Numerical studies of uniaxial powder compaction proce

Engineering Computations 21, 304-317 DOI: 10.1108/02644400410519802

Citation Report

#	Article	IF	CITATIONS
1	Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technology, 2005, 154, 99-109.	2.1	210
2	Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model. Pure and Applied Geophysics, 2006, 163, 1769-1785.	0.8	80
3	Multiscale Modelling Methodology for Virtual Prototyping of Effervescent Tablets. Journal of Pharmaceutical Sciences, 2006, 95, 1614-1625.	1.6	11
4	Numerical modelling of spontaneous crack generation in brittle materials using the particle simulation method. Engineering Computations, 2006, 23, 566-584.	0.7	16
5	A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method. International Journal for Numerical Methods in Engineering, 2007, 69, 1158-1193.	1.5	98
6	Modeling Wing Crack Extension: Implications for the Ingredients of Discrete Element Model. Pure and Applied Geophysics, 2008, 165, 609-620.	0.8	46
7	Criteria for static equilibrium in particulate mechanics computations. International Journal for Numerical Methods in Engineering, 2008, 75, 1581-1606.	1.5	40
8	An efficient finite/discrete element procedure for simulating compression of 3D particle assemblies. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 4266-4272.	3.4	59
9	Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science, 2008, 63, 5728-5770.	1.9	1,172
10	Study of polycrystalline Al2O3 machining cracks using discrete element method. International Journal of Machine Tools and Manufacture, 2008, 48, 975-982.	6.2	66
11	Newton's cradle undone: Experiments and collision models for the normal collision of three solid spheres. Physics of Fluids, 2008, 20, .	1.6	42
12	Study on Mechanical Properties and Size Effect of Si ₃ N ₄ Using Discrete Element Method. Advanced Materials Research, 0, 76-78, 719-724.	0.3	2
13	Process Modeling in the Pharmaceutical Industry using the Discrete Element Method. Journal of Pharmaceutical Sciences, 2009, 98, 442-470.	1.6	180
14	Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. Journal of the European Ceramic Society, 2009, 29, 1029-1037.	2.8	149
15	A modeling approach for understanding effects of powder flow properties on tablet weight variability. Powder Technology, 2009, 188, 295-300.	2.1	48
16	Effect of particle size in aggregated and agglomerated ceramic powders. Acta Materialia, 2010, 58, 802-812.	3.8	105
17	Microstructure effects on transverse cracking in composite laminae by DEM. Composites Science and Technology, 2010, 70, 2093-2101.	3.8	47
18	Compression mechanics of granule beds: A combined finite/discrete element study. Chemical Engineering Science, 2010, 65, 2464-2471.	1.9	38

#	Article	IF	CITATIONS
19	Discrete element modeling of the microbond test of fiber reinforced composite. Computational Materials Science, 2010, 49, 253-259.	1.4	59
20	Modeling progressive delamination of laminated composites by discrete element method. Computational Materials Science, 2011, 50, 858-864.	1.4	43
21	3D Simulation of Internal Tablet Strength During Tableting. AAPS PharmSciTech, 2011, 12, 593-603.	1.5	18
22	Three dimensional discrete element modeling of granular media under cyclic constant volume loading: A micromechanical perspective. Powder Technology, 2011, 212, 1-16.	2.1	44
23	Dynamic simulation of crack initiation and propagation in cross-ply laminates by DEM. Composites Science and Technology, 2011, 71, 1410-1418.	3.8	31
24	Computational simulation of frictional drill-bit movement in cemented granular materials. Finite Elements in Analysis and Design, 2011, 47, 877-885.	1.7	8
25	Numerical Modelling of Damage Progression in Single-Fiber Composite under Axial Tension. Advanced Materials Research, 0, 268-270, 280-285.	0.3	0
26	Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granular Matter, 2012, 14, 671-680.	1.1	24
27	Discrete element modelling of the quasi-static uniaxial compression of individual infant formula agglomerates. Particuology, 2012, 10, 523-531.	2.0	15
28	Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling. Powder Technology, 2012, 217, 435-442.	2.1	83
29	An experimental evaluation of the accuracy to simulate granule bed compression using the discrete element method. Powder Technology, 2012, 219, 249-256.	2.1	25
30	Stress transmission in internally unstable gap-graded soils using discrete element modeling. Powder Technology, 2013, 247, 161-171.	2.1	36
31	Discrete element modeling of metal skinned sandwich composite panel subjected to uniform load. Computational Materials Science, 2013, 69, 73-80.	1.4	6
32	An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology, 2014, 12, 2-12.	2.0	65
33	Granular dynamics simulations of the effect of grain size dispersity on uniaxially compacted powder blends. Granular Matter, 2014, 16, 243-248.	1.1	12
34	Three-dimensional discrete element modeling of triggered slip in sheared granular media. Physical Review E, 2014, 89, 042204.	0.8	40
35	Stress Distribution in Iron Powder during Die Compaction. Materials Science Forum, 0, 777, 243-248.	0.3	5
36	Effect of particle size distribution on micro- and macromechanical response of granular packings under compression. International Journal of Solids and Structures, 2014, 51, 4189-4195.	1.3	51

