Mechanical Properties of a Reversible, DNA-Crosslinke

Journal of Biomechanical Engineering 126, 104-110 DOI: 10.1115/1.1645529

Citation Report

#	Article	IF	CITATIONS
1	Molecular Modeling as a Visualization Tool in Design of DNA Crosslinked Polyacrylamide. , 2004, , 261.		1
2	Using DNA to assemble and power the nanoworld. , 2005, 5592, 82.		1
3	Cluster aggregation and fragmentation kinetics model for gelation. Journal of Colloid and Interface Science, 2005, 291, 375-387.	5.0	11
4	Nucleobase-Containing Gelators. Topics in Current Chemistry, 2005, 256, 133-165.	4.0	126
5	Macro- and Micro-Scale Probing of the Mechanical Properties of DNA-Crosslinked Gels Using Embedded Inclusions. Materials Research Society Symposia Proceedings, 2005, 897, 1.	0.1	0
6	Force-displacement relationships for spherical inclusions in finite elastic media. Journal of Applied Physics, 2005, 97, 043510.	1.1	12
7	Inducing Reversible Stiffness Changes in DNA-crosslinked Gels. Journal of Materials Research, 2005, 20, 1456-1464.	1.2	70
8	Use of Rigid Spherical Inclusions in Young's Moduli Determination: Application to DNA-Crosslinked Gels. Journal of Biomechanical Engineering, 2005, 127, 571-579.	0.6	25
9	DNA as a Programmable Viscoelastic Nanoelement. Biophysical Journal, 2005, 89, 3846-3855.	0.2	10
10	Cellular mechanotransduction: putting all the pieces together again. FASEB Journal, 2006, 20, 811-827.	0.2	1,428
11	Enzyme-catalysed assembly of DNA hydrogel. Nature Materials, 2006, 5, 797-801.	13.3	713
12	Impedance of a sphere oscillating in an elastic medium with and without slip. Journal of the Acoustical Society of America, 2006, 119, 2062-2066.	0.5	13
13	DNA meets synthetic polymers—highly versatile hybrid materials. Organic and Biomolecular Chemistry, 2007, 5, 1311-1320.	1.5	173
14	Dynamically Restructuring Hydrogel Networks Formed with Reversible Covalent Crosslinks. Advanced Materials, 2007, 19, 2503-2507.	11.1	202
15	Controlled Trapping and Release of Quantum Dots in a DNAâ€Switchable Hydrogel. Small, 2007, 3, 1688-1693.	5.2	148
16	Activation of Mechanosensitive Ion Channels by Forces Transmitted Through Integrins and the Cytoskeleton. Current Topics in Membranes, 2007, , 59-85.	0.5	14
17	Micromechanical control of cell and tissue development: Implications for tissue engineeringâ [^] †. Advanced Drug Delivery Reviews, 2007, 59, 1306-1318.	6.6	192
18	Towards biomedical applications for nucleic acid nanodevices. Nanomedicine, 2007, 2, 817-830.	1.7	85

