Polymers of intrinsic microporosity (PIMs): robust, solu nanoporous materials

Chemical Communications , 230 DOI: 10.1039/b311764b

Citation Report

#	Article	IF	CITATIONS
1	Microporous polymeric materials. Materials Today, 2004, 7, 40-46.	8.3	43
2	Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Advanced Materials, 2004, 16, 456-459.	11.1	788
3	Polymorphism and Pseudopolymorphism of the [Ni(4-Methylpyridine)4(NCS)2] Werner Complex, the Compound that Led to the Concept of "Organic Zeolitesâ€â€. Crystal Growth and Design, 2004, 4, 1185-1194.	1.4	61
4	Gas separation membranes from polymers of intrinsic microporosity. Journal of Membrane Science, 2005, 251, 263-269.	4.1	730
5	Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chemistry - A European Journal, 2005, 11, 2610-2620.	1.7	461
6	Organic zeolites. Studies in Surface Science and Catalysis, 2005, , 37-54.	1.5	14
7	Free volume and intrinsic microporosity in polymers. Journal of Materials Chemistry, 2005, 15, 1977.	6.7	364
8	Controlled Foaming of Polymer Films through Restricted Surface Diffusion and the Addition of Nanosilica Particles or CO2-philic Surfactants. Macromolecules, 2005, 38, 2271-2280.	2.2	110
9	Multicyclic Polyethers Derived from 1,4-Dicyanotetrafluorobenzene and Flexible Diphenols. Macromolecules, 2006, 39, 6445-6450.	2.2	16
10	Polymers of Intrinsic Microporosity (PIMs): High Free Volume Polymers for Membrane Applications. Macromolecular Symposia, 2006, 245-246, 403-405.	0.4	80
11	The stability of columns comprising alternating triphenylene and hexaphenyltriphenylene molecules: variations in the structure of the hexaphenyltriphenylene component. Liquid Crystals, 2006, 33, 653-664.	0.9	20
12	Hydrogen adsorption in microporous hypercrosslinked polymers. Chemical Communications, 2006, , 2670.	2.2	314
13	Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chemical Society Reviews, 2006, 35, 675.	18.7	1,545
14	Soluble hyperbranched polymers with high inner surface areas. Mendeleev Communications, 2006, 16, 79.	0.6	4
15	Water-Soluble Ionic Liquids as Novel Stabilizers in Suspension Polymerization Reactions: Engineering Polymer Beads. Chemistry - A European Journal, 2006, 12, 9036-9045.	1.7	56
16	Towards Polymer-Based Hydrogen Storage Materials: Engineering Ultramicroporous Cavities within Polymers of Intrinsic Microporosity. Angewandte Chemie - International Edition, 2006, 45, 1804-1807.	7.2	421
17	Developments in Membrane Research: from Material via Process Design to Industrial Application. Advanced Engineering Materials, 2006, 8, 328-358.	1.6	215
19	A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chemical Communications, 2007, , 67-69.	2.2	282

#	Article	IF	CITATIONS
20	The potential of organic polymer-based hydrogen storage materials. Physical Chemistry Chemical Physics, 2007, 9, 1802.	1.3	197
21	Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. Chemistry of Materials, 2007, 19, 2034-2048.	3.2	618
22	Conjugated Microporous Poly(aryleneethynylene) Networks. Angewandte Chemie - International Edition, 2007, 46, 8574-8578.	7.2	1,278
24	Microporous Polymers as Potential Hydrogen Storage Materials. Macromolecular Rapid Communications, 2007, 28, 995-1002.	2.0	176
25	Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide. Macromolecular Rapid Communications, 2007, 28, 1871-1876.	2.0	240
26	Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2008, 318, 84-99.	4.1	227
27	Linear High Molecular Weight Ladder Polymer via Fast Polycondensation of 5,5′,6,6′â€Tetrahydroxyâ€3,3,3′,3′â€ŧetramethylspirobisindane with 1,4â€Dicyanotetrafluorobenzene Macromolecular Rapid Communications, 2008, 29, 783-788.	e.2.0	120
28	Gas Storage in Nanoporous Materials. Angewandte Chemie - International Edition, 2008, 47, 4966-4981.	7.2	1,453
29	Highâ€₽erformance Membranes from Polyimides with Intrinsic Microporosity. Advanced Materials, 2008, 20, 2766-2771.	11.1	307
31	Synthesis and characterization of fluoropolymers with intrinsic microporosity and their hydrogen adsorption studies. Journal of Applied Polymer Science, 2008, 109, 2591-2597.	1.3	19
32	Novel Spirobisindanes for Use as Precursors to Polymers of Intrinsic Microporosity. Organic Letters, 2008, 10, 2641-2643.	2.4	83
33	Polymers of Intrinsic Microporosity Derived from Bis(phenazyl) Monomers. Macromolecules, 2008, 41, 1640-1646.	2.2	150
34	Toward Stable Interfaces in Conjugated Polymers: Microporous Poly(<i>p</i> -phenylene) and Poly(phenyleneethynylene) Based on a Spirobifluorene Building Block. Journal of the American Chemical Society, 2008, 130, 6334-6335.	6.6	420
35	Microporous Networks of High-Performance Polymers: Elastic Deformations and Gas Sorption Properties. Macromolecules, 2008, 41, 2880-2885.	2.2	297
36	Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation. Macromolecules, 2008, 41, 9656-9662.	2.2	281
37	Gas Separation, Free Volume Distribution, and Physical Aging of a Highly Microporous Spirobisindane Polymer. Chemistry of Materials, 2008, 20, 2606-2608.	3.2	200
38	Conjugated microporous poly(phenylene butadiynylene)s. Chemical Communications, 2008, , 486-488.	2.2	252
39	Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene. Macromolecules, 2008, 41 7411-7417	2.2	104

#	Article	IF	CITATIONS
40	Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks. Journal of Physical Chemistry C, 2008, 112, 20549-20559.	1.5	59
41	Materials for hydrogenstorage: current research trends and perspectives. Chemical Communications, 2008, , 668-681.	2.2	624
42	Catalysis by microporous phthalocyanine and porphyrin network polymers. Journal of Materials Chemistry, 2008, 18, 573-578.	6.7	246
43	Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks. Journal of the American Chemical Society, 2008, 130, 7710-7720.	6.6	802
44	Hard Templates for Soft Materials: Creating Nanostructured Organic Materials. Chemistry of Materials, 2008, 20, 738-755.	3.2	362
45	Microporous Network Polymers Based on Cobaltphthalocyanines. Macromolecular Symposia, 2009, 277, 87-91.	0.4	0
47	Conjugated Microporous Polymers. Advanced Materials, 2009, 21, 1291-1295.	11.1	929
48	Microporous Conjugated Poly(thienylene arylene) Networks. Advanced Materials, 2009, 21, 702-705.	11.1	281
50	Porous Polymers: Enabling Solutions for Energy Applications. Macromolecular Rapid Communications, 2009, 30, 221-236.	2.0	183
51	Copolymers of Intrinsic Microporosity Based on 2,2′,3,3′â€Tetrahydroxyâ€1,1′â€dinaphthyl. Macromolec Rapid Communications, 2009, 30, 584-588.	cular 2.0	66
52	Amorphous Molecular Organic Solids for Gas Adsorption. Angewandte Chemie - International Edition, 2009, 48, 5492-5495.	7.2	146
53	Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1). Journal of Membrane Science, 2009, 333, 125-131.	4.1	246
54	Nanoporous Polymers for Hydrogen Storage. Small, 2009, 5, 1098-1111.	5.2	373
55	Porous organic cages. Nature Materials, 2009, 8, 973-978.	13.3	984
56	Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. Journal of Membrane Science, 2009, 338, 1-4.	4.1	74
57	Novel polymers of intrinsic microporosity (PIMs) derived from 1,1-spiro-bis(1,2,3,4-tetrahydronaphthalene)-based monomers. Tetrahedron Letters, 2009, 50, 5954-5957.	0.7	41
58	State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries. Separation Science and Technology, 2009, 44, 1273-1421.	1.3	256
59	High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties. Macromolecules, 2009, 42, 6038-6043.	2.2	256

#	Article	IF	CITATIONS
60	Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 2009, 48, 4638-4663.	1.8	1,792
61	Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage. Macromolecules, 2009, 42, 1554-1559.	2.2	172
62	Polymers of Intrinsic Microporosity Derived from Novel Disulfone-Based Monomers. Macromolecules, 2009, 42, 6023-6030.	2.2	137
63	Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides. Macromolecules, 2009, 42, 7881-7888.	2.2	250
64	A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. Journal of the American Chemical Society, 2009, 131, 4570-4571.	6.6	1,299
65	Microporous Poly(tri(4-ethynylphenyl)amine) Networks: Synthesis, Properties, and Atomistic Simulation. Macromolecules, 2009, 42, 2658-2666.	2.2	166
66	Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules. Energy and Environmental Science, 2009, 2, 480.	15.6	160
67	Assembly of nanoporous organic materials from molecular building blocks. Journal of Materials Chemistry, 2009, 19, 1781.	6.7	77
68	Predicting microporous crystalline polyimides. CrystEngComm, 2009, 11, 1819.	1.3	32
69	Microporous Organic Polymers: Design, Synthesis, and Function. Topics in Current Chemistry, 2009, 293, 1-33.	4.0	107
70	Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks. Chemistry of Materials, 2009, 21, 204-206.	3.2	350
72	Visual Indicator for Trace Organic Volatiles. Langmuir, 2010, 26, 3767-3770.	1.6	62
73	Nanostructured Poly(benzimidazole): From Mesoporous Networks to Nanofibers. ChemSusChem, 2010, 3, 181-187.	3.6	29
74	Ultrahigh Surface Area in Porous Solids. Advanced Materials, 2010, 22, 5212-5216.	11.1	137
75	Hybrid Porous Materials with High Surface Area Derived from Bromophenylethenylâ€Functionalized Cubic Siloxaneâ€Based Building Units. Chemistry - A European Journal, 2010, 16, 6006-6014.	1.7	94
79	Porous Organic Polymers: Distinction from Disorder?. Angewandte Chemie - International Edition, 2010, 49, 1533-1535.	7.2	156
80	Functional Materials: From Hard to Soft Porous Frameworks. Angewandte Chemie - International Edition, 2010, 49, 8328-8344.	7.2	724
81	Organic Sol–Gel Synthesis: Solutionâ€Processable Microporous Organic Networks. Angewandte Chemie - International Edition, 2010, 49, 9504-9508.	7.2	79

#	Article	IF	CITATIONS
82	Microporous carbon–nitrogen fibers from keratin fibers by pyrolysis. Journal of Applied Polymer Science, 2010, 118, 1752-1765.	1.3	25
83	Facile one-pot synthesis of nanoporous hypercrosslinked hydroxybenzene formaldehyde resins with high surface area and adjustable pore texture. Microporous and Mesoporous Materials, 2010, 131, 141-147.	2.2	12
84	Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous and Mesoporous Materials, 2010, 132, 132-136.	2.2	93
85	Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes. , 2010, , 113-129.		8
86	High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice. Macromolecules, 2010, 43, 8524-8530.	2.2	195
87	Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments. Macromolecules, 2010, 43, 8580-8587.	2.2	121
88	Mesoporous Melamine Resins by Soft Templating of Block-co-Polymer Mesophases. Chemistry of Materials, 2010, 22, 428-434.	3.2	90
89	Free Volume Investigation of Polymers of Intrinsic Microporosity (PIMs): PIM-1 and PIM1 Copolymers Incorporating Ethanoanthracene Units. Macromolecules, 2010, 43, 6075-6084.	2.2	100
90	Highly permeable polymers for gas separation membranes. Polymer Chemistry, 2010, 1, 63.	1.9	308
91	Imine-Linked Microporous Polymer Organic Frameworks. Chemistry of Materials, 2010, 22, 4974-4979.	3.2	218
92	Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. Macromolecules, 2010, 43, 5287-5294.	2.2	275
93	Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules, 2010, 43, 5163-5176.	2.2	725
94	Nanoporous Materials Derived from Polymeric Bicontinuous Microemulsions. Chemistry of Materials, 2010, 22, 1279-1281.	3.2	48
95	Micropore Analysis of Polymer Networks by Gas Sorption and ¹²⁹ Xe NMR Spectroscopy: Toward a Better Understanding of Intrinsic Microporosity. Langmuir, 2010, 26, 15650-15656.	1.6	165
96	Predicting crystalline polyamic acids as precursors to porous polyimides. CrystEngComm, 2010, 12, 2315.	1.3	9
97	High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and "Click―Chemistry. Macromolecules, 2010, 43, 8531-8538.	2.2	203
98	Sorbents for CO2 capture from flue gas—aspects from materials and theoretical chemistry. Nanoscale, 2010, 2, 1819.	2.8	213
99	Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. Journal of Materials Chemistry, 2010, 20, 7444.	6.7	98

	Сітатіс	on Report	
#	Article	IF	CITATIONS
100	Band gap engineering in fluorescent conjugated microporous polymers. Chemical Science, 2011, 2, 1777.	3.7	257
101	Extended phenylene based microporous organic polymers with selective carbon dioxide adsorption. Journal of Materials Chemistry, 2011, 21, 12958.	6.7	61
102	Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. Journal of Materials Chemistry, 2011, 21, 13498.	6.7	146
103	Tribenzotriquinacene-based polymers of intrinsic microporosity. Polymer Chemistry, 2011, 2, 2257.	1.9	64
104	Intrinsically Microporous Poly(imide)s: Structureâ^'Porosity Relationship Studied by Gas Sorption and X-ray Scattering. Macromolecules, 2011, 44, 2025-2033.	2.2	74
105	Sequential Vapor Infiltration of Metal Oxides into Sacrificial Polyester Fibers: Shape Replication and Controlled Porosity of Microporous/Mesoporous Oxide Monoliths. Chemistry of Materials, 2011, 23, 3476-3485.	3.2	113
106	Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers. Macromolecules, 2011, 44, 1763-1767.	2.2	124
107	Synthesis of a porous aromatic framework for adsorbing organic pollutants application. Journal of Materials Chemistry, 2011, 21, 10348.	6.7	138
108	Enhancing the rigidity of a network polymer of intrinsic microporosity by the combined use of phthalocyanine and triptycene components,. Polymer Chemistry, 2011, 2, 2190.	1.9	29
109	Supramolecular Engineering of Intrinsic and Extrinsic Porosity in Covalent Organic Cages. Journal of the American Chemical Society, 2011, 133, 16566-16571.	6.6	146
110	Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties. Macromolecules, 2011, 44, 6471-6479.	2.2	233
111	Hexaphenylbenzene-based polymers of intrinsic microporosity. Chemical Communications, 2011, 47, 6822.	2.2	77
113	Porous Organic Polymers in Catalysis: Opportunities and Challenges. ACS Catalysis, 2011, 1, 819-835.	5.5	818
114	Targeted synthesis of a 2D ordered porous organic framework for drug release. Chemical Communications, 2011, 47, 6389.	2.2	191
115	Structural Characterization of a Polymer of Intrinsic Microporosity: X-ray Scattering with Interpretation Enhanced by Molecular Dynamics Simulations. Macromolecules, 2011, 44, 14-16.	2.2	76
116	Porous organic molecular solids by dynamic covalent scrambling. Nature Communications, 2011, 2, 207.	5.8	155
117	References to Part Two. Comprehensive Analytical Chemistry, 2011, 56, 359-367.	0.7	0
118	A "click-based―porous organic polymer from tetrahedral building blocks. Journal of Materials Chemistry, 2011, 21, 1700.	6.7	156

#	Article	IF	CITATIONS
119	Crystal Structures of 5,6,5′,6′-Tetramethoxy-1,1′-spirobisindane-3,3′-dione and two of its Fluorene Adducts. Journal of Chemical Crystallography, 2011, 41, 98-104.	0.5	8
120	Nickel-catalyzed synthesis of nanoporous organic frameworks and their potential use in gas storage applications. Research on Chemical Intermediates, 2011, 37, 747-757.	1.3	38
121	Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. Journal of Membrane Science, 2011, 367, 141-151.	4.1	80
122	Synthesis and Gas Permeation Properties of Spirobischromaneâ€Based Polymers of Intrinsic Microporosity. Macromolecular Chemistry and Physics, 2011, 212, 1137-1146.	1.1	104
123	Towards Chiral Microporous Soluble Polymers—Binaphthaleneâ€Based Polyimides. Macromolecular Rapid Communications, 2011, 32, 438-443.	2.0	44
124	Azideâ€based Cross‣inking of Polymers of Intrinsic Microporosity (PIMs) for Condensable Gas Separation. Macromolecular Rapid Communications, 2011, 32, 631-636.	2.0	136
125	Conjugated Microporous Networks on the Basis of 2,3,5,6â€Tetraarylated Diketopyrrolo[3,4â€ <i>c</i>]pyrrole. Macromolecular Rapid Communications, 2011, 32, 825-830.	2.0	58
126	A Chiral Microporous Polymer Network as Asymmetric Heterogeneous Organocatalyst. Advanced Synthesis and Catalysis, 2011, 353, 3101-3106.	2.1	92
127	Synthesis and gas permeability of ester substituted poly(p-phenylene)s. Polymer, 2011, 52, 2163-2169.	1.8	14
128	Characterization of membranes for energy and environmental applications. , 2011, , 56-89.		3
130	Laser Chemosensor with Rapid Responsivity and Inherent Memory Based on a Polymer of Intrinsic Microporosity. Sensors, 2011, 11, 2478-2487.	2.1	66
131	Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges. Sensors, 2011, 11, 3267-3280.	2.1	31
132	Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework. Journal of Materials Research, 2012, 27, 1417-1420.	1.2	8
133	Targeted Synthesis of a 3D Crystalline Porous Aromatic Framework with Luminescence Quenching Ability for Hazardous and Explosive Molecules. Journal of Physical Chemistry C, 2012, 116, 26431-26435.	1.5	36
135	Soluble Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2012, 51, 12727-12731.	7.2	192
136	Facile Approach to Preparing Microporous Organic Polymers through Benzoin Condensation. ACS Applied Materials & Interfaces, 2012, 4, 6975-6981.	4.0	54
137	A Cooperative Catalytic System of Platinum/Iridium Alloyed Nanoclusters and a Dimeric Catechol Derivative: An Efficient Synthesis of Quinazolines Through a Sequential Aerobic Oxidative Process. Advanced Synthesis and Catalysis, 2012, 354, 2899-2904.	2.1	86
139	Non Equilibrium Modeling of Sorption of Gases and Vapors in Polymers of Intrinsic Microporosity (PIM). Procedia Engineering, 2012, 44, 147-149.	1.2	0