#	Article	IF	CITATIONS
37	Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granular Matter, 2014, 16, 383-400.	1.1	115
38	Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling. Computers and Fluids, 2014, 94, 37-48.	1.3	76
39	Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering. Geophysical Research Letters, 2015, 42, 9750-9757.	1.5	28
40	Numerical simulation of raceway phenomena in a COREX melter–gasifier. Powder Technology, 2015, 281, 159-166.	2.1	31
41	A comparison of micromechanical assessments with internal stability/instability criteria for soils. Powder Technology, 2015, 276, 66-79.	2.1	30
42	Numerical Modelling of Die and Unconfined Compactions of Wet Particles. Procedia Engineering, 2015, 102, 1390-1398.	1.2	10
43	A DEM Methodology for Simulating the Grinding Process of SiC Ceramics. Procedia Engineering, 2015, 102, 1803-1810.	1.2	13
44	DEM study of the mechanical strength of iron ore compacts. International Journal of Mineral Processing, 2015, 142, 73-81.	2.6	28
45	Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations. Langmuir, 2016, 32, 10784-10794.	1.6	2
46	A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium. Journal of Petroleum Science and Engineering, 2016, 145, 444-452.	2.1	60
47	Evolution of the microstructure during the process of consolidation and bonding in soft granular solids. International Journal of Pharmaceutics, 2016, 503, 68-77.	2.6	25
48	Representative elementary volume analysis of polydisperse granular packings using discrete element method. Particuology, 2016, 27, 88-94.	2.0	31
49	Scaling of discrete element model parameters for cohesionless and cohesive solid. Powder Technology, 2016, 293, 130-137.	2.1	119
50	Analytical study of the accuracy of discrete element simulations. International Journal for Numerical Methods in Engineering, 2017, 109, 29-51.	1.5	18
51	On the role of fluids in stickâ€slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamicsâ€discrete element approach. Journal of Geophysical Research: Solid Earth, 2017, 122, 3689-3700.	1.4	33
52	Discrete particle modeling and micromechanical characterization of bilayer tablet compaction. International Journal of Pharmaceutics, 2017, 529, 597-607.	2.6	22
53	Discrete Modelling of Compaction of Non-spherical Particles. EPJ Web of Conferences, 2017, 140, 01005.	0.1	6
54	DEM investigation of the role of friction in mechanical response of powder compact. Powder Technology, 2017, 319, 183-190.	2.1	22