ATION REDO

#	Article	IF	CITATIONS
19	From Molecular Cell Engineering to Biologically Inspired Engineering. Cellular and Molecular Bioengineering, 2008, 1, 51-57.	1.0	5
20	Functional Modulation of ES-Derived Hepatocyte Lineage Cells via Substrate Compliance Alteration. Annals of Biomedical Engineering, 2008, 36, 865-876.	1.3	30
21	Neurite Outgrowth on a DNA Crosslinked Hydrogel with Tunable Stiffnesses. Annals of Biomedical Engineering, 2008, 36, 1565-1579.	1.3	120
22	Capture and Release of Protein by a Reversible DNAâ€Induced Sol–Gel Transition System. Angewandte Chemie - International Edition, 2008, 47, 331-333.	7.2	109
24	New materials for tissue engineering: towards greater control over the biological response. Trends in Biotechnology, 2008, 26, 382-392.	4.9	279
25	Engineering Target-Responsive Hydrogels Based on Aptamerâ^'Target Interactions. Journal of the American Chemical Society, 2008, 130, 6320-6321.	6.6	324
26	Electric-field-induced displacement of charged spherical colloids in compressible hydrogels. Soft Matter, 2008, 4, 1048.	1.2	16
27	Study of Impact-Induced Mechanical Effects in Cell Direct Writing Using Smooth Particle Hydrodynamic Method. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008, 130, .	1.3	72
28	Modeling of Bubble Expansion-Induced Cell Mechanical Profile in Laser-Assisted Cell Direct Writing. , 2008, , .		0
29	Complete mechanical characterization of soft media using nonspherical rods. Journal of Applied Physics, 2009, 106, 63528.	1.1	12
30	A Nonintrusive Method of Measuring the Local Mechanical Properties of Soft Hydrogels Using Magnetic Microneedles. Journal of Biomechanical Engineering, 2009, 131, 021014.	0.6	19
31	Modeling of Bubble Expansion-Induced Cell Mechanical Profile in Laser-Assisted Cell Direct Writing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 131, .	1.3	48
32	A cell-free protein-producing gel. Nature Materials, 2009, 8, 432-437.	13.3	287
33	Nucleic Acid Therapeutic Carriers with On-Demand Triggered Release. Bioconjugate Chemistry, 2009, 20, 1773-1782.	1.8	17
34	A new trinuclear Cu(ii) complex of inositol as a hydrogelator. Chemical Communications, 2009, , 2341.	2.2	38
35	DNA nanomedicine: Engineering DNA as a polymer for therapeutic and diagnostic applications. Advanced Drug Delivery Reviews, 2010, 62, 606-616.	6.6	88
36	The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel. Biomaterials, 2010, 31, 1199-1212.	5.7	66
39	An Aptamer Crossâ€Linked Hydrogel as a Colorimetric Platform for Visual Detection. Angewandte Chemie - International Edition, 2010, 49, 1052-1056.	7.2	328

#	Article	IF	CITATIONS
40	Nucleic Acid/Organic Polymer Hybrid Materials: Synthesis, Superstructures, and Applications. Angewandte Chemie - International Edition, 2010, 49, 8574-8587.	7.2	136
41	Chemo-electro-mechanical modeling of ionic-strength-sensitive hydrogel: Influence of Young's modulus. International Journal of Solids and Structures, 2010, 47, 3141-3149.	1.3	23
42	Simultaneous determination of Young's modulus, shear modulus, and Poisson's ratio of soft hydrogels. Journal of Materials Research, 2010, 25, 545-555.	1.2	51
43	Effect of Dynamic Stiffness of the Substrates on Neurite Outgrowth by Using a DNA-Crosslinked Hydrogel. Tissue Engineering - Part A, 2010, 16, 1873-1889.	1.6	68
44	Biomolecule-Responsive Hydrogels. , 2010, , 65-86.		8
45	Responsive Hydrogels for Label-Free Signal Transduction within Biosensors. Sensors, 2010, 10, 4381-4409.	2.1	74
46	Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chemical Communications, 2010, 46, 6308.	2.2	67
47	Adaptive DNA-based materials for switching, sensing, and logic devices. Journal of Materials Chemistry, 2011, 21, 6113.	6.7	26
48	Logic swelling response of DNA–polymer hybrid hydrogel. Soft Matter, 2011, 7, 4615.	1.2	38
49	Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter, 2011, 7, 6757.	1.2	170
50	DNA-based switchable devices and materials. NPG Asia Materials, 2011, 3, 109-114.	3.8	101
51	Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology, 2011, 22, 494011.	1.3	36
52	Biologically modified hydrogels for chemical and biochemical analysis. Analyst, The, 2011, 136, 3410.	1.7	11
53	Engineering DNA-based functional materials. Chemical Society Reviews, 2011, 40, 5730.	18.7	263
54	Photoresponsive DNA-Cross-Linked Hydrogels for Controllable Release and Cancer Therapy. Langmuir, 2011, 27, 399-408.	1.6	165
55	Development of DNA Based Active Macro–Materials for Biology and Medicine: A Review. , 2011, , .		1
56	Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry, 2011, 3, 103-113.	6.6	1,531
58	Dynamic rheology studies of in situ polymerization process of polyacrylamide–cellulose nanocrystal composite hydrogels. Colloid and Polymer Science, 2011, 289, 247-255.	1.0	63