#	Article	IF	CITATIONS
140	REMOVED: Multicomponent Gas and Vapour Sorption in High Free Volume Polymers. Procedia Engineering, 2012, 44, 817-818.	1.2	0
141	Physical Ageing Study of Post-Treated Pim-1 Membranes: Effect on Gas Transport Properties. Procedia Engineering, 2012, 44, 874-876.	1.2	5
142	Morphology-controlled synthesis of porous polymer nanospheres for gas absorption and bioimaging applications. Journal of Materials Chemistry, 2012, 22, 9861.	6.7	29
143	Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks. Journal of Materials Chemistry, 2012, 22, 24558.	6.7	54
144	Peptide-based solids: porosity and zeolitic behavior. Journal of Materials Chemistry, 2012, 22, 1709-1723.	6.7	50
145	Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1). Journal of Adhesion, 2012, 88, 608-619.	1.8	79
146	Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. Macromolecules, 2012, 45, 5134-5139.	2.2	138
147	Phthalimide based polymers of intrinsic microporosity. Polymer, 2012, 53, 2964-2972.	1.8	30
148	Perylene Based Porous Polyimides: Tunable, High Surface Area with Tetrahedral and Pyramidal Monomers. Chemistry of Materials, 2012, 24, 969-971.	3.2	115
149	A Spirobifluoreneâ€Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. Advanced Materials, 2012, 24, 5930-5933.	11.1	306
150	Porous Organic Cage Compounds as Highly Potent Affinity Materials for Sensing by Quartz Crystal Microbalances. Advanced Materials, 2012, 24, 6049-6052.	11.1	200
151	Advances in high permeability polymeric membrane materials for CO ₂ separations. Energy and Environmental Science, 2012, 5, 7306-7322.	15.6	451
153	Catalyzed hydrogen spillover for hydrogen storage on microporous organic polymers. International Journal of Hydrogen Energy, 2012, 37, 12813-12820.	3.8	25
154	Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole. Polymer, 2012, 53, 4367-4372.	1.8	90
155	A functional triazine framework based on N-heterocyclic building blocks. Journal of Materials Chemistry, 2012, 22, 13956.	6.7	118
156	Covalent-organic polymers for carbon dioxide capture. Journal of Materials Chemistry, 2012, 22, 22663.	6.7	143
157	Postsynthetic Lithium Modification of Covalent-Organic Polymers for Enhancing Hydrogen and Carbon Dioxide Storage. Journal of Physical Chemistry C, 2012, 116, 5974-5980.	1.5	95
158	Nanoporous Porphyrin Polymers for Gas Storage and Separation. Macromolecules, 2012, 45, 7413-7419.	2.2	108

#	Article	IF	CITATIONS
159	A facile synthesis of a novel triptycene-containing A–B monomer: precursor to polymers of intrinsic microporosity. Polymer Chemistry, 2012, 3, 96-98.	1.9	31
160	Branching out with aminals: microporous organic polymers from difunctional monomers. Polymer Chemistry, 2012, 3, 533-537.	1.9	92
161	Mixed Gas Permeation Measurements on Novel Modified PIMs Materials for Postcombustion Carbon Capture. Procedia Engineering, 2012, 44, 491-492.	1.2	0
162	Design and Preparation of Porous Polymers. Chemical Reviews, 2012, 112, 3959-4015.	23.0	1,491
163	Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design. Energy and Environmental Science, 2012, 5, 5951.	15.6	130
164	Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. Macromolecules, 2012, 45, 3841-3849.	2.2	193
165	Study on the Morphologies of Covalent Organic Microporous Polymers: the Role of Reaction Solvents. Macromolecular Chemistry and Physics, 2012, 213, 1435-1440.	1.1	60
166	Unique Type of BF2-Capped Tetraoxobenzene Ï€-Complexes of "Cp*Mâ€ŧ Novel Organometallic Backbones for the Self-Assembly of Porous Networks. European Journal of Inorganic Chemistry, 2012, 2012, 1342-1346.	1.0	4
167	Conjugated porous polymers for energy applications. Energy and Environmental Science, 2012, 5, 7819.	15.6	381
168	A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO ₂ Separation. Journal of the American Chemical Society, 2012, 134, 10478-10484.	6.6	408
170	A Microporous Binolâ€Derived Phosphoric Acid. Angewandte Chemie - International Edition, 2012, 51, 5456-5459.	7.2	134
171	Grand Canonical Monte Carlo simulations for energy gases on PIM-1 polymer and silicalite-1. Chemical Engineering Science, 2012, 68, 101-107.	1.9	23
172	High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). Journal of Membrane Science, 2012, 401-402, 222-231.	4.1	223
173	Nanoporous organic polymer networks. Progress in Polymer Science, 2012, 37, 530-563.	11.8	1,029
174	Synthesis and Characterization of [2.2]Paracyclophane ontaining Conjugated Microporous Polymers. Macromolecular Chemistry and Physics, 2012, 213, 572-579.	1.1	8
175	Improving Hydrogen Adsorption Enthalpy Through Coordinatively Unsaturated Cobalt in Porous Polymers. Macromolecular Rapid Communications, 2012, 33, 407-413.	2.0	16
176	Crystal Structures of a Series of 1,1-Spiro-bis(1,2,3,4-tetrahydronaphthalene)-Based Derivatives. Journal of Chemical Crystallography, 2012, 42, 111-118.	0.5	3
177	Evaluation of a robust, diimide-based, porous organic polymer (POP) as a high-capacity sorbent for representative chemical threats. Journal of Porous Materials, 2012, 19, 261-266.	1.3	22

#	Article	IF	CITATIONS
178	Porous organic polymers containing carborane for hydrogen storage. International Journal of Energy Research, 2013, 37, 732-740.	2.2	30
179	Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon, 2013, 62, 88-96.	5.4	138
180	Nanoporous Structure of Semirigid Alternating Copolymers via Nitrogen Sorption and Molecular Simulation. Macromolecules, 2013, 46, 5968-5973.	2.2	15
181	High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity. Journal of Membrane Science, 2013, 447, 387-394.	4.1	148
182	Hyperbranched polymers containing stereocontorted cores as on-line solid-phase microextraction adsorbent for polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2013, 1302, 28-33.	1.8	22
183	Direct gravimetric sensing of GBL by a molecular recognition process in organic cage compounds. Chemical Communications, 2013, 49, 8398.	2.2	80
184	A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. Journal of Membrane Science, 2013, 431, 139-155.	4.1	86
185	Conjugated microporous polymers: design, synthesis and application. Chemical Society Reviews, 2013, 42, 8012.	18.7	1,459
186	A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chemical Communications, 2013, 49, 9773.	2.2	161
187	Microporous organic polymers incorporating dicarboximide units for H2 storage and remarkable CO2 capture. Journal of Materials Chemistry A, 2013, 1, 13004.	5.2	25
188	Hollow Microporous Organic Capsules. Scientific Reports, 2013, 3, 2128.	1.6	102
189	Effect of the Porosity of a Polymer of Intrinsic Microporosity (PIM) on Its Intrinsic Fluorescence. Journal of Physical Chemistry B, 2013, 117, 5249-5260.	1.2	20
190	Organic molecules of intrinsic microporosity: Characterization of novel microporous materials. Microporous and Mesoporous Materials, 2013, 176, 55-63.	2.2	26
191	Cross-Linked Thermally Rearranged Poly(benzoxazole- <i>co</i> -imide) Membranes for Gas Separation. Macromolecules, 2013, 46, 8179-8189.	2.2	112
192	Energy-efficient polymeric gas separation membranes for a sustainable future: AÂreview. Polymer, 2013, 54, 4729-4761.	1.8	1,144
193	Molecular Motions of Adsorbed CO ₂ on a Tetrazole-Functionalized PIM Polymer Studied with ¹³ C NMR. Journal of Physical Chemistry C, 2013, 117, 22995-22999.	1.5	8
194	Gas sorption isotherms in swelling glassy polymers—Detailed atomistic simulations. Journal of Membrane Science, 2013, 428, 523-532.	4.1	68
195	Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications. Macromolecules, 2013, 46, 9618-9624.	2.2	120

#	Article	IF	CITATIONS
196	Functional microporous polyimides based on sulfonated binaphthalene dianhydride for uptake and separation of carbon dioxide and vapors. Journal of Materials Chemistry A, 2013, 1, 10368.	5.2	79
197	Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. Journal of Membrane Science, 2013, 434, 137-147.	4.1	171
198	High performance polymer membranes for CO2 separation. Current Opinion in Chemical Engineering, 2013, 2, 238-244.	3.8	84
199	Cross-linking of Polymer of Intrinsic Microporosity (PIM-1) via nitrene reaction and its effect on gas transport property. European Polymer Journal, 2013, 49, 4157-4166.	2.6	74
200	Carbon Dioxide Adsorption in Betulinâ€Based Micro―and Macroporous Polyurethanes. ChemistryOpen, 2013, 2, 17-20.	0.9	15
201	Polymer Rigidity Improves Microporous Membranes. Science, 2013, 339, 284-285.	6.0	223
202	Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nature Communications, 2013, 4, 1357.	5.8	456
203	Polymers of Intrinsic Microporosity Containing Tröger Base for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 16939-16950.	1.8	60
204	Molecular Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids. Journal of the American Chemical Society, 2013, 135, 17818-17830.	6.6	91
205	Efficient and Rapid Screening of Novel Adsorbents for Carbon Capture in the UK IGSCC Project. Energy Procedia, 2013, 37, 40-47.	1.8	15
206	Construction and sorption properties of pyrene-based porous aromatic frameworks. Microporous and Mesoporous Materials, 2013, 173, 92-98.	2.2	60
207	Synthesis and characterization of triphenylamine-containing microporous organic copolymers for carbon dioxide uptake. Polymer, 2013, 54, 5698-5702.	1.8	36
208	Modeling gas and vapor sorption in a polymer of intrinsic microporosity (PIM-1). Fluid Phase Equilibria, 2013, 347, 35-44.	1.4	42
209	Conjugated microporous polymers consisting of tetrasubstituted [2.2]Paracyclophane junctions. Journal of Polymer Science Part A, 2013, 51, 2311-2316.	2.5	19
210	Topology-directed design of porous organic frameworks and their advanced applications. Chemical Communications, 2013, 49, 3925.	2.2	225
211	Microporous organic polymers for gas storage and separation applications. Physical Chemistry Chemical Physics, 2013, 15, 5430.	1.3	181
212	Molecular simulations to understand and to design porous organic molecules. Current Opinion in Solid State and Materials Science, 2013, 17, 19-30.	5.6	42
213	New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. Polymer, 2013, 54, 2222-2230.	1.8	66

	Сіта	tion Report	
#	Article	IF	CITATIONS
214	Conjugated Porous Polymers For TNT Vapor Detection. ACS Macro Letters, 2013, 2, 423-426.	2.3	148
215	Molecular modelling of polyimides with intrinsic microporosity: from structural characteristics to transport behaviour. RSC Advances, 2013, 3, 10403.	1.7	27
216	Synthesis and characterization of pyrrole-containing microporous polymeric networks. Polymer, 2013, 54, 3254-3260.	1.8	19
217	<i>In silico</i> Design of Supramolecules from Their Precursors: Odd–Even Effects in Cage-Forming Reactions. Journal of the American Chemical Society, 2013, 135, 9307-9310.	6.6	75
218	Porous covalent–organic materials: synthesis, clean energy application and design. Journal of Materials Chemistry A, 2013, 1, 2691-2718.	5.2	329
219	Preparation of microporous polyamide networks for carbon dioxide capture and nanofiltration. Polymer, 2013, 54, 557-564.	1.8	58
220	The effect of purge environment on thermal rearrangement of ortho-functional polyamide and polyimide. Polymer, 2013, 54, 2324-2334.	1.8	40
221	Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity. Polymer Chemistry, 2013, 4, 3813.	1.9	141
222	Synthesis and Properties of Porous Organic Polymers from a Rigid Macrocyclic Building Block. Chinese Journal of Chemistry, 2013, 31, 577-581.	2.6	9
223	Electrochemical Route to Fabricate Filmâ€Like Conjugated Microporous Polymers and Application for Organic Electronics. Advanced Materials, 2013, 25, 3443-3448.	11.1	212
224	Gas Solubility, Diffusivity, Permeability, and Selectivity in Mixed Matrix Membranes Based on PIM-1 and Fumed Silica. Industrial & Engineering Chemistry Research, 2013, 52, 10506-10520.	1.8	41
225	Toward Effective CO ₂ /CH ₄ Separations by Sulfur-Containing PIMs via Predictive Molecular Simulations. Macromolecules, 2013, 46, 5371-5380.	2.2	58
226	Gas sorption and permeation in PIM-1. Journal of Membrane Science, 2013, 432, 50-57.	4.1	200
227	Dodecaamide Cages: Organic 12-Arm Building Blocks for Supramolecular Chemistry. Journal of the American Chemical Society, 2013, 135, 10007-10010.	6.6	50
228	Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. International Journal of Hydrogen Energy, 2013, 38, 9673-9687.	3.8	136
229	Catalysis by Covalent Organic Frameworks (COFs). RSC Catalysis Series, 2013, , 384-405.	0.1	8
230	Microporous Organic Polymers with Ketal Linkages: Synthesis, Characterization, and Gas Sorption Properties. ACS Applied Materials & amp; Interfaces, 2013, 5, 4166-4172.	4.0	20
231	Conjugated microporous polymer with film and nanotube-like morphologies. Microporous and Mesoporous Materials, 2013, 176, 25-30.	2.2	46

#	Article	IF	CITATIONS
232	Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 2013, 17, 46-65.	2.3	323
233	Targeted synthesis of micro–mesoporous hybrid material derived from octaphenylsilsesquioxane building units. Microporous and Mesoporous Materials, 2013, 165, 92-98.	2.2	40
234	Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons. RSC Advances, 2013, 3, 26459.	1.7	43
235	Restricted Access: On the Nature of Adsorption/Desorption Hysteresis in Amorphous, Microporous Polymeric Materials. Langmuir, 2013, 29, 12982-12989.	1.6	159
236	Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews, 2013, 42, 548-568.	18.7	2,945
237	Conjugated Porous Networks Based on Cyclotriveratrylene Building Block for Hydrogen Adsorption. Chinese Journal of Chemistry, 2013, 31, 617-623.	2.6	8
238	Novel Functionalized Microporous Organic Networks Based on Triphenylphosphine. Chemistry - A European Journal, 2013, 19, 10024-10029.	1.7	48
240	Twisted Morphologies and Novel Chiral Macroporous Films from the Selfâ€Assembly of Optically Active Helical Polyphosphazene Block Copolymers. Chemistry - A European Journal, 2013, 19, 5644-5653.	1.7	23
241	Charge induced formation of crystalline network polymers. RSC Advances, 2014, 4, 59779-59784.	1.7	18
242	Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation. Electroanalysis, 2014, 26, 904-909.	1.5	39
243	Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers. Advanced Materials, 2014, 26, 3526-3531.	11.1	347
244	Hypercrosslinked microporous polymers based on carbazole for gas storage and separation. RSC Advances, 2014, 4, 61051-61055.	1.7	46
245	Microporous Organic Polymers for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , 143-180.	0.4	3
246	Mixed gas sorption in glassy polymeric membranes: II. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1). Journal of Membrane Science, 2014, 459, 264-276.	4.1	56
247	Solubility controlled permeation of hydrocarbons: New membrane materials and results. Journal of Membrane Science, 2014, 453, 532-545.	4.1	87
248	Novel microporous hypercross-linked conjugated quinonoid chromophores with broad light absorption and CO ₂ sorption characteristics. RSC Advances, 2014, 4, 3678-3684.	1.7	29
249	Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane. Physical Chemistry Chemical Physics, 2014, 16, 6075.	1.3	49
250	Regioselective preparation of functional aryl ethers and esters by stepwise nucleophilic aromatic substitution reaction. Journal of Fluorine Chemistry, 2014, 162, 17-25.	0.9	10

#	Article	IF	CITATIONS
251	Temperature dependence of gas sorption and permeation in PIM-1. Journal of Membrane Science, 2014, 450, 380-388.	4.1	82
252	Nanoporous Polymers: Bridging the Gap between Molecular and Solid Catalysts?. ChemCatChem, 2014, 6, 1166-1182.	1.8	58
254	Triptycene-Based Organic Molecules of Intrinsic Microporosity. Organic Letters, 2014, 16, 1848-1851.	2.4	55
255	Intrinsically Microporous Soluble Polyimides Incorporating Tröger's Base for Membrane Gas Separation. Macromolecules, 2014, 47, 3254-3262.	2.2	219
256	Polymer with Intrinsic Microporosity Used as Explosive Vapour Sensors. Springer Theses, 2014, , 123-138.	0.0	0
257	PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. Journal of Membrane Science, 2014, 453, 614-623.	4.1	76
258	Enhancement of CO ₂ Affinity in a Polymer of Intrinsic Microporosity by Amine Modification. Macromolecules, 2014, 47, 1021-1029.	2.2	204
259	Relationship between the local dynamics and gas permeabilityÂofÂpolyacetylenes containing polymethylated indan/tetrahydronaphtalene moieties. Polymer, 2014, 55, 182-186.	1.8	5
260	Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tröger's Base Units. Macromolecules, 2014, 47, 7900-7916.	2.2	104
261	Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides. Polymer Chemistry, 2014, 5, 6914-6922.	1.9	77
262	Microporous Hyper-Cross-Linked Aromatic Polymers Designed for Methane and Carbon Dioxide Adsorption. Journal of Physical Chemistry C, 2014, 118, 28699-28710.	1.5	101
263	Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity. Macromolecules, 2014, 47, 8320-8327.	2.2	82
264	Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO ₂ /CH ₄ Separations. Macromolecules, 2014, 47, 7453-7462.	2.2	106
265	Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. RSC Advances, 2014, 4, 52189-52198.	1.7	91
266	A Simulation Study on OH-Containing Polyimide (HPI) and Thermally Rearranged Polybenzoxazoles (TR-PBO): Relationship between Gas Transport Properties and Free Volume Morphology. Journal of Physical Chemistry B, 2014, 118, 2746-2757.	1.2	63
267	Design and synthesis of novel carbazole–spacer–carbazole type conjugated microporous networks for gas storage and separation. Journal of Materials Chemistry A, 2014, 2, 1877-1885.	5.2	89
268	High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 8054-8059.	5.2	160
269	Triphenylamine-containing microporous organic copolymers for hydrocarbons/water separation. RSC Advances, 2014, 4, 5568.	1.7	30

