adult Stem Cell Niche: Multiple Cellular Players in 1224 0 Tissue Homeostasis and Regeneration., 2022,,. 100 plus years of stem cell researchâ€"20 years of ISSCR. Stem Cell Reports, 2022, 17, 1248-1267. Foxp1 and Foxp4 Deletion Causes the Loss of Follicle Stem Cell Niche and Cyclic Hair Shedding by 1226 1.4 2 Inducing Inner Bulge Cell Apoptosis. Stem Cells, 2022, 40, 843-856. Impaired differentiation potential of CD34-positive cells derived from mouse hair follicles after 1.6 long-term culture. Scientific Reports, 2022, 12, . BMP-AKT-GSK3Î² Signaling Restores Hair Follicle Stem Cells Decrease Associated with Loss of 1228 1.4 5 <i>Sfrp1</i>. Stem Cells, 2022, 40, 802-817. Global Research Status and Trends in Hair Follicle Stem Cells: a Bibliometric Analysis. Stem Cell 1229 1.7 Reviews and Reports, O, , . S100A6 as a Constituent and Potential Marker of Adult and Cancer Stem Cells. Stem Cell Reviews and 1230 2 1.7 Reports, O, , . Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Frontiers in Cell 1.8 and Developmental Biology, 0, 10, Thy1 marks a distinct population of slow-cycling stem cells in the mouse epidermis. Nature 1233 7 5.8 Communications, 2022, 13, . The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem 1234 5.2 Cell, 2022, 29, 1315-1332.e9. ROR2 regulates self-renewal and maintenance of hair follicle stem cells. Nature Communications, 1235 5.8 5 2022, 13, . Biofabrication of Human Skin with Its Appendages. Advanced Healthcare Materials, 2022, 11, . 1236 Corneal regeneration: insights in epithelial stem cell heterogeneity and dynamics. Current Opinion in 1237 1.5 4 Genetics and Development, 2022, 77, 101981. Wound-Induced Hair Neogenesis: A Portal to the Development of New Therapies for Hair Loss and Wound Regeneration. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041239. MicroRNA-148a Controls Epidermal and Hair Follicle Stem/Progenitor Cells by Modulating the 1239 0.3 1 Activities of ROCK1 and ELF5. Journal of Investigative Dermatology, 2023, 143, 480-491.e5. Cucurbitacin promotes hair growth in mice by inhibiting the expression of fibroblast growth factor 1240 18. Annals of Translational Medicine, 2022, 10, 1104-1104.

ARTICLE IF CITATIONS # Ox40-Cre–mediated deletion of BRD4 reveals an unexpected phenotype of hair follicle stem cells in 1241 2.3 1 alopecia. JCI Insight, 2022, 7, . Increased CD34 in pancreatic islet negatively predict islet $\hat{1}^2$ -cell decrease in type1 diabetes model. 1242 1.3 Frontiers in Physiology, 0, 13, . Single-cell analysis reveals distinct functional heterogeneity of CD34+ cells in anagen wound and 1245 1.0 2 diabetic wound. Biochemical and Biophysical Research Communications, 2023, 639, 9-19. Delayed hair cycle in mnd2 mutant mice lacking HtrA2 serine protease activity. Biochemical and 1246 1.0 Biophysical Research Communications, 2023, 641, 102-109. Prediction of Diagnostic Gene Biomarkers Associated with Immune Infiltration for Basal Cell 1247 0.8 2 Carcinoma. Clinical, Cosmetic and Investigational Dermatology, 0, Volume 15, 2657-2673. SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes. 1248 5.6 Advanced Science, 2023, 10, . Crosstalk between cancer stem cells and the tumor microenvironment drives progression of 1249 1.2 2 premalignant oral epithelium. Frontiers in Oral Health, 0, 3, . The Long Telling Story of "Endothelial Progenitor Cells†Where Are We at Now?. Cells, 2023, 12, 112. 1250 1.8 Regulation and functions of cell division in the intestinal tissue. Seminars in Cell and Developmental 1251 2.3 3 Biology, 2023, 150-151, 3-14. Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. 4.6 Nature Cell Biology, 0, , . Sports nutrology and gut microbiota. International Journal of Nutrology, 2023, 16, . 1253 0 0.0 Sustitutos cutÃ; neos desarrollados por ingenierÃa de tejidos. latreia, 2012, 25, . 1254 0.1 Further Characterization of Multi-Organ DEARE and Protection by 16,16 Dimethyl Prostaglandin E2 in a 1255 0.7 1 Mouse Model of the Hematopoietic Acute Radiation Syndrome. Radiation Research, 2023, 199, . Aging of hair follicle stem cells and their niches. BMB Reports, 2023, 56, 2-9. 1.1 Multi-Omics Approaches for Revealing the Epigenetic Regulation of Histone H3.1 during Spermatogonial Stem Cell Differentiation In Vitro. International Journal of Molecular Sciences, 2023, 1259 1.8 1 24, 3314. Expansion Culture of Hair Follicle Stem Cells through Uniform Aggregation in Microwell Array 1260 Devices. ACS Biomaterials Science and Engineering, 2023, 9, 1510-1519. The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine 1261 5.84 methylome. Nature Communications, 2023, 14, . Greener Grass: The Modern History of Epithelial Stem Cell Innovation. Life, 2023, 13, 688. 1.1

#	Article	IF	CITATIONS
1263	Human Hematopoietic Stem/Progenitor Cells in Type One Diabetes Mellitus Treatment: Is There an Ideal Candidate?. Cells, 2023, 12, 1054.	1.8	0
1264	Stem Cells and Hair Follicle Cloning/Engineering. , 2023, , 639-663.		0
1265	Innovative Approaches and Advances for Hair Follicle Regeneration. ACS Biomaterials Science and Engineering, 2023, 9, 2251-2276.	2.6	5
1279	Cutaneous homeostasis: a balancing cross-talk between epidermal stem cell pool and regulatory pathways. , 2024, , 67-85.		0
1281	Local and systemic mechanisms that control the hair follicle stem cell niche. Nature Reviews Molecular Cell Biology, 0, , .	16.1	2
1288	Stem Cells and Regenerative Strategies for Wound Healing: Therapeutic and Clinical Implications. Current Pharmacology Reports, 2024, 10, 121-144.	1.5	0
1292	Characterization of the Newborn Epidermis and Adult Hair Follicles Using Whole-Mount Immunofluorescent Staining of Mouse Dorsal Skin. Methods in Molecular Biology, 2024, , .	0.4	0
1300	Stem Cells and Extracellular Vesicles in Epithelial Repair: Hints for Improving Chronic Wound Healing. , 2024, , .		0