#	Article	IF	CITATIONS
59	Controlling forces and pathways in selfâ€assembly using viruses and DNA. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 282-297.	3.3	10
60	Selfâ€Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness. Advanced Materials, 2011, 23, 1117-1121.	11.1	363
61	Selfâ€healing biomaterials. Journal of Biomedical Materials Research - Part A, 2011, 96A, 492-506.	2.1	166
63	Nucleic Acid Based Molecular Devices. Angewandte Chemie - International Edition, 2011, 50, 3124-3156.	7.2	527
64	A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids and Surfaces B: Biointerfaces, 2011, 84, 155-162.	2.5	215
65	Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Journal of Colloid and Interface Science, 2011, 353, 116-123.	5.0	256
66	DNA-Based Soft Phases. Topics in Current Chemistry, 2011, 318, 225-279.	4.0	29
67	Mechanical Properties of DNA-Crosslinked Polyacrylamide Hydrogels with Increasing Crosslinker Density. BioResearch Open Access, 2012, 1, 256-259.	2.6	11
68	DNA-Grafted Polypeptide Molecular Bottlebrush Prepared via Ring-Opening Polymerization and Click Chemistry. Macromolecules, 2012, 45, 9579-9584.	2.2	51
69	Synthetic mammalian gene networks as a blueprint for the design of interactive biohybrid materials. Chemical Society Reviews, 2012, 41, 1000-1018.	18.7	29
70	Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Progress in Polymer Science, 2012, 37, 1105-1129.	11.8	104
71	Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Communications, 2012, 3, 792.	5.8	574
72	Fibroblast Morphology on Dynamic Softening of Hydrogels. Annals of Biomedical Engineering, 2012, 40, 1061-1072.	1.3	19
73	Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy. Analytical and Bioanalytical Chemistry, 2012, 402, 187-194.	1.9	52
74	A Triggered DNA Hydrogel Cover to Envelop and Release Single Cells. Advanced Materials, 2013, 25, 4714-4717.	11.1	122
75	Strand displacement in DNA-based materials systems. Soft Matter, 2013, 9, 11160.	1.2	22
76	Hydrogel based QCM aptasensor for detection of avian influenzavirus. Biosensors and Bioelectronics, 2013, 42, 148-155.	5.3	195
77	Self-assembly for the synthesis of functional biomaterials. Acta Materialia, 2013, 61, 912-930.	3.8	209