#	Article	IF	CITATIONS
270	Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring. Analyst, The, 2014, 139, 3770-3780.	1.7	3
271	Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities. Macromolecules, 2014, 47, 2875-2882.	2.2	108
272	Conjugated Polymers of Intrinsic Microporosity (Câ€PIMs). Advanced Functional Materials, 2014, 24, 5219-5224.	7.8	89
273	Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nature Communications, 2014, 5, 4813.	5.8	252
274	Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes. Macromolecules, 2014, 47, 5595-5606.	2.2	118
275	Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity. RSC Advances, 2014, 4, 32148.	1.7	24
276	Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer, 2014, 55, 5746-5750.	1.8	36
277	Metastable Ionic Diodes Derived from an Amineâ€Based Polymer of Intrinsic Microporosity. Angewandte Chemie - International Edition, 2014, 53, 10751-10754.	7.2	81
278	Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study. Journal of Materials Chemistry A, 2014, 2, 11742-11752.	5.2	71
279	Synthesis of cardo-polymers using Tröger's base formation. Polymer Chemistry, 2014, 5, 5255.	1.9	63
		1.7	
280	Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage. Journal of Polymer Research, 2014, 21, 1.	1.2	14
280 281	Preparation and characterization of melamine-based porous Schiff base polymer networks for		14 335
	Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage. Journal of Polymer Research, 2014, 21, 1. Ultraâ€Microporous Triptyceneâ€based Polyimide Membranes for Highâ€Performance Gas Separation.	1.2	
281	Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage. Journal of Polymer Research, 2014, 21, 1. Ultraâ€Microporous Triptyceneâ€based Polyimide Membranes for Highâ€Performance Gas Separation. Advanced Materials, 2014, 26, 3688-3692. Mechanochemical Synthesis of Amide Functionalized Porous Organic Polymers. Crystal Growth and	1.2	335
281 282	Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage. Journal of Polymer Research, 2014, 21, 1. Ultraâ€Microporous Triptyceneâ€based Polyimide Membranes for Highâ€Performance Gas Separation. Advanced Materials, 2014, 26, 3688-3692. Mechanochemical Synthesis of Amide Functionalized Porous Organic Polymers. Crystal Growth and Design, 2014, 14, 2729-2732. A highly permeable polyimide with enhanced selectivity for membrane gas separations. Journal of	1.2 11.1 1.4	335 38
281 282 283	Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage. Journal of Polymer Research, 2014, 21, 1. Ultraâ€Microporous Triptyceneâ€based Polyimide Membranes for Highâ€Performance Gas Separation. Advanced Materials, 2014, 26, 3688-3692. Mechanochemical Synthesis of Amide Functionalized Porous Organic Polymers. Crystal Growth and Design, 2014, 14, 2729-2732. A highly permeable polyimide with enhanced selectivity for membrane gas separations. Journal of Materials Chemistry A, 2014, 2, 4874-4877. High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous	1.2 11.1 1.4 5.2	335 38 159
281 282 283 285	 Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage. Journal of Polymer Research, 2014, 21, 1. Ultraâ€Microporous Triptyceneâ€based Polyimide Membranes for Highâ€Performance Cas Separation. Advanced Materials, 2014, 26, 3688-3692. Mechanochemical Synthesis of Amide Functionalized Porous Organic Polymers. Crystal Growth and Design, 2014, 14, 2729-2732. A highly permeable polyimide with enhanced selectivity for membrane gas separations. Journal of Materials Chemistry A, 2014, 2, 4874-4877. High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous polymer host. Electrochemistry Communications, 2014, 46, 26-29. Estimating gas permeability and permselectivity of microporous polymers. Journal of Membrane 	1.2 11.1 1.4 5.2 2.3	 335 38 159 28

#	Article	IF	CITATIONS
289	Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. Electrochimica Acta, 2014, 128, 3-9.	2.6	42
290	Hexaphenylâ€ <i>p</i> â€xylene: A Rigid Pseudoâ€Octahedral Core at the Service of Threeâ€Dimensional Porous Frameworks. ChemPlusChem, 2014, 79, 1176-1182.	1.3	8
293	Organic cage compounds – from shape-persistency to function. Chemical Society Reviews, 2014, 43, 1934-1947.	18.7	551
294	Porous polyimides from polycyclic aromatic linkers: Selective CO2 capture and hydrogen storage. Polymer, 2014, 55, 1452-1458.	1.8	37
295	Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. Journal of Membrane Science, 2014, 457, 95-102.	4.1	217
297	Gasâ€Separation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age. Angewandte Chemie, 2015, 127, 2707-2711.	1.6	33
298	Chiral Polymers of Intrinsic Microporosity: Selective Membrane Permeation of Enantiomers. Angewandte Chemie - International Edition, 2015, 54, 11214-11218.	7.2	108
299	Competitive permeation of gas and water vapour in high free volume polymeric membranes. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 719-728.	2.4	43
301	Carbon- and Nitrogen-Based Organic Frameworks. Accounts of Chemical Research, 2015, 48, 1591-1600.	7.6	215
302	Synthesis of perfectly alternating copolymers for polymers of intrinsic microporosity. Polymer Chemistry, 2015, 6, 5003-5008.	1.9	28
303	Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides. Journal of Membrane Science, 2015, 492, 116-122.	4.1	57
304	Stabilised columnar mesophases formed by 1 : 1 mixtures of hexaalkoxytriphenylenes with a hexaphenyltriphenylene-based polymer. Journal of Materials Chemistry C, 2015, 3, 5754-5763.	2.7	11
305	Function-led design of new porous materials. Science, 2015, 348, aaa8075.	6.0	1,272
306	PIM-1 as a Solution-Processable "Molecular Basket―for CO ₂ Capture from Dilute Sources. ACS Macro Letters, 2015, 4, 1415-1419.	2.3	60
307	Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation. Journal of Membrane Science, 2015, 480, 20-30.	4.1	101
308	Fabrication of ultrathin films containing the metal organic framework Fe-MIL-88B-NH 2 by the Langmuir–Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 161-170.	2.3	28
309	Microporous polymer network films covalently bound to gold electrodes. Chemical Communications, 2015, 51, 4283-4286.	2.2	29
310	Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Tröger׳s base. Journal of Membrane Science, 2015, 480, 104-114.	4.1	67

#	Article	IF	CITATIONS
311	High Temperature Mass Detection Using a Carbon Nanotube Bilayer Modified Quartz Crystal Microbalance as a GC Detector. Analytical Chemistry, 2015, 87, 2779-2787.	3.2	14
312	Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. ACS Macro Letters, 2015, 4, 231-235.	2.3	96
313	Hypercross-linked lignite for NO and CO2 sorption. Journal of Industrial and Engineering Chemistry, 2015, 23, 194-199.	2.9	6
314	Microporous hypercross-linked conjugated quinonoid chromophores of anthracene: Novel polymers for CO2 adsorption. Chinese Journal of Polymer Science (English Edition), 2015, 33, 224-235.	2.0	11
315	Gasâ€Separation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age. Angewandte Chemie - International Edition, 2015, 54, 2669-2673.	7.2	175
316	Advancing polymers of intrinsic microporosity by mechanochemistry. Journal of Materials Chemistry A, 2015, 3, 6739-6741.	5.2	51
317	Membrane gas separation technologies for biogas upgrading. RSC Advances, 2015, 5, 24399-24448.	1.7	331
318	Nanoporous hypercrosslinked polymers containing Tg enhancing comonomers. Polymer, 2015, 59, 42-48.	1.8	18
319	Synthetic Control of Pore Properties in Conjugated Microporous Polymers Based on Carbazole Building Blocks. Macromolecular Chemistry and Physics, 2015, 216, 504-510.	1.1	26
320	Free Volume and Gas Permeation in Anthracene Maleimide-Based Polymers of Intrinsic Microporosity. Membranes, 2015, 5, 214-227.	1.4	18
321	Mechanically Tough, Thermally Rearranged (TR) Random/Block Poly(benzoxazole- <i>co</i> -imide) Gas Separation Membranes. Macromolecules, 2015, 48, 5286-5299.	2.2	78
322	Topology-directed design and synthesis of carbazole-based conjugated microporous networks for gas storage. RSC Advances, 2015, 5, 70904-70909.	1.7	6
323	Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries. Nano Letters, 2015, 15, 5724-5729.	4.5	153
324	Sulfur-based hyper cross-linked polymers. RSC Advances, 2015, 5, 23152-23159.	1.7	6
325	Towards enhanced CO 2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. Journal of Membrane Science, 2015, 493, 147-155.	4.1	75
326	Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. Journal of Materials Chemistry A, 2015, 3, 17273-17281.	5.2	118
327	Water desalination concept using an ionic rectifier based on a polymer of intrinsic microporosity (PIM). Journal of Materials Chemistry A, 2015, 3, 15849-15853.	5.2	54
328	Self-Supported Fibrous Porous Aromatic Membranes for Efficient CO ₂ /N ₂ Separations. ACS Applied Materials & Interfaces, 2015, 7, 15561-15569.	4.0	75

#	Article	IF	CITATIONS
329	polyMOFs: A Class of Interconvertible Polymerâ€Metalâ€Organicâ€Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-6157.	7.2	200
330	Soluble, microporous ladder polymers formed by stepwise nucleophilic substitution of octafluorocyclopentene. Polymer Chemistry, 2015, 6, 4560-4564.	1.9	14
331	Introduction to Porous Materials. Springer Briefs in Molecular Science, 2015, , 1-11.	0.1	1
332	Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties. Journal of Materials Chemistry A, 2015, 3, 4855-4864.	5.2	52
333	UV–Visible and Plasmonic Nanospectroscopy of the CO ₂ Adsorption Energetics in a Microporous Polymer. Analytical Chemistry, 2015, 87, 10161-10165.	3.2	15
334	Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane. Journal of Membrane Science, 2015, 495, 235-241.	4.1	68
335	Hydroxyalkylaminoalkylamide PIMs: Selective Adsorption by Ethanolamine- and Diethanolamine-Modified PIM-1. Macromolecules, 2015, 48, 5663-5669.	2.2	65
336	Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. ACS Macro Letters, 2015, 4, 912-915.	2.3	159
337	Preparation of microporous polymers in the form of particles and a thin film from hyperbranched polyphenylenes. Journal of Polymer Science Part A, 2015, 53, 2336-2342.	2.5	8
338	Polymers of intrinsic microporosity as high temperature templates for the formation of nanofibrous oxides. RSC Advances, 2015, 5, 73323-73326.	1.7	22
339	Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations. ACS Macro Letters, 2015, 4, 947-951.	2.3	336
340	Synthesis of covalent triazine-based frameworks with high CO ₂ adsorption and selectivity. Polymer Chemistry, 2015, 6, 7410-7417.	1.9	108
341	Effect of Nonsolvent Treatments on the Microstructure of PIM-1. Macromolecules, 2015, 48, 5780-5790.	2.2	74
342	Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid―Polymers of Intrinsic Microporosity. Macromolecules, 2015, 48, 6553-6561.	2.2	263
343	Fluoride-mediated polycondensation for the synthesis of polymers of intrinsic microporosity. Polymer, 2015, 76, 168-172.	1.8	23
344	Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture. Journal of Chemical Sciences, 2015, 127, 1687-1699.	0.7	7
345	Synthesis of perfluorinated biaryls by reaction of perfluoroarylzinc compounds with perfluoroarenes. Russian Journal of Organic Chemistry, 2015, 51, 1388-1394.	0.3	7
346	Isoindigo-based microporous organic polymers for carbon dioxide capture. RSC Advances, 2015, 5, 100322-100329.	1.7	19

		CITATION REPORT		
#	Article		IF	CITATIONS
347	Synthesis of polymers of intrinsic microporosity using an AB-type monomer. Polymer, 2	.015, 57, 45-50.	1.8	25
348	Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templa approach. Chemical Communications, 2015, 51, 1717-1720.	ating	2.2	34
349	Microporous spiro-centered poly(benzimidazole) networks: preparation, characterization sorption properties. Polymer Chemistry, 2015, 6, 748-753.	on, and gas	1.9	28
350	Synthesis of conjugated microporous polymer nanotubes with large surface areas as at iodine and CO ₂ uptake. Journal of Materials Chemistry A, 2015, 3, 87-91.	psorbents for	5.2	212
351	A rational construction of microporous imide-bridged covalent–organic polytriazines high-enthalpy small gas absorption. Journal of Materials Chemistry A, 2015, 3, 878-885	for	5.2	81
352	Rigid and microporous polymers for gas separation membranes. Progress in Polymer Sc 1-32.	ience, 2015, 43,	11.8	377
353	Towards High Water Permeability in Triazineâ€Frameworkâ€Based Microporous Memb Dehydration of Ethanol. ChemSusChem, 2015, 8, 138-147.	ranes for	3.6	39
354	Targeted gas separations through polymer membrane functionalization. Reactive and F Polymers, 2015, 86, 88-110.	unctional	2.0	86
355	PIM-1/graphene composite: A combined experimental and molecular simulation study. Mesoporous Materials, 2015, 209, 126-134.	Microporous and	2.2	53
356	Octavinylsilsesquioxane-based luminescent nanoporous inorganic–organic hybrid po constructed by the Heck coupling reaction. Polymer Chemistry, 2015, 6, 917-924.	lymers	1.9	51
358	Hydrocarbon solubility, permeability, and competitive sorption effects in polymer of int microporosity (PIM-1) membranes. Journal of Polymer Science, Part B: Polymer Physics,	rinsic 2016, 54, 397-404.	2.4	18
359	Porous Organic Cage Thin Films and Molecularâ€Sieving Membranes. Advanced Materi 2629-2637.	als, 2016, 28,	11.1	275
360	Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenes. Gas Separation. ChemSusChem, 2016, 9, 1953-1962.	Ilfone for	3.6	74
361	Sulfonated Porous Aromatic Frameworks as Solid Acid Catalysts. ChemCatChem, 2016	, 8, 961-967.	1.8	28
362	Metathesis polymer based on 5-trimethylsilylbicyclo[2.2.2]oct-2-ene: Synthesis and gas properties. Polymer Science - Series B, 2016, 58, 659-664.	s-transport	0.3	2
363	Indolo[3,2-b]carbazole-containing hypercrosslinked microporous polymer networks for and separation. Microporous and Mesoporous Materials, 2016, 228, 231-236.	gas storage	2.2	27
364	The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Eff Molecular Packing. Chemistry - A European Journal, 2016, 22, 2466-2472.	⁻ icient	1.7	49
365	Enhancing the Gas Permeability of Tröger's Base Derived Polyimides of Intrinsic M Macromolecules, 2016, 49, 4147-4154.	icroporosity.	2.2	115

#	Article	IF	CITATIONS
366	Tetraphenylethylene-based microporous organic polymers: insight into structure geometry, porosity, and CO ₂ /CH ₄ selectivity. RSC Advances, 2016, 6, 51411-51418.	1.7	12
367	Novel 6FDA-based polyimides derived from sterically hindered Tröger's base diamines: Synthesis and gas permeation properties. Polymer, 2016, 96, 13-19.	1.8	60
368	Molecular Mobility of the High Performance Membrane Polymer PIM-1 as Investigated by Dielectric Spectroscopy. ACS Macro Letters, 2016, 5, 528-532.	2.3	35
369	Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport. Macromolecules, 2016, 49, 3395-3405.	2.2	60
370	The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon. Chemical Communications, 2016, 52, 6553-6556.	2.2	53
371	Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents. RSC Advances, 2016, 6, 45968-45976.	1.7	38
372	Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. Journal of Membrane Science, 2016, 514, 15-24.	4.1	103
373	High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation. Journal of Membrane Science, 2016, 514, 305-312.	4.1	68
374	Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIMâ€1) Immobilized onto Tinâ€Doped Indium Oxide. ChemElectroChem, 2016, 3, 2160-2164.	1.7	7
375	Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 2016, 138, 12332-12335.	6.6	433
376	Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation. Journal of Membrane Science, 2016, 520, 895-906.	4.1	34
377	Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation. Journal of Membrane Science, 2016, 520, 983-989.	4.1	63
379	Octafluorocyclopentene – A versatile tetrafunctional monomer for making tunable, high surface area, microporous ladder polymers. Journal of Fluorine Chemistry, 2016, 191, 70-76.	0.9	2
380	Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading. Journal of Membrane Science, 2016, 520, 240-246.	4.1	50
381	Dimethyl sulfoxide as a green solvent for successful precipitative polyheterocyclization based on nucleophilic aromatic substitution, resulting in high molecular weight PIM-1. Mendeleev Communications, 2016, 26, 362-364.	0.6	28
382	Review of polymers of intrinsic microporosity for hydrogen storage applications. International Journal of Hydrogen Energy, 2016, 41, 16944-16965.	3.8	116
383	Molecularly Rigid Microporous Polyamine Captures and Stabilizes Conducting Platinum Nanoparticle Networks. ACS Applied Materials & Interfaces, 2016, 8, 22425-22430.	4.0	14
384	High-throughput Acid-Base Tandem Organocatalysis over Hollow Tube-Shaped Porous Polymers and Carbons. ChemistrySelect, 2016, 1, 1192-1200.	0.7	29

CITATION REPORT ARTICLE IF CITATIONS New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based 1.7 21 AB-type monomer. RSC Advances, 2016, 6, 79625-79630. Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation. Journal of Materials Chemistry A, 2016, 4, 15072-15080. 5.2 Permeability of C1–C3 hydrocarbons through MDK membranes under nonisothermal conditions at 0.4 6 lower temperatures. Petroleum Chemistry, 2016, 56, 335-343. Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. Journal of Membrane Science, 2016, 518, 110-119. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?. Journal of Physical 389 1.2 27 Chemistry B, 2016, 120, 10403-10410. BODIPY-containing porous organic polymers for gas adsorption. New Journal of Chemistry, 2016, 40, 1.4 37 9415-9423. Understanding and controlling the chemical evolution and polysulfide-blocking ability of 391 lithium–sulfur battery membranes cast from polymers of intrinsic microporosity. Journal of 5.2 45 Materials Chemistry A, 2016, 4, 16946-16952. An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane 5.2 backbone. Journal of Materials Chemistry A, 2016, 4, 17655-17659. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. 393 2.2 55 Chemical Communications, 2016, 52, 13556-13559. Light-Switchable Polymers of Intrinsic Microporosity. Chemistry of Materials, 2016, 28, 8523-8529. 3.2 Autonomously Propelled Motors for Valueâ€Added Product Synthesis and Purification. Chemistry - A 1.7 14 European Journal, 2016, 22, 9072-9076. Theoretical study of the physisorption of organic molecules on conjugated microporous polymers: the critical role of skeleton structures on binding strength. RSC Advances, 2016, 6, 54841-54847. Facile conversion of nitrile to amide on polymers of intrinsic microporosity (PIM-1). Polymer, 2016, 98, 1.8 39 244-251. pH-induced reversal of ionic diode polarity in 300 nm thin membranes based on a polymer of intrinsic 2.3 microporosity. Electrochemistry Communications, 2016, 69, 41-45. Donor–Acceptorâ€Type Heptazineâ€Based Polymer Networks for Photocatalytic Hydrogen Evolution. 1.8 102 Energy Technology, 2016, 4, 744-750. Bifunctionalized Intrinsically Microporous Polyimides with Simultaneously Enhanced Gas Permeability and Selectivity. Macromolecular Rapid Communications, 2016, 37, 900-904. Pervaporation removal of volatile organic compounds from aqueous solutions using the highly 401 1.8 81 permeable <scp>PIM</scp>â€1 membrane. AICHE Journal, 2016, 62, 842-851.

Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties. RSC Advances, 2016, 6, 12009-12020.

385

387

394

395

397

398

#	Article	IF	CITATIONS
403	A novel intrinsically microporous ladder polymer and copolymers derived from 1,1′,2,2′-tetrahydroxy-tetraphenylethylene for membrane-based gas separation. Polymer Chemistry, 2016, 7, 1244-1248.	1.9	53
404	High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation. Polymer, 2016, 91, 128-135.	1.8	65
405	The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150031.	1.6	51
406	Soluble, microporous, Tröger's Base copolyimides with tunable membrane performance for gas separation. Chemical Communications, 2016, 52, 3817-3820.	2.2	75
407	Coupling fullerene into porous aromatic frameworks for gas selective sorption. Chemical Science, 2016, 7, 3751-3756.	3.7	42
408	Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature, 2016, 529, 190-194.	13.7	1,407
409	Dendrimer-like conjugated microporous polymers. Polymer Chemistry, 2016, 7, 1281-1289.	1.9	17
410	Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). Journal of Membrane Science, 2016, 504, 133-140.	4.1	97
411	High-strength, soluble polyimide membranes incorporating Tröger's Base for gas separation. Journal of Membrane Science, 2016, 504, 55-65.	4.1	127
412	Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 Membrane. Journal of Chemical & Engineering Data, 2016, 61, 579-586.	1.0	37
413	High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide. Journal of Membrane Science, 2016, 500, 115-123.	4.1	96
414	Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. Electrocatalysis, 2016, 7, 70-78.	1.5	18
415	Liberation of small molecules in polyimide membrane formation: An effect on gas separation properties. Journal of Membrane Science, 2016, 499, 20-27.	4.1	24
416	Synthesis of bare and functionalized porous adsorbent materials for CO ₂ capture. , 2017, 7, 399-459.		30
417	Sorption and Diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation. Journal of Membrane Science, 2017, 528, 135-146.	4.1	52
419	Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity. Journal of Colloid and Interface Science, 2017, 492, 81-91.	5.0	85
420	Macromolecular Design Strategies for Preventing Activeâ€Material Crossover in Nonâ€Aqueous Allâ€Organic Redoxâ€Flow Batteries. Angewandte Chemie - International Edition, 2017, 56, 1595-1599.	7.2	116
421	Multivalent dithiafulvenyl functionalization of dendritic oligo(phenylene vinylene)s with an an anthraquinodimethane core. Chemical Communications, 2017, 53, 1821-1824.	2.2	13

#	Article	IF	CITATIONS
422	Synthesis of fluorinated poly(arylene ether)s with dibenzodioxin and spirobisindane units from new bis(pentafluorophenyl)- and bis(nonafluorobiphenyl)-containing monomers. Journal of Fluorine Chemistry, 2017, 195, 1-12.	0.9	13
423	Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation. Journal of Materials Chemistry A, 2017, 5, 4583-4595.	5.2	69
424	Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chemical Society Reviews, 2017, 46, 3322-3356.	18.7	938
425	Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. Journal of Materials Science, 2017, 52, 3862-3875.	1.7	51
426	Macromolecular Design Strategies for Preventing Activeâ€Material Crossover in Nonâ€Aqueous Allâ€Organic Redoxâ€Flow Batteries. Angewandte Chemie, 2017, 129, 1617-1621.	1.6	25
427	A facile approach for the synthesis of hydroxyl-rich microporous organic networks for efficient CO ₂ capture and H ₂ storage. Chemical Communications, 2017, 53, 2752-2755.	2.2	38
428	Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). Journal of Membrane Science, 2017, 529, 274-285.	4.1	28
429	High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. Journal of Membrane Science, 2017, 529, 207-214.	4.1	79
430	A new route to phosphonium polymer network solids via cyclotrimerization. Journal of Polymer Science Part A, 2017, 55, 1620-1625.	2.5	9
431	Promoting and Tuning Porosity of Flexible Ether-Linked Phthalazinone-Based Covalent Triazine Frameworks Utilizing Substitution Effect for Effective CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 13201-13212.	4.0	64
432	Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 10968-10977.	5.2	127
433	Preparation of porous graphene oxide by chemically intercalating a rigid molecule for enhanced removal of typical pharmaceuticals. Carbon, 2017, 119, 101-109.	5.4	42
434	Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Tröger's base. Polymer, 2017, 126, 324-329.	1.8	11
435	Trends and challenges for microporous polymers. Chemical Society Reviews, 2017, 46, 3302-3321.	18.7	386
436	Physical aging, CO 2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2017, 537, 362-371.	4.1	123
437	Recent progress on submicron gas-selective polymeric membranes. Journal of Materials Chemistry A, 2017, 5, 8860-8886.	5.2	68
438	Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries. ACS Central Science, 2017, 3, 399-406.	5.3	44
439	Synthesis and Gasâ€Transport Properties of Novel Copolymers Based on Tricyclononenes Containing One and Three Me ₃ Siâ€Groups. Macromolecular Chemistry and Physics, 2017, 218, 1600385.	1.1	14

#	Article	IF	Citations
440	The evaluation of the C1–C4 hydrocarbon permeability parameters in the thin film composite membranes. Separation and Purification Technology, 2017, 186, 145-155.	3.9	26
441	Norbornyl benzocyclobutene ladder polymers: Conformation and microporosity. Journal of Polymer Science Part A, 2017, 55, 3075-3081.	2.5	38
442	AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1. International Journal of Hydrogen Energy, 2017, 42, 23915-23919.	3.8	12
443	Porous Molecular Solids and Liquids. ACS Central Science, 2017, 3, 544-553.	5.3	194
444	Robust microporous organic copolymers containing triphenylamine for high pressure CO 2 capture application. Journal of CO2 Utilization, 2017, 19, 214-220.	3.3	36
445	Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. Journal of Membrane Science, 2017, 539, 178-186.	4.1	66
446	Thin, Highâ€Flux, Selfâ€Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures. Chemistry - A European Journal, 2017, 23, 11416-11422.	1.7	26
447	Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor. Polymer, 2017, 121, 9-16.	1.8	53
448	Microporous structure of highly permeable additive silicon-containing polytricyclononenes. Polymer Science - Series A, 2017, 59, 143-148.	0.4	19
449	Pdâ€Metalated Conjugated Nanoporous Polycarbazoles for Additiveâ€Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation. ChemSusChem, 2017, 10, 2348-2351.	3.6	12
450	Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 2017, 46, 3134-3184.	18.7	861
451	A porous porphyrin organic polymer (PPOP) for visible light triggered hydrogen production. Chemical Communications, 2017, 53, 4461-4464.	2.2	74
452	From a flexible hyperbranched polyimide to a microporous polyimide network: Microporous architecture and carbon dioxide adsorption. Polymer, 2017, 115, 176-183.	1.8	25
453	A Critical Update on the Synthesis of Carboxylated Polymers of Intrinsic Microporosity (C-PIMs). Macromolecules, 2017, 50, 3043-3050.	2.2	36
454	Metal organoclays with compacted structure for truly physical capture of hydrogen. Applied Surface Science, 2017, 398, 116-124.	3.1	17
455	Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. Chemical Engineering Communications, 2017, 204, 295-309.	1.5	59
456	Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 2017, 117, 1515-1563.	23.0	961
457	Microporous polyimide networks constructed through a two-step polymerization approach, and their carbon dioxide adsorption performance. Polymer Chemistry, 2017, 8, 1298-1305.	1.9	36

#	Article	IF	CITATIONS
458	Mechanically Strong and Flexible Hydrolyzed Polymers of Intrinsic Microporosity (PIMâ€1) Membranes. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 344-354.	2.4	29
459	Analysis of the transport properties of thermally rearranged (TR) polymers and polymers of intrinsic microporosity (PIM) relative to upper bound performance. Journal of Membrane Science, 2017, 525, 18-24.	4.1	80
460	"Click Chemistry―Mediated Functional Microporous Organic Nanotube Networks for Heterogeneous Catalysis. Organic Letters, 2017, 19, 5776-5779.	2.4	19
461	A Highly Soluble, Fully Aromatic Fluorinated 3D Nanostructured Ladder Polymer. Macromolecules, 2017, 50, 8480-8486.	2.2	25
462	<i>50th Anniversary Perspective</i> : Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules, 2017, 50, 7809-7843.	2.2	709
463	Defect porous organic frameworks (dPOFs) as a platform for chiral organocatalysis. Journal of Catalysis, 2017, 355, 131-138.	3.1	26
464	Novel modified microcrystalline cellulose-based porous material for fast and effective heavy-metal removal from aqueous solution. Cellulose, 2017, 24, 5565-5577.	2.4	36
465	Molecular Design of Tröger's Base-Based Polymers Containing Spirobichroman Structure for Gas Separation. Industrial & Engineering Chemistry Research, 2017, 56, 12783-12788.	1.8	18
466	Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. Journal of Membrane Science, 2017, 543, 69-78.	4.1	60
467	Subnanoporous Highly Oxygen Permselective Membranes from Poly(conjugated hyperbranched) Tj ETQq1 1 0.7 1,3-Bis(silyl)phenylacetylene Using a Single Rh Catalytic System: Control of Their Structures and	84314 rgB 2.2	T /Overlock 11
468	Permselectivities. Macromolecules. 2017. 50. 7121-7136. Synthesis of microporous organic polymers via radical polymerization of fumaronitrile with divinylbenzene. Polymer Chemistry, 2017, 8, 6106-6111.	1.9	20
469	Solid-State Synthesis of Conjugated Nanoporous Polycarbazoles. ACS Macro Letters, 2017, 6, 1056-1059.	2.3	42
469 470	Solid-State Synthesis of Conjugated Nanoporous Polycarbazoles. ACS Macro Letters, 2017, 6, 1056-1059. Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO ₂ capture from flue gas. Journal of Materials Chemistry A, 2017, 5, 19808-19818.	2.3 5.2	42 54
	Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO ₂ capture from		
470	Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO ₂ capture from flue gas. Journal of Materials Chemistry A, 2017, 5, 19808-19818. Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation	5.2	54
470 471	Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO ₂ capture from flue gas. Journal of Materials Chemistry A, 2017, 5, 19808-19818. Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation performance. Journal of Membrane Science, 2017, 541, 403-412. Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Tröger's Base-Derived Dianhydrides	5.2 4.1	54 20
470 471 472	Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO ₂ capture from flue gas. Journal of Materials Chemistry A, 2017, 5, 19808-19818. Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation performance. Journal of Membrane Science, 2017, 541, 403-412. Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Tröger's Base-Derived Dianhydrides for Membrane Gas Separation Applications. Macromolecules, 2017, 50, 5850-5857. Ionic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM)	5.2 4.1 2.2	54 20 56

#	Article	IF	CITATIONS
476	Synthesis of Ladder Polymers: Developments, Challenges, and Opportunities. Chemistry - A European Journal, 2017, 23, 14101-14112.	1.7	116
477	Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2, .	19.8	428
478	Facile Synthesis of a Hydroxyl-Functionalized Tröger's Base Diamine: A New Building Block for High-Performance Polyimide Gas Separation Membranes. Macromolecules, 2017, 50, 9569-9576.	2.2	76
479	General Route to High Surface Area Covalent Organic Frameworks and Their Metal Oxide Composites as Magnetically Recoverable Adsorbents and for Energy Storage. ACS Macro Letters, 2017, 6, 1444-1450.	2.3	81
480	Functionalized Rigid Ladder Polymers from Catalytic Arene-Norbornene Annulation Polymerization. ACS Macro Letters, 2017, 6, 1357-1361.	2.3	48
481	Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications. Scientific Reports, 2017, 7, 15394.	1.6	25
482	Synthesis of Polyflourinated Biphenyls; Pushing the Boundaries of Suzuki–Miyaura Cross Coupling with Electron-Poor Substrates. Journal of Organic Chemistry, 2017, 82, 13188-13203.	1.7	38
483	Materials for the Recovery of Uranium from Seawater. Chemical Reviews, 2017, 117, 13935-14013.	23.0	639
484	Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. Reactive and Functional Polymers, 2017, 121, 67-75.	2.0	52
485	How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1?. Journal of Physical Chemistry B, 2017, 121, 7210-7220.	1.2	22
486	Mechanochemical synthesis of porous organic materials. Journal of Materials Chemistry A, 2017, 5, 16118-16127.	5.2	79
487	Evaluation of free volume and anisotropic chain orientation of Tröger's base (TB)-based microporous polyimide/copolyimide membranes. Polymer, 2017, 123, 39-48.	1.8	22
488	Polymer-based membranes for solvent-resistant nanofiltration: A review. Chinese Journal of Chemical Engineering, 2017, 25, 1653-1675.	1.7	76
489	Rigid-to-Flexible Conformational Transformation: An Efficient Route to Ring-Opening of a Tröger's Base-Containing Ladder Polymer. ACS Macro Letters, 2017, 6, 775-780.	2.3	32
490	Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer, 2017, 113, 283-294.	1.8	123
491	A strategy for preparing spirobichroman dianhydride from bisphenol A and its resulting polyimide with low dielectric characteristic. RSC Advances, 2017, 7, 1101-1109.	1.7	8
492	Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2–C4 alcohols dehydration via pervaporation. Journal of Membrane Science, 2017, 523, 430-438.	4.1	41
493	Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Separation and Purification Technology, 2017, 174, 166-173.	3.9	32

#	Article	IF	CITATIONS
494	Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. Journal of Membrane Science, 2017, 523, 92-102.	4.1	67
495	1.6 Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes. , 2017, , 120-136.		7
496	Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol). Membranes, 2017, 7, 28.	1.4	33
497	Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry, 2017, 9, 206.	1.1	54
498	1.9 Membranes Made of Polymers of Intrinsic Microporosity (PIMs). , 2017, , 216-235.		1
499	CO2 Adsorption on PIMs Studied with 13C NMR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 4403-4408.	1.5	8
500	Imide-Based Polymers of Intrinsic Microporosity: Probing the Microstructure in Relation to CO ₂ Sorption Characteristics. ACS Omega, 2018, 3, 2757-2764.	1.6	20
501	Preventing Crossover in Redox Flow Batteries through Active Material Oligomerization. ACS Central Science, 2018, 4, 140-141.	5.3	15
502	Enhanced CO 2 separation performance for tertiary amineâ€silica membranes via thermally induced local liberation of CH 3 Cl. AICHE Journal, 2018, 64, 1528-1539.	1.8	22
503	Synthesis of linear polymer of intrinsic microporosity from 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane and decafluorobiphenyl. Reactive and Functi Polymers, 2018, 125, 70-76.	മ്പ ം	8
504	Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. Journal of Industrial and Engineering Chemistry, 2018, 63, 296-302.	2.9	49
505	Influence of the molecular structure of polybinaphthalene on the membrane separation performance. European Polymer Journal, 2018, 101, 248-254.	2.6	9
506	Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chinese Journal of Chemical Engineering, 2018, 26, 2477-2486.	1.7	11
507	Soluble polybenzimidazoles with intrinsic porosity: Synthesis, structure, properties and processability. Journal of Polymer Science Part A, 2018, 56, 1046-1057.	2.5	7
508	Highly efficient transformation of linear poly(phenylene ethynylene)s into zigzag-shaped π-conjugated microporous polymers through boron-mediated alkyne benzannulation. Materials Chemistry Frontiers, 2018, 2, 807-814.	3.2	13
509	Thermally Rearranged Polymer Membranes Containing Tröger's Base Units Have Exceptional Performance for Air Separations. Angewandte Chemie - International Edition, 2018, 57, 4912-4916.	7.2	47
510	Removal of aniline from air and water by polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers. Journal of Colloid and Interface Science, 2018, 516, 317-324.	5.0	49
511	A facile synthesis of contorted spirobisindane-diamine and its microporous polyimides for gas separation. RSC Advances, 2018, 8, 6326-6330.	1.7	13

#	Article	IF	CITATIONS
513	High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. ACS Central Science, 2018, 4, 189-196.	5.3	134
514	Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. Journal of Polymer Research, 2018, 25, 1.	1.2	84
515	A multifunctionalization of octafluorocyclopentene under mild conditions. European Polymer Journal, 2018, 101, 66-76.	2.6	7
516	Thermally Rearranged Polymer Membranes Containing Tröger's Base Units Have Exceptional Performance for Air Separations. Angewandte Chemie, 2018, 130, 5006-5010.	1.6	8
517	Gas transport membranes based on novel optically active polyester/cellulose/ZnO bionanocomposite membranes. Journal of the Iranian Chemical Society, 2018, 15, 799-811.	1.2	2
518	Transport Properties Through Polymer Membranes. , 2018, , 119-158.		0
519	Soluble, porous semifluorinated poly(arylene ether) ladder polymers from 2,3,4,5,6-pentafluorobenzonitrile. Polymer, 2018, 135, 295-304.	1.8	3
520	Recent advances of hexaazatriphenylene (HAT) derivatives: Their applications in self-assembly and porous organic materials. Tetrahedron Letters, 2018, 59, 592-604.	0.7	28
521	Synthesis and properties of new aromatic polyimides containing spirocyclic structures. Polymer, 2018, 137, 283-292.	1.8	26
522	Synthesis and characterization of fluorinated isomeric polybenzoxazines from core-fluorinated diamine-based benzoxazines. Polymer, 2018, 145, 62-69.	1.8	22
523	First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. Journal of Physical Chemistry Letters, 2018, 9, 2003-2008.	2.1	67
524	Superhydrophobic Hexamethylene Diisocyanate Modified Hydrolyzed Polymers of Intrinsic Microporosity Electrospun Ultrafine Fibrous Membrane for the Adsorption of Organic Compounds and Oil/Water Separation. ACS Applied Nano Materials, 2018, 1, 1631-1640.	2.4	23
525	Temperature and pressure dependence of gas permeation in amine-modified PIM-1. Journal of Membrane Science, 2018, 555, 483-496.	4.1	45
526	Hierarchical porous membrane via electrospinning PIM-1 for micropollutants removal. Applied Surface Science, 2018, 443, 441-451.	3.1	27
527	Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications. Langmuir, 2018, 34, 3949-3960.	1.6	22
528	A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Tröger's base polymerization. Journal of Materials Chemistry A, 2018, 6, 5661-5667.	5.2	92
529	Microporous Organic Materials for Membraneâ€Based Gas Separation. Advanced Materials, 2018, 30, 1700750.	11.1	172
530	Hypercrosslinked silole ontaining microporous organic polymers with <scp>N</scp> â€functionalized pore surfaces for gas storage and separation. Journal of Applied Polymer Science, 2018, 135, 45907.	1.3	12