#	Article	IF	CITATIONS
55	Study of the die compaction of powders to high relative densities using the discrete element method. Powder Technology, 2018, 330, 357-370.	2.1	30
56	Discrete modelling of the compaction of non-spherical particles using a multi-sphere approach. Minerals Engineering, 2018, 117, 108-116.	1.8	49
57	Numerical analysis of compression mechanics of highly polydisperse granular mixtures with different PSD-s. Granular Matter, 2018, 20, 1.	1.1	6
58	A GPU-based DEM for modelling large scale powder compaction with wide size distributions. Powder Technology, 2018, 333, 219-228.	2.1	52
59	Potential Energy as Metric for Understanding Stick–Slip Dynamics in Sheared Granular Fault Gouge: A Coupled CFD–DEM Study. Rock Mechanics and Rock Engineering, 2018, 51, 3281-3294.	2.6	19
60	Spatially Varying Small-strain Stiffness in Soils Subjected to KO Loading. KSCE Journal of Civil Engineering, 2018, 22, 1101-1108.	0.9	4
61	Determination of the coefficient of rolling friction of an irregularly shaped maize particle group using physical experiment and simulations. Particuology, 2018, 38, 185-195.	2.0	58
62	Evaluation of contact force models for discrete modelling of ellipsoidal particles. Chemical Engineering Science, 2018, 177, 1-17.	1.9	29
63	Numerical prediction of packing behavior and thermal conductivity of pebble beds according to pebble size distributions and friction coefficients. Fusion Engineering and Design, 2018, 137, 182-190.	1.0	27
64	Particle size induced heterogeneity in compacted powders: Effect of large particles. Advanced Powder Technology, 2018, 29, 2978-2986.	2.0	6
65	Characterising particle packings by principal component analysis. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 70-89.	3.4	8
66	Micromechanical analysis on the compaction of tetrahedral particles. Chemical Engineering Research and Design, 2018, 136, 610-619.	2.7	9
67	Boundary effects in discrete element method modeling of undrained cyclic triaxial and simple shear element tests. Granular Matter, 2018, 20, 1.	1.1	28
68	A numerical study of particle friction and initial state effects on the liquefaction of granular assemblies. Soil Dynamics and Earthquake Engineering, 2019, 126, 105773.	1.9	4
69	Assessment of particle rearrangement and anisotropy in high-load tableting with a DEM-based elasto-plastic cohesive model. Granular Matter, 2019, 21, 1.	1.1	8
70	Grain Friction Controls Characteristics of Seismic Cycle in Faults With Granular Gouge. Journal of Geophysical Research: Solid Earth, 2019, 124, 6475-6489.	1.4	13
71	Tensile strength of pressure-agglomerated potato starch determined via diametral compression test: Discrete element method simulations and experiments. Biosystems Engineering, 2019, 183, 95-109.	1.9	18
72	Effects of particle characteristics and consolidation pressure on the compaction of non-spherical particles. Minerals Engineering, 2019, 137, 241-249.	1.8	9

#	Article	IF	CITATIONS
74	A pore-scale thermo–hydro-mechanical model for particulate systems. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113292.	3.4	16
75	A DEM modeling of biomass fast pyrolysis in a double auger reactor. International Journal of Heat and Mass Transfer, 2020, 150, 119308.	2.5	23
76	Investigation of Initial Static Shear Stress Effects on Liquefaction Resistance Using Discrete Element Method Simulations. International Journal of Geomechanics, 2020, 20, .	1.3	9
77	Numerical investigation into the densification of ferrous powder in high velocity compaction. Physica Scripta, 2020, 95, 065704.	1.2	4
78	A novel stiffness scaling methodology for discrete element modelling of cohesive fine powders. Applied Mathematical Modelling, 2021, 90, 817-844.	2.2	17
79	An error-controlled adaptive time-stepping method for particle advancement in coupled CFD-DEM simulations. Powder Technology, 2021, 379, 203-216.	2.1	5
80	Effects of solid graphite lubricants for powder compaction. Powder Metallurgy, 2021, 64, 241-247.	0.9	2
81	Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesion. Icarus, 2021, 362, 114433.	1.1	33
82	The ESyS_Particle: A New 3-D Discrete Element Model with Single Particle Rotation. Lecture Notes in Earth Sciences, 2009, , 183-228.	0.5	13
83	Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model. , 2006, , 1769-1785.		1
84	Modeling Wing Crack Extension: Implications for the Ingredients of Discrete Element Model. , 2008, , 609-620.		2
86	Study on the Compaction Properties of Fe-Si-Al-Graphite Powder Mixtures. Journal of Korean Powder Metallurgy Institute, 2020, 27, 300-304.	0.2	0
87	DEM modelling of particle fragmentation during compaction of particles. Powder Technology, 2022, 398, 117073.	2.1	12
88	An Introduction to the Geometrical Stability Index: A Fabric Quantity. Geotechnics, 2022, 2, 297-316.	1.2	3
89	DEM simulation of geotextile-geomembrane interface direct shear test considering the interlocking and wearing processes. Computers and Geotechnics, 2022, 148, 104805.	2.3	4
90	Reverse scaling of a bonded-sphere DEM model: Formulation and application to lignocellulosic biomass microstructures. Powder Technology, 2022, 409, 117797.	2.1	2
91	DEM simulation of geogrid–aggregate interface shear behavior: Optimization of the aperture ratio considering the initial interlocking states. Computers and Geotechnics, 2023, 154, 105182.	2.3	9
92	Review of CFD-DEM Modeling of Wet Fluidized Bed Granulation and Coating Processes. Processes, 2023, 11, 382.	1.3	4

	Сітаті	CITATION REPORT		
#	Article	IF	Citations	
93	Compaction of highly deformable cohesive granular powders. Powder Technology, 2023, 421, 118455.	2.1	4	