#	Article	IF	CITATIONS
78	Responsive DNAâ€Based Hydrogels and Their Applications. Macromolecular Rapid Communications, 2013, 34, 1271-1283.	2.0	129
80	Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods, 2013, 64, 292-298.	1.9	43
81	Fluorescent DNA Hydrogels Composed of Nucleic Acid‣tabilized Silver Nanoclusters. Small, 2013, 9, 3748-3752.	5.2	69
82	On the Composition of Signals in Gellular Automata. , 2014, , .		5
83	DNA-templated assembly of viral protein hydrogel. Nanoscale, 2014, 6, 14627-14629.	2.8	3
84	Programmable polymer-DNA hydrogels with dual input and multiscale responses. Biomaterials Science, 2014, 2, 203-211.	2.6	27
85	Molecular Robots with Sensors and Intelligence. Accounts of Chemical Research, 2014, 47, 1681-1690.	7.6	179
86	Preparation of DNA-crosslinked Polyacrylamide Hydrogels. Journal of Visualized Experiments, 2014, , .	0.2	1
87	Rapid and Label-free Detection of Avian Influenza Virus H5N1 using a Target-responsive Hydrogel based Fluorescence Aptasensor. , 2015, , .		0
88	Hydrogels with dynamically tunable properties. , 2015, , 90-109.		1
89	Swelling Dynamics of a DNA-Polymer Hybrid Hydrogel Prepared Using Polyethylene Glycol as a Porogen. Gels, 2015, 1, 219-234.	2.1	9
90	3D Printing with Nucleic Acid Adhesives. ACS Biomaterials Science and Engineering, 2015, 1, 19-26.	2.6	23
91	Self-assembling amphiphilic poly(propargyl methacrylate) grafted DNA copolymers into multi-strand helices. Soft Matter, 2015, 11, 5610-5613.	1.2	8
92	Chemical and physical aspects of self-healing materials. Progress in Polymer Science, 2015, 49-50, 34-59.	11.8	375
93	Aptamer-Based Hydrogels and Their Applications. , 2015, , 163-195.		2
94	Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. Biomaterials, 2015, 53, 545-553.	5.7	49
95	Integration of Switchable DNA-Based Hydrogels with Surfaces by the Hybridization Chain Reaction. Nano Letters, 2015, 15, 7773-7778.	4.5	138
96	Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6274-83.	3.3	195

ARTICLE

 $_{97}$ Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

98	Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Scientific Reports, 2016, 6, 37217.	1.6	107
99	A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1. Sensors and Actuators B: Chemical, 2016, 234, 98-108.	4.0	72
100	Bioresponsive DNA-co-polymer hydrogels for fabrication of sensors. Current Opinion in Colloid and Interface Science, 2016, 26, 1-8.	3.4	21
101	Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomaterials Science, 2016, 4, 1535-1553.	2.6	54
102	The design of reversible hydrogels to capture extracellular matrix dynamics. Nature Reviews Materials, 2016, 1, .	23.3	554
104	Injectable Hydrogels for Neural Tissue Regeneration. , 2016, , 303-353.		1
105	Reversible Gel–Sol Transition of a Photoâ€Responsive DNA Gel. ChemBioChem, 2016, 17, 1118-1121.	1.3	31
106	Fabrication and characterization of doubleâ€network agarose/polyacrylamide nanofibers by electrospinning. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
107	Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 22-39.	1.9	37
108	Bioresponsive DNA Hydrogels: Beyond the Conventional Stimuli Responsiveness. Accounts of Chemical Research, 2017, 50, 733-739.	7.6	186
109	Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair. Materials Science and Engineering C, 2017, 75, 385-392.	3.8	57
110	Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chemical Engineering Journal, 2017, 317, 119-131.	6.6	113
111	Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium. ACS Synthetic Biology, 2017, 6, 1774-1783.	1.9	33
112	Supramolecular Hydrogels Based on DNA Self-Assembly. Accounts of Chemical Research, 2017, 50, 659-668.	7.6	281
113	Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies. Current Opinion in Biomedical Engineering, 2017, 4, 13-20.	1.8	19
114	DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science, 2017, 357, 1126-1130.	6.0	331
115	Tuning phase and aging of DNA hydrogels through molecular design. Soft Matter, 2017, 13, 5421-5427.	1.2	42