#	Article	IF	CITATIONS
531	Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. Journal of Colloid and Interface Science, 2018, 509, 457-462.	5.0	45
532	Intercalation of rigid molecules between carbon nanotubes for adsorption enhancement of typical pharmaceuticals. Chemical Engineering Journal, 2018, 332, 102-108.	6.6	34
533	Capillary electrochromatography using knitted aromatic polymer as the stationary phase for the separation of small biomolecules and drugs. Talanta, 2018, 178, 650-655.	2.9	26
534	Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity – the Boson peak of PIM-1. Physical Chemistry Chemical Physics, 2018, 20, 1355-1363.	1.3	17
535	Linking the Cu(II/I) potential to the onset of dynamic phenomena at corroding copper microelectrodes immersed in aqueous 0.5†M NaCl. Electrochimica Acta, 2018, 260, 348-357.	2.6	9
536	Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angewandte Chemie - International Edition, 2018, 57, 4850-4878.	7.2	405
537	Kovalente organische Netzwerke und KÄ f gverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerļsten. Angewandte Chemie, 2018, 130, 4942-4972.	1.6	97
538	Effective increase in permeability and free volume of PIM copolymers containing ethanoanthracene unit and comparison between the alternating and random copolymers. Journal of Membrane Science, 2018, 548, 593-597.	4.1	16
539	Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Materials Today Nano, 2018, 3, 69-95.	2.3	214
540	Palladium catalyst imbedded in polymers of intrinsic microporosity for the Suzuki–Miyaura coupling reaction. RSC Advances, 2018, 8, 35205-35210.	1.7	8
541	The Researches on Polymers of Intrinsic Microporosity Membranes for Separation. IOP Conference Series: Earth and Environmental Science, 2018, 170, 052041.	0.2	0
542	Advances in Nanostructured Metal-Encapsulated Porous Organic-Polymer Composites for Catalyzed Organic Chemical Synthesis. Catalysts, 2018, 8, 492.	1.6	17
543	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
544	Pristine and Carboxyl-Functionalized Tetraphenylethylene-Based Ladder Networks for Gas Separation and Volatile Organic Vapor Adsorption. ACS Omega, 2018, 3, 15966-15974.	1.6	15
545	Characterization of porous microspheres prepared via Î ³ -ray irradiation. Colloid and Polymer Science, 2018, 296, 2015-2023.	1.0	3
546	Microporous Materials Based on Norbornadiene-Based Cross-Linked Polymers. Polymers, 2018, 10, 1382.	2.0	17
547	Feasibility Study on the Design and Synthesis of Functional Porous Organic Polymers with Tunable Pore Structure as Metallocene Catalyst Supports. Polymers, 2018, 10, 944.	2.0	9
548	Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Applied Materials & Interfaces, 2018, 10, 36475-36482.	4.0	58

# 549	ARTICLE Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene. ACS Omega, 2018, 3, 11874-11882.	IF 1.6	CITATIONS 26
550	Advances in Organic Solvent Nanofiltration Rely on Physical Chemistry and Polymer Chemistry. Frontiers in Chemistry, 2018, 6, 511.	1.8	68
551	Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. Chemical Science, 2018, 9, 8883-8889.	3.7	56
552	Bringing Porous Organic and Carbonâ€Based Materials toward Thinâ€Film Applications. Advanced Functional Materials, 2018, 28, 1801545.	7.8	53
553	Heptazine based organic framework as a chemiresistive sensor for ammonia detection at room temperature. Journal of Materials Chemistry A, 2018, 6, 18389-18395.	5.2	61
554	Poly(1-trimethylsilyl-1-propyne)-Based Hybrid Membranes: Effects of Various Nanofillers and Feed Gas Humidity on CO2 Permeation. Membranes, 2018, 8, 76.	1.4	26
555	Selfâ€Assembled, Fluorineâ€Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chemistry - A European Journal, 2018, 24, 11771-11778.	1.7	8
556	Discrete Triptyceneâ€Based Hexakis(metalsalphens): Extrinsic Soluble Porous Molecules of Isostructural Constitution. Chemistry - A European Journal, 2018, 24, 11433-11437.	1.7	16
557	Templateâ€Directed Synthesis of an Inverted Spiro Architecture. Chemistry - A European Journal, 2018, 24, 13114-13117.	1.7	5
558	Superhydrophobic fluorine-rich conjugated microporous polymers monolithic nanofoam with excellent heat insulation property. Chemical Engineering Journal, 2018, 351, 856-866.	6.6	67
559	Recent advances in polymeric membranes for CO2 capture. Chinese Journal of Chemical Engineering, 2018, 26, 2238-2254.	1.7	123
560	Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes. Journal of Membrane Science, 2018, 564, 404-414.	4.1	45
561	Porous organic polymer as fillers for fabrication of defect-free PIM-1 based mixed matrix membranes with facilitating CO2-transfer chain. Journal of Membrane Science, 2018, 564, 115-122.	4.1	37
562	Mixed Matrix Membranes of Boron Icosahedron and Polymers of Intrinsic Microporosity (PIM-1) for Gas Separation. Membranes, 2018, 8, 1.	1.4	72
563	Effective Conversion of Amide to Carboxylic Acid on Polymers of Intrinsic Microporosity (PIM-1) with Nitrous Acid. Membranes, 2018, 8, 20.	1.4	21
564	Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews, 2018, 118, 5871-5911.	23.0	414
565	Low-cost Scholl-coupling microporous polymer as an efficient solid-phase microextraction coating for the detection of light aromatic compounds. Analytica Chimica Acta, 2018, 1029, 30-36.	2.6	26
566	Intrinsically microporous co-polyimides derived from ortho-substituted Tröger's Base diamine with a pendant tert-butyl-phenyl group and their gas separation performance. Polymer, 2018, 153, 173-182.	1.8	28

#	Article	IF	CITATIONS
567	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
568	Janus tricyclononene polymers bearing tri(<i>n</i> -alkoxy)silyl side groups for membrane gas separation. Journal of Materials Chemistry A, 2018, 6, 19393-19408.	5.2	68
569	Soluble Hyperbranched Porous Organic Polymers. Macromolecular Rapid Communications, 2018, 39, e1800441.	2.0	13
570	Plasticization behavior in polymers of intrinsic microporosity (PIM-1): A simulation study from combined Monte Carlo and molecular dynamics. Journal of Membrane Science, 2018, 565, 95-103.	4.1	62
571	A Bird's Eye view on process and engineering aspects of hydrogen storage. Renewable and Sustainable Energy Reviews, 2018, 91, 838-860.	8.2	91
572	Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Progress in Polymer Science, 2018, 84, 1-46.	11.8	108
573	Oligomerization of Silyl Ketene: Favoring Chain Extension over Backbiting. Macromolecules, 2019, 52, 6126-6134.	2.2	1
574	High-performance functionalized polymer of intrinsic microporosity (PIM) composite membranes with thin and stable interconnected layer for organic solvent nanofiltration. Journal of Membrane Science, 2019, 591, 117347.	4.1	47
575	Olefin/paraffin separation through membranes: from mechanisms to critical materials. Journal of Materials Chemistry A, 2019, 7, 23489-23511.	5.2	63
576	Tuning the Molecular Weights, Chain Packing, and Gas-Transport Properties of CANAL Ladder Polymers by Short Alkyl Substitutions. Macromolecules, 2019, 52, 6294-6302.	2.2	46
577	Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & Interfaces, 2019, 11, 31191-31199.	4.0	9
578	Microporous Polymeric Membranes: Structure, Preparation, Characterization, and Applications. , 2019, , 225-258.		Ο
579	Transport Mechanism and Modeling of Microporous Polymeric Membranes. , 2019, , 259-280.		0
580	Microporous Polymeric Membrane Reactors. , 2019, , 281-299.		0
581	Redefining the Robeson upper bounds for CO ₂ /CH ₄ and CO ₂ /N ₂ separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy and Environmental Science, 2019, 12, 2733-2740.	15.6	509
582	Metal-Assisted Salphen Organic Frameworks (MaSOFs) with Trinuclear Metal Units for Synergic Gas Sorption. Chemistry of Materials, 2019, 31, 6210-6223.	3.2	15
583	Polymeric Membranes for Natural Gas Processing: Polymer Synthesis and Membrane Gas Transport Properties. Polymers and Polymeric Composites, 2019, , 941-976.	0.6	3
584	The Effect of Thermal Treatment on the Hydrogenâ€Storage Properties of PIMâ€1. ChemPhysChem, 2019, 20, 1613-1623.	1.0	10

ARTICLE IF CITATIONS Membranes with Intrinsic Micro-Porosity: Structure, Solubility, and Applications. Membranes, 2019, 9, 585 1.4 26 3. Polymer with Intrinsic Microporosity PIM-1: New Methods of Synthesis and Gas Transport Properties. 0.3 Polýmer Science - Series B, 2019, 61, 605-612. Synthesis and Porous Structure of Addition Polymer Based on Dicyclopentadiene. Polymer Science -587 0.3 2 Series B, 2019, 61, 622-628. Synthesis of new poly-benzoylthiourea and thermal and surface properties. Journal of Polymer 588 1.2 Research, 2019, 26, 1. The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for 589 3.4 21 pervaporation membranes. BMC Chemical Engineering, 2019, 1, . Efficient organic pollutant degradation under visible-light using functional polymers of intrinsic microporosity. Catalysis Science and Technology, 2019, 9, 5383-5393. 2.1 Aromatic polymers made by reductive polydehalogenation of oligocyclic monomers as conjugated 591 1.9 7 polymers of intrinsic microporosity (C-PIMs). Polymer Chemistry, 2019, 10, 5200-5205. Simple synthesis of a swellable porous \hat{l}^2 -cyclodextrin-based polymer in the aqueous phase for the rapid 4.6 removal of organic micro-pollutants from water. Green Chemistry, 2019, 21, 6062-6072. Ruthenium Inlaying Porous Aromatic Framework for Hydrogen Generation From Ammonia Borane. 593 1.2 6 Frontiers in Materials, 2019, 6, . A review of different synthetic approaches of amorphous intrinsic microporous polymers and their 594 2.6 potential applications in membrane-based gases separation. European Polymer Journal, 2019, 120, 109262. UV-induced room temperature synthesis of microporous ladder polymers with efficient 595 3 2.0 photosensitization. Reactive and Functional Polymers, 2019, 144, 104362. Sulfur- and Nitrogen-Containing Porous Donorâ€"Acceptor Polymers as Real-Time Optical and Chemical 2.2 Sensors. Macromolecules, 2019, 52, 7696-7703. Porous organic polymer composites as surging catalysts for visible-light-driven chemical 597 transformations and pollutant degradation. Journal of Photochemistry and Photobiology C: 5.6 32 Photochemistry Reviews, 2019, 41, 100319. Polyimide-Based PolyHIPEs Prepared via Pickering High Internal Phase Emulsions. Polymers, 2019, 11, 1499. 599 Fluorescent porous organic polymers. Polymer Chemistry, 2019, 10, 1168-1181. 92 1.9 Chiral Bifunctional Thioureas and Squaramides Grafted into Old Polymers of Intrinsic Microporosity 2.0 14 for Novel Applications. Polymers, 2019, 11, 13. Porous Polymers Derived from Octavinylsilsesquioxane by Cationic Polymerization. Macromolecular 601 1.1 20 Chemistry and Physics, 2019, 220, 1800536. Gas and water vapor sorption and diffusion in a triptycene-based polybenzoxazole: effect of temperature and pressure and predicting of mixed gas sorption. Journal of Membrane Science, 2019, 4.1 574, 100-111.

#	Article	IF	CITATIONS
603	Precise Preparation and Characterization of Ladder-Like Vinylpolymers by Intramolecular ATRP Compartmentalized in a Nano-Sized Test Tube. Kobunshi Ronbunshu, 2019, 76, 168-178.	0.2	0
604	Small-pore CAU-21 and porous PIM-1 in mixed-matrix membranes for improving selectivity and permeability in hydrogen separation. Chemical Communications, 2019, 55, 7101-7104.	2.2	27
605	Rapid Polymerization of Aromatic Vinyl Monomers to Porous Organic Polymers via Acid Catalysis at Mild Condition. Macromolecular Rapid Communications, 2019, 40, e1900168.	2.0	4
606	Sustainable Synthesis of Superhydrophobic Perfluorinated Nanoporous Networks for Small Molecule Separation. Chemistry of Materials, 2019, 31, 5206-5213.	3.2	23
607	Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity. Polymer, 2019, 178, 121610.	1.8	62
608	Stable Covalent Organic Frameworks for Photochemical Applications. ChemPhotoChem, 2019, 3, 973-983.	1.5	48
609	Ferrocene-based nanoporous organic polymer as solid-phase extraction sorbent for the extraction of chlorophenols from tap water, tea drink and peach juice samples. Food Chemistry, 2019, 297, 124962.	4.2	43
610	Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23520-23526.	4.0	73
612	An Atomistic Simulation Study on POC/PIM Mixed-Matrix Membranes for Gas Separation. Journal of Physical Chemistry C, 2019, 123, 15113-15121.	1.5	22
613	Dispersible microporous diblock copolymer nanoparticles <i>via</i> polymerisation-induced self-assembly. Polymer Chemistry, 2019, 10, 3879-3886.	1.9	7
614	Investigation of Azo-COP-2 as a Photoresponsive Low-Energy CO ₂ Adsorbent and Porous Filler in Mixed Matrix Membranes for CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2019, 58, 9959-9969.	1.8	21
615	Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: The effect of intrachain rigidity on plasticization resistance. Journal of Membrane Science, 2019, 584, 100-109.	4.1	51
616	Sorption of CO2/CH4 mixtures in TZ-PIM, PIM-1 and PTMSP: Experimental data and NELF-model analysis of competitive sorption and selectivity in mixed gases. Journal of Membrane Science, 2019, 585, 136-149.	4.1	37
618	Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations. Separation and Purification Technology, 2019, 224, 456-462.	3.9	36
619	Microporous Organic Polymers: Synthesis, Characterization, and Applications. Polymers, 2019, 11, 844.	2.0	12
620	Nanoporous polymer-based composites for enhanced hydrogen storage. Adsorption, 2019, 25, 889-901.	1.4	24
621	Polyvinylnorbornene Gas Separation Membranes. Polymers, 2019, 11, 704.	2.0	14
622	Ladderization of polystyrene derivatives by palladium-catalyzed polymer direct arylation. Polymer Chemistry, 2019, 10, 2647-2652.	1.9	5

			_
#	Article	IF	CITATIONS
623	Synthesis and Gas-Permeation Characterization of a Novel High-Surface Area Polyamide Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene: Towards Polyamides of Intrinsic Microporosity (PIM-PAs).	2.0	22
	Polymers, 2019, 11, 361.		
624	A Coordinative Solubilizer Method to Fabricate Soft Porous Materials from Insoluble Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2019, 58, 6347-6350.	7.2	62
625	Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes. ACS Applied Polymer Materials, 2019, 1, 844-855.	2.0	15
626	A Coordinative Solubilizer Method to Fabricate Soft Porous Materials from Insoluble Metal–Organic Polyhedra. Angewandte Chemie, 2019, 131, 6413-6416.	1.6	17
627	Modelling Mixed-Gas Sorption in Glassy Polymers for CO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. Membranes, 2019, 9, 8.	1.4	43
628	Polymers with Side Chain Porosity for Ultrapermeable and Plasticization Resistant Materials for Gas Separations. Advanced Materials, 2019, 31, e1807871.	11.1	64
629	Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. Journal of Natural Gas Science and Engineering, 2019, 67, 172-195.	2.1	138
630	Photoelectrochemistry of immobilised Pt@g-C3N4 mediated by hydrogen and enhanced by a polymer of intrinsic microporosity PIM-1. Electrochemistry Communications, 2019, 103, 1-6.	2.3	18
631	lodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6, 1571-1595.	6.4	359
632	Flexible chain & rigid skeleton complementation polycarbazole microporous system for gas storage. Microporous and Mesoporous Materials, 2019, 284, 205-211.	2.2	11
633	Polymer of Intrinsic Microporosity (PIM-1) Membranes Treated with Supercritical CO2. Membranes, 2019, 9, 41.	1.4	24
634	Pervaporation and vapour permeation of methanol – dimethyl carbonate mixtures through PIM-1 membranes. Separation and Purification Technology, 2019, 217, 206-214.	3.9	29
635	Constructing Connected Paths between UiOâ€66 and PIMâ€1 to Improve Membrane CO ₂ Separation with Crystalâ€Like Gas Selectivity. Advanced Materials, 2019, 31, e1806853.	11.1	187
	Separation with Crystala Elike Gas Selectivity. Advanced Materials, 2019, 51, e1606655.		
636	Triptycene-Based Ladder Polymers with One-Handed Helical Geometry. Journal of the American	6.6	84
	Chemical Society, 2019, 141, 4696-4703.		
637	Fine-tuning the molecular structure of binaphthalene polyimides for gas separations. European	2.6	14
	Polymer Journal, 2019, 114, 134-143.		
638	Designer Polymers Boost Cation Exchange. Trends in Chemistry, 2019, 1, 797-798.	4.4	0
639	Crosslinking of Polybenzodioxane PIM-1 for Improving Its Stability in Aromatic Hydrocarbons. Polymer	0.3	6
,	Science - Series B, 2019, 61, 795-805.	0.0	~
640	Membrane Transport for Gas Separation. , 0, 23, 138-150.		1

#	Article	IF	CITATIONS
641	Unusual Structural Changes of PIM-1 Polymer Detected by Means of Chromatographic Technique. Polymer Science - Series C, 2019, 61, 198-204.	0.8	0
642	Pyreneâ€based hypercrosslinked microporous resins for effective CO ₂ capture. Journal of Applied Polymer Science, 2019, 136, 47448.	1.3	4
643	Phosphoniumâ€based polyelectrolyte networks with high thermal stability, high alkaline stability, and high surface areas. Journal of Polymer Science Part A, 2019, 57, 598-604.	2.5	9
644	A cationic porous organic polymer for high-capacity, fast, and selective capture of anionic pollutants. Journal of Hazardous Materials, 2019, 367, 348-355.	6.5	58
645	Development of superhydrophobic electrospun fibrous membrane of polymers of intrinsic microporosity (PIM-2). European Polymer Journal, 2019, 112, 87-94.	2.6	17
646	Biphasic Voltammetry and Spectroelectrochemistry in Polymer of Intrinsic Microporosity—4-(3-Phenylpropyl)-Pyridine Organogel/Aqueous Electrolyte Systems: Reactivity of MnPc Versus MnTPP. Electrocatalysis, 2019, 10, 295-304.	1.5	4
647	Thin film composite membranes from polymers of intrinsic microporosity using layer-by-layer method. Journal of Membrane Science, 2019, 572, 475-479.	4.1	23
648	Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress in Materials Science, 2019, 102, 222-295.	16.0	179
649	Interactions of Hydrogen with Pd@MOF Composites. ChemPhysChem, 2019, 20, 1282-1295.	1.0	15
650	Atomic Layer Deposition of NiOOH/Ni(OH) ₂ on PIMâ€1â€Based Nâ€Doped Carbon Nanofibers for Electrochemical Water Splitting in Alkaline Medium. ChemSusChem, 2019, 12, 1469-1477.	3.6	54
651	Exceptionally High CO ₂ Adsorption at 273 K by Microporous Carbons from Phenolic Aerogels: The Role of Heteroatoms in Comparison with Carbons from Polybenzoxazine and Other Organic Aerogels. Macromolecular Chemistry and Physics, 2019, 220, 1800333.	1.1	25
652	Gas sorption in polymers of intrinsic microporosity: The difference between solubility coefficients determined via time-lag and direct sorption experiments. Journal of Membrane Science, 2019, 570-571, 522-536.	4.1	29
653	The fabrication of ultrathin films and their gas separation performance from polymers of intrinsic microporosity with two-dimensional (2D) and three-dimensional (3D) chain conformations. Journal of Colloid and Interface Science, 2019, 536, 474-482.	5.0	20
654	Economic Framework of Membrane Technologies for Natural Gas Applications. Separation and Purification Reviews, 2019, 48, 298-324.	2.8	57
655	High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2019, 573, 425-438.	4.1	42
656	Polymeric Membranes for Natural Gas Processing: Polymer Synthesis and Membrane Gas Transport Properties. Polymers and Polymeric Composites, 2019, , 1-37.	0.6	0
657	Preparation of benzodiimidazole-containing covalent triazine frameworks for enhanced selective CO2 capture and separation. Microporous and Mesoporous Materials, 2019, 276, 213-222.	2.2	15
658	Fabrication of Thermally Crosslinked Hydrolyzed Polymers of Intrinsic Microporosity (HPIM)/Polybenzoxazine Electrospun Nanofibrous Membranes. Macromolecular Chemistry and Physics, 2019, 220, 1800326.	1.1	9

#	Article	IF	CITATIONS
659	Magnetically hyper-cross-linked polymers with well-developed mesoporous: a broad-spectrum and highly efficient adsorbent for water purification. Journal of Materials Science, 2019, 54, 2712-2728.	1.7	21
660	PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. Journal of Energy Chemistry, 2020, 42, 83-90.	7.1	83
661	Polymers of Intrinsic Microporosity and Their Potential in Process Intensification. , 2020, , 231-264.		2
662	Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane Science, 2020, 594, 117460.	4.1	39
663	Blend anion exchange membranes containing polymer of intrinsic microporosity for fuel cell application. Journal of Membrane Science, 2020, 595, 117541.	4.1	32
664	Nanofiltration membranes from crosslinked Troger's base Polymers of Intrinsic Microporosity (PIMs). Journal of Membrane Science, 2020, 595, 117501.	4.1	24
665	Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide. Journal of Membrane Science, 2020, 595, 117512.	4.1	44
666	Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16
667	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
668	Nanohybrid thin-film composite carbon molecular sieve membranes. Materials Today Nano, 2020, 9, 100065.	2.3	25
669	Mixed-Matrix Membranes with Covalent Triazine Framework Fillers in Polymers of Intrinsic Microporosity for CO ₂ Separations. Industrial & Engineering Chemistry Research, 2020, 59, 5296-5306.	1.8	28
670	Azaacene Dimers: Acceptor Materials with a Twist. Chemistry - A European Journal, 2020, 26, 412-418.	1.7	18
671	Transmembrane gas transfer: Mathematics of diffusion and experimental practice. Journal of Membrane Science, 2020, 601, 117737.	4.1	14
672	Screening PIM-1 performance as a membrane for binary mixture separation of gaseous organic compounds. Journal of Membrane Science, 2020, 599, 117798.	4.1	13
673	Bis(phenyl)fluorene-based polymer of intrinsic microporosity/functionalized multi-walled carbon nanotubes mixed matrix membranes for enhanced CO2 separation performance. Reactive and Functional Polymers, 2020, 147, 104465.	2.0	26
674	Understanding the Topology of the Polymer of Intrinsic Microporosity PIM-1: Cyclics, Tadpoles, and Network Structures and Their Impact on Membrane Performance. Macromolecules, 2020, 53, 569-583.	2.2	59
675	Synthesis and characterization of new spirobisindaneâ€based poly(imide)s: Structure effects on solubility, thermal behavior, and gas transport properties. Journal of Applied Polymer Science, 2020, 137, 48944.	1.3	5
676	Effect of side branch on gas separation performance of triptycene based PIM membrane: A molecular simulation study. Polymer Testing, 2020, 83, 106339.	2.3	20

#	Article	IF	CITATIONS
677	Intrinsically Microporous Polymer Nanosheets for Highâ€Performance Gas Separation Membranes. Macromolecular Rapid Communications, 2020, 41, e1900572.	2.0	23
678	Flexible films derived from PIM-1 with ultralow dielectric constants. Microporous and Mesoporous Materials, 2020, 294, 109887.	2.2	8
679	Macromolecular design strategies toward tailoring free volume in glassy polymers for high performance gas separation membranes. Molecular Systems Design and Engineering, 2020, 5, 22-48.	1.7	63
680	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	3.2	256
681	Microporous Polysulfones with Enhanced Separation Performance via Integration of the Triptycene Moiety. Industrial & Engineering Chemistry Research, 2020, 59, 5351-5361.	1.8	13
682	A porous ionic polymer bionic carrier in a mixed matrix membrane for facilitating selective CO2 permeability. Journal of Membrane Science, 2020, 598, 117677.	4.1	15
683	Rigid Ladder-Type Porous Polymer Networks for Entropically Favorable Gas Adsorption. , 2020, 2, 49-54.		30
684	A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 2020, 391, 123575.	6.6	82
685	Correlating Gas Permeability and Young's Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy. Industrial & Engineering Chemistry Research, 2020, 59, 5381-5391.	1.8	25
686	Porous Ladder Polymer Networks. CheM, 2020, 6, 2558-2590.	5.8	36
687	Polymer-supported Lewis acids and bases: Synthesis and applications. Progress in Polymer Science, 2020, 111, 101313.	11.8	30
688	CO ₂ /CH ₄ Pure- and Mixed-Gas Dilation and Sorption in Thin (â^1⁄4500 nm) and Ultrathin (â^1⁄450 nm) Polymers of Intrinsic Microporosity. Macromolecules, 2020, 53, 8765-8774.	2.2	16
689	Gas Transport in a Polymer of Intrinsic Microporosity (PIM-1) Substituted with Pseudo-Ionic Liquid Tetrazole-Type Structures. Macromolecules, 2020, 53, 8951-8959.	2.2	31
690	Recent progress on thin film composite membranes for CO2 separation. Journal of CO2 Utilization, 2020, 42, 101296.	3.3	52
691	Molecular engineering of high-performance nanofiltration membranes from intrinsically microporous poly(ether-ether-ketone). Journal of Materials Chemistry A, 2020, 8, 24445-24454.	5.2	34
692	Harnessing the enantiomeric recognition ability of hydrophobic polymers of intrinsic microporosity (PIM-1) toward amino acids by converting them into hydrophilic polymer dots. Journal of Materials Chemistry C, 2020, 8, 13827-13835.	2.7	12
693	Facile and Time-Efficient Carboxylic Acid Functionalization of PIM-1: Effect on Molecular Packing and Gas Separation Performance. Macromolecules, 2020, 53, 6220-6234.	2.2	44
694	Microporous Materials in Scalable Shapes: Fiber Sorbents. Chemistry of Materials, 2020, 32, 7081-7104.	3.2	15

#	Article	IF	CITATIONS
695	Physical Aging Investigations of a Spirobisindane-Locked Polymer of Intrinsic Microporosity. , 2020, 2, 993-998.		11
696	Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation. Membranes, 2020, 10, 328.	1.4	5
697	Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale, 2020, 12, 23333-23370.	2.8	81
698	Ultrasonic Activation of PIM-1 Synthesis and Properties of Polymers Obtained by Precipitation Polyheterocyclization in Dimethyl Sulfoxide. Polymer Science - Series C, 2020, 62, 259-265.	0.8	7
699	Novel copolymers with intrinsic microporosity containing tetraphenyl-bipyrimidine for enhanced gas separation. Journal of Industrial and Engineering Chemistry, 2020, 91, 102-109.	2.9	6
700	Five-Minute Mechanosynthesis of Hypercrosslinked Microporous Polymers. Chemistry of Materials, 2020, 32, 7694-7702.	3.2	41
701	Membraneâ€Based Olefin/Paraffin Separations. Advanced Science, 2020, 7, 2001398.	5.6	105
702	Hydrophilic Microporous Polymer Membranes: Synthesis and Applications. ChemPlusChem, 2020, 85, 1893-1904.	1.3	18
703	Synthesis and Permselectivity of a <i>Soluble</i> Two-Dimensional Macromolecular Sheet by Solid–Solid Interfacial Polycondensation Followed by Chemical Exfoliation. , 2020, 2, 1121-1128.		8
704	Preparation of NH2-SH-GO/SWCNTs based on graphene oxide/single-walled carbon nanotubes for CO2 and N2 separation from blast furnace gas. Microporous and Mesoporous Materials, 2020, 306, 110476.	2.2	6
705	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	5.2	93
706	Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes?. Macromolecules, 2020, 53, 5649-5654.	2.2	39
707	Molecular Mobility of a Polymer of Intrinsic Microporosity Revealed by Quasielastic Neutron Scattering. Macromolecules, 2020, 53, 6731-6739.	2.2	10
708	Low frequency vibrational density of state of highly permeable super glassy polynorbornenes – the Boson peak. Physical Chemistry Chemical Physics, 2020, 22, 18381-18387.	1.3	7
709	Highly efficient perylene-based polymer photocatalyst/biocatalyst systems for l-glutamate production under solar light. Bulletin of Materials Science, 2020, 43, 1.	0.8	11
710	Covalent organic framework and montomorillonite nanocomposite as advanced adsorbent: synthesis, characterization, and application in simultaneous adsorption of cationic and anionic dyes. Journal of Environmental Health Science & Engineering, 2020, 18, 1555-1567.	1.4	10
711	Controlled Superacid-Catalyzed Self-Cross-Linked Polymer of Intrinsic Microporosity for High-Performance CO ₂ Separation. Macromolecules, 2020, 53, 7988-7996.	2.2	18
712	Microporous organic polymer-based membranes for ultrafast molecular separations. Progress in Polymer Science, 2020, 110, 101308.	11.8	83

#	Article	IF	CITATIONS
713	The Synthesis and Gas Transport Properties of PIM-1 Polybenzodioxane Modified with Benzanilide. Membranes and Membrane Technologies, 2020, 2, 203-209.	0.6	2
714	Alkylamine Incorporation in Amidoxime Functionalized Polymers of Intrinsic Microporosity for Gas Capture and Separation. Energy Technology, 2020, 8, 2000419.	1.8	9
715	Functionalized porous organic materials as efficient media for the adsorptive removal of Hg(<scp>ii</scp>) ions. Environmental Science: Nano, 2020, 7, 2887-2923.	2.2	44
716	Synthetic Saponite Clays as Additives for Reducing Aging Effects in PIM1 Membranes. ACS Applied Polymer Materials, 2020, 2, 3481-3490.	2.0	8
717	New PIM-1 copolymers containing 2,3,6,7-anthracenetetrayl moiety and their use as gas separation membranes. Mendeleev Communications, 2020, 30, 734-737.	0.6	5
718	Pervaporation Separation of Toluene/TEG Mixture with PIM-1 Membrane. Key Engineering Materials, 0, 869, 408-412.	0.4	2
719	Cross-Linked PIM-1 Membranes with Improved Stability to Aromatics. Key Engineering Materials, 0, 869, 431-436.	0.4	1
720	Electrospinning Combined with Atomic Layer Deposition to Generate Applied Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6186-6209.	2.4	23
721	Efficient and Tunable Whiteâ€Light Emission Using a Dispersible Porous Polymer. Macromolecular Rapid Communications, 2020, 41, 2000176.	2.0	1
722	Mixed Matrix Membranes from a Microporous Polymer Blend and Nanosized Metal–Organic Frameworks with Exceptional CO ₂ /N ₂ Separation Performance. , 2020, 2, 821-828.		27
723	Synthetic polymer-based membranes for oxygen enrichment. , 2020, , 191-216.		2
724	Multifunctional porous aromatic frameworks: State of the art and opportunities. EnergyChem, 2020, 2, 100037.	10.1	35
725	Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. Journal of Membrane Science, 2020, 611, 118363.	4.1	32
726	Future needs and trends: influence of polymers on the environment. , 2020, , 593-634.		3
727	Reduced graphene-decorated covalent organic framework as a novel coating for solid-phase microextraction of phthalate esters coupled to gas chromatography-mass spectrometry. Mikrochimica Acta, 2020, 187, 256.	2.5	36
728	Polymers of Intrinsic Microporosity (PIMs). Polymer, 2020, 202, 122736.	1.8	94
729	Facile synthesis of a linear porous organic polymer <i>via</i> Schiff-base chemistry for propyne/propylene separation. Polymer Chemistry, 2020, 11, 4382-4386.	1.9	8
730	Design Principles for Dendrite Suppression with Porous Polymer/Aqueous Solution Hybrid Electrolyte for Zn Metal Anodes. ACS Energy Letters, 2020, 5, 2466-2474.	8.8	108

#	Article	IF	CITATIONS
731	Nitrogen-rich isoindoline-based porous polymer: Promoting knoevenagel reaction at room temperature. Green Energy and Environment, 2020, 5, 484-491.	4.7	10
732	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389
733	Enhanced Gas Separation Properties of Tröger's Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers. Macromolecules, 2020, 53, 1573-1584.	2.2	51
734	Polymers of Intrinsic Microporosity Having Bulky Substitutes and Cross-Linking for Gas Separation Membranes. ACS Applied Polymer Materials, 2020, 2, 987-995.	2.0	29
735	Amidoxime Modified Polymers of Intrinsic Microporosity (PIM-1); A Versatile Adsorbent for Efficient Removal of Charged Dyes; Equilibrium, Kinetic and Thermodynamic Studies. Journal of Polymers and the Environment, 2020, 28, 995-1009.	2.4	21
736	Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Scientific Reports, 2020, 10, 794.	1.6	111
737	Advances in Conjugated Microporous Polymers. Chemical Reviews, 2020, 120, 2171-2214.	23.0	810
738	Bifunctional polymer-of-intrinsic-microporosity membrane for flexible Li/Na–H ₂ O ₂ batteries with hybrid electrolytes. Journal of Materials Chemistry A, 2020, 8, 3491-3498.	5.2	8
739	Synthesis and gas permeability of methylol-group-containing Poly(diphenylacetylene)s with high CO2 permeability and permselectivity. Polymer, 2020, 190, 122230.	1.8	0
740	Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chemical Engineering Science, 2020, 216, 115497.	1.9	23
741	The luminescent and photophysical properties of covalent organic frameworks. Chemical Society Reviews, 2020, 49, 839-864.	18.7	234
742	Characterization of microstructures and reaction mechanisms of Tröger's base polymers of intrinsic microporosity. Rapid Communications in Mass Spectrometry, 2020, 34, e8713.	0.7	1
743	Top-Down Polyelectrolytes for Membrane-Based Post-Combustion CO2 Capture. Molecules, 2020, 25, 323.	1.7	16
744	Binaphthalene-based polymer membranes with enhanced performance for solvent-resistant nanofiltration. Journal of Membrane Science, 2020, 606, 118066.	4.1	25
745	Synthesis and gas separation properties of OH-functionalized Tröger's base-based PIMs derived from 1,1′-binaphthalene-2,2′-OH. Polymer, 2020, 193, 122369.	1.8	15
746	Facile Synthesis and Study of Microporous Catalytic Arene-Norbornene Annulation–Tröger's Base Ladder Polymers for Membrane Air Separation. ACS Macro Letters, 2020, 9, 680-685.	2.3	57
747	Nanomaterials with Tailored Magnetic Properties as Adsorbents of Organic Pollutants from Wastewaters. Inorganics, 2020, 8, 24.	1.2	32
748	Porousâ€Organicâ€Polymerâ€Triggered Advancement of Sustainable Magnetic Efficient Catalyst for Chemoselective Hydrogenation of Cinnamaldehyde. ChemCatChem, 2020, 12, 3687-3704.	1.8	24