		CITATION R	EPORT	
#	Article		IF	CITATIONS
116	Dynamics of Mechanosensitive Neural Stem Cell Differentiation. Stem Cells, 2017, 35,	497-506.	1.4	122
117	Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Polymer Science, 2017, 65, 53-82.	Progress in	11.8	149
118	Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers, 20	17, 9, 364.	2.0	286
119	Programmable hydrogels. Biomaterials, 2018, 178, 663-680.		5.7	73
120	Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydrate Poly 193, 228-238.	, sodium mers, 2018,	5.1	98
121	How to Construct DNA Hydrogels for Environmental Applications: Advanced Water Trea Environmental Analysis. Small, 2018, 14, e1703305.	atment and	5.2	59
122	Manufacturing of an electrochemical biosensing platform based on hybrid DNA hydrogo cancer-specific miR-21 as an example. Biosensors and Bioelectronics, 2018, 103, 1-5.	શે: Taking lung	5.3	80
123	Complications and Treatment Strategy After Breast Augmentation by Polyacrylamide H Injection: Summary of 10-Year Clinical Experience. Aesthetic Plastic Surgery, 2018, 42, 4	ydrogel 402-409.	O.5	38
124	The role of titanium dioxide on the morphology, microstructure, and bioactivity of graft cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Inte Journal of Biological Macromolecules, 2018, 106, 481-488.	ed rnational	3.6	36
125	DNA-based materials as self-assembling scaffolds for interfacing with cells. , 2018, , 157	?-175.		3
126	Modular DNA strand-displacement controllers for directing material expansion. Nature Communications, 2018, 9, 3766.		5.8	82
127	Elastic Modulus Measurement of Hydrogels. Polymers and Polymeric Composites, 2018	s, , 1-21.	0.6	8
128	Hydrogels, DNA, and RNA polypeptides for the preparation of biomaterials. , 2018, , 85-	104.		8
129	Stiffness memory of indirectly 3D-printed elastomer nanohybrid regulates chondrogene osteogenesis of human mesenchymal stem cells. Biomaterials, 2018, 186, 64-79.	esis and	5.7	46
130	Development of a simple coarse-grained DNA model for analysis of oligonucleotide com formation. Molecular Simulation, 2018, 44, 1004-1015.	ıplex	0.9	6
131	DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. Adv Therapeutics, 2018, 1, 1800042.	vanced	1.6	61
132	Selfâ€Healing of Polymers via Supramolecular Chemistry. Advanced Materials Interface	s, 2018, 5, 1800384.	1.9	132
133	Computational modeling of the large deformation and flow of viscoelastic polymers. Co Mechanics, 2019, 63, 725-745.	omputational	2.2	13

#	Article	IF	CITATIONS
134	Digital Maskless Photolithographic Patterning of DNA-Functionalized Poly(ethylene glycol) Diacrylate Hydrogels with Visible Light Enabling Photodirected Release of Oligonucleotides. ACS Macro Letters, 2019, 8, 1133-1140.	2.3	19
135	Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chemical Reviews, 2019, 119, 6326-6369.	23.0	506
136	Soft Robotics Programmed with Double Crosslinking DNA Hydrogels. Advanced Functional Materials, 2019, 29, 1905911.	7.8	62
137	Complementary-DNA-Strand Cross-Linked Polyacrylamide Hydrogels. Macromolecules, 2019, 52, 6683-6697.	2.2	16
138	Programmable CRISPR-responsive smart materials. Science, 2019, 365, 780-785.	6.0	248
139	Cellular responses to beating hydrogels to investigate mechanotransduction. Nature Communications, 2019, 10, 4027.	5.8	60
140	Emerging applications of peptide–oligonucleotide conjugates: bioactive scaffolds, self-assembling systems, and hybrid nanomaterials. Organic and Biomolecular Chemistry, 2019, 17, 1668-1682.	1.5	49
141	Controlling Matter at the Molecular Scale with DNA Circuits. Annual Review of Biomedical Engineering, 2019, 21, 469-493.	5.7	45
142	Programmable reactions and diffusion using DNA for pattern formation in hydrogel medium. Molecular Systems Design and Engineering, 2019, 4, 639-643.	1.7	17
143	Self-assembly design and synthesis of pulp fiber–graphene for flexible and high performance electrode based on polyacrylamide. New Journal of Chemistry, 2019, 43, 6394-6403.	1.4	3
144	Dynamically Programmed Switchable DNA Hydrogels Based on a DNA Circuit Mechanism. Small, 2019, 15, e1900490.	5.2	42
145	Thermoresponsive Stiffness Softening of Hierarchically Porous Nanohybrid Membranes Promotes Niches for Mesenchymal Stem Cell Differentiation. Advanced Healthcare Materials, 2019, 8, e1801556.	3.9	12
146	Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomaterialia, 2019, 88, 15-31.	4.1	127
147	From DNA Nanotechnology to Material Systems Engineering. Advanced Materials, 2019, 31, e1806294.	11.1	119
148	Solution radical polymerization. , 2019, , 95-174.		1
149	Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 6705-6736.	2.9	59
150	Elastic Modulus Measurement of Hydrogels. Polymers and Polymeric Composites, 2019, , 865-884.	0.6	9
151	Design strategies for programmable oligonucleotide nanotherapeutics. Drug Discovery Today, 2020, 25, 73-88.	3.2	7

#	Article	IF	CITATIONS
152	Stimuliâ€Responsive Biomaterials for Vaccines and Immunotherapeutic Applications. Advanced Therapeutics, 2020, 3, 2000129.	1.6	27
153	Preparation of intelligent DNA hydrogel and its applications in biosensing. European Polymer Journal, 2020, 137, 109951.	2.6	43
154	Breast reconstruction after complications following breast augmentation with massive filler injections. Medicine (United States), 2020, 99, e21516.	0.4	3
155	Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine, 2020, 15, 2287-2309.	1.7	6
156	Tailoring DNA Self-assembly to Build Hydrogels. Topics in Current Chemistry, 2020, 378, 32.	3.0	25
157	Viscoelastic and thermoreversible networks crosslinked by non-covalent interactions between "clickable―nucleic acid oligomers and DNA. Polymer Chemistry, 2020, 11, 2959-2968.	1.9	12
158	Programmable patterns in a DNA-based reaction–diffusion system. Soft Matter, 2020, 16, 3555-3563.	1.2	17
159	Photolithographic shape control of DNA hydrogels by photo-activated self-assembly of DNA nanostructures. APL Bioengineering, 2020, 4, 016109.	3.3	22
160	Programming Diffusion and Localization of DNA Signals in 3Dâ€Printed DNAâ€Functionalized Hydrogels. Small, 2020, 16, e2001815.	5.2	20
161	Programming Methods for DNA-Based Reaction–Diffusion Systems. New Generation Computing, 2020, 38, 379-393.	2.5	3
162	An Optical Urate Biosensor Based on Urate Oxidase and Long-Lifetime Metalloporphyrins. Sensors, 2020, 20, 959.	2.1	12
163	From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials Chemistry B, 2020, 8, 3171-3191.	2.9	131
164	Functional DNA-based hydrogel intelligent materials for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1991-2009.	2.9	60
165	New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules, 2020, 25, 1539.	1.7	161
166	DNA hydrogel-based gene editing and drug delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 79-98.	6.6	155
167	Rapid immunostaining method for three-dimensional volume imaging of biological tissues by magnetic force-induced focusing of the electric field. Brain Structure and Function, 2021, 226, 297-309.	1.2	6
168	Modulation of hydrogel stiffness by external stimuli: soft materials for mechanotransduction studies. Journal of Materials Chemistry B, 2021, 9, 7578-7596.	2.9	22
169	Cascaded pattern formation in hydrogel medium using the polymerisation approach. Soft Matter, 2021, 17, 6160-6167.	1.2	2