#	Article	IF	CITATIONS
749	Effect of Bridgehead Methyl Substituents on the Gas Permeability of Tröger's-Base Derived Polymers of Intrinsic Microporosity. Membranes, 2020, 10, 62.	1.4	21
750	Advances in the Application of Polymers of Intrinsic Microporosity in Liquid Separation and Purification: Membrane Separation and Adsorption Separation. Polymer Reviews, 2021, 61, 239-279.	5.3	20
751	Microporous polyimide VOC-rejective membrane for the separation of nitrogen/VOC mixture. Journal of Hazardous Materials, 2021, 402, 123817.	6.5	30
752	Recent Progress in Porous Fused Aromatic Networks and Their Applications. Small Science, 2021, 1, 2000007.	5.8	14
753	Leveraging Free Volume Manipulation to Improve the Membrane Separation Performance of Amineâ€Functionalized PIMâ€1. Angewandte Chemie - International Edition, 2021, 60, 6593-6599.	7.2	30
754	Synthesis, characterization and catalytic application of Bi2S3 microspheres for Suzuki-Miyaura cross-coupling reaction and chemoselective ring opening of epoxides. Molecular Catalysis, 2021, 499, 111283.	1.0	10
755	Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation. Microporous and Mesoporous Materials, 2021, 312, 110761.	2.2	37
756	Leveraging Free Volume Manipulation to Improve the Membrane Separation Performance of Amineâ€Functionalized PIMâ€1. Angewandte Chemie, 2021, 133, 6667-6673.	1.6	6
757	Facile synthesis of porous organic polymers (POPs) membrane via click chemistry for efficient PM2.5 capture. Separation and Purification Technology, 2021, 258, 118049.	3.9	10
758	Unprecedented gas separation performance of a difluoro-functionalized triptycene-based ladder PIM membrane at low temperature. Journal of Materials Chemistry A, 2021, 9, 5404-5414.	5.2	50
759	Grapheneâ€Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Advanced Functional Materials, 2021, 31, 2006949.	7.8	81
760	Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. Reviews in Chemical Engineering, 2021, 37, 363-406.	2.3	32
761	Recent Progress of Porous Polymers for Lithium Metal Anodes Protection. Acta Chimica Sinica, 2021, 79, 378.	0.5	3
762	Environment and Material Science Technology for Anaerobic Digestion-Based Circular Bioeconomy. , 2021, , 25-55.		2
763	Synthesis of reversibly photocleavable pseudo-ladder polymers. Polymer Chemistry, 2021, 12, 4621-4625.	1.9	3
764	Alkaline Anion Exchange Membrane (AEM) Water Electrolysers—Current/Future Perspectives in Electrolysers for Hydrogen. , 2022, , 473-504.		2
765	Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity. ACS Applied Polymer Materials, 2021, 3, 920-928.	2.0	8
766	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170

#	ARTICLE
#	ARTICLE

Fast and self-recoverable photoinduced deformation behavior of azobenzene-containing poly(arylene) Tj ETQq0 0 0.rgBT /Overlock 10 Tr

768	High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. Journal of Materials Chemistry A, 2021, 9, 18313-18322.	5.2	28
769	Carbon dioxide as a main source of air pollution: Prospective and current trends to control. , 2021, , 623-688.		3
770	Digital-intellectual design of microporous organic polymers. Physical Chemistry Chemical Physics, 2021, 23, 22835-22853.	1.3	2
771	Alkaline polymers of intrinsic microporosity: high-conduction and low-loss anhydrous proton exchange membranes for energy conversion. Journal of Materials Chemistry A, 2021, 9, 3925-3930.	5.2	32
772	Porous organic polymers as metal free heterogeneous organocatalysts. Green Chemistry, 2021, 23, 7361-7434.	4.6	54
773	Microporous Polymers for Gas Separation Membranes: Overview and Advances. , 2021, , 1527-1555.		0
774	Novel Trends in Magnetic Polymeric Nanoarchitectures. Polymer-Plastics Technology and Materials, 2021, 60, 830-848.	0.6	13
775	Synthetic Porous Melanin. Journal of the American Chemical Society, 2021, 143, 3094-3103.	6.6	30
776	Allomelanin: A Biopolymer of Intrinsic Microporosity. Journal of the American Chemical Society, 2021, 143, 4005-4016.	6.6	41
777	Asynchronous Double Schiff Base Formation of Pyrazole Porous Polymers for Selective Pd Recovery. Advanced Science, 2021, 8, 2001676.	5.6	21
778	A Pressure Swing Approach to Selective CO2 Sequestration Using Functionalized Hypercrosslinked Polymers. Materials, 2021, 14, 1605.	1.3	3
779	Sorption, swelling and plasticization of PIM-1 in methanol-dimethyl carbonate vapour mixtures. Polymer, 2021, 218, 123509.	1.8	10
780	Judicious design functionalized <scp>3Dâ€COF</scp> to enhance <scp>CO₂</scp> adsorption and separation. Journal of Computational Chemistry, 2021, 42, 888-896.	1.5	14
781	Remarkably enhanced gas separation properties of PIM-1 at sub-ambient temperatures. Journal of Membrane Science, 2021, 623, 119091.	4.1	36
782	Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. Separation and Purification Technology, 2021, 260, 118221.	3.9	60
783	The changing state of porous materials. Nature Materials, 2021, 20, 1179-1187.	13.3	147
784	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117

# 785	ARTICLE Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization. Chinese Journal of Chemical Engineering, 2022, 45,	IF 1.7	CITATIONS
786	194-202. Thermal and Gas Adsorption Properties of Tröger's Base/Diaza yclooctane Hybrid Ladder Polymers. ChemNanoMat, 2021, 7, 824-830.	1.5	4
787	Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 2021, 271, 129425.	4.2	64
788	The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. Journal of CO2 Utilization, 2021, 48, 101526.	3.3	41
789	Synthesis of Fluorinated Poly(phenyl-alkane)s of Intrinsic Microporosity by Regioselective Aldehyde (A ₂) + Aromatics (B ₂) Friedel–Crafts Polycondensation. Macromolecules, 2021, 54, 6543-6551.	2.2	11
790	Aerobic Oxidation of 2,3,6-Trimethylphenol with Reusable Homogenized Copper Catalysts. Chemical Research in Chinese Universities, 2021, 37, 751-756.	1.3	0
791	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	9.5	52
792	Design and Synthesis of Porous Organic Polymeric Materials from Norbornene Derivatives. Polymer Reviews, 2022, 62, 400-437.	5.3	15
793	Intrinsically microporous polyimides derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride. Pc 2021, 228, 123955.	olymaær,	5
794	Ultrapermeable Polymers of Intrinsic Microporosity Containing Spirocyclic Units with Fused Triptycenes. Advanced Functional Materials, 2021, 31, 2104474.	7.8	29
795	Influence of Polymer Topology on Gas Separation Membrane Performance of the Polymer of Intrinsic Microporosity PIM-Py. ACS Applied Polymer Materials, 2021, 3, 3485-3495.	2.0	11
796	Freestanding Tough Glassy Membranes Produced by Simple Solvent Casting of Polyrotaxane Derivatives. ACS Applied Polymer Materials, 2021, 3, 4177-4183.	2.0	5
797	In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. Journal of Membrane Science, 2021, 630, 119302.	4.1	17
798	Ultrapermeable polymeric membranes based on particular ultra-rigid units for enhanced gas separation. Journal of Membrane Science, 2021, 629, 119284.	4.1	16
799	Versatile Porous Poly(arylene ether)s via Pd-Catalyzed C–O Polycondensation. Journal of the American Chemical Society, 2021, 143, 11828-11835.	6.6	20
800	Sizeâ€Selective Photoelectrochemical Reactions in Microporous Environments: Clark Probe Investigation of Pt@gâ€C ₃ N ₄ Embedded into Intrinsically Microporous Polymer (PIMâ€1). ChemElectroChem, 2021, 8, 3499-3505.	1.7	6
801	Photoactive Hybrid Materials based on Conjugated Porous Polymers and Inorganic Nanoparticles. Advanced Photonics Research, 2021, 2, 2100060.	1.7	0
802	Synthesis and Gas Transport Properties of Copolymers of Polybenzodioxane PIM-1 and Tetrahydroxyanthracene. Membranes and Membrane Technologies, 2021, 3, 199-205.	0.6	0

#	Article	IF	CITATIONS
803	Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. Journal of Environmental Sciences, 2021, 105, 184-203.	3.2	57
804	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2100049.	6.9	62
805	Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture. Journal of Membrane Science, 2021, 632, 119372.	4.1	12
806	Synthesis of polystyrene-based hyper-cross-linked polymers for Cd(II) ions removal from aqueous solutions: Experimental and RSM modeling. Journal of Hazardous Materials, 2021, 416, 125923.	6.5	36
807	Modelling Amorphous Nanoporous Polymers Doped with an Ionic Liquid via an Adaptable Computational Procedure. Industrial & Engineering Chemistry Research, 2021, 60, 11893-11904.	1.8	1
808	PIMâ€1 as a Multifunctional Framework to Enable Highâ€Performance Solidâ€State Lithium–Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2104830.	7.8	47
809	State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. Polymer, 2021, 229, 123988.	1.8	18
810	Non-enzymatic electrochemical cholesterol sensor based on strong host-guest interactions with a polymer of intrinsic microporosity (PIM) with DFT study. Analytical and Bioanalytical Chemistry, 2021, 413, 6523-6533.	1.9	7
811	Improved synthesis route and performance of azide modified polymers of intrinsic microporosity after thermal self-crosslinking. Polymer, 2021, 230, 124094.	1.8	3
812	Highly thermostable high molecular-weight low k PIM polymers based on 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-Tetramethylspirobisindane, decafluorobiphenyl, and bisphenols. Polym 2021, 230, 124072.	ец.8	4
813	Fundamentals and Designâ€Led Synthesis of Emulsionâ€Templated Porous Materials for Environmental Applications. Advanced Science, 2021, 8, e2102540.	5.6	30
814	Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
815	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2170026.	6.9	8
816	Enhanced propylene/propane separation in facilitated transport membranes containing multisilver complex. AICHE Journal, 2022, 68, e17410.	1.8	16
817	Zeolite-like performance for xylene isomer purification using polymer-derived carbon membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
818	2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. Journal of Membrane Science, 2021, 636, 119527.	4.1	52
819	The effect of chain rigidity and microporosity on the sub-ambient temperature gas separation properties of intrinsic microporous polyimides. Journal of Membrane Science, 2021, 635, 119439.	4.1	29
820	Unprecedented gas separation performance of ITTB/CNT nanocomposite membranes at low temperature by strong interfacial interaction enhanced rigidity. Journal of Membrane Science, 2021, 636, 119590.	4.1	14

#	Article	IF	Citations
821	Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance. Journal of Membrane Science, 2021, 636, 119544.	4.1	26
822	Shuttle-effect-free sodium–sulfur batteries derived from a Tröger's base polymer of intrinsic microporosity. Journal of Power Sources, 2021, 513, 230539.	4.0	6
823	Blending and in situ thermally crosslinking of dual rigid polymers for anti-plasticized gas separation membranes. Journal of Membrane Science, 2021, 638, 119668.	4.1	15
824	Facile synthesis of Melamine-Modified porous organic polymer for mercury (II) removal. Separation and Purification Technology, 2021, 274, 119097.	3.9	19
825	Synthesis and gas separation properties of polyimide membranes derived from oxygencyclic pseudo-Tröger's base. Journal of Membrane Science, 2021, 637, 119604.	4.1	18
826	Enabling experimental characterization and prediction of ternary mixed-gas sorption in polymers: C2H6/CO2/CH4 in PIM-1. Chemical Engineering Journal, 2021, 426, 130715.	6.6	17
827	Facile synthesis of Bi-functionalized intrinsic microporous polymer with fully carbon backbone for gas separation application. Separation and Purification Technology, 2021, 279, 119681.	3.9	7
828	Framework for predicting the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 2021, 640, 119767.	4.1	21
829	CO2/CH4 mixed-gas separation in PIM-1 at high pressures: Bridging atomistic simulations with process modeling. Journal of Membrane Science, 2021, 640, 119838.	4.1	20
830	Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Separation and Purification Technology, 2021, 278, 119513.	3.9	44
831	Amidoxime modified polymers of intrinsic microporosity/alginate composite hydrogel beads for efficient adsorption of cationic dyes from aqueous solution. Journal of Colloid and Interface Science, 2022, 607, 890-899.	5.0	54
832	Nanometer scale porous structures. , 2021, , 53-76.		0
833	Effects of different treatments of films of PIM-1 on its gas permeation parameters and free volume. Polymer, 2021, 212, 123271.	1.8	10
834	Hydrogen sulfide removal from natural gas using membrane technology: a review. Journal of Materials Chemistry A, 2021, 9, 20211-20240.	5.2	37
835	Smart sensors for volatile organic compounds (VOCs) and their possible application as end of service life indicator (ESLI) for respirator cartridges. Advances in Chemical Engineering, 2021, 57, 197-231.	0.5	1
836	A Review on Ionic Liquid Gas Separation Membranes. Membranes, 2021, 11, 97.	1.4	80
837	Two-dimensional conjugated microporous polymer films: fabrication strategies and potential applications. Polymer Chemistry, 2021, 12, 807-821.	1.9	26
838	Photocatalytic polymers of intrinsic microporosity for hydrogen production from water. Journal of Materials Chemistry A, 2021, 9, 19958-19964.	5.2	36

ARTICLE IF CITATIONS # Organic Porous Polymer Materials: Design, Preparation, and Applications. Engineering Materials and 839 0.2 1 Processes, 2017, , 71-150. 840 Microporous Materials in Antibacterial Applications., 2017, , 171-188. 841 Hydrogen Separation Membranes of Polymeric Materials., 2017, , 85-116. 8 Strategies for Hydrogen Storage in Porous Organic Polymers., 2017, , 203-223. 842 H2-selective Troger's base polymer based mixed matrix membranes enhanced by 2D MOFs. Journal of 843 4.1 22 Membrane Science, 2020, 610, 118262. Facile synthesis and gas transport properties of HÃ1/4nlich's base-derived intrinsically microporous polyimides. Polymer, 2020, 201, 122619. 1.8 Polymers of Intrinsic Microporosity in the Design of Electrochemical Multicomponent and 845 3.2 19 Multiphase Interfaces. Analytical Chemistry, 2021, 93, 1213-1220. Carbazolic Porous Framework with Tetrahedral Core for Gas Uptake and Tandem Detection of Iodide 846 4.0 and Mercury. ACS Applied Materials & amp; Interfaces, 2017, 9, 21438-21446. 847 CO2 Capture by Adsorption Processes. RSC Energy and Environment Series, 2019, , 106-167. 0.2 2 Microporous polymeric membranes inspired by adsorbent for gas separation. Journal of Materials 848 5.2 Chemistry A, 2017, 5, 13294-13319. Highly Permeable Polyheteroarylenes for Membrane Gas Separation: Recent Trends in Chemical 849 0.8 10 Structure Design. Polymer Science - Series C, 2020, 62, 238-258. Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A mini Review. Proceedings of the Nature Research Society, 0, 2,. Interaction of a Polymer of Intrinsic Microporosity (PIM-1) with Penetrants. American Journal of 851 0.3 14 Applied Chemistry, 2015, 3, 139. Nanoporous Polymers., 2013, , 1-42. Zr-Fumarate MOF a Novel CO2-Adsorbing Material: Synthesis and Characterization. Aerosol and Air 853 0.9 37 Quality Research, 2014, 14, 1605-1612. <scp>Postâ€polymerization</scp> modification of aromatic polyimides via Dielsâ€Alder cycloaddition. 854 Journal of Polymer Science, 2021, 59, 3161-3166. Pure- and mixed-gas transport properties of a microporous Tröger's Base polymer (PIM-EA-TB). Polymer, 855 1.8 7 2021, 236, 124295. Preparation and Characterization of the Phthalazinone Structure-based Microporous Organic Polymer., 0, , .

#	Article	IF	CITATIONS
858	Synthesis of allyl-containing poly(arylene ether)s copolymers with mono- and biphenylene fragments in main chain. Polymer Journal, 2015, 37, 168-173.	0.3	0
859	Synthesis of 4,4′-bis(nonafluorobiphenyl-4-oxyphenyl)-bis(trifluoromethyl)methane and a ladder polyether with spirobisindane fragments on its base. Reports National Academy of Science of Ukraine, 2015, , 116-122.	0.0	Ο
861	Synthesis of 4,4′-bis(nonafluorobiphenyl-4-oxyphenyl)- 1,4-oxytetrafluorobenzene and ladder spirobisindane-containing polyether on its base. Reports National Academy of Science of Ukraine, 2016, , 100-106.	0.0	0
862	Conjugated Polycarbazole Network for Gas Storage and Separation. Hans Journal of Chemical Engineering and Technology, 2017, 07, 315-324.	0.0	Ο
863	New spirobisindane-based ladder-type poly(arylene ether) copolymer with perfluorinated biphenylene and trifluoromethyl fragments. Polymer Journal, 2018, 40, 93-97.	0.3	1
865	Microporous Polymers for Gas Separation Membranes: Overview and Advances. , 2020, , 1-29.		1
866	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	4.6	36
867	Adsorption of Aniline from Aqueous System by Highly Fluorinated Polymers of Intrinsic Microporosity (PIM-2). Journal of the Institute of Science and Technology, 0, , 1886-1898.	0.3	1
868	Ferrocene metallopolymers of intrinsic microporosity (MPIMs). Chemical Communications, 2021, 58, 238-241.	2.2	4
869	Polymer Materials for Membrane Separation of Gas Mixtures Containing CO2. Polymer Science - Series C, 2021, 63, 181-198.	0.8	6
870	A Hexagonal Shapeâ€Persistent Nanobelt of Elongated Rhombic Symmetry with Orthogonal Ï€â€Planes by a Oneâ€Pot Reaction. European Journal of Organic Chemistry, 0, , .	1.2	2
871	Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials, 2021, 33, 9618-9623.	3.2	45
872	Structure Set in Stone: Designing Rigid Linkers to Control the Efficiency of Intramolecular Singlet Fission. Journal of Physical Chemistry B, 2021, 125, 13235-13245.	1.2	5
873	Novel green adsorbents for removal of aniline from industrial effluents: A review. Journal of Molecular Liquids, 2022, 345, 118167.	2.3	14
874	Novel Polymers with Ultrapermeability Based on Alternately Planar and Contorted Units for Gas Separation. , 2022, 4, 61-67.		6
875	Celgard/ PIM â€1 proton conducting composite membrane with reduced vanadium permeability. Journal of Applied Polymer Science, 0, , 51985.	1.3	2
876	Advanced microporous membranes for H2/CH4 separation: Challenges and perspectives. , 2021, 1, 100011.		16
877	Porous organic polymers for electrocatalysis. Chemical Society Reviews, 2022, 51, 761-791.	18.7	154