#	Article	IF	CITATIONS
170	Mechanical Properties of DNA Hydrogels: Towards Highly Programmable Biomaterials. Applied Sciences (Switzerland), 2021, 11, 1885.	1.3	26
171	Reversible Control of Gelatin Hydrogel Stiffness by Using DNA Crosslinkers**. ChemBioChem, 2021, 22, 1755-1760.	1.3	14
172	Influence of Co3O4 Nanoparticles on the Optical, and Electrical Properties of CMC/PAM Polymer: Combined FTIR/DFT Study. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2682-2690.	1.9	39
173	Smart and Functionalized Development of Nucleic Acidâ€Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges. Advanced Science, 2021, 8, 2100216.	5.6	38
174	(Macro)molecular self-assembly for hydrogel drug delivery. Advanced Drug Delivery Reviews, 2021, 172, 275-295.	6.6	92
175	Aptamerâ€functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1731.	3.3	12
176	Stimuli Responsive, Programmable DNA Nanodevices for Biomedical Applications. Frontiers in Chemistry, 2021, 9, 704234.	1.8	10
178	TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose, 2021, 28, 1469-1488.	2.4	65
179	Use of DNA Nanodevices in Modulating the Mechanical Properties of Polyacrylamide Gels. Lecture Notes in Computer Science, 2006, , 417-426.	1.0	8
180	On DNA-Based Gellular Automata. Lecture Notes in Computer Science, 2014, , 177-189.	1.0	25
181	Chitosan-Based Hydrogels for Drug Delivery. , 2019, , 163-190.		4
182	Biomolecule-sensitive Hydrogels. RSC Smart Materials, 2013, , 261-289.	0.1	2
183	Cell Growth in Response to Mechanical Stiffness is Affected by Neuron- Astroglia Interactions. The Open Neuroscience Journal, 2007, 1, 7-14.	0.8	31
184	Injectable Hydrogels: From Basics to Nanotechnological Features and Potential Advances. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 347-378.	0.5	Ο
186	Apply AcryditeTM Gel Separation to Solve Time-Table Problem. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2012, 10, .	0.1	0
187	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
188	DNA as Nanostructuring Element for Design of Functional Devices. Advances in Atom and Single Molecule Machines, 2014, , 85-121.	0.0	1
190	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0

#	Article	IF	CITATIONS
191	Computational modeling of the large deformation and flow of viscoelastic polymers. Computational Mechanics, 2019, 63, 725-745.	2.2	1
193	Cation-Responsive and Photocleavable Hydrogels from Noncanonical Amphiphilic DNA Nanostructures. Nano Letters, 2022, 22, 602-611.	4.5	21
194	Programmable DNA Hydrogels as Artificial Extracellular Matrix. Small, 2022, 18, e2107640.	5.2	41
195	Polyacrylamide gel migration after injection for breast augmentation: A case report. Chinese Journal of Plastic and Reconstructive Surgery, 2022, , .	0.1	0
196	Distant migration of gel filler: imaging findings following breast augmentation. Skeletal Radiology, 2022, 51, 2223-2227.	1.2	5
197	Cells feel the beat – temporal effect of cyclic mechanical actuation on muscle cells. Applied Materials Today, 2022, 27, 101492.	2.3	9
199	Functionalized-DNA nanostructures as potential targeted drug delivery systems for cancer therapy. Seminars in Cancer Biology, 2022, 86, 54-68.	4.3	6
200	Systemization Technology for Molecular Robots. , 2022, , 59-115.		0
201	Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities. Science Advances, 2022, 8, .	4.7	22
203	Multiscale Biofabrication: Integrating Additive Manufacturing with DNAâ€Programmable Selfâ€Assembly. Advanced Biology, 2023, 7, .	1.4	5
204	Enhancing anti-washout behavior of cement paste by polyacrylamide gelation: from floc properties to mechanism. Cement and Concrete Composites, 2023, 136, 104887.	4.6	15
205	DNA-Crosslinked Alginate Hydrogels: Characterization, Microparticle Development, and Applications in Forensic Science. ACS Applied Polymer Materials, 2023, 5, 583-592.	2.0	2
206	Stimuliâ€Responsive Selfâ€Degradable DNA Hydrogels: Design, Synthesis, and Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	11
207	Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels, 2023, 9, 153.	2.1	3
208	A temperature-sensitive DNA-PNIPAAm hydrogel prepared by base pairing. Colloid and Polymer Science, 2023, 301, 383-388.	1.0	1