#	Article	IF	CITATIONS
878	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	11.8	32
879	Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. Journal of Membrane Science, 2022, 644, 120140.	4.1	28
880	Interfacial co-weaving of AO-PIM-1 and ZIF-8 in composite membranes for enhanced H2 purification. Journal of Membrane Science, 2022, 645, 120217.	4.1	12
881	High free volume polymers for pervaporation. Current Opinion in Chemical Engineering, 2022, 36, 100788.	3.8	9
882	The structure-property relationships of Polymers of Intrinsic Microporosity (PIMs). Current Opinion in Chemical Engineering, 2022, 36, 100785.	3.8	15
884	Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. , 2022, 2, 100028.		8
885	Nanoporous Fluorescent Microresonators for Non-wired Sensing of Volatile Organic Compounds down to the ppb Level. ACS Applied Polymer Materials, 2022, 4, 1065-1070.	2.0	10
886	Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. Journal of Materials Chemistry A, 2022, 10, 1047-1085.	5.2	68
887	Construction of bifunctional electrochemical biosensors for the sensitive detection of the SARS-CoV-2 N-gene based on porphyrin porous organic polymers. Dalton Transactions, 2022, 51, 2094-2104.	1.6	21
888	Nanostructured membranes for gas and vapor separation. , 2022, , 139-201.		Ο
889	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
890	Transition metal ion-coordinated porous organic polymer to enhance the peroxidase mimic activity for detection of ascorbic acid and dopamine. Materials Advances, 0, , .	2.6	3
891	Membrane materials targeting carbon capture and utilization. , 2022, 2, 100025.		27
892	Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389.	9.5	46
893	High flux thin film composite (TFC) membrane with non-planar rigid twisted structures for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2022, 286, 120496.	3.9	29
894	Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Current Opinion in Chemical Engineering, 2022, 36, 100792.	3.8	5
895	Electrospinning Polymers of Intrinsic Microporosity (PIMs) ultrafine fibers; preparations, applications and future perspectives. Current Opinion in Chemical Engineering, 2022, 36, 100793.	3.8	11
896	Porous organic polymers for light-driven organic transformations. Chemical Society Reviews, 2022, 51, 2444-2490.	18.7	145

#	Article	IF	CITATIONS
897	Design and synthesis of core–shell porous carbon derived from porous polymer as sulfur immobilizers for high-performance lithium–sulfur batteries. Journal of Materials Science, 2022, 57, 5130-5141.	1.7	4
898	Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	99
899	Porous organic polymers as a platform for sensing applications. Chemical Society Reviews, 2022, 51, 2031-2080.	18.7	140
900	Porous organic polymers for high-performance supercapacitors. Chemical Society Reviews, 2022, 51, 3181-3225.	18.7	114
901	The rise of morphology-engineered microporous organic polymers (ME-MOPs): synthesis and benefits. Journal of Materials Chemistry A, 2022, 10, 6950-6964.	5.2	20
902	Robust Fluorescent Detection of Iodine Vapor by a Film Sensor Based on a Polymer of Intrinsic Microporosity. SSRN Electronic Journal, 0, , .	0.4	0
904	Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. Chinese Chemical Letters, 2022, 33, 2856-2866.	4.8	27
905	Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2022, 109, 100-124.	2.9	33
906	BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS Applied Materials & amp; Interfaces, 2022, 14, 12596-12605.	4.0	6
907	129Xe: A Wide-Ranging NMR Probe for Multiscale Structures. Applied Sciences (Switzerland), 2022, 12, 3152.	1.3	8
909	Free volume and gas transport properties of hydrolyzed polymer of intrinsic microporosity (PIM-1) membrane studied by positron annihilation spectroscopy. Microporous and Mesoporous Materials, 2022, 335, 111770.	2.2	3
910	Ferrocene-based hypercrosslinked polymers derived from phenolic polycondensation with unexpected H2 adsorption capacity. Materials Today Chemistry, 2022, 24, 100854.	1.7	7
911	High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation. Journal of Membrane Science, 2022, 652, 120459.	4.1	11
912	Robust fluorescent detection of iodine vapor by a film sensor based on a polymer of intrinsic microporosity. Chemical Engineering Journal, 2022, 438, 135641.	6.6	14
913	Enhanced Membrane Performance for Gas Separation by Coupling Effect of the Porous Aromatic Framework (PAF) Incorporation and Photo-Oxidation. Industrial & Engineering Chemistry Research, 2022, 61, 6190-6199.	1.8	6
914	Investigation of the Side Chain Effect on Gas and Water Vapor Transport Properties of Anthracene-Maleimide Based Polymers of Intrinsic Microporosity. Polymers, 2022, 14, 119.	2.0	6
917	Effects of g-C ₃ N ₄ Heterogenization into Intrinsically Microporous Polymers on the Photocatalytic Generation of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2022, 14, 19938-19948.	4.0	17
918	Preparation and gas separation properties of spirobisbenzoxazole-based polyimides. European Polymer Journal, 2022, 173, 111231.	2.6	5

#	Article	IF	CITATIONS
919	Modulation of Solvation Structure and Electrode Work Function by an Ultrathin Layer of Polymer of Intrinsic Microporosity in Zinc Ion Batteries. Small, 2022, 18, e2201163.	5.2	12
920	Current Challenges and Perspectives of Polymer Electrolyte Membranes. Macromolecules, 2022, 55, 3773-3787.	2.2	45
921	The mechanism of light gas transport through configurational free volume in glassy polymers. Journal of Membrane Science, 2022, 656, 120608.	4.1	7
923	Atomic structure of the continuous random network of amorphous C[(C6H4)2]2 PAF-1. Cell Reports Physical Science, 2022, , 100899.	2.8	0
924	Significantly Enhanced Gas Separation Properties of Microporous Membranes by Precisely Tailoring Their Ultra-Microporosity Through Bromination/Debromination. SSRN Electronic Journal, 0, , .	0.4	0
925	Introducing porosity into metal–organic framework glasses. Journal of Materials Chemistry A, 2022, 10, 19552-19559.	5.2	10
926	Are Porous Polymers Practical to Protect Liâ€Metal Anodes? ―Current Strategies and Future Opportunities. Advanced Functional Materials, 2022, 32, .	7.8	17
927	Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO ₂ Fixation. Chemical Record, 2022, 22, .	2.9	12
928	Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. Membranes, 2022, 12, 646.	1.4	12
929	Gas Adsorption and Diffusion Behaviors in Interfacial Systems Composed of a Polymer of Intrinsic Microporosity and Amorphous Silica: A Molecular Simulation Study. Langmuir, 2022, 38, 7567-7579.	1.6	4
930	Synthesis, characterization and properties of polyimides with spirobisbenzoxazole scaffold structure. Polymer, 2022, 254, 125091.	1.8	5
931	Atomic layer deposition for membrane modification, functionalization and preparation: A review. Journal of Membrane Science, 2022, 658, 120740.	4.1	34
932	Polymeric membranes and their derivatives for H2/CH4 separation: State of the art. Separation and Purification Technology, 2022, 297, 121504.	3.9	22
933	Microporosity Effect of Intrinsic Microporous Polyimide Membranes on Their Helium Enrichment Performance after Direct Fluorination. SSRN Electronic Journal, 0, , .	0.4	0
934	Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications. EnergyChem, 2022, 4, 100079.	10.1	21
935	Side-Chain Length and Dispersity in ROMP Polymers with Pore-Generating Side Chains for Gas Separations. Jacs Au, 2022, 2, 1610-1615.	3.6	9
936	Longâ€Life Aqueous Organic Redox Flow Batteries Enabled by Amidoximeâ€Functionalized Ionâ€Selective Polymer Membranes. Angewandte Chemie, 2022, 134, .	1.6	6
937	Longâ€Life Aqueous Organic Redox Flow Batteries Enabled by Amidoximeâ€Functionalized Ionâ€Selective Polymer Membranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24

#	Article	IF	CITATIONS
938	Solution Processing of Cross-Linked Porous Organic Polymers. Accounts of Materials Research, 2022, 3, 1049-1060.	5.9	14
939	Temperature Effects in Flexible Adsorption Processes for Amorphous Microporous Polymers. Journal of Physical Chemistry B, 2022, 126, 6354-6365.	1.2	3
940	Multifunctional porous β-cyclodextrin polymer for water purification. Water Research, 2022, 222, 118917.	5.3	19
941	Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chemical Reviews, 2022, 122, 13235-13400.	23.0	77
942	Polymers of Intrinsic Microporosity─Molecular Mobility and Physical Aging Revisited by Dielectric Spectroscopy and X-ray Scattering. Macromolecules, 2022, 55, 7340-7350.	2.2	5
943	Microporosity effect of intrinsic microporous polyimide membranes on their helium enrichment performance after direct fluorination. Journal of Membrane Science, 2022, 660, 120868.	4.1	8
944	Porous silica nanosheets in PIM-1 membranes for CO2 separation. Journal of Membrane Science, 2022, 661, 120889.	4.1	17
945	Significantly enhanced gas separation properties of microporous membranes by precisely tailoring their ultra-microporosity through bromination/debromination. Chemical Engineering Journal, 2023, 451, 138513.	6.6	16
946	Switching ionic diode states with proton binding into intrinsically microporous polyamine films (PIM-EA-TB) immersed in ethanol. Journal of Electroanalytical Chemistry, 2022, 922, 116751.	1.9	2
947	Facile tailoring molecular sieving effect of PIM-1 by in-situ O3 treatment for high performance hydrogen separation. Journal of Membrane Science, 2022, 662, 120971.	4.1	6
948	Field Grand Challenge for Membrane Science and Technology. , 0, 1, .		4
949	Critical Assessment of Membrane Technology Integration in a Coal-Fired Power Plant. Membranes, 2022, 12, 904.	1.4	4
950	Thin Film Composite Membranes Based on the Polymer of Intrinsic Microporosity PIM-EA(Me2)-TB Blended with Matrimid®5218. Membranes, 2022, 12, 881.	1.4	5
951	Porous but Mechanically Robust All-Inorganic Antireflective Coatings Synthesized using Polymers of Intrinsic Microporosity. ACS Nano, 2022, 16, 14754-14764.	7.3	9
952	Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage. Journal of the American Chemical Society, 2022, 144, 17198-17208.	6.6	23
953	CO2 separation of fluorinated 6FDA-based polyimides, performance-improved ZIF-incorporated mixed matrix membranes and gas permeability model evaluations. Journal of Environmental Chemical Engineering, 2022, 10, 108611.	3.3	5
954	Synthesis of A Series of Porous Aromatic Frameworks by Mechanical ball milling. New Journal of Chemistry, 0, , .	1.4	2
955	Ion Exchange Membranes: Constructing and Tuning Ion Transport Channels. Advanced Functional Materials, 2022, 32, .	7.8	31

	ΟΙΤΑΤΙΟ	CITATION REPORT	
#	Article	IF	CITATIONS
956	Branched Tröger's base polymer membranes for gas separation. Polymer, 2022, 262, 125437.	1.8	5
957	Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: A comparative study on the microstructure-performance relationships. Journal of Membrane Science, 2022, 664, 121103.	4.1	11
958	Fluorene-based polymers of intrinsic microporosity as fluorescent probes for metal ions. Reactive and Functional Polymers, 2022, 181, 105431.	2.0	6
959	Artificial formate oxidase reactivity with nano-palladium embedded in intrinsically microporous polyamine (Pd@PIM-EA-TB) driving the H2O2 – 3,5,3′,5′-tetramethylbenzidine (TMB) colour reaction Journal of Catalysis, 2022, 416, 253-266.	. 3.1	2
960	Porous Polymers Containing Metallocalix[4]arene for the Extraction of Tobacco-Specific Nitrosamines. Chemistry of Materials, 2022, 34, 10623-10630.	3.2	2
961	Advances in organic microporous membranes for CO ₂ separation. Energy and Environmental Science, 2023, 16, 53-75.	15.6	24
962	Prospective carbon nanofibers based on polymer of intrinsic microporosity (PIM-1): Pore structure regulation for higher carbon sequestration and renewable energy source applications. Polymer, 2023, 264, 125546.	1.8	3
963	Gold nanoparticles decorated covalent organic polymer as a bimodal catalyst for total water splitting and nitro compound reduction. Materials Today Chemistry, 2023, 27, 101327.	1.7	1
964	Synthesis of porphyrin porous organic polymers and their application of water pollution treatment: A review. Environmental Technology and Innovation, 2023, 29, 102972.	3.0	22
965	In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. Journal of Membrane Science, 2023, 668, 121267.	4.1	10
966	Hansen solubility parameters-guided mixed matrix membranes with linker-exchanged metal-organic framework fillers showing enhanced gas separation performance. Journal of Membrane Science, 2023, 668, 121238.	4.1	7
967	Electrosprayed hierarchically porous microparticles with tunable morphology for selective dye adsorption. Materials Chemistry and Physics, 2023, 295, 127154.	2.0	2
968	Covalent organic frameworks as promising materials for the removal of metal and organic pollutants from water. Materials Today Sustainability, 2023, 21, 100279.	1.9	11
969	Dibenzomethanopentaceneâ€Based Polymers of Intrinsic Microporosity for Use in Gasâ€Separation Membranes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
970	Molecular Iodine Capture by Covalent Organic Frameworks. Molecules, 2022, 27, 9045.	1.7	17
971	Low Pt loading for high-performance fuel cell electrodes enabled by hydrogen-bonding microporous polymer binders. Nature Communications, 2022, 13, .	5.8	20
972	Solution-processable amorphous microporous polymers for membrane applications. Progress in Polymer Science, 2023, 137, 101636.	11.8	13
973	Dibenzomethanopentaceneâ€Based Polymers of Intrinsic Microporosity for Use in Gasâ€5eparation Membranes. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
974	Intermolecular cross-linked polymer of intrinsic microporosity-1 (PIM-1)-based thin-film composite hollow fiber membrane for organic solvent nanofiltration. Journal of Membrane Science, 2023, 671, 121370.	4.1	11
975	Methanol Vapor Retards Aging of PIM-1 Thin Film Composite Membranes in Storage. ACS Macro Letters, 2023, 12, 113-117.	2.3	10
976	Conjugated hypercrosslinked polymers imprinted with 3,5-dinitrosalicylic acid for the fluorescent determination of α-amylase activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 291, 122383.	2.0	3
977	Crosslinking of Branched PIM-1 and PIM-Py Membranes for Recovery of Toluene from Dimethyl Sulfoxide by Pervaporation. ACS Applied Polymer Materials, 2023, 5, 1145-1158.	2.0	6
978	Fine tune gas separation property of intrinsic microporous polyimides and their carbon molecular sieve membranes by gradient bromine substitution/removal. Journal of Membrane Science, 2023, 669, 121310.	4.1	12
979	Porous rigid-flexible polymer membrane interface towards high-rate and stable zinc-ion battery. Journal of Power Sources, 2023, 560, 232685.	4.0	7
980	Recent progress of membrane technology for chiral separation: A comprehensive review. Separation and Purification Technology, 2023, 309, 123077.	3.9	19
981	Polymeric membranes for syngas purification. , 2023, , 273-305.		1
982	Porosity Engineering of Hyper-Cross-Linked Polymers Based on Fine-Tuned Rigidity in Building Blocks and High-Pressure Methane Storage Applications. Macromolecules, 2023, 56, 1213-1222.	2.2	7
984	Porous organic polymers: a progress report in China. Science China Chemistry, 0, , .	4.2	5
986	Remarkable gas separation performance of a thermally rearranged membrane derived from an alkynyl self-crosslinkable precursor. Journal of Membrane Science, 2023, 672, 121464.	4.1	10
987	Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coordination Chemistry Reviews, 2023, 482, 215074.	9.5	27
988	Tailoring of microporosity of Tröger's base (TB) high temperature proton exchange membrane by miscible polymer blending. Journal of Power Sources, 2023, 565, 232868.	4.0	6
989	Super high gas separation performance membranes derived from a brominated alternative PIM by thermal induced crosslinking and carbonization at low temperature. Separation and Purification Technology, 2023, 314, 123548.	3.9	4
990	Outstanding performance of PIM-1 membranes towards the separation of fluorinated refrigerant gases. Journal of Membrane Science, 2023, 675, 121532.	4.1	9
991	Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes. Chemical Engineering Journal, 2023, 465, 142873.	6.6	4
992	Intrinsically microporous polyimides from p-phenylenediamine with fused cyclopentyl substituents for membrane-based gas separation. Separation and Purification Technology, 2023, 316, 123690.	3.9	2
993	Advanced porous adsorbents for radionuclides elimination. EnergyChem, 2023, 5, 100101.	10.1	84

ARTICLE IF CITATIONS Visible-light photoredox catalysis with organic polymers. Chemical Physics Reviews, 2023, 4, . 994 2.6 3 Perylene Diimide-Containing Dynamic Hyper-crosslinked Ionic Porous Organic Polymers: Modulation 995 of Ássembly and Gas Storage. ÁCS Applied Polymer Materials, 2023, 5, 2097-2104. <scp>CO₂</scp> capture by benzeneâ€based hypercrosslinked polymer adsorbent: Artificial 996 neural network and response surface methodology. Canadian Journal of Chemical Engineering, 2023, 0.9 9 101, 5621-5642. Recent advances in ground-breaking conjugated microporous polymers-based materials, their 998 synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208. Phosphonated Ionomers of Intrinsic Microporosity with Partially Ordered Structure for 999 5.3 9 High-Temperature Proton Exchange Membrane Fuel Cells. ACS Central Science, 2023, 9, 733-741. Selfâ€Accelerating Diels–Alder Reaction for Preparing Polymers of Intrinsic Microporosity. 1.6 Angewandte Chemie, 2023, 135, . Selfâ€Accelerating Diels–Alder Reaction for Preparing Polymers of Intrinsic Microporosity. 1001 7.2 3 Angewandte Chemie - International Edition, 2023, 62, . Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized 5.8 polymers of intrinsic microporosity. Nature Communications, 2023, 14, . Chemical resolution of spiroindanones and synthesis of chiroptical polymers with circularly 1010 2.2 1 polarized luminescence. Chemical Communications, 2023, 59, 8957-8960. Porous organic polymers (POPs) for environmental remediation. Materials Horizons, 2023, 10, 6.4 4083-4138. Ru-doped functional porous materials for electrocatalytic water splitting. Nano Research, 2024, 17, 1031 5 5.8982-1002. Amorphous porous organic polymers containing main group elements. Communications Chemistry, 2023, 6, . Crystalline porous organic salts. Chemical Society Reviews, 2024, 53, 1495-1513. 1065 18.7 0 Polymers of intrinsic microporosity and their applicability in pilot-scale membrane units., 2024,, 1067 187